WO2018127214A1 - 一种上行数据重传方法及终端 - Google Patents

一种上行数据重传方法及终端 Download PDF

Info

Publication number
WO2018127214A1
WO2018127214A1 PCT/CN2018/075136 CN2018075136W WO2018127214A1 WO 2018127214 A1 WO2018127214 A1 WO 2018127214A1 CN 2018075136 W CN2018075136 W CN 2018075136W WO 2018127214 A1 WO2018127214 A1 WO 2018127214A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink data
network side
terminal
retransmission
feedback message
Prior art date
Application number
PCT/CN2018/075136
Other languages
English (en)
French (fr)
Inventor
邢艳萍
郑方政
托尼
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to US16/476,122 priority Critical patent/US11102767B2/en
Publication of WO2018127214A1 publication Critical patent/WO2018127214A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1803Stop-and-wait protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1806Go-back-N protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the present application relates to the field of communications, and in particular, to an uplink data retransmission method and a terminal.
  • Ultra Reliable & Low Latency Communication URLLC
  • URLLC Ultra Reliable & Low Latency Communication
  • the so-called uplink-free scheduling transmission means that the uplink transmission of the terminal does not require dynamic and explicit scheduling authorization from the base station, and the terminal directly transmits uplink data on the selected resource.
  • the URLLC service requires low latency and high reliability, and the latency of the air interface is required to be around 1 ms. In order to meet the requirements of low latency and high reliability, it is necessary to increase the number of retransmissions as much as possible within the range of delay requirements, thereby improving reliability.
  • the uplink retransmission is implemented by a Hybrid Automatic Repeat ReQuest (HARQ) mechanism.
  • HARQ Hybrid Automatic Repeat ReQuest
  • the terminal determines whether to perform retransmission based on feedback from the network side.
  • LTE supports two kinds of feedback modes. One is to use the Physical Hybrid ARQ Indicator Channel (PHICH) channel feedback HARQ-ACK, that is, ACKnowledgement (ACK) or Negative (Non-ACKnowledgment, NACK).
  • PHICH Physical Hybrid ARQ Indicator Channel
  • ACK ACKnowledgement
  • NACK Negative
  • When the terminal receives the ACK it does not perform retransmission.
  • the terminal receives the NACK, it initiates the retransmission according to a fixed timing relationship; the other is the new data indication in the Downlink Control Information (DCI) (New Data).
  • DCI Downlink Control Information
  • NDI The Indication (NDI) domain performs feedback. When the NDI indicates new
  • the base station receives the uplink data of the terminal, needs to decode the uplink data, and generates a feedback message; the terminal receives the feedback message of the base station, needs to decode the feedback message, and generates a retransmission or a new data packet according to the feedback message. That is, the base station and the terminal side respectively require a certain processing time.
  • the retransmission mechanism follows the traditional HARQ mechanism, the two adjacent transmissions of the uplink data require a certain time interval. Under certain delay requirements and configurations, it may be impossible to support retransmission, which may result in the reliability of URLLC being unsatisfactory.
  • the embodiment of the present application provides an uplink data retransmission method and a terminal, and determines whether to perform spontaneous retransmission on the first uplink data by using the terminal; when the terminal determines to perform spontaneous retransmission on the first uplink data, The terminal performs spontaneous retransmission on the first uplink data based on physical resources preconfigured on the network side.
  • an embodiment of the present application provides an uplink data retransmission method, which is applied to a terminal, where the method includes:
  • the terminal determines whether to perform spontaneous retransmission on the first uplink data
  • the terminal When the terminal determines that the first uplink data is retransmitted, the terminal retransmits the first uplink data on a physical resource preconfigured on the network side.
  • the terminal determines whether to perform spontaneous retransmission on the first uplink data, including:
  • the terminal determines whether to perform the spontaneous retransmission of the first uplink data based on the received notification message of whether the network side notification starts the autonomous retransmission mechanism.
  • the terminal retransmits the first uplink data on a physical resource pre-configured on the network side, including:
  • the terminal After the terminal sends the first uplink data to the network side, and when the network side does not obtain the feedback message of the first uplink data, the terminal is on the physical resource preconfigured on the network side. Retransmitting the first uplink data.
  • the terminal retransmits the first uplink data on the physical resource pre-configured by the network side, including:
  • the terminal obtains the number of times the terminal retransmits the first uplink data
  • the terminal stops retransmission of the first uplink data.
  • the terminal determines whether to perform spontaneous retransmission on the first uplink data, including:
  • the terminal detects whether a feedback message of the first uplink data by the network side is received before a specific time point, and obtains a first detection result
  • the terminal determines that the first uplink data is not automatically retransmitted; when the first detection result is no, the terminal determines that the first uplink is The data is spontaneously retransmitted.
  • the specific time point is that after the first uplink data is sent, the pre-configured physical resources of the network side can be used at a time point corresponding to the preset duration.
  • the preset duration is a preset value; or the preset duration is determined by the network side and notified to the terminal; or the preset duration is determined by the terminal and notified to the network side.
  • the terminal detects whether the network side sends the feedback message to the first uplink data before the specific time point, and obtains the first detection result, including:
  • the terminal After the terminal sends the first uplink data to the network side, the terminal detects whether the network receives the feedback message before the specific time point by listening to the feedback message of the network side for the first uplink data. A feedback message of the first uplink data is obtained, and a first detection result is obtained.
  • the terminal detects, by the network side, a feedback message for the first uplink data, whether the network side receives the feedback message of the first uplink data before the specific time point, and obtains the A test result, including:
  • the terminal detects, according to the sending time, whether a feedback message of the first uplink data by the network side is received before a specific time point, and obtains a first detection result
  • the terminal determines that the network side does not receive the feedback message of the first uplink data by the network side before the specific time point, the terminal stops listening to the network side to the The feedback message of the first uplink data.
  • an embodiment of the present application provides a terminal, including:
  • a first determining module configured to determine whether to perform spontaneous retransmission on the first uplink data
  • the autonomous retransmission module is configured to retransmit the first uplink data on a physical resource preconfigured on the network side when the terminal determines to perform the autonomous retransmission of the first uplink data.
  • the first determining module is specifically configured to:
  • the autonomous retransmission module is specifically configured to:
  • the terminal After the terminal sends the first uplink data to the network side, and after the network side does not obtain the feedback message of the first uplink data, the terminal retransmits the physical resource preconfigured on the network side.
  • the first uplink data is described.
  • the spontaneous retransmission module includes:
  • a transmission number obtaining unit configured to obtain a number of transmissions by which the terminal retransmits the first uplink data
  • a retransmission unit configured to stop retransmission of the first uplink data when the number of transmissions reaches a maximum number of transmissions corresponding to the first uplink data.
  • the first determining module includes:
  • a detecting unit configured to detect whether a feedback message of the first uplink data is received by the network side before a specific time point, to obtain a first detection result
  • a determining unit configured to determine, according to the first detection result, whether to perform spontaneous retransmission on the first uplink data
  • the determining unit is configured to determine that the first uplink data is not automatically retransmitted; when the first detection result is no, the determining unit is configured to determine Performing spontaneous retransmission on the first uplink data.
  • the specific time point is that after the first uplink data is sent, the pre-configured physical resources of the network side can be used at a time point corresponding to the preset duration.
  • the preset duration is a preset value; or the preset duration is determined by the network side and notified to the terminal; or the preset duration is determined by the terminal and notified to the network side.
  • the detecting unit is specifically configured to:
  • the terminal After the terminal sends the first uplink data to the network side, by detecting the feedback message of the network side to the first uplink data, detecting whether the network side is received before a specific time point.
  • the feedback message of the first uplink data is obtained, and the first detection result is obtained.
  • the detecting unit is specifically configured to:
  • the detecting unit stops listening to the network side to the first when it is determined that the network side does not receive the feedback message of the first uplink data before the specific time point based on the sending time. Feedback message for upstream data.
  • an embodiment of the present application provides a terminal, including: a processor, a memory, and a transceiver;
  • the processor is configured to read a program in the memory and perform the following processes:
  • the processor is specifically configured to:
  • the processor is specifically configured to:
  • the terminal After the terminal sends the first uplink data to the network side, and after the network side does not obtain the feedback message of the first uplink data, the terminal retransmits the physical resources preconfigured on the network side.
  • the first uplink data After the terminal sends the first uplink data to the network side, and after the network side does not obtain the feedback message of the first uplink data, the terminal retransmits the physical resources preconfigured on the network side. The first uplink data.
  • the processor is specifically configured to:
  • the processor is specifically configured to:
  • the determining unit is configured to determine that the first uplink data is not automatically retransmitted; when the first detection result is no, the determining unit is configured to determine Performing spontaneous retransmission on the first uplink data.
  • the specific time point is a time point corresponding to the preset time duration of the physical resources pre-configured by the network side after the first uplink data transmission is completed.
  • the preset duration is a preset value; or the preset duration is determined by the network side and notified to the terminal; or the preset duration is determined by the terminal and notified to the network side.
  • the processor is specifically configured to:
  • the terminal After the terminal sends the first uplink data to the network side, by detecting the feedback message of the network side to the first uplink data, detecting whether the network side is received before a specific time point.
  • the feedback message of the first uplink data is obtained, and the first detection result is obtained.
  • the processor is specifically configured to:
  • the detecting unit stops listening to the network side to the first when it is determined that the network side does not receive the feedback message of the first uplink data before the specific time point based on the sending time. Feedback message for upstream data.
  • the embodiment of the present application provides a cache synchronization abnormal device readable storage medium, including program code, when the program code is run on a computing device, the program code is used to enable the computing device to perform the above The solution of any of the first aspects.
  • the terminal determines whether the first uplink data is automatically retransmitted. Then, when the terminal determines to perform the automatic retransmission on the first uplink data, the terminal is configured on the physical resources preconfigured on the network side. The first uplink data is subjected to spontaneous retransmission.
  • the retransmission mechanism follows the traditional HARQ mechanism, the adjacent transmission of the uplink data requires a certain time interval, and under certain delay requirements and configurations, it is possible
  • the technical problem that the retransmission cannot be supported, thereby failing to meet the reliability requirements of the URLLC service achieves the spontaneous retransmission of the uplink data by the supporting terminal, thereby reducing the time interval between adjacent transmissions of the uplink data, and increasing the weight.
  • FIG. 1 is a schematic flow chart of an uplink data retransmission method in the prior art
  • FIG. 2 is a schematic flowchart of an uplink data retransmission method according to an embodiment of the present application
  • 3 is a first schematic diagram of periodic physical resources configured on the network side in the embodiment of the present application.
  • FIG. 4 is a second schematic diagram of periodic physical resources configured on the network side in the embodiment of the present application.
  • FIG. 5 is a third schematic diagram of an uplink and downlink configuration configured on the network side in the embodiment of the present application.
  • FIG. 6 is a fourth schematic diagram of an uplink and downlink configuration configured on the network side in the embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a module of a terminal according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another terminal according to an embodiment of the present application.
  • FIG. 1 it is a schematic diagram of an uplink data retransmission method in the prior art, which is not described herein.
  • the technical solution in the embodiment of the present application is to solve the above technical problem, and the general idea is as follows: the terminal determines whether to perform spontaneous retransmission on the first uplink data; when the terminal determines to perform spontaneous retransmission on the first uplink data, The terminal performs spontaneous retransmission on the first uplink data on a physical resource preconfigured on the network side. Determining, by the terminal, whether the first uplink data is spontaneously retransmitted based on the received notification message of whether the network side notification starts the autonomous retransmission mechanism; or the terminal detects whether the foregoing is received before a specific time point. The network side obtains a first detection result on the feedback message of the first uplink data, and the terminal determines, according to the first detection result, whether to perform spontaneous retransmission on the first uplink data.
  • the URLLC service in the prior art is effectively solved.
  • the retransmission mechanism follows the traditional HARQ mechanism, the adjacent transmission of the uplink data requires a certain time interval, and the specific delay requirement is required.
  • the configuration may result in failure to support retransmission, thereby failing to meet the technical requirements of the reliability requirement of the URLLC service, and achieving the spontaneous retransmission of the uplink data supported by the mobile terminal, thereby reducing the adjacent transmission of the uplink data.
  • the time interval between the two increases the probability of retransmission and the number of retransmissions, improving the technical effect of the reliability of data transmission.
  • the network side pre-configures physical resources for uplink unscheduled transmission.
  • the physical resources may be specific to the mobile terminal, or may be shared between the mobile terminals, and are not specifically limited in the embodiment of the present application.
  • the first embodiment of the present application provides an uplink data retransmission method, which is applied to a terminal, where the method includes the following steps:
  • the terminal determines whether to perform spontaneous retransmission on the first uplink data.
  • the first implementation manner of S101 is:
  • the terminal determines whether to perform the spontaneous retransmission of the first uplink data based on the received notification message of whether the network side notification starts the autonomous retransmission mechanism.
  • the terminal determines that the first uplink data is to be automatically retransmitted, and vice versa, if the notification message received by the terminal does not represent The automatic retransmission mechanism needs to be started, and the terminal does not perform spontaneous retransmission on the first uplink data.
  • the network side pre-configures physical resources for uplink unscheduled transmission.
  • the physical resources may be terminal-specific or shared between terminals.
  • the network side is configured with the pre-configured dedicated physical resources for the terminal.
  • the network side is configured with the time-frequency resources as shown in FIG. 3 for the uplink-free scheduling transmission for the first terminal UE1 and the second terminal UE2, respectively.
  • the network side notifies the terminal whether to use spontaneous retransmission.
  • the notification manner may be a semi-static configuration through high layer signaling or a dynamic notification through physical layer signaling.
  • the high layer signaling may be at a cell level, a terminal group level, or a terminal level.
  • the terminal level is taken as an example for description, and the network side configures whether the terminal adopts spontaneous retransmission through high-level dedicated signaling.
  • the network side can configure the UE1 to adopt the autonomous retransmission mechanism, and the UE2 does not adopt the autonomous retransmission mechanism.
  • the UE1 After the configuration, after receiving the notification message sent by the network side that needs to initiate the spontaneous retransmission, the UE1 The first uplink data is automatically retransmitted; for UE2, since it receives a notification message sent by the network side that does not need to initiate spontaneous retransmission, UE2 does not perform spontaneous retransmission on its uplink data. .
  • the determining, by the mobile terminal, that the first uplink data is retransmitted automatically may include:
  • the terminal After the terminal sends the first uplink data to the network side, and when the network side does not obtain the feedback message of the first uplink data, the terminal is on the physical resource preconfigured on the network side. Retransmitting the first uplink data.
  • the terminal retransmits the first uplink data on the physical resource pre-configured on the network side, and in an actual application, the method may include the following steps:
  • the terminal obtains the number of times the terminal retransmits the first uplink data
  • the terminal stops retransmission of the first uplink data
  • the terminal continuously retransmits the first uplink data.
  • the first uplink data of UE1 is ready to be transmitted at time T1, and UE1 starts to perform initial transmission of the first uplink data on the network side for its pre-configured physical resources at time T2.
  • the UE1 performs the retransmission of the first uplink data on the physical resources pre-configured by the UE1 on the network side.
  • UE1 continuously performs spontaneous retransmission on the first uplink data on the network side for its pre-configured physical resources. For example, if the UE1 determines that the maximum number of transmissions of the first uplink data is 3, the retransmission of the first uplink data is performed again on the network side for the pre-configured physical resources on the network side.
  • the terminal after the sending the first uplink data or after the retransmitting the first uplink data, the terminal does not monitor the The network side transmits a feedback message to the terminal based on the first uplink data.
  • the UE2 monitors the feedback message of the first uplink data by the network side after the first uplink data transmission is completed.
  • the message may be a HARQ-ACK message, which is used to indicate whether the first uplink data is correctly received, or the feedback message is downlink control information, where the downlink control information includes a new data indication, indicating that subsequent resource allocation is used for New data transmission or retransmission.
  • the UE2 After obtaining the feedback message of the network side, the UE2 retransmits the first uplink data when it is determined that the feedback message is the NACK fed back by the network side or the network side indicates the retransmission through the DCI. Specifically, when the network side only feeds back the NACK, the UE2 retransmits the first uplink data on its pre-configured physical resource on the network side; when the network side indicates retransmission through the DCI and indicates retransmission When the resource is used, the UE2 retransmits the first uplink data on the retransmission resource allocated by the network side.
  • the terminal detects whether a feedback message of the first uplink data by the network side is received before a specific time point, and obtains a first detection result
  • the terminal determines that the first uplink data is not automatically retransmitted; when the first detection result is no, the terminal determines that the first uplink is The data is spontaneously retransmitted.
  • the physical resources pre-configured by the network side may be used at a time point corresponding to the preset duration.
  • the preset duration may be represented by an X value, and a person skilled in the art may obtain an X value in different manners according to requirements, for example, the X value is a preset value; or the X value. Determining and notifying the terminal by the network side; or the X value is determined by the terminal and notified to the network side.
  • the terminal detects whether the network side receives the feedback message of the first uplink data before the specific time point, and obtains the first detection result, which can be completed by the following steps:
  • the terminal After the terminal sends the first uplink data to the network side, the terminal detects whether the network receives the feedback message before the specific time point by listening to the feedback message of the network side for the first uplink data. A feedback message of the first uplink data is obtained, and a first detection result is obtained.
  • the terminal detects whether the network side sends the first uplink data before the specific time point by monitoring the feedback message of the network side to the first uplink data.
  • the feedback message, the first test result can be completed by the following steps:
  • the terminal detects, according to the sending time, whether a feedback message of the first uplink data by the network side is received before a specific time point, and obtains a first detection result
  • the terminal determines that the feedback message of the first uplink data by the network side cannot be received before the specific time point, the terminal stops listening to the network side A feedback message of the first uplink data.
  • the network side is configured with the periodic physical resources as shown in FIG. 4, and the terminal starts to transmit the first uplink data on the physical resources preconfigured on the network side at time T0, and transmits the first uplink.
  • the terminal may detect whether the network may receive the feedback message of the first uplink data before the specific time point (ie, the time T2), and obtain the first detection result; A detection result determines whether the first uplink data is spontaneously retransmitted.
  • the step is: the terminal detects whether the feedback message of the first uplink data of the network can be received before the time T2, and obtains the first detection result; there are two implementation manners:
  • the first type is the always listening mode. Specifically, after the terminal completes the initial transmission of the first uplink data at the time T1, the terminal monitors the feedback message of the first uplink data by the network side to detect whether the network side is received before the T2 time. A feedback message to the first uplink data.
  • the pre-judging method is specifically: the terminal pre-determines whether the network side can receive the feedback of the first uplink data at the T2 time corresponding to the X time before the physical resource pre-configuration of the network is started according to the configuration and the indication on the network side. Message.
  • the terminal does not need to use the monitoring mode or other manner to detect whether the network side receives the feedback message of the first uplink data. And because the first detection result is no, the terminal retransmits the first uplink data at time T3.
  • T0 in FIG. 4 is an initial time when the terminal starts to perform initial transmission of the first uplink data.
  • T1 is the first moment when the terminal completes the first uplink data transmission.
  • the T2 time is preferably the second time of the first X ⁇ s at the time T3, and the value of X may be specified in the protocol; or configured by the network side and then sent to the terminal; or determined by the terminal according to its capability and notified to the network side; Preferably, the value of X should consider the processing time required for the terminal to receive the feedback from the base station to prepare the first uplink data.
  • the terminal in the process of retransmitting the first uplink data at time T3, the terminal also obtains the number of retransmissions. When the number of retransmissions does not reach the maximum number of transmissions, the terminal will pre-configure the physical resources on the network side. Performing spontaneous retransmission on the first uplink data.
  • the first detection result is YES, indicating that, before the T2 time, the terminal may receive the feedback message of the first uplink data by the network, the terminal may be based on the feedback message of the network to the first uplink data. Determine if a retransmission is initiated. When it is determined that the feedback message is a NACK fed back by the network side or the network side indicates retransmission by using the DCI, the terminal retransmits the first uplink data.
  • the terminal when the network side only feeds back the NACK, the terminal retransmits the first uplink data on its pre-configured physical resource on the network side; when the network side indicates retransmission through the DCI and indicates retransmission When the resource is used, the terminal retransmits the first uplink data on the retransmission resource allocated by the network side.
  • each time slot includes a downlink symbol, a GP, and an uplink symbol.
  • the number of symbols of the downlink symbols, GPs, and uplink symbols in each slot can be changed.
  • the network side pre-configures the last symbol of each time slot for the uplink for unscheduled transmission. Further assume that the uplink and downlink of the two slots in 1 ms are as shown in FIG. 5, that is, slot #n only contains one uplink symbol, and is located at the end of the slot, and slot #n+1 only contains one downlink symbol in the slot. Front.
  • the terminal performs the initial transmission of the first uplink data on the uplink symbol of the slot #n, and then the terminal determines that the network side cannot be in the slot #n+ according to the uplink and downlink ratio of the slot #n+1. 1 feedbacks the first uplink data sent by the slot #n and sends a feedback message to the terminal.
  • the reason is that the network side requires a certain processing time after receiving the first uplink data packet of the terminal, so it is impossible to perform feedback on the downlink symbol of the next time slot #n+1 and send a feedback message to the terminal. Therefore, the terminal retransmits the first uplink data sent by slot #n on the last uplink symbol of slot #n+1.
  • the terminal does not listen to the feedback message of the first uplink data packet sent by the time slot #n on the downlink symbol of the time slot #n+1.
  • the length of each time slot is 0.5 ms.
  • the uplink and downlink of the two slots in 1 ms are as shown in the following figure, and both slot #m and slot #m+1 contain only one uplink symbol and are located at the end of the slot.
  • the network side pre-configures the last symbol of each slot for the uplink for unscheduled transmission.
  • the terminal performs the transmission of the first uplink data on the uplink symbol of the slot #m, and the terminal pre-determines whether the time domain position can be in the slot #m+ according to the control channel of the slot #m+1.
  • a feedback message of the first uplink data packet sent by the network side to the time slot #m is received in the X time before the uplink symbol of 1.
  • the terminal only listens to the downlink control channel on the first two downlink symbols of the slot #m+1.
  • the terminal pre-determines that the base station can only be in the slot #m+1 at the earliest.
  • the feedback message for the first uplink data is fed back on the third downlink symbol, so that it is determined that the feedback message of the first uplink data sent by the slot #m cannot be received at the X time before the uplink symbol, so that the terminal is spontaneously in time.
  • the uplink symbol of slot #m+1 performs retransmission of the first uplink data.
  • the terminal can spontaneously generate the physical resource based on the network side.
  • the retransmission of the uplink data is configured to solve the problem in the prior art for the URLLC service. If the retransmission mechanism follows the traditional HARQ mechanism, the two adjacent transmissions of the uplink data require a certain time interval, at a specific delay. The requirements and configurations may result in the inability to support retransmissions, thus failing to meet the technical requirements of the reliability requirements of the URLLC service, and achieving the spontaneous retransmission of the uplink data supported by the mobile terminal, thereby reducing the adjacent transmission of the uplink data.
  • the time interval between the two increases the probability of retransmission and the number of retransmissions, improving the technical effect of the reliability of data transmission.
  • a second embodiment of the present application provides a terminal, including:
  • the first determining module 101 is configured to determine whether to perform spontaneous retransmission on the first uplink data.
  • the autonomous retransmission module 102 is configured to: when the terminal determines to perform the retransmission of the first uplink data, the terminal retransmits the first uplink data on a physical resource preconfigured on the network side.
  • the first determining module 101 determines whether to perform spontaneous retransmission on the first uplink data, and when the terminal determines to perform spontaneous retransmission on the first uplink data, the autonomous retransmission module 102 is pre-configured on the network side. Retransmit the first uplink data on the physical resource.
  • the first determining module is specifically configured to:
  • the autonomous retransmission module is further configured to:
  • the terminal After the terminal sends the first uplink data to the network side, and after the network side does not obtain the feedback message of the first uplink data, the terminal retransmits the physical resource preconfigured on the network side.
  • the first uplink data is described.
  • the autonomous retransmission module includes:
  • a transmission number obtaining unit configured to obtain a number of transmissions by which the terminal retransmits the first uplink data
  • a retransmission unit configured to stop retransmission of the first uplink data when the number of transmissions reaches a maximum number of transmissions corresponding to the first uplink data.
  • the first determining module includes:
  • a detecting unit configured to detect whether a feedback message of the first uplink data is received by the network side before a specific time point, to obtain a first detection result
  • a determining unit configured to determine, according to the first detection result, whether to perform spontaneous retransmission on the first uplink data
  • the determining unit is configured to determine that the first uplink data is not automatically retransmitted; when the first detection result is no, the determining unit is configured to determine Performing spontaneous retransmission on the first uplink data.
  • the physical resources pre-configured by the network side may be used at a time point corresponding to a preset duration.
  • the preset duration is a preset value; or the preset duration is determined by the network side and notified to the terminal; or the preset duration is determined by the terminal and notified The network side.
  • the detecting unit is specifically configured to:
  • the terminal After the terminal sends the first uplink data to the network side, by detecting the feedback message of the network side to the first uplink data, detecting whether the network side is received before a specific time point.
  • the feedback message of the first uplink data is obtained, and the first detection result is obtained.
  • the detecting unit is specifically configured to:
  • the detecting unit stops listening to the network side to the first when it is determined that the network side does not receive the feedback message of the first uplink data before the specific time point based on the sending time. Feedback message for upstream data.
  • a third embodiment of the present application provides a terminal, including: a processor 800, a memory 801, and a transceiver 802;
  • the processor 800 is responsible for managing the bus architecture and general processing, and the memory 801 can store data used by the processor 2000 in performing operations.
  • the transceiver 802 is configured to receive and transmit data under the control of the processor 800.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 800 and various circuits of memory represented by memory 801.
  • the bus architecture can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the processor 800 is responsible for managing the bus architecture and general processing, and the memory 801 can store data used by the processor 800 in performing operations.
  • the flow disclosed in the embodiment of the present invention may be applied to the processor 800 or implemented by the processor 800.
  • each step of the signal processing flow may be completed by an integrated logic circuit of hardware in the processor 800 or an instruction in the form of software.
  • the processor 800 can be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and can be implemented or executed in an embodiment of the invention.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 801, and the processor 800 reads the information in the memory 801 and completes the steps of the signal processing flow in conjunction with its hardware.
  • the processor 800 is configured to read a program in the memory 801 and perform the following processes:
  • the terminal Determining whether the first uplink data is retransmitted automatically; when the terminal determines to perform the automatic retransmission of the first uplink data, the terminal retransmits the first uplink data on a physical resource preconfigured on the network side. .
  • determining whether to perform spontaneous retransmission on the first uplink data and when the terminal determines to perform spontaneous retransmission on the first uplink data, retransmit the first physical resource on the network side preconfigured Upstream data.
  • processor 800 is specifically configured to:
  • processor 800 is further configured to:
  • the terminal After the terminal sends the first uplink data to the network side, and after the network side does not obtain the feedback message of the first uplink data, the terminal retransmits the physical resource preconfigured on the network side.
  • the first uplink data is described.
  • processor 800 is specifically configured to:
  • processor 800 is specifically configured to:
  • the determining unit is configured to determine that the first uplink data is not automatically retransmitted; when the first detection result is no, the determining unit is configured to determine Performing spontaneous retransmission on the first uplink data.
  • the physical resources pre-configured by the network side may be used at a time point corresponding to a preset duration.
  • the preset duration is a preset value; or the preset duration is determined by the network side and notified to the terminal; or the preset duration is determined by the terminal and notified The network side.
  • processor 800 is specifically configured to:
  • the terminal After the terminal sends the first uplink data to the network side, by detecting the feedback message of the network side to the first uplink data, detecting whether the network side is received before a specific time point.
  • the feedback message of the first uplink data is obtained, and the first detection result is obtained.
  • processor 800 is specifically configured to:
  • the detecting unit stops listening to the network side to the first when it is determined that the network side does not receive the feedback message of the first uplink data before the specific time point based on the sending time. Feedback message for upstream data.
  • An embodiment of the present invention provides a readable storage medium, which is a non-volatile storage medium, including program code, when the program code is run on a computing device, the program code is used to make the The computing device performs the actions of the network side device in the above system.
  • An embodiment of the present invention provides a readable storage medium, which is a non-volatile storage medium, including program code, when the program code is run on a computing device, the program code is used to make the The computing device performs the actions of the terminal in the above system.
  • the terminal determines whether the first uplink data is retransmitted automatically; when the terminal determines to perform the automatic retransmission on the first uplink data, the terminal is on the physical resource preconfigured on the network side. Retransmitting the first uplink data.

Abstract

本申请公开了一种上行数据的重传方法及终端,终端确定是否对第一上行数据进行自发重传;当所述终端确定对所述第一上行数据进行自发重传时,所述终端在网络侧预配置的物理资源上重传所述第一上行数据。通过采用上述技术方案,解决了对于URLLC业务,如果重传机制沿用传统的HARQ机制,则上行数据的相邻两次的传输需要一定的时间间隔,在特定的时延要求及配置下,有可能导致无法支持重传,从而无法满足URLLC业务的可靠性要求的技术问题,达到了支持终端对上行数据的自发重传,从而减小上行数据的相邻两次传输之间的时间间隔,增加重传概率及重传次数,提高数据传输的可靠性的技术效果。

Description

一种上行数据重传方法及终端
本申请要求在2017年1月6日提交中国专利局、申请号为201710011300.3、申请名称为“一种上行数据重传方法及终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种上行数据重传方法及终端。
背景技术
在下一代无线通信(Next generation Radio,NR)的研究中,目前已经确定对于超高可靠超低时延通信(Ultra Reliable & Low Latency Communication,URLLC)会支持一种没有授权的上行传输机制,这里称为上行免调度传输。所谓上行免调度传输,是指终端的上行传输不需要来自于基站的动态的和显式的调度授权,终端直接在选定的资源上发送上行数据。
URLLC业务要求低时延和高可靠,空口的时延要求在1ms(毫秒)左右。为了满足低时延高可靠的要求,需要在时延要求范围内尽可能增加重传次数,从而提高可靠性。
在现有长期演进(Long Term Evolution,LTE)的上行传输机制中,上行的重传是通过混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)机制实现的。终端基于网络侧的反馈确定是否进行重传。LTE支持两种反馈方式,一种是通过物理混合自动重传指示信道(Physical Hybrid ARQ Indicator Channel,PHICH)信道反馈HARQ-ACK,即肯定(ACKnowledgement,ACK)或者否定(Non-ACKnowledgment,NACK),当终端接收到ACK则不进行重传,当终端接收到NACK则按照固定的定时关系发起重传;另一种则是通过下行控制信道(Downlink Control Information,DCI)中的新数据指示(New Data  Indication,NDI)域进行反馈,当NDI指示新数据传输时,则终端不再进行重传,而进行新数据的传输,当NDI指示旧数据传输时,则终端进行重传。
基站接收到终端的上行数据,需要对所述上行数据进行解码以及生成反馈消息;终端接收到基站的反馈消息需要对反馈消息解码,并根据反馈消息生成重传或者新传数据包。即基站和终端侧分别需要一定的处理时间。
对于URLLC业务,如果重传机制沿用传统的HARQ机制,则所述上行数据的相邻两次的传输需要一定的时间间隔。在特定的时延要求及配置下,有可能导致无法支持重传,从而导致URLLC的可靠性无法满足。
可见,现有技术中存在如下技术问题:对于URLLC业务,如果重传机制沿用传统的HARQ机制,则上行数据的相邻两次的传输需要一定的时间间隔,在特定的时延要求及配置下,有可能导致无法支持重传,从而无法满足URLLC业务的可靠性要求。
发明内容
本申请实施例通过提供一种上行数据重传方法及终端,通过采用终端确定是否对第一上行数据进行自发重传;当所述终端确定对所述第一上行数据进行自发重传时,所述终端基于网络侧预配置的物理资源对所述第一上行数据进行自发重传。通过采用上述技术方案,解决了对于URLLC业务,如果重传机制沿用传统的HARQ机制,则上行数据的相邻两次的传输需要一定的时间间隔,在特定的时延要求及配置下,有可能导致无法支持重传,从而无法满足URLLC业务的可靠性要求的技术问题。
第一方面,本申请一实施例提供了一种上行数据重传方法,应用于终端中,所述方法包括:
终端确定是否对第一上行数据进行自发重传;
当所述终端确定对所述第一上行数据进行自发重传时,所述终端在网络侧预配置的物理资源上重传所述第一上行数据。
可选的,所述终端确定是否对第一上行数据进行自发重传,包括:
所述终端基于接收到的所述网络侧通知的是否启动自发重传机制的通知消息确定是否对第一上行数据进行自发重传。
可选的,所述终端在网络侧预配置的物理资源上重传所述第一上行数据,包括:
所述终端在向网络侧发送所述第一上行数据之后,且在未获得所述网络侧对所述第一上行数据的反馈消息时,所述终端在所述网络侧预配置的物理资源上重传所述第一上行数据。
可选的,所述终端在所述网络侧预配置的物理资源上重传所述第一上行数据,包括:
所述终端获得所述终端重传所述第一上行数据的传输次数;
在所述传输次数达到所述第一上行数据对应的最大传输次数时,所述终端停止所述第一上行数据的重传。
可选的,所述终端确定是否对第一上行数据进行自发重传,包括:
所述终端检测是否在特定时间点之前接收到所述网络侧对所述第一上行数据的反馈消息,获得第一检测结果;
所述终端基于所述第一检测结果,确定是否对所述第一上行数据进行自发重传;
其中,当所述第一检测结果为是时,所述终端确定不对所述第一上行数据进行自发重传;当所述第一检测结果为否时,所述终端确定对所述第一上行数据进行自发重传。
可选的,所述特定时间点为所述第一上行数据发送完成后,所述网络侧预配置的物理资源可用之前预设时长对应的时间点。
可选的,所述预设时长为预设值;或者所述预设时长由所述网络侧确定并通知所述终端;或者所述预设时长由所述终端确定并通知所述网络侧。
可选的,所述终端检测是否在特定时间点之前接收到所述网络侧对所述第一上行数据的反馈消息,获得第一检测结果,包括:
在所述终端向所述网络侧发送所述第一上行数据之后,所述终端通过监 听所述网络侧对于所述第一上行数据的反馈消息,检测是否在特定时间点之前接收到所述网络侧对所述第一上行数据的反馈消息,获得第一检测结果。
可选的,所述终端通过监听所述网络侧对于所述第一上行数据的反馈消息,检测是否在特定时间点之前接收到所述网络侧对所述第一上行数据的反馈消息,获得第一检测结果,包括:
所述终端确定所述网络侧发送所述第一上行数据的反馈消息的发送时间;
所述终端基于所述发送时间,检测是否在特定时间点之前接收到所述网络侧对所述第一上行数据的反馈消息,获得第一检测结果;
其中,当所述终端基于所述发送时间确定无法在所述特定时间点之前接收到所述网络侧对所述第一上行数据的反馈消息时,所述终端停止监听所述网络侧对所述第一上行数据的反馈消息。
第二方面,本申请实施例提供了一种终端,包括:
第一确定模块,用于确定是否对第一上行数据进行自发重传;
自发重传模块,用于当所述终端确定对所述第一上行数据进行自发重传时,在网络侧预配置的物理资源上重传所述第一上行数据。
可选的,所述第一确定模块,具体用于:
基于接收到的所述网络侧通知的是否启动自发重传机制的通知消息确定是否对第一上行数据进行自发重传。
可选的,所述自发重传模块,具体用于:
所述终端在向网络侧发送所述第一上行数据之后,且在未获得所述网络侧对所述第一上行数据的反馈消息时,在所述网络侧预配置的物理资源上重传所述第一上行数据。
可选的,所述自发重传模块,包括:
传输次数获得单元,用于获得所述终端重传所述第一上行数据的传输次数;
重传单元,用于在所述传输次数达到所述第一上行数据对应的最大传输 次数时,停止所述第一上行数据的重传。
可选的,所述第一确定模块,包括:
检测单元,用于检测是否在特定时间点之前接收到网络侧对所述第一上行数据的反馈消息,获得第一检测结果;
确定单元,用于基于所述第一检测结果,确定是否对所述第一上行数据进行自发重传;
其中,当所述第一检测结果为是时,所述确定单元用于确定不对所述第一上行数据进行自发重传;当所述第一检测结果为否时,所述确定单元用于确定对所述第一上行数据进行自发重传。
可选的,所述特定时间点为所述第一上行数据发送完成后,所述网络侧预配置的物理资源可用之前预设时长对应的时间点。
可选的,所述预设时长为预设值;或者所述预设时长由所述网络侧确定并通知所述终端;或者所述预设时长由所述终端确定并通知所述网络侧。
可选的,所述检测单元,具体用于:
在所述终端向所述网络侧发送所述第一上行数据之后,通过监听所述网络侧对于所述第一上行数据的反馈消息,检测是否在特定时间点之前接收到所述网络侧对所述第一上行数据的反馈消息,获得第一检测结果。
可选的,所述检测单元,具体用于:
确定所述网络侧发送所述第一上行数据的反馈消息的发送时间;
基于所述发送时间,检测是否在特定时间点之前接收到所述网络侧对所述第一上行数据的反馈消息,获得第一检测结果;
其中,当基于所述发送时间确定无法在所述特定时间点之前接收到所述网络侧对所述第一上行数据的反馈消息时,所述检测单元停止监听所述网络侧对所述第一上行数据的反馈消息。
第三方面,本申请实施例提供了一种终端,包括:处理器、存储器和收发机;
其中,处理器,用于读取存储器中的程序并执行下列过程:
确定是否对第一上行数据进行自发重传;当所述终端确定对所述第一上行数据进行自发重传时,在网络侧预配置的物理资源上重传所述第一上行数据。
可选的,所述处理器,具体用于:
基于接收到的所述网络侧通知的是否启动自发重传机制的通知消息确定是否对第一上行数据进行自发重传。
可选的,所述处理器,具体用于:
所述终端在向网络侧发送了所述第一上行数据之后,且在未获得所述网络侧对所述第一上行数据的反馈消息时,在所述网络侧预配置的物理资源上重传所述第一上行数据。
可选的,所述处理器具体用于:
获得所述终端重传所述第一上行数据的传输次数;在所述传输次数达到所述第一上行数据对应的最大传输次数时,停止所述第一上行数据的重传。
可选的,所述处理器具体用于:
检测是否在特定时间点之前接收到网络侧对所述第一上行数据的反馈消息,获得第一检测结果;基于所述第一检测结果,确定是否对所述第一上行数据进行自发重传;
其中,当所述第一检测结果为是时,所述确定单元用于确定不对所述第一上行数据进行自发重传;当所述第一检测结果为否时,所述确定单元用于确定对所述第一上行数据进行自发重传。
可选的,所述特定时间点为在所述第一上行数据发送完成后,所述网络侧预配置的物理资源可用之前预设时长对应的时间点。
可选的,所述预设时长为预设值;或所述预设时长由所述网络侧确定并通知所述终端;或者所述预设时长由所述终端确定并通知所述网络侧。
可选的,所述处理器具体用于:
在所述终端向所述网络侧发送所述第一上行数据之后,通过监听所述网络侧对于所述第一上行数据的反馈消息,检测是否在特定时间点之前接收到 所述网络侧对所述第一上行数据的反馈消息,获得第一检测结果。
可选的,所述处理器具体用于:
确定所述网络侧发送所述第一上行数据的反馈消息的发送时间;
基于所述发送时间,检测是否在特定时间点之前接收到所述网络侧对所述第一上行数据的反馈消息,获得第一检测结果;
其中,当基于所述发送时间确定无法在所述特定时间点之前接收到所述网络侧对所述第一上行数据的反馈消息时,所述检测单元停止监听所述网络侧对所述第一上行数据的反馈消息。
第四方面,本申请实施例提供了一种缓存同步异常设备可读存储介质,包括程序代码,当所述程序代码在计算设备上运行时,所述程序代码用于使所述计算设备执行上述第一方面中任一所述的方案。
本申请实施例中提供的一个或多个技术方案,至少具有如下技术效果:
首先,终端确定是否对第一上行数据进行自发重传;然后,当所述终端确定对所述第一上行数据进行自发重传时,所述终端在网络侧预配置的物理资源上对所述第一上行数据进行自发重传。通过采用上述技术方案,解决了对于URLLC业务,如果重传机制沿用传统的HARQ机制,则上行数据的相邻两次的传输需要一定的时间间隔,在特定的时延要求及配置下,有可能导致无法支持重传,从而无法满足URLLC业务的可靠性要求的技术问题,达到了支持终端对上行数据的自发重传,从而减小上行数据的相邻两次传输之间的时间间隔,增加重传概率及重传次数,提高数据传输的可靠性的技术效果。
附图说明
图1为现有技术中上行数据重传方法的流程示意图;
图2为本申请实施例中上行数据重传方法的流程示意图;
图3为本申请实施例中网络侧配置的周期性物理资源的第一示意图;
图4为本申请实施例中网络侧配置的周期性物理资源的第二示意图;
图5为本申请实施例中网络侧配置的上下行配置的第三示意图;
图6为本申请实施例中网络侧配置的上下行配置的第四示意图;
图7为本申请实施例终端的模块结构示意图;
图8为本申请实施例另一种终端的结构示意图。
具体实施方式
参见图1,为现有技术中上行数据重传方法的示意图,在此不做赘述。
本申请实施例中的技术方案为解决上述技术问题,总体思路如下:终端确定是否对第一上行数据进行自发重传;当所述终端确定对所述第一上行数据进行自发重传时,所述终端在网络侧预配置的物理资源上对所述第一上行数据进行自发重传。所述终端基于接收到的所述网络侧通知的是否启动自发重传机制的通知消息确定是否对第一上行数据进行自发重传;或者,所述终端检测是否在特定时间点之前接收到所述网络侧对所述第一上行数据的反馈消息,获得第一检测结果;所述终端基于所述第一检测结果,确定是否对所述第一上行数据进行自发重传
通过采用上述技术方案,有效的解决了现有技术中对于URLLC业务,如果重传机制沿用传统的HARQ机制,则上行数据的相邻两次的传输需要一定的时间间隔,在特定的时延要求及配置下,有可能导致无法支持重传,从而无法满足URLLC业务的可靠性要求的技术问题,达到了支持移动终端对上行数据的自发重传,从而减小上行数据的相邻两次传输之间的时间间隔,增加重传概率及重传次数,提高数据传输的可靠性的技术效果。
为了更好的理解上述技术方案,下面将结合说明书附图以及具体的实施方式对上述技术方案进行详细的说明。在本申请的实施例中,网络侧预配置用于上行免调度传输的物理资源。所述物理资源可以是移动终端专用的,也可以是移动终端间共享的,在本申请的实施例中不做具体限定。
第一实施例
参见图2,本申请第一实施例的提供了一种上行数据重传方法,应用于终端中,所述方法包括如下步骤:
S101,终端确定是否对第一上行数据进行自发重传;
S102,当所述终端确定对所述第一上行数据进行自发重传时,所述终端在网络侧预配置的物理资源上重传所述第一上行数据进行。
在本申请实施例的具体实现过程中,S101的第一种实现方案为:
所述终端基于接收到的所述网络侧通知的是否启动自发重传机制的通知消息确定是否对第一上行数据进行自发重传。
即:当所述终端接收到的通知消息表征需要启动自发重传机制,所述终端就确定要对所述第一上行数据进行自发重传,反之,如果所述终端接收到的通知消息表征不需要启动自发重传机制,则所述终端就不会对所述第一上行数据进行自发重传。
具体的,例如,参见图3,网络侧预配置用于上行免调度传输的物理资源。所述物理资源可以是终端专用的,也可以是终端间共享的。这里以网络侧为终端预配置专用物理资源为例,假设网络侧分别为第一终端UE1和第二终端UE2预配置了如图3所示的时频资源用于上行免调度传输。
在第一种实现方案中,网络侧会通知终端是否采用自发重传。所述通知方式可以是通过高层信令半静态配置或者通过物理层信令动态通知。其中,所述高层信令可以是小区级的、终端组级的或者是终端级的。在本申请实施例中以终端级为例进行说明,网络侧通过高层专用信令配置终端是否采用自发重传。在实际应用中,网络侧可以配置UE1采用自发重传机制,而配置UE2不采用自发重传机制,在配置后,当UE1接收到网络侧发送来的需要启动自发重传的通知消息后,就会对第一上行数据进行自发重传;而对于UE2,由于其收到的是网络侧发送来的不需要启动自发重传的通知消息,所以,UE2就不会对其上行数据进行自发重传。
进一步地,在具体实现过程中,所述移动终端确定对第一上行数据进行自发重传,可以包括:
所述终端在向网络侧发送所述第一上行数据之后,且在未获得所述网络侧对所述第一上行数据的反馈消息时,所述终端在所述网络侧预配置的物理 资源上重传所述第一上行数据。
进一步地,对于步骤:所述终端在所述网络侧预配置的物理资源上重传所述第一上行数据,在实际应用中,可以包括如下步骤:
所述终端获得所述终端重传所述第一上行数据的传输次数;
在所述传输次数达到所述第一上行数据对应的最大传输次数时,所述终端停止所述第一上行数据的重传;
反之在所述传输次数未达到所述第一上行数据对应的最大传输次数时,所述终端会不断重传所述第一上行数据。
结合图3,假设在T1时刻,UE1的第一上行数据准备好可以发送,则UE1在T2时刻开始在网络侧为其预配置的物理资源上进行第一上行数据的初始传输。如前所述,由于网络侧配置UE1采用自发重传机制,所以,UE1会自发地在T4时刻开始在网络侧为所述UE1预配置的物理资源上进行所述第一上行数据的重传。在达到最大传输次数前,UE1会在网络侧为其预配置的物理资源上对所述第一上行数据持续进行自发重传。例如,若UE1确定所述第一上行数据的最大传输次数为3,则在T6时刻开始还会在网络侧为其预配置的物理资源上再进行一次所述第一上行数据的重传。
可选的,为实现节省电量的技术效果,在本申请实施例中,在所述发送了第一上行数据之后或者所述重传了所述第一上行数据之后,所述终端不监听所述网络侧基于所述第一上行数据而传输给所述终端的反馈消息。
进一步地,结合图3,假设在T1时刻,UE2的上行数据到达,则UE2在T3时刻开始在网络侧为其预配置的物理资源上进行第一上行数据的初始传输。如之前所述,由于网络侧配置UE2不采用自发重传机制,所以,UE2在对所述第一上行数据传输完成后,会监听网络侧对所述第一上行数据的反馈消息,所述反馈消息可以是HARQ-ACK消息,用于指示所述第一上行数据是否被正确接收;或者所述反馈消息为下行控制信息,所述下行控制信息中包含新数据指示,指示后续的资源分配用于新数据传输或者重传。UE2在获得网络侧的反馈消息后,在确定反馈消息为网络侧反馈的NACK或者网络侧通 过DCI指示重传时,UE2会对所述第一上行数据进行重传。具体地,当网络侧仅反馈NACK时,UE2会在其后网络侧为其预配置的物理资源上对所述第一上行数据进行重传;当网络侧通过DCI指示重传且指示了重传资源时,则UE2会在网络侧分配的重传资源上对所述第一上行数据进行重传。
在本申请实施例的具体实现过程中,S101的第二种实现方案为:
所述终端检测是否在特定时间点之前接收到所述网络侧对所述第一上行数据的反馈消息,获得第一检测结果;
所述终端基于所述第一检测结果,确定是否对所述第一上行数据进行自发重传;
其中,当所述第一检测结果为是时,所述终端确定不对所述第一上行数据进行自发重传;当所述第一检测结果为否时,所述终端确定对所述第一上行数据进行自发重传。
进一步地,在本申请实施例中,所述特定时间点为所述第一上行数据发送完成后,所述网络侧预配置的物理资源可用之前预设时长对应的时间点。
进一步地,在本申请实施例中,预设时长可用X值来表示,本领域技术人员可以根据需要通过不同的方式获得X值,比如:所述X值为预设值;或者所述X值由所述网络侧确定并通知所述终端;或者所述X值由所述终端确定并通知所述网络侧。
在具体实现中,所述终端检测是否在特定时间点之前接收到所述网络侧对所述第一上行数据的反馈消息,获得第一检测结果,可以通过如下步骤完成:
在所述终端向所述网络侧发送所述第一上行数据之后,所述终端通过监听所述网络侧对于所述第一上行数据的反馈消息,检测是否在特定时间点之前接收到所述网络侧对所述第一上行数据的反馈消息,获得第一检测结果。
进一步地,在本申请实施例中,所述终端通过监听所述网络侧对于所述第一上行数据的反馈消息,检测是否在特定时间点之前接收到所述网络侧对所述第一上行数据的反馈消息,获得第一检测结果,可以通过如下步骤完成:
所述终端确定所述网络侧发送所述第一上行数据的反馈消息的发送时间;
所述终端基于所述发送时间,检测是否在特定时间点之前接收到所述网络侧对所述第一上行数据的反馈消息,获得第一检测结果;
其中,当所述终端基于所述发送时间确定无法在所述特定时间点之前接收到所述网络侧对所述第一上行数据的反馈消息时,所述终端将停止监听所述网络侧对所述第一上行数据的反馈消息。
参见图4,具体的,网络侧配置了如图4所示的周期性物理资源,终端在T0时刻开始在网络侧预配置的物理资源上进行第一上行数据的传输,在传输了第一上行数据之后,在本申请实施例中,所述终端会检测在特定时间点(即T2时刻)之前能否接收到网络对所述第一上行数据的反馈消息,获得第一检测结果;以基于第一检测结果,确定是否对第一上行数据进行自发重传。
进一步地,第二种实现方案中,对于步骤:终端检测在T2时刻之前是否能接收到网络所述第一上行数据的反馈消息,获得第一检测结果;有两种实现方式:
第一种,一直监听方式,具体为:终端在T1时刻完成第一上行数据的初始传输后,就一直通过监听网络侧对第一上行数据的反馈消息,检测是否在T2时刻之前接收到网络侧对第一上行数据的反馈消息。
第二种,预判方式,具体为:终端根据网络侧的配置和指示预判断是否能够在网络预配置的物理资源开始前的X时间对应的T2时刻接收到网络侧对第一上行数据的反馈消息。
进一步地,当以预判方式获得第一检测结果,且在第一检测结果为否,表明在T2时刻之前,终端不能接收到网络侧对所述第一上行数据的反馈消息时,在本申请实施例中,终端就不用再通过监听方式或其它方式去检测是否接收到网络侧对第一上行数据的反馈消息。且由于第一检测结果为否,所以,终端会在T3时刻重传所述第一上行数据。其中,图4中的T0为所述终端开始进行第一上行数据的初始传输的初始时刻。T1为终端完成所述第一上行数 据传输的第一时刻。T2时刻优选为T3时刻的前Xμs的第二时刻,X的取值可以在协议中规定;或者由网络侧配置然后发送给所述终端;或者由终端根据其能力确定并通知所述网络侧;优选的,X的取值应该考虑终端接收到基站反馈到准备第一上行数据所需要的处理时间。
同样,终端在T3时刻重传第一上行数据的过程中,也会去获得重传次数,当重传次数未达到在达到最大传输次数前,终端会在网络侧为其预配置的物理资源上对所述第一上行数据持续进行自发重传。
进一步地,在第一检测结果为是,表明在T2时刻之前,终端有可能接收到网络对所述第一上行数据的反馈消息时,终端会基于网络对所述第一上行数据的反馈消息来确定是否发起重传。在确定反馈消息为网络侧反馈的NACK或者网络侧通过DCI指示重传时,终端会对所述第一上行数据进行重传。具体地,当网络侧仅反馈NACK时,终端会在其后网络侧为其预配置的物理资源上对所述第一上行数据进行重传;当网络侧通过DCI指示重传且指示了重传资源时,则终端会在网络侧分配的重传资源上对所述第一上行数据进行重传。
下面结合图5和图6进行说明,以NR TDD为例,假设下行的子载波间隔为15kHz,则每个时隙的长度为0.5ms,每个时隙中包含下行符号、GP和上行符号。且每个时隙中的下行符号、GP和上行符号的符号个数是可以改变的。
假设网络侧为终端预配置了每个时隙的最后一个符号用于上行免调度传输。进一步假设1ms内的两个时隙的上下行配比如图5所示,即时隙#n只包含一个上行符号,且位于时隙最后,时隙#n+1仅包含一个下行符号位于时隙的最前面。
这样,终端会在时隙#n的上行符号上进行了第一上行数据的初始传输,然后,终端会根据时隙#n+1的上下行配比判断出网络侧无法在时隙#n+1对时隙#n发送的第一上行数据进行反馈并发送反馈消息给终端。原因是网络侧接 收到终端的第一上行数据包后需要一定的处理时间,因而不可能在紧接着的时隙#n+1的下行符号上进行反馈并发送反馈消息给终端。因此,终端会自发在时隙#n+1的最后一个上行符号上对时隙#n发送的第一上行数据进行重传。
可选的,为了达到节省电量的技术效果,终端会不在时隙#n+1的下行符号上监听对时隙#n发送的第一上行数据包的反馈消息。
仍然以NR TDD为例,假设下行的子载波间隔为15kHz,则每个时隙的长度为0.5ms。进一步假设1ms内的两个时隙的上下行配比如下图所示,时隙#m和时隙#m+1均只包含一个上行符号,且位于时隙最后。
进一步地,仍然假设网络侧为终端预配置了每个时隙的最后一个符号用于上行免调度传输。这样,终端会在时隙#m的上行符号上进行了第一上行数据的传输,并且终端会根据对时隙#m+1的控制信道监听时域位置预判断是否能够在时隙#m+1的上行符号前X时间内接收到网络侧对于时隙#m发送的第一上行数据包的反馈消息。
在本申请实施例中,可以假设终端仅在时隙#m+1的前两个下行符号上监听下行控制信道。根据基站处理时延Y,其中Y为基站接收到终端的第一上行数据到反馈对于第一上行数据的反馈消息的最小时间间隔,终端会预判断基站最早只能在时隙#m+1的第三个下行符号上反馈对于第一上行数据的反馈消息,因而判断无法在上行符号前的X时间接收到时隙#m发送的第一上行数据的反馈消息,这样,终端就自发地在时隙#m+1的上行符号进行第一上行数据的重传。
本实施例的通过采用由网络侧配置终端是否对第一上行数据进行自发重传的方式,当网络侧配置所述终端进行自发重传时,所述终端能够自发基于所述网络侧的物理资源配置的对上行数据进行重传,从而解决现有技术中对于URLLC业务,如果重传机制沿用传统的HARQ机制,则上行数据的相邻两次的传输需要一定的时间间隔,在特定的时延要求及配置下,有可能导致无法支持重传,从而无法满足URLLC业务的可靠性要求的技术问题,达到了支持移动终端对上行数据的自发重传,从而减小上行数据的相邻两次传输之 间的时间间隔,增加重传概率及重传次数,提高数据传输的可靠性的技术效果。
第二实施例
参见图7,本申请第二实施例的提供了一种终端,包括:
第一确定模块101,用于确定是否对第一上行数据进行自发重传;
自发重传模块102,用于当所述终端确定对所述第一上行数据进行自发重传时,所述终端在网络侧预配置的物理资源上重传所述第一上行数据。
具体的,例如,第一确定模块101确定是否对第一上行数据进行自发重传,当所述终端确定对所述第一上行数据进行自发重传时,自发重传模块102在网络侧预配置的物理资源上重传所述第一上行数据。
进一步地,在具体实现过程中,所述第一确定模块,具体用于:
基于接收到的网络侧通知的是否启动自发重传机制的通知消息确定是否对第一上行数据进行自发重传。
进一步地,在具体实现过程中,所述自发重传模块,还用于:
所述终端在向网络侧发送所述第一上行数据之后,且在未获得所述网络侧对所述第一上行数据的反馈消息时,在所述网络侧预配置的物理资源上重传所述第一上行数据。
进一步地,在具体实现过程中,所述自发重传模块,包括:
传输次数获得单元,用于获得所述终端重传所述第一上行数据的传输次数;
重传单元,用于在所述传输次数达到所述第一上行数据对应的最大传输次数时,停止所述第一上行数据的重传。
进一步地,在具体实现过程中,所述第一确定模块,包括:
检测单元,用于检测是否在特定时间点之前接收到所述网络侧对所述第一上行数据的反馈消息,获得第一检测结果;
确定单元,用于基于所述第一检测结果,确定是否对所述第一上行数据进行自发重传;
其中,当所述第一检测结果为是时,所述确定单元用于确定不对所述第一上行数据进行自发重传;当所述第一检测结果为否时,所述确定单元用于确定对所述第一上行数据进行自发重传。
进一步地,在具体实现过程中,所述特定时间点为所述第一上行数据发送完成后,所述网络侧预配置的物理资源可用之前预设时长对应的时间点。
进一步地,在具体实现过程中,所述预设时长为预设值;或所述预设时长由所述网络侧确定并通知所述终端;或者所述预设时长由所述终端确定并通知所述网络侧。
进一步地,在具体实现过程中,所述检测单元,具体用于:
在所述终端向所述网络侧发送所述第一上行数据之后,通过监听所述网络侧对于所述第一上行数据的反馈消息,检测是否在特定时间点之前接收到所述网络侧对所述第一上行数据的反馈消息,获得第一检测结果。
进一步地,在具体实现过程中,所述检测单元,具体用于:
确定所述网络侧发送所述第一上行数据的反馈消息的发送时间;
基于所述发送时间,检测是否在特定时间点之前接收到所述网络侧对所述第一上行数据的反馈消息,获得第一检测结果;
其中,当基于所述发送时间确定无法在所述特定时间点之前接收到所述网络侧对所述第一上行数据的反馈消息时,所述检测单元停止监听所述网络侧对所述第一上行数据的反馈消息。
第三实施例
参见图8,本申请第三实施例的提供了一种终端,包括:处理器800、存储器801和收发机802;
处理器800负责管理总线架构和通常的处理,存储器801可以存储处理器2000在执行操作时所使用的数据。收发机802用于在处理器800的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器800代表的一个或多个处理器和存储器801代表的存储器的各种电路链接在一起。总 线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器800负责管理总线架构和通常的处理,存储器801可以存储处理器800在执行操作时所使用的数据。
本发明实施例揭示的流程,可以应用于处理器800中,或者由处理器800实现。在实现过程中,信号处理流程的各步骤可以通过处理器800中的硬件的集成逻辑电路或者软件形式的指令完成。处理器800可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器801,处理器800读取存储器801中的信息,结合其硬件完成信号处理流程的步骤。
其中,处理器800,用于读取存储器801中的程序并执行下列过程:
确定是否对第一上行数据进行自发重传;当所述终端确定对所述第一上行数据进行自发重传时,所述终端在网络侧预配置的物理资源上重传所述第一上行数据。
具体的,例如,确定是否对第一上行数据进行自发重传,当所述终端确定对所述第一上行数据进行自发重传时,在网络侧预配置的物理资源上重传所述第一上行数据。
进一步地,在具体实现过程中,所述处理器800,具体用于:
基于接收到的网络侧通知的是否启动自发重传机制的通知消息确定是否对第一上行数据进行自发重传。
进一步地,在具体实现过程中,所述处理器800,还用于:
所述终端在向网络侧发送所述第一上行数据之后,且在未获得所述网络侧对所述第一上行数据的反馈消息时,在所述网络侧预配置的物理资源上重传所述第一上行数据。
进一步地,在具体实现过程中,所述处理器800,具体用于:
获得所述终端重传所述第一上行数据的传输次数;在所述传输次数达到所述第一上行数据对应的最大传输次数时,停止所述第一上行数据的重传。
进一步地,在具体实现过程中,所述处理器800,具体用于:
检测是否在特定时间点之前接收到所述网络侧对所述第一上行数据的反馈消息,获得第一检测结果;基于所述第一检测结果,确定是否对所述第一上行数据进行自发重传;
其中,当所述第一检测结果为是时,所述确定单元用于确定不对所述第一上行数据进行自发重传;当所述第一检测结果为否时,所述确定单元用于确定对所述第一上行数据进行自发重传。
进一步地,在具体实现过程中,所述特定时间点为所述第一上行数据发送完成后,所述网络侧预配置的物理资源可用之前预设时长对应的时间点。
进一步地,在具体实现过程中,所述预设时长为预设值;或所述预设时长由所述网络侧确定并通知所述终端;或者所述预设时长由所述终端确定并通知所述网络侧。
进一步地,在具体实现过程中,所述处理器800,具体用于:
在所述终端向所述网络侧发送所述第一上行数据之后,通过监听所述网络侧对于所述第一上行数据的反馈消息,检测是否在特定时间点之前接收到所述网络侧对所述第一上行数据的反馈消息,获得第一检测结果。
进一步地,在具体实现过程中,所述处理器800,具体用于:
确定所述网络侧发送所述第一上行数据的反馈消息的发送时间;
基于所述发送时间,检测是否在特定时间点之前接收到所述网络侧对所述第一上行数据的反馈消息,获得第一检测结果;
其中,当基于所述发送时间确定无法在所述特定时间点之前接收到所述 网络侧对所述第一上行数据的反馈消息时,所述检测单元停止监听所述网络侧对所述第一上行数据的反馈消息。
本发明实施例提供一种可读存储介质,该可读存储介质为非易失性存储介质,包括程序代码,当所述程序代码在计算设备上运行时,所述程序代码用于使所述计算设备执行上述系统中网络侧设备的动作。
本发明实施例提供一种可读存储介质,该可读存储介质为非易失性存储介质,包括程序代码,当所述程序代码在计算设备上运行时,所述程序代码用于使所述计算设备执行上述系统中终端的动作。
本申请提供的实施例,终端确定是否对第一上行数据进行自发重传;当所述终端确定对所述第一上行数据进行自发重传时,所述终端在网络侧预配置的物理资源上重传所述第一上行数据。通过采用上述技术方案,解决了对于URLLC业务,如果重传机制沿用传统的HARQ机制,则上行数据的相邻两次的传输需要一定的时间间隔,在特定的时延要求及配置下,有可能导致无法支持重传,从而无法满足URLLC业务的可靠性要求的技术问题,达到了支持移动终端对上行数据的自发重传,从而减小上行数据的相邻两次传输之间的时间间隔,增加重传概率及重传次数,提高数据传输的可靠性的技术效果。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (28)

  1. 一种上行数据重传方法,应用于终端中,其特征在于,所述方法包括:
    终端确定是否对第一上行数据进行自发重传;
    当所述终端确定对所述第一上行数据进行自发重传时,所述终端在网络侧预配置的物理资源上重传所述第一上行数据。
  2. 如权利要求1所述的方法,其特征在于,所述终端确定是否对第一上行数据进行自发重传,包括:
    所述终端基于接收到的所述网络侧通知的是否启动自发重传机制的通知消息确定是否对第一上行数据进行自发重传。
  3. 如权利要求1所述的方法,其特征在于,所述终端在网络侧预配置的物理资源上重传所述第一上行数据,包括:
    所述终端在向网络侧发送所述第一上行数据之后,且在未获得所述网络侧对所述第一上行数据的反馈消息时,所述终端在所述网络侧预配置的物理资源上重传所述第一上行数据。
  4. 如权利要求3所述的方法,其特征在于,所述终端在所述网络侧预配置的物理资源上重传所述第一上行数据,包括:
    所述终端获得所述终端重传所述第一上行数据的传输次数;
    在所述传输次数达到所述第一上行数据对应的最大传输次数时,所述终端停止所述第一上行数据的重传。
  5. 如权利要求1所述的方法,其特征在于,所述终端确定是否对第一上行数据进行自发重传,包括:
    所述终端检测是否在特定时间点之前接收到网络侧对所述第一上行数据的反馈消息,获得第一检测结果;
    所述终端基于所述第一检测结果,确定是否对所述第一上行数据进行自发重传;
    其中,当所述第一检测结果为是时,所述终端确定不对所述第一上行数据进行自发重传;当所述第一检测结果为否时,所述终端确定对所述第一上 行数据进行自发重传。
  6. 如权利要求5所述的方法,其特征在于,所述特定时间点为在所述第一上行数据发送完成后,所述网络侧预配置的物理资源可用之前预设时长对应的时间点。
  7. 如权利要求6所述的方法,其特征在于,所述预设时长为预设值;或者,所述预设时长由所述网络侧确定并通知所述终端;或者所述预设时长由所述终端确定并通知所述网络侧。
  8. 如权利要求5所述的方法,其特征在于,所述终端检测是否在特定时间点之前接收到所述网络侧对所述第一上行数据的反馈消息,获得第一检测结果,包括:
    在所述终端向所述网络侧发送所述第一上行数据之后,所述终端通过监听所述网络侧对于所述第一上行数据的反馈消息,检测是否在特定时间点之前接收到所述网络侧对所述第一上行数据的反馈消息,获得第一检测结果。
  9. 如权利要求8所述的方法,其特征在于,所述终端通过监听所述网络侧对于所述第一上行数据的反馈消息,检测是否在特定时间点之前接收到所述网络侧对所述第一上行数据的反馈消息,获得第一检测结果,包括:
    所述终端确定所述网络侧发送所述第一上行数据的反馈消息的发送时间;
    所述终端基于所述发送时间,检测是否在特定时间点之前接收到所述网络侧对所述第一上行数据的反馈消息,获得第一检测结果;
    其中,当所述终端基于所述发送时间确定无法在所述特定时间点之前接收到所述网络侧对所述第一上行数据的反馈消息时,所述终端停止监听所述网络侧对所述第一上行数据的反馈消息。
  10. 一种终端,其特征在于,包括:
    第一确定模块,用于确定是否对第一上行数据进行自发重传;
    自发重传模块,用于当所述终端确定对所述第一上行数据进行自发重传时,在网络侧预配置的物理资源上重传所述第一上行数据。
  11. 如权利要求10所述的终端,其特征在于,所述第一确定模块,具体用于:
    基于接收到的所述网络侧通知的是否启动自发重传机制的通知消息确定是否对第一上行数据进行自发重传。
  12. 如权利要求10所述的终端,其特征在于,所述自发重传模块,具体用于:
    所述终端在向网络侧发送了所述第一上行数据之后,且在未获得所述网络侧对所述第一上行数据的反馈消息时,在所述网络侧预配置的物理资源上重传所述第一上行数据。
  13. 如权利要求12所述的终端,其特征在于,所述自发重传模块,包括:
    传输次数获得单元,用于获得所述终端重传所述第一上行数据的传输次数;
    重传单元,用于在所述传输次数达到所述第一上行数据对应的最大传输次数时,停止所述第一上行数据的重传。
  14. 如权利要求10所述的终端,其特征在于,所述第一确定模块,包括:
    检测单元,用于检测是否在特定时间点之前接收到网络侧对所述第一上行数据的反馈消息,获得第一检测结果;
    确定单元,用于基于所述第一检测结果,确定是否对所述第一上行数据进行自发重传;
    其中,当所述第一检测结果为是时,所述确定单元用于确定不对所述第一上行数据进行自发重传;当所述第一检测结果为否时,所述确定单元用于确定对所述第一上行数据进行自发重传。
  15. 如权利要求14所述的终端,其特征在于,所述特定时间点为在所述第一上行数据发送完成后,所述网络侧预配置的物理资源可用之前预设时长对应的时间点。
  16. 如权利要求15所述的终端,其特征在于,所述预设时长为预设值;或所述预设时长由所述网络侧确定并通知所述终端;或者所述预设时长由所 述终端确定并通知所述网络侧。
  17. 如权利要求14所述的终端,其特征在于,所述检测单元,具体用于:
    在所述终端向所述网络侧发送所述第一上行数据之后,通过监听所述网络侧对于所述第一上行数据的反馈消息,检测是否在特定时间点之前接收到所述网络侧对所述第一上行数据的反馈消息,获得第一检测结果。
  18. 如权利要求17所述的终端,其特征在于,所述检测单元,具体用于:
    确定所述网络侧发送所述第一上行数据的反馈消息的发送时间;
    基于所述发送时间,检测是否在特定时间点之前接收到所述网络侧对所述第一上行数据的反馈消息,获得第一检测结果;
    其中,当基于所述发送时间确定无法在所述特定时间点之前接收到所述网络侧对所述第一上行数据的反馈消息时,所述检测单元停止监听所述网络侧对所述第一上行数据的反馈消息。
  19. 一种终端,其特征在于,包括:处理器、存储器和收发机;
    其中,处理器,用于读取存储器中的程序并执行下列过程:
    确定是否对第一上行数据进行自发重传;当所述终端确定对所述第一上行数据进行自发重传时,在网络侧预配置的物理资源上重传所述第一上行数据。
  20. 如权利要求19所述的终端,其特征在于,所述处理器,具体用于:
    基于接收到的所述网络侧通知的是否启动自发重传机制的通知消息确定是否对第一上行数据进行自发重传。
  21. 如权利要求19所述的终端,其特征在于,所述处理器,具体用于:
    所述终端在向网络侧发送了所述第一上行数据之后,且在未获得所述网络侧对所述第一上行数据的反馈消息时,在所述网络侧预配置的物理资源上重传所述第一上行数据。
  22. 如权利要求21所述的终端,其特征在于,所述处理器具体用于:
    获得所述终端重传所述第一上行数据的传输次数;在所述传输次数达到所述第一上行数据对应的最大传输次数时,停止所述第一上行数据的重传。
  23. 如权利要求19所述的终端,其特征在于,所述处理器具体用于:
    检测是否在特定时间点之前接收到网络侧对所述第一上行数据的反馈消息,获得第一检测结果;基于所述第一检测结果,确定是否对所述第一上行数据进行自发重传;
    其中,当所述第一检测结果为是时,所述确定单元用于确定不对所述第一上行数据进行自发重传;当所述第一检测结果为否时,所述确定单元用于确定对所述第一上行数据进行自发重传。
  24. 如权利要求23所述的终端,其特征在于,所述特定时间点为在所述第一上行数据发送完成后,所述网络侧预配置的物理资源可用之前预设时长对应的时间点。
  25. 如权利要求24所述的终端,其特征在于,所述预设时长为预设值;或所述预设时长由所述网络侧确定并通知所述终端;或者所述预设时长由所述终端确定并通知所述网络侧。
  26. 如权利要求23所述的终端,其特征在于,所述处理器具体用于:
    在所述终端向所述网络侧发送所述第一上行数据之后,通过监听所述网络侧对于所述第一上行数据的反馈消息,检测是否在特定时间点之前接收到所述网络侧对所述第一上行数据的反馈消息,获得第一检测结果。
  27. 如权利要求26所述的终端,其特征在于,所述处理器具体用于:
    确定所述网络侧发送所述第一上行数据的反馈消息的发送时间;
    基于所述发送时间,检测是否在特定时间点之前接收到所述网络侧对所述第一上行数据的反馈消息,获得第一检测结果;
    其中,当基于所述发送时间确定无法在所述特定时间点之前接收到所述网络侧对所述第一上行数据的反馈消息时,所述检测单元停止监听所述网络侧对所述第一上行数据的反馈消息。
  28. 一种缓存同步异常设备可读存储介质,其特征在于,包括程序代码,当所述程序代码在计算设备上运行时,所述程序代码用于使所述计算设备执行权利要求1~10任一所述方法的步骤。
PCT/CN2018/075136 2017-01-06 2018-02-02 一种上行数据重传方法及终端 WO2018127214A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/476,122 US11102767B2 (en) 2017-01-06 2018-02-02 Uplink data retransmission method and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710011300.3 2017-01-06
CN201710011300.3A CN108282896B (zh) 2017-01-06 2017-01-06 一种上行数据重传方法及终端

Publications (1)

Publication Number Publication Date
WO2018127214A1 true WO2018127214A1 (zh) 2018-07-12

Family

ID=62789094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/075136 WO2018127214A1 (zh) 2017-01-06 2018-02-02 一种上行数据重传方法及终端

Country Status (3)

Country Link
US (1) US11102767B2 (zh)
CN (1) CN108282896B (zh)
WO (1) WO2018127214A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020030080A1 (zh) * 2018-08-10 2020-02-13 电信科学技术研究院有限公司 信息传输方法、基站及终端

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114024656A (zh) * 2018-08-09 2022-02-08 华为技术有限公司 通信方法及装置
US20230071861A1 (en) * 2020-02-20 2023-03-09 Beijing Xiaomi Mobile Software Co., Ltd. Data transmission methods and communication device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255709A (zh) * 2010-05-17 2011-11-23 中兴通讯股份有限公司 数据重传方法、基站、终端及无线通信系统
CN103391173A (zh) * 2012-05-10 2013-11-13 华为技术有限公司 上行数据流重传方法及装置
WO2016002436A1 (ja) * 2014-06-30 2016-01-07 ソニー株式会社 無線通信装置、無線通信方法及びプログラム
CN106063309A (zh) * 2014-03-31 2016-10-26 富士通株式会社 信号重传装置、方法以及通信系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5541924A (en) * 1995-07-28 1996-07-30 Motorola, Inc. Method and device for channel contention and data transmission for packet-switched subscriber units in a communication system
US7584397B2 (en) * 2004-06-10 2009-09-01 Interdigital Technology Corporation Method and apparatus for dynamically adjusting data transmission parameters and controlling H-ARQ processes
KR100882057B1 (ko) * 2004-08-10 2009-02-09 닛본 덴끼 가부시끼가이샤 통신 제어 방법, 무선 통신 시스템, 기지국, 이동국 및 컴퓨터 판독 가능 기록 매체
KR101514841B1 (ko) * 2007-08-10 2015-04-23 엘지전자 주식회사 효율적인 랜덤 액세스 재시도를 수행하는 방법
KR101758357B1 (ko) * 2009-11-02 2017-07-17 한국전자통신연구원 재전송 방법 및 장치
US20150181571A1 (en) * 2012-08-15 2015-06-25 Lg Electronics Inc. Method monitoring pdcch based on drx and communication device thereof
US9161275B2 (en) * 2013-03-08 2015-10-13 Qualcomm Incorporated Low latency 802.11 media access
CN105164964A (zh) * 2013-11-11 2015-12-16 华为技术有限公司 上行混合自动重传请求的反馈方法、系统和相关设备
US9750056B2 (en) * 2015-01-27 2017-08-29 Huawei Technologies Co., Ltd. System and method for transmission in a grant-free uplink transmission scheme
KR102578443B1 (ko) * 2015-05-22 2023-09-14 엘지전자 주식회사 무선 통신 시스템에서의 복수개의 서브프레임 상의 상향링크 승인을 기초로 ack/nack을 지시하는 방법 및 그 장치
US10735146B2 (en) * 2015-09-25 2020-08-04 Samsung Electronics Co., Ltd. Method and device for feeding back and receiving HARQ-ACK information
CN106301700A (zh) * 2016-08-11 2017-01-04 宇龙计算机通信科技(深圳)有限公司 一种上行数据的信息反馈方法及相关设备
US10027456B2 (en) * 2016-09-16 2018-07-17 Qualcomm Incorporated Beam switching and recovery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255709A (zh) * 2010-05-17 2011-11-23 中兴通讯股份有限公司 数据重传方法、基站、终端及无线通信系统
CN103391173A (zh) * 2012-05-10 2013-11-13 华为技术有限公司 上行数据流重传方法及装置
CN106063309A (zh) * 2014-03-31 2016-10-26 富士通株式会社 信号重传装置、方法以及通信系统
WO2016002436A1 (ja) * 2014-06-30 2016-01-07 ソニー株式会社 無線通信装置、無線通信方法及びプログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020030080A1 (zh) * 2018-08-10 2020-02-13 电信科学技术研究院有限公司 信息传输方法、基站及终端
US11895644B2 (en) 2018-08-10 2024-02-06 Datang Mobile Communications Equipment Co., Ltd. Information transmission method, base station and terminal

Also Published As

Publication number Publication date
US11102767B2 (en) 2021-08-24
US20190357203A1 (en) 2019-11-21
CN108282896B (zh) 2019-08-30
CN108282896A (zh) 2018-07-13

Similar Documents

Publication Publication Date Title
US10674458B2 (en) Method and apparatus for determining transmit power sharing
JP6839662B2 (ja) ライセンス補助アクセスのバックオフ手順のためのシステム及び方法
US11337182B2 (en) Indication for a portion of a time interval
WO2019091233A1 (zh) 一种带宽切换方法及装置
KR101877756B1 (ko) 캐리어 통합 환경에서 제2셀들을 활성화 및 비활성화시키는 방법들 및 장치
WO2018126948A1 (zh) 数据传输方法及装置、终端、基站和存储介质
US10779174B2 (en) Method and apparatus for monitoring control candidates based on assignments of data packets with different reliabilities
RU2754679C2 (ru) Система, устройство и способ передачи данных
TW202008830A (zh) 用於行動通訊系統之使用者裝置及基地台
KR20200097342A (ko) 정보 처리 방법, 장치 및 기기
TW201349818A (zh) 處理tdd中harq衝突和pusch重傳衝突的方法
WO2019095271A1 (zh) 资源确定方法、装置、网元及系统
WO2012163170A1 (zh) 一种数据传输的方法及装置
WO2010124465A1 (zh) 一种上行信号的处理方法、基站和用户终端
WO2017016351A1 (zh) 一种上行数据的传输方法及装置
JP2019518367A (ja) 高信頼・低遅延トラフィック用の無線リソース管理のための装置および方法
WO2016165131A1 (zh) 一种信息反馈的方法、设备和系统
WO2018127214A1 (zh) 一种上行数据重传方法及终端
TW202118332A (zh) 通道衝突處理方法、裝置、設備和儲存介質
WO2020140837A1 (zh) 数据传输方法、网络侧设备及用户设备
WO2018122609A2 (en) Method and device for feedback of grant-free transmission based on resource unit
CN107040350B (zh) 上行控制信息的传输方法、接收方法、终端及网络侧设备
JP2023513240A (ja) サイドリンク送信の再送方法及び装置
WO2021208836A1 (zh) 一种harq-ack反馈方法及装置
WO2017185991A1 (zh) 数据传输方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18735879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/10/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 18735879

Country of ref document: EP

Kind code of ref document: A1