WO2018126948A1 - 数据传输方法及装置、终端、基站和存储介质 - Google Patents

数据传输方法及装置、终端、基站和存储介质 Download PDF

Info

Publication number
WO2018126948A1
WO2018126948A1 PCT/CN2017/118605 CN2017118605W WO2018126948A1 WO 2018126948 A1 WO2018126948 A1 WO 2018126948A1 CN 2017118605 W CN2017118605 W CN 2017118605W WO 2018126948 A1 WO2018126948 A1 WO 2018126948A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink control
control channel
downlink
traffic channel
repeatedly
Prior art date
Application number
PCT/CN2017/118605
Other languages
English (en)
French (fr)
Inventor
石靖
夏树强
梁春丽
张雯
韩祥辉
任敏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018126948A1 publication Critical patent/WO2018126948A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1803Stop-and-wait protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK

Definitions

  • the present disclosure relates to the field of communications, and in particular to a data transmission method and apparatus, a terminal, a base station, and a storage medium.
  • the reliability requirements of the control channel and the traffic channel need to be improved.
  • the existing method is to repeat the automatic repeat request (HyQ Automatic Repeat reQuest, HARQ for short). Retransmission is implemented, but multiple HARQ retransmissions may directly cause ultra-low latency to not satisfy the demand, so even if HARQ retransmission is used to improve reliability, the number of retransmissions is limited.
  • Other ways to improve reliability include reducing the size of the transport block using the same resources, increasing the resources used under the same transport block size, and repeating the transmission through time domain energy to improve performance, power boost, and so on.
  • the performance is improved by means of repeated transmission, and the transmission is repeated through the downlink control channel (Physical Downlink Control CHannel, hereinafter referred to as PDCCH) to improve performance.
  • PDCCH Physical Downlink Control CHannel
  • the physical downlink control channel carrying the same content is transmitted by the repeatedly transmitted physical downlink control channel (DL grant), and the physical downlink data traffic channel (Physical Downlink Shared CHannel, which is repeatedly transmitted after the end subframe of the repeated transmission is scheduled. Referred to as PDSCH).
  • the physical uplink control channel carrying the same content is transmitted by the repeatedly transmitted physical downlink control channel (UL grant), and the physical uplink data traffic channel (Physical Uplink Shared Channel, PUSCH for short) is scheduled to be transmitted after the end subframe of the repeated transmission.
  • UL grant physical downlink control channel
  • PUSCH Physical Uplink Shared Channel
  • Embodiments of the present disclosure provide a data transmission method and apparatus, a terminal, a base station, and a storage medium.
  • a data transmission method including:
  • the base station During a process in which the base station repeatedly sends the downlink control channel for carrying the downlink control information, detecting the first preset event;
  • the base station After detecting the first preset event, the base station terminates repeatedly transmitting the downlink control channel.
  • the base station terminates repeatedly sending the downlink control channel, including at least one of: feedback of a downlink traffic channel scheduled by receiving the downlink control information After the information is sent, the downlink control channel is stopped; after receiving the uplink traffic channel scheduled by the downlink control channel, the downlink control channel is stopped; and the number of repeated transmissions of the downlink control channel is repeatedly exceeded.
  • the value is X
  • the downlink control channel is stopped, where X is a positive integer.
  • the sending start time unit of the downlink traffic channel scheduled by the downlink control channel is the same as the start time unit of repeatedly transmitting the downlink control channel, where the time unit is one of the following: a subframe ( Subframe), Transmission Time Interval (TTI), slot, mini-slot, Orthogonal Frequency Division Multiplexing (OFDM) symbols.
  • the subframe is 1 ms in length and contains 1 or several slots.
  • the slot length contains 6 or 7 or 8 or 12 or 14 or 16 OFDM symbols.
  • the slot contains 1 or several mini-slots, and the mini-slot contains 2 or 3 or 4 or 7 or 8 symbols.
  • the TTI is 1 or several subframes or slots or mini-slots.
  • the OFDM symbol can be one or several seed carrier intervals.
  • the downlink traffic channel is repeatedly sent from the start time unit, and the method for terminating repeated transmission of the downlink traffic channel includes at least one of: receiving feedback information on the downlink traffic channel is positive After the answer (ACKnowledgment, abbreviated as ACK), the transmission of the downlink traffic channel is stopped; when the repeated transmission of the downlink traffic channel repeatedly exceeds the preset value Y.
  • ACK acknowledgement
  • the value of the X and/or Y is one of the following: a predefined single value; a value determined according to a TTI length; and the base station adopts a physical layer signaling indication or a high layer signaling configuration. value.
  • the manner of detecting whether the base station receives the feedback information of the downlink traffic channel scheduled by the downlink control information includes at least one of: a time after repeatedly transmitting the start time unit n of the downlink traffic channel
  • the unit n+k starts, and each time unit performs detection, wherein the k is an integer greater than 0; starting from the time unit n+k after repeatedly transmitting the start time unit n of the downlink traffic channel, every M
  • the time units are all detected, wherein the k is an integer greater than 0, and the value of the M is preset or configured by the base station; and after the transmission of the start time unit n of the downlink traffic channel is repeated
  • k is at least one of the set ⁇ 0, 1, 2, 3, 4, 5, 6, 8 ⁇ .
  • M is at least one of the set ⁇ 1, 2, 3, 4, 5, 6, 7, 8 ⁇ .
  • C is at least one of the set ⁇ 1, 2, 3, 4, 5, 6, 7, 8 ⁇ .
  • the downlink control information carried by the repeatedly transmitted downlink control channel is: the downlink control information with the same content, or the content of the partial bit field is different in each time unit, where the bit field with different content includes at least one of the following : Redundancy version, modulation and coding method.
  • the manner of determining the redundancy version in the downlink traffic channel includes at least one of: determining, according to the identical redundancy version indicated by the downlink control channel that is repeatedly transmitted, the downlink traffic channel that is repeatedly transmitted is used. And the redundancy version is determined according to the incomplete redundancy versions indicated by the downlink control channel that are repeatedly transmitted, respectively, and the redundancy version of the downlink traffic channel scheduled by each downlink control channel is determined, and the downlink control channel is repeatedly transmitted. Afterwards, the downlink traffic channels use the redundancy version indicated by the downlink control channel for the last time; the different redundancy versions indicated by the downlink control channel repeatedly transmitted are respectively determined by the downlink control channels.
  • the downlink traffic channel uses the redundancy version indicated by the downlink control channel for the last time as an initial value of the redundancy version cycle, where
  • the redundancy version is cyclically configured for a preset or base station.
  • the repeatedly transmitting the downlink control channel is repeatedly transmitted in a designated physical resource block (PRB) in a downlink data area, where the designated PRB resource is configured by the base station by using high layer signaling.
  • PRB physical resource block
  • a data transmission method includes: detecting, in a process of repeatedly receiving, by a terminal, a downlink control channel carrying downlink control information, detecting a second preset event; After the second preset event, the terminal terminates repeatedly receiving the downlink control channel.
  • the terminal terminates repeatedly receiving the downlink control channel, including at least one of: sending feedback of the downlink traffic channel scheduled by the downlink control channel scheduled.
  • the downlink control channel for scheduling the downlink traffic channel is repeatedly received; and before receiving the received uplink traffic channel scheduled by the downlink control channel, repeatedly receiving the downlink control channel for scheduling the uplink traffic channel; Receiving the downlink control channel until the number of repeated receptions reaches a preset value X.
  • the received start time unit of the downlink traffic channel scheduled by the downlink control channel is: the same as the time unit of the first downlink control channel in the downlink control channel that receives the repeated transmission, where the The time unit is one of the following: subframe, TTI, slot, mini-slot, OFDM symbol.
  • the downlink traffic channel is repeatedly received from a start time unit, and the method for terminating repeated reception of the downlink traffic channel includes at least one of: receiving the downlink traffic channel correctly, and transmitting the downlink service After the feedback information of the channel is ACK, the receiving of the downlink traffic channel is stopped; when the number of times of repeatedly receiving the downlink traffic channel exceeds a preset value Y, the receiving of the downlink traffic channel is stopped.
  • the value of X and/or Y is one of the following: a predefined single value; a value determined according to a length of the TTI; and a value configured by the base station by physical layer signaling or high layer signaling.
  • the downlink control information carried by the repeatedly received downlink control channel is: the downlink control information with the same content, or the content of the partial bit domain is different in each time unit, where the bit field with different content includes at least one of the following : Redundancy version, modulation and coding method.
  • the manner of determining the redundancy version in the uplink traffic channel of the terminal includes at least one of: determining a downlink traffic channel that is repeatedly transmitted according to the identical redundancy version indicated by the downlink control channel that is repeatedly transmitted. And using the redundancy version; determining, according to the incomplete identical redundancy versions indicated by the downlink control channel that are repeatedly transmitted, a redundancy version of the uplink traffic channel scheduled by each downlink control channel, and stopping receiving the downlink control After the channel, the uplink traffic channel uses the redundancy version indicated by the downlink control channel for the last time; and the scheduling of each downlink control channel is determined according to the incomplete identical redundancy version indicated by the downlink control channel that is repeatedly transmitted.
  • the uplink traffic channel uses the redundancy version indicated by the downlink control channel for the initial value of the redundancy version cycle, where
  • the redundancy version is cyclically configured for a preset or base station.
  • determining, by the following manner, that the sending start time unit of the uplink traffic channel scheduled by the downlink control channel is: determining a sending time unit according to an uplink scheduling timing relationship n+k, where the time unit n is the first received repeated transmission. a time unit of the downlink control channel, where the k is an integer greater than 0, wherein the time unit is one of: subframe, TTI, slot, mini-slot, OFDM symbol.
  • the repeatedly received downlink control channel is repeatedly transmitted in a designated PRB in a downlink data area, where the designated PRB resource is configured by the base station by using high layer signaling.
  • a data transmission apparatus for a base station, including:
  • the repeating transmission module is configured to detect the first preset event during the process that the base station repeatedly sends the downlink control channel for carrying the downlink control information;
  • the first termination module is configured to terminate repeatedly sending the downlink control channel after detecting the first preset event.
  • the first termination module is further configured to: at least one of: after receiving the feedback information of the downlink traffic channel scheduled by the downlink control information, stopping sending the downlink control channel; After the uplink traffic channel scheduled by the downlink control channel is described, the downlink control channel is stopped; when the number of repeated transmissions of the downlink control channel repeatedly exceeds a preset value X, the downlink control channel is stopped, where Said X is a positive integer.
  • the sending start time unit of the downlink traffic channel scheduled by the repeated transmission module to be sent by the downlink control channel is the same as the start time unit of repeatedly transmitting the downlink control channel, where the time unit is the following One: subframe, TTI, slot, mini-slot, OFDM symbol.
  • the repeated transmission module is further configured to repeatedly send the downlink traffic channel from the start time unit, where the first termination module is further configured to terminate the repeated sending of the downlink service in at least one of the following cases Channel: after receiving the feedback information for the downlink traffic channel as an ACK, stopping repeatedly transmitting the downlink traffic channel; and repeatedly transmitting the number of repeated transmissions of the downlink traffic channel exceeding a preset value Y.
  • a data transmission apparatus for use in a terminal, the apparatus comprising:
  • the receiving module is configured to detect a second preset event during the terminal repeatedly receiving the downlink control channel carrying the downlink control information
  • the second termination module is configured to terminate the repeated receiving of the downlink control channel after detecting the second preset event.
  • the second termination module is further configured to terminate receiving the downlink control channel repeatedly in at least one of:
  • the downlink control channel is repeatedly received until the number of repeated receptions reaches a preset value X.
  • start time unit of the downlink service channel scheduled by the repeated receiving module to receive the downlink control channel is:
  • the time unit of the first downlink control channel in the downlink control channel that receives the repeated transmission is the same, wherein the time unit is one of: subframe, TTI, slot, mini-slot, OFDM symbol.
  • the repeatedly receiving is further configured to repeatedly receive the downlink traffic channel from a start time unit
  • the second termination module is further configured to terminate the repeated receiving the downlink traffic channel in at least one of:
  • a base station including:
  • the first communication device is configured to repeatedly send a downlink control channel for carrying downlink information, and after receiving the first termination signal of the first processor, terminate transmitting the downlink control channel repeatedly;
  • the first processor is configured to detect a first preset event during a process of repeatedly transmitting a downlink control channel for carrying downlink control information, and after detecting the first preset event, to the first The communication device transmits the first termination signal.
  • the first processor is further configured to send the first termination signal to the first communication device in at least one of the following:
  • the first communications device is further configured to repeatedly send the downlink traffic channel scheduled by the downlink control channel, where the sending start time unit of the downlink traffic channel is:
  • time unit is one of the following: subframe, TTI, slot, mini-slot, OFDM symbol.
  • the first communication device is further configured to repeatedly send the downlink traffic channel from the start time unit, and the first processor is further configured to notify the first communication in at least one of: The device terminates transmitting the downlink traffic channel repeatedly:
  • the ACK After receiving the ACK for the downlink traffic channel, the ACK is stopped, and the downlink traffic channel is repeatedly sent;
  • a terminal including:
  • the second communication device is configured to repeatedly receive the downlink control channel carrying the downlink control information, and after receiving the second termination signal of the second processor, terminate the repeated receiving of the downlink control channel;
  • the second processor is configured to detect a second preset event during the repeated receiving of the downlink control channel, and send the second to the second communications device after detecting the second preset event Termination signal.
  • the second processor is further configured to send the second termination signal to the second communication device in at least one of the following:
  • the downlink control channel is repeatedly received until the number of repeated receptions reaches a preset value X.
  • the second communications device is further configured to repeatedly receive the downlink traffic channel scheduled by the downlink control channel, where the starting time unit of the received downlink traffic channel is:
  • the time unit of the first downlink control channel in the downlink control channel that receives the repeated transmission is the same, wherein the time unit is one of: subframe, TTI, slot, mini-slot, OFDM symbol.
  • the second communication device is further configured to repeatedly receive the downlink traffic channel from the start time unit, and the second processor is further configured to notify the second communication in at least one of: The device terminates receiving the downlink traffic channel repeatedly:
  • a computer program is stored thereon, and when the computer program is executed by the processor, the steps of any of the methods on the base station side are implemented, or the steps of any of the methods on the terminal side are implemented.
  • the base station detects that a first preset event occurs during the process of repeatedly transmitting the downlink control channel configured to carry the downlink control information, and the base station terminates the repeated transmission of the downlink control channel.
  • the reliability of the related technology is adopted to improve the reliability, the problem of satisfying the requirements of ultra-low delay and ultra-high reliability is solved, and the reliability is improved on the basis of satisfying the premise of low delay.
  • FIG. 1 is a flowchart 1 of a data transmission method according to an embodiment of the present disclosure
  • FIG. 2 is a second flowchart of a data transmission method according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of scheduling downlink data repeated transmission according to Application Embodiment 1;
  • FIG. 5 is a schematic diagram of scheduling downlink data repeated transmission according to Application Embodiment 3.
  • FIG. 6 is a schematic diagram of scheduling uplink data repetition transmission according to Application Embodiment 4.
  • FIG. 7 is a block diagram showing a hardware structure of a base station according to an embodiment of the present disclosure.
  • FIG. 8 is a block diagram showing the hardware structure of a terminal according to an embodiment of the present disclosure.
  • a mobile communication network including but not limited to a 5G mobile communication network
  • the network architecture of the network may include a network side device (for example, a base station) and a terminal.
  • a network side device for example, a base station
  • an information transmission method that can be run on the network architecture is provided. It should be noted that the operating environment of the foregoing information transmission method provided in the embodiment of the present application is not limited to the foregoing network architecture.
  • FIG. 1 is a flowchart 1 of a data transmission method according to an embodiment of the present disclosure. As shown in FIG. 1, the process includes the following steps:
  • Step S102 During a process in which the base station repeatedly sends a downlink control channel for carrying downlink control information, detecting a first preset event;
  • Step S104 After detecting the first preset event, the base station terminates repeatedly transmitting the downlink control channel.
  • the base station detects that a first preset event occurs, and the base station terminates the repeated transmission of the downlink control channel.
  • the reliability of the related technology is adopted to improve the reliability, the problem of satisfying the requirements of ultra-low delay and ultra-high reliability is solved, and the reliability is improved on the basis of satisfying the premise of low delay.
  • the base station terminates repeatedly sending the downlink control channel, including at least one of: after receiving the feedback information of the downlink traffic channel scheduled by the downlink control information, stopping Transmitting the downlink control channel; stopping receiving the downlink control channel after receiving the uplink traffic channel scheduled by the downlink control channel; and stopping transmitting the downlink when the number of repeated transmissions of the downlink control channel repeatedly exceeding the preset value X Control channel, where X is a positive integer.
  • the feedback information in the foregoing embodiment may be an ACK or a negative acknowledgment (NACK).
  • the sending start time unit of the downlink traffic channel scheduled by the downlink control channel is the same as the start time unit of repeatedly transmitting the downlink control channel, where the time unit is one of the following: subframe, TTI, slot, Mini-slot, OFDM symbol.
  • the downlink traffic channel is repeatedly sent from the start time unit, and the method for terminating the repeated transmission of the downlink traffic channel includes at least one of: stopping the repetition after receiving the feedback information of the downlink traffic channel as an ACK And transmitting the downlink traffic channel; when the number of repeated transmissions of the downlink traffic channel is repeatedly transmitted exceeds a preset value Y.
  • the value of the X and/or the value is one of the following: a predefined single value; a value determined according to the length of the TTI; the value of the base station configured by the physical layer signaling or the high layer signaling configuration.
  • the unit performs detection, where l is a time unit index, and the value of C is preset or configured by a base station.
  • the downlink control information carried by the repeatedly transmitted downlink control channel is: the downlink control information with the same content, or the content of the partial bit domain is different in each time unit, where the bit field with different content includes at least one of the following: Redundancy version, modulation and coding mode.
  • the manner of determining the redundancy version in the downlink traffic channel includes at least one of: determining, according to the identical redundancy version indicated by the downlink control channel that is repeatedly transmitted, the repeatedly used downlink traffic channel uses the redundancy a remaining version; determining a redundancy version of the downlink traffic channel scheduled by each downlink control channel according to the incomplete redundancy versions indicated by the downlink control channel that are repeatedly transmitted, and after terminating the repeated transmission of the downlink control channel, the downlink The traffic channel uses the redundancy version indicated by the downlink control channel for the last time; and the redundancy version of the downlink traffic channel scheduled by each downlink control channel is determined according to the incomplete redundancy versions indicated by the downlink control channel that are repeatedly transmitted.
  • the downlink traffic channel uses the redundancy version indicated by the downlink control channel for the last time as an initial value of the redundancy version cycle, wherein the redundancy version cycle is preset or Base station configured.
  • the repeatedly transmitted downlink control channel is repeatedly transmitted in a designated PRB in a downlink data area, where the designated PRB resource is configured by the base station by using high layer signaling.
  • FIG. 2 is a flowchart 2 of a data transmission method according to an embodiment of the present disclosure. As shown in FIG. 2, the flow includes the following steps:
  • Step S202 In the process of repeatedly receiving, by the terminal, the downlink control channel carrying the downlink control information, detecting a second preset event;
  • Step S204 after detecting the second preset event, the terminal terminates repeatedly receiving the downlink control channel.
  • the terminal terminates repeatedly receiving the downlink control channel, including at least one of: repeating before receiving the received feedback information of the downlink traffic channel scheduled by the downlink control channel, Receiving the downlink control channel for scheduling the downlink traffic channel; receiving the downlink traffic channel scheduled for the downlink control channel, repeating receiving the downlink control channel for scheduling the uplink traffic channel; and repeatedly receiving the downlink control channel until the repeated receiving The number of times reaches the preset value X.
  • the received start time unit of the downlink traffic channel scheduled by the downlink control channel is: the same as the time unit of the first downlink control channel in the downlink control channel that receives the repeated transmission, where the time unit is One of the following: subframe, TTI, slot, mini-slot, OFDM symbol.
  • the downlink traffic channel is repeatedly received from the start time unit, and the method for terminating the repeated receiving of the downlink traffic channel includes at least one of: receiving the downlink traffic channel correctly, and sending feedback information about the downlink traffic channel. After the ACK, the downlink traffic channel is stopped, and when the number of times the downlink traffic channel is repeatedly received exceeds the preset value Y, the downlink traffic channel is stopped.
  • the value of X and/or Y is one of the following: a predefined single value; a value determined according to the length of the TTI; and a value configured by the base station by physical layer signaling or high layer signaling.
  • the downlink control information carried by the repeatedly received downlink control channel is: the downlink control information with the same content, or the content of the partial bit domain is different in each time unit, where the bit field with different content includes at least one of the following: Redundancy version, modulation and coding mode.
  • the manner of determining the redundancy version in the uplink traffic channel of the terminal includes at least one of: determining, according to the identical redundancy version indicated by the downlink control channel that is repeatedly transmitted, the downlink traffic channel that is repeatedly transmitted is used. a redundancy version; determining, according to the incomplete identical redundancy versions indicated by the downlink control channel that are repeatedly transmitted, a redundancy version of the uplink traffic channel scheduled by each downlink control channel, and after terminating receiving the downlink control channel, The uplink traffic channel uses the redundancy version indicated by the downlink control channel for the last time; and the redundancy version of the uplink traffic channel scheduled by each downlink control channel is determined according to the incomplete identical redundancy version indicated by the downlink control channel that is repeatedly transmitted. And after terminating repeatedly receiving the downlink control channel, the uplink traffic channel uses the redundancy version indicated by the downlink control channel for the initial time as an initial value of the redundancy version cycle, where the redundancy version cycle is preset or Base station configured.
  • the sending start time unit of the uplink traffic channel scheduled by the downlink control channel is determined by: determining, according to the uplink scheduling timing relationship n+k, the sending time unit, where the time unit n is the first received repeated transmission. a time unit of the downlink control channel, where the k is an integer greater than 0, wherein the time unit is one of: subframe, TTI, slot, mini-slot, OFDM symbol.
  • the repeatedly received downlink control channel is repeatedly transmitted in the designated PRB in the downlink data area, where the designated PRB resource is configured by the base station by using high layer signaling.
  • the application embodiment of the present disclosure describes a data transmission method to achieve ultra-high reliability and ultra-low latency requirements, so that data transmission can achieve high reliability under the premise of satisfying the ultra-low latency of the user plane.
  • the application embodiment repeatedly transmits the downlink control channel and the downlink traffic channel at the same time, and repeatedly transmits the downlink control channel and the downlink traffic channel, and does not receive the scheduled uplink before receiving the feedback information.
  • the method of repeatedly transmitting the downlink control channel and repeatedly transmitting the uplink traffic channel before the traffic channel thereby avoiding the problem that the conventional repeated transmission method repeatedly transmits the traffic channel scheduled by the downlink control channel retransmission and causes a large delay, and overcomes the need to follow Hybrid Automatic Repeat Request (HARQ) periodically delays the problem caused by retransmitting old data, and can improve reliability by satisfying the premise of low latency.
  • HARQ Hybrid Automatic Repeat Request
  • FIG. 3 is a schematic diagram of scheduling downlink data retransmission according to application embodiment 1.
  • the base station sends downlink data to UE1.
  • the base station repeatedly transmits the PDCCH (preferably also simultaneously transmitting the traffic channel) before receiving the HARQ-ACK for the traffic channel it is scheduled for.
  • the PDCCH and the PDSCH are repeatedly transmitted.
  • the PDCCH is repeatedly transmitted and the traffic channel is repeatedly transmitted until the ACK is received. send.
  • the base station first transmits the downlink control channel PDCCH scheduling the downlink data, and starts transmitting the scheduled downlink data from the TTI #n.
  • the content of the PDCCH is the same, and the NDI is the same as the new data, and the RV and the MCS are the same.
  • the location and content of the PDSCH are the same.
  • the data received by the UE is merged using the same redundancy version.
  • the content of the NDI is not the same, the NDI is the same as the new data, the MCS is the same, the location and content of the PDSCH are the same, but the RV is different.
  • the data received by the UE is merged with different redundancy versions, and is still received after the PDCCH is terminated.
  • the RV of the PDSCH is determined by using the same redundancy version according to the last RV indication or using the last RV indication as the starting RV of the RV cycle. For example, the last RV indication before the PDCCH termination is 2, and the PDCCH continues to be received after the termination of the PDCCH.
  • the RV of the PDSCH is 2 and merged using the same redundancy version, or the preset RV cycle is 0-2-3, and the RV of the PDSCH that continues to be received after the PDCCH terminates is 2, and the different redundancy versions are merged according to the RV cycle. .
  • the PDCCH in TTI#n is not detected by the UE, there is no need to wait until TTI#n+k detects DTX and then resends from TTI#n+k+1 or a subsequent TTI, starting from TTI#n+1
  • the PDCCH with the same content and its scheduled PDSCH are repeatedly transmitted. If the feedback information received by the base station is ACK, the PDCCH and the PDSCH are repeatedly sent and the transmission is complete. If the feedback information received by the base station is NACK, the PDCCH is stopped and the PDSCH is repeatedly transmitted. When the feedback information is received before the number of times X, the PDSCH is stopped and the transmission is repeated. If the feedback information is not received before the maximum number of repeated transmissions X, the PDSCH is stopped and the transmission fails.
  • the PDCCH repetition transmission may be terminated by any one of the feedback information NACK and ACK of the PDSCH scheduled by it, and the PDSCH repetition transmission may be terminated by the ACK information to which it is fed back.
  • DCI line control information
  • SIB SIB or RRC
  • the resource carrying the ACK/NACK is a PUCCH
  • the same resource location is used when the ACK/NACK is fed back to the next transmission channel for repeated transmission.
  • the resource location may be configured by higher layer signaling (eg, SIB or RRC) and/or determined according to a downlink control channel resource location implicit mapping of the scheduled downlink channel.
  • the terminal UE1 blindly detects the PDCCH in the TTI#n, and if not detected, continues to blindly detect the PDCCH in TTI#n+1.
  • the PDCCH and its scheduled PDSCH are repeatedly received, and the ACK or NACK information is fed back on TTI#m+k according to the PDSCH detected in the TTI#m and according to the timing relationship.
  • the repeated reception is terminated; if the UE1 demodulates the PDSCH error feedback NACK in the TTI#m, the terminal continues to repeatedly receive the PDSCH, if the reception is correct before the maximum repetition number X The PDSCH and the feedback ACK complete the retransmission. If the correct PDSCH has not been received and the NACK is fed back before the maximum repetition X, the repeated reception of the PDSCH is stopped, and the repeated transmission fails.
  • the present disclosure achieves the problem of avoiding the large delay of the traditional repeated transmission method by repeating the method of repeatedly transmitting the downlink control channel and the downlink traffic channel, and can realize the basis of satisfying the premise of low delay. Improve the purpose of reliability.
  • the base station schedules UE1 to repeatedly transmit uplink data.
  • the base station repeatedly transmits the PDCCH carrying the UL grant (preferably scheduling the repeatedly transmitted PUSCH), and stops the repeated transmission of the PDCCH when the base station first receives the PUSCH (whether the reception is correct or the error). If the base station demodulates the PUSCH error, the NACK is fed back, and the UE1 continues to repeatedly transmit the PUSCH. If the base station demodulates the PUSCH correctly, the ACK is fed back, and the UE1 terminates the repeated transmission of the PUSCH.
  • the base station repeatedly transmits a downlink control channel PDCCH that schedules uplink data.
  • the content of the PDCCH is the same, and the NDI is the same as the new data, and the RV and the MCS are the same.
  • the PUSCH resource location and content are the same.
  • the received data of the UE is merged using the same redundancy version.
  • the content of the NDI is not the same, the NDI is the same as the new data, the MCS is the same, the PUSCH resource location and content are the same, but the RV is different, the UE receives the data and uses different redundancy versions to merge, and still receives the PDCCH after the PDCCH is terminated.
  • the RV of the PUSCH is determined by using the same redundancy version according to the last RV indication or using the last RV indication as the starting RV of the RV cycle. For example, the last RV indication before the PDCCH termination is 2, and the PDCCH continues to be received after termination.
  • the RV of the PUSCH is 2, using the same redundancy version, or the preset RV cycle is 0-2-3, and the RV of the PUSCH that continues to be received after the PDCCH is terminated is 2, and the different redundancy versions are combined according to the RV cycle. .
  • the PDCCH in the TTI#n is not detected by the UE, there is no need to wait until the TTX#n+k detects the DTX and then retransmits from the subframe n+k+1 or the subsequent subframe, starting from the subframe n+1.
  • the PDCCH with the same content is repeatedly transmitted.
  • the base station receives the PUSCH for the first time, it stops transmitting the PDCCH repeatedly.
  • the ACK is fed back to the UE, and the terminal repeatedly transmits the PUSCH after receiving the ACK; if the base station demodulates the PUSCH error, the UE feeds back the NACK, and the UE continues to repeatedly transmit the PUSCH, and receives the feedback before the maximum number of repeated transmissions X.
  • the information is ACK, the repeated transmission of the PUSCH is stopped, and the repeated transmission is completed. If the feedback information is not received before the maximum number of repeated transmissions X, the repeated transmission of the PUSCH is stopped, and the repeated transmission fails.
  • the PDCCH repeated transmission may be terminated by receiving the PUSCH scheduled by it, and the PUSCH repeated transmission may be terminated by the ACK information fed back thereto.
  • physical layer signaling such as DCI
  • SIB system information block
  • RRC radio resource control
  • the base station may terminate the PDCCH repetition transmission by receiving the PUSCH (whether correct or not), so the base station may save the NACK/NACK for the PUSCH.
  • the base station only needs to feed back an ACK to terminate the PUSCH repeated transmission, and the base station does not need to send a NACK.
  • the base station only needs to feed back the NACK to notify the UE to continue to repeatedly send the PUSCH.
  • the UE does not receive the NACK, it considers that the base station has correctly received the PUSCH, and terminates the repeated transmission of the PUSCH. At this time, the base station does not need to send the ACK.
  • the terminal UE1 blindly detects the PDCCH in the TTI#n, and if not detected, continues to blindly detect the PDCCH in TTI#n+1.
  • the PDCCH is repeatedly received, the PUSCH is transmitted according to the detected PDSCH in the TTI #m and transmitted on the TTI #m+k according to the timing relationship, and the PUSCH is repeatedly transmitted in the subsequent TTI.
  • the present disclosure achieves the problem of avoiding the large delay of the traditional repeated transmission method by repeatedly transmitting the downlink control channel and the uplink traffic channel at the same time, and can improve the condition that the low delay is satisfied.
  • the purpose of reliability is the reason for reliability.
  • FIG. 5 is a schematic diagram of scheduled downlink data repetition transmission according to application embodiment 3.
  • the base station sends downlink data to UE1.
  • the base station repeatedly transmits the PDCCH (preferably also simultaneously transmitting the traffic channel) before receiving the HARQ-ACK for the traffic channel it is scheduled, and the PDCCH is also repeatedly transmitted in the data region in the TTI.
  • the PDCCH and the PDSCH are repeatedly transmitted.
  • the PDCCH is repeatedly transmitted and the traffic channel is repeatedly transmitted until the ACK is received. send.
  • the base station first sends the downlink control channel PDCCH for scheduling downlink data, and starts to transmit the scheduled downlink data from the TTI #n.
  • the exclusive PRB resource is used in the data region in the TTI#n.
  • the PDCCH is also repeatedly transmitted (the resources of the non-control region), and the exclusive PRB resources in the preferred data region are configured by the higher layer signaling RRC.
  • the content of the PDCCH bears the same.
  • the same NDI indicates that the new data is not transmitted, and the RV and the MCS are the same.
  • the PDSCH resource location and content are the same, and the data received by the UE is merged using the same redundancy version.
  • the PDCCH in TTI#n is not detected by the UE, there is no need to wait until TTI#n+k detects DTX and then resends from TTI#n+k+1 or a subsequent TTI, starting from TTI#n+1
  • the PDCCH with the same content and its scheduled PDSCH are repeatedly transmitted. If the feedback information received by the base station is ACK, the PDCCH and the PDSCH are repeatedly sent and the transmission is complete. If the feedback information received by the base station is NACK, the PDCCH is stopped and the PDSCH is repeatedly transmitted. When the feedback information is received before the number of times X, the PDSCH is stopped and the transmission is repeated. If the feedback information is not received before the maximum number of repeated transmissions X, the PDSCH is stopped and the transmission fails.
  • the PDCCH repeated transmission for the control region in the same TTI cannot be stopped immediately, and the PDCCH repeated transmission in the exclusive PRB resource of the data region may be immediately stopped, because It is too late to use the exclusive PRB for other UE transmission usage scheduling, so the power of the exclusive PRB can be used as other data services by power boosting.
  • the PDCCH repetition transmission may be terminated by any one of the feedback information NACK and ACK of the PDSCH scheduled by it, and the PDSCH repeated transmission may be terminated by the ACK information fed back thereto.
  • the maximum repeat transmission is 8 times to reach the 1 ms delay requirement threshold; or, the values of X and/or Y are configured by physical layer signaling (such as DCI) or high layer signaling (such as SIB or RRC).
  • the resource carrying the ACK/NACK is the PUCCH
  • the same resource location is used when the ACK/NACK is fed back to the next transmission channel for repeated transmission.
  • the resource location may be configured by higher layer signaling (eg, SIB or RRC) and/or determined according to a downlink control channel resource location implicit mapping of the scheduled downlink channel.
  • the terminal UE1 blindly detects the PDCCH in the TTI#n, and if not detected, continues to blindly detect the PDCCH in TTI#n+1.
  • the PDCCH and its scheduled PDSCH are repeatedly received, and the ACK or NACK information is fed back on TTI#m+k according to the PDSCH detected in the TTI#m and according to the timing relationship.
  • the repeated reception is terminated; if the UE1 demodulates the PDSCH error feedback NACK in the TTI#m, the terminal continues to repeatedly receive the PDSCH, if the reception is correct before the maximum repetition number X The PDSCH and the feedback ACK complete the retransmission. If the correct PDSCH has not been received and the NACK is fed back before the maximum repetition X, the repeated reception of the PDSCH is stopped, and the repeated transmission fails.
  • the present disclosure achieves the problem of avoiding the large delay of the traditional repeated transmission method by repeatedly transmitting the downlink control channel and the downlink traffic channel and encrypting the transmission control channel, and can achieve low delay.
  • the purpose of improving reliability is based on the premise.
  • FIG. 6 is a schematic diagram of scheduling uplink data retransmission according to application example 4.
  • the base station schedules UE1 to repeatedly send uplink data.
  • the base station repeatedly transmits the PDCCH carrying the UL grant (preferably scheduling the PUSCH repeatedly transmitted), and the PDCCH is also repeatedly transmitted in the downlink data region in the TTI.
  • the base station receives the PUSCH for the first time (whether received correctly or incorrectly), it stops transmitting the PDCCH repeatedly. If the base station demodulates the PUSCH error, the NACK is fed back, and the UE1 continues to repeatedly transmit the PUSCH. If the base station demodulates the PUSCH correctly, the ACK is fed back, and the UE1 terminates the repeated transmission of the PUSCH.
  • the base station repeatedly transmits the downlink control channel PDCCH for scheduling uplink data, and the PDCCH is also repeatedly transmitted in the data region using the exclusive PRB resource (the resource of the non-control region) in the TTI#n.
  • the exclusive PRB resources in the data area are configured by the high layer signaling RRC.
  • the content of the PDCCH bears the same.
  • the NDI is the same, indicating that the new data is not transmitted, and the RV and the MCS are the same.
  • the PUSCH resource location and content are the same, and the UE receives the data and uses the same redundancy version for merging.
  • the PDCCH in the TTI#n is not detected by the UE, there is no need to wait until the TTX#n+k detects the DTX and then retransmits from the subframe n+k+1 or the subsequent subframe, starting from the subframe n+1.
  • the PDCCH with the same content is repeatedly transmitted.
  • the base station receives the PUSCH for the first time, it stops transmitting the PDCCH repeatedly.
  • the ACK is fed back to the UE, and the terminal repeatedly transmits the PUSCH after receiving the ACK; if the base station demodulates the PUSCH error, the UE feeds back the NACK, and the UE continues to repeatedly transmit the PUSCH, and receives the feedback before the maximum number of repeated transmissions X.
  • the information is ACK, the repeated transmission of the PUSCH is stopped, and the repeated transmission is completed. If the feedback information is not received before the maximum number of repeated transmissions X, the repeated transmission of the PUSCH is stopped, and the repeated transmission fails.
  • the PDCCH repeated transmission for the control region in the same TTI cannot be stopped immediately, and the PDCCH repeated transmission in the exclusive PRB resource of the data region may be immediately stopped, because It is too late for the exclusive PRB to be used for other UE transmission usage scheduling, so the power of the exclusive PRB can be used as other data services by power boosting.
  • the PDCCH repeated transmission may be terminated by receiving the PUSCH scheduled by it, and the PUSCH repeated transmission may be terminated by the ACK information fed back thereto.
  • the maximum repeat transmission is 8 times to reach the 1 ms delay requirement threshold; or, the values of X and/or Y are configured by physical layer signaling (such as DCI) or high layer signaling (such as SIB or RRC).
  • the base station may terminate the PDCCH repetition transmission by receiving the PUSCH (whether correct or not), so the base station may save the NACK/NACK for the PUSCH.
  • the base station only needs to feed back an ACK to terminate the PUSCH repeated transmission, and the base station does not need to send a NACK.
  • the base station only needs to feed back the NACK to notify the UE to continue to repeatedly send the PUSCH.
  • the UE does not receive the NACK, it considers that the base station has correctly received the PUSCH and terminates the repeated transmission of the PUSCH. At this time, the base station does not need to send the ACK.
  • the terminal UE1 blindly detects the PDCCH in the TTI#n, and if not detected, continues to blindly detect the PDCCH in TTI#n+1.
  • the PDCCH is repeatedly received, the PUSCH is transmitted according to the detected PDSCH in the TTI #m and transmitted on the TTI #m+k according to the timing relationship, and the PUSCH is repeatedly transmitted in the subsequent TTI.
  • the present disclosure achieves the problem of avoiding the large delay of the traditional repeated transmission method by repeatedly transmitting the downlink control channel and the uplink traffic channel and encrypting the transmission control channel, and can achieve low delay.
  • the purpose of improving reliability is based on the premise.
  • a data transmission device is also provided in this embodiment, and the device is configured to implement the foregoing embodiments, and details are not described herein.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • a data transmission apparatus applied to a base station comprising:
  • the repeating transmission module is configured to detect the first preset event during the process that the base station repeatedly sends the downlink control channel for carrying the downlink control information;
  • the first termination module is connected to the repeated transmission module, and is configured to terminate the repeated transmission of the downlink control channel after detecting the first preset event.
  • the first termination module is further configured to: at least one of: after receiving the feedback information of the downlink traffic channel scheduled by the downlink control information, stopping sending the downlink control channel; receiving the downlink control channel After the scheduled uplink traffic channel, the downlink control channel is stopped; when the number of repeated transmissions of the downlink control channel repeatedly exceeds the preset value X, the downlink control channel is stopped, where X is a positive integer.
  • the sending start time unit of the downlink traffic channel scheduled by the repeated transmission module to be sent by the downlink control channel is the same as the start time unit of repeatedly transmitting the downlink control channel, where the time unit is one of the following: a subframe , TTI, slot, mini-slot, OFDM symbol.
  • the retransmission module is further configured to repeatedly send the downlink traffic channel from the start time unit, where the first termination module is further configured to terminate the repeated transmission of the downlink traffic channel in at least one of: receiving After the feedback information of the downlink traffic channel is ACK, the repeated transmission of the downlink traffic channel is stopped; when the number of repeated transmissions of the downlink traffic channel is repeatedly transmitted exceeds a preset value Y.
  • a data transmission apparatus for use in a terminal, the apparatus comprising:
  • the receiving module is configured to detect a second preset event during the terminal repeatedly receiving the downlink control channel carrying the downlink control information
  • the second termination module is connected to the repeated receiving module, and is configured to terminate the repeated receiving of the downlink control channel after detecting the second preset event.
  • the second termination module is further configured to terminate receiving the downlink control channel repeatedly in at least one of the following situations:
  • the downlink control channel is repeatedly received until the number of repeated receptions reaches a preset value X.
  • start time unit of the downlink service channel scheduled by the repeated receiving module to receive the downlink control channel is:
  • the time unit of the first downlink control channel in the downlink control channel that receives the repeated transmission is the same, wherein the time unit is one of the following: subframe, TTI, slot, mini-slot, OFDM symbol.
  • the repeatedly receiving is further configured to repeatedly receive the downlink traffic channel from the start time unit
  • the second termination module is further configured to terminate the repeated receiving the downlink traffic channel in at least one of the following situations:
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • FIG. 7 is a hardware structural block diagram of a base station according to an embodiment of the present disclosure. As shown in FIG. 7, the base station 70 includes:
  • the first communication device 702 is configured to repeatedly send a downlink control channel for carrying downlink information, and after receiving the first termination signal of the first processor 704, terminate the repeated transmission of the downlink control channel;
  • the first processor 704 is connected to the first communication device 702, configured to detect a first preset event during repeated transmission of a downlink control channel for carrying downlink control information, and detect the first preset After the event, the first termination signal is sent to the first communication device 702.
  • the first processor 704 is further configured to send the first termination signal to the first communication device 702 in at least one of the following cases:
  • the first communication device 702 is further configured to repeatedly send the downlink traffic channel scheduled by the downlink control channel, where the sending start time unit of the downlink traffic channel is:
  • time unit is one of the following: subframe, TTI, slot, mini-slot, OFDM symbol.
  • the first communication device 702 is further configured to repeatedly send the downlink traffic channel from the start time unit, and the first processor 704 is further configured to notify the first communication device 702 to terminate in at least one of: Repeat the transmission of the downlink traffic channel:
  • FIG. 8 is a block diagram of a hardware structure of a terminal according to an embodiment of the present disclosure. As shown in FIG. 8, the terminal 80 includes:
  • the second communication device 802 is configured to repeatedly receive the downlink control channel carrying the downlink control information, and after receiving the second termination signal of the second processor 804, terminate the repeated receiving of the downlink control channel;
  • the second processor 804 is connected to the second communication device 802, and detects a second preset event during the repeated receiving of the downlink control channel, and after detecting the second preset event, to the second communication
  • the device 802 transmits the second termination signal.
  • the second processor 804 is further configured to send the second termination signal to the second communication device 802 in at least one of the following cases:
  • the downlink control channel is repeatedly received until the number of repeated receptions reaches a preset value X.
  • the second communication device 802 is further configured to repeatedly receive the downlink traffic channel scheduled by the downlink control channel, where the received start time unit of the downlink traffic channel is:
  • the time unit of the first downlink control channel in the downlink control channel that receives the repeated transmission is the same, wherein the time unit is one of the following: subframe, TTI, slot, mini-slot, OFDM symbol.
  • the second communication device 802 is further configured to repeatedly receive the downlink traffic channel from the start time unit, and the second processor 804 is further configured to notify the second communication device 802 to terminate in at least one of: Repeatedly receiving the downlink traffic channel:
  • Embodiments of the present disclosure also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the first preset event is detected during a process in which the base station repeatedly sends a downlink control channel for carrying downlink control information.
  • the base station After detecting the first preset event, the base station terminates repeatedly sending the downlink control channel.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the second preset event is detected during a process in which the terminal repeatedly receives the downlink control channel carrying the downlink control information.
  • the terminal After detecting the second preset event, the terminal terminates repeatedly receiving the downlink control channel.
  • the foregoing storage medium may include, but is not limited to, a U disk, a ROM, a RAM, a mobile hard disk, a magnetic disk, or an optical disk, and the like, which can store program codes.
  • the processor performs the method steps in the foregoing embodiments according to the stored program code in the storage medium.
  • modules or steps of the present disclosure described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module. As such, the disclosure is not limited to any specific combination of hardware and software.
  • the base station in the process of repeatedly transmitting the downlink control channel configured to carry the downlink control information, the base station detects that a first preset event occurs, and the base station terminates the repeated transmission of the downlink control channel, so that when the low downlink is satisfied, The purpose of improving reliability based on the premise.

Abstract

本公开提供了一种数据传输方法及装置、终端、基站和存储介质,其中,该方法包括:在基站重复发送用于承载下行控制信息的下行控制信道过程中,检测第一预设事件;在检测到该第一预设事件之后,该基站终止重复发送该下行控制信道。

Description

数据传输方法及装置、终端、基站和存储介质
相关申请的交叉引用
本申请基于申请号为201710011182.6、申请日为2017年01月06日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及通信领域,具体而言,涉及一种数据传输方法及装置、终端、基站和存储介质。
背景技术
在相关技术中,随着第四代移动通信技术(the 4th Generation mobile communication technology,简称为4G)长期演进(LTE,Long-Term Evolution)/高级长期演进(LTE-Advance/LTE-A,Long-Term Evolution Advance)系统商用的日益完善,对下一代移动通信技术即第五代移动通信技术(the 5th Generation mobile communication technology,简称为5G)的技术指标要求也越来越高。业内普遍认为,下一代移动通信系统应具有超高速率、超高容量、超高可靠性、以及超低延时传输特性等特征。对于5G系统中超低时延超高可靠性的指标目前为用户面时延为1ms同时满足99.999%的可靠性。
为了达到超低时延和超高可靠性的需求,需要对控制信道和业务信道的可靠性要求都进行提升,现有方式为通过多次混合自动重传请求(Hybird Automatic Repeat reQuest,简称为HARQ)重传实现,但是多次HARQ重传可能会直接导致超低时延不满足需求,因此即使在使用HARQ重传提升可靠性的条件下,重传次数是受限的。其他提升可靠性的方法还有:在使用相同资源的条件下减小传输块大小,在使用相同传输块大小的条件下增 加使用的资源,重复传输通过时域能量类似提升性能,功率提升等。
在LTE系统中,已经采用重复传输的方式提升性能,通过下行控制信道(Physical Downlink Control CHannel,简称为PDCCH)重复传输和业务信道重复传输来提升性能。采用固定的调度定时和反馈定时,由重复传输的物理下行控制信道承载内容相同的下行授权(DL grant)在重复传输的结束子帧后调度重复传输的物理下行数据业务信道(Physical Downlink Shared CHannel,简称为PDSCH)。由重复传输的物理下行控制信道承载内容相同的上行授权(UL grant)在重复传输的结束子帧后调度重复传输的物理上行数据业务信道(Physical Uplink Shared Channel,简称为PUSCH)。该方法若用于5G系统中可以满足高可靠性要求但可能无法满足超低时延需求。
针对相关技术中,采用重复传输方式提升可靠性时,需要解决同时满足超低时延和超高可靠性需求的问题,目前还没有有效的解决方式。
发明内容
本公开实施例提供了一种数据传输方法及装置、终端、基站和存储介质。
根据本公开的一个实施例,提供了一种数据传输方法,包括:
在基站重复发送用于承载下行控制信息的下行控制信道过程中,检测第一预设事件;
在检测到所述第一预设事件之后,所述基站终止重复发送所述下行控制信道。
可选地,在检测到所述第一预设事件之后,所述基站终止重复发送所述下行控制信道,包括以下至少之一:在接收到所述下行控制信息所调度的下行业务信道的反馈信息之后,停止发送所述下行控制信道;在接收到所述下行控制信道所调度的上行业务信道之后,停止发送所述下行控制信道;在重复发送所述下行控制信道的重复发送次数超过预设值X时,停止发送所述下行控制信道,其中,所述X为正整数。
可选地,所述下行控制信道调度的下行业务信道的发送起始时间单元为:与重复发送所述下行控制信道的起始时间单元相同,其中所述时间单 元为以下之一:子帧(subframe),传输时间间隔(Transmission Time Interval,简称为TTI),时隙(slot),微时隙(mini-slot),正交频分复用(OFDM)符号。可选地,subframe长度为1ms,包含1个或若干个slot。slot长度包含6或7或8或12或14或16个OFDM符号。slot中包含1个或若干个mini-slot,mini-slot包含2或3或4或7或8个符号。TTI为1个或若干个subframe或slot或mini-slot。其中OFDM符号可以为1种或若干种子载波间隔。
可选地,所述下行业务信道从所述起始时间单元开始重复发送,终止重复发送所述下行业务信道的方法包括以下至少之一:在接收到对所述下行业务信道的反馈信息为肯定回答(ACKnowledgment,简称为ACK)后,停止重复发送所述下行业务信道;在重复发送所述下行业务信道的重复发送次数超过预设值Y时。
可选地,所述X和/或Y的取值为以下之一:预定义的单一取值;根据TTI长度确定的取值;所述基站通过物理层信令指示或高层信令配置的取值。
可选地,检测所述基站是否接收到所述下行控制信息所调度的下行业务信道的反馈信息的方式包括以下至少之一:从重复传输所述下行业务信道的起始时间单元n之后的时间单元n+k开始,每个时间单元均进行检测,其中,所述k为大于0的整数;从重复传输所述下行业务信道的起始时间单元n之后的时间单元n+k开始,每M个时间单元均进行检测,其中,所述k为大于0的整数,所述M的取值为预设的或者基站配置的;从重复传输所述下行业务信道的起始时间单元n之后的在满足l mod C=0的时间单元均进行检测,其中,所述l为时间单元索引,所述C的取值为预设的或基站配置的。可选的,k取值为集合{0、1、2、3、4、5、6、8}中至少之一。可选的,M取值为集合{1、2、3、4、5、6、7、8}中至少之一。可选地,C取值为集合{1、2、3、4、5、6、7、8}中至少之一。
可选地,所述重复发送的下行控制信道承载的下行控制信息在各个时间单元为:内容完全相同的下行控制信息,或者部分比特域内容不同,其中,内容不同的比特域包括以下至少之一:冗余版本、调制编码方式。
可选地,确定所述下行业务信道中的冗余版本的方式包括以下至少之一:根据重复传输的所述下行控制信道指示的完全相同的冗余版本确定,重复传输的下行业务信道均使用该冗余版本;根据重复传输的所述下行控制信道指示的不完全相同的冗余版本分别确定各个下行控制信道所调度的下行业务信道的冗余版本,并且在终止重复传输所述下行控制信道之后,所述下行业务信道均使用最后一次由所述下行控制信道指示的冗余版本;根据重复传输的所述下行控制信道指示的不完全相同的冗余版本分别确定各个下行控制信道所调度的下行业务信道的冗余版本,并且在终止重复传输所述下行控制信道之后,所述下行业务信道以最后一次由所述下行控制信道指示的冗余版本作为冗余版本循环的初始值,其中,所述冗余版本循环为预设的或基站配置的。
可选地,所述重复发送的所述下行控制信道在下行数据区域内指定物理资源块(PRB)中重复传输,其中,所述指定PRB资源由基站通过高层信令配置。
根据本公开的另一个实施例,还提供了一种数据传输方法,所述方法包括:在终端重复接收承载有下行控制信息的下行控制信道过程中,检测第二预设事件;在检测到所述第二预设事件之后,所述终端终止重复接收所述下行控制信道。
可选地,在检测到所述第二预设事件之后,所述终端终止重复接收所述下行控制信道,包括以下至少之一:发送接收到的所述下行控制信道调度的下行业务信道的反馈信息之前,重复接收调度所述下行业务信道的所述下行控制信道;发送接收到的所述下行控制信道调度的上行业务信道之前,重复接收调度所述上行业务信道的所述下行控制信道;重复接收所述下行控制信道直至所述重复接收的次数达到预设值X。
可选地,接收的所述下行控制信道调度的下行业务信道的起始时间单元为:与接收到重复传输的所述下行控制信道中的首个下行控制信道的时间单元相同,其中,所述时间单元为以下之一:subframe,TTI,slot,mini-slot,OFDM符号。
可选地,所述下行业务信道从起始时间单元开始重复接收,终止重复 接收所述下行业务信道的方法包括以下至少之一:在接收所述下行业务信道正确,并发送对所述下行业务信道的反馈信息为ACK之后,停止接收所述下行业务信道;在重复接收所述下行业务信道的次数超过预设值Y时,停止接收所述下行业务信道。
可选地,所述X和/或Y取值为以下之一:预定义的单一取值;根据TTI长度确定的取值;基站通过物理层信令指示或高层信令配置的取值。
可选地,发送所述反馈信息的方式包括以下至少之一:从重复接收到的所述下行业务信道的起始时间单元n之后的时间单元n+k开始,每个时间单元均发送所述反馈信息,其中,所述k为大于0的整数;从重复接收到的所述下行业务信道的起始时间单元n之后的时间单元n+k开始,每M个时间单元均发送所述反馈信息,其中,所述M的取值为预设的或基站配置的;从重复接收到的下行业务信道的起始时间单元n之后的在满足l mod C=0的时间单元均发送所述反馈信息,其中,所述l为时间单元索引,所述C的取值为预设的或基站配置的。
可选地,所述重复接收的下行控制信道承载的下行控制信息在各个时间单元为:内容完全相同的下行控制信息,或部分比特域内容不同,其中,内容不同的比特域包括以下至少之一:冗余版本、调制编码方式。
可选地,确定所述终端的上行业务信道中的冗余版本的方式包括以下至少之一:根据重复传输的所述下行控制信道指示的完全相同的冗余版本确定,重复传输的下行业务信道均使用该冗余版本;根据重复传输的所述下行控制信道指示的不完全相同的冗余版本分别确定各个下行控制信道所调度的上行业务信道的冗余版本,并且在终止接收所述下行控制信道之后,所述上行业务信道均使用最后一次由所述下行控制信道指示的冗余版本;根据重复传输的所述下行控制信道指示的不完全相同的冗余版本确定各个下行控制信道所调度的上行业务信道的冗余版本,并且在终止重复接收所述下行控制信道之后,所述上行业务信道以最后一次由所述下行控制信道指示的冗余版本作为冗余版本循环的初始值,其中,所述冗余版本循环为预设的或基站配置的。
可选地,通过以下方式确定所述下行控制信道调度的上行业务信道的 发送起始时间单元为:根据上行调度定时关系n+k确定发送时间单元,其中时间单元n为首次接收到的重复传输的下行控制信道的时间单元,其中,所述k为大于0的整数,其中,所述时间单元为以下之一:subframe,TTI,slot,mini-slot,OFDM符号。
可选地,所述重复接收的下行控制信道在下行数据区域内指定PRB中重复传输,其中,所述指定PRB资源由基站通过高层信令配置。
根据本公开的另一个实施例,提供了一种数据传输装置,应用于基站,包括:
重复传输模块,配置为在基站重复发送用于承载下行控制信息的下行控制信道过程中,检测第一预设事件;
第一终止模块,配置为在检测到所述第一预设事件之后,终止重复发送所述下行控制信道。
可选地,所述第一终止模块还配置为以下情况至少之一:在接收到所述下行控制信息所调度的下行业务信道的反馈信息之后,停止发送所述下行控制信道;在接收到所述下行控制信道所调度的上行业务信道之后,停止发送所述下行控制信道;在重复发送所述下行控制信道的重复发送次数超过预设值X时,停止发送所述下行控制信道,其中,所述X为正整数。
可选地,所述重复传输模块发送所述下行控制信道调度的下行业务信道的发送起始时间单元为:与重复发送所述下行控制信道的起始时间单元相同,其中所述时间单元为以下之一:subframe,TTI,slot,mini-slot,OFDM符号。
可选地,所述重复传输模块还配置为从所述起始时间单元开始重复发送所述下行业务信道,所述第一终止模块还配置为在以下情况至少之一终止重复发送所述下行业务信道:在接收到对所述下行业务信道的反馈信息为ACK后,停止重复发送所述下行业务信道;在重复发送所述下行业务信道的重复发送次数超过预设值Y时。
根据本公开的另一个实施例,提供了一种数据传输装置,应用于终端,所述装置包括:
重复接收模块,配置为在终端重复接收承载有下行控制信息的下行控制信道过程中,检测第二预设事件;
第二终止模块,配置为在检测到所述第二预设事件之后,终止重复接收所述下行控制信道。
可选地,所述第二终止模块还配置为在以下情况至少之一终止重复接收所述下行控制信道:
发送接收到的所述下行控制信道调度的下行业务信道的反馈信息之前,重复接收调度所述下行业务信道的所述下行控制信道;
发送接收到的所述下行控制信道调度的上行业务信道之前,重复接收调度所述上行业务信道的所述下行控制信道;
重复接收所述下行控制信道直至所述重复接收的次数达到预设值X。
可选地,所述重复接收模块接收所述下行控制信道调度的下行业务信道的起始时间单元为:
与接收到重复传输的所述下行控制信道中的首个下行控制信道的时间单元相同,其中,所述时间单元为以下之一:subframe,TTI,slot,mini-slot,OFDM符号。
可选地,所述重复接收还配置为从起始时间单元开始重复接收所述下行业务信道,所述第二终止模块还配置为在以下情况至少之一终止重复接收所述下行业务信道:
在接收所述下行业务信道正确,并发送对所述下行业务信道的反馈信息为ACK之后,停止接收所述下行业务信道;
在重复接收所述下行业务信道的次数超过预设值Y时,停止接收所述下行业务信道。
根据本公开的另一个实施例,还提供了一种基站,包括:
第一通信装置,配置为重复发送用于承载下行信息的下行控制信道,并在接收到第一处理器的第一终止信号之后,终止重复发送所述下行控制信道;
所述第一处理器,配置为在重复发送用于承载下行控制信息的下行控 制信道过程中,检测第一预设事件,并在检测到所述第一预设事件之后,向所述第一通信装置发送所述第一终止信号。
可选地,所述第一处理器还配置为在以下至少之一情况向所述第一通信装置发送所述第一终止信号:
在接收到所述下行控制信息所调度的下行业务信道的反馈信息之后;
在接收到所述下行控制信道所调度的上行业务信道之后;
在重复发送所述下行控制信道的重复发送次数超过预设值X时,其中,所述X为正整数。
可选地,所述第一通信装置还配置为重复发送所述下行控制信道调度的下行业务信道,其中,所述下行业务信道的发送起始时间单元为:
与重复发送所述下行控制信道的起始时间单元相同,其中所述时间单元为以下之一:subframe,TTI,slot,mini-slot,OFDM符号。
可选地,所述第一通信装置还配置为从所述起始时间单元开始重复发送所述下行业务信道,所述第一处理器还配置为在以下情况至少之一通知所述第一通信装置终止重复发送所述下行业务信道:
在接收到对所述下行业务信道的反馈信息为ACK后,停止重复发送所述下行业务信道;
在重复发送所述下行业务信道的重复发送次数超过预设值Y时。
根据本公开的另一个实施例,还提供了一种终端,包括:
第二通信装置,配置为重复接收承载有下行控制信息的下行控制信道,并在接收到第二处理器的第二终止信号之后,终止重复接收所述下行控制信道;
第二处理器,配置为在重复接收所述下行控制信道过程中,检测第二预设事件,并在检测到所述第二预设事件之后,向所述第二通信装置发送所述第二终止信号。
可选地,所述第二处理器还配置为在以下至少之一情况向所述第二通信装置发送所述第二终止信号:
发送接收到的所述下行控制信道调度的下行业务信道的反馈信息之后;
发送接收到的所述下行控制信道调度的上行业务信道之后;
重复接收所述下行控制信道直至所述重复接收的次数达到预设值X。
可选地,所述第二通信装置还配置为重复接收所述下行控制信道调度的下行业务信道,其中,接收的所述下行业务信道的起始时间单元为:
与接收到重复传输的所述下行控制信道中的首个下行控制信道的时间单元相同,其中,所述时间单元为以下之一:subframe,TTI,slot,mini-slot,OFDM符号。
可选地,所述第二通信装置还配置为从所述起始时间单元开始重复接收所述下行业务信道,所述第二处理器还配置为在以下情况至少之一通知所述第二通信装置终止重复接收所述下行业务信道:
在接收所述下行业务信道正确,并发送对所述下行业务信道的反馈信息为ACK之后,停止接收所述下行业务信道;
在重复接收所述下行业务信道的次数超过预设值Y时,停止接收所述下行业务信道。
根据本公开的另一个实施例,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述基站侧任一方法的步骤,或者实现上述终端侧任一述方法的步骤。
通过本公开,基站在重复发送配置为承载下行控制信息的下行控制信道过程中,检测到有第一预设事件发生,基站终止重复发送该下行控制信道。解决了相关技术中采用重复传输方式提升可靠性时,需要解决同时满足超低时延和超高可靠性需求的问题,实现了在满足低时延前提的基础上提升可靠性的目的。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开。在附图中:
图1是根据本公开实施例的一种数据传输方法的流程图一;
图2是根据本公开实施例的一种数据传输方法的流程图二;
图3是根据应用实施例1的调度下行数据重复传输的示意图;
图4是根据应用实施例2的调度上行数据重复传输的示意图;
图5是根据应用实施例3的调度下行数据重复传输的示意图;
图6是根据应用实施例4的调度上行数据重复传输的示意图;
图7是根据本公开实施例的一种基站的硬件结构框图;
图8是根据本公开实施例的一种终端的硬件结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例一
本申请实施例中提供了一种移动通信网络(包括但不限于5G移动通信网络),该网络的网络架构可以包括网络侧设备(例如基站)和终端。在本实施例中提供了一种可运行于上述网络架构上的信息传输方法,需要说明的是,本申请实施例中提供的上述信息传输方法的运行环境并不限于上述网络架构。
在本实施例中提供了一种运行于上述网络架构的数据传输方法,图1是根据本公开实施例的一种数据传输方法的流程图一,如图1所示,该流程包括如下步骤:
步骤S102,在基站重复发送用于承载下行控制信息的下行控制信道过程中,检测第一预设事件;
步骤S104,在检测到该第一预设事件之后,该基站终止重复发送该下 行控制信道。
通过上述步骤,基站在重复发送用于承载下行控制信息的下行控制信道过程中,检测到有第一预设事件发生,基站终止重复发送该下行控制信道。解决了相关技术中采用重复传输方式提升可靠性时,需要解决同时满足超低时延和超高可靠性需求的问题,实现了在满足低时延前提的基础上提升可靠性的目的。
可选地,在检测到该第一预设事件之后,该基站终止重复发送该下行控制信道,包括以下至少之一:在接收到该下行控制信息所调度的下行业务信道的反馈信息之后,停止发送该下行控制信道;在接收到该下行控制信道所调度的上行业务信道之后,停止发送该下行控制信道;在重复发送该下行控制信道的重复发送次数超过预设值X时,停止发送该下行控制信道,其中,该X为正整数。需要补充的是,上述实施例中的反馈信息可以是ACK或者否定回答(Negative ACKnowledgment,简称为NACK)。
可选地,该下行控制信道调度的下行业务信道的发送起始时间单元为:与重复发送该下行控制信道的起始时间单元相同,其中该时间单元为以下之一:subframe,TTI,slot,mini-slot,OFDM符号。
可选地,该下行业务信道从该起始时间单元开始重复发送,终止重复发送该下行业务信道的方法包括以下至少之一:在接收到对该下行业务信道的反馈信息为ACK后,停止重复发送该下行业务信道;在重复发送该下行业务信道的重复发送次数超过预设值Y时。
可选地,该X和/或Y的取值为以下之一:预定义的单一取值;根据TTI长度确定的取值;该基站通过物理层信令指示或高层信令配置的取值。
可选地,检测该基站是否接收到该下行控制信息所调度的下行业务信道的反馈信息的方式包括以下至少之一:从重复传输该下行业务信道的起始时间单元n之后的时间单元n+k开始,每个时间单元均进行检测,其中,该k为大于0的整数;从重复传输该下行业务信道的起始时间单元n之后的时间单元n+k开始,每M个时间单元均进行检测,其中,该k为大于0的整数,该M的取值为预设的或者基站配置的;从重复传输该下行业务信道的起始时间单元n之后的在满足l mod C=0的时间单元均进行检测,其中, 该l为时间单元索引,该C的取值为预设的或基站配置的。
可选地,该重复发送的下行控制信道承载的下行控制信息在各个时间单元为:内容完全相同的下行控制信息,或者部分比特域内容不同,其中,内容不同的比特域包括以下至少之一:冗余版本、调制编码方式。
可选地,确定该下行业务信道中的冗余版本的方式包括以下至少之一:根据重复传输的该下行控制信道指示的完全相同的冗余版本确定,重复传输的下行业务信道均使用该冗余版本;根据重复传输的该下行控制信道指示的不完全相同的冗余版本分别确定各个下行控制信道所调度的下行业务信道的冗余版本,并且在终止重复传输该下行控制信道之后,该下行业务信道均使用最后一次由该下行控制信道指示的冗余版本;根据重复传输的该下行控制信道指示的不完全相同的冗余版本分别确定各个下行控制信道所调度的下行业务信道的冗余版本,并且在终止重复传输该下行控制信道之后,该下行业务信道以最后一次由该下行控制信道指示的冗余版本作为冗余版本循环的初始值,其中,该冗余版本循环为预设的或基站配置的。
可选地,该重复发送的该下行控制信道在下行数据区域内指定PRB中重复传输,其中,该指定PRB资源由基站通过高层信令配置。
根据本公开的另一个实施例,还提供了一种数据传输方法,图2是根据本公开实施例的一种数据传输方法的流程图二,如图2所示,该流程包括以下步骤:
步骤S202,在终端重复接收承载有下行控制信息的下行控制信道过程中,检测第二预设事件;
步骤S204,在检测到该第二预设事件之后,该终端终止重复接收该下行控制信道。
可选地,在检测到该第二预设事件之后,该终端终止重复接收该下行控制信道,包括以下至少之一:发送接收到的该下行控制信道调度的下行业务信道的反馈信息之前,重复接收调度该下行业务信道的该下行控制信道;发送接收到的该下行控制信道调度的上行业务信道之前,重复接收调度该上行业务信道的该下行控制信道;重复接收该下行控制信道直至该重复接收的次数达到预设值X。
可选地,接收的该下行控制信道调度的下行业务信道的起始时间单元为:与接收到重复传输的该下行控制信道中的首个下行控制信道的时间单元相同,其中,该时间单元为以下之一:subframe,TTI,slot,mini-slot,OFDM符号。
可选地,该下行业务信道从起始时间单元开始重复接收,终止重复接收该下行业务信道的方法包括以下至少之一:在接收该下行业务信道正确,并发送对该下行业务信道的反馈信息为ACK之后,停止接收该下行业务信道;在重复接收该下行业务信道的次数超过预设值Y时,停止接收该下行业务信道。
可选地,该X和/或Y取值为以下之一:预定义的单一取值;根据TTI长度确定的取值;基站通过物理层信令指示或高层信令配置的取值。
可选地,发送该反馈信息的方式包括以下至少之一:从重复接收到的该下行业务信道的起始时间单元n之后的时间单元n+k开始,每个时间单元均发送该反馈信息,其中,该k为大于0的整数;从重复接收到的该下行业务信道的起始时间单元n之后的时间单元n+k开始,每M个时间单元均发送该反馈信息,其中,该M的取值为预设的或基站配置的;从重复接收到的下行业务信道的起始时间单元n之后的在满足l mod C=0的时间单元均发送该反馈信息,其中,该l为时间单元索引,该C的取值为预设的或基站配置的。
可选地,该重复接收的下行控制信道承载的下行控制信息在各个时间单元为:内容完全相同的下行控制信息,或部分比特域内容不同,其中,内容不同的比特域包括以下至少之一:冗余版本、调制编码方式。
可选地,确定该终端的上行业务信道中的冗余版本的方式包括以下至少之一:根据重复传输的该下行控制信道指示的完全相同的冗余版本确定,重复传输的下行业务信道均使用该冗余版本;根据重复传输的该下行控制信道指示的不完全相同的冗余版本分别确定各个下行控制信道所调度的上行业务信道的冗余版本,并且在终止接收该下行控制信道之后,该上行业务信道均使用最后一次由该下行控制信道指示的冗余版本;根据重复传输的该下行控制信道指示的不完全相同的冗余版本确定各个下行控制信道所 调度的上行业务信道的冗余版本,并且在终止重复接收该下行控制信道之后,该上行业务信道以最后一次由该下行控制信道指示的冗余版本作为冗余版本循环的初始值,其中,该冗余版本循环为预设的或基站配置的。
可选地,通过以下方式确定该下行控制信道调度的上行业务信道的发送起始时间单元为:根据上行调度定时关系n+k确定发送时间单元,其中时间单元n为首次接收到的重复传输的下行控制信道的时间单元,其中,该k为大于0的整数,其中,该时间单元为以下之一:subframe,TTI,slot,mini-slot,OFDM符号。
可选地,该重复接收的下行控制信道在下行数据区域内指定PRB中重复传输,其中,该指定PRB资源由基站通过高层信令配置。
以下结合本公开的应用实施例进行详细说明。
本公开的应用实施例中记载了一种数据传输方法以实现超高可靠性和超低时延的需求,以使得数据传输可以在满足用户面超低时延的前提下,实现高可靠性。
与相关技术相比,本应用实施例通过同时重复传输下行控制信道和下行业务信道,并且在没有收到反馈信息前一直重复传输该下行控制信道和下行业务信道,以及在没有收到调度的上行业务信道之前重复传输下行控制信道和重复发送上行业务信道的方法,从而达到了避免传统重复传输方法先重复传输下行控制信道再传输所调度的业务信道导致时延较大的问题,以及克服需要按照混合自动重传请求(Hybrid Automatic Repeat request,简称为HARQ)定时进行重传旧数据导致的时延问题,能够实现在满足低时延前提的基础上提升可靠性的目的。
为了能够更加详尽地了解本公开实施例的特点与技术内容,以下记载本公开实施例的四个应用实施例。
应用实施例1
首先说明的是,附图中的Receive but failed表示“接收失败”,DTX表示的技术含义为“控制信道漏检”。
图3是根据应用实施例1的调度下行数据重复传输的示意图,如图3 所示,基站给UE1发送下行数据。基站在没有收到对其所调度业务信道的HARQ-ACK前,重复发送PDCCH(优选也同时重复发送业务信道)。当首次收到反馈信息并且是ACK后,停止重复发送PDCCH和PDSCH;当首次收到反馈信息并且是NACK后,停止重复发送PDCCH并且同时继续重复发送业务信道,直到收到ACK后,停止数据重复发送。
具体地,首先从TTI#n开始,基站重复发送调度下行数据的下行控制信道PDCCH,同时从TTI#n开始,重复发送调度的下行数据。此时PDCCH承载的内容相同,NDI相同表示传输的不是新数据,同时RV、MCS也相同,PDSCH资源位置和内容均相同,UE接收到数据使用相同的冗余版本进行合并;或者此时PDCCH承载的内容不完全相同,NDI相同表示传输的不是新数据,MCS相同,PDSCH资源位置和内容均相同,但是RV不同,UE接收到数据使用不同的冗余版本进行合并,对于PDCCH终止后仍然接收的PDSCH的RV确定方式为:按照最后一次RV指示使用相同冗余版本合并或以最后一次RV指示作为RV循环的起始RV,例如PDCCH终止前最后一次RV指示为2,则PDCCH终止后继续接收的PDSCH的RV为2使用相同冗余版本合并,或者预设的RV循环为0-1-2-3,则PDCCH终止后继续接收的PDSCH的RV起始为2按照RV循环使用不同冗余版本合并。此时当TTI#n中PDCCH没有被UE检测到,无需等待到TTI#n+k检测到DTX后从TTI#n+k+1或其之后的TTI再次发送,从TTI#n+1开始就重复发送内容相同的PDCCH和其调度的PDSCH。若基站首次收到的反馈信息为ACK时,停止重复发送PDCCH和PDSCH,重复传输完成;若基站首次收到的反馈信息为NACK时,停止重复发送PDCCH,继续重复发送PDSCH,若在最大重复传输次数X前收到反馈信息为ACK时,停止重复发送PDSCH,重复传输完成,若在最大重复传输次数X前尚未收到反馈信息为ACK时,停止重复传输PDSCH,重复传输失败。
可选地,为了实现UE能够多次接收并且满足超低需求,需要规定PDCCH的最大重复次数X,和/或PDSCH的最大重复次数Y。优选的X和/或Y取值为集合{1、2、3、4、5、6、8、10、12、16、20}中至少之一。在未达到最大重复次数时,PDCCH重复传输可以被其所调度的PDSCH的反馈信息NACK和ACK中任意一个终止,PDSCH重复传输可以被对其反 馈的ACK信息终止。X和/或Y的取值,为预定义的取值,如根据TTI或subframe或slot或mini-slot的长度取值确定,例如以TTI=125us为例,Y=8和/或X=8,最多重复传输8次达到1ms时延要求门限;或着,X和/或Y的取值由物理层信令(如下行控制信息(DCI))指示或高层信令(如SIB或RRC)配置。
可选地,确定ACK/NACK传输的资源时,例如承载该ACK/NACK的资源为PUCCH,保持对重复传输下次业务信道反馈ACK/NACK时使用相同的资源位置。该资源位置可以由高层信令(如SIB或RRC)配置和/或根据调度下行信道的下行控制信道资源位置隐含映射确定。在根据下行控制信道确定PUCCH资源时,确定没有PDCCH只有PDSCH的子帧的PUCCH资源位置与之前有PDCCH的子帧隐含隐射确定的PUCCH资源位置相同。
终端UE1盲检测TTI#n中的PDCCH,若没有检测到,继续在TTI#n+1中盲检测PDCCH。从首个检测到PDCCH的TTI#m开始,重复接收PDCCH和其调度的PDSCH,根据TTI#m中检测到的PDSCH并根据定时关系在TTI#m+k上反馈ACK或NACK信息。若UE1解调TTI#m中的PDSCH正确反馈ACK,则本次重复接收终止;若UE1解调TTI#m中的PDSCH错误反馈NACK,终端继续重复接收PDSCH,若在最大重复次数X前接收正确PDSCH并反馈ACK则本次重复传输完成,若在最大重复X前尚未接收正确PDSCH并反馈NACK,停止重复接收PDSCH,本次重复传输失败。本实施例根据图3所示,m=n+1,k=1。
通过本应用实施例1的方案,本公开通过同时重复传输下行控制信道和下行业务信道的方法,从而达到了避免传统重复传输方法时延较大的问题,能够实现在满足低时延前提的基础上提升可靠性的目的。
应用实施例2
图4是根据应用实施例2的调度上行数据重复传输的示意图,如图4所示,基站调度UE1重复发送上行数据。基站重复发送承载UL grant的PDCCH(优选调度重复发送的PUSCH),当基站首次接收到PUSCH(无论接收正确还是错误)后,停止重复发送PDCCH。若基站解调PUSCH错误,则反馈NACK,UE1继续重复发送PUSCH;若基站解调PUSCH正确,则 反馈ACK,UE1终止重复发送PUSCH。
具体地,首先从TTI#n开始,基站重复发送调度上行数据的下行控制信道PDCCH。此时PDCCH承载的内容相同,NDI相同表示传输的不是新数据,同时RV、MCS也相同,PUSCH资源位置和内容均相同,UE接收到数据使用相同的冗余版本进行合并;或者此时PDCCH承载的内容不完全相同,NDI相同表示传输的不是新数据,MCS相同,PUSCH资源位置和内容均相同,但是RV不同,UE接收到数据使用不同的冗余版本进行合并,对于PDCCH终止后仍然接收的PUSCH的RV确定方式为:按照最后一次RV指示使用相同冗余版本合并或以最后一次RV指示作为RV循环的起始RV,例如PDCCH终止前最后一次RV指示为2,则PDCCH终止后继续接收的PUSCH的RV为2使用相同冗余版本合并,或者预设的RV循环为0-1-2-3,则PDCCH终止后继续接收的PUSCH的RV起始为2按照RV循环使用不同冗余版本合并。此时当TTI#n中PDCCH没有被UE检测到,无需等待到TTI#n+k检测到DTX后从子帧n+k+1或其之后的子帧再次发送,从子帧n+1开始就重复发送内容相同的PDCCH。当基站首次收到PUSCH时,停止重复发送PDCCH。若解调PUSCH正确则向UE反馈ACK,终端收到ACK后重复发送PUSCH完成;若基站解调PUSCH错误则向UE反馈NACK,UE继续重复发送PUSCH,若在最大重复传输次数X前收到反馈信息为ACK时,停止重复发送PUSCH,重复传输完成,若在最大重复传输次数X前尚未收到反馈信息为ACK时,停止重复传输PUSCH,重复传输失败。
可选地,为了实现UE能够多次发送并且满足超低需求,需要规定PDCCH的最大重复次数X,和/或PUSCH的最大重复次数Y。优选的X和/或Y取值为集合{1、2、3、4、5、6、8、10、12、16、20}中至少之一。在未达到最大重复次数时,PDCCH重复传输可以通过接收到被其所调度的PUSCH终止,PUSCH重复传输可以被对其反馈的ACK信息终止。X和/或Y的取值,为预定义的取值,如根据TTI或subframe或slot或mini-slot的长度取值确定,例如以TTI=125us为例,Y=8和/或X=8,最多重复传输8次达到1ms时延要求门限;或着,X和/或Y的取值由物理层信令(如DCI)指示或高层信令(如系统信息块(SIB)或无线资源控制(RRC))配置。
可选地,对于上行重复传输PUSCH,当对其反馈ACK/NACK由PDCCH承载时,基站可以通过接收到PUSCH(无论正确与否)终止PDCCH重复传输,因此基站对PUSCH反馈NACK/NACK可以节省其一。例如,基站只需要反馈ACK来终止PUSCH重复传输,此时基站无需发送NACK。又例如,基站只需要反馈NACK来通知UE继续重复发送PUSCH,当UE没有收到NACK时认为基站已经正确接收PUSCH,终止重复发送PUSCH,此时基站无需发送ACK。
终端UE1盲检测TTI#n中的PDCCH,若没有检测到,继续在TTI#n+1中盲检测PDCCH。从首个检测到PDCCH的TTI#m开始,重复接收PDCCH,根据TTI#m中检测到的PDSCH并根据定时关系在TTI#m+k上发送PUSCH并且在之后的TTI中重复发送PUSCH。若基站解调TTI#m+k中的PUSCH正确并在TTI#m+k+k1向UE1反馈ACK,则本次重复发送PUSCH终止;若基站解调TTI#m+k中的PUSCH错误并在TTI#m+k+k1向UE1反馈NACK,终端继续重复发送PUSCH,若在最大重复次数X前基站接收正确PUSCH并反馈ACK则本次重复传输完成,若在最大重复X前基站尚未接收正确PUSCH并反馈NACK,UE在达到最大重复次数后停止重复发送PUSCH,本次重复传输失败。本实施例根据图4所示,m=n+1,k=1,k1=1。
通过本实施例的方案,本公开通过同时重复传输下行控制信道和上行业务信道的方法,从而达到了避免传统重复传输方法时延较大的问题,能够实现在满足低时延前提的基础上提升可靠性的目的。
应用实施例3
图5是根据应用实施例3的调度下行数据重复传输的示意图,如图5所示,基站给UE1发送下行数据。基站在没有收到对其所调度业务信道的HARQ-ACK前,重复发送PDCCH(优选也同时重复发送业务信道),并且在TTI中的数据区域也重复发送PDCCH。当首次收到反馈信息并且是ACK后,停止重复发送PDCCH和PDSCH;当首次收到反馈信息并且是NACK后,停止重复发送PDCCH并且同时继续重复发送业务信道,直到收到ACK后,停止数据重复发送。
具体的,首先从TTI#n开始,基站重复发送调度下行数据的下行控制信道PDCCH,同时从TTI#n开始,重复发送调度的下行数据,此时在TTI#n中数据区域使用专享PRB资源(非控制区域的资源)也重复传输PDCCH,优选的数据区域中的专享PRB资源由高层信令RRC配置。此时PDCCH承载的内容相同,NDI相同表示传输的不是新数据,同时RV、MCS也相同,PDSCH资源位置和内容均相同,UE接收到数据使用相同的冗余版本进行合并。此时当TTI#n中PDCCH没有被UE检测到,无需等待到TTI#n+k检测到DTX后从TTI#n+k+1或其之后的TTI再次发送,从TTI#n+1开始就重复发送内容相同的PDCCH和其调度的PDSCH。若基站首次收到的反馈信息为ACK时,停止重复发送PDCCH和PDSCH,重复传输完成;若基站首次收到的反馈信息为NACK时,停止重复发送PDCCH,继续重复发送PDSCH,若在最大重复传输次数X前收到反馈信息为ACK时,停止重复发送PDSCH,重复传输完成,若在最大重复传输次数X前尚未收到反馈信息为ACK时,停止重复传输PDSCH,重复传输失败。
可选地,在接收到NACK或ACK终止PDCCH重复传输时,对于相同TTI内控制区域的PDCCH重复发送无法立即停止,对于数据区域的专享PRB资源内的PDCCH重复发送可以立即停止,由于此时将该专享PRB用做其他UE传输使用调度已经来不及,因此可以通过功率提升将该专享PRB的功率用作其他数据业务。
可选地,为了实现UE能够多次接收并且满足超低需求,需要规定PDCCH的最大重复次数X,和/或PDSCH的最大重复次数Y。优选的X和/或Y取值为集合{1、2、3、4、5、6、8、10、12、16、20}中至少之一。在未达到最大重复次数时,PDCCH重复传输可以被其所调度的PDSCH的反馈信息NACK和ACK中任意一个终止,PDSCH重复传输可以被对其反馈的ACK信息终止。X和/或Y的取值,为预定义的取值,如根据TTI或subframe或slot或mini-slot的长度取值确定,例如以TTI=125us为例,Y=8和/或X=8,最多重复传输8次达到1ms时延要求门限;或着,X和/或Y的取值由物理层信令(如DCI)指示或高层信令(如SIB或RRC)配置。
可选地,确定ACK/NACK传输的资源时,例如承载该ACK/NACK的 资源为PUCCH,保持对重复传输下次业务信道反馈ACK/NACK时使用相同的资源位置。该资源位置可以由高层信令(如SIB或RRC)配置和/或根据调度下行信道的下行控制信道资源位置隐含映射确定。在根据下行控制信道确定PUCCH资源时,确定没有PDCCH只有PDSCH的子帧的PUCCH资源位置与之前有PDCCH的子帧隐含隐射确定的PUCCH资源位置相同。
终端UE1盲检测TTI#n中的PDCCH,若没有检测到,继续在TTI#n+1中盲检测PDCCH。从首个检测到PDCCH的TTI#m开始,重复接收PDCCH和其调度的PDSCH,根据TTI#m中检测到的PDSCH并根据定时关系在TTI#m+k上反馈ACK或NACK信息。若UE1解调TTI#m中的PDSCH正确反馈ACK,则本次重复接收终止;若UE1解调TTI#m中的PDSCH错误反馈NACK,终端继续重复接收PDSCH,若在最大重复次数X前接收正确PDSCH并反馈ACK则本次重复传输完成,若在最大重复X前尚未接收正确PDSCH并反馈NACK,停止重复接收PDSCH,本次重复传输失败。本实施例根据图5所示,m=n+1,k=1。
通过本实施例的方案,本公开通过同时重复传输下行控制信道和下行业务信道并且加密传输控制信道的方法,从而达到了避免传统重复传输方法时延较大的问题,能够实现在满足低时延前提的基础上提升可靠性的目的。
应用实施例4
图6是根据应用实施例4的调度上行数据重复传输的示意图,如图6所示,基站调度UE1重复发送上行数据。基站重复发送承载UL grant的PDCCH(优选调度重复发送的PUSCH),并且在TTI中的下行数据区域也重复发送PDCCH。当基站首次接收到PUSCH(无论接收正确还是错误)后,停止重复发送PDCCH。若基站解调PUSCH错误,则反馈NACK,UE1继续重复发送PUSCH;若基站解调PUSCH正确,则反馈ACK,UE1终止重复发送PUSCH。
具体地,首先从TTI#n开始,基站重复发送调度上行数据的下行控制信道PDCCH,此时在TTI#n中数据区域使用专享PRB资源(非控制区域的资源)也重复传输PDCCH,优选的数据区域中的专享PRB资源由高层 信令RRC配置。此时PDCCH承载的内容相同,NDI相同表示传输的不是新数据,同时RV、MCS也相同,PUSCH资源位置和内容均相同,UE接收到数据使用相同的冗余版本进行合并。此时当TTI#n中PDCCH没有被UE检测到,无需等待到TTI#n+k检测到DTX后从子帧n+k+1或其之后的子帧再次发送,从子帧n+1开始就重复发送内容相同的PDCCH。当基站首次收到PUSCH时,停止重复发送PDCCH。若解调PUSCH正确则向UE反馈ACK,终端收到ACK后重复发送PUSCH完成;若基站解调PUSCH错误则向UE反馈NACK,UE继续重复发送PUSCH,若在最大重复传输次数X前收到反馈信息为ACK时,停止重复发送PUSCH,重复传输完成,若在最大重复传输次数X前尚未收到反馈信息为ACK时,停止重复传输PUSCH,重复传输失败。
可选地,基站在接收到PUSCH终止PDCCH重复传输时,对于相同TTI内控制区域的PDCCH重复发送无法立即停止,对于数据区域的专享PRB资源内的PDCCH重复发送可以立即停止,由于此时将该专享PRB用做其他UE传输使用调度已经来不及,因此可以通过功率提升将该专享PRB的功率用作其他数据业务。
可选地,为了实现UE能够多次发送并且满足超低需求,需要规定PDCCH的最大重复次数X,和/或PUSCH的最大重复次数Y。优选的X和/或Y取值为集合{1、2、3、4、5、6、8、10、12、16、20}中至少之一。在未达到最大重复次数时,PDCCH重复传输可以通过接收到被其所调度的PUSCH终止,PUSCH重复传输可以被对其反馈的ACK信息终止。X和/或Y的取值,为预定义的取值,如根据TTI或subframe或slot或mini-slot的长度取值确定,例如以TTI=125us为例,Y=8和/或X=8,最多重复传输8次达到1ms时延要求门限;或着,X和/或Y的取值由物理层信令(如DCI)指示或高层信令(如SIB或RRC)配置。
可选地,对于上行重复传输PUSCH,当对其反馈ACK/NACK由PDCCH承载时,基站可以通过接收到PUSCH(无论正确与否)终止PDCCH重复传输,因此基站对PUSCH反馈NACK/NACK可以节省其一。例如,基站只需要反馈ACK来终止PUSCH重复传输,此时基站无需发送NACK。又 例如,基站只需要反馈NACK来通知UE继续重复发送PUSCH,当UE没有收到NACK时认为基站已经正确接收PUSCH,终止重复发送PUSCH,此时基站无需发送ACK。
终端UE1盲检测TTI#n中的PDCCH,若没有检测到,继续在TTI#n+1中盲检测PDCCH。从首个检测到PDCCH的TTI#m开始,重复接收PDCCH,根据TTI#m中检测到的PDSCH并根据定时关系在TTI#m+k上发送PUSCH并且在之后的TTI中重复发送PUSCH。若基站解调TTI#m+k中的PUSCH正确并在TTI#m+k+k1向UE1反馈ACK,则本次重复发送PUSCH终止;若基站解调TTI#m+k中的PUSCH错误并在TTI#m+k+k1向UE1反馈NACK,终端继续重复发送PUSCH,若在最大重复次数X前基站接收正确PUSCH并反馈ACK则本次重复传输完成,若在最大重复X前基站尚未接收正确PUSCH并反馈NACK,UE在达到最大重复次数后停止重复发送PUSCH,本次重复传输失败。本实施例根据图6所示,m=n+1,k=1,k1=1。
通过本实施例的方案,本公开通过同时重复传输下行控制信道和上行业务信道并且加密传输控制信道的方法,从而达到了避免传统重复传输方法时延较大的问题,能够实现在满足低时延前提的基础上提升可靠性的目的。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如只读存储器(Read-Only Memory,简称为ROM)/随机存取存储器(Random Access Memory,简称为RAM)、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法。
实施例二
在本实施例中还提供了一种数据传输装置,该装置配置为实现上述实施例,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
根据本公开的另一个实施例,提供了一种数据传输装置,应用于基站,该装置包括:
重复传输模块,配置为在基站重复发送用于承载下行控制信息的下行控制信道过程中,检测第一预设事件;
第一终止模块,连接至该重复传输模块,配置为在检测到该第一预设事件之后,终止重复发送该下行控制信道。
可选地,该第一终止模块还配置为以下情况至少之一:在接收到该下行控制信息所调度的下行业务信道的反馈信息之后,停止发送该下行控制信道;在接收到该下行控制信道所调度的上行业务信道之后,停止发送该下行控制信道;在重复发送该下行控制信道的重复发送次数超过预设值X时,停止发送该下行控制信道,其中,该X为正整数。
可选地,该重复传输模块发送该下行控制信道调度的下行业务信道的发送起始时间单元为:与重复发送该下行控制信道的起始时间单元相同,其中该时间单元为以下之一:subframe,TTI,slot,mini-slot,OFDM符号。
可选地,该重复传输模块还配置为从该起始时间单元开始重复发送该下行业务信道,该第一终止模块还配置为在以下情况至少之一终止重复发送该下行业务信道:在接收到对该下行业务信道的反馈信息为ACK后,停止重复发送该下行业务信道;在重复发送该下行业务信道的重复发送次数超过预设值Y时。
根据本公开的另一个实施例,提供了一种数据传输装置,应用于终端,该装置包括:
重复接收模块,配置为在终端重复接收承载有下行控制信息的下行控制信道过程中,检测第二预设事件;
第二终止模块,连接至该重复接收模块,配置为在检测到该第二预设事件之后,终止重复接收该下行控制信道。
可选地,该第二终止模块还配置为在以下情况至少之一终止重复接收该下行控制信道:
发送接收到的该下行控制信道调度的下行业务信道的反馈信息之前,重复接收调度该下行业务信道的该下行控制信道;
发送接收到的该下行控制信道调度的上行业务信道之前,重复接收调度该上行业务信道的该下行控制信道;
重复接收该下行控制信道直至该重复接收的次数达到预设值X。
可选地,该重复接收模块接收该下行控制信道调度的下行业务信道的起始时间单元为:
与接收到重复传输的该下行控制信道中的首个下行控制信道的时间单元相同,其中,该时间单元为以下之一:subframe,TTI,slot,mini-slot,OFDM符号。
可选地,该重复接收还配置为从起始时间单元开始重复接收该下行业务信道,该第二终止模块还配置为在以下情况至少之一终止重复接收该下行业务信道:
在接收该下行业务信道正确,并发送对该下行业务信道的反馈信息为ACK之后,停止接收该下行业务信道;
在重复接收该下行业务信道的次数超过预设值Y时,停止接收该下行业务信道。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例三
根据本公开的另一个实施例,还提供了一种基站,图7是根据本公开实施例的一种基站的硬件结构框图,如图7所示,该基站70包括:
第一通信装置702,配置为重复发送用于承载下行信息的下行控制信道,并在接收到第一处理器704的第一终止信号之后,终止重复发送该下行控制信道;
该第一处理器704,连接至该第一通信装置702,配置为在重复发送用于承载下行控制信息的下行控制信道过程中,检测第一预设事件,并在检测到该第一预设事件之后,向该第一通信装置702发送该第一终止信号。
可选地,该第一处理器704还配置为在以下至少之一情况向该第一通信装置702发送该第一终止信号:
在接收到该下行控制信息所调度的下行业务信道的反馈信息之后;
在接收到该下行控制信道所调度的上行业务信道之后;
在重复发送该下行控制信道的重复发送次数超过预设值X时,其中,该X为正整数。
可选地,该第一通信装置702还配置为重复发送该下行控制信道调度的下行业务信道,其中,该下行业务信道的发送起始时间单元为:
与重复发送该下行控制信道的起始时间单元相同,其中该时间单元为以下之一:subframe,TTI,slot,mini-slot,OFDM符号。
可选地,该第一通信装置702还配置为从该起始时间单元开始重复发送该下行业务信道,该第一处理器704还配置为在以下情况至少之一通知该第一通信装置702终止重复发送该下行业务信道:
在接收到对该下行业务信道的反馈信息为ACK后,停止重复发送该下行业务信道;
在重复发送该下行业务信道的重复发送次数超过预设值Y时。
根据本公开的另一个实施例,还提供了一种终端,图8是根据本公开实施例的一种终端的硬件结构框图,如图8所示,该终端80包括:
第二通信装置802,配置为重复接收承载有下行控制信息的下行控制信道,并在接收到第二处理器804的第二终止信号之后,终止重复接收该下 行控制信道;
第二处理器804,连接至该第二通信装置802,于在重复接收该下行控制信道过程中,检测第二预设事件,并在检测到该第二预设事件之后,向该第二通信装置802发送该第二终止信号。
可选地,该第二处理器804还配置为在以下至少之一情况向该第二通信装置802发送该第二终止信号:
发送接收到的该下行控制信道调度的下行业务信道的反馈信息之后;
发送接收到的该下行控制信道调度的上行业务信道之后;
重复接收该下行控制信道直至该重复接收的次数达到预设值X。
可选地,该第二通信装置802还配置为重复接收该下行控制信道调度的下行业务信道,其中,接收的该下行业务信道的起始时间单元为:
与接收到重复传输的该下行控制信道中的首个下行控制信道的时间单元相同,其中,该时间单元为以下之一:subframe,TTI,slot,mini-slot,OFDM符号。
可选地,该第二通信装置802还配置为从该起始时间单元开始重复接收该下行业务信道,该第二处理器804还配置为在以下情况至少之一通知该第二通信装置802终止重复接收该下行业务信道:
在接收该下行业务信道正确,并发送对该下行业务信道的反馈信息为ACK之后,停止接收该下行业务信道;
在重复接收该下行业务信道的次数超过预设值Y时,停止接收该下行业务信道。
实施例四
本公开的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,在基站重复发送用于承载下行控制信息的下行控制信道过程中,检测第一预设事件;
S2,在检测到该第一预设事件之后,该基站终止重复发送该下行控制信道。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
S3,在终端重复接收承载有下行控制信息的下行控制信道过程中,检测第二预设事件;
S4,在检测到该第二预设事件之后,该终端终止重复接收该下行控制信道。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、ROM、RAM、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行上述实施例中的方法步骤。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
本公开实施例提供的方案,基站在重复发送配置为承载下行控制信息 的下行控制信道过程中,检测到有第一预设事件发生,基站终止重复发送该下行控制信道,实现了在满足低时延前提的基础上提升可靠性的目的。

Claims (36)

  1. 一种数据传输方法,包括:
    在基站重复发送用于承载下行控制信息的下行控制信道过程中,检测第一预设事件;
    在检测到所述第一预设事件之后,所述基站终止重复发送所述下行控制信道。
  2. 根据权利要求1所述的方法,其中,在检测到所述第一预设事件之后,所述基站终止重复发送所述下行控制信道,包括以下至少之一:
    在接收到所述下行控制信息所调度的下行业务信道的否定回答NACK信息之后,停止发送所述下行控制信道;
    在接收到所述下行控制信息所调度的下行业务信道的肯定回答ACK信息之后,停止发送所述下行控制信道;
    在接收到所述下行控制信道所调度的上行业务信道之后,停止发送所述下行控制信道;
    在重复发送所述下行控制信道的重复发送次数超过预设值X时,停止发送所述下行控制信道,其中,所述X为正整数。
  3. 根据权利要求2所述的方法,其中,所述下行控制信道调度的下行业务信道的发送起始时间单元为:
    与重复发送所述下行控制信道的起始时间单元相同,其中所述时间单元为以下之一:子帧subframe,传输时间间隔TTI,时隙slot,微时隙mini-slot,正交频分复用OFDM符号。
  4. 根据权利要求3所述的方法,其中,所述下行业务信道从所述起始时间单元开始重复发送,终止重复发送所述下行业务信道的方法包括以下至少之一:
    在接收到对所述下行业务信道的反馈信息为ACK后,停止重复发送所述下行业务信道;
    在重复发送所述下行业务信道的重复发送次数超过预设值Y时。
  5. 根据权利要求2或4所述的方法,其中,所述X和/或Y的取值为以下之一:
    预定义的单一取值;
    根据TTI长度确定的取值;
    所述基站通过物理层信令指示或高层信令配置的取值。
  6. 根据权利要求2所述的方法,其中,检测所述基站是否接收到所述下行控制信息所调度的下行业务信道的NACK信息的方式包括以下至少之一:
    从重复传输所述下行业务信道的起始时间单元n之后的时间单元n+k开始,每个时间单元均进行检测,其中,所述k为大于0的整数;
    从重复传输所述下行业务信道的起始时间单元n之后的时间单元n+k开始,每M个时间单元均进行检测,其中,所述k为大于0的整数,所述M的取值为预设的或者基站配置的;
    从重复传输所述下行业务信道的起始时间单元n之后的在满足l mod C=0的时间单元均进行检测,其中,所述l为时间单元索引,所述C的取值为预设的或基站配置的。
  7. 根据权利要求2所述的方法,其中,所述重复发送的下行控制信道承载的下行控制信息在各个时间单元为:
    内容完全相同的下行控制信息,或者
    部分比特域内容不同,其中,内容不同的比特域包括以下至少之一:冗余版本、调制编码方式。
  8. 根据权利要求7所述的方法,其中,确定所述下行业务信道中的冗余版本的方式包括以下至少之一:
    根据重复传输的所述下行控制信道指示的完全相同的冗余版本确定,重复传输的下行业务信道均使用该冗余版本;
    根据重复传输的所述下行控制信道指示的不完全相同的冗余版本分别确定各个下行控制信道所调度的下行业务信道的冗余版本,并且在终止重复传输所述下行控制信道之后,所述下行业务信道均使用最后一次 由所述下行控制信道指示的冗余版本;
    根据重复传输的所述下行控制信道指示的不完全相同的冗余版本分别确定各个下行控制信道所调度的下行业务信道的冗余版本,并且在终止重复传输所述下行控制信道之后,所述下行业务信道以最后一次由所述下行控制信道指示的冗余版本作为冗余版本循环的初始值,其中,所述冗余版本循环为预设的或基站配置的。
  9. 根据权利要求2所述的方法,其中,所述重复发送的所述下行控制信道在下行数据区域内指定PRB中重复传输,其中,所述指定PRB资源由基站通过高层信令配置。
  10. 一种数据传输方法,包括:
    在终端重复接收承载有下行控制信息的下行控制信道过程中,检测第二预设事件;
    在检测到所述第二预设事件之后,所述终端终止重复接收所述下行控制信道。
  11. 根据权利要求10所述的方法,其中,在检测到所述第二预设事件之后,所述终端终止重复接收所述下行控制信道,包括以下至少之一:
    发送对接收到的所述下行控制信道调度的下行业务信道反馈否定回答NACK信息后,终止重复接收调度所述下行业务信道的所述下行控制信道;
    发送对接收到的所述下行控制信道调度的下行业务信道反馈肯定回答ACK信息后,终止重复接收调度所述下行业务信道的所述下行控制信道;
    发送接收到的所述下行控制信道调度的上行业务信道后,终止重复接收调度所述上行业务信道的所述下行控制信道;
    重复接收所述下行控制信道直至所述重复接收的次数达到预设值X。
  12. 根据权利要求11所述的方法,其中,接收的所述下行控制信道调度的下行业务信道的起始时间单元为:
    与接收到重复传输的所述下行控制信道中的首个下行控制信道的时间单元相同,其中,所述时间单元为以下之一:子帧subframe,传输时间间隔TTI,时隙slot,微时隙mini-slot,正交频分复用OFDM符号。
  13. 根据权利要求12所述的方法,其中,所述下行业务信道从起始时间单元开始重复接收,终止重复接收所述下行业务信道的方法包括以下至少之一:
    在接收所述下行业务信道正确,并发送对所述下行业务信道的反馈信息为ACK之后,停止接收所述下行业务信道;
    在重复接收所述下行业务信道的次数超过预设值Y时,停止接收所述下行业务信道。
  14. 根据权利要求11或13所述的方法,其中,所述X和/或Y取值为以下之一:
    预定义的单一取值;
    根据TTI长度确定的取值;
    基站通过物理层信令指示或高层信令配置的取值。
  15. 根据权利要求11所述的方法,其中,发送所述反馈NACK信息的方式包括以下至少之一:
    从重复接收到的所述下行业务信道的起始时间单元n之后的时间单元n+k开始,每个时间单元均发送所述NACK信息,其中,所述k为大于0的整数;
    从重复接收到的所述下行业务信道的起始时间单元n之后的时间单元n+k开始,每M个时间单元均发送所述NACK信息,其中,所述M的取值为预设的或基站配置的;
    从重复接收到的下行业务信道的起始时间单元n之后的在满足l mod C=0的时间单元均发送所述NACK信息,其中,所述l为时间单元索引,所述C的取值为预设的或基站配置的。
  16. 根据权利要求11所述的方法,其中,所述重复接收的下行控制信道承载的下行控制信息在各个时间单元为:
    内容完全相同的下行控制信息,或
    部分比特域内容不同,其中,内容不同的比特域包括以下至少之一:冗余版本、调制编码方式。
  17. 根据权利要求16所述的方法,其中,确定所述终端的上行业务信道中的冗余版本的方式包括以下至少之一:
    根据重复传输的所述下行控制信道指示的完全相同的冗余版本确定,重复传输的下行业务信道均使用该冗余版本;
    根据重复传输的所述下行控制信道指示的不完全相同的冗余版本分别确定各个下行控制信道所调度的上行业务信道的冗余版本,并且在终止接收所述下行控制信道之后,所述上行业务信道均使用最后一次由所述下行控制信道指示的冗余版本;
    根据重复传输的所述下行控制信道指示的不完全相同的冗余版本确定各个下行控制信道所调度的上行业务信道的冗余版本,并且在终止重复接收所述下行控制信道之后,所述上行业务信道以最后一次由所述下行控制信道指示的冗余版本作为冗余版本循环的初始值,其中,所述冗余版本循环为预设的或基站配置的。
  18. 根据权利要求11所述的方法,其中,通过以下方式确定所述下行控制信道调度的上行业务信道的发送起始时间单元为:
    根据上行调度定时关系n+k确定发送时间单元,其中时间单元n为首次接收到的重复传输的下行控制信道的时间单元,其中,所述k为大于0的整数,其中,所述时间单元为以下之一:子帧subframe,传输时间间隔TTI,时隙slot,微时隙mini-slot,正交频分复用OFDM符号。
  19. 根据权利要求11所述的方法,其中,所述重复接收的下行控制信道在下行数据区域内指定PRB中重复传输,其中,所述指定PRB资源由基站通过高层信令配置。
  20. 一种数据传输装置,应用于基站,包括:
    重复传输模块,配置为在基站重复发送用于承载下行控制信息的下行控制信道过程中,检测第一预设事件;
    第一终止模块,配置为在检测到所述第一预设事件之后,终止重复发送所述下行控制信道。
  21. 根据权利要求20所述的装置,其中,所述第一终止模块还配置为以下情况至少之一:
    在接收到所述下行控制信息所调度的下行业务信道的NACK信息之后,停止发送所述下行控制信道;
    在接收到所述下行控制信道所调度的上行业务信道之后,停止发送所述下行控制信道;
    在重复发送所述下行控制信道的重复发送次数超过预设值X时,停止发送所述下行控制信道,其中,所述X为正整数。
  22. 根据权利要求21所述的装置,其中,所述重复传输模块发送所述下行控制信道调度的下行业务信道的发送起始时间单元为:
    与重复发送所述下行控制信道的起始时间单元相同,其中所述时间单元为以下之一:子帧subframe,传输时间间隔TTI,时隙slot,微时隙mini-slot,正交频分复用OFDM符号。
  23. 根据权利要求22所述的装置,其中,所述重复传输模块还配置为从所述起始时间单元开始重复发送所述下行业务信道,所述第一终止模块还配置为在以下情况至少之一终止重复发送所述下行业务信道:
    在接收到对所述下行业务信道的反馈信息为ACK后,停止重复发送所述下行业务信道;
    在重复发送所述下行业务信道的重复发送次数超过预设值Y时。
  24. 一种数据传输装置,应用于终端,包括:
    重复接收模块,配置为在终端重复接收承载有下行控制信息的下行控制信道过程中,检测第二预设事件;
    第二终止模块,配置为在检测到所述第二预设事件之后,终止重复接收所述下行控制信道。
  25. 根据权利要求24所述的装置,其中,所述第二终止模块还配置为在以下情况至少之一终止重复接收所述下行控制信道:
    发送对接收到的所述下行控制信道调度的下行业务信道反馈NACK信息后,终止重复接收调度所述下行业务信道的所述下行控制信道;
    发送接收到的所述下行控制信道调度的上行业务信道后,终止重复接收调度所述上行业务信道的所述下行控制信道;
    重复接收所述下行控制信道直至所述重复接收的次数达到预设值X。
  26. 根据权利要求25所述的装置,其中,所述重复接收模块接收所述下行控制信道调度的下行业务信道的起始时间单元为:
    与接收到重复传输的所述下行控制信道中的首个下行控制信道的时间单元相同,其中,所述时间单元为以下之一:子帧subframe,传输时间间隔TTI,时隙slot,微时隙mini-slot,正交频分复用OFDM符号。
  27. 根据权利要求26所述的装置,其中,所述重复接收还配置为从起始时间单元开始重复接收所述下行业务信道,所述第二终止模块还配置为在以下情况至少之一终止重复接收所述下行业务信道:
    在接收所述下行业务信道正确,并发送对所述下行业务信道的反馈信息为ACK之后,停止接收所述下行业务信道;
    在重复接收所述下行业务信道的次数超过预设值Y时,停止接收所述下行业务信道。
  28. 一种基站,包括:
    第一通信装置,配置为重复发送用于承载下行信息的下行控制信道,并在接收到第一处理器的第一终止信号之后,终止重复发送所述下行控制信道;
    所述第一处理器,配置为在重复发送用于承载下行控制信息的下行控制信道过程中,检测第一预设事件,并在检测到所述第一预设事件之后,向所述第一通信装置发送所述第一终止信号。
  29. 根据权利要求28所述的基站,其中,所述第一处理器还配置为在以下至少之一情况向所述第一通信装置发送所述第一终止信号:
    在接收到所述下行控制信息所调度的下行业务信道的NACK信息之后;
    在接收到所述下行控制信道所调度的上行业务信道之后;
    在重复发送所述下行控制信道的重复发送次数超过预设值X时,其中,所述X为正整数。
  30. 根据权利要求29所述的基站,其中,所述第一通信装置还配置为重复发送所述下行控制信道调度的下行业务信道,其中,所述下行业务信道的发送起始时间单元为:
    与重复发送所述下行控制信道的起始时间单元相同,其中所述时间单元为以下之一:子帧subframe,传输时间间隔TTI,时隙slot,微时隙mini-slot,正交频分复用OFDM符号。
  31. 根据权利要求30所述的基站,其中,所述第一通信装置还配置为从所述起始时间单元开始重复发送所述下行业务信道,所述第一处理器还配置为在以下情况至少之一通知所述第一通信装置终止重复发送所述下行业务信道:
    在接收到对所述下行业务信道的反馈信息为ACK后,停止重复发送所述下行业务信道;
    在重复发送所述下行业务信道的重复发送次数超过预设值Y时。
  32. 一种终端,包括:
    第二通信装置,配置为重复接收承载有下行控制信息的下行控制信道,并在接收到第二处理器的第二终止信号之后,终止重复接收所述下行控制信道;
    第二处理器,配置为在重复接收所述下行控制信道过程中,检测第二预设事件,并在检测到所述第二预设事件之后,向所述第二通信装置发送所述第二终止信号。
  33. 根据权利要求32所述的终端,其中,所述第二处理器还配置为在以下至少之一情况向所述第二通信装置发送所述第二终止信号:
    发送对接收到的所述下行控制信道调度的下行业务信道的反馈NACK信息之后;
    发送接收到的所述下行控制信道调度的上行业务信道之后;
    重复接收所述下行控制信道直至所述重复接收的次数达到预设值X。
  34. 根据权利要求33所述的终端,其中,所述第二通信装置还配置为重复接收所述下行控制信道调度的下行业务信道,其中,接收的所述下行业务信道的起始时间单元为:
    与接收到重复传输的所述下行控制信道中的首个下行控制信道的时间单元相同,其中,所述时间单元为以下之一:子帧subframe,传输时间间隔TTI,时隙slot,微时隙mini-slot,正交频分复用OFDM符号。
  35. 根据权利要求34所述的终端,其中,所述第二通信装置还配置为从所述起始时间单元开始重复接收所述下行业务信道,所述第二处理器还配置为在以下情况至少之一通知所述第二通信装置终止重复接收所述下行业务信道:
    在接收所述下行业务信道正确,并发送对所述下行业务信道的反馈信息为ACK之后,停止接收所述下行业务信道;
    在重复接收所述下行业务信道的次数超过预设值Y时,停止接收所述下行业务信道。
  36. 一种存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至9任一项所述方法的步骤,或者实现权利要求10至19任一项所述方法的步骤。
PCT/CN2017/118605 2017-01-06 2017-12-26 数据传输方法及装置、终端、基站和存储介质 WO2018126948A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710011182.6A CN108282274A (zh) 2017-01-06 2017-01-06 数据传输方法及装置,终端和基站
CN201710011182.6 2017-01-06

Publications (1)

Publication Number Publication Date
WO2018126948A1 true WO2018126948A1 (zh) 2018-07-12

Family

ID=62789203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118605 WO2018126948A1 (zh) 2017-01-06 2017-12-26 数据传输方法及装置、终端、基站和存储介质

Country Status (2)

Country Link
CN (1) CN108282274A (zh)
WO (1) WO2018126948A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111132358A (zh) * 2019-12-19 2020-05-08 RealMe重庆移动通信有限公司 数据包的传输方法、终端及存储介质
CN112910609A (zh) * 2019-12-03 2021-06-04 中国电信股份有限公司 用于harq增强的方法和基站
CN112994837A (zh) * 2019-12-13 2021-06-18 中国移动通信有限公司研究院 Pdcch的检测方法及装置
CN113972965A (zh) * 2020-07-24 2022-01-25 维沃移动通信有限公司 业务的处理方法、装置及相关设备
CN113972966A (zh) * 2020-07-24 2022-01-25 维沃移动通信有限公司 业务处理方法、装置及相关设备
WO2022165761A1 (zh) * 2021-02-05 2022-08-11 北京小米移动软件有限公司 提前终止方法、装置、设备及存储介质

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110932825B (zh) * 2018-09-20 2022-06-14 维沃移动通信有限公司 混合自动重传请求应答反馈方法和终端
WO2020094133A1 (zh) * 2018-11-09 2020-05-14 华为技术有限公司 数据传输的方法和通信装置
CN111435869B (zh) * 2019-01-11 2021-08-10 大唐移动通信设备有限公司 一种下行控制信道的传输方法、终端和网络侧设备
CN111586854B (zh) * 2019-02-15 2024-03-08 大唐移动通信设备有限公司 物理上行共享信道的传输方法、终端及网络设备
CN111866920B (zh) * 2019-04-30 2022-03-29 中国信息通信研究院 一种物理上行共享信道发送方法和设备
CN112399434A (zh) * 2019-08-14 2021-02-23 中国移动通信有限公司研究院 一种指示方法、重复传输控制方法及相关设备
CN110535614A (zh) * 2019-09-03 2019-12-03 中兴通讯股份有限公司 信令信息的传输方法、装置、通信节点和存储介质
WO2022126456A1 (zh) * 2020-12-16 2022-06-23 北京小米移动软件有限公司 数据重传的方法、装置、通信设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120039200A1 (en) * 2010-08-12 2012-02-16 Electronics & Telecommunications Research Institute Method of channel management for multiple component carrier in mobile communication system
CN102893545A (zh) * 2010-04-13 2013-01-23 高通股份有限公司 无线通信网络中的cqi估计
WO2016073591A1 (en) * 2014-11-06 2016-05-12 Intel IP Corporation Early termination of repeated transmissions for mtc

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102893545A (zh) * 2010-04-13 2013-01-23 高通股份有限公司 无线通信网络中的cqi估计
US20120039200A1 (en) * 2010-08-12 2012-02-16 Electronics & Telecommunications Research Institute Method of channel management for multiple component carrier in mobile communication system
WO2016073591A1 (en) * 2014-11-06 2016-05-12 Intel IP Corporation Early termination of repeated transmissions for mtc

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112910609A (zh) * 2019-12-03 2021-06-04 中国电信股份有限公司 用于harq增强的方法和基站
CN112910609B (zh) * 2019-12-03 2023-03-24 中国电信股份有限公司 用于harq增强的方法和基站
CN112994837A (zh) * 2019-12-13 2021-06-18 中国移动通信有限公司研究院 Pdcch的检测方法及装置
CN112994837B (zh) * 2019-12-13 2023-05-09 中国移动通信有限公司研究院 Pdcch的检测方法及装置
CN111132358A (zh) * 2019-12-19 2020-05-08 RealMe重庆移动通信有限公司 数据包的传输方法、终端及存储介质
CN113972965A (zh) * 2020-07-24 2022-01-25 维沃移动通信有限公司 业务的处理方法、装置及相关设备
CN113972966A (zh) * 2020-07-24 2022-01-25 维沃移动通信有限公司 业务处理方法、装置及相关设备
CN113972965B (zh) * 2020-07-24 2023-08-22 维沃移动通信有限公司 业务的处理方法、装置及相关设备
CN113972966B (zh) * 2020-07-24 2024-02-02 维沃移动通信有限公司 业务处理方法、装置及相关设备
WO2022165761A1 (zh) * 2021-02-05 2022-08-11 北京小米移动软件有限公司 提前终止方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN108282274A (zh) 2018-07-13

Similar Documents

Publication Publication Date Title
WO2018126948A1 (zh) 数据传输方法及装置、终端、基站和存储介质
KR102616177B1 (ko) 로우 레이턴시 다운링크 통신들에 대한 물리 업링크 제어 채널
US9749094B2 (en) Devices for sending and receiving feedback information
WO2017186174A1 (zh) Harq-ack信息的发送方法及装置
CN106452661B (zh) 应答信息的传输方法、装置、基站及终端
US11171748B2 (en) Indicating resources for transmitting modulation symbols
US9572146B2 (en) Downlink signal receiving method and user equipment, and downlink signal transmitting method and base station
WO2019072074A1 (zh) Harq-ack反馈码本的发送方法、装置及设备
US9553685B2 (en) PHICH-less operation for uplink-downlink configuration zero
US11943061B2 (en) Channel collision handling with URLLC, and ACK feedback on/off for HARQ-ACK of URLLC PDSCH transmissions
CN109787720B (zh) 一种混合自动重传请求传输方法、装置和系统
EP3753134B1 (en) User equipments, base stations and methods for downlink semi-persistent scheduling
CN102223219A (zh) Harq-ack的反馈处理方法及系统
CN108039939B (zh) 物联网组播业务的harq反馈方法及装置
CN107295677B (zh) 执行空闲信道评估的反馈方法及装置
EP3598682B1 (en) Method and apparatus for uplink data transmission
WO2019157683A1 (zh) 上行控制信息的传输方法和装置
CN110830178A (zh) Harq-ack信息的反馈方法、用户终端及计算机可读存储介质
US11705992B2 (en) Infrastructure equipment, wireless telecommunications system and method
WO2014173333A1 (zh) 一种上行控制信息的发送方法及装置
WO2013010472A1 (zh) 一种反馈信息的传输方法及装置
CN110176979B (zh) 一种频谱聚合的数据发送方法及装置
EP2164202A1 (en) Method for automatic repeat request operation, transceiver arrangement, and computer program
WO2020125473A1 (en) Uplink harq in cellular wireless communication networks
CN113067683A (zh) 用于控制数据重传的方法和用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890509

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17890509

Country of ref document: EP

Kind code of ref document: A1