WO2018127149A1 - 一种信道状态信息处理的方法、装置和系统 - Google Patents

一种信道状态信息处理的方法、装置和系统 Download PDF

Info

Publication number
WO2018127149A1
WO2018127149A1 PCT/CN2018/071634 CN2018071634W WO2018127149A1 WO 2018127149 A1 WO2018127149 A1 WO 2018127149A1 CN 2018071634 W CN2018071634 W CN 2018071634W WO 2018127149 A1 WO2018127149 A1 WO 2018127149A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel state
measurement
information
state information
resource
Prior art date
Application number
PCT/CN2018/071634
Other languages
English (en)
French (fr)
Inventor
梁津垚
王婷
李元杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710687469.0A external-priority patent/CN108282212B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18736359.3A priority Critical patent/EP3547745B1/en
Publication of WO2018127149A1 publication Critical patent/WO2018127149A1/zh
Priority to US16/504,264 priority patent/US11082986B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method, apparatus, and system for channel state information measurement.
  • Next generation mobile communication systems require large capacity and high quality data transmission.
  • Multiple input multiple output (MIMO) technology is considered to be one of the key technologies for realizing high-speed data transmission in the future. It has a broad range in the fourth generation (4G) and fifth generation (5G) mobile communication systems.
  • a plurality of transmit antennas of a conventional centralized MIMO system are concentrated on a base station (BS) side. Different from centralized MIMO, multiple transmit antennas of distributed MIMO systems are distributed in different geographical locations, and each pair of transceiver links is more independent, with large capacity, low power consumption, better coverage, and low body.
  • Advantages such as electromagnetic damage are considered to be one of the alternatives for future wireless communication systems.
  • CoMP coordinated multipoint transmission
  • Multiple neighboring cells in CoMP technology can jointly process or coordinate communication with edge users to avoid interference and improve edge user throughput.
  • Downlink CoMP technologies mainly include joint transmission (JT), coordinated scheduling and beamforming (CS/CB), and dynamic point selection/dynamic point blanking (DPS/DPB).
  • JT joint transmission
  • CS/CB coordinated scheduling and beamforming
  • DPS/DPB dynamic point selection/dynamic point blanking
  • the serving base station needs to know the downlink channel conditions of each station to the target user equipment.
  • CSI-RS channel state information reference signal
  • the UE estimates the channel by measuring the specific CSI-RS, and obtains the CSI and reports it to the serving base station through a physical uplink control channel (PUCCH).
  • the serving base station refers to a base station to which the serving cell belongs.
  • the reported CSI information may include a channel quality indicator (CQI), a rank indicator (RI), and a combination of one or more of precoding matrix indicator (PMI) information.
  • CQI channel quality indicator
  • RI rank indicator
  • PMI precoding matrix indicator
  • the base station may indicate the UE by configuring high layer signaling, such as radio resource control (RRC) signaling.
  • RRC radio resource control
  • the user equipment needs to report multiple CSIs to the network device, so that the network device determines and decides specific cooperation and scheduling according to the multiple CSIs. Therefore, a new solution is needed. How to trigger and escalate the problem of multiple CSIs.
  • Embodiments of the present invention provide a method, an apparatus, a communication system, and a terminal for measuring channel state information, so as to meet different requirements for channel state information measurement in some different scenarios of multi-point cooperation in a future network.
  • an embodiment of the present invention provides a method for measuring channel state information, including:
  • the user equipment receives configuration information for measurement of channel state information from the wireless network device, the configuration information including information of resources for channel state information measurement and indicating measurement attribute information of the resource, the measurement attribute including channel measurement , or, X interference measurements, or channel measurements and X interference measurements, where X is an integer greater than or equal to 1;
  • the user equipment performs measurement of channel state information according to the configuration information and feeds back the channel state information.
  • the type of interference measurement can be greater than 1, the measurement behavior on the UE side can be more clearly indicated as needed.
  • an embodiment of the present invention provides a method for measuring channel state information, including:
  • the first wireless network device transmits configuration information for channel state information measurement to the user equipment, the configuration information including information of resources for channel state information measurement and indicating measurement attribute information of the resource, the measurement attribute including a channel Measurement, or, X interference measurement, or channel measurement and X interference measurement, where X is an integer greater than or equal to 1;
  • the second wireless network device receives channel state information from the user equipment, the channel state information being derived based on the configuration information, wherein the second wireless network device and the first wireless network device are the same or different.
  • the information of the resource for channel state information measurement includes information of a resource usable for channel measurement and information of a resource used for interference measurement, the configuration information further including second indication information For indicating the number M of resources actually used for channel measurement, where M is an integer not less than 1; or,
  • the information of the resource for channel state information measurement includes information of resources for channel measurement and information of resources available for interference measurement, and the configuration information further includes third indication information for indicating actual use for interference measurement Number of resources N, where N is an integer not less than 0; or,
  • the information of the resource for channel state information measurement includes information of resources available for channel measurement and information of resources available for interference measurement, the configuration information further including second indication information and third indication information, and second indication
  • the information is used to indicate the number M of resources actually used for channel measurement
  • the third indication information is used to indicate the number N of resources actually used for interference measurement, where M is an integer not less than 1, and N is not less than 0. The integer.
  • the measuring, by the user equipment, the channel state information according to the configuration information, and feeding back the channel state information includes:
  • performing measurement of channel state information for the resource actually used for channel measurement includes: performing channel measurement on the resource actually used for channel measurement.
  • performing measurement of channel state information for the resource actually used for channel measurement includes: performing channel measurement on the resource actually used for channel measurement and excluding the resource available for channel state information measurement Resources other than M resources are used for interference measurement.
  • the measuring, by the user equipment, the channel state information according to the configuration information, and feeding back the channel state information includes:
  • the measurement of channel state information for resources for channel measurement includes channel measurement of resources for channel measurement and interference measurement of the N resources.
  • the configuration information indicating that the measurement attribute information of the resource includes:
  • the configuration information includes first indication information for indicating a measurement attribute
  • the resource or format of the configuration information is used to indicate a measurement attribute of the resource.
  • the X interference measurement comprises: measuring interference by using a reference signal of zero power, acquiring the strongest one or more interferences by using a resource of the channel state information reference signal of non-zero power, and utilizing channel state information of non-zero power
  • the resource of the reference signal acquires the weakest one or more interferences, and the resource of the channel state information reference signal of the non-zero power acquires the interference that is not precoded, and the resource acquisition corresponding to the channel state information reference signal of the non-zero power can be used.
  • All interferences of all selectable precoding matrices in the codebook using the resources of the channel state information reference signal of non-zero power to obtain interference corresponding to the non-strongest or weakest specific precoding matrix, and using non-zero power
  • the demodulation reference signal acquires at least one of the precoded interference.
  • the resource for channel state information measurement includes at least one, and the first indication information used to indicate the measurement attribute of the resource includes several elements, and each of the several elements is used to indicate the resource.
  • each of the elements includes at least one bit, the number of the bits being related to the number of kinds of the measurement attributes.
  • the resource for channel state information measurement has a measurement attribute or has more than one measurement attribute.
  • a resource identifier identifies a resource used to identify channel state information measurement, and a first indication information is used to indicate a measurement attribute, and a resource identifier has a first indication information, or has more than one An indication message.
  • the first indication information may be a bitmap, or a manner of measuring an index of an attribute.
  • the one measurement attribute corresponds to one resource used for channel state information measurement, or the one measurement attribute corresponds to more than one resource used for channel state information measurement.
  • a resource identifier identifies a resource for identifying channel state information measurement
  • the first indication information used to indicate the measurement attribute of the one or more resources for channel state information measurement may include Determining one or more resource identifiers of resources for channel state information measurement, or may include a number of bits, each of the bits being used to indicate whether each of the resources has the measurement Attributes.
  • the measurement attribute is more than one type, and each of the more than one measurement attributes has corresponding first indication information.
  • the resource corresponding to the channel measurement in the measurement attribute includes at least two, and the measuring, by the user equipment, the channel state information according to the configuration information, and feeding back the channel state information includes:
  • the user equipment measures and feeds back channel state information for at least one of the at least two resources, the measuring comprising performing channel measurement on at least one of the at least two resources and on at least two resources other than performing channel measurement At least one resource other than the interference measurement.
  • the information about the resource for channel state information measurement includes information of resources available for channel measurement and information of resources used for interference measurement, and the configuration information further includes fourth indication information for indicating transmission.
  • the number of sets Y, Y is an integer.
  • performing measurement of channel state information for Z resources actually used for channel measurement may include: performing channel measurement on Z resources actually used for channel measurement, and removing resources from the resources available for channel state information measurement. The resources other than the Z resources are used for interference measurement.
  • the embodiment of the present invention further provides a method for measuring channel state information, including:
  • the user equipment receives configuration information from the wireless network device for channel state information measurement, the configuration information including information of resources available for channel state information measurement;
  • the user equipment performs measurement of channel state information according to the configuration information, and feeds back the channel state information and the measurement attribute information of the resource for channel state information measurement corresponding to the channel state information, where the measurement attribute includes Channel measurement, or X interference measurement, or channel measurement and X interference measurement, where X is an integer not less than one.
  • the measurement attribute information of the resource for channel state information measurement corresponding to the channel state information comprises a number of bits, each of the bits is used for A measurement attribute indicating each of the resources.
  • the resource for channel state information measurement corresponding to the channel state information is a part of the resource that can be used for channel state information measurement.
  • the X interference measurement comprises: measuring interference by using a reference signal of zero power, acquiring the strongest one or more interferences by using a resource of the channel state information reference signal of non-zero power, and utilizing channel state information of non-zero power
  • the resource of the reference signal acquires the weakest one or more interferences, and the resource of the channel state information reference signal of the non-zero power acquires the interference that is not precoded, and the resource acquisition corresponding to the channel state information reference signal of the non-zero power can be used.
  • All interferences of all selectable precoding matrices in the codebook using the resources of the channel state information reference signal of non-zero power to obtain interference corresponding to the non-strongest or weakest specific precoding matrix, and using non-zero power
  • the demodulation reference signal acquires at least one of the precoded interference.
  • a user equipment including a processor, a memory, and a transceiver.
  • the memory is configured to store instructions for executing the memory stored instructions to control transceivers to receive and transmit signals, and when the processor executes the instructions stored by the memory, the user equipment is used by Any one of the methods involved in the user equipment as described in the first aspect or the third aspect is completed.
  • a wireless network device including a processor, a memory, and a transceiver.
  • the memory is configured to store instructions
  • the processor is configured to execute the memory stored instructions to control transceivers to receive and transmit signals
  • the wireless network device uses Any of the methods involved in the wireless network device as described in the second aspect are completed.
  • an apparatus for channel state information measurement including modules for implementing any of the methods involved in the foregoing user equipment.
  • the specific modules may correspond to the method steps, and are not described herein.
  • an apparatus for channel state information measurement including modules for implementing any of the methods involved in the foregoing wireless network device.
  • the specific modules may correspond to the method steps, and are not described herein.
  • a computer storage medium for storing instructions that, when executed, can perform any of the methods involved in the foregoing user equipment or wireless network device.
  • a communication system including the user equipment provided in the foregoing fourth aspect and the wireless network device provided in the fifth aspect.
  • the method, device and system provided by the embodiments of the present invention are used to meet different requirements for channel state information measurement in some different scenarios of multi-point cooperation in a future network.
  • the 3rd generation partnership project (English: 3rd generation partnership project, 3GPP) is a project dedicated to the development of wireless communication networks. Generally, a 3GPP related organization is referred to as a 3GPP organization.
  • a wireless communication network is a network that provides wireless communication functions.
  • the wireless communication network may use different communication technologies, such as code division multiple access (CDMA), wideband code division multiple access (WCDMA), time division multiple access (English: time) Division multiple access (TDMA), frequency division multiple access (FDMA), orthogonal frequency-division multiple access (OFDMA), single carrier frequency division Multiple Carrier (English: Single Carrier FDMA, SC-FDMA for short), Carrier Sense Multiple Access with Collision Avoidance (English: Carrier Sense Multiple Access with Collision Avoidance).
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • Single carrier frequency division Multiple Carrier English: Single Carrier FDMA, SC-FDMA for short
  • Carrier Sense Multiple Access with Collision Avoidance English: Carrier Sense Multiple Access with Collision Avoidance
  • the network can be divided into 2G (English
  • a typical 2G network includes a global system for mobile communications/general packet radio service (GSM) network or a general packet radio service (GPRS) network.
  • GSM global system for mobile communications/general packet radio service
  • GPRS general packet radio service
  • a typical 3G network is used.
  • the network includes a universal mobile telecommunications system (UMTS) network.
  • UMTS universal mobile telecommunications system
  • a typical 4G network includes a long term evolution (LTE) network.
  • LTE network long term evolution
  • the UMTS network may also be referred to as a universal terrestrial radio access network (UTRAN).
  • UTRAN universal terrestrial radio access network
  • the LTE network may also be referred to as an evolved universal terrestrial radio access network (English: evolved universal terrestrial) Radio access network, referred to as E-UTRAN.
  • a cellular communication network can be divided into a cellular communication network and a wireless local area network (English: wireless local area networks, WLAN for short), wherein the cellular communication network is dominated by scheduling, and the WLAN is dominant.
  • the aforementioned 2G, 3G, 4G and 5G networks are all cellular communication networks. It should be understood by those skilled in the art that as the technology advances, the technical solutions provided by the embodiments of the present invention are equally applicable to other wireless communication networks, such as 4.5G or 5G networks, or other non-cellular communication networks. For the sake of brevity, embodiments of the present invention sometimes refer to a wireless communication network as a network.
  • the cellular communication network is a type of wireless communication network, which adopts a cellular wireless networking mode, and is connected between the terminal device and the network device through a wireless channel, thereby enabling users to communicate with each other during activities. Its main feature is the mobility of the terminal, and it has the function of handoff and automatic roaming across the local network.
  • FDD frequency division duplex, frequency division duplex
  • TDD time division duplex, time division duplex
  • User equipment (English: user equipment, abbreviated as UE) is a terminal device, which can be a mobile terminal device or a non-mobile terminal device. The device is mainly used to receive or send business data. User equipment can be distributed in the network. User equipments have different names in different networks, such as: terminals, mobile stations, subscriber units, stations, cellular phones, personal digital assistants, wireless modems, wireless communication devices, handheld devices, knees. Upper computer, cordless phone, wireless local loop station, car terminal, etc. The user equipment can communicate with one or more core networks via a radio access network (RAN) (access portion of the wireless communication network), such as exchanging voice and/or data with the radio access network.
  • RAN radio access network
  • a base station (English: base station, BS for short) device also referred to as a base station, is a device deployed in a wireless access network to provide wireless communication functions.
  • a device that provides a base station function in a 2G network includes a base transceiver station (BTS) and a base station controller (BSC), and a device that provides a base station function in a 3G network.
  • BTS base transceiver station
  • BSC base station controller
  • the device providing the base station function in the 4G network includes the evolved Node B (English: evolved NodeB, eNB for short)
  • the device that provides the function of the base station is an access point (English: access point, abbreviated as AP).
  • Devices providing base station functions in future 5G networks include Node B (gNB), Transceiver Point (TRP), and Transmission Point (TP) that continue to evolve.
  • the TRP and the TP may not include the baseband portion, only the radio frequency portion (including the antenna), and may also include the baseband portion and the radio frequency portion.
  • a base station can be connected to one or more TRPs or TPs.
  • a wireless device refers to a device that is located in a wireless communication network and that can communicate wirelessly.
  • the device may be a base station, a user equipment, or other network elements.
  • a network-side device is a device located on the network side in a wireless communication network, and may be an access network element, such as a base station or a controller (if any), or may be a core network element or other network. yuan.
  • NR new radio refers to a new generation of wireless access network technology that can be applied to future evolved networks, such as 5G networks.
  • Wireless local area network (English: wireless local area networks, referred to as WLAN) refers to a local area network using radio waves as a data transmission medium, and the transmission distance is generally only several tens of meters.
  • An access point (English: access point, abbreviated as AP) that connects to a wireless network and can also be connected to a wired network device. It can be used as an intermediary point to connect wired and wireless Internet devices to each other and transmit data.
  • RRC radio resource control
  • the RRC processes the third layer information of the control plane between the UE and the radio access network.
  • the RRC processes the third layer information of the control plane between the UE and the radio access network.
  • Usually contains at least one of the following features:
  • the information provided by the non-access stratum of the broadcast core network is responsible for broadcasting the network system information to the UE.
  • System information is usually repeated according to certain basic rules, and RRC is responsible for execution planning, segmentation, and repetition. It also supports the broadcast of upper layer information.
  • the RRC is responsible for broadcasting the network system information to the UE.
  • System information is usually repeated according to certain basic rules, and RRC is responsible for execution planning, segmentation, and repetition.
  • an RRC connection is established by the higher layer of the UE.
  • the RRC connection setup procedure includes several steps of reselection of available cells, access grant control, and establishment of a layer 2 signal link.
  • the RRC connection release is also requested by the upper layer to tear down the last signal connection; or when the RRC link fails, it is initiated by the RRC layer. If the connection fails, the UE will request to re-establish an RRC connection. If the RRC connection fails, the RRC releases the allocated resources.
  • the functionality of the RRC may also change, and the description herein is not limiting.
  • the present application also describes a method, an apparatus, and a system for reporting channel state information, and aims to provide an indication and reporting scheme for reporting multiple channel state information when a user equipment reports multiple channel state information, and minimizes multiple The delay in reporting the channel status information.
  • the embodiment of the present application provides a channel state information reporting method, including: receiving, by a user equipment, an indication information from a network device, where the indication information is used to indicate reporting of K channel state information, where The K channel state information is measured and reported on the same carrier, and K is an integer greater than or equal to 2; the user equipment reports the K channel state information according to the indication information.
  • the K channel state information may be reported at the same time to further reduce the delay, or may be reported in a time-sharing manner, so as to adapt the scheduling of the uplink resource to alleviate the problem that the uplink resource is limited.
  • the K channel state information is K non-periodically reported channel state information, or K semi-statically reported channel state information.
  • the indication information includes index information of the K channel state information report configuration and/or index information of the channel state information to which the K channel state information belongs to report the configuration group.
  • the indication information includes T channel state information reporting timing offset information, and the T channel state information reporting timing offsets are used for reporting the K channel state information, where T is greater than or equal to An integer of 2, the channel state information reporting timing offset refers to a time interval between the reporting of the channel state information and the reporting of the channel state information. The time interval may be in units of a certain time domain resource unit, for example, in a slot.
  • the network device sends channel state information reporting trigger information (such as the indication information) in slot 0, and the network device is When the slot 5 receives the report of the channel state information, the channel state information reporting timing offset is 4 slots.
  • the user equipment receives the channel state information reporting trigger information (such as the indication information) in the slot 0, and the user equipment reports the channel state information in the slot 5, and the channel state information reporting timing offset is 4 slots.
  • the indication information may be downlink control information.
  • the K channel state information is K periodically reported channel state information.
  • the indication information includes at least one of index information, reporting period information, and reporting subframe offset configuration information of the K channel state information reporting configuration.
  • the indication information may further include the K channel state information reporting configuration information, and at least one of the resource information used for the K channel state information measurement.
  • the indication information may be RRC signaling.
  • the indication information further includes beam information, where the beam information is used to indicate a beam used to report the K channel state information, where the beam information indicates L beams, and the L is An integer greater than or equal to 1, each of the L beams is used to report the K channel state information.
  • the L is an integer greater than or equal to 2
  • the L beams are beams transmitted by using the same time domain resource, or the L beams are respectively transmitted by using different time domain resources.
  • the embodiment of the present application provides a channel state information reporting method, including: the network device sends an indication information to the user equipment, where the indication information is used to report the reporting of the K channel state information, where K is greater than or equal to An integer of 2; the network device receives the K channel state information on the same carrier.
  • the K channel state information may be reported at the same time to further reduce the delay, or may be reported in a time-sharing manner, so as to adapt the scheduling of the uplink resource to alleviate the problem that the uplink resource is limited.
  • the K channel state information is K non-periodically reported channel state information, or K semi-statically reported channel state information.
  • the indication information includes index information of the K channel state information report configuration and/or index information of the channel state information to which the K channel state information belongs to report the configuration group.
  • the indication information includes T channel state information reporting timing offset information, and the T channel state information reporting timing offsets are used for reporting the K channel state information, where T is greater than or equal to An integer of 2, the channel state information reporting timing offset refers to a time interval between the reporting of the channel state information and the reporting of the channel state information.
  • the indication information may be downlink control information.
  • the K channel state information is K periodically reported channel state information.
  • the indication information includes at least one of index information, reporting period information, and reporting subframe offset configuration information of the K channel state information reporting configuration.
  • the indication information may further include the K channel state information reporting configuration information, and at least one of the resource information used for the K channel state information measurement.
  • the indication information may be RRC signaling.
  • the indication information further includes beam information, where the beam information is used to indicate a beam used to report the K channel state information, where the beam information indicates L beams, and the L is An integer greater than or equal to 1, each of the L beams is used for reporting the K channel state information.
  • the L is an integer greater than or equal to 2
  • the L beams are beams transmitted by using the same time domain resource, or the L beams are respectively transmitted by using different time domain resources.
  • the embodiment of the present application provides a user equipment, where the user equipment has a function of implementing the behavior of the user equipment in the method of the foregoing tenth aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the embodiment of the present application provides a network device, where the network device has the function of implementing the behavior of the network device in the foregoing method in the eleventh aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the embodiment of the present application provides a user equipment, where the structure of the user equipment includes a transceiver and a processor.
  • the transceiver is configured to support the user equipment to receive the information or data (such as receiving indication information) involved in the foregoing method of the tenth aspect, and to transmit the information or data involved in the method of the foregoing tenth aspect (the K channel state information is reported as above) ).
  • the processor is configured to support a user equipment to perform a corresponding function in the method of the above tenth aspect, for example, processing the indication information and/or the K channel state information.
  • the user equipment may further include a memory in the structure, where the memory is used to be coupled to the processor to save program instructions and data necessary for the user equipment.
  • the embodiment of the present application provides a network device, where the structure of the network device includes a transceiver and a processor.
  • the transceiver is configured to support the network device to send information or instructions involved in the foregoing method of the eleventh aspect to the user equipment, and receive information or data involved in the method of the eleventh aspect.
  • the processor is configured to support a network device to perform a corresponding function in the above-described eleventh method, such as generating or processing signaling information (eg, the indication information) and/or downlink data involved in the above method.
  • the network device may further include a communication unit, where the communication unit is configured to support the network device to communicate with other network devices, for example, receive information or instructions sent by a scheduling node or other network device, and / or send information or instructions to other network side devices.
  • the structure of the network device may further include a memory for coupling with the processor to save necessary program instructions and data of the network device.
  • the embodiment of the present application provides a communication system, which includes the user equipment of the fourteenth aspect and the network device of the fifteenth aspect.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the user equipment, which includes a program designed to perform the above aspects.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the network device, which includes a program designed to perform the above aspects.
  • the embodiment of the present invention further provides a device having the function of implementing the method of the above tenth aspect.
  • This feature can be implemented in hardware.
  • the apparatus includes a memory, a processor, and instructions stored on the memory and executable on the processor, the apparatus executing the instructions to cause the apparatus to implement the method of the tenth aspect.
  • the device can be a chip system that includes at least one chip and can also include other discrete devices.
  • the embodiment of the present invention further provides a device having the function of implementing the method of the eleventh aspect.
  • This feature can be implemented in hardware.
  • the apparatus includes a memory, a processor, and instructions stored on the memory and executable on the processor, the apparatus executing the instructions to cause the apparatus to implement the method of the eleventh aspect.
  • the device can be a chip system that includes at least one chip and can also include other discrete devices.
  • an embodiment of the present invention further provides a computer program product, the computer program product comprising instructions, when the instruction is run on a computer, causing the computer to perform the method of the tenth aspect.
  • an embodiment of the present invention further provides a computer program product, the computer program product comprising instructions, when the instruction is run on a computer, causing the computer to perform the method of the eleventh aspect.
  • FIG. 1 is a schematic flowchart of a method for measuring channel state information according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a multi-cell collaboration scenario according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart diagram of another method for measuring channel state information according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of an internal structure of a base station and a UE according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of an apparatus (such as a wireless network device) for measuring channel state information according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of another apparatus (such as a user equipment) for measuring channel state information according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a communication system according to an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of reporting channel state information according to an embodiment of the present disclosure.
  • FIG. 8b is a schematic flowchart of another channel status information reporting according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a scenario for reporting channel state information according to an embodiment of the present disclosure.
  • Figure 10a is a schematic diagram of beam transmission according to an embodiment of the present invention.
  • FIG. 10b is still another schematic diagram of beam transmission according to an embodiment of the present invention.
  • FIG. 10c is a schematic diagram of still another beam transmission according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • FIG. 11b is a schematic structural diagram of another network device according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a UE according to an embodiment of the present invention.
  • FIG. 12b is a schematic structural diagram of another UE according to an embodiment of the present invention.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread in execution, a program, and/or a computer.
  • an application running on a computing device and the computing device can be a component.
  • One or more components can reside within a process and/or thread of execution, and a component can be located in a computer and/or distributed between two or more computers. Moreover, these components can execute from various computer readable media having various data structures thereon.
  • These components may be passed, for example, by having one or more data packets (eg, data from one component that interacts with the local system, another component of the distributed system, and/or signaled through, such as the Internet)
  • the network interacts with other systems to communicate in a local and/or remote process.
  • the wireless network device may be a base station, the base station may be used to communicate with one or more user equipments, or may be used to communicate with one or more base stations having partial user equipment functions (such as a macro base station and a micro base station, such as Incoming, communication between the two); the wireless device can also be a user equipment, the user equipment can be used for communication (such as D2D communication) of one or more user equipments, and can also be used for communication with one or more base stations.
  • partial user equipment functions such as a macro base station and a micro base station, such as Incoming, communication between the two
  • the wireless device can also be a user equipment, the user equipment can be used for communication (such as D2D communication) of one or more user equipments, and can also be used for communication with one or more base stations.
  • User equipment may also be referred to as user terminals and may include systems, subscriber units, subscriber stations, mobile stations, mobile wireless terminals, mobile devices, nodes, devices, remote stations, remote terminals, terminals, wireless communication devices, wireless communication devices, or Some or all of the features of the user agent.
  • User equipment can be cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, smart phones, wireless local loop (WLL) stations, personal digital assistants (PDAs), laptop computers, handheld communication devices, handheld computing Devices, satellite wireless devices, wireless modem cards, and/or other processing devices for communicating over wireless systems.
  • SIP Session Initiation Protocol
  • WLL wireless local loop
  • PDAs personal digital assistants
  • laptop computers handheld communication devices
  • handheld computing Devices satellite wireless devices
  • wireless modem cards wireless modem cards
  • a base station may also be referred to as an access point, a node, a Node B, an evolved Node B (eNB), a gNB, a TRP, a TP, or some other network entity, and may include some or all of the functions of the above network entities.
  • the base station can communicate with the wireless terminal over the air interface. This communication can be done by one or more sectors.
  • the base station can act as a router between the wireless terminal and the rest of the access network by converting the received air interface frame into an IP packet, wherein the access network includes an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate the management of air interface attributes and can also be a gateway between the wired network and the wireless network.
  • the application will present various aspects, embodiments, or features in a system that can include multiple devices, components, modules, and the like. It is to be understood and appreciated that the various systems may include additional devices, components, modules, etc. and/or may not include all of the devices, components, modules, etc. discussed in connection with the figures. In addition, a combination of these schemes can also be used.
  • the word "exemplary” is used to mean an example, an illustration, or a description. Any embodiment or design described as “example” in this application should not be construed as preferred or advantageous over other embodiments or designs. Rather, the term use examples is intended to present concepts in a concrete manner.
  • information, signal, message, and channel may sometimes be mixed. It should be noted that the meaning to be expressed is consistent when the difference is not emphasized. “of”, “corresponding (relevant)” and “corresponding” can sometimes be mixed. It should be noted that the meaning to be expressed is consistent when the distinction is not emphasized.
  • the subscript such as W1 may be a non-subscript form such as W1, and the meaning to be expressed is consistent when the difference is not emphasized.
  • the network architecture and the service scenario described in the embodiments of the present invention are used to more clearly illustrate the technical solutions of the embodiments of the present invention, and do not constitute a limitation of the technical solutions provided by the embodiments of the present invention.
  • the technical solutions provided by the embodiments of the present invention are equally applicable to similar technical problems.
  • the embodiment of the present invention can be applied to a time division duplex (TDD) scenario or a frequency division duplex (FDD) scenario.
  • TDD time division duplex
  • FDD frequency division duplex
  • the embodiments of the present invention can be applied to a traditional typical network or to a UE-centric network in the future.
  • the UE-centric network introduces a non-cell network architecture, that is, deploys a large number of small stations in a specific area to form a hyper cell, and each station is a transmission point of the Hyper cell ( Transmission Point, TP) or TRP, and connected to a centralized controller.
  • TP Transmission Point
  • TRP Transmission Point
  • the network side device selects a new sub-cluster (sub-cluster) for the UE to serve, thereby avoiding true cell handover and achieving continuity of the UE service.
  • the network side device includes a wireless network device.
  • the base station is uniquely identified by the base station ID. If all TPs or TRPs in a Hypercell are the same ID, there is only one base station in the hyper cell.
  • the 3GPP TS 36.213 protocol proposes to use NZP CSI-RS for channel measurement and ZP CSI-RS for interference measurement.
  • csi-ProcessId represents the identity of the CSI process (identity or identifier, ID)
  • csi-RS-ConfigNZPId represents the identity (ID) of the NZP CSI-RS
  • csi-IM-ConfigId represents the interference measurement (IM).
  • ID of the CSI-RS includes the CSI-RS of the ZP.
  • the cells included in the NZP CSI-RS domain are as follows:
  • the csi-RS-ConfigNZPId indicates the ID of the NZP CSI-RS
  • the antennaPortsCount indicates the number of antenna ports
  • the resourceConfig indicates the configuration information of the resource (such as the time-frequency resource configuration information, which may also be called the transmission pattern)
  • the subframeConfig indicates the subframe configuration information.
  • the scramblingIdentity indicates scrambling information
  • the qcl-CRS-Info indicates information of a CRS (common reference singal) having a QCL (Quasi-co-located) relationship with the CSI-RS.
  • the cells included in the ZP CSI-RS domain are as follows:
  • the csi-RS-ConfigZPId indicates the ID of the ZP CSI-RS
  • the resourceConfigList indicates the resource configuration table (each resource configuration corresponds to one transmission pattern)
  • the subframeConfig indicates the subframe configuration information.
  • non-NZP CSI-RS measurement channels ie, channel measurement
  • non-ZP CSI-RS measurement interference ie, interference measurement
  • the sum of all the interference powers on the ZP CSI-RS resources can only be measured by the ZP CSI-RS, and the measurement cannot be performed in a targeted manner, such as measuring the H*Wmax corresponding to the strongest interference (where H is the channel matrix) Wmax is the precoding matrix with the highest throughput rate, or H*Wmin corresponding to the weakest interference (where Wmin is the precoding matrix with the lowest throughput), or H corresponding to the omnidirectional interference.
  • the measurement of channel state information may be obtained based on signal to interference plus noise (SINR) (eg, CQI may be based on CQI and SINR).
  • SINR signal to interference plus noise
  • the SINR can be obtained based on the signal power and the interference power, wherein the signal power can be obtained by channel measurement (referred to as the power of the channel measurement), and the interference power can be obtained by the interference measurement (referred to as interference measurement). power).
  • SINR channel measured power / (interference measured power + noise power).
  • the power of the channel measurement and the power of the interference measurement based on the reference signal of the non-zero power can be obtained based on the H*W vector value, for example, the value of
  • the meaning is that the product of H and W is determinant.
  • H is a channel measurement vector, which is a channel impulse response obtained by correlation, interpolation, etc. according to the pilot signal.
  • W is a precoding vector, which is selected by the UE in the available codebook, and is usually obtained according to the throughput rate. If the throughput rate of H*W1 is the largest, the UE reports the PMI corresponding to W1 to the base station. The base station refers to the PMI reported by the UE when scheduling.
  • the scheduling of the base station should consider other user equipments in the cell, and also consider the user equipment of the neighboring cell when cooperating. Therefore, the reporting of the UE is only for the reference of the base station, and is the precoding matrix that the UE considers to be the best for itself, and the base station sends the data. It is not necessary to encode the data according to the PMI. In order to enable the base station to have more sufficient information to obtain a better scheduling result, the measurement result reported by the UE is as large as possible. For example, in a cooperative scenario, the UE needs to report the neighboring cell CSI of the measurement, and the CSI is for the serving base station to the UE.
  • the inter-carrier transmission is an interference.
  • the measurement result reported by the UE can facilitate the scheduling of the serving base station. For example, when the neighboring cell uses W1, the interference is strongest, and when W2 is used, the interference is the weakest.
  • W3W4W5 is other optional precoding matrix, assuming UE. After reporting all possible C-corresponding CSIs, the serving base station can know that the neighboring area needs to avoid W1, and it is better to select W2. If W2 cannot be selected, since the vector distance between W3 and W2 is closer to W1, W3 can also be selected. In summary, the more CSIs that the UE reports to the base station, the better the service base station and the cooperative base station can obtain the optimal scheduling result.
  • the resource used for channel measurement in the embodiment of the present invention means that the power obtained according to the H*W measured on the resource is the power measured as a channel (referred to as a channel), and the resource used for the interference measurement refers to the resource.
  • the above-mentioned power obtained according to H*W measured on the resource is the power measured as interference (referred to as interference).
  • interference the power measured as interference
  • the CSI may include a channel quality indicator (CQI), a rank indicator (RI), and a combination of one or more of precoding matrix indicator (PMI) information.
  • CQI channel quality indicator
  • RI rank indicator
  • PMI precoding matrix indicator
  • CQI is taken as an example in some descriptions, but it does not mean that these descriptions are only applicable to CQI, and should also be understood as feedback applicable to RI and PMI.
  • the embodiment of the present invention provides a method for measuring channel state information, including:
  • the user equipment receives configuration information for channel state information measurement from a first wireless network device, where the configuration information includes information about resources of channel state information measurement and indicates measurement attribute information of the resource, the measurement Attributes include channel measurements, or X types of interference measurements, or channel measurements and X types of interference measurements, where X is an integer greater than or equal to one;
  • the user equipment performs measurement of channel state information according to the configuration information and feeds back the channel state information.
  • the user equipment feeds back channel state information to the second wireless network device, where the second wireless network device and the first wireless network device may be the same or different.
  • the first wireless network device sends configuration information for channel state information measurement to the user equipment, the configuration information including information of resources for channel state information measurement and indicating measurement attribute information of the resource, the measurement Attributes include channel measurements, or X types of interference measurements, or channel measurements and X types of interference measurements, where X is an integer greater than or equal to one;
  • the second wireless network device receives channel state information from the user equipment, the channel state information being derived based on the configuration information, wherein the second wireless network device and the first wireless network device are the same or different.
  • the first wireless network device is a wireless network device to which the serving cell of the user equipment belongs
  • the second wireless network device is a wireless network device to which the serving cell of the user equipment belongs or a wireless network device to which the non-serving cell belongs.
  • the configuration information indicating that the measurement attribute information of the resource includes:
  • the configuration information includes first indication information for indicating a measurement attribute
  • the resource or format of the configuration information is used to indicate a measurement attribute of the resource.
  • the X interference measurement comprises: measuring interference (such as interference power) by using a reference signal of zero power, and acquiring the strongest P interference by using resources of the channel state information reference signal of non-zero power (where P is configurable or For protocol reservations, no configuration is required, using the resources of the channel state information reference signal of non-zero power to obtain the weakest Q interferences (where Q is configurable or not required for protocol reservation), using channel state information reference signals of non-zero power
  • the resource acquires interference that is not precoded (omnidirectional interference), and uses the resource of the channel state information reference signal of the non-zero power to acquire all interferences of all selectable precoding matrices in the available codebook, using non-zero power
  • the resource of the channel state information reference signal acquires interference corresponding to a non-strongest or weakest specific precoding matrix (W), acquires interference using a demodulation reference signal of non-zero power, and utilizes a demodulation reference signal of non-zero power Obtaining at least one of the precoded
  • “using the resource of the channel state information reference signal of the non-zero power to obtain the interference corresponding to the non-strongest or weakest specific precoding matrix (W)” may correspond to the UE measurement behavior, which may include: the UE according to the NZP CSI- The RS estimates the channel signal, the UE subtracts the channel signal from the received signal, and the remaining signal is considered to be an interference signal, which may be the interference of the non-strongest or weakest specific precoding matrix (W).
  • the measurement behavior of the UE corresponding to the “acquiring the pre-coded interference by using the demodulation reference signal of the non-zero power” may include: the UE measures the interference caused by other UEs according to the DMRS, and the other UEs include the MU-MIMO (multiple The paired UE in the user input/output scenario, and/or the UE scheduled by other cells of the cell in which the UE is located, may be pre-coded interference.
  • the X interference measurements may further include acquiring interference using a demodulation reference signal of non-zero power.
  • the measurement behavior of the corresponding UE may be: the UE estimates the channel signal according to the DMRS, and the UE subtracts the channel signal from the received signal, and the remaining signal is considered as an interference signal, and the interference may be precoded. It can also be unprecoded.
  • the “acquisition of the pre-coded interference by using the demodulation reference signal of non-zero power” may also be that the interference of the neighboring cell is pre-coded, and the measurement behavior of the corresponding UE is: the UE estimates according to the DMRS. For the channel signal, the UE subtracts the channel signal from the received signal, and the remaining signal is considered to be an interference signal, and the interference is precoded.
  • the above strongest P interferences or the weakest Q interferences may be obtained in the case of a base station type C CSI-RS.
  • the CSI-RS is not precoded, and is a complete Signal to the signal.
  • the UE traverses to select the optimal P precoding matrix or the worst P precoding matrix, and reports the corresponding PMI. It can also be obtained when the base station sends a class B CSI-RS, which can be precoded by W1, and W1 is a wide beam.
  • W1 is a wide beam.
  • the UE traverses the optional W2, and selects the optimal P W2 or the worst Q W2 to report the corresponding PMI.
  • the CSI-RS actually sent by the base station may be pre-coded or un-precoded.
  • the main scenario of the embodiment of the present invention is based on cooperative transmission.
  • the CSI measurement and feedback process is enhanced to indicate multiple measurement resources and measurement behavior.
  • 2 is a schematic diagram of a multi-cell cooperation scenario.
  • the CSI measurement needs to help decide which TPs to participate in the transmission. Therefore, it is necessary to assume a transmission set, a hypothetical interference combination, so that the UE can give CSI measurement results under different assumptions.
  • the TP determines which TPs are included in the transmission set according to different CSI measurement results. It can be understood that the TP in this scenario can also be a TRP or a gNB, but can be referred to as a base station.
  • the existing transmission set is ⁇ TP1, TP2 ⁇ , but as the UE moves, it is not determined whether TP3 is to be added to the transmission set.
  • the assumption of the transmission set may be ⁇ TP1, TP2 ⁇ or ⁇ TP2, TP3. ⁇ or ⁇ TP1, TP2, TP3 ⁇ .
  • the resources allocated for each TP are not determined to measure the channel or measure interference.
  • a reference signal RS can be used for both channel measurement and interference measurement, so the measurement purpose cannot be determined by the resource type (non-zero power or zero power).
  • the measurement purpose cannot be bound by the resource ID.
  • the measurement resource and the measurement behavior may be bound in a certain transmission set hypothesis, and the measurement resource and the measurement behavior may be indicated, where the indication includes an indication of the display, such as including the first indication information, and may also include an implicit
  • the indication is indicated by a resource or a format for indicating configuration information of the measurement resource, or implicitly by other information corresponding to the measurement behavior.
  • the UE when the UE receives the first indication information, it can determine the measurement behavior to be performed, and report the corresponding channel state information.
  • the base station sends Type#, and the UE knows how to measure interference on a certain resource.
  • Type# such as:
  • Type#0 The result measured on the NZP CSI-RS resource is taken as the channel measurement result and is calculated into the CQI.
  • Type#1 The NZP CSI-RS resource first measures the H matrix according to the pilot correlation, and the UE sequentially determines the throughput rate corresponding to the H*W according to the codebook corresponding to the rank or the precoding matrix group configured by the base station, corresponding to the throughput.
  • the W matrix with the highest rate is the W matrix that causes the strongest interference.
  • the CSI-RS measures H*W1 (wide beam of CLASS B) according to the pilot, and the UE polls and selects W2, and H*W1*W2 is interference information, which can be used for interference in CQI calculation.
  • Type #3 can be a W matrix selected according to the throughput rate and the minimum throughput, which is the pre-coded matrix that causes the weakest interference.
  • Type#2 The signal sent by the neighboring base station is an omnidirectional signal, that is, the preamble is not pre-coded, the serving base station can send the information to the UE, and the UE can only measure the H matrix on the NZP CSI-RS.
  • the UE measurement behavior corresponding to Type#3 and Type#0 is the same, but the measurement result is treated as a channel in the CQI calculation and one is treated as interference.
  • Type#4 is a technology for measuring interference: ZP CSI-RS measures the interference caused by all other base stations except the serving base station. The prior art only supports the power of the interference measured on the ZP.
  • Type#5 measures interference on DMRS resources, and the interference measured on DMRS is precoded. Possible solutions for DMRS measurement interference are:
  • the base station informs the UE of the precoding matrix used on the DMRS, and the result measured on the DMRS is inversely multiplied by W, and after obtaining the H matrix, the UE re Select the W matrix corresponding to the strongest or weakest interference according to a certain indicator (such as the above throughput rate), or the W used by the serving base station to inform the data transmitted with the DMRS, and the UE will multiply the calculated H and the used data. Multiply and get the interference caused by the data.
  • the UE can select the narrow beam W2 according to certain indicators (such as throughput rate, other indicators: SINR, CQI, etc.), so the interference caused by the data can be multiplied by H*W1 (measurement result of DMRS pilot). Obtained by W2.
  • certain indicators such as throughput rate, other indicators: SINR, CQI, etc.
  • reference signals other than those listed in the above table may also be utilized for interference measurements, such as SRS.
  • SRS DMRS hw1w2
  • the indication may be performed by the domain in which the resource for channel state information measurement is located, that is, the format of the configuration information, or implicitly by other information corresponding to the measurement behavior. Instructions.
  • other information corresponding to the measurement behavior may include:
  • the UE may determine the measurement behavior on the configured or triggered interference measurement resource by the correspondence between the transmission mode and the measurement behavior. For example, if the transmission mode is the coordinated transmission mode (TM10), the UE multiplies the measured channel matrix and the precoding matrix on the NZP CSI-RS resource as interference on the configured or triggered NZP CSI-RS resource. For example, when the transmission mode is multi-user mode (such as MU, TM5), on the configured or triggered NZP CSI-RS resource, the UE subtracts the estimated channel signal from the received signal, and the remaining signal acts as interference.
  • TM10 coordinated transmission mode
  • the transmission mode is multi-user mode (such as MU, TM5)
  • the UE subtracts the estimated channel signal from the received signal, and the remaining signal acts as interference.
  • the UE when the transmission mode is the multi-user mode (MU, TM5), the UE measures the interference caused by other UEs through the DMRS resources on the configured/triggered DMRS resources.
  • other UEs include the MU-MIMO scenario. Paired UEs, and/or UEs scheduled by other cells of the cell in which the UE is located.
  • the transmission mode when the transmission mode is multi-stream beamforming transmission (TM9), the UE may subtract the channel signal estimated by the DMRS from the received signal on the configured or triggered DMRS resource, and the remaining signals serve as interference.
  • TM9 multi-stream beamforming transmission
  • the UE may subtract the channel signal estimated by the DMRS from the received signal on the configured or triggered DMRS resource, and the remaining signals serve as interference.
  • Which of the specific correspondences may be set by the system, or may be configured by the network side.
  • other reference factors may also be introduced during setting or configuration, which are not limited herein.
  • the UE may determine the measurement behavior on the configured or triggered interference measurement resource according to the correspondence between other configuration information and the measurement behavior.
  • Other configuration information includes the number of downlink control channels for the current carrier downlink data transmission that the UE needs to simultaneously detect, and/or QCL configuration information and the like.
  • the number of downlink control channels for the current carrier downlink data transmission that the UE needs to detect at the same time has a corresponding relationship with the measurement behavior of the UE.
  • the base station configures the number of PDCCHs that the UE needs to receive.
  • the UE multiplies the measured channel matrix and the precoding matrix on the NZP CSI-RS resource configured or triggered.
  • the UE subtracts the estimated channel signal from the received signal, and the remaining signal acts as interference, or the UE measures the interference caused by other UEs through the DMRS resource, or the UE subtracts the received signal from the DMRS estimation.
  • the channel signal, the remaining signal as interference.
  • the other UEs include the paired UEs in the MU-MIMO scenario, and/or the UEs scheduled by other cells in the cell where the UE is located.
  • the specific correspondence is which can be set by the system or configured through the network side.
  • other reference factors may also be introduced during setting or configuration, which are not limited herein.
  • the other configuration information may also be a QCL configuration information.
  • the measurement behavior may be determined by using a PQI (PDSCH RE Mapping and Quasi-Co-Location Indicator) field.
  • PQI PDSCH RE Mapping and Quasi-Co-Location Indicator
  • the UE multiplies the measured channel matrix and the precoding matrix on the NZP resource as interference, or the UE, on the configured or triggered NZP CSI-RS resource.
  • the received signal is subtracted from the estimated channel signal, and the remaining signal is used as interference, or the UE measures the interference caused by other UEs through the DMRS resource, or the UE subtracts the channel signal estimated by the DMRS from the received signal, and the remaining signal As interference.
  • the other UEs include the paired UEs in the MU-MIMO scenario, and/or the UEs scheduled by other cells in the cell where the UE is located.
  • the specific correspondence is which can be set by the system or configured through the network side.
  • other reference factors may also be introduced during setting or configuration, which are not limited herein.
  • the above indication may also be a combination of an explicit indication and an implicit indication, for example, the indication of the channel measurement is implicitly indicated, and the type of the specific interference measurement is explicitly indicated.
  • both the channel and the channel can be measured, or the multiple channels are measured or interfered.
  • the possible situation is that the base station configures the measurement resources for the UE, but according to the existing protocol, the UE does not know The result measured on the configured resources is whether the channel is still interference, or whether it is the strongest interference or the weakest interference. Therefore, configuring a resource no longer represents a single measurement behavior. Based on the method provided in the embodiments of the present invention, some measurement behavior under a certain resource may be configured.
  • the transmission set dynamically changes with the movement of the UE or the dynamic cooperation between the base stations. Therefore, in the measurement phase, neither the base station nor the UE has determined which base stations are included in the transmission set (unless relying on RSRP to determine the transmission set). Therefore, the CSI measurement results require the size and configuration of the secondary base station to determine the transmission set.
  • the UE feeds back the CSI measurement results under the possible transmission set to the base station, and provides the base station with measurement results under various cooperation hypotheses, transmission hypotheses, and interference assumptions, thereby helping the base station to make decisions.
  • the UE may obtain multiple CSI measurement results according to the measurement attributes to support the decision of the base station.
  • the resource for channel state information measurement includes at least one, and the first indication information used to indicate the measurement attribute of the resource includes several elements, and each of the several elements is used to indicate the resource.
  • Each element can be an int (decimal) value, a bit value, or an index of the measured attribute.
  • each resource has only one measurement attribute.
  • the number of bits of the bit value included in each element is related to the number of types of measurement attributes. For example, if the number of types of measurement attributes is 4, the number of bits of the bit value is 2; and the number of types of measurement attributes is 5, the number of bits of the bit value is 3.
  • the first indication information may be included in a CSI measurement setting field or a CSI process domain.
  • the first indication information is included in the high layer signaling, or is included in the physical layer signaling.
  • the high layer signaling may include RRC signaling
  • the physical layer signaling may include downlink control information (DCI) signaling.
  • DCI downlink control information
  • the TRP needs to be reconfigured and the first indication information is sent. It can be understood that this situation is suitable for the case where there are multiple interference measurements, as defined above, and also for the presence of only channel measurements and one interference measurement (such as the existing interference using ZP CSI-RS). Measurement).
  • the measurement attributes of the base station configuration resource are as follows:
  • the first indication information may be 0011122, where each element is 1 int, or may be 00000101011010, where each element is 2 bits, and the corresponding IDs are in order from small to large.
  • the UE receives the first indication information, and can obtain resources with IDs 1 and 2, resources with measurement attributes of 0, IDs of 3, 4, and 5, resources with measurement attributes of 1, IDs of 6 and 7, and measurement attributes of 2.
  • the same resource may be configured to be used for both channel measurement and at least one of the foregoing X types of interference measurement. That is, the resource used for channel state information measurement has one measurement attribute, or has more than one measurement attribute.
  • the first indication information used to indicate the measurement attribute information of the resource may be in the dimension of the identifier (ID) of the resource.
  • the first indication information is included in a resource domain of the resource.
  • the first indication information may be several elements, each element may be an index of measurement attributes possessed by the resource, or a measurement attribute corresponding to each of several elements, the number of elements and the measurement attribute The type is related.
  • the base station configures measurement attributes for each resource (ID), as shown in Table 3 below:
  • the configuration information of the resources can be exemplified as follows:
  • the Measure Type is used to indicate the measurement attribute that the resource has.
  • the UE can learn to perform channel measurement on the resource with the resource ID of 0, perform interference measurement on the resource with ID 1, and obtain the strongest interference, and the resources with IDs 2 and 3 are performed. Interference measurement, obtain omnidirectional interference, and perform interference measurement on the resource with ID 4 to obtain the interference power of the neighboring base station.
  • the second mode is configured by using the resource as the dimension
  • the other mode is configured by using the measurement attribute as the dimension. That is, one measurement attribute corresponds to one resource for channel state information measurement, or one measurement attribute corresponds to more than one resource for channel state information measurement.
  • the first indication information used to indicate the measurement attribute information of the resource may include several elements, and each element may be one or more resource identifiers of resources for channel state information measurement with certain measurement attributes, Alternatively, each of the plurality of elements corresponds to a resource identifier indicating whether the resource has the measurement attribute. The number of elements is related to the total number of resources (identifications).
  • the base station configures a resource ID for each measurement attribute, as shown in Table 4 below:
  • the MeasureType0 is configured with a CSI-RS resource ID corresponding to Type0 (configured by CSI-RS-ConfigIdList), and MeasureType1 is configured with a CSI-RS resource ID corresponding to Type1 (configured by CSI-RS-ConfigIdList).
  • the configuration signaling may be included in a CSI measurement setting field or a CSI process domain.
  • the UE can learn that the resource with ID 0 is used for channel measurement, the resource with ID 1 is used for interference measurement of Type 1, and the resources with IDs 2 and 3 are used for interference measurement of Type 2, ID.
  • a resource of 4 is used for Type 4 interference measurements.
  • the type can also be two types of RS setting and IM setting included in the CSI measurement setting.
  • the above table can be expressed as follows:
  • the resource ID corresponding to each measurement attribute can be configured in the corresponding measurement attribute domain, for example, the resource IDs 1 and 2 are configured in the RS-setting (reference signal setting) field, and the IM-setting (interference measurement setting) is set.
  • the resource IDs in the domain are configured as 3, 4, and 5.
  • the configuration information of the link indicates the measurement attribute of the resource in the resource setting indicated by the link.
  • the resources in the resource setting are the aforementioned resources for channel state information measurement.
  • the configuration information in the link may include: a resource setting ID, and a reporting setting ID.
  • the foregoing information of the resource for channel state information measurement includes the resource setting identifier.
  • the configuration information in the link may further include: a resource quantity.
  • the attribute of the resource may be a channel or an interference.
  • the configuration information in the link may further include: an interference measurement attribute.
  • the attribute of the resource and/or the interference measurement attribute is a specific representation of the aforementioned measurement attribute.
  • the interference measurement attribute may be an item of the aforementioned X kinds of interference measurement.
  • the identifier (such as index or number) of the interference measurement attribute may be the same as or different from the identifier of the item of the foregoing X interference measurement.
  • the attribute of the foregoing resource is a channel
  • the link indicates that the measurement attribute identifier is 1, indicating that the measurement behavior corresponding to the identifier 1 is performed on the resource pointed to by the link.
  • the foregoing resource includes a resource of a zero-power channel state information reference signal, and the attribute of the resource of the zero-power channel state information reference signal (ZP CSI-RS) can only be interference.
  • the link indicating the resource-related configuration may not include the domain (or field, or cell) of the attribute of the resource, but includes the interference measurement attribute.
  • a link may include configuration information of a plurality of resources, and the content included in the configuration information of each resource (ie, one or more of the foregoing report setting identifier, attribute of the resource, interference measurement attribute, and channel measurement attribute) may be different.
  • each configuration information of the resources may include configuration information corresponding to each resource setting identifier, and has a corresponding relationship with the order of the resource setting identifiers, for example, sequentially in the order of the resource setting identifiers.
  • the attribute of the resource corresponding to the resource of the ZP CSI-RS may default to none. For example, there are two resources with the interference measurement attribute pointed by the link, one of which is a ZP CSI-RS resource and the other is a non-ZP CSI-RS resource. In this case, the attribute of the resource indicated by the link is only One (interference), and the interference measurement attribute has two.
  • a form of configuration for a link can be:
  • the attribute of the configuration information is a numerical value.
  • the information of the resource for channel state information measurement includes information of resources available for channel measurement and information of resources used for interference measurement, the configuration information
  • the second indication information is further included to indicate the number M of resources actually used for channel measurement, where M is an integer not less than 1.
  • the user equipment performs channel state information measurement according to the configuration information and feeds back the channel state information, including:
  • performing measurement of channel state information for the resource actually used for channel measurement includes: performing channel measurement on the resource actually used for channel measurement, or performing channel on the resource actually used for channel measurement. And performing interference measurement on resources other than the M resources in the resources available for measurement of channel state information.
  • the configuration of the base station can be as follows:
  • the UE can learn, by using the second indication information, that the number of resources actually used for channel measurement is 1.
  • the value of the second indication information may be an int type or a bit type or other type, which is not limited herein.
  • the resource available for channel measurement is identified by the configuration information as a resource with IDs 1 and 2, and the resource used for interference measurement is a resource with ID 3.
  • the value of the second indication information is an int type
  • the number of resources that can be used for channel measurement may be “0”, “1” or “2”. , respectively, 0, 1, and 2.
  • the resource indicating ID 1 and the resource with ID 2 are from two base stations for cooperative transmission, and the results measured on the two resources are all channels, and the joint is measured. channel. If the value is "1", it means that the UE needs to obtain two CQI calculation results.
  • This situation differs from the former case in that resources that are not used for channel measurement among the resources available for channel measurement are not used for interference measurement.
  • whether resources that are not used for channel measurement in the resources available for channel measurement are used for interference measurement may be predefined by a protocol, or may be separately configured by a base station.
  • the second indication information as a binary type, for example, "00", “01”, “10", “11”, “01” may indicate that the resource with ID 1 is used for channel measurement, and "10" may indicate that the ID is 2
  • the resources are used for channel measurement, and "11” may indicate that resources with IDs 1 and 2 are used for channel measurement (joint channel). That is to say, the second indication information may not only indicate the number of resources actually used for channel measurement, but also indicate which resource is specifically used for channel measurement.
  • the default value of the value of the field of the second indication information may default to int type 1, that is, only one resource can be used for channel measurement, that is, there is no joint channel.
  • the UE may be pre-defined to select one resource for channel measurement in order from the smallest in the order of the resource ID, and other resources are used for interference measurement, and several CQIs are obtained.
  • the range of values of the domain of the second indication information may be the same as the number of resources available for channel measurement, for example, the base station and the UE may know the number of available channel resources, as shown in the above table, The domain can have two bits to indicate two resource IDs.
  • the resources that are not used for the channel measurement are used for the interference measurement, and the interference power corresponding to the strongest interference may be obtained by default, and may be separately configured by the base station, which is not limited herein.
  • the measurement result that the UE needs to report is indicated by a domain (indication information) as the first of all possible measurement results.
  • the first few here can be one or more values.
  • the first indication information indicates that the number of resources actually used for channel measurement is 1, and the UE can measure four possible CQIs.
  • This indication mode can save the signaling overhead reported by the UE in the case of more resource IDs and multiple IDs as channels.
  • the specific configuration information may be RRC signaling or DCI signaling.
  • the RRC signaling may be configured to include a resource having an ID of 1, 2, and 3 in the RS setting, and the IM setting includes a resource having an ID of 4, 5 (which may be simply referred to as a resource 4, 5), and the RRC signaling may further include the foregoing.
  • the second indication information optionally, the RRC signaling may further include the foregoing field for indicating that the measurement result that the UE needs to report is the first of all possible measurement results.
  • the field of the second indication information is included in the RS setting field, or in the RS-IMsetting field, or in the interference hypothesis setting field, where the interference hypothesis setting field can be
  • the RS setting field and the IM setting field are in a side-by-side relationship.
  • the new configuration content may be delivered by the RRC signaling again.
  • RRC signaling including RS setting, IM setting, second indication information field or other possible fields.
  • the configuration that needs to be changed is updated by DCI signaling.
  • the value of the second indication information field of the DCI signaling configuration is “2” to indicate the joint channel to measure two resource IDs.
  • the configuration of the base station is as shown in Table 7 below.
  • the physical meaning of the type is described in the following table:
  • the UE can learn that all resources need to be measured for channel measurement, and when the CQI is obtained, it may include 1/ (2+3+4+5), 2/(1+3+4+5), 3/(1+2+4+5) values in the three cases.
  • the numerator is the ID of the resource used for channel measurement
  • the denominator is the ID of the resource used for interference measurement. Two resources are excluded for channel measurement, such as (1+2)/(3+4+5).
  • the second indication information may be used to indicate the multiple measurement results that are required to be obtained.
  • multiple measurement results are required, and multiple measurement attributes may be configured, which may reduce signaling overhead. Therefore, a plurality of measurement results are utilized as a reference for the base station to make scheduling decisions.
  • the fifth mode may be combined with any one of the foregoing manners one to four or with any one of the manners one to three, the information of the resources for channel state information measurement including information of resources used for channel measurement and available for interference measurement.
  • the information of the resource, the configuration information further includes third indication information, which is used to indicate the number N of resources actually used for interference measurement, where N is an integer not less than 0.
  • the user equipment performs channel state information measurement according to the configuration information and feeds back the channel state information, including:
  • the measurement of channel state information for resources for channel measurement includes channel measurement of resources for channel measurement and interference measurement of the N resources.
  • the base station can be configured as shown in Table 8 below.
  • the specific physical meaning of the type is described in Table 1:
  • the number of resources actually used for the interference measurement indicated by the third indication information is 2, and the resource set indicating the interference measurement includes two resources for interference measurement, such as 3 and 4, 4 and 5, or, 3 and 5 .
  • the value of the field of the third indication information may be of the int type, such as "0", “1", “2", “3”, or may be a binary type, such as "00", "01", "10", "11".
  • the corresponding number of resources may be selected from the resources available for interference measurement according to the ID from small to large for interference measurement, thereby obtaining corresponding CQIs. .
  • Resources that are not used for interference measurement in resources that can be used for interference measurement can be used neither for interference measurement nor for channel measurement, ie, ignore.
  • the information may be further included to indicate that the CQI that the UE needs to report is the first of several CQIs obtained according to a certain rule. It can be understood that the first few here can be one or more values.
  • the optional third indication information may be included in the RRC signaling or the DCI signaling, for example, the domain of the third indication information is included in the IM setting field, or the RS-IMsetting field, or the interference hypothesis setting.
  • the interference hypothesis setting field may be in a side-by-side relationship with the RS setting field and the IM setting field. It can be understood that the domain in the embodiment of the present invention may include one or more than one cell.
  • the information of the resource for channel state information measurement includes information of resources available for channel measurement and may be used for interference measurement.
  • the information of the resource, the configuration information further includes second indication information and third indication information, where the second indication information is used to indicate the number M of resources actually used for channel measurement, and the third indication information is used to indicate that the information is actually used for interference.
  • the number N of measured resources where M is an integer not less than 1, and N is an integer not less than 0.
  • the user equipment performs channel state information measurement according to the configuration information and feeds back the channel state information, including:
  • the N resources that are actually used for the interference measurement are used for the measurement and feedback of the channel state information for the M resources that are actually used for channel measurement, and optionally, for the M resources actually used for channel measurement.
  • the measuring of the channel state information includes performing channel measurement on the M resources actually used for channel measurement and performing interference measurement on the N resources, or performing channel measurement on the M resources actually used for channel measurement and Performing interference measurement on the resources other than the M resources and the N resources in the resources available for channel state information measurement.
  • the seventh method may be independent of the manners one to six, or may be combined with any one of the manners one to three, the information of the resources for channel state information measurement including information of resources available for channel measurement and resources for interference measurement.
  • the information further includes fourth indication information for indicating the number Y, Y of the transmission set is an integer.
  • the user equipment determines, according to the number Y of transmission sets indicated by the fourth indication information, Z resources that are actually used for channel measurement in the resources that are available for channel measurement, and are used for actual channels.
  • performing measurement of channel state information for Z resources actually used for channel measurement includes: performing channel measurement on Z resources actually used for channel measurement, and removing resources from the resources available for channel state information measurement The resources other than the Z resources are used for interference measurement.
  • the configuration of the base station may be as shown in the following Table 9.
  • the physical meaning of the type may refer to the description in Table 1:
  • the number Y of the transmission set is 1, and the number of resources used for channel state information measurement included in one transmission set is 2, for example, the UE can know that the resources available for channel measurement are actually used for channel measurement.
  • the number of resources is 2.
  • the UE may perform channel measurement on two resources actually used for channel measurement and perform interference measurement on resources other than the two resources in the resources available for channel state information measurement, for example, (1+2)/ (3+4+5), (1+3)/(2+4+5), (1+4)/(2+3+5), (2+3)/(1+4+5), (2+4)/(1+3+5), (3+4)/(1+2+5).
  • the UE may also not measure resources that are not used for channel measurement, such as (1+2)/5, (1+3)/5, (1+4)/5, (2+3)/5, (2+4)/5 and so on.
  • the fourth indication information may be included in the high layer signaling, and may also be included in the physical layer signaling.
  • the fourth indication information may be included in the CSI measurement setting field or the CSI process, and further, may be included in the RS-setting. In the domain.
  • the eighth mode is independent or combined with any one of the methods 1 to 3.
  • the resources corresponding to the channel measurement in the measurement attribute include at least two, and the user equipment performs channel state information measurement according to the configuration information. And feeding back the channel state information includes:
  • the user equipment measures and feeds back channel state information for at least one of the at least two resources, the measuring comprising performing channel measurement on at least one of the at least two resources and on at least two resources other than performing channel measurement At least one resource other than the interference measurement.
  • the resources received by the UE for channel measurement are resources available for channel measurement, and various combinations of at least one of the resources available for channel measurement are performed to obtain corresponding measurement results.
  • resources not used for channel measurement may be used for interference measurements or not for measurement.
  • the resource for channel state information measurement may include a resource of NZP CSI-RS (referred to as NZP resource for short) and/or a resource of ZP CSI-RS ( Referred to as ZP resources).
  • the configuration information of whether the configuration information is an NZP resource or a ZP resource may be distinguished by a difference in a field (or a cell) included in the configuration information of the NZP resource and the ZP resource. Since the attribute of the ZP resource is certain, that is, interference, the measurement behavior of the ZP resource can be known.
  • the measurement behavior when the NZP resource is used for interference measurement is unique, that is, has an interference measurement attribute, and the measurement behavior of the ZP resource is also unique, such as measurement behavior on the NZP resource (interference measurement) Attribute) is the result of measuring the interference channel matrix and precoding matrix and multiplying the two as interference.
  • the measurement behavior (interference measurement attribute) on the ZP resource is the power information of the measurement interference, due to the configuration of the NZP CSI-RS.
  • the information and the configuration information of the ZP CSI-RS include different fields (or cells), and then the interference measurement attribute of the resource can be derived according to the number of fields of the resource.
  • the format of the configuration information of the NZP resource and the ZP resource (such as the location of the NZP resource and the ZP resource configuration information in the message, the size occupied, or the range of the identifier of the NZP resource, ZP)
  • the scope of the identification of the resource and the like are specifically defined to distinguish between the two (the specification does not exclude the specification from being particularly specified), and the number of the fields included in the configuration information may be distinguished by the number of fields included in the configuration information.
  • the interference measurement properties of each resource are determined.
  • the ZP configuration has three fields, and the NZP configuration has six fields. Since the resource allocation in the NR does not necessarily distinguish the two resources from the naming according to the NZP and the ZP, it may be called an interference measurement resource (IMR).
  • IMR interference measurement resource
  • One possible performance may be that the range of the two identifiers is Coincident, in this case, the number of fields of IMR1 and IMR2 is different, and it can be distinguished that IMR1 is NZP and IMR2 is ZP.
  • the measurement behavior according to NZP is unique, and the measurement behavior of ZP is also unique.
  • the measurement behavior on the NZP resource is the measurement of the interference channel matrix and the precoding matrix and the result of multiplying the two as interference.
  • the measurement behavior on the ZP resource is the power information of the measurement interference, and then the interference measurement attribute of each resource can be determined by distinguishing whether an IMR is an NZP or a ZP to determine the measurement behavior on the resource.
  • the configuration information of the ZP CSI-RS can be as follows.
  • the configuration information includes three fields:
  • the configuration information of the NZP CSI-RS may be as follows.
  • the configuration information includes six fields:
  • the UE may perform corresponding feedback according to a predefined rule when the corresponding CSI is fed back, or may perform corresponding feedback according to the indication of the base station.
  • the predefined rule may be feedback for the UE according to the size of the ID of the resource used for channel measurement, such as: min(min( ⁇ IDRS), min(IDRS)), ie, according to the minimum of the ID of the resource used for channel measurement.
  • min(min( ⁇ IDRS), min(IDRS)) ie, according to the minimum of the ID of the resource used for channel measurement.
  • the value, and the smaller of the sum of the sums of the IDs of the resources used for channel measurement, is based on the feedback of the CSI.
  • the feedback may be performed according to the size of the resource ID used for the interference measurement, such as: min(min( ⁇ IDIM), min(IDIM)), that is, according to the ID of the resource used for the interference measurement.
  • the minimum value of the minimum value of the sum of the IDs of the resources used for the interference measurement is based on the feedback of the CSI.
  • feedback of CSI is performed based on max(min( ⁇ IDRS), min(IDRS)) and/or max(min( ⁇ IDIM), min(IDIM)).
  • the feedback of the CSI can also be performed by other predetermined rules, which is not limited herein.
  • the CSI can feed back in an uplink data channel such as a Physical Uplink Shared Channel (PUSCH).
  • PUSCH Physical Uplink Shared Channel
  • the base station knows in advance how many possible CSIs are available, and may reserve a corresponding number of bits in the uplink data channel for CSI detection.
  • the CSIs are sorted according to a predefined, and the CSI is fed back to the base station through the uplink data channel.
  • each CSI is fed back on an uplink control channel, such as a physical uplink control channel (PUCCH), according to a defined period plus a respective offset.
  • an uplink control channel such as a physical uplink control channel (PUCCH)
  • the CQI offset can be configured by the cqi-pmi-ConfigIndexList cell in the RRC signaling, as follows:
  • the UE may sequentially feed back according to the corresponding period and offset on the uplink control channel according to a preset sequence.
  • the UE can learn the measurement attribute of the corresponding resource used for CSI measurement. And some indications of the base station can be used to know how to use these resources for CSI measurement to obtain corresponding CSI measurement results. More CSI measurement results can be obtained with less overhead, thereby supporting various transmission schemes of the base station, or improving the efficiency of communication with the UE under a certain transmission scheme.
  • the embodiment of the present invention provides another method for measuring channel state information, including:
  • a user equipment receives configuration information for measurement of channel state information from a wireless network device, where the configuration information includes information of resources available for measurement of channel state information.
  • the user equipment performs channel state information measurement according to the configuration information, and feeds back the channel state information and measurement attribute information of a resource for channel state information measurement corresponding to the channel state information, where the measurement
  • the attributes include channel measurements, or X types of interference measurements, or channel measurements and X types of interference measurements, where X is an integer not less than one.
  • the wireless network device sends configuration information for channel state information measurement to the user equipment, where the configuration information includes information of resources available for channel state information measurement; receiving channel state information and channel state information fed back by the user equipment.
  • the measurement attribute information of the resource for channel state information measurement includes channel measurement, or X kinds of interference measurement, or channel measurement and X type interference measurement, where X is an integer not less than 1,
  • the resources used for channel state information measurement are all or part of the resources available for channel state information measurement.
  • the X interference measurement comprises: measuring interference (such as interference power) by using a reference signal of zero power, and acquiring the strongest P interference by using resources of the channel state information reference signal of non-zero power (where P is configurable or For protocol reservations, no configuration is required, using the resources of the channel state information reference signal of non-zero power to obtain the weakest Q interferences (where Q is configurable or not required for protocol reservation), using channel state information reference signals of non-zero power
  • the resource acquires interference that is not precoded (omnidirectional interference), and uses the resource of the channel state information reference signal of the non-zero power to acquire all interferences of all selectable precoding matrices in the available codebook, using non-zero power
  • the resource of the channel state information reference signal acquires interference corresponding to a non-strongest or weakest specific precoding matrix (W), and acquires at least one of precoded interference using a demodulation reference signal of non-zero power.
  • the measurement attribute information of the resource for channel state information measurement corresponding to the channel state information includes a number of bits, each of the bits is used to indicate a measurement attribute of each of the resources.
  • the UE feeds back a CSI and corresponding measurement attribute information, such as 11000, indicating that the CSI is used for channel measurement in the first two bits, and the resources corresponding to the last three bits are used for interference measurement. of.
  • the measurement attribute of the resource corresponding to the CSI fed back by the UE may be determined by using a correspondence between the transmission scheme and the CSI feedback.
  • the transmission scheme includes NCJT (non-coherent joint transmission), CS/CB (coordinated scheduling and beamforming), DPS (dynamic point selection) or DPB (dynamic point) Blanking, dynamic point off), etc.
  • the UE may separately calculate respective CQIs for the resources corresponding to the CSI measurement corresponding to the two TRPs, and calculate the measurement result of the NZP resource of the other TRP by default for one CQI. (ie NZP resources are used for interference measurements).
  • the measurement attribute information of the resource for channel state information measurement corresponding to the above channel state information may be included in a CSI reporting setting field.
  • the foregoing transmission scheme may be configured in a tranmission scheme setting field.
  • the method shown in FIG. 1 or FIG. 3 above can be applied to a MU-MIMO (multi-user multiple input multiple output) scenario or a collaboration scenario.
  • MU-MIMO multi-user multiple input multiple output
  • a possible solution in the MU-MIMO scenario is: when the serving base station schedules multiple user equipments, each user is configured with different measurement resources.
  • a user equipment is configured with multiple resources, some resources are used for channel measurement, and some resources are used for interference measurement. These resources can be distinguished by different types.
  • Another possible solution is that multiple user equipments are scheduled to use the same measurement resources, and the measurement results on these resources can be used as channels or as interference in different CSI reports.
  • a possible solution in a cooperative scenario is: when one UE is scheduled by multiple base stations, different base stations can use the same measurement resource or different measurement resources when configuring measurement resources for the UE. Then, one UE can detect two different CQIs on the same resource, corresponding to two cooperative base stations (for example, two cooperative base stations).
  • one NZP resource can be regarded as a channel or can be regarded as interference.
  • One NZP resource can be configured as Type 0 (channel) in one CSI report calculation and Type 1 (interference) in another CSI report calculation. If two base stations call different measurement resources, two CQIs are measured on one UE on two sets of measurement resources.
  • the method proposed in the embodiment of the present invention is not limited to the foregoing MU-MIMO or the collaboration scenario, and may be applied to other scenarios, which is not limited herein.
  • the corresponding CSI can be measured under different interference assumptions (that is, the same resource can be used for channel measurement and also for interference measurement), thereby enabling the base station to select a more accurate according to the CSI measurement result. Transmission set.
  • the embodiment of the present invention is described by using a scenario of a 4G network in a wireless communication network as an example. It should be noted that the solution in the embodiment of the present invention may also be applied to other wireless communication networks, and corresponding names may also be used. Replace with the name of the corresponding function in other wireless communication networks.
  • the method or device in the embodiment of the present invention may be applied between a base station and a user equipment, and may also be applied between a base station and a base station (such as a macro base station and a micro base station), and may also be applied to user equipments and users.
  • a base station and a base station such as a macro base station and a micro base station
  • user equipments and users may also be applied to user equipments and users.
  • Between devices such as D2D scenarios), in all embodiments of the present invention, communication between a base station and a UE is taken as an example for description.
  • FIG. 4 is a simplified schematic diagram showing the internal structure of the above base station and UE.
  • Exemplary base stations may include an antenna array, a duplexer, a transmitter (TX), and a receiver (RX) (sometimes, TX and RX are collectively referred to as transceiver TRX), and a baseband processing portion.
  • the duplexer is used to implement the antenna array for both transmitting signals and receiving signals.
  • TX is used to convert between RF signal and baseband signal.
  • TX can include power amplifier PA, digital-to-analog converter DAC and frequency converter.
  • RX can include low noise amplifier LNA, analog-to-digital converter ADC and frequency converter.
  • the baseband processing section is used to implement processing of transmitted or received signals, such as layer mapping, precoding, modulation/demodulation, encoding/decoding, etc., and for physical control channels, physical data channels, physical broadcast channels, reference signals, etc. Perform separate processing.
  • the base station may further include a control portion for performing multi-user scheduling and resource allocation, pilot scheduling, user physical layer parameter configuration, and the like.
  • Exemplary UEs may include an antenna, a duplexer, a transmitter (TX), and a receiver (RX) (sometimes, TX and RX are collectively referred to as transceiver TRX), and a baseband processing portion.
  • TX transmitter
  • RX receiver
  • the UE has a single antenna. It can be understood that the UE can also have multiple antennas (ie, an antenna array).
  • the duplexer is used to implement the antenna array for both transmitting signals and receiving signals.
  • TX is used to convert between RF signal and baseband signal.
  • TX can include power amplifier PA, digital-to-analog converter DAC and frequency converter.
  • RX can include low noise amplifier LNA, analog-to-digital converter ADC and frequency converter.
  • the baseband processing section is used to implement processing of transmitted or received signals, such as layer mapping, precoding, modulation/demodulation, encoding/decoding, etc., and for physical control channels, physical data channels, physical broadcast channels, reference signals, etc. Perform separate processing.
  • the UE may further include a control part, configured to request an uplink physical resource, calculate channel state information (CSI) corresponding to the downlink channel, determine whether the downlink data packet is successfully received, or the like.
  • CSI channel state information
  • an embodiment of the present invention further provides an apparatus for channel state information measurement, which may be a wireless device 10.
  • the wireless device 10 can correspond to a first wireless network device of the above methods.
  • the first wireless network device may be a base station or other devices, which is not limited herein.
  • the apparatus can include a processor 110, a memory 120, a bus system 130, a receiver 140, and a transmitter 150.
  • the processor 110, the memory 120, the receiver 140 and the transmitter 150 are connected by a bus system 130 for storing instructions for executing instructions stored in the memory 120 to control the receiver 140 to receive.
  • Signaling, and controlling the transmitter 150 to transmit a signal completes the steps of the wireless network device (e.g., base station) in the above method.
  • the receiver 140 and the transmitter 150 may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the memory 220 may be integrated in the processor 210 or may be provided separately from the processor 210.
  • the functions of the receiver 140 and the transmitter 150 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
  • the processor 110 can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
  • a wireless device provided by an embodiment of the present invention may be implemented by using a general-purpose computer.
  • the program code that is to implement the functions of the processor 110, the receiver 140 and the transmitter 150 is stored in a memory, and the general purpose processor implements the functions of the processor 110, the receiver 140 and the transmitter 150 by executing the code in the memory.
  • the embodiment of the present invention further provides another apparatus for channel state information measurement, and the apparatus may be a wireless device 20, where the wireless device 20 corresponds to the first user equipment in the foregoing method.
  • the second wireless device may be a UE, or may be a micro base station or a small base station, which is not limited herein.
  • the apparatus can include a processor 210, a memory 220, a bus system 230, a receiver 240, and a transmitter 250.
  • the processor 210, the memory 220, the receiver 240 and the transmitter 250 are connected by a bus system 230 for storing instructions for executing instructions stored in the memory 220 to control the receiver 240 to receive.
  • the signal is transmitted, and the transmitter 250 is controlled to transmit a signal to complete the steps of the UE in the above method.
  • the receiver 240 and the transmitter 250 may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the memory 220 may be integrated in the processor 210 or may be provided separately from the processor 210.
  • the functions of the receiver 240 and the transmitter 250 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
  • the processor 210 can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
  • a wireless device provided by an embodiment of the present invention may be implemented by using a general-purpose computer.
  • the program code that is to implement the functions of the processor 210, the receiver 240 and the transmitter 250 is stored in a memory, and the general purpose processor implements the functions of the processor 210, the receiver 240, and the transmitter 250 by executing code in the memory.
  • the embodiment of the present invention further provides a communication system, including the foregoing first wireless network device and one or more user devices.
  • the processor 110 or 210 may be a central processing unit ("CPU"), and the processor may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 120 or 220 can include read only memory and random access memory and provides instructions and data to the processor 310.
  • a portion of the memory may also include a non-volatile random access memory.
  • the memory can also store information of the device type.
  • the bus system 130 or 230 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for the sake of clarity, the various buses are labeled as bus systems in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 110 or 210 or an instruction in the form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .
  • the present application also provides an embodiment for the configuration and/or triggering of channel state information and the process of reporting.
  • the schemes described in the following embodiments may be used alone or in combination with any one or more of the solutions described in the foregoing application, for example, in the whole process of channel state information configuration, measurement, and reporting,
  • the channel state information measurement method is used to complete the measurement of the channel state information
  • the channel state information reporting method is used to complete the triggering of the channel state information reporting or Configure and complete the reporting of channel status information.
  • multiple network devices may cooperate to provide data transmission for the UE.
  • the UE may obtain channel state information of multiple network devices by measurement, and The channel state information is reported to at least one of the plurality of network devices for cooperation and scheduling between the plurality of network devices.
  • the network side eg, the serving network device
  • configures the UE for the UE for example, TRP1 in order to determine whether the two network devices are suitable for cooperation.
  • the channel state information measurement configuration one channel state information measurement configuration is based on TRP1, and the network devices to be cooperative (for example, TRP2) are interferences in the cooperation set.
  • the other channel state information measurement configuration is based on TRP2, and TRP1 is the interference in the cooperative set.
  • the two channel state information measurement configurations respectively obtain one channel state information measurement result.
  • TRP1 needs to obtain the measurement results of the two channel state information reported by the UE, so as to know the two channel conditions when TRP1 and TRP2 are NCJT, and determine the system throughput when TRP1 and TRP2 are NCJT, thereby judging or determining the cooperation and scheduling situation.
  • the UE may also obtain channel state information of other network devices for which data transmission is not provided, and the channel state information may be reported to the network device that provides data transmission for the UE as a result of the interference measurement, so that the network devices can Collaboration and scheduling.
  • TRP2 is the interference source of the UE, and the interference received by the UE can be reduced by quieting TRP2.
  • TRP1 can configure two channel state information measurement configurations for the UE.
  • One channel state information measurement configuration considers TRP2 interference, and the other channel state information measurement configuration considers that TRP2 silence does not interfere with the UE.
  • the UE After receiving the measurement information of the two channel state information, the UE measures the channel state information measurement result of the TRP2 interference and reports it to the TRP1, so that the TRP1 can determine the amount of channel quality change after the TRP2 is silent, and is in the scheduling. Reflect whether TRP2 is silent.
  • the network device When the UE needs to report multiple channel state information, the network device usually needs to receive the multiple channel state information as soon as possible, so as to synthesize all the information for cooperation and scheduling at the next moment. Therefore, a triggering and reporting manner of channel state information is needed to minimize the delay between reporting of multiple channel state information, so that the network device can utilize multiple channel state information for cooperation and scheduling as soon as possible.
  • the embodiment of the present application provides a communication system, which may include at least one network device and at least one UE.
  • the network device may be a device on the access network side for supporting the UE to access the system, such as a base station (BS), a relay node, an access point (AP), and a sending and receiving point. (transmission reception point, TRP) and the like.
  • the base station may be a macro base station, a micro base station, a home base station, or the like.
  • the network device can be fixed or mobile.
  • the UE may be referred to as a terminal, a mobile station, a subscriber unit, a station, or the like.
  • the UE can be a cellular phone, a personal digital assistant (PDA), a wireless modem, a wireless communication device, a handheld, a laptop computer, a cordless phone (cordless) Phone), wireless local loop (WLL) station, tablet (pad), etc.
  • PDA personal digital assistant
  • the device that can access the wireless communication network can communicate with the wireless network system side, or communicate with other objects through the wireless network, can be the UE in the embodiment of the present application, for example, in intelligent transportation.
  • the UE may communicate with a network device.
  • the UE may be static or mobile.
  • the embodiment of the present application provides a communication system 100.
  • the communication system 100 includes at least one network device and at least one user device.
  • the UE communicates with the network device through the wireless interface, and can also communicate with another UE, such as a D2D (Device to Device) or M2M (Machine to Machine) scenario.
  • the network device can communicate with the UE or with another network device, such as a communication between the macro base station and the access point.
  • one network device may provide communication services for one or more UEs, for example, the network side device 22 provides communication services for the UE 42; one UE may also communicate with multiple network devices on the same carrier, for example The UE 40 can simultaneously receive the downlink data transmitted by the network device 20, the network device 22, and the network device 24 on the same carrier.
  • the communication system 100 includes, but is not limited to, for example, code division multiple access (CDMA), time division multiple access (TDMA), frequency division multiple access (FDMA), and positive Orthogonal frequency-division multiple access (OFDMA), single carrier frequency division multiple access (SC-FDMA) system, and other networks, for example, 3GPP long term evolut ion (LTE)
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA positive Orthogonal frequency-division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • LTE 3GPP long term evolut ion
  • a system for further evolution of the system or a new radio access technology system (which may be simply referred to as an "NR" system), or a 5G system developed by a standards organization or any next generation system.
  • NR new radio access technology system
  • 5G developed by a standards organization or any next generation system.
  • network and “system” are interchangeable in the embodiments of the present invention.
  • UTRA can include variants of CDMA (WCDMA) and other CDMA.
  • CDMA2000 can cover interim standard (IS) 2000 (IS-2000), IS-95 and IS-856 standards.
  • the TDMA network can implement a wireless technology such as a global system for mobile communication (GSM).
  • GSM global system for mobile communication
  • An OFDMA network may implement such as evolved universal radio terrestrial access (evolved UTRA, E-UTRA), ultra mobile broadband (UMB), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash OFDMA And other wireless technologies.
  • UTRA and E-UTRA are UMTS and UMTS evolved versions.
  • 3GPP Long Term Evolution (LTE) and LTE Advanced (LTE-A) are new releases of UMTS that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, and GSM are described in the documentation of the 3GPP standards organization.
  • CDMA2000 and UMB
  • the channel state information (CSI) described in this application is information for reporting channel and/or interference measurement results.
  • the CSI may include a rank indication (RI), a prediction matrix indication (PMI), a channel quality indicator (CQI), and a CSI-RS resource indicator. , CRI) and at least one of a precoding type indicator (PTI).
  • the CSI may include a CSI that is periodically reported, a CSI that is periodically reported, or a CSI that is semi-persistently reported.
  • the non-periodic reporting CSI is reported according to the trigger of the network device.
  • the periodically reported CSI is reported according to the reporting period configured by the network device.
  • the semi-statically reported CSI is periodically reported in a certain period of time according to the reporting period configured by the network device and the trigger of the network device, and is not reported outside the time period.
  • the semi-statically reported CSI can be reported to be activated/deactivated by the signaling. After receiving the activation signaling, the terminal reports the reported reporting period and the offset. After receiving the deactivation signaling, the terminal stops reporting.
  • a CSI described in this application refers to a CSI reported after measuring a CSI measurement resource. Or, it refers to the CSI reported after measuring a channel state information reference signal resource (CSI-RS resource). Or, it refers to the CSI reported according to a CSI reporting setting information.
  • the CSI that is reported aperiodically is the CSI that is reported once after the measurement of one CSI measurement resource.
  • the CSI that is periodically reported is the CSI that is periodically reported after the measurement of one CSI measurement resource.
  • a CSI that is reported in a semi-static manner is a CSI that is periodically reported multiple times after measuring a CSI measurement resource in a certain period of time. Therefore, a CSI in the present application can also be understood as a set of CSI.
  • the CSI in the set of CSIs includes a CSI reported once, periodically reported or semi-statically reported.
  • the set of CSIs includes CSIs that are reported multiple times.
  • the "CSI reporting" and the “CSI feedback” described in the present application may be mutually replaced, and both refer to a process in which the UE sends the CSI to the network device, and the process may also include the process of triggering or configuring the CSI reporting.
  • the "information information” described in this application may include signaling or information of different layers. For example, it may include layer 1 (layer 2), layer 2 (layer 2) or layer 3 (layer 3) signaling or information.
  • the layer 1 generally refers to a physical layer
  • the layer 2 generally refers to a medium access control (MAC) layer
  • the layer 3 generally refers to a radio resource control (RRC) layer.
  • the indication information may be DCI information of a physical layer, or a MAC control element (MAC CE) of a MAC layer, or RRC signaling of an RRC layer.
  • the “carrier” described in this application corresponds to a specific frequency band, for example, a frequency band of 1.8 GHz or a frequency band of 28 GHz.
  • a beam as used in the present application refers to a radio wave having a certain direction and shape in a space formed when a wireless signal is transmitted or received by at least one antenna port.
  • the beam may be formed by weighting the amplitude and/or phase of the data transmitted or received by the at least one antenna port, or may be formed by other methods, such as adjusting the relevant parameters of the antenna unit.
  • the beam can be understood as a spatial resource, which can refer to a transmit or receive precoding vector or precoding matrix with energy transmission directivity, and the transmit or receive precoding vector or precoding matrix can be identified by index information.
  • the energy transmission directivity may be that, after receiving a precoding process through the precoding vector or the precoding matrix, the received signal has good receiving power, such as satisfying the receiving demodulation signal to noise ratio, etc., in a certain spatial position. Energy transmission directivity may also mean that receiving the same signals transmitted from different spatial locations through the precoding vector or precoding matrix has different received powers.
  • the same wireless communication device (such as a user equipment or a network device) may have different precoding vectors or precoding matrices. Different devices may also have different precoding vectors or precoding matrices, that is, corresponding to different beams.
  • a wireless communication device can use one or more of a plurality of different precoding vectors or precoding matrices at the same time, that is, one or more beams can be formed at the same time.
  • the beam pair described in the present application includes a transmit beam at the transmitting end and a receive beam at the receiving end, or includes an uplink beam or a downlink beam.
  • the beam pair may include a transmit beam of the base station and a receive beam of the UE, or a transmit beam of the UE and a receive beam of the base station.
  • the beam may be identified by index information (eg, index information of a precoding vector or index information of a precoding matrix).
  • the index information may correspond to or include a resource identifier (ID) configured to the UE.
  • the index information may be a channel status information reference signal (CSI-) configured to the UE.
  • the ID or resource of the RS) may also be the ID or resource of the configured Sounding Reference Signal (SRS).
  • the index information may also be index information of a signal or channel display or implicit bearer carried by the beam, for example, the index information may be a synchronization signal sent by a beam or a broadcast channel indicating the beam. Index information.
  • the beam may be identified by the CSI-RS resource number and/or the antenna port number used to transmit or receive the beam; it may also be identified by using a beam pair number or a beam pair index; a synchronization signal block time may also be used (synchronization signal block time) Index, SS block time index) to identify.
  • a synchronization signal block time may also be used (synchronization signal block time) Index, SS block time index) to identify.
  • the specific indication or the manner of identification of the beam is not limited in this application.
  • the "antenna port(s)" described in the present application is a different logical port defined to distinguish different channels, and the channel through which the symbol transmitted on one antenna port passes may be based on the same antenna. The channel through which the other symbols sent on the port pass is determined.
  • the data receiving end may perform channel estimation by using a DM-RS (Demodulation-Reference Signal) transmitted on the same antenna port as that used to transmit the data. Data demodulation.
  • DM-RS Demodulation-Reference Signal
  • the "antenna port number" described in this application is used to indicate a specific antenna port, for example, an antenna port number of 7 indicates an antenna port 7.
  • FIG. 8 is a flowchart of a CSI reporting method according to an embodiment of the present disclosure.
  • the network device sends an indication message to the user equipment, where the indication information is used to indicate the reporting of the K CSIs, where K ⁇ 2, the K CSIs are user equipments performing measurement resources on the same carrier. Measured obtained.
  • the network device may be a serving network device of the user equipment.
  • the K CSIs may be K non-periodicly reported CSIs, or may be K periodically reported CSIs, or may be K semi-statically reported CSIs.
  • the indication information may be physical layer signaling, for example, downlink control informatization (DCI).
  • the indication information may be RRC signaling, for example, signaling for configuring CSI that is periodically reported.
  • the indication information may also be other signaling or information of the physical layer or the RRC layer, or may be signaling or information of other layers, such as the MAC CE of the MAC layer. This application does not limit the type and name of the indication information. It does not limit the indication information corresponding to different CSIs. It can be designed according to system requirements.
  • the user equipment reports the K CSIs on the same carrier.
  • the K CSIs may be reported at the same time or may be reported in a time-sharing manner.
  • the delay caused by multiple CSI triggers can be reduced, so that the network device can obtain more CSIs faster, so that Multiple CSIs collaborate and/or schedule.
  • the time required for the network device to acquire K CSIs may be further shortened, so as to cooperate and/or schedule according to more CSIs as soon as possible.
  • the indication information is used to trigger the reporting of the K CSIs when the K CSIs are CSIs or K semi-statically reported CSIs.
  • the user equipment After receiving the indication information, the user equipment performs measurement and reporting of CSI.
  • the indication information includes index information that includes the K CSI reporting sets in the indication information.
  • the CSI report configuration index indicates a specific CSI report configuration information that is configured for the UE.
  • the CSI report configuration information may include a CSI parameter (reported CSI parameter(s)), a CSI type (CSI type), and a codebook configuration. Codebook configuration) At least one of information, time-domain behavior, frequency granularity of CQI and PMI.
  • the user equipment determines a specific CSI report configuration according to the index of the CSI report configuration, and performs CSI measurement and reporting according to the CSI report configuration.
  • the index information of the CSI report configuration may be the value information of the CSI report configuration index, or other information used to determine the CSI report configuration index.
  • the CSI reporting configuration to be instructed is related to a certain CSI measurement setting or a link setting
  • the CSI measurement configuration or the link configuration may be instructed to indicate the CSI reporting configuration index.
  • the CSI measurement configuration or the link configuration information is used to determine the CSI measurement configuration index included in the CSI measurement configuration or the link configuration, thereby determining the CSI. Report configuration information and complete measurement and reporting of CSI.
  • the indication information includes index information of a CSI reporting configuration group to which the K channel state information belongs.
  • the CSI reporting configuration group refers to a set including at least one CSI reporting configuration.
  • the index of the configuration group reported by the CSI indicates the specific CSI report configuration group.
  • the network device may notify the UE of the specific CSI to report the configured packet information, and then indicate in the indication information which CSI reports the CSI in the configuration group.
  • the network device may configure the CSI to report the configured packet in the high-layer signaling (eg, RRC signaling).
  • the network device configures the CSI reporting setting set 1 by using the RRC signaling, including the CSI reporting configuration 1 (CSI reporting setting 2) and CSI reporting setting 2, CSI reporting setting 2 includes CSI reporting setting 1 and CSI reporting setting 3, CSI reporting
  • the CSI reporting setting set 3 includes a CSI reporting setting 2 and a CSI reporting setting 3.
  • the network device indicates, by using the indication information (eg, DCI), that the CSI reports an index of the configuration set, thereby triggering reporting of CSI in at least one of the foregoing sets.
  • Table 10 shows a specific cell design. The cell "CSI request" is included in the indication information to indicate that the CSI reports the configuration set.
  • the CSI reporting setting set 1 includes the CSI reporting setting 1 and the CSI reporting setting 2 includes the CSI reporting configuration 2 (CSI reporting configuration 2).
  • Setting 2) CSI reporting setting set 3 includes CSI reporting setting 3 (CSI reporting setting 3).
  • the network device triggers reporting of the CSI in the at least one of the foregoing sets by using the indication information (eg, DCI).
  • the indication information eg, DCI.
  • Table 11 shows a specific cell design, the cell "CSI request" being included in the indication information for indicating the CSI reporting configuration set.
  • the index of the CSI reporting configuration group may be indicated to the UE by using other information.
  • the CSI measurement configuration group or the link configuration group may be indicated by the CSI measurement configuration or the link configuration group. .
  • the network device may configure the CSI measurement configuration packet in the high layer signaling (eg, RRC signaling), for example, the network device configures the CSI measurement setting set 1 through the RRC signaling, including the CSI measurement configuration 1 (CSI measurement setting 1) and CSI measurement setting 2, CSI measurement setting 2 includes CSI measurement setting 1 and CSI measurement setting 3, CSI measurement
  • the CSI measurement setting set 3 includes a CSI measurement setting 2 and a CSI measurement setting 3.
  • the network device indicates the index of the CSI measurement configuration set by using the indication information (eg, DCI), so as to trigger the reporting of the CSI in the CSI reporting configuration included in the at least one of the foregoing sets.
  • the indication information eg, DCI
  • Table 12 gives a specific cell design, the cell "CSI request" being included in the indication information for indicating a CSI measurement configuration set.
  • the user equipment may determine the currently configured CSI measurement configuration set according to the indication, and determine the CSI report configuration index included in the CSI measurement configuration according to the CSI measurement configuration index included in the CSI measurement configuration set. Further, the CSI reporting configuration information that needs to be reported is obtained.
  • the indication information only needs to include the index information of the CSI report configuration, and does not need to include the specific CSI report configuration information, thereby saving signaling overhead.
  • the reporting of the K CSIs may be performed by using the foregoing two methods. For example, a part of the CSI reports the index information of the CSI report configuration, and another part of the CSI reports the index information of the CSI report configuration group to which they belong. .
  • the indication that the K CSIs are reported may be jointly performed with the indications of other types of CSI reports (for example, CSI reporting in a carrier aggregation scenario) in the prior art.
  • a cell may be used in the indication information, and different CSI reports are indicated by using different values in the cell.
  • Table A shows an example of a specific cell design. The two states of '10' and '11' in Table A can trigger a CSI report configuration set when multiple carriers are used, that is, one CSI report configuration set. The included CSI reports can be performed on different CCs.
  • the '01' state indicates that one CSI reporting configuration set is triggered on one carrier, that is, the CSI reporting included in the CSI reporting configuration set is on the same carrier.
  • the indication information includes T CSI reporting timing offset information, and the T CSI reporting timings.
  • the offset is used for the reporting of the K CSIs, where T is an integer greater than or equal to 2, and the CSI reporting timing offset refers to a time interval between CSI reporting and CSI reporting.
  • the CSI reporting timing offset may be in units of time slots, or may be in other time domain resource units, which is not limited in this application.
  • the network device may implement time division of the K CSIs by configuring different timings of CSI reporting timings for the K CSIs.
  • FIG. 8b shows a schematic diagram of the CSI reporting process corresponding to this example.
  • the network device indicates, by means of an indication, that the user equipment reports K CSIs (part 801).
  • the user equipment measures the CSI according to the CSI that needs to be reported in the indication information, and according to the CSI reporting timing offset value indicated in the indication information, respectively, on the same carrier, at different times.
  • the K CSIs (8021 to 802K parts) are reported.
  • the K CSIs may correspond to K different CSI reporting timing offset values, or may correspond to less than K different CSI reporting timing offset values, where at least two of the K CSI reports are reported.
  • the CSI reports the same CSI report timing offset value, that is, reports at the same time.
  • the network device and the user equipment may pre-arrange the CSI reporting the timing offset value of the packet, for example, pre-configure the specific CSI reporting timing offset value packet by using high layer signaling (such as RRC signaling), and then In the indication information, it is indicated which specific CSI reporting timing offset value the user equipment currently needs to use.
  • the first group CSI reporting timing offset value is ⁇ 1, 4 ⁇
  • the second group CSI reporting timing offset value is ⁇ 2, 4 ⁇
  • the third group CSI reporting timing offset value is ⁇ 1, 3 ⁇ .
  • Table 13 and Table 14 respectively present two specific cell design methods for indicating the CSI reporting timing offset value, wherein Table 13 is a separate indication of the CSI reporting timing offset in the indication information.
  • the value of the fourteen bits in the indication information is jointly indicated by the CSI reporting configuration group and the CSI reporting timing offset value.
  • the network device may further configure a plurality of time-frequency domain resources for reporting the CSI for the user equipment, for example, the indication information may further include at least one for reporting.
  • CSI time-frequency domain resource configuration information The user equipment reports the timing offset value according to the CSI, and reports the at least one of the K CSIs by using different time-frequency domain resources at different times.
  • the indication information is used to configure the reporting of the K CSIs when the K CSIs are periodically reported CSIs.
  • the user equipment After receiving the indication information, the user equipment performs periodic CSI reporting according to the indication information.
  • the indication information includes at least one of index information, report period information, and subframe offset configuration information of the K channel state information report configuration.
  • the K periodically reported CSIs may have the same or different reporting periods, or may have the same or different reported subframe offset configurations. When the C periodicly reported CSIs have the same reporting period and the same reporting subframe offset configuration, the K periodically reported CSIs are reported at the same time.
  • the indication information in the embodiment of the present application may further include beam information, where the beam information is used to indicate a beam used to report the K channel state information, where the beam information indicates L beams, L is an integer greater than or equal to 1, and each of the L beams is used to report the K channel state information.
  • the user equipment sends the K CSIs using one configured beam.
  • the K CSIs may be simultaneously transmitted, that is, the K beams are simultaneously transmitted by using the configured beams; the K CSIs may also be sent in a time-sharing manner, that is, using one configured beam, the Ks are respectively sent at different times. CSI.
  • the UE 40 reports the K CSIs to the network device 22 and the network device 24, where the beam 1 is directed to the network device 22 and the beam 2 is directed to the network device 24, that is, the UE 40 reports the K CSIs to the network using the beam 1.
  • the device 22 reports the K CSIs to the network device 24 by using the beam 2.
  • the user equipment reports the K CSIs by using different beams, and can report multiple CSIs to different network devices, and improve the probability that different network devices correctly receive the K CSIs.
  • Multiple CSIs can reduce the time for information transmission between network devices, for example, saving the time required for CSI information to be transferred between network devices, so as to facilitate cooperation and scheduling between network devices.
  • the plurality of network devices that receive the K CSIs by the receiving user equipment may include the serving network device and the cooperative network device, or may be all the cooperative network devices.
  • the serving network device refers to a network device that provides a high-level connection (such as an RRC layer connection) for the user equipment.
  • the UE performs an initial connection establishment process in a cell provided by the serving network device, or starts a connection re-establishment process.
  • a collaborative network device is a non-serving network device that provides data transmission for user equipment.
  • the indication information used to indicate the K CSI reports in the application may be sent by the serving network device, or may be provided by the cooperative network device.
  • the beam information may be uplink beam information, for example, a sounding reference signal resource indication (SRI), or may be downlink beam information, such as a CSI-RS resource indication (CSI-RS).
  • SRI sounding reference signal resource indication
  • CSI-RS resource indication
  • Resource indication (CRI) when the beam information is downlink beam information, the user equipment may determine the used uplink beam by combining the indicated downlink beam information and beam pair information.
  • the network device and the user equipment may pre-arrange the grouping of the beam, for example, pre-configure a specific beam packet by higher layer signaling (such as RRC signaling), and then indicate in the indication information that the user equipment currently needs Which specific set of beams is used.
  • the first set of SRIs is defined as ⁇ SRI1, SRI2 ⁇
  • the second set of SRIs is ⁇ SRI2, SRI3 ⁇
  • the third set of SRIs is ⁇ SRI1, SRI3 ⁇ .
  • Tables 15 and 16 show the specific cell designs for the two indicator beam groups, respectively, where Table 15 shows the beam groups used alone in the indication information, and the table 16 bits are indicated. The information indicates that the CSI reports the configuration group and the beam group used.
  • the use of each beam is the same as when a single beam is used to report K CSIs.
  • the K CSIs reported on one beam can be reported in a time-sharing manner, or can be reported at the same time. The specific implementation manner is as described above and will not be described again.
  • time-division reporting one or more of the K CSIs may be reported by using multiple beams at a certain time, and another one or more of the K CSIs may be reported by using multiple beams at another time.
  • the L beams may also be sent by using the same or different time domain resources.
  • the L beams can be transmitted using the same time domain resource and different frequency domain resources. At this time, the L beams are transmitted simultaneously using different frequency domain resources, and each beam includes a report of K CSIs.
  • the selection of different frequency domain resources can be designed according to requirements. For example, all subcarriers with an even subcarrier number are a set of frequency domain resources, and all subcarriers with an odd subcarrier number are another set of frequency domain resources; The consecutive x subcarriers are a set of frequency domain resources. As shown in Figure 10a, two beams are transmitted simultaneously using different frequency domain resources.
  • the L beams may be transmitted using different time domain resources, and each beam includes K CSI reports, and the frequency domain resources used by each beam may be the same or different.
  • Different time domain resource usage patterns and divisions can be designed according to the specific needs of the system. For example, in symbol (symbol), all symbols with odd symbol numbers are used to send one beam, and all symbol numbers are even.
  • the symbols are a group for transmitting another beam. For example, a continuous set of y symbols is used to transmit one beam, and a certain symbol or time slot interval may be set between each successive y symbols.
  • frequency domain resources refer to the scheme in the previous example, and details are not described here. As shown in FIGS.
  • FIG. 10b and 10c two specific examples of using different time domain resources to transmit different beams are given.
  • the two beams are transmitted on two time domain resources using the same frequency domain resource.
  • Figure 10c illustrates a case where two beams are used in a round-robin cycle.
  • K SCIs are reported using beam 1
  • K are reported using beam 2.
  • the CSI uses the beam 1 to report K SCI.... on the third group of time domain resources until the time domain resource configured by the system or the number of times of reporting reaches the preset value is used, or other conditions for stopping reporting are set by the system.
  • time domain resources and the frequency domain resources shown in FIG. 10a to FIG. 10c may be divided into units according to the design and requirements of the system.
  • the time domain may include at least one symbol, may also include at least one slot, may also include at least one time unit smaller than the symbol, may include at least one subcarrier in the frequency domain, and the like.
  • the specific transmission manners of the L beams are used, for example, whether they are sent simultaneously or in a round-robin manner, and may be determined by a predefined or default manner, or may be dynamically performed by using signaling (such as RRC signaling). Or semi-static instructions. For example, if the system defaults multiple beam transmission modes to be cyclically transmitted, when the user equipment receives the indication information of multiple beams, the K-CSI can be reported by using multiple beams in the above-mentioned round-robin manner.
  • the K CSIs may use joint coding when reporting. For example, taking two CSIs as an example, RI joint coding in two CSIs, CQI joint coding, and PMI joint coding (where the first PMI of the PMI in the first CSI and the PMI of the second CSI are the first) PMI joint coding, the second PMI of the PMI in the first CSI and the second PMI of the PMI in the second CSI, or the first PMI second PMI joint coding of the PMI in the first CSI, The first PMI and the second PMI of the PMI in the two CSIs are jointly encoded).
  • the RI in the first CSI, the first PMI of the PMI in the first CSI, the RI in the second CSI, the first PMI joint coding of the PMI in the first CSI, and the two CSIs CQI joint coding, a second PMI of the PMI in the first CSI and a second PMI joint coding of the PMI in the second CSI can be designed according to the requirements of the system, and this application does not limit this.
  • the embodiment of the present application provides an apparatus for implementing the functions of the network device in the foregoing embodiment.
  • the device may be a network device, or other device that can implement a corresponding function, such as a chip.
  • FIG. 11 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • the network device shown in Figures 11a and 11b may be a network device (e.g., a serving network device or a cooperative network device) in the embodiment shown in Figures 7 to 10c.
  • the network device shown in FIG. 11a and FIG. 11b can be used to implement the content that the network device participates in in all the above embodiments.
  • the network device shown in FIG. 11a includes a processor 1110, a transceiver 1120, and a memory 1130.
  • the transceiver 1120 can be configured to support sending and receiving information between the network device and the UE in the foregoing embodiment.
  • the processor 1110 may determine specific content of the indication information to be transmitted and/or generate the indication information, and the transceiver 1120 may send the indication information to the UE.
  • the downlink data may be sent to the UE, and the CSI reported by the UE and/or the uplink data sent by the UE may be received.
  • the network device can also include a memory 1130 that can be used to store program code and data for the network device. It will be appreciated that Figure 11a only shows a simplified implementation of a network device.
  • the network device as shown in FIG. 11b includes a processing unit 1111 and a transceiver unit 1121.
  • the processing unit 1111 may be configured to determine specific content of the indication information to be sent and/or generate the indication information
  • the transceiver unit 1121 may be configured to use the indication information to the UE.
  • the downlink data may be sent to the UE, and the CSI reported by the UE UE and/or the uplink data sent by the UE may be received.
  • the embodiment of the present application provides a device, which is used to implement the functions of the user equipment in the foregoing embodiment.
  • the device may be a user equipment, or other devices that can implement corresponding functions, such as a chip.
  • FIG. 12a and FIG. 12b a schematic diagram of an embodiment of a UE provided by the present invention is shown.
  • the UE as shown in Figures 12a and 12b may be the UE in the embodiment shown in Figures 7 to 10c.
  • the UE shown in FIG. 12a and FIG. 12b can be used to implement the content that the UE participates in the implementation in the embodiment shown in FIG. 7 to FIG. 10c, including all the content in the foregoing embodiment that receives the indication information and/or reports the CSI.
  • the UE shown in FIG. 12a includes a transceiver 1210, and the processor 1220 may further include a memory 1230 and a modem processor 1240.
  • the transceiver 1210 processes (eg, analog transforms, filters, amplifies, upconverts, etc.) the output samples output by the modem processor 1240 and generates an uplink signal that is transmitted via the antenna to the antenna The network device described in the above embodiment.
  • the antenna receives the downlink signal transmitted by the network device in the above embodiment, and the transceiver 1210 processes (eg, filters, amplifies, downconverts, digitizes, etc.) the signal received from the antenna and provides input sampling to The modem processor 1240.
  • the transceiver 1210 can receive indication information sent by the network device.
  • encoder 12401 receives traffic data and signaling messages to be transmitted on the uplink and processes (e.g., formats, codes, and interleaves) the traffic data and signaling messages.
  • Modulator 12402 further processes (e.g., symbol maps and modulates) the encoded traffic data and signaling messages and provides output samples.
  • Demodulator 12404 processes (e.g., demodulates) the input samples and provides symbol estimates.
  • the decoder 12403 processes (e.g., deinterleaves and decodes) the symbol estimate and provides decoded data and signaling messages that are sent to the UE.
  • Encoder 12401, modulator 12402, demodulator 12404, and decoder 12403 may be implemented by an integrated modem processor 1240. These components are processed according to the radio access technology employed by the radio access network.
  • the processor 1220 performs control management on the action of the UE, and is used to perform processing performed by the UE in the foregoing embodiment. For example, the processor 1202 may determine and/or generate K CSIs acquired on the same carrier according to the indication information.
  • the processor 1202 may determine and/or generate specific content of the K CSIs according to the CSI reporting configuration information indicated in the indication information.
  • the processor 1202 is configured to support the UE to perform content of the UE in the embodiment of the present invention.
  • Memory 1230 is for storing program code and data for the UE.
  • an embodiment of the present invention provides an example of another UE, where the UE includes a transceiver unit 1211 and a processing unit 1221.
  • the transceiver unit 1211 may be configured to receive the network device to send the indication information, and may further receive the downlink data sent by the at least one network device, or report the K CSIs and/or send the uplink data to the at least one network device.
  • the processing unit 1221 may be configured to determine and/or generate K CSIs acquired on the same carrier according to the indication information.
  • information and signals can be represented using any technology techniques, such as data, instructions, commands, information, signals, bits. (bit), symbol and chip may pass voltage, current, electromagnetic wave, magnetic field or magnetic particles, light field or optical particles, or any combination of the above.
  • a general purpose processor may be a microprocessor.
  • the general purpose processor may be any conventional processor, controller, microcontroller, or state machine.
  • the processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other similar configuration. achieve.
  • the steps of the method or algorithm described in the embodiments of the present invention may be directly embedded in hardware, a software module executed by a processor, or a combination of the two.
  • the software modules can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium in the art.
  • the storage medium can be coupled to the processor such that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium can also be integrated into the processor.
  • the processor and the storage medium may be disposed in an ASIC, and the ASIC may be disposed in the user terminal. Alternatively, the processor and the storage medium may also be disposed in different components in the user terminal.
  • the above-described functions described in the embodiments of the present invention may be implemented in hardware, software, firmware, or any combination of the three. If implemented in software, these functions may be stored on a computer readable medium or transmitted as one or more instructions or code to a computer readable medium.
  • Computer readable media includes computer storage media and communication media that facilitates the transfer of computer programs from one place to another.
  • the storage medium can be any available media that any general purpose or special computer can access.
  • Such computer-readable media can include, but is not limited to, RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage or other magnetic storage device, or any other device or data structure that can be used for carrying or storing Other media that can be read by a general purpose or special computer, or a general purpose or special processor.
  • any connection can be appropriately defined as a computer readable medium, for example, if the software is from a website site, server or other remote source through a coaxial cable, fiber optic computer, twisted pair, digital subscriber line (DSL) Or wirelessly transmitted in, for example, infrared, wireless, and microwave, is also included in the defined computer readable medium.
  • DSL digital subscriber line
  • the disks and discs include compact disks, laser disks, optical disks, DVDs, floppy disks, and Blu-ray disks. Disks typically replicate data magnetically, while disks typically optically replicate data with a laser. Combinations of the above may also be included in a computer readable medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种信道状态信息测量的方法,包括:用户设备接收来自无线网络设备的用于信道状态信息测量的配置信息,所述配置信息包括用于信道状态信息测量的资源的信息并指示所述资源的测量属性信息,所述测量属性包括信道测量,或,X种干扰测量,或,信道测量和X种干扰测量,其中X为大于或等于1的整数;所述用户设备根据所述配置信息进行信道状态信息的测量并反馈所述信道状态信息。本方法以期满足未来网络中多点协作的一些不同场景中对于信道状态信息测量的不同需求。

Description

一种信道状态信息处理的方法、装置和系统 技术领域
本发明涉及通信技术领域,特别是涉及一种信道状态信息测量的方法、装置和系统。
背景技术
下一代移动通信系统要求大容量和高质量的数据传输。多输入多输出(multiple input multiple output,MIMO)技术被认为是可实现未来高速数据传输的关键技术之一,在第四代(4G)及第五代(5G)的移动通信系统中有着广阔的应用前景。传统的集中式MIMO系统的多根发射天线均集中于基站(BS)端。与集中式MIMO不同,分布式MIMO系统的多根发射天线分布于不同的地理位置,其各对收发链路之间更加独立,具有大容量、低功耗、更好的覆盖、对人体的低电磁损害等优势,被认为是未来无线通信系统的备选方案之一。在分布式MIMO的情况下,协同多点传输(CoMP,coordinated multipoint transmission)被认为是一种解决小区间干扰问题并提升边缘用户吞吐量的有效方法。CoMP技术中多个相邻小区可以联合处理或协调与边缘用户之间的通信来避免干扰并提升边缘用户吞吐量。下行CoMP技术主要包括联合传输(JT,joint transmission)、协同调度和波束成型(CS/CB,coordinated scheduling and beamforming)和动态点选择/关闭(DPS/DPB,dynamic point selection/dynamic point blanking)。为了实现这些CoMP调度,服务基站需要知道各站点到目标用户设备的下行信道条件。在LTE规范中,提供了一种参考信号,即CSI参考信号(channel state information reference signal,CSI-RS),是终端用来在传输模式9和10的情况下获取CSI的。UE通过对特定的CSI-RS的测量来估计信道,得到CSI并通过物理上行控制信道(Physical uplink control channel,PUCCH)上报给服务基站。其中,服务基站是指服务小区所属的基站。所上报的CSI信息可能包含信道质量指示(channel quality indicator,CQI),秩指示(rank indicator,RI),预编码矩阵指示(precoding matrix indicator,PMI)信息中的一种或多种的组合。为了配置UE接收和处理指定的CSI-RS,并提供所需的反馈信息,基站可以通过配置高层信令,如无线资源控制(radio resource control,RRC)信令来指示UE。
在3GPP 36.213协议中,提出使用非零功率NZP(non-zero power)CSI-RS进行信道测量,使用零功率ZP(zero power)CSI-RS进行干扰测量。但是,这样的设定不能满足未来网络如NR(new radio,新无线)网络中多点协作的一些不同场景中对于信道状态信息测量的不同需求。因而,如何使信道状态信息的测量满足多点协议中多种场景的需求,是一个亟待解决的问题。
此外,在多点协作等一些场景中,用户设备需要上报多个CSI给网络设备,以便网络设备根据所述多个CSI判断和决策具体的协作和调度,因此,还需要一种新的方案解决如何触发和上报这多个CSI的问题。
发明内容
本发明实施例提供一种信道状态信息测量的方法、装置,通信系统和终端,以期满足未来网络中多点协作的一些不同场景中对于信道状态信息测量的不同需求。
第一方面,本发明实施例提供一种信道状态信息测量的方法,包括:
用户设备接收来自无线网络设备的用于信道状态信息测量的配置信息,所述配置信息包括用于信道状态信息测量的资源的信息并指示所述资源的测量属性信息,所述测量属性包括信道测量,或,X种干扰测量,或,信道测量和X种干扰测量,其中X为大于或等于1的整数;
所述用户设备根据所述配置信息进行信道状态信息的测量并反馈所述信道状态信息。
由于干扰测量的种类可以大于1,因而可以根据需要更明确的指示UE侧的测量行为。
第二方面,本发明实施例提供一种信道状态信息测量的方法,包括:
第一无线网络设备向用户设备发送用于信道状态信息测量的配置信息,所述配置信息包括用于信道状态信息测量的资源的信息并指示所述资源的测量属性信息,所述测量属性包括信道测量,或,X种干扰测量,或,信道测量和X种干扰测量,其中X为大于或等于1的整数;
第二无线网络设备接收来自用户设备的信道状态信息,所述信道状态信息基于所述配置信息得到,其中第二无线网络设备和第一无线网络设备相同或不同。
结合第一方面或第二方面,所述用于信道状态信息测量的资源的信息包括可用于信道测量的资源的信息和用于干扰测量的资源的信息,所述配置信息还包括第二指示信息,用于指示实际用于信道测量的资源的个数M,其中,M为不小于1的整数;或,
所述用于信道状态信息测量的资源的信息包括用于信道测量的资源的信息和可用于干扰测量的资源的信息,所述配置信息还包括第三指示信息,用于指示实际用于干扰测量的资源的个数N,其中,N为不小于0的整数;或,
所述用于信道状态信息测量的资源的信息包括可用于信道测量的资源的信息和可用于干扰测量的资源的信息,所述配置信息还包括第二指示信息和第三指示信息,第二指示信息用于指示实际用于信道测量的资源的个数M,第三指示信息用于指示实际用于干扰测量的资源的个数N,其中,M为不小于1的整数,N为不小于0的整数。
所述用户设备根据所述配置信息进行信道状态信息的测量并反馈所述信道状态信息包括:
所述用户设备根据所述第二指示信息确定所述可用于信道状态信息的资源中实际用于信道测量的M个资源,针对所述实际用于信道测量的M个资源进行信道状态信息的测量和反馈。
可选的,针对所述实际用于信道测量的资源进行信道状态信息的测量包括:对所述实际用于信道测量的资源进行信道测量。示例的,针对所述实际用于信道测量的资源进行信道状态信息的测量包括:对所述实际用于信道测量的资源进行信道测量以及对所述可用于信道状态信息测量的资源中除所述M个资源之外的资源进行干扰测量。
可选的,所述用户设备根据所述配置信息进行信道状态信息的测量并反馈所述信道状态信息包括:
所述用户设备根据所述第三指示信息确定所述用于信道状态信息的资源中实际用于干扰测量的N个资源,针对用于信道测量的资源进行信道状态信息的测量和反馈,其中,针对用于信道测量的资源进行信道状态信息的测量包括对用于信道测量的资源进行信道测量和对所述N个资源进行干扰测量。
可选的,所述配置信息指示所述资源的测量属性信息包括:
所述配置信息包括用于指示测量属性的第一指示信息;或者,
所述配置信息的资源或格式用于指示所述资源的测量属性。
可选的,所述X种干扰测量包括利用零功率的参考信号测量干扰,利用非零功率的信道状态信息参考信号的资源获取最强的一个或多个干扰,利用非零功率的信道状态信息参考信号的资源获取最弱的一个或多个干扰,利用非零功率的信道状态信息参考信号的资源获取未被预编码的干扰,利用非零功率的信道状态信息参考信号的资源获取对应可使用的码本中的所有可选取的预编码矩阵的所有干扰,利用非零功率的信道状态信息参考信号的资源获取对应非最强或最弱的特定预编码矩阵的干扰,以及,利用非零功率的解调参考信号获取被预编码的干扰中的至少一种。
可选的,所述用于信道状态信息测量的资源包括至少一个,用于指示所述资源的测量属性的第一指示信息包括若干元素,若干元素中的每一个元素用于指示所述资源中的每个的测量属性。示例的,所述每个元素包括至少一个比特,所述比特的个数与所述测量属性的种类数量相关。
可选的,所述用于信道状态信息测量的资源具有一种测量属性,或者,具有多于一种测量属性。具体的,一个资源标识(ID)标识用于标识信道状态信息测量的资源,一个第一指示信息用于指示一种测量属性,一个资源标识具有一个第一指示信息,或者,具有多于一个第一指示信息。示例的,第一指示信息可以为bitmap(比特映射),或测量属性的索引的方式。
可选的,所述一种测量属性对应一个用于信道状态信息测量的资源,或者,所述一种测量属性对应多于一个用于信道状态信息测量的资源。具体的,一个资源标识(ID)标识用于标识信道状态信息测量的资源,用于指示所述一个或多于一个用于信道状态信息测量的资源的测量属性的第一指示信息可以包括具有所述测量属性的一个或多于一个用于信道状态信息测量的资源的资源标识,或者,可以包括若干比特,若干比特中的每一比特用于指示所述资源中的每个是否具有所述测量属性。
可选的,所述测量属性多于一种,所述多于一种测量属性中的每种测量属性具有对应的第一指示信息。
可选的,所述测量属性中的信道测量所对应的资源包括至少两个,且所述用户设备根据所述配置信息进行信道状态信息的测量并反馈所述信道状态信息包括:
所述用户设备针对至少两个资源中的至少一个测量并反馈信道状态信息,所述测量包括对所述至少两个资源中的至少一个进行信道测量以及对除进行信道测量的至少两个资源中的至少一个之外的资源进行干扰测量。
可选的,所述用于信道状态信息测量的资源的信息包括可用于信道测量的资源的信息和用于干扰测量的资源的信息,所述配置信息还包括第四指示信息,用于指示传输集的个数Y,Y为整数。这种方式下,可选的,所述用户设备根据所述第四指示信息所指示的传输集的个数Y,确定所述可用于信道测量的资源中实际用于信道测量的Z个资源,针对实际用于信道测量的Z个资源进行信道状态信息的测量和反馈,其中,Z=k*Y,k为每个传输集包括的用于信道测量的资源的个数,k为不小于1的整数。具体的,针对实际用于信道测量的Z个资源进行信道状态信息的测量可以包括:对实际用于信道测量的Z个资源进行信道测量以及对所述可用于信道状态信息测量的资源中除所述Z个资源之外的资源进行干扰测量。
第三方面,本发明实施例还提供一种信道状态信息测量的方法,包括:
用户设备接收来自无线网络设备的用于信道状态信息测量的配置信息,所述配置信息包括可用于信道状态信息测量的资源的信息;
所述用户设备根据所述配置信息进行信道状态信息的测量,并反馈所述信道状态信息以 及所述信道状态信息所对应的用于信道状态信息测量的资源的测量属性信息,所述测量属性包括信道测量,或,X种干扰测量,或,信道测量和X种干扰测量,其中X为不小于1的整数。23.根据权利要求22所述的方法,其特征在于,所述信道状态信息所对应的用于信道状态信息测量的资源的测量属性信息包括若干比特,所述若干比特中的每个比特用于指示所述资源中的每个的测量属性。
可选的,所述信道状态信息所对应的用于信道状态信息测量的资源为所述可用于信道状态信息测量的资源中的部分。
可选的,所述X种干扰测量包括利用零功率的参考信号测量干扰,利用非零功率的信道状态信息参考信号的资源获取最强的一个或多个干扰,利用非零功率的信道状态信息参考信号的资源获取最弱的一个或多个干扰,利用非零功率的信道状态信息参考信号的资源获取未被预编码的干扰,利用非零功率的信道状态信息参考信号的资源获取对应可使用的码本中的所有可选取的预编码矩阵的所有干扰,利用非零功率的信道状态信息参考信号的资源获取对应非最强或最弱的特定预编码矩阵的干扰,以及,利用非零功率的解调参考信号获取被预编码的干扰中的至少一种。
第四方面,还提供一种用户设备,包括处理器、存储器和收发器,
所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制收发器进行信号的接收和发送,当处理器执行所述存储器存储的指令时,所述用户设备用于完成如第一方面或第三方面中所描述的用户设备所涉及的任意一种方法。
第五方面,还提供一种无线网络设备,包括处理器、存储器和收发器,
所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制收发器进行信号的接收和发送,当处理器执行所述存储器存储的指令时,所述无线网络设备用于完成如第二方面中所描述的无线网络设备所涉及的任意一种方法。
第六方面,还提供一种用于信道状态信息测量的装置,包括一些模块,用于实现前述用户设备所涉及的任意一种方法。具体模块可以和各方法步骤相对应,在此不予赘述。
第七方面,还提供一种用于信道状态信息测量的装置,包括一些模块,用于实现前述无线网络设备所涉及的任意一种方法。具体模块可以和各方法步骤相对应,在此不予赘述。
第八方面,还提供一种计算机存储介质,用于存储一些指令,这些指令被执行时,可以完成前述用户设备或无线网络设备所涉及的任意一种方法。
第九方面,还提供一种通信系统,包括前述第四方面提供的用户设备和第五方面提供的无线网络设备。
通过本发明实施例提供的方法、装置和系统,以期满足未来网络中多点协作的一些不同场景中对于信道状态信息测量的不同需求。
为了便于理解,示例的给出了与部分与本发明相关概念的说明以供参考。如下所示:
第三代合作伙伴计划(英文:3rd generation partnership project,简称3GPP)是一个致力于发展无线通信网络的项目。通常,将3GPP相关的机构称为3GPP机构。
无线通信网络,是一种提供无线通信功能的网络。无线通信网络可以采用不同的通信技术,例如码分多址(英文:code division multiple access,简称CDMA)、宽带码分多址(wideband code division multiple access,简称WCDMA)、时分多址(英文:time division multiple access,简称:TDMA)、频分多址(英文:frequency division multiple access,简称FDMA)、正交频分多址(英文:orthogonal frequency-division multiple access,简称:OFDMA)、单载波频分多址(英文:single Carrier FDMA,简称:SC-FDMA)、载波侦听多 路访问/冲突避免(英文:Carrier Sense Multiple Access with Collision Avoidance)。根据不同网络的容量、速率、时延等因素可以将网络分为2G(英文:generation)网络、3G网络、4G网络或者未来演进网络,如5G网络。典型的2G网络包括全球移动通信系统(英文:global system for mobile communications/general packet radio service,简称:GSM)网络或者通用分组无线业务(英文:general packet radio service,简称:GPRS)网络,典型的3G网络包括通用移动通信系统(英文:universal mobile telecommunications system,简称:UMTS)网络,典型的4G网络包括长期演进(英文:long term evolution,简称:LTE)网络。其中,UMTS网络有时也可以称为通用陆地无线接入网(英文:universal terrestrial radio access network,简称:UTRAN),LTE网络有时也可以称为演进型通用陆地无线接入网(英文:evolved universal terrestrial radio access network,简称:E-UTRAN)。根据资源分配方式的不同,可以分为蜂窝通信网络和无线局域网络(英文:wireless local area networks,简称:WLAN),其中,蜂窝通信网络为调度主导,WLAN为竞争主导。前述的2G、3G、4G和5G网络,均为蜂窝通信网络。本领域技术人员应知,随着技术的发展本发明实施例提供的技术方案同样可以应用于其他的无线通信网络,例如4.5G或者5G网络,或其他非蜂窝通信网络。为了简洁,本发明实施例有时会将无线通信网络简称为网络。
蜂窝通信网络是无线通信网络的一种,其采用蜂窝无线组网方式,在终端设备和网络设备之间通过无线通道连接起来,进而实现用户在活动中可相互通信。其主要特征是终端的移动性,并具有越区切换和跨本地网自动漫游功能。
FDD:频分双工,frequency division duplex
TDD:时分双工,time division duplex
用户设备(英文:user equipment,简称:UE)是一种终端设备,可以是可移动的终端设备,也可以是不可移动的终端设备。该设备主要用于接收或者发送业务数据。用户设备可分布于网络中,在不同的网络中用户设备有不同的名称,例如:终端,移动台,用户单元,站台,蜂窝电话,个人数字助理,无线调制解调器,无线通信设备,手持设备,膝上型电脑,无绳电话,无线本地环路台,车载终端等。该用户设备可以经无线接入网(radio access network,简称:RAN)(无线通信网络的接入部分)与一个或多个核心网进行通信,例如与无线接入网交换语音和/或数据。
基站(英文:base station,简称:BS)设备,也可称为基站,是一种部署在无线接入网用以提供无线通信功能的装置。例如在2G网络中提供基站功能的设备包括基地无线收发站(英文:base transceiver station,简称:BTS)和基站控制器(英文:base station controller,简称:BSC),3G网络中提供基站功能的设备包括节点B(英文简称:NodeB)和无线网络控制器(英文:radio network controller,简称:RNC),在4G网络中提供基站功能的设备包括演进的节点B(英文:evolved NodeB,简称:eNB),在WLAN中,提供基站功能的设备为接入点(英文:access point,简称:AP)。在未来5G网络中的提供基站功能的设备包括继续演进的节点B(gNB),收发点(TRP)和传输点(transmission point,TP)。其中,TRP和TP可以不包括基带部分,仅包括射频部分(含天线),也可以包括基带部分和射频部分。在某些场景下,一个基站可以和一个或多个TRP或TP相连。
无线设备,是指位于无线通信网络中的可以通过无线方式进行通信的设备。该设备可以是基站,也可以是用户设备,还可以是其他网元。
网络侧设备,是指位于无线通信网络中位于网络侧的设备,可以为接入网网元,如基站或控制器(如有),或者,也可以为核心网网元,还可以为其他网元。
NR(新无线,new radio),是指新一代无线接入网络技术,可以应用在未来演进网络,如5G网络中。
无线局域网络(英文:wireless local area networks,简称:WLAN),是指采用无线电波作为数据传送媒介的局域网,传送距离一般只有几十米。
接入点(英文:access point,简称:AP),连接无线网络,亦可以连接有线网络的设备。它能当作中介点,使得有线与无线上网的设备互相连接、传输数据。
RRC(radio resource control):无线资源控制
RRC处理UE和无线接入网之间控制平面的第三层信息。通常包含以下功能中的至少一项:
广播核心网非接入层提供的信息。RRC负责网络系统信息向UE的广播。系统信息通常情况下按照一定的基本规律重复,RRC负责执行计划、分割和重复。也支持上层信息的广播。
将广播信息关联到接入层。RRC负责网络系统信息向UE的广播。系统信息通常情况下按照一定的基本规律重复,RRC负责执行计划、分割和重复。
建立、重新建立、维持和释放在UE和无线接入网之间的RRC连接。为了建立UE的第一个信号连接,由UE的高层请求建立一个RRC的连接。RRC连接建立过程包括可用小区的重新选择、接入许可控制以及2层信号链路的建立几个步骤。RRC连接释放也是由高层请求,用于拆除最后的信号连接;或者当RRC链路失败的时候由RRC本层发起。如果连接失败,UE会要求重新建立RRC连接。如果RRC连接失败,RRC释放已经分配的资源。
随着网络的演进,RRC的功能也可能有所变化,此处的描述不作为限定。
本申请还描述了一种信道状态信息上报的方法、装置和系统,旨在提供一种用户设备上报多个信道状态信息时,多个信道状态信息上报的指示和上报方案,且尽量减少多个信道状态信息上报过程中的时延。
第十方面,本申请实施例提供了一种信道状态信息上报方法,包括:用户设备接收来自网络设备的一条指示信息,所述指示信息用于指示K个信道状态信息的上报,其中,所述K个信道状态信息在相同的载波上测量和上报,K为大于等于2的整数;所述用户设备根据所述指示信息,上报所述K个信道状态信息。通过一条指示信息触发多于一个信道状态信息的上报,可以减少多个信道状态信息上报过程中的时延,使得网络设备可以尽快接收到进行协作和调度所需要的信道状态信息。可选的,所述K个信道状态信息可以同时上报,以便进一步减少时延,也可以分时上报,以便适配上行资源的调度缓解上行资源受限的问题。
在一个可能的设计中,所述K个信道状态信息为K个非周期性上报的信道状态信息,或者K个半静态上报的信道状态信息。可选的,所述指示信息中包含所述K个信道状态信息上报配置的索引信息和/或所述K个信道状态信息所属的信道状态信息上报配置组的索引信息。可选的,所述指示信息中包含T个信道状态信息上报定时偏移的信息,所述T个信道状态信息上报定时偏移用于所述K个信道状态信息的上报,其中T为大于等于2的整数,所述信道状态信息上报定时偏移是指信道状态信息上报触发到信道状态信息上报之间的时间间隔。所述时间间隔可以以一定的时域资源单元为单位,例如以时隙(slot)为单位,例如,网络设备在slot 0发送信道状态信息上报触发信息(如所述指示信息),网络设备在slot 5接收到信道状态信息的上报,则所述信道状态信息上报定时偏移为4个slot。再如,用户设备在slot0接收到信道状态信息上报触发信息(如所述指示信息),用户设备在slot 5上报信道状态信息,则所述信道状态信息上报定时偏移为4个slot。可选的,所述指示信息可以为下行控制信息。
在一个可能的设计中,所述K个信道状态信息为K个周期性上报的信道状态信息。可选 的,所述指示信息中包含所述K个信道状态信息上报配置的索引信息,上报周期信息和上报子帧偏移配置信息中的至少一个。可选的,所述指示信息中还可以包含所述K个信道状态信息上报配置信息,用于所述K个信道状态信息测量的资源信息中的至少一项。可选的,所述指示信息可以为RRC信令。
在一个可能的设计中,所述指示信息中还包括波束信息,所述波束信息用于指示上报所述K个信道状态信息所使用的波束,所述波束信息指示L个波束,所述L为大于等于1的整数,所述L个波束中的每个波束均用于上报所述K个信道状态信息。可选的,所述L为大于等于2的整数,所述L个波束为使用相同的时域资源发送的波束,或者,所述L个波束为使用不同的时域资源分别发送的波束。配置多个波束用于所述K个信道状态信息的上报,可以使得UE使用不同的波束将所述K个信道状态信息分别上报给不同的网络设备,减少网络设备之间进行信息交互的时延,进一步加快协作和调度的决策。
第十一方面,本申请实施例提供了一种信道状态信息上报方法,包括:网络设备发送一条指示信息给用户设备,所述指示信息用于指示K个信道状态信息的上报,K为大于等于2的整数;所述网络设备在相同的载波上接收所述K个信道状态信息。可选的,所述K个信道状态信息可以同时上报,以便进一步减少时延,也可以分时上报,以便适配上行资源的调度缓解上行资源受限的问题。
在一个可能的设计中,所述K个信道状态信息为K个非周期性上报的信道状态信息,或者K个半静态上报的信道状态信息。可选的,所述指示信息中包含所述K个信道状态信息上报配置的索引信息和/或所述K个信道状态信息所属的信道状态信息上报配置组的索引信息。可选的,所述指示信息中包含T个信道状态信息上报定时偏移的信息,所述T个信道状态信息上报定时偏移用于所述K个信道状态信息的上报,其中T为大于等于2的整数,所述信道状态信息上报定时偏移是指信道状态信息上报触发到信道状态信息上报之间的时间间隔。可选的,所述指示信息可以为下行控制信息。
在一个可能的设计中,所述K个信道状态信息为K个周期性上报的信道状态信息。可选的,所述指示信息中包含所述K个信道状态信息上报配置的索引信息,上报周期信息和上报子帧偏移配置信息中的至少一个。可选的,所述指示信息中还可以包含所述K个信道状态信息上报配置信息,用于所述K个信道状态信息测量的资源信息中的至少一项。可选的,所述指示信息可以为RRC信令。
在一个可能的设计中,所述指示信息中还包括波束信息,所述波束信息用于指示上报所述K个信道状态信息所使用的波束,所述波束信息指示L个波束,所述L为大于等于1的整数,所述L个波束中的每个波束均用于所述K个信道状态信息的上报。可选的,所述L为大于等于2的整数,所述L个波束为使用相同的时域资源发送的波束,或者,所述L个波束为使用不同的时域资源分别发送的波束。
第十二方面,本申请实施例提供了一种用户设备,该用户设备具有实现上述第十方面方法中用户设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多于一个与上述功能相对应的模块。
第十三方面,本申请实施例提供了一种网络设备,该网络设备具有实现上述第十一方面方法中网络设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多于一个与上述功能相对应的模块。
第十四方面,本申请实施例提供了一种用户设备,用户设备的结构中包括收发器和处理器。所述收发器用于支持用户设备接收上述第十方面方法中所涉及的信息或者数据(如接收 指示信息),以及发送上述第十方面方法中所涉及的信息或者数据(如上报K个信道状态信息)。所述处理器被配置为支持用户设备执行上述第十方面方法中相应的功能,例如,处理所述指示信息和/或所述K个信道状态信息。在一个可能的实现方式中,所述用户设备的结构中还可以包括存储器,所述存储器用于与处理器耦合,保存用户设备必要的程序指令和数据。
第十五方面,本申请实施例提供了一种网络设备,网络设备的结构中包括收发器和处理器。所述收发器用于支持网络设备向用户设备发送上述第十一方面方法中所涉及的信息或者指令,以及接收上述第十一方面方法中所涉及的信息或者数据。所述处理器被配置为支持网络设备执行上述第十一方面方法中相应的功能,例如生成或处理上述方法中所涉及的信令信息(如,所述指示信息)和/或下行数据。在一个可能的实现方式中,所述网络设备还可以包括通信单元,所述通信单元用于支持网络设备与其他网络设备进行通信,例如接收调度节点或其他网络设备所发送的信息或指令,和/或发送信息或指令给其他网络侧设备。所述网络设备的结构中还可以包括存储器,所述存储器用于与处理器耦合,保存网络设备必要的程序指令和数据。
第十六方面,本申请实施例提供了一种通信系统,该系统包括上述第十四方面所述的用户设备和第十五方面所述的网络设备。
第十七方面,本申请实施例提供了一种计算机存储介质,用于储存为上述用户设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第十八方面,本申请实施例提供了一种计算机存储介质,用于储存为上述网络设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第十九方面,本发明实施例还提供一种装置,该装置具有实现上述第十方面方法中的功能。该功能可以通过硬件实现。该装置的结构中包括存储器、处理器以及存储在存储器上并可在处理器上运行的指令,当该处理器运行该指令时,使得该装置实现第十方面所述的方法。该装置可以是一种芯片系统,所述芯片系统中包含至少一个芯片,还可以包含其他分立器件。
第二十方面,本发明实施例还提供一种装置,该装置具有实现上述第十一方面方法中的功能。该功能可以通过硬件实现。该装置的结构中包括存储器、处理器以及存储在存储器上并可在处理器上运行的指令,当该处理器运行该指令时,使得该装置实现第十一方面所述的方法。该装置可以是一种芯片系统,所述芯片系统中包含至少一个芯片,还可以包含其他分立器件。
第二十一方面,本发明实施例还提供一种计算机程序产品,该计算机程序产品包含有指令,当该指令在计算机上运行时,使得该计算机执行第十方面所述的方法。
第二十二方面,本发明实施例还提供一种计算机程序产品,该计算机程序产品包含有指令,当该指令在计算机上运行时,使得该计算机执行第十一方面所述的方法。
附图说明
图1为本发明实施例提供的一种信道状态信息测量的方法的流程示意图;
图2为本发明实施例提供的多小区协作场景的示意图;
图3为本发明实施例提供的另一种信道状态信息测量的方法的流程示意图;
图4为本发明实施例提供的基站和UE的内部结构示意图;
图5为本发明实施例提供的用于信道状态信息测量的装置(如无线网络设备)的示意图;
图6为本发明实施例提供的另一用于信道状态信息测量的装置(如用户设备)的示意图。
图7为本发明实施例提供的一种通信系统示意图;
图8a为本发明实施例提供的一种信道状态信息的上报流程示意图;
图8b为本发明实施例提供的另一种信道状态信息的上报流程示意图;
图9为本发明实施例提供的一种信道状态信息上报的场景示意图;
图10a为本发明实施例提供的一种波束发送示意图;
图10b为本发明实施例提供的又一种波束发送示意图;
图10c为本发明实施例提供的再一种波束发送示意图;
图11a所述为本发明实施例提供的一种网络设备的结构示意图;
图11b所述为本发明实施例提供的另一种网络设备的结构示意图。
图12a所述为本发明实施例提供的一种UE的结构示意图;
图12b所述为本发明实施例提供的另一种UE的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如本申请所使用的,术语“组件”、“模块”、“系统”等等旨在指代计算机相关实体,该计算机相关实体可以是硬件、固件、硬件和软件的结合、软件或者运行中的软件。例如,组件可以是,但不限于是:在处理器上运行的处理、处理器、对象、可执行文件、执行中的线程、程序和/或计算机。作为示例,在计算设备上运行的应用和该计算设备都可以是组件。一个或多个组件可以存在于执行中的过程和/或线程中,并且组件可以位于一个计算机中以及/或者分布在两个或更多个计算机之间。此外,这些组件能够从在其上具有各种数据结构的各种计算机可读介质中执行。这些组件可以通过诸如根据具有一个或多个数据分组(例如,来自一个组件的数据,该组件与本地系统、分布式系统中的另一个组件进行交互和/或以信号的方式通过诸如互联网之类的网络与其它系统进行交互)的信号,以本地和/或远程过程的方式进行通信。
此外,本申请结合无线设备来描述各个方面,其中,无线设备可以为无线网络设备,也可以为终端设备。该无线网络设备可以为基站,基站可以用于与一个或多个用户设备进行通信,也可以用于与一个或多个具有部分用户设备功能的基站进行通信(比如宏基站与微基站,如接入点,之间的通信);该无线设备还可以为用户设备,用户设备可以用于一个或多个用户设备进行通信(比如D2D通信),也可以用于与一个或多个基站进行通信。用户设备还可以称为用户终端,并且可以包括系统、用户单元、用户站、移动站、移动无线终端、移动设备、节点、设备、远程站、远程终端、终端、无线通信设备、无线通信装置或用户代理的功能中的一些或者所有功能。用户设备可以是蜂窝电话、无绳电话、会话发起协议(SIP)电话、智能电话、无线本地环路(WLL)站、个人数字助理(PDA)、膝上型计算机、手持式通信设备、手持式计算设备、卫星无线设备、无线调制解调器卡和/或用于在无线系统上进行通信的其它处理设备。基站还可以称为接入点、节点、节点B、演进节点B(eNB),gNB,TRP,TP或某种其它网络实体,并且可以包括以上网络实体的功能中的一些或所有功能。基站可以通过空中接口与无线终端进行通信。该通信可以通过一个或多个扇区来进行。基站可以通过将所接收的空 中接口帧转换成IP分组,来用作无线终端和接入网络的其余部分之间的路由器,其中所述接入网络包括互联网协议(IP)网络。基站还可以对空中接口属性的管理进行协调,并且还可以是有线网络和无线网络之间的网关。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本发明实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本发明实施例中,信息(information),信号(signal),消息(message),信道(channel)有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本发明实施例中,有时候下标如W1可能会笔误为非下标的形式如W1,在不强调其区别时,其所要表达的含义是一致的。
本发明实施例描述的网络架构以及业务场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
本发明实施例既可以应用于时分双工(time division duplex,TDD)的场景,也可以适用于频分双工(frequency division duplex,FDD)的场景。
本发明实施例既可以应用在传统的典型网络中,也可以应用在未来的以UE为中心(UE-centric)的网络中。UE-centric网络引入无小区(Non-cell)的网络架构,即在某个特定的区域内部署大量小站,构成一个超级小区(Hyper cell),每个小站为Hyper cell的一个传输点(Transmission Point,TP)或TRP,并与一个集中控制器(controller)相连。当UE在Hyper cell内移动时,网络侧设备时时为UE选择新的sub-cluster(子簇)为其服务,从而避免真正的小区切换,实现UE业务的连续性。其中,网络侧设备包括无线网络设备。
可选的,在本发明实施例中,基站由基站ID唯一标识。如果一个Hyper cell里所有TP或TRP为同一个ID,则该hyper cell中只有一个基站。
如背景技术中所描述的,3GPP TS36.213协议中提出使用NZP CSI-RS进行信道测量,使用ZP CSI-RS进行干扰测量。
3GPP TS 36.331vd.0.0中给出的一种RRC信令配置如下:
Figure PCTCN2018071634-appb-000001
Figure PCTCN2018071634-appb-000002
其中,csi-ProcessId表示CSI进程的标识(identity or identifier,ID),csi-RS-ConfigNZPId表示NZP CSI-RS的标识(ID),csi-IM-ConfigId表示用于干扰测量(interference measurement,IM)的CSI-RS的ID。其中,用于干扰测量(interference measurement,IM)的CSI-RS包括ZP的CSI-RS。
NZP CSI-RS域所包括的信元如下:
Figure PCTCN2018071634-appb-000003
Figure PCTCN2018071634-appb-000004
其中,csi-RS-ConfigNZPId表示NZP CSI-RS的ID,antennaPortsCount表示天线端口数,resourceConfig表示资源的配置信息(如时频资源配置信息,也可以称为传输图样pattern),subframeConfig表示子帧配置信息,scramblingIdentity表示加扰信息,qcl-CRS-Info表示与该CSI-RS具有QCL(Quasi-co-located,准共址)关系的CRS(公共参考信号,common reference singal)的信息。
ZP CSI-RS域所包括的信元如下:
其中,csi-RS-ConfigZPId表示ZP CSI-RS的ID,resourceConfigList表示资源配置表(每种资源配置对应一种传输图样),subframeConfig表示子帧配置信息。
在目前的协议中,并不支持非NZP CSI-RS测量信道(即进行信道测量),也不支持非ZP CSI-RS测量干扰(即进行干扰测量)。
这样,只能通过ZP CSI-RS测得ZP CSI-RS资源上的所有干扰的功率的总和,而无法有针对性的进行测量,比如测量最强干扰对应的H*Wmax(其中H为信道矩阵,Wmax为吞吐率最大的预编码矩阵),或是,测量最弱干扰对应的H*Wmin(其中,Wmin为吞吐率最小的预编码 矩阵),或是,测量全向干扰对应的H等。
在本发明实施例中,信道状态信息的测量(也可称为信道状态信息的获得)可以基于信干噪比(SINR,signal to interference plus noise radio)来获得(如CQI可以根据CQI和SINR的对应表来获得),而SINR可以基于信号功率与干扰功率来获得,其中,信号功率可以通过信道测量来获得(简称信道测量的功率),而干扰功率可以通过干扰测量来获得(简称干扰测量的功率)。具体的,SINR=信道测量的功率/(干扰测量的功率+噪声功率)。信道测量的功率和基于非零功率的参考信号进行的干扰测量的功率都可以基于H*W矢量值获得,如为||H*W||的值取平方,||H*W||的含义为H和W的乘积取行列式。其中,H是个信道测量的矢量,是根据导频信号通过相关、内插等操作得到的信道冲击响应。W是个预编码矢量,其是由UE在可用码本中选出的,通常根据吞吐率来获得,如H*W1的吞吐率最大,则UE会上报W1对应的PMI给基站。基站在调度时会参考UE上报的PMI。基站的调度要考虑小区内的其他用户设备、协作时还要考虑邻小区的用户设备,因此UE的上报只是供基站参考,是UE认为对自己最好的预编码矩阵,而基站下发数据的时候不一定按照该PMI编码数据。为了能让基站有更充足的信息以获得更优调度结果,UE上报的测量结果越充分越好,比如在协作场景中,UE需要上报其测量的邻区CSI,该CSI对于服务基站到UE之间的传输来说是个干扰,UE上报的测量结果可以方便服务基站的调度,如邻小区使用W1时干扰最强,使用W2时干扰最弱,W3W4W5等是其他可选的预编码矩阵,假设UE上报了所有可能的W对应的CSI,则服务基站可以获知:邻区需要避开W1,最好能选择W2,如果不能选择W2,由于W3与W2的矢量距离相比于到W1更近,因此W3也可以选择。总之,UE上报给基站的CSI越多,服务基站和协作基站越能获得最优调度结果。
本发明实施例中用于信道测量的资源是指在该资源上测得的上述根据H*W获得的功率是作为信道测量的功率(简称作为信道),用于干扰测量的资源是指在该资源上测得的上述根据H*W获得的功率是作为干扰测量的功率(简称作为干扰)。这样,针对上述用于信道测量的资源所反馈的CSI,可以基于所述信道测量的功率和干扰测量的功率获得。
CSI可以包括信道质量指示(channel quality indicator,CQI),秩指示(rank indicator,RI),预编码矩阵指示(precoding matrix indicator,PMI)信息中的一种或多种的组合。在本发明实施例中,有些描述中以CQI为例,但并不表示这些描述仅适用于CQI,也应理解为可以适用于RI和PMI的反馈。
有鉴于此,如图1所示,本发明实施例提出了一种信道状态信息测量的方法,包括:
S101,用户设备接收来自第一无线网络设备的用于信道状态信息测量的配置信息,所述配置信息包括用于信道状态信息测量的资源的信息并指示所述资源的测量属性信息,所述测量属性包括信道测量,或,X种干扰测量,或,信道测量和X种干扰测量,其中X为大于或等于1的整数;
S102,所述用户设备根据所述配置信息进行信道状态信息的测量并反馈所述信道状态信息。
其中,用户设备向第二无线网络设备反馈信道状态信息,第二无线网络设备和第一无线网络设备可以相同,或者,不同。
相应的,第一无线网络设备向用户设备发送用于信道状态信息测量的配置信息,所述配置信息包括用于信道状态信息测量的资源的信息并指示所述资源的测量属性信息,所述测量属性包括信道测量,或,X种干扰测量,或,信道测量和X种干扰测量,其中X为大于或等于1的整数;
第二无线网络设备接收来自用户设备的信道状态信息,所述信道状态信息基于所述配置信息得到,其中第二无线网络设备和第一无线网络设备相同或不同。
可选的,第一无线网络设备为用户设备的服务小区所属的无线网络设备,第二无线网络设备为用户设备的服务小区所属的无线网络设备或者为非服务小区所属的无线网络设备。
可选的,所述配置信息指示所述资源的测量属性信息包括:
所述配置信息包括用于指示测量属性的第一指示信息;或者,
所述配置信息的资源或格式用于指示所述资源的测量属性。
可选的,所述X种干扰测量包括利用零功率的参考信号测量干扰(如干扰功率),利用非零功率的信道状态信息参考信号的资源获取最强的P个干扰(其中P可配置或者为协议预定无需配置),利用非零功率的信道状态信息参考信号的资源获取最弱的Q个干扰(其中Q可配置或者为协议预定无需配置),利用非零功率的信道状态信息参考信号的资源获取未被预编码的干扰(全向干扰),利用非零功率的信道状态信息参考信号的资源获取对应可使用的码本中的所有可选取的预编码矩阵的所有干扰,利用非零功率的信道状态信息参考信号的资源获取对应非最强或最弱的特定预编码矩阵(W)的干扰,利用非零功率的解调参考信号获取干扰,以及,利用非零功率的解调参考信号获取被预编码的干扰中的至少一种。
可选的,“利用非零功率的信道状态信息参考信号的资源获取对应非最强或最弱的特定预编码矩阵(W)的干扰”可以对应的UE测量行为可以包括:UE根据NZP CSI-RS估计信道信号,UE将信道信号从接收信号中减去,剩余的信号即认为是干扰信号,这个干扰信号可以是非最强或最弱的特定预编码矩阵(W)的干扰。
可选的,“利用非零功率的解调参考信号获取被预编码的干扰”对应的UE的测量行为可以包括:UE根据DMRS测量出其他UE所造成的干扰,其他UE包括MU-MIMO(多用户输入输出)场景下的配对UE,和/或,不同于所述UE所在小区的其他小区所调度的UE,这个干扰可以是被预编码的干扰。
可选的,如上所描述的,所述X种干扰测量还可以包括利用非零功率的解调参考信号获取干扰。这种情况下,对应的UE的测量行为可以是:UE根据DMRS估计信道信号,UE将信道信号从接收信号中减去,剩余的信号即认为是干扰信号,这个干扰可以是被预编码的,也可以是未被预编码的。
可以理解的是,所述“利用非零功率的解调参考信号获取被预编码的干扰”也可以在邻区的干扰为被预编码的情况下,对应UE的测量行为是:UE根据DMRS估计信道信号,UE将信道信号从接收信号中减去,剩余的信号即认为是干扰信号,这个干扰是被预编码的。
以上最强的P个干扰或最弱的Q个干扰,可以是在基站发类型(class)A CSI-RS的情况下获得的,这种情况下,该CSI-RS没有经过预编码,是个全向信号。UE收到该CSI-RS后,遍历选择最优的P个预编码矩阵或最差的P个预编码矩阵,并上报对应的PMI。也可以在基站发class B CSI-RS的情况下获得的,该CSI-RS可以经过了W1预编码,W1是宽波束。UE收到该CSI-RS后,遍历可选的W2,选择最优的P个W2或最差的Q个W2上报对应的PMI。
所以基站实际中下发的CSI-RS可以是经过了预编码的,也可以是没经过预编码的。
本发明实施例主要场景以协作传输为背景,本实施例将CSI测量和反馈过程进行增强,指示多种测量资源与测量行为。图2为多小区协作场景示意图。
在图2所示的协作场景中,在未确定传输集时,CSI测量需要帮助决策哪些TP参与传输。因此,需要假设传输集、假设干扰组合,这样,UE可以在不同的假设下给出CSI测量结果。TP根据不同的CSI测量结果决定传输集中包括哪些TP。可以理解的是,本场景中的TP也可 以为TRP或gNB,但均可被称为基站。
按照图2,现有的传输集是{TP1,TP2},但随着UE的移动,不确定TP3是否要被加入传输集,则传输集的假设可能是{TP1,TP2}或{TP2,TP3}或{TP1,TP2,TP3}。在未确定传输集的情况下,为每个TP分配的资源则不确定是测量信道还是测量干扰。按照NR的发展,一种参考信号RS既可以用来测信道,也可以用来测干扰,所以无法通过资源类型(非零功率或零功率)就确定测量目的。同时,在不确定传输集的情况下,也无法通过资源ID就绑定测量目的。因此,可以在某种传输集假设的情况下,绑定测量资源和测量行为,并指示测量资源和测量行为,这里的指示包括显示的指示,如包括第一指示信息,也可以包括隐式的指示,如通过用于指示测量资源的配置信息的资源或格式来指示测量行为,或者,通过与测量行为有对应关系的其他信息来隐式的指示。
一种可能的定义测量资源和测量行为的方式是:
Figure PCTCN2018071634-appb-000006
在上述指示为显式指示时,可以对以下测量资源和测量行为的对应关系进行编号,示例如下表一。
表一
Figure PCTCN2018071634-appb-000007
这样,在UE收到所述第一指示信息时,即可确定其要进行的测量行为,并上报相应的信道状态信息。
示例的,一种可能的实现方案是:
基站下发Type#,UE获知在某个资源上如何测量干扰。如:
Type#0:NZP CSI-RS资源上测出的结果被当做信道测量结果,计算入CQI中。
Type#1:NZP CSI-RS资源上先根据导频相关性测量出H矩阵,UE根据rank对应的码本,或者基站配置的预编码矩阵组,依次判断H*W对应的吞吐率,对应吞吐率最大的W矩阵就是造成最强干扰的W矩阵。或者,CSI-RS根据导频测出的是H*W1(CLASS B的宽波束),UE再轮询选择W2,H*W1*W2即为干扰信息,可用于CQI计算中的干扰。同理,Type#3可以是根据吞吐率这个指标而对应吞吐率最小所选出的W矩阵,这是造成最弱干扰的被预编码的矩阵。
Type#2:邻基站发送的信号是全向信号,即未经过预编码,则服务基站可以将该信息发送给UE,UE在NZP CSI-RS上只测量H矩阵即可。Type#3和Type#0对应的UE测量行为是一样的,但是测量结果一个在CQI计算时被当做信道,一个被当做干扰。
Type#4是现有测量干扰的技术:ZP CSI-RS上测量除服务基站外的所有其他基站所导致的干扰,现有技术只支持ZP上测干扰的功率。
Type#5是在DMRS资源上测量干扰,DMRS上测出的干扰是被预编码的,对于DMRS测量干扰的可能方案有:
(1)若该预编码矩阵如果与数据的预编码矩阵一致,DMRS上测出的是H*W的最终结果。
(2)如果该预编码矩阵与数据的预编码矩阵不一致,可能的方案是:基站告知UE该DMRS上所用的预编码矩阵,DMRS上测出的结果反乘W,得到H矩阵后,UE再根据某种指标(如上述吞吐率)选择最强或最弱干扰对应的W矩阵,或者服务基站告知与DMRS一起发送的数据所用W,UE将反乘算出的H与被告知的数据所用的W相乘,得到数据所造成的干扰。
(3)如果DMRS上的预编码矩阵与数据的预编码矩阵不一致,还可能出现的情况是:DMRS由宽波束W1预编码,数据由宽波束W1*窄波束W2编码。这种情况下,UE可以根据某种指标(如吞吐率,其他指标:SINR、CQI等)选择窄波束W2,因此数据造成的干扰可以通过H*W1(DMRS导频的测量结果)再乘以W2而获得。
可以理解的是,还可以利用除以上表格中所列的参考信号用于干扰测量,比如SRS。(DMRS hw1w2)
而上述指示为隐式指示时,可以通过所述用于信道状态信息测量的资源所在的域(即配置信息的格式)来进行指示,或者,通过与测量行为有对应关系的其他信息来隐式的指示。
可选的,与测量行为有对应关系的其他信息可以包括:
传输模式
UE可以通过传输模式和测量行为之间的对应关系来确定在配置或触发的干扰测量资源上的测量行为。例如,传输模式为协作传输模式(TM10),则在配置或触发的NZP CSI-RS资源上,UE将该NZP CSI-RS资源上所测得的信道矩阵和预编码矩阵相乘作为干扰。例如,传输模式为多用户模式时(如MU,TM5),则在配置或触发的NZP CSI-RS资源上,UE将接收信号减去预估的信道信号,剩余的信号作为干扰。再例如,传输模式为多用户模式时(MU,TM5),则在配置/触发的DMRS资源上,UE通过DMRS资源测量其他UE所造成的干扰,可选的,其他UE包括MU-MIMO场景下的配对UE,和/或,不同于所述UE所在小区的其他小区所调度的UE。再例如,传输模式为多流beamforming传输时(TM9),则可以在配置或触发的DMRS资源上,UE将接收信号减去通过DMRS预估的信道信号,剩余的信号作为干扰。具体的对应关系为哪一种,可以由系统设定,或者,通过网络侧配置,可选的,在设定或配置时,还可以引入其他参考因素,在此不予限定。
(2)其他配置信息,如UE需要同时检测的用于当前载波下行数据传输的下行控制信道 的数目,和/或,QCL配置信息等
UE可以根据其他配置信息与测量行为之间的对应关系来确定在配置或触发的干扰测量资源上的测量行为。其他配置信息包括UE需要同时检测的用于当前载波下行数据传输的下行控制信道的数目,和/或,QCL配置信息等。
比如,UE需要同时检测的用于当前载波下行数据传输的下行控制信道的数目与UE的测量行为之间具有对应关系。例如,基站配置UE需要接收的PDCCH的数目,当该数目大于1时,则在配置或触发的NZP CSI-RS资源上,UE将该NZP资源上所测得的信道矩阵和预编码矩阵相乘作为干扰,或者,UE将接收信号减去预估的信道信号,剩余的信号作为干扰,或者,UE通过DMRS资源测量其他UE所造成的干扰,或者,UE将接收信号减去通过DMRS预估的信道信号,剩余的信号作为干扰。其中,可选的,其他UE包括MU-MIMO场景下的配对UE,和/或,不同于所述UE所在小区的其他小区所调度的UE。具体的对应关系为哪一种,可以由系统设定,或者,通过网络侧配置。可选的,在设定或配置时,还可以引入其他参考因素,在此不予限定。
再比如,其他配置信息还可以是QCL配置信息,如可以通过PQI(PDSCH RE Mapping and Quasi-Co-Location Indicator,物理下行共享信道资源元素映射及准共址指示)域确定测量行为。例如PQI指示了不少于两个QCL信息时,则在配置或触发的NZP CSI-RS资源上,UE将该NZP资源上所测得的信道矩阵和预编码矩阵相乘作为干扰,或者,UE将接收信号减去预估的信道信号,剩余的信号作为干扰,或者,UE通过DMRS资源测量其他UE所造成的干扰,或者,UE将接收信号减去通过DMRS预估的信道信号,剩余的信号作为干扰。其中,可选的,其他UE包括MU-MIMO场景下的配对UE,和/或,不同于所述UE所在小区的其他小区所调度的UE。具体的对应关系为哪一种,可以由系统设定,或者,通过网络侧配置。可选的,在设定或配置时,还可以引入其他参考因素,在此不予限定。
可以理解的是,上述指示还可以是显式指示和隐式指示相结合的方式,比如,信道测量的指示用隐式指示的方式,而具体的干扰测量的种类采用显式指示的方式。
在同一种RS既可以测信道又可以测干扰,或者多种RS测信道或测干扰,则可能出现的情况是:基站为UE配置了测量资源,但是按照现有的协议,UE并不知道在所配置的资源上所测出的结果是信道还是干扰,或者是最强干扰还是最弱干扰。因此,配置了某种资源不再代表单一的测量行为。基于本发明实施例中提供的方法,可以配置在某种资源下的某种测量行为。
另外,在协作场景下,随着UE的移动或者基站间的动态协作,传输集是动态变化的。因此,在测量阶段,基站和UE都还未确定传输集中包含哪些基站(除非依靠RSRP决定传输集)。所以,CSI测量结果需要辅助基站决策传输集的大小和构成。一种可能的解决方法是:UE将可能的传输集下的CSI测量结果反馈给基站,为基站提供在多种协作假设、传输假设、干扰假设下的测量结果,以此帮助基站的决策。本发明实施例提供的方法,UE可以根据测量属性,获得多种CSI测量结果,以支撑基站的决策。
以下给出了几种可能的配置方式:
方式一,所述用于信道状态信息测量的资源包括至少一个,用于指示所述资源的测量属性的第一指示信息包括若干元素,若干元素中的每一个元素用于指示所述资源中的每个的测量属性。其中,每个元素可以为int(十进制)值,bit(比特)值,或是测量属性的索引。 这种方式下,可选的,每个资源仅具有一种测量属性。其中每个元素所包括的bit值的bit个数与测量属性的种类数量相关。比如,测量属性的种类数量为4,则bit值的bit个数为2;测量属性的种类数量为5,则bit值的bit个数为3。在这种方式下,可选的,所述第一指示信息可以包括在信道状态信息测量设置(CSI measurement setting)域或者CSI进程域中。可选的,所述第一指示信息包括在高层信令中,或者,包括在物理层信令中。其中,高层信令可以包括RRC信令,物理层信令可以包括下行控制信息(downlink control information,DCI)信令。这种情况下,当一个资源的测量属性改变时,需要TRP重新配置并下发第一指示信息。可以理解的是,这种情况既适合于存在多种干扰测量的情况,如前所定义所示,也适合于只存在信道测量和一种干扰测量(如现有的利用ZP CSI-RS进行干扰测量)的情况。举例的,基站配置资源的测量属性如下表二:
表二
Figure PCTCN2018071634-appb-000008
上述第一指示信息可以为0011122,其中,每个元素为1int,也可以为00000101011010,其中每个元素为2bit,对应的ID均为依次由小到大的顺序。
UE收到上述第一指示信息,可以获知ID为1和2的资源,测量属性为0,ID为3,4和5的资源,测量属性为1,ID为6和7的资源,测量属性为2。
方式二,由于资源的测量属性信息与资源的类型解耦,则可以将同一个资源既配置为用于信道测量,又用于前述X种干扰测量中的至少一种。也就是说,用于信道状态信息测量的资源具有一种测量属性,或,具有多于一种测量属性。在配置时,用于指示资源的测量属性信息的第一指示信息可以以该资源的标识(ID)为维度。比如,在该资源的资源域中包括该第一指示信息。示例的,第一指示信息可以为若干元素,每个元素可以为该资源所具有的测量属性的索引,或者,为若干元素中的每个对应一种测量属性,元素的个数与测量属性的种类有关,比如元素为“1”时,表示该元素对应的测量属性被激活,为“0”时,表示该元素对应的测量属性未被激活。举例的,基站为每一个资源(ID)配置测量属性,如下表三:
表三
Figure PCTCN2018071634-appb-000009
Figure PCTCN2018071634-appb-000010
资源的配置信息可以举例如下:
Figure PCTCN2018071634-appb-000011
其中,Measure Type用于指示该资源具有的测量属性。
根据上表相应的配置,UE可以获知在资源ID为0的资源上,进行信道测量,在ID为1的资源上,进行干扰测量,获得最强干扰,ID为2和3的资源上,进行干扰测量,获得全向干扰,ID为4的资源上,进行干扰测量,获得邻基站的干扰功率。
可以理解的是,上表中所示出的是每个ID均只有一种测量属性的情况,但本实施例可以应用于每个ID具有多于一种测量属性的情况。
方式三,方式二中以资源为维度进行配置,另一种方式可以为以测量属性为维度进行配置。即一种测量属性对应一个用于信道状态信息测量的资源,或者,一种测量属性对应多于一个用于信道状态信息测量的资源。在配置时,用于指示资源的测量属性信息的第一指示信息可以包括若干元素,每个元素可以为具有某种测量属性的一个或多于一个用于信道状态信息测量的资源的资源标识,或者,若干元素中的每个对应一个资源标识,指示该资源是否具有该测量属性。元素的个数与资源(标识)总数有关。比如,元素为“1”时,表示该元素对应的资源具有该测量属性,为“0”时,表示该元素对应的资源无该测量属性。举例的,基站为每种测量属性配置资源ID,如下表四:
表四
Figure PCTCN2018071634-appb-000012
一种测量属性的配置信令示例如下:
Figure PCTCN2018071634-appb-000013
其中,MeasureType0配置的是Type0对应的CSI-RS资源ID(通过CSI-RS-ConfigIdList配置),MeasureType1配置的是Type1对应的CSI-RS资源ID(通过CSI-RS-ConfigIdList配置)。
可选的,该配置信令可以包括在CSI measurement setting域或者CSI进程域中。
根据上表相应的配置,UE可以获知ID为0的资源被用于信道测量,ID为1的资源被用于Type1的干扰测量,ID为2和3的资源被用于Type2的干扰测量,ID为4的资源被用于Type4的干扰测量。
可以理解的是,上表中所示出的是每个ID均只有一种测量属性的情况,但本实施例可以应用于每个ID具有多于一种测量属性的情况。
这样方式下,type也可以为CSI measurement setting中包括的RS setting和IM setting两种类型,上表可以表示为如下表五:
表五
Figure PCTCN2018071634-appb-000014
这样,每种测量属性所对应的资源ID可以在相应的测量属性域中进行配置,比如在RS-setting(参考信号设置)域中配置资源ID为1和2,在IM-setting(干扰测量设置)域 中配置资源ID为3,4和5。
可选的,可以在CSI measurement setting里配置的链接(link)中,通过link的配置信息,说明link所指示的resource setting里面的资源具有何种测量属性。
resource setting里面的资源即为前述用于信道状态信息测量的资源。
link中的配置信息可以包括:资源设置标识(resource setting ID),上报设置标识(reporting setting ID)。前述用于信道状态信息测量的资源的信息包括所述资源设置标识。
可选的,该link中的配置信息可以进一步包括:资源的属性(quantity)。
其中,资源的属性可以为信道(channel)或干扰(interference)。
可选的,所述link中的配置信息还可以进一步包括:干扰测量属性。
所述资源的属性和/或所述干扰测量属性为前述测量属性的具体表现。
该干扰测量属性可以为前述X种干扰测量的项。干扰测量属性的标识(如索引或编号)可以与前述X种干扰测量的项的标识相同,也可以不同。
当前述资源的属性为信道时,所述link中的配置信息中可以没有信道测量属性这一字段(或域)。
比如,link指示测量属性标识为1,表示link所指向的资源上进行标识1对应的测量行为。可以有多于一个link均指示了干扰测量,每个link均指示了所指向资源的测量属性,该测量属性可以包括前述资源的属性和/或干扰测量属性。
可选的,前述资源包括零功率信道状态信息参考信号的资源,由于该零功率信道状态信息参考信号(ZP CSI-RS)的资源的属性只能是干扰。因而,指示该资源相关配置的link中可以不包括资源的属性这一域(或字段,或信元),而包括干扰测量属性。
一个Link可以包括多个资源的配置信息,每个资源的配置信息所包括的内容(即前述上报设置标识,资源的属性,干扰测量属性,信道测量属性中的一项或多项)可以不同。可选的,这些资源的每项配置信息可以包括每个资源设置标识所对应的配置信息,与资源设置标识的顺序具有对应关系,比如按照资源设置标识的顺序依次指示。而对应于ZP CSI-RS的资源的资源的属性,则可以默认为无。比如link所指向的具有干扰测量属性的资源的个数有2个,其中一个资源为ZP CSI-RS资源,另一个为非ZP CSI-RS资源,这种情况下,link指示的资源的属性只有一个(干扰),而干扰测量属性则有2个。
举例而言,link的一种配置形式可以为:
(1)配置信息的属性为数值
Figure PCTCN2018071634-appb-000015
方式四,与前述方式一至三独立的或相结合的,所述用于信道状态信息测量的资源的信息包括可用于信道测量的资源的信息和用于干扰测量的资源的信息,所述配置信息还包括第二指示信息,用于指示实际用于信道测量的资源的个数M,其中,M为不小于1的整数。
这种方式下,可选的,所述用户设备根据所述配置信息进行信道状态信息的测量并反馈所述信道状态信息包括:
所述用户设备根据所述第二指示信息确定所述可用于信道状态信息的资源中实际用于信道测量的M个资源,针对所述实际用于信道测量的M个资源进行信道状态信息的测量和反馈。
可选的,针对所述实际用于信道测量的资源进行信道状态信息的测量包括:对所述实际用于信道测量的资源进行信道测量,或者,对所述实际用于信道测量的资源进行信道测量以及对所述可用于信道状态信息测量的资源中除所述M个资源之外的资源进行干扰测量。
举例的,基站的配置可以如下表六:
表六
Figure PCTCN2018071634-appb-000016
这种情况下,UE可以通过第二指示信息获知实际用于信道测量的资源个数为1。其中,第二指示信息的值可以为int类型也可以为bit类型或其他类型,在此不予限定。通过配置信息获知可用于信道测量的资源为ID为1和2的资源,用于干扰测量的资源为ID为3的资源。以第二指示信息的值为int类型为例,由于可用于信道测量的资源个数为2,则实际用于信道测量的资源个数取值可以为“0”,“1”或“2”,分别表示0个,1个,2个。若第二指示信息的值为“2”,表示ID为1的资源和ID为2的资源来自做协作传输的两个基站,两个资源上测出的结果均为信道,测出的是联合信道。若值为“1”,表示UE需获得两个CQI计算结果,一种可能的情况为:分别在ID=1的资源用于信道测量、其他ID的资源用于干扰测量时,和ID=2的资源用于信道测量、其他ID的资源用于干扰测量时获得,另一种可能的情况为:分别在ID=1的资源用于信道测量,ID=3的资源用于干扰测量时,和ID=2的资源用于信道测量,ID=3的资源用于干扰测量时获得。这种情况与前一种情况的区别在于,在可用于信道测量的资源中未被用于信道测量的资源不用于干扰测量。具体的,是否将可用于信道测量的资源中未被用于信道测量的资源用于干扰测量可以由协议预定义,或者,有基站另行配置。以第二指示信息的值为二进制类型为例,如“00”“01”“10”“11”,“01”可以指示ID为1的资源用于信道测量,“10”可以指示ID为2的资源用于信道测量,“11”可以指示ID为1和2的资源均用于信道测量(联合信道)。也就是说,第二指示信息不仅可以指示实际用于信道测量的资源的个数,还可以指示具体是哪个资源用于信道测量。
可选的,第二指示信息的域的值的缺省值可以默认为int类型1,即只有一个资源可以用于信道测量,即没有联合信道。这种情况下,可以预定义UE按照资源ID顺序从小到大依次选择一个资源用于信道测量,其他资源均用于干扰测量,得到的若干个CQI。或者,第二指示信息的域的值的范围可以与可用于信道测量的资源个数相同,比如基站和UE均可以获知可用于信道资源的个数,如上表中所示的有两个,则该域可以有两个bit,用于分别指示两个资源ID。在本发明实施例中,未被用于信道测量的资源用于干扰测量,可以默认的获得最强干扰对应的干扰功率,也可以另行由基站配置,在此不予限定。
可选的,在第二指示信息指示了实际用于信道测量的M个资源的情况下,再通过一个域(指示信息)指示UE需上报的测量结果为所有可能的测量结果中的第几个。可以理解的是,这里的第几个可以为一个或多个值。比如资源ID=1,2,3,4的情况下,先通过第二指示信息指示实际用于信道测量的资源个数为1,则UE可以测得四种可能的CQI。UE根据基站指示的需上报的测量结果为所有可能的测量结果中的第3个,则可以获知,需上报的测量结果为ID=3的资源用于信道测量的情况下获得的CQI。这个指示方式在较多资源ID并且有多个ID作为信道的情况下能节省UE上报的信令开销。
示例的,具体的配置信息可以为RRC信令或DCI信令。比如:RRC信令可以配置RS setting中包括ID为1,2,3的资源,IM setting中包括ID为4,5的资源(可简称为资源4,5),RRC信令中还可以包括上述第二指示信息,可选的,RRC信令中还可以进一步包括上述用于指示UE需上报的测量结果为所有可能的测量结果中的第几个的域。比如,第二指示信息的域包括在RS setting域中,或是RS-IMsetting域中,或是,interference hypothesis setting(干扰假设设置)域中,其中,interference hypothesis setting(干扰假设设置)域可以与RS setting域和IM setting域为并列关系。在需要改变第二指示信息域的配置(或者其他域的配置)时,可以由RRC信令再次下发新的配置内容,此时可以只下发需要改变的配置,或者也可以下发一组RRC信令(包括RS setting、IM setting、第二指示信息域或其他可能的域)。或者当需要改变配置时,通过DCI信令更新需要改变的配置,举例:DCI信令配置第二指示信息域的值为“2”,以指示要测量两个资源ID的联合信道。
举例的,基站的配置如下表七所示,type的物理含义参考表一种的描述:
表七
Figure PCTCN2018071634-appb-000017
这种情况下,第二指示信息指示的实际用于信道测量的资源的个数为1,则UE可以获知需测量得到均为一个资源用于信道测量的情况,获得CQI时,可以包括1/(2+3+4+5),2/(1+3+4+5),3/(1+2+4+5)这三种情况下的值。其中,分子为用于信道测量的资源的ID,分母为用于干扰测量的资源的ID。排除了两个资源用于信道测量的情况,如(1+2)/(3+4+5)。
这种方式下,可以通过第二指示信息,指示所需获得的多种测量结果,相较于固定指示测量属性,需要多种测量结果则需配置多次测量属性的方式,可以减少信令开销,从而利用多种测量结果作为基站进行调度时决策的参考。
方式五,可以与前述方式一至四独立的或与方式一至三中任一种相结合,所述用于信道状态信息测量的资源的信息包括用于信道测量的资源的信息和可用于干扰测量的资源的信息,所述配置信息还包括第三指示信息,用于指示实际用于干扰测量的资源的个数N,其中,N为不小于0的整数。
这种方式下,可选的,所述用户设备根据所述配置信息进行信道状态信息的测量并反馈所述信道状态信息包括:
所述用户设备根据所述第三指示信息确定所述用于信道状态信息的资源中实际用于干扰测量的N个资源,针对用于信道测量的资源进行信道状态信息的测量和反馈,其中,针对用于信道测量的资源进行信道状态信息的测量包括对用于信道测量的资源进行信道测量和对所述N个资源进行干扰测量。
举例的,基站可以配置如下表八,type的具体物理含义参考表一中的描述:
Figure PCTCN2018071634-appb-000018
第三指示信息指示的实际用于干扰测量的资源的个数为2,则表示干扰测量的资源集合包括两个用于干扰测量的资源,如3和4,4和5,或,3和5。第三指示信息的域的值可以为int类型,如“0”“1”“2”“3”,也可以为二进制类型,如“00”“01”“10”“11”。
示例的,实际用于干扰测量的资源的个数后,可以按照ID由小到大的顺序从可用于干扰测量的资源中选取相应个数的资源用于干扰测量,进而获得相应的若干个CQI。而可用于干扰测量的资源中未被实际用于干扰测量的资源,则可以既不用于干扰测量,又不用于信道测量,即忽略。
和方式四中类似,也可以进一步包括指示信息,用于指示UE需要上报的CQI为按一定规则获得的若干个CQI中的第几个。可以理解的是,这里的第几个可以为一个或多个值。
可选的第三指示信息可以包括在RRC信令或DCI信令中,比如,第三指示信息的域包括在IM setting域,或是RS-IMsetting域,或是,interference hypothesis setting(干扰假设设置)域中,其中,interference hypothesis setting(干扰假设设置)域可以与RS setting域和IM setting域为并列关系。可以理解的是,本发明实施例中域可以包括一个或多于一个信元。
方式六,与前述方式一至五独立的或与方式一至三中任一种相结合的,所述用于信道状态信息测量的资源的信息包括可用于信道测量的资源的信息和可用于干扰测量的资源的信息,所述配置信息还包括第二指示信息和第三指示信息,第二指示信息用于指示实际用于信道测量的资源的个数M,第三指示信息用于指示实际用于干扰测量的资源的个数N,其中,M为不小于1的整数,N为不小于0的整数。
这种方式下,可选的,所述用户设备根据所述配置信息进行信道状态信息的测量并反馈所述信道状态信息包括:
所述用户设备根据所述第二指示信息确定所述可用于信道状态信息的资源中实际用于信道测量的M个资源,根据所述第三指示信息确定所述用于信道状态信息的资源中实际用于干扰测量的N个资源,针对所述实际用于信道测量的M个资源进行信道状态信息的测量和反馈,其中,可选的,针对所述实际用于信道测量的M个资源进行信道状态信息的测量包括对所述实际用于信道测量的M个资源进行信道测量和对所述N个资源进行干扰测量,或者,对所述实际用于信道测量的M个资源进行信道测量以及对所述可用于信道状态信息测量的资源中除所述M个资源之外的资源和所述N个资源进行干扰测量。
这种方式下具体的描述可以参考方式四和方式五中的描述,在此不予赘述。
方式七,可以独立于方式一至六,也可以与方式一至三中任意一种结合,所述用于信道状态信息测量的资源的信息包括可用于信道测量的资源的信息和用于干扰测量的资源的信息,所述配置信息还包括第四指示信息,用于指示传输集的个数Y,Y为整数。
可选的,所述用户设备根据所述第四指示信息所指示的传输集的个数Y,确定所述可用于信道测量的资源中实际用于信道测量的Z个资源,针对实际用于信道测量的Z个资源进行信道状态信息的测量和反馈,其中,Z=k*Y,k为每个传输集包括的用于信道测量的资源的个数,k为不小于1的整数。
可选的,针对实际用于信道测量的Z个资源进行信道状态信息的测量包括:对实际用于信道测量的Z个资源进行信道测量以及对所述可用于信道状态信息测量的资源中除所述Z个资源之外的资源进行干扰测量。
举例的,基站的配置可以为如下表九,type的物理含义可以参考表一中的描述:
表九
Figure PCTCN2018071634-appb-000019
表九中以传输集的个数Y为1,一个传输集中包括的用于信道状态信息测量的资源的个数为2为例,则UE可以获知可用于信道测量的资源中实际用于信道测量的资源的个数为2。UE可以对实际用于信道测量的2个资源进行信道测量以及对所述可用于信道状态信息测量的资源中除所述2个资源之外的资源进行干扰测量,比如,(1+2)/(3+4+5),(1+3)/(2+4+5),(1+4)/(2+3+5),(2+3)/(1+4+5),(2+4)/(1+3+5),(3+4)/(1+2+5)。UE也可以对未被用于信道测量的资源不进行测量,如,(1+2)/5,(1+3)/5,(1+4)/5,(2+3)/5,(2+4)/5等。
第四指示信息可以包括在高层信令中,也可以包括在物理层信令中,示例的,第四指示信息可以包括在CSI measurement setting域或CSI进程中,进一步的,可以包括在RS-setting域中。
方式八,与方式一至三中任一种独立的或结合的,所述测量属性中的信道测量所对应的资源包括至少两个,且所述用户设备根据所述配置信息进行信道状态信息的测量并反馈所述信道状态信息包括:
所述用户设备针对至少两个资源中的至少一个测量并反馈信道状态信息,所述测量包括对所述至少两个资源中的至少一个进行信道测量以及对除进行信道测量的至少两个资源中的至少一个之外的资源进行干扰测量。
在这种方式下,UE收到的用于信道测量的资源为可用于信道测量的资源,对可用于信道测量的资源中的至少一个资源进行各种组合,从而获得相应的若干个测量结果。具体测量时,可以将未被用于信道测量的资源用于干扰测量,或者,不用于测量。具体方式可以由基站配置,或,依据协议预定义的方式进行。举例的,配置的可用于信道测量的资源为ID=1,2和3的资源,则UE可以获得6个CSI,并依据预定的规则进行上报。
方式九,与方式一至三中任一种独立的或结合的,所述用于信道状态信息测量的资源可以包括NZP CSI-RS的资源(简称NZP资源)和/或ZP CSI-RS的资源(简称ZP资源)。可以通过NZP资源和ZP资源的配置信息所包括的字段(或信元)的不同来区分配置信息是NZP资源还是ZP资源的配置信息。由于ZP资源的属性是一定的,即为干扰,则可以获知ZP资源的测量行为。
可选的,在NZP资源用于干扰测量时的测量行为是唯一的,即具有一种干扰测量属性,并且ZP资源的测量行为也是唯一的情况下,比如在NZP资源上的测量行为(干扰测量属性)是测量干扰的信道矩阵和预编码矩阵并将两者相乘后的结果作为干扰,在ZP资源上的测量行为(干扰测量属性)是测量干扰的功率信息,由于NZP CSI-RS的配置信息和ZP CSI-RS的配置信息所包括的字段(或信元)不同,那么可以根据该资源的字段数目可以推算出,该资源的干扰测量属性。这种情况下,除了可以对NZP资源和ZP资源的配置信息的格式(如NZP资源与ZP资源的配置信息在消息中的位置,所占的大小,或是,NZP资源的标识的范围,ZP资源的标识的范围)等进行特别的规定以区分二者(本申请中也并不排除对所述格式不进行特别的规定),还可以通过配置信息所包括的字段的数目来区分二者,进而确定每个资源的干扰测量属性(对应于干扰测量行为)。
比如在LTE对NZP和ZP的配置信息中,ZP的配置有3个字段,NZP的配置有6个字段。由于NR中资源配置时不一定按照NZP和ZP从命名上就区分开了这两个资源,有可能都称为干扰测量资源(IMR),一种可能的表现可以是二者的标识的范围是重合的,这样的话,IMR1和IMR2的字段数量不同,就可以区分出IMR1是NZP,IMR2是ZP。进而根据NZP的测量行为是唯一的,并且ZP的测量行为也是唯一的,比如在NZP资源上的测量行为是测量干扰的信道矩阵和预编码矩阵并将两者相乘后的结果作为干扰,在ZP资源上的测量行为是测量干扰的功率信息,那么区分出某个IMR是NZP还是ZP即可以确定在该资源上的测量行为,即可以确定了各资源的干扰测量属性。
可选的,ZP CSI-RS的配置信息可以如下,该配置信息包括3个字段:
Figure PCTCN2018071634-appb-000020
可选的,NZP CSI-RS的配置信息可以如下,该配置信息包括6个字段:
Figure PCTCN2018071634-appb-000021
Figure PCTCN2018071634-appb-000022
基于上述方式一至方式九中任意一种配置方式,UE在反馈相应的CSI时,可以以预定义的规则进行相应的反馈,也可以根据基站的指示进行相应的反馈。
预定义的规则可以为UE根据用于信道测量的资源的ID的大小来反馈,比如:min(min(ΣIDRS),min(IDRS)),即依次按照在用于信道测量的资源的ID的最小值,与,用于信道测量的资源的ID的和的最小值中较小的那个为依据,进行CSI的反馈。
在信道测量资源一致的情况下,可以按照用于干扰测量的资源ID的大小来反馈,比如:min(min(ΣIDIM),min(IDIM)),即依次按照在用于干扰测量的资源的ID的最小值,与,用于干扰测量的资源的ID的和的最小值中较小的那个为依据,进行CSI的反馈。
或者,按照max(min(ΣIDRS),min(IDRS))和/或max(min(ΣIDIM),min(IDIM))为依据进行CSI的反馈。
可以理解的是,也可以通过其他预定的规则进行CSI的反馈,在此不予限定。
确定CSI的反馈顺序后,CSI可以在上行数据信道如物理上行共享信道(PUSCH)中反馈。
可选的,基站预先知道有多少个可能的CSI,可以在上行数据信道中预留对应的bit数进行CSI检测。UE反馈的时候,按照预定义将CSI排序,将CSI通过上行数据信道反馈给基站。
可选的,每个CSI按照定义的周期加上各自的偏移量在上行控制信道如物理上行控制信道(PUCCH)上反馈。
以CQI为例,CQI的偏移量可以通过在RRC信令中的cqi-pmi-ConfigIndexList信元进行配置,如下所示:
Figure PCTCN2018071634-appb-000023
Figure PCTCN2018071634-appb-000024
少种CQI的可能性,因此可以在RRC信令中就配置了对应个数的偏移量和/或周期。这样,UE可以根据预设的顺序,在上行控制信道上按照相应的周期和偏移量依次反馈。
通过本发明实施例提供的方法,UE可以获知相应的用于CSI测量的资源的测量属性。且可以通过基站的一些指示,获知如何利用这些用于CSI测量的资源,来获得相应的CSI测量结果。可以通过较少的开销,获得较多的CSI测量结果,进而支持基站的各种传输方案,或在某种传输方案下提升与UE通信的效率。
如图3所示,本发明实施例提出了另一种信道状态信息测量的方法,包括:
S301,用户设备接收来自无线网络设备的用于信道状态信息测量的配置信息,所述配置信息包括可用于信道状态信息测量的资源的信息;
S302,所述用户设备根据所述配置信息进行信道状态信息的测量,并反馈所述信道状态信息以及所述信道状态信息所对应的用于信道状态信息测量的资源的测量属性信息,所述测量属性包括信道测量,或,X种干扰测量,或,信道测量和X种干扰测量,其中X为不小于1的整数。
相应的,无线网络设备向用户设备发送用于信道状态信息测量的配置信息,所述配置信息包括可用于信道状态信息测量的资源的信息;接收所述用户设备反馈的信道状态信息以及信道状态信息所对应的用于信道状态信息测量的资源的测量属性信息,所述测量属性包括信道测量,或,X种干扰测量,或,信道测量和X种干扰测量,其中X为不小于1的整数,用于信道状态信息测量的资源为所述可用于信道状态信息测量的资源中的全部或部分。
可选的,所述X种干扰测量包括利用零功率的参考信号测量干扰(如干扰功率),利用非零功率的信道状态信息参考信号的资源获取最强的P个干扰(其中P可配置或者为协议预定无需配置),利用非零功率的信道状态信息参考信号的资源获取最弱的Q个干扰(其中Q可配置或者为协议预定无需配置),利用非零功率的信道状态信息参考信号的资源获取未被预编码的干扰(全向干扰),利用非零功率的信道状态信息参考信号的资源获取对应可使用的码本中的所有可选取的预编码矩阵的所有干扰,利用非零功率的信道状态信息参考信号的资源获取对应非最强或最弱的特定预编码矩阵(W)的干扰,以及,利用非零功率的解调参考信号获取被预编码的干扰中的至少一种。
可选的,信道状态信息所对应的用于信道状态信息测量的资源的测量属性信息包括若干比特,所述若干比特中的每个比特用于指示所述资源中的每个的测量属性。举例的,UE反馈一个CSI及相应的测量属性信息,如11000,则表示该CSI是在前两个比特对应的资源用于信道测量,后三个比特对应的资源用于干扰测量的情况下获得的。
可选的,还可以通过传输方案与CSI反馈的对应关系,来确定UE反馈的CSI所对应的资源的测量属性。其中,传输方案包括NCJT(non-coherent joint transmission,非相干联 合传输),CS/CB(coordinated scheduling and beamforming,协同调度和波束成型),DPS(dynamic point selection,动态点选择)或DPB(dynamic point blanking,动态点关闭)等。比如,传输方案为NCJT的情况下,UE可以为两个TRP所对应的用于CSI测量的资源分别计算出各自的CQI,并且计算其中一个CQI时另一个TRP的NZP资源的测量结果默认为干扰(即NZP资源用于干扰测量)。
可选的,以上信道状态信息所对应的用于信道状态信息测量的资源的测量属性信息可以包括在CSI reporting setting(报告设置)域中。
可选的,上述传输方案可以在tranmission scheme setting(传输方案设置)域中进行配置。
以上图1或图3所示的方法,可以应用于MU-MIMO(multi-user multiple input multiple output,多用户的多输入多输出)场景或协作场景。
MU-MIMO场景下一种可能的方案是:服务基站调度多个用户设备时,分别为每个用户配置不同的测量资源。一个用户设备被配置了多个资源,有些资源用于信道测量,有些资源用于干扰测量,则这些资源可以通过不同的类型来区分用途。另一种可能的方案是:调度的多个用户设备使用了相同的测量资源,这些资源上测量结果可以在不同的CSI report中作为信道或者作为干扰。
协作场景下可能的方案是:一个UE被多个基站调度时,不同基站在为UE配置测量资源时,不同基站可以使用相同的测量资源也可以使用不同的测量资源。则一个UE可以在相同的资源上测出两个不同CQI,分别对应两个协作基站(例如有两个协作基站),这种情况下,一个NZP资源可以被当做信道也可以被当做干扰,则一个NZP资源可以在一种CSI report计算中被配置为Type 0(信道),在另一个CSI report计算中被配置为Type 1(干扰)。如果两个基站调用了不同的测量资源,则一个UE上分别在两组测量资源上测出两个CQI。
本发明实施例中提出的方法不限于上述MU-MIMO或协作场景,还可以应用于其他场景,在此不予限定。
利用本发明实施例提供的方法,可以在不同的干扰假设(即同一个资源可用于信道测量,也可用于干扰测量)下测量出相应的CSI,进而可以使得基站根据CSI测量结果选择出更精确的传输集。
可以理解的是,本发明实施例以无线通信网络中4G网络的场景为例进行说明,应当指出的是,本发明实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
需指出的是,本发明实施例中的方法或装置可以应用于基站和用户设备之间,也可以应用于基站和基站(如宏基站和微基站)之间,还可以应用于用户设备和用户设备(如D2D场景)之间,在本发明所有实施例中,以基站和UE之间的通信为例进行描述。
图4所示为上述基站和UE的内部结构的简化示意图。
示例的基站可以包括天线阵列,双工器,发信机(TX)和收信机(RX)(有时,TX和RX统称为收发信机TRX),以及基带处理部分。其中,双工器用于实现天线阵列既用于发送信号,又用于接收信号。TX用于实现射频信号和基带信号之间的转换,通常TX可以包括功率放大器PA,数模转换器DAC和变频器,通常RX可以包括低噪放LNA,模数转换器ADC和变频器。基带处理部分用于实现所发送或接收的信号的处理,比如层映射、预编码、调制/解调,编码/译码等,并且对于物理控制信道、物理数据信道、物理广播信道、参考信号等进行分别的处 理。
在一个示例中,基站还可以包括控制部分,用于进行多用户调度和资源分配、导频调度、用户物理层参数配置等。
示例的UE可以包括天线,双工器,发信机(TX)和收信机(RX)(有时,TX和RX统称为收发信机TRX),以及基带处理部分。在图4中,UE具有单天线。可以理解的是,UE也可以具有多天线(即天线阵列)。
其中,双工器用于实现天线阵列既用于发送信号,又用于接收信号。TX用于实现射频信号和基带信号之间的转换,通常TX可以包括功率放大器PA,数模转换器DAC和变频器,通常RX可以包括低噪放LNA,模数转换器ADC和变频器。基带处理部分用于实现所发送或接收的信号的处理,比如层映射、预编码、调制/解调,编码/译码等,并且对于物理控制信道、物理数据信道、物理广播信道、参考信号等进行分别的处理。
在一个示例中,UE也可以包括控制部分,用于请求上行物理资源、计算下行信道对应的信道状态信息(CSI)、判断下行数据包是否接收成功等等。
根据前述方法,如图5所示,本发明实施例还提供一种用于信道状态信息测量的装置,该装置可以为无线设备10。该无线设备10可以对应上述方法中的第一无线网络设备。第一无线网络设备可以为基站,也可以为其他设备,在此不予限定。
该装置可以包括处理器110、存储器120、总线系统130、接收器140和发送器150。其中,处理器110、存储器120、接收器140和发送器150通过总线系统130相连,该存储器120用于存储指令,该处理器110用于执行该存储器120存储的指令,以控制接收器140接收信号,并控制发送器150发送信号,完成上述方法中无线网络设备(如基站)的步骤。其中,接收器140和发送器150可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。所述存储器220可以集成在所述处理器210中,也可以与所述处理器210分开设置。
作为一种实现方式,接收器140和发送器150的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器110可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本发明实施例提供的无线设备。即将实现处理器110,接收器140和发送器150功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器110,接收器140和发送器150的功能。
该装置所涉及的与本发明实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
根据前述方法,如图6所示,本发明实施例还提供另一种用于信道状态信息测量的装置,该装置可以为无线设备20,该无线设备20对应上述方法中的第一用户设备。可以理解的是,第二无线设备可以为UE,也可以为微基站或小基站,在此不予限定。
该装置可以包括处理器210、存储器220、总线系统230、接收器240和发送器250。其中,处理器210、存储器220、接收器240和发送器250通过总线系统230相连,该存储器220用于存储指令,该处理器210用于执行该存储器220存储的指令,以控制接收器240接收信号,并控制发送器250发送信号,完成上述方法中UE的步骤。其中,接收器240和发送器250可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。所述存储器220可以集成在所述处理器210中,也可以与所述处理器210分开设置。
作为一种实现方式,接收器240和发送器250的功能可以考虑通过收发电路或者收发的 专用芯片实现。处理器210可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本发明实施例提供的无线设备。即将实现处理器210,接收器240和发送器250功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器210,接收器240和发送器250的功能。
所述装置所涉及的与本发明实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
根据本发明实施例提供的方法,本发明实施例还提供一种通信系统,其包括前述的第一无线网络设备和一个或多于一个用户设备。
应理解,在本发明实施例中,处理器110或210可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器120或220可以包括只读存储器和随机存取存储器,并向处理器310提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。
该总线系统130或230除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统。
在实现过程中,上述方法的各步骤可以通过处理器110或210中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
还应理解,本文中涉及的第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本发明实施例的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过 其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
此外,本申请还提供如下实施例,用于信道状态信息的配置和/或触发以及上报的过程中。下述实施例中所描述的方案可以单独使用,也可以与本申请上文中所描述任何一种或者多种方案结合使用,例如,在信道状态信息配置、测量以及上报的整个过程中,可以先使用本申请上文中的所提供的任一种信道状态信息测量方法完成信道状态信息的测量,再使用本申请下文所提供的任一种信道状态信息上报的方法,完成信道状态信息上报的触发或配置,并完成信道状态信息的上报。
为了提高用户设备(user equipment,UE)的性能,多个网络设备可以协作为该UE提供数据传输,此时,UE可以通过测量获得多个网络设备的信道状态信息,并将多个网络设备的信道状态信息上报给多个网络设备中的至少一个,以便多个网络设备之间的协作和调度。例如,在非相干联合传输(non-coherent joint transmission,NCJT)场景下,网络侧(例如,服务网络设备)为了判断2个网络设备是否适合协作,服务网络设备(如,TRP1)为UE配置2个信道状态信息测量配置,1个信道状态信息测量配置是以TRP1为信道,待参与协作的网络设备(如,TRP2)为协作集内的干扰。另1个信道状态信息测量配置是以TRP2为信道,TRP1为协作集内的干扰。2个信道状态信息测量配置分别得到1个信道状态信息测量结果。TRP1需要获得UE上报的2个信道状态信息测量结果,从而获知TRP1和TRP2做NCJT时2条信道情况,并判断出TRP1和TRP2做NCJT时的系统吞吐量,从而判断或决定协作和调度情况。UE还可以通过测量,获得其他不为其提供数据传输的网络设备的信道状态信息,这些信道状态信息可以作为干扰测量的结果上报给为所述UE提供数据传输的网络设备,以便网络设备之间的协作和调度。例如,在动态点静默(dynamic point blanking,DPB)场景中,TRP2是UE的干扰源,可以通过静默TRP2,降低UE受到的干扰。在信道状态信息测量阶段,TRP1可以为UE配置2个信道状态信息测量配置,1个信道状态信息测量配置考虑了TRP2的干扰,另1 个信道状态信息测量配置认为TRP2静默没有对UE产生干扰。UE在接收2个信道状态信息测量配置后,分别测量出有无TRP2干扰下的信道状态信息测量结果并上报给TRP1,以便TRP1可以判断出TRP2静默后对信道质量的改变量,并在调度中体现TRP2是否静默。
当UE需要上报多个信道状态信息的时候,通常网络设备需要尽快的接收到所述多个信道状态信息,以便综合所有的信息进行下一时刻的协作和调度。故此,需要一种信道状态信息的触发和上报方式,尽量减小多个信道状态信息上报之间的时延,以便网络设备尽快利用多个信道状态信息进行协作和调度。
本申请实施例提供了一种通信系统,该通信系统可以包括至少一个网络设备和至少一个UE。所述网络设备可以是接入网侧用于支持UE接入系统的设备,例如基站(base station,BS)、中继节点(relay node)、接入点(access point,AP)、发送接收点(transmission reception point,TRP)等。所述基站可以为宏基站、微基站、家庭基站等。所述网络设备可以为固定的,也可以是移动的。在本申请实施例中,所述UE可以称为终端(terminal),移动台(mobile station),用户单元(subscriber unit),站台(station)等。UE可以为蜂窝电话(cellular phone),个人数字助理(personal digital assistant,PDA),无线调制解调器(modem),无线通信设备,手持设备(handheld),膝上型电脑(laptop computer),无绳电话(cordless phone),无线本地环路(wireless local loop,WLL)台,平板电脑(pad)等。随着物联网技术的发展,可以接入无线通信网络、可以与无线网络系统侧进行通信,或者通过无线网络与其它物体进行通信的设备都可以是本申请实施例中的UE,譬如,智能交通中的终端和汽车、智能家居中的家用设备、智能电网中的终端、电力抄表仪器、电压监测仪器、环境监测仪器、智能安全网络中的视频监控仪器、收款机等等。在本申请实施例中,所述UE可以与网络设备进行通信。所述UE可以是静态的,也可以是移动的。
如图7所示,本申请实施例提供了一种通信系统100。该通信系统100包括至少一个网络设备和至少一个用户设备。UE通过无线接口接入网络设备进行通信,也可以与另一UE进行通信,如D2D(Device to Device,设备对设备)或M2M(Machine to Machine,机器对机器)场景下的通信。网络设备可以与UE通信,也可以与另一网络设备进行通信,如宏基站和接入点之间的通信。在所述通信系统100中,一个网络设备可以为一个或多个UE提供通信服务,例如网络侧设备22为UE42提供通信服务;一个UE也可以在相同载波上与多个网络设备进行通信,例如UE40可以在相同的载波上同时接收网络设备20、网络设备22以及网络设备24所传输的下行数据。
所述通信系统100,包括但不限于例如码分多址(code division multiple access,CDMA)、时分多址(Time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single carrier FDMA,SC-FDMA)系统和其它网络等,例如,3GPP长期演进(long term evolut ion,LTE)系统后续进一步演进的系统,或者新无线接入技术(new radio access technology)系统(可以简称为“NR”系统),或者标准组织开发的5G系统或任何下一代系统。术语“网络”和“系统”在本发明实施例中可以相互替换。CDMA网络可以实现例如通用无线陆地接入(universal terrestrial radio access,UTRA),CDMA2000等无线技术。UTRA可以包括CDMA(WCDMA)和其他CDMA的变形。CDMA2000可以覆盖临时标准(interim standard,IS)2000(IS-2000),IS-95和IS-856标准。TDMA网络可以实现例如全球移动通信系统(global system for mobile communication,GSM)等无线技术。OFDMA网络可以实现诸如演进通用无线陆地接入(evolved UTRA,E-UTRA)、超级移动宽带(ultra mobile  broadband,UMB)、IEEE 802.11(Wi-Fi),IEEE 802.16(WiMAX),IEEE 802.20,Flash OFDMA等无线技术。UTRA和E-UTRA是UMTS以及UMTS演进版本。3GPP长期演进(long term evolution,LTE)和LTE高级(LTE Advanced,LTE-A)是使用E-UTRA的UMTS的新版本。UTRA、E-UTRA、UMTS、LTE、LTE-A和GSM在3GPP标准组织的文档中有记载描述。CDMA2000和UMB在3GPP2标准组织的文档中有记载描述。
本申请中所述的信道状态信息(channel state information,CSI),是用于上报信道和/或干扰测量结果的信息。例如,所述CSI可以包括秩指示(rank indication,RI)、预编码矩阵指示(precoding matrix indication,PMI)、信道质量指示(channel quality indicator,CQI)、CSI-RS资源标示(CSI-RS resource indicator,CRI)和预编码类型指示(precoding type indicator,PTI)中的至少一种。CSI可以包括非周期性上报的CSI,周期性上报的CSI或者半静态上报(semi-persistent reporting)的CSI。非周期性上报的CSI根据网络设备的触发进行上报,周期性上报的CSI根据网络设备配置的上报周期进行上报。半静态上报的CSI根据网络设备配置的上报周期和网络设备的触发在一定的时间内进行周期性的上报,而在该时间段外不上报。半静态上报的CSI一般可以通过信令激活/去激活上报,终端在接收激活信令后,按照配置的上报周期和偏移量上报,在接收去激活信令后,停止上报。
本申请中所述的一个CSI,是指对一个CSI测量资源(CSI measurement resource)进行测量后上报的CSI。或者,是指对一个信道状态信息参考信号资源(CSI-RS resource)进行测量后上报的CSI。或者,是指根据一个CSI上报配置(CSI reporting setting)信息进行上报的CSI。其中,一个非周期性上报的CSI,是指对一个CSI测量资源进行测量后一次上报的CSI;一个周期性上报的CSI,是指对一个CSI测量资源进行测量后周期性多次上报的CSI;一个半静态上报的CSI,是指在一定的时间段内,对一个CSI测量资源进行测量后周期性多次上报的CSI。因此,本申请中的一个CSI也可以理解为一组(a set of)CSI,在非周期性上报的情况下该一组CSI中包含一次上报的CSI,周期性上报或者半静态上报的情况下,该一组CSI中包含多次上报的CSI。
本申请中所述的“CSI的上报”和“CSI的反馈”可以互相替换,均是指UE向网络设备发送CSI的过程,此过程中还可以包括触发或者配置CSI上报的过程。
本申请中所述的“指示信息”可以包括不同层的信令或者信息。例如,可以包括层一(layer 1),层二(layer 2),或层3(layer 3)的信令或者信息。所述层一一般指物理层,层二一般指媒体接入控制(medium access control,MAC)层,层三一般指无线资源控制(radio resource control,RRC)层。例如,所述指示信息可以是物理层的DCI信息,或者是MAC层的MAC控制元素(MAC control element,MAC CE),或者是RRC层的RRC信令。
本申请中所述的“载波”,对应于某一特定频段,例如中心频点为1.8GHz频段或中心频点为28GHz的频段。
本申请中所述的波束(beam),是指由至少一个天线端口发射或接收无线信号时,形成的空间中有一定方向和形状的无线电波。可以通过对至少一个天线端口所发射或者接收的数据进行幅度和/或相位的加权来构成波束,也可以通过其他方法,例如调整天线单元的相关参数,来构成波束。所述波束,可以理解为一种空间资源,可以指具有能量传输指向性的发送或接收预编码向量或预编码矩阵,且该发送或接收预编码向量或预编码矩阵能够通过索引信息进行标识。所述能量传输指向性可以指在一定空间位置内,接收经过该预编码向量或预编码矩阵进行预编码处理后的信号具有较好的接收功率,如满足接收解调信噪比等,所述能量传输指向性也可以指通过该预编码向量或预编码矩阵接收来自不同空间位置发送的相同信号具有 不同的接收功率。同一无线通信设备(比如用户设备或网络设备)可以有不同的预编码向量或预编码矩阵,不同的设备也可以有不同的预编码向量或预编码矩阵,即对应不同的波束。一个无线通信设备在同一时刻可以使用多个不同的预编码向量或预编码矩阵中的一个或者多个,即同时可以形成一个或多个波束。
本申请所述的波束对(beam pair)包括发送端的发送波束和接收端的接收波束,或者,包括上行波束或下行波束。比如,波束对可以包括基站的发送波束和UE的接收波束,或者,UE的发送波束和基站的接收波束。
波束可以通过索引信息(例如,预编码向量的索引信息或者预编码矩阵的索引信息)进行标识。可选地,所述索引信息可以对应或者包含配置给UE的资源标识(identity,ID),比如,所述索引信息可以是配置给UE的信道状态信息参考信号(Channel status information Reference Signal,CSI-RS)的ID或者资源,也可以是配置的上行探测参考信号(Sounding Reference Signal,SRS)的ID或者资源。或者,可选地,所述索引信息也可以是通过波束承载的信号或信道显示或隐式承载的索引信息,比如,所述索引信息可以是通过波束发送的同步信号或者广播信道指示该波束的索引信息。波束可以通过CSI-RS资源编号和/或发送或接收波束所使用的天线端口编号来标识;也可以使用波束对编号或者波束对索引来标识;还可以使用同步信号块时间索引(synchronization signal block time index,SS block time index)来标识。对于波束的具体指示或者标识方式,本申请不做限定。
本申请中所述的“天线端口(antenna port(s))”是为了区分不同的信道而定义的不同的逻辑端口,在某一个天线端口上所发送的符号所经过的信道可以根据在相同天线端口上发送的其他符号所经过的信道确定,例如数据接收端可以利用与发送数据所使用的相同的天线端口上发送的DM-RS(Demodulat ion-Reference Signal,解调参考信号)进行信道估计和数据解调。本申请中所述的“天线端口编号”用于指示具体的天线端口,例如天线端口号为7指示天线端口7。
图8a为本申请实施例提供的一种CSI上报方法的流程图。
在801部分,网络设备发送一条指示信息给用户设备,所述指示信息用于指示K个CSI的上报,其中,K≥2,所述K个CSI是用户设备在相同的载波上对测量资源进行测量获得的。
可选的,所述网络设备可以是所述用户设备的服务网络设备。
可选的,所述K个CSI可以是K个非周期性上报的CSI,也可以是K个周期性上报的CSI,还可以是K个半静态上报的CSI。当所述K个CSI是非周期性上报的CSI或者K个半静态上报的CSI时,所述指示信息可以为物理层信令,例如,下行控制信息(downlink control informat ion,DCI)。当所述K个CSI是周期性上报的CSI时,所述指示信息可以为RRC信令,例如,用于配置周期性上报的CSI的信令。当然,所述指示信息还可以是物理层或者RRC层的其他信令或者信息,也可以是其他层的信令或者信息,例如MAC层的MAC CE。本申请对指示信息的类型和名称不做限定,对不同的CSI对应何种指示信息也不做限定,可以根据系统需求进行设计。
在802部分,所述用户设备在相同的载波上上报所述K个CSI。
可选的,所述K个CSI可以同时上报,也可以分时上报。
使用一条指示信息同时指示同一载波上的2个或者2个以上的CSI的上报,可以减少多个CSI分别触发造成的时延,从而使得网络设备可以更快的获得更多的CSI,以便根据更多的CSI进行协作和/或调度。进一步的,当所述K个CSI同时上报时,可以进一步缩短网络设备获取K个CSI所需要的时间,从而尽快根据更多的CSI进行协作和/或调度。
可选的,当所述K个CSI为非周期性上报的CSI或K个半静态上报的CSI时,所述指示信息用于触发所述K个CSI的上报。用户设备在接收到所述指示信息之后,便进行CSI的测量和上报。
在一个具体的设计中,所述指示信息中包括所述指示信息中包含所述K个CSI上报配置(CSI reporting sett ing)的索引信息。CSI上报配置的索引指示了配置给UE的某一个具体的CSI上报配置信息,CSI上报配置信息中可以包含上报CSI参数(reported CSI parameter(s)),CSI类型(CSI type),码本配置(codebook configuration)信息,时域行为(time-domain behavior),CQI和PMI的频域粒度(frequency granularity)中的至少一项。用户设备根据CSI上报配置的索引确定一个具体的CSI上报配置,并根据该CSI上报配置进行CSI的测量和上报。
可选的,所述CSI上报配置的索引信息,可以是CSI上报配置索引的取值信息,也可以是用于确定CSI上报配置索引的其他信息。例如,当需要指示的CSI上报配置与某一个CSI测量配置(CSI measurement setting)或者某一个链路配置(link setting)相关时,也可以通过指示CSI测量配置或者链路配置来指示CSI上报配置索引。用户设备获取了所述指示信息中的CSI测量配置或者链路配置信息后,会根据CSI测量配置或者链路配置信息确定该CSI测量配置或者链路配置中包含的CSI上报配置索引,从而确定CSI上报配置信息并完成CSI的测量和上报。
在另一个具体的设计中,所述指示信息中包含所述K个信道状态信息所属的CSI上报配置组的索引信息。所述CSI上报配置组,是指包含至少一个CSI上报配置的集合。CSI上报配置组的索引指示了具体的CSI上报配置组。网络设备可以预先通知UE具体的CSI上报配置的分组信息,然后在所述指示信息中指示UE上报哪些CSI上报配置组中的CSI。
例如,网络设备可以在高层信令(如,RRC信令)中配置CSI上报配置的分组,如,网络设备通过RRC信令配置了CSI上报配置集合1(CSI reporting setting set1)包括CSI上报配置1(CSI reporting setting1)和CSI上报配置2(CSI reporting setting2),CSI上报配置集合2(CSI reporting setting set2)包括CSI上报配置1(CSI reporting setting1)和CSI上报配置3(CSI reporting setting3),CSI上报配置集合3(CSI reporting setting set3)包括CSI上报配置2(CSI reporting setting2)和CSI上报配置3(CSI reporting setting3)。之后,网络设备通过所述指示信息(如,DCI)指示所述CSI上报配置集合的索引,从而触发上述集合中的至少一个集合中的CSI的上报。基于当前示例,表十给出了一种具体的信元设计,该信元“CSI request”包含在指示信息中,用于指示CSI上报配置集合。
表十
Figure PCTCN2018071634-appb-000025
又如,网络设备通过RRC配置了CSI上报配置集合1(CSI reporting setting set1)包括CSI上报配置1(CSI reporting setting1),CSI上报配置集合2(CSI reporting setting set2)包括CSI上报配置2(CSI reporting setting2),CSI上报配置集合3(CSI reporting setting set3)包括CSI上报配置3(CSI reporting setting3)。之后,网络设备通过所述指示信息(如,DCI)触发上述集合中的至少一个集合中的CSI的上报。基于当前示例,表十 一给出了一种具体的信元设计,该信元“CSI request”包含在指示信息中,用于指示CSI上报配置集合。
表十一
Figure PCTCN2018071634-appb-000026
可选的,CSI上报配置组的索引还可以通过其他信息指示给UE,例如,可以通过指示CSI测量配置或者链路配置的分组,来指示属于CSI测量配置组或者链路配置组的CSI上报配置。
例如,网络设备可以在高层信令(如,RRC信令)中配置CSI测量配置的分组,如,网络设备通过RRC信令配置了CSI测量配置集合1(CSI measurement setting set1)包括CSI测量配置1(CSI measurement setting1)和CSI测量配置2(CSI reporting setting2),CSI测量配置集合2(CSI measurement setting set2)包括CSI测量配置1(CSI measurement setting1)和CSI测量配置3(CSI measurement setting3),CSI测量配置集合3(CSI measurement setting set3)包括CSI测量配置2(CSI measurement setting2)和CSI测量配置3(CSI measurement setting3)。之后,网络设备通过所述指示信息(如,DCI)指示所述CSI测量配置集合的索引,从而触发上述集合中的至少一个集合中包含的CSI上报配置中的CSI的上报。基于当前示例,表十二给出了一种具体的信元设计,该信元“CSI request”包含在指示信息中,用于指示CSI测量配置集合。用户设备接收到所述指示信息后,可以根据指示确定当前配置的CSI测量配置集合,再根据所述CSI测量配置集合中包含的CSI测量配置索引确定CSI测量配置中所包含的CSI上报配置索引,进而获知需要上报的CSI上报配置信息。
表十二
Figure PCTCN2018071634-appb-000027
在上述实施例中,指示信息中仅需包含CSI上报配置的索引信息,而无需包括具体的CSI上报配置信息,从而节省了信令开销。
当然,所述K个CSI的上报也可以同时使用上述两种方式进行指示,例如,一部分CSI上报使用CSI上报配置的索引信息指示,另外一部分CSI上报使用它们所属的CSI上报配置组的索引信息指示。
可选的,所述K个CSI上报的指示,还可以与现有技术中对其他类型CSI上报(如,载波聚合场景下的CSI上报)的指示联合进行。如,可以在所述指示信息中使用一个信元,利用该信元中不同的取值指示不同的CSI上报。表A给出了一个具体的信元设计方式举例,表A中‘10’和‘11’两个状态可以表示多个载波情况下触发一个CSI上报配置集合,即1个CSI上报配置集合中所包含的CSI上报可以在不同的CC上进行。‘01’状态表示了触发在一个载波上的1个CSI上报配置集合,即该CSI上报配置集合所包含的CSI上报是在同一个载波上的。
表A
Figure PCTCN2018071634-appb-000028
可选的,当所述K个CSI为非周期性上报的CSI或K个半静态上报的CSI时,所述指示信息中包含T个CSI上报定时偏移的信息,所述T个CSI上报定时偏移用于所述K个CSI的上报,其中T为大于等于2的整数,所述CSI上报定时偏移是指CSI上报触发到CSI上报之间的时间间隔。可选的,所述CSI上报定时偏移可以以时隙为单位,也可以以其他时域资源单元为单位,本申请对此不作限定。当受限于容量或者资源时,虽然K个CSI在一条信令中被触发,但网络设备可以通过给所述K个CSI配置不同的CSI上报定时偏移来实现所述K个CSI的分时上报,此时虽然网络设备需要等待K个CSI的上报,但相比于分别触发所述K个CSI,仍然节省了一部分时间,减少了网络设备接收到全部K个CSI所需要的时间。图8b给出了对应此示例的CSI上报流程示意图。网络设备通过一条指示信息指示用户设备上报K个CSI(801部分)。用户设备接收到指示信息后,根据指示信息中所指示的需要上报的CSI,对CSI进行测量,并根据指示信息中所指示的CSI上报定时偏移值,在相同的载波上,在不同时刻分别上报所述K个CSI(8021至802K部分)。可选的,所述K个CSI可以对应K个不同的CSI上报定时偏移值,也可以对应少于K个不同的CSI上报定时偏移值,此时所述K个CSI上报中至少有两个CSI上报使用相同的CSI上报定时偏移值,即同时上报。
在一个具体的示例中,网络设备和用户设备可以预先约定CSI上报定时偏移值的分组,例如,通过高层信令(如RRC信令)预先配置具体的CSI上报定时偏移值的分组,然后在所述指示信息中指示用户设备当前需要使用具体哪一组CSI上报定时偏移值。例如,预先定义第一组CSI上报定时偏移值为{1,4},第二组CSI上报定时偏移值为{2,4},第三组CSI上报定时偏移值为{1,3}。基于当前的示例,表十三和表十四分别给出了两种指示所述CSI上报定时偏移值的具体信元设计方法,其中表十三为在指示信息中单独指示CSI上报定时偏移的取值,表十四位在指示信息中联合指示CSI上报配置组和CSI上报定时偏移取值。
表十三
CSI 上报定时偏移的 描述
取值  
00' 不配置定时偏移值
01' 触发高层配置的第1组CSI上报定时偏移取值
10' 触发高层配置的第2组CSI上报定时偏移取值
11' 触发高层配置的第3组CSI上报定时偏移取值
表十四
Figure PCTCN2018071634-appb-000029
可选的,对应不同的CSI上报定时偏移取值,网络设备还可以为用户设备配置多个用于上报CSI的时频域资源,例如,所述指示信息中还可以包含至少一个用于上报CSI的时频域资源配置信息。用户设备根据CSI上报定时偏移取值,在不同的时间使用不同的时频域资源分别上报所述K个CSI中的至少一个。
可选的,当所述K个CSI为周期性上报的CSI时,所述指示信息用于配置所述K个CSI的上报。用户设备在接收到所述指示信息之后,根据所述指示信息进行周期性的CSI上报。可选的,所述指示信息中包含所述K个信道状态信息上报配置的索引信息,上报周期信息和上报子帧偏移配置(subframe offset configuration)信息中的至少一个。可选的,所述K个周期性上报的CSI可以有相同或者不同的上报周期,也可以有相同或者不同的上报子帧偏移配置。当所述K个周期性上报的CSI均具有相同的上报周期和相同的上报子帧偏移配置时,则所述K个周期性上报的CSI在每次上报时都同时上报。
可选的,本申请实施例中的指示信息中还可以包括波束信息,所述波束信息用于指示上报所述K个信道状态信息所使用的波束,所述波束信息指示L个波束,所述L为大于等于1的整数,所述L个波束中的每个波束均用于上报所述K个信道状态信息。
当所述L为1时,用户设备使用配置的一个波束发送所述K个CSI。所述K个CSI可以是同时发送的,即使用配置的波束同时发送K个CSI;所述K个CSI也可以是分时发送的,即使用配置的一个波束,在不同时刻分别发送所述K个CSI。
当所述L大于等于2时,用户设备使用配置的至少两个波束发送所述K个CSI,此时每个波束都用于发送所述K个CSI。图9以L=2为例,给出了用户设备使用两个波束发送K个CSI的场景示意图。在该示例中,UE40向网络设备22和网络设备24上报所述K个CSI,其中波束1指向网络设备22,波束2指向网络设备24,即UE40使用波束1将所述K个CSI上报给网络设备22,使用波束2将所述K个CSI上报给网络设备24。用户设备使用不同的波束上报所述K个CSI,可以实现向不同的网络设备上报多个CSI,且提高不同网络设备正确接收所述K个CSI的概率,多个网络设备均接受用户设备上报的多个CSI,可以减少网络设备之间进行信息传递的时间,例如,节省了CSI信息在网络设备之间传递所需要的时间,以便于更快的进行网络设备之间的协作和调度。可选的,所述接收用户设备上报K个CSI的多个网络设备中,可以包含服务网络设备和协作网络设备,也可以均为协作网络设备。本申请中,服务网络设备是指为用户设备提供高层连接(如RRC层连接)的网络设备,例如,UE在服务 网络设备提供的小区中进行初始连接建立过程,或开始连接重建立过程。协作网络设备是指为用户设备提供数据传输的非服务网络设备。可选的,本申请中所述的用于指示所述K个CSI上报的指示信息,可以由服务网络设备发送,也可以由协作网络设备提供。
可选的,所述波束信息可以是上行波束信息,例如,信道探测参考信号资源指示(sounding reference signal resource indication,SRI),也可以是下行波束信息,如,CSI-RS资源指示(CSI-RS resource indication,CRI),当所述波束信息为下行波束信息时,用户设备可以结合所指示的下行波束信息和波束对(beam pair)信息来确定所使用的上行波束。
在一个具体的示例中,网络设备和用户设备可以预先约定波束的分组,例如,通过高层信令(如RRC信令)预先配置具体的波束分组,然后在所述指示信息中指示用户设备当前需要使用具体哪一组波束。例如,以使用SRI指示波束为例,预先定义第一组SRI为{SRI1,SRI2},第二组SRI为{SRI2,SRI3},第三组SRI为{SRI1,SRI3}。基于当前的示例,表十五和表十六分别给出了两种指示波束组的具体信元设计,其中表十五为在指示信息中单独指示所使用的波束组,表十六位在指示信息中联合指示CSI上报配置组和所使用的波束组。
表十五
beam request域的取值 描述
'00' 不触发波束
'01' 使用高层配置的第1组SRI上报非周期性的CSI
'10' 使用高层配置的第1组SRI上报非周期性的CSI
'11' 使用高层配置的第2组SRI上报非周期性的CSI
表十六
Figure PCTCN2018071634-appb-000030
可选的,使用不同的波束上报K个CSI的时候,对于每个波束的使用,与使用单个波束上报K个CSI时相同。在一个波束上上报的K个CSI可以分时上报,也可以同时上报,具体的实施方式如上文所述,不再赘述。例如,分时上报的情况下,可以在某一时刻,使用多个波束上报K个CSI中的某一个或多个,在另一个时刻,使用多个波束上报K个CSI中的其他一个或多个。
可选的,当使用每个波束上报的K个CSI都是同时上报的情况下,所述L个波束也可以使用相同或者不同的时域资源进行发送。
在一个具体的示例中,所述L个波束可以使用相同的时域资源,不同的频域资源进行发送。此时,L个波束使用不同的频域资源同时发送,每个波束中均包含K个CSI的上报。不同的频域资源的选择,可以根据需求进行设计,例如所有子载波号为偶数的子载波为一组频域资源,所有子载波号为奇数的子载波为另一组频域资源;再如,连续的x个子载波为一组频域资源。如图10a,示意了使用不同频域资源同时发送的两个波束。
在另一个具体的实例中,所述L个波束可以使用不同的时域资源进行发送,每个波束中均包含K个CSI的上报,每个波束所使用的频域资源可以相同也可以不同。不同的时域资源 使用方式和划分可以根据系统的具体需求进行设计,例如,以符号(symbol)为单位,所有符号号为奇数的符号为一组,用于发送一个波束,所有符号号为偶数的符号为一组,用于发送另一个波束,再如,连续的y个符号为一组,用于发送一个波束,每连续的y个符号之间还可以设置一定的符号或者时隙间隔。频域资源的使用可以参考上一个示例中的方案,此处不再赘述。如图10b和10c以两个波束为例,给出了两种使用不同时域资源发送不同波束的具体示例。其中图10b中,两个波束使用相同的频域资源在两块时域资源上进行发送。图10c示意出了一种使用两个波束轮流循环进行发送的情况,在第一组时域资源上,使用波束1上报K个SCI,在第二组时域资源上,使用波束2上报K个CSI,在第三组时域资源上再使用波束1上报K个SCI….,直到使用完系统配置的时域资源或者达到预设值的上报次数,或者满足系统设置的其他停止上报的条件。
需要说明的是,图10a至图10c中所示出的时域资源和频域资源可以根据系统的设计和需求进行单元的划分,例如,图10a至图10c中所示出的一个方格在时域上可以包含至少一个符号,也可以包含至少一个时隙(slot),也可以包含至少一个比符号更小的时间单元,频域上可以包含至少一个子载波,等等。
可选的,所述L个波束具体使用何种发送方式,例如,是同时发送还是轮流循环发送,可以通过预定义或者缺省的方式确定,也可以通过信令(如RRC信令)进行动态或者半静态的指示。例如,如果系统默认缺省的多个波束发送方式是轮流循环发送,则用户设备接收到多个波束的指示信息时,就可以使用上述的轮流循环的方式利用多个波束上报K个CSI。
可选的,所述K个CSI在上报时可以使用联合编码。例如,以两个CSI为例,两个CSI中的RI联合编码,CQI联合编码,PMI联合编码(其中,第一个CSI中的PMI的第一PMI和第二个CSI中的PMI的第一PMI联合编码,第一个CSI中的PMI的第二PMI和第二个CSI中的PMI的第二PMI联合编码,或者,第一个CSI中的PMI的第一PMI第二PMI联合编码,第二个CSI中的PMI的第一PMI和第二PMI联合编码)。再如,第一个CSI中的RI,第一个CSI中的PMI的第一PMI,第二个CSI中的RI,第一个CSI中的PMI的第一PMI联合编码,两个CSI中的CQI联合编码,第一个CSI中的PMI的第二PMI和第二个CSI中的PMI的第二PMI联合编码。具体的联合编码方式可以根据系统的需求进行设计,本申请对此不作限制。
本申请实施例提供一种装置,所述装置用于实现上述实施例中网络设备的功能。可选的,所述装置可以是网络设备,也可以是其他可以实现相应功能的装置,例如芯片。
如图11a和图11b所示,为本发明实施例提供的网络设备的结构示意图。如图11a和图11b所示的网络设备可以是图7至图10c所示实施例中的网络设备(例如,服务网络设备或者协作网络设备)。图11a和图11b所示的网络设备可以用于实现上述所有实施例中网络设备参与实现的内容。
如图11a所示的网络设备包括处理器1110,收发器1120和存储器1130。所述收发器1120可以用于支持网络设备与上述实施例中的所述UE之间收发信息。譬如,所述处理器1110可以确定将要发送的指示信息的具体内容和/或生成所述指示信息,所述收发器1120可以向UE发送所述指示信息。进一步,还可以向UE发送下行数据,并接收所述UE上报的CSI和/或UE发送的上行数据。所述网络设备还可以包括存储器1130,可以用于存储网络设备的程序代码和数据。可以理解的是,图11a仅仅示出了网络设备的简化实现。
如图11b所述的网络设备包括处理单元1111和收发单元1121。所述处理单元1111可以用于确定将要发送的指示信息的具体内容和/或生成所述指示信息,所述收发单元1121可以用于向UE所述指示信息。进一步,还可以向所述UE发送下行数据,并接收所述UEUE上报的 CSI和/或UE发送的上行数据。
本申请实施例提供一种装置,所述装置用于实现上述实施例中用户设备的功能。可选的,所述装置可以是用户设备,也可以是其他可以实现相应功能的装置,例如芯片。
如图12a和图12b所示,为本发明提供的UE的实施例示意图。如图12a和图12b所示的UE可以是图7至图10c所示实施例中的UE。图12a和图12b所示的UE可以用于实现图7至图10c所述实施例中UE参与实现的内容,包括上述所有实施例中接收指示信息和/或上报CSI的所有内容。
如图12a所示的UE包括收发器1210,处理器1220,还可以包括存储器1230和调制解调处理器1240。
在上行链路上,收发器1210处理(例如,模拟转换、滤波、放大和上变频等)调制解调处理器1240输出的输出采样并生成上行链路信号,该上行链路信号经由天线发射给上述实施例中所述的网络设备。在下行链路上,天线接收上述实施例中所述网络设备发射的下行链路信号,收发器1210处理(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样给调制解调处理器1240。譬如,所述收发器1210可以接收网络设备发送的指示信息。进一步,可以接收至少一个网络设备发送的下行数据,或向所述至少一个网络设备上报所述K个CSI和/或发送上行数据。在调制解调处理器1240中,编码器12401接收要在上行链路上发送的业务数据和信令消息,并对业务数据和信令消息进行处理(例如,格式化、编码和交织)。调制器12402进一步处理(例如,符号映射和调制)编码后的业务数据和信令消息并提供输出采样。解调器12404处理(例如,解调)输入采样并提供符号估计。解码器12403处理(例如,解交织和解码)该符号估计并提供发送给UE的已解码的数据和信令消息。编码器12401、调制器12402、解调器12404和解码器12403可以由集成的调制解调处理器1240来实现。这些部件根据无线接入网采用的无线接入技术来进行处理。处理器1220对UE的动作进行控制管理,用于执行上述实施例中由UE进行的处理。譬如,处理器1202可以根据所述指示信息,确定和/或生成相同的载波上获取的K个CSI。具体的,处理器1202可以根据所述指示信息中指示的CSI上报配置信息,确定和/或生成所述K个CSI的具体内容。处理器1202用于支持UE执行本发明实施例中UE的内容。存储器1230用于存储用于所述UE的程序代码和数据。
如图12b所述,本发明实施例给出了另一个UE的示例,所述UE包括收发单元1211和处理单元1221。所述收发单元1211可以用于接收网络设备发送指示信息,还可以接收至少一个网络设备发送的下行数据,或向所述至少一个网络设备上报K个CSI和/或发送上行数据。所述处理单元1221可以用于根据所述指示信息,确定和/或生成相同的载波上获取的K个CSI。
本领域技术人员能够理解,信息和信号可以使用任何技术方法(technology techniques)来表示,例如,数据(data),指令(instructions),命令(command),信息(information),信号(signal),比特(bit),符号(symbol)和芯片(chip)可以通过电压、电流、电磁波、磁场或磁粒(magnetic particles),光场或光粒(optical particles),或以上的任意组合。
本领域技术任何还可以了解到本发明实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。为清楚展示硬件和软件的可替换性(interchangeability),上述的各种说明性部件(illustrative components)和步骤已经通用地描述了它们的功能。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的实现要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本发明实施例 保护的范围。
本发明实施例中所描述的各种说明性的逻辑块,模块和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的实现来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本发明实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件模块、或者这两者的结合。软件模块可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于用户终端中。可选地,处理器和存储媒介也可以设置于用户终端中的不同的部件中。
在一个或多个示例性的实现中,本发明实施例所描述的上述功能可以在硬件、软件、固件或这三者的任意组合来实现。如果在软件中实现,这些功能可以存储与电脑可读的媒介上,或以一个或多个指令或代码形式传输于电脑可读的媒介上。电脑可读媒介包括电脑存储媒介和便于使得让电脑程序从一个地方转移到其它地方的通信媒介。存储媒介可以是任何通用或特殊电脑可以接入访问的可用媒体。例如,这样的电脑可读媒体可以包括但不限于RAM、ROM、EEPROM、CD-ROM或其它光盘存储、磁盘存储或其它磁性存储装置,或其它任何可以用于承载或存储以指令或数据结构和其它可被通用或特殊电脑、或通用或特殊处理器读取形式的程序代码的媒介。此外,任何连接都可以被适当地定义为电脑可读媒介,例如,如果软件是从一个网站站点、服务器或其它远程资源通过一个同轴电缆、光纤电脑、双绞线、数字用户线(DSL)或以例如红外、无线和微波等无线方式传输的也被包含在所定义的电脑可读媒介中。所述的碟片(disk)和磁盘(disc)包括压缩磁盘、镭射盘、光盘、DVD、软盘和蓝光光盘,磁盘通常以磁性复制数据,而碟片通常以激光进行光学复制数据。上述的组合也可以包含在电脑可读媒介中。
本发明说明书的上述描述可以使得本领域技术任何可以利用或实现本发明的内容,任何基于所公开内容的修改都应该被认为是本领域显而易见的,本发明所描述的基本原则可以应用到其它变形中而不偏离本发明的发明本质和范围。因此,本发明所公开的内容不仅仅局限于所描述的实施例和实现,还可以扩展到与本发明原则和所公开的新特征一致的最大范围。

Claims (60)

  1. 一种信道状态信息测量的方法,其特征在于,包括:
    接收来自无线网络设备的用于信道状态信息测量的配置信息,所述配置信息包括用于信道状态信息测量的资源的信息并指示所述资源的测量属性信息,所述测量属性包括信道测量,或,X种干扰测量,或,信道测量和X种干扰测量,其中X为大于或等于1的整数;
    根据所述配置信息进行信道状态信息的测量并反馈所述信道状态信息。
  2. 一种信道状态信息测量的方法,其特征在于,包括:
    第一无线网络设备向用户设备发送用于信道状态信息测量的配置信息,所述配置信息包括用于信道状态信息测量的资源的信息并指示所述资源的测量属性信息,所述测量属性包括信道测量,或,X种干扰测量,或,信道测量和X种干扰测量,其中X为大于或等于1的整数;
    第二无线网络设备接收来自用户设备的信道状态信息,所述信道状态信息基于所述配置信息得到,其中第二无线网络设备和第一无线网络设备相同或不同。
  3. 根据权利要求1或2所述的方法,其特征在于,所述用于信道状态信息测量的资源的信息包括可用于信道测量的资源的信息和用于干扰测量的资源的信息,所述配置信息还包括第二指示信息,用于指示实际用于信道测量的资源的个数M,其中,M为不小于1的整数;或,
    所述用于信道状态信息测量的资源的信息包括用于信道测量的资源的信息和可用于干扰测量的资源的信息,所述配置信息还包括第三指示信息,用于指示实际用于干扰测量的资源的个数N,其中,N为不小于0的整数;或,
    所述用于信道状态信息测量的资源的信息包括可用于信道测量的资源的信息和可用于干扰测量的资源的信息,所述配置信息还包括第二指示信息和第三指示信息,第二指示信息用于指示实际用于信道测量的资源的个数M,第三指示信息用于指示实际用于干扰测量的资源的个数N,其中,M为不小于1的整数,N为不小于0的整数。
  4. 根据权利要求3所述的方法,其特征在于,所述用户设备根据所述配置信息进行信道状态信息的测量并反馈所述信道状态信息包括:
    所述用户设备根据所述第二指示信息确定所述可用于信道状态信息的资源中实际用于信道测量的M个资源,针对所述实际用于信道测量的M个资源进行信道状态信息的测量和反馈。
  5. 根据权利要求4所述的方法,其特征在于,针对所述实际用于信道测量的资源进行信道状态信息的测量包括:对所述实际用于信道测量的资源进行信道测量。
  6. 根据权利要求4所述的方法,其特征在于,针对所述实际用于信道测量的资源进行信道状态信息的测量包括:对所述实际用于信道测量的资源进行信道测量以及对所述可用于信道状态信息测量的资源中除所述M个资源之外的资源进行干扰测量。
  7. 根据权利要求3所述的方法,其特征在于,所述用户设备根据所述配置信息进行信道状态信息的测量并反馈所述信道状态信息包括:
    所述用户设备根据所述第三指示信息确定所述用于信道状态信息的资源中实际用于干扰测量的N个资源,针对用于信道测量的资源进行信道状态信息的测量和反馈,其中,针对用于信道测量的资源进行信道状态信息的测量包括对用于信道测量的资源进行信道测量和对所述N个资源进行干扰测量。
  8. 根据权利要求1至7中任意一项所述的方法,其特征在于,所述配置信息指示所述资源的测量属性信息包括:
    所述配置信息包括用于指示测量属性的第一指示信息;或者,
    所述配置信息的资源或格式用于指示所述资源的测量属性。
  9. 根据权利要求1至8中任意一项所述的方法,其特征在于,所述X种干扰测量包括利用零功率的参考信号测量干扰,利用非零功率的信道状态信息参考信号的资源获取最强的一个或多个干扰,利用非零功率的信道状态信息参考信号的资源获取最弱的一个或多个干扰,利用非零功率的信道状态信息参考信号的资源获取未被预编码的干扰,利用非零功率的信道状态信息参考信号的资源获取对应可使用的码本中的所有可选取的预编码矩阵的所有干扰,利用非零功率的信道状态信息参考信号的资源获取对应非最强或最弱的特定预编码矩阵的干扰,以及,利用非零功率的解调参考信号获取被预编码的干扰中的至少一种。
  10. 根据权利要求8或9所述的方法,其特征在于,所述用于信道状态信息测量的资源包括至少一个,用于指示所述资源的测量属性的第一指示信息包括若干元素,若干元素中的每一个元素用于指示所述资源中的每个的测量属性。
  11. 根据权利要求10所述的方法,其特征在于,所述每个元素包括至少一个比特,所述比特的个数与所述测量属性的种类数量相关。
  12. 根据权利要求1至9中任意一项所述的方法,其特征在于,所述用于信道状态信息测量的资源具有一种测量属性,或者,具有多于一种测量属性。
  13. 根据权利要求12所述的方法,其特征在于,一个资源标识(ID)标识用于标识信道状态信息测量的资源,一个第一指示信息用于指示一种测量属性,所述用于信道状态信息测量的资源具有一种测量属性,或者,具有多于一种测量属性包括:
    一个资源标识具有一个第一指示信息,或者,具有多于一个第一指示信息。
  14. 根据权利要求1至9中任意一项所述的方法,其特征在于,所述一种测量属性对应一个用于信道状态信息测量的资源,或者,所述一种测量属性对应多于一个用于信道状态信息测量的资源。
  15. 根据权利要求14所述的方法,其特征在于,一个资源标识(ID)标识用于标识信道状态信息测量的资源,所述一种测量属性对应一个用于信道状态信息测量的资源,或者,所述一种测量属性对应多于一个用于信道状态信息测量的资源包括:
    用于指示所述一个或多于一个用于信道状态信息测量的资源的测量属性的第一指示信息包括具有所述测量属性的一个或多于一个用于信道状态信息测量的资源的资源标识。
  16. 根据权利要求14所述的方法,其特征在于,所述一种测量属性对应一个用于信道状态信息测量的资源,或者,对应多于一个用于信道状态信息测量的资源包括:
    用于指示所述一个或多于一个用于信道状态信息测量的资源的测量属性的第一指示信息包括若干比特,若干比特中的每一比特用于指示所述资源中的每个是否具有所述测量属性。
  17. 根据权利要求14-16中任意一项所述的方法,其特征在于,所述测量属性多于一种,所述多于一种测量属性中的每种测量属性具有对应的第一指示信息。
  18. 根据权利要求1,3-17中任意一项所述的方法,其特征在于,所述测量属性中的信道测量所对应的资源包括至少两个,且所述用户设备根据所述配置信息进行信道状态信息的测量并反馈所述信道状态信息包括:
    所述用户设备针对至少两个资源中的至少一个测量并反馈信道状态信息,所述测量包括对所述至少两个资源中的至少一个进行信道测量以及对除进行信道测量的至少两个资源中的 至少一个之外的资源进行干扰测量。
  19. 根据权利要求1-2和7-17中任意一项所述的方法,其特征在于,所述用于信道状态信息测量的资源的信息包括可用于信道测量的资源的信息和用于干扰测量的资源的信息,所述配置信息还包括第四指示信息,用于指示传输集的个数Y,Y为整数。
  20. 根据权利要求19所述的方法,其特征在于,所述用户设备根据所述第四指示信息所指示的传输集的个数Y,确定所述可用于信道测量的资源中实际用于信道测量的Z个资源,针对实际用于信道测量的Z个资源进行信道状态信息的测量和反馈,其中,Z=k*Y,k为每个传输集包括的用于信道测量的资源的个数,k为不小于1的整数。
  21. 根据权利要求20所述的方法,其特征在于,针对实际用于信道测量的Z个资源进行信道状态信息的测量包括:对实际用于信道测量的Z个资源进行信道测量以及对所述可用于信道状态信息测量的资源中除所述Z个资源之外的资源进行干扰测量。
  22. 一种信道状态信息测量的方法,其特征在于,包括:
    接收来自无线网络设备的用于信道状态信息测量的配置信息,所述配置信息包括可用于信道状态信息测量的资源的信息;
    根据所述配置信息进行信道状态信息的测量,并反馈所述信道状态信息以及所述信道状态信息所对应的用于信道状态信息测量的资源的测量属性信息,所述测量属性包括信道测量,或,X种干扰测量,或,信道测量和X种干扰测量,其中X为不小于1的整数。
  23. 根据权利要求22所述的方法,其特征在于,所述信道状态信息所对应的用于信道状态信息测量的资源的测量属性信息包括若干比特,所述若干比特中的每个比特用于指示所述资源中的每个的测量属性。
  24. 根据权利要求22或23所述的方法,其特征在于,所述信道状态信息所对应的用于信道状态信息测量的资源为所述可用于信道状态信息测量的资源中的部分。
  25. 根据权利要求22至24中任意一项所述的方法,其特征在于,所述X种干扰测量包括利用零功率的参考信号测量干扰,利用非零功率的信道状态信息参考信号的资源获取最强的一个或多个干扰,利用非零功率的信道状态信息参考信号的资源获取最弱的一个或多个干扰,利用非零功率的信道状态信息参考信号的资源获取未被预编码的干扰,利用非零功率的信道状态信息参考信号的资源获取对应可使用的码本中的所有可选取的预编码矩阵的所有干扰,利用非零功率的信道状态信息参考信号的资源获取对应非最强或最弱的特定预编码矩阵的干扰,利用非零功率的解调参考信号获取干扰,以及,利用非零功率的解调参考信号获取被预编码的干扰中的至少一种。
  26. 一种装置,其特征在于,包括处理器、存储器和收发器,
    所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制收发器进行信号的接收和发送,当处理器执行所述存储器存储的指令时,所述装置用于完成如权利要求2-3,8-17,和19中任意一项所述的方法。
  27. 一种装置,其特征在于,包括处理器、存储器和收发器,
    所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制收发器进行信号的接收和发送,当处理器执行所述存储器存储的指令时,所述装置用于完成如权利要求1和3-25中任意一项所述的方法。
  28. 一种信道状态信息上报方法,其特征在于,所述方法包括:
    用户设备接收来自网络设备的一条指示信息,所述指示信息用于指示K个信道状态信息的上报,其中,所述K个信道状态信息在相同的载波上测量和上报,K为大于等于2的整数;
    所述用户设备根据所述指示信息,上报所述K个信道状态信息。
  29. 如权利要求28所述的方法,其特征在于,所述K个信道状态信息为K个非周期性上报的信道状态信息,或者K个半静态上报的信道状态信息。
  30. 如权利要求29所述的方法,其特征在于,所述指示信息中包含所述K个信道状态信息上报配置的索引信息和/或所述K个信道状态信息所属的信道状态信息上报配置组的索引信息。
  31. 如权利要求29或30所述的方法,其特征在于,所述指示信息中包含T个信道状态信息上报定时偏移的信息,所述T个信道状态信息上报定时偏移用于所述K个信道状态信息的上报,其中T为大于等于2的整数,所述信道状态信息上报定时偏移是指信道状态信息上报触发到信道状态信息上报之间的时间间隔。
  32. 如权利要求28所述的方法,其特征在于,所述K个信道状态信息为K个周期性上报的信道状态信息。
  33. 如权利要求32所述的方法,其特征在于,所述指示信息中包含所述K个信道状态信息上报配置的索引信息,上报周期信息和上报子帧偏移配置信息中的至少一个。
  34. 如权利要求28至33任一项所述的方法,其特征在于,所述指示信息中还包括波束信息,所述波束信息用于指示上报所述K个信道状态信息所使用的波束,所述波束信息指示L个波束,所述L为大于等于1的整数,所述L个波束中的每个波束均用于上报所述K个信道状态信息。
  35. 如权利要求34所述的方法,其特征在于,所述L为大于等于2的整数,所述L个波束为使用相同的时域资源发送的波束,或者,所述L个波束为使用不同的时域资源分别发送的波束。
  36. 一种信道状态信息上报方法,其特征在于,所述方法包括:
    网络设备发送一条指示信息给用户设备,所述指示信息用于指示K个信道状态信息的上报,K为大于等于2的整数;
    所述网络设备在相同的载波上接收所述K个信道状态信息。
  37. 如权利要求36所述的方法,其特征在于,所述K个信道状态信息为K个非周期性上报的信道状态信息,或者K个半静态上报的信道状态信息。
  38. 如权利要求37所述的方法,其特征在于,所述指示信息中包含所述K个信道状态信息上报配置的索引信息和/或所述K个信道状态信息所属的信道状态信息上报配置组的索引信息。
  39. 如权利要求37或38所述的方法,其特征在于,所述指示信息中包含T个信道状态信息上报定时偏移的信息,所述T个信道状态信息上报定时偏移用于所述K个信道状态信息的上报,其中T为大于等于2的整数,所述信道状态信息上报定时偏移是指信道状态信息上报触发到信道状态信息上报之间的时间间隔。
  40. 如权利要求36所述的方法,其特征在于,所述K个信道状态信息为K个周期性上报的信道状态信息。
  41. 如权利要求40所述的方法,其特征在于,所述指示信息中包含所述K个信道状态信息上报配置的索引信息,上报周期信息和上报子帧偏移配置信息中的至少一个。
  42. 如权利要求36至41任一项所述的方法,其特征在于,所述指示信息中还包括波束信息,所述波束信息用于指示上报所述K个信道状态信息所使用的波束,所述波束信息指示L个波束,所述L为大于等于1的整数,所述L个波束中的每个波束均用于所述K个信道状 态信息的上报。
  43. 如权利要求42所述的方法,其特征在于,所述L为大于等于2的整数,所述L个波束为使用相同的时域资源发送的波束,或者,所述L个波束为使用不同的时域资源分别发送的波束。
  44. 一种装置,其特征在于,包括:
    收发器,用于接收来自网络设备的一条指示信息,所述指示信息用于指示K个信道状态信息的上报,其中,所述K个信道状态信息在相同的载波上测量和上报,K为大于等于2的整数;和
    处理器,用于根据所述指示信息确定和/或生成所述K个信道状态信息;
    所述收发器还用于,在相同的载波上发送所述L个信道状态信息。
  45. 如权利要求44所述的装置,其特征在于,所述K个信道状态信息为K个非周期性上报的信道状态信息,或者K个半静态上报的信道状态信息。
  46. 如权利要求45所述的装置,其特征在于,所述指示信息中包含所述K个信道状态信息上报配置的索引信息和/或所述K个信道状态信息所属的信道状态信息上报配置组的索引信息。
  47. 如权利要求45或46所述的装置,其特征在于,所述指示信息中包含T个信道状态信息上报定时偏移的信息,所述T个信道状态信息上报定时偏移用于所述K个信道状态信息的上报,其中T为大于等于2的整数,所述信道状态信息上报定时偏移是指信道状态信息上报触发到信道状态信息上报之间的时间间隔。
  48. 如权利要求44所述的装置,其特征在于,所述K个信道状态信息为K个周期性上报的信道状态信息。
  49. 如权利要求48所述的装置,其特征在于,所述指示信息中包含所述K个信道状态信息上报配置的索引信息,上报周期信息和上报子帧偏移配置信息中的至少一个。
  50. 如权利要求44至49任一项所述的装置,其特征在于,所述指示信息中还包括波束信息,所述波束信息用于指示上报所述K个信道状态信息所使用的波束,所述波束信息指示L个波束,所述L为大于等于1的整数;
    所述发送器,用于使用所述L个波束中的每个波束发送所述K个信道状态信息。
  51. 如权利要求50所述的装置,其特征在于,所述L为大于等于2的整数,所述发送器,用于在相同的时域资源上使用所述L个波束中的每一个波束发送所述K个信道状态信息,或者,在不同的时域资源上分别使用所述L个波束中的每一个波束发送所述K个信道状态信息。
  52. 一种装置,其特征在于,包括:
    收发器,用于发送一条指示信息给用户设备,所述指示信息用于指示K个信道状态信息的上报,K为大于等于2的整数;和
    处理器,用于确定和/或生成所述指示信息,
    其中,所述收发器,还用于在相同的载波上接收所述K个信道状态信息。
  53. 如权利要求52所述的装置,其特征在于,所述K个信道状态信息为K个非周期性上报的信道状态信息,或者K个半静态上报的信道状态信息。
  54. 如权利要求53所述的装置,其特征在于,所述指示信息中包含所述K个信道状态信息上报配置的索引信息和/或所述K个信道状态信息所属的信道状态信息上报配置组的索引信息。
  55. 如权利要求53或54所述的装置,其特征在于,所述指示信息中包含T个信道状态 信息上报定时偏移的信息,所述T个信道状态信息上报定时偏移用于所述K个信道状态信息的上报,其中T为大于等于2的整数,所述信道状态信息上报定时偏移是指信道状态信息上报触发到信道状态信息上报之间的时间间隔。
  56. 如权利要求52所述的装置,其特征在于,所述K个信道状态信息为K个周期性上报的信道状态信息。
  57. 如权利要求56所述的装置,其特征在于,所述指示信息中包含所述K个信道状态信息上报配置的索引信息,上报周期信息和上报子帧偏移配置信息中的至少一个。
  58. 如权利要求52至57任一项所述的装置,其特征在于,所述指示信息中还包括波束信息,所述波束信息用于指示上报所述K个信道状态信息所使用的波束,所述波束信息指示L个波束,所述L为大于等于1的整数,所述L个波束中的每个波束均用于所述K个信道状态信息的上报。
  59. 如权利要求58所述的装置,其特征在于,所述L为大于等于2的整数,所述L个波束为使用相同的时域资源发送的波束,或者,所述L个波束为使用不同的时域资源分别发送的波束。
  60. 一种通信系统,其特征在于,包括如权利要求44-51任一项所述的装置和权利要求52至59任一项所述的装置。
PCT/CN2018/071634 2017-01-06 2018-01-05 一种信道状态信息处理的方法、装置和系统 WO2018127149A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18736359.3A EP3547745B1 (en) 2017-01-06 2018-01-05 Channel state information processing method, apparatus and system
US16/504,264 US11082986B2 (en) 2017-01-06 2019-07-06 Channel state information processing method and apparatus, and system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201710011453.8 2017-01-06
CN201710011453 2017-01-06
CN201710314221.X 2017-05-05
CN201710314221 2017-05-05
CN201710687469.0 2017-08-11
CN201710687469.0A CN108282212B (zh) 2017-01-06 2017-08-11 一种信道状态信息处理的方法、装置和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/504,264 Continuation US11082986B2 (en) 2017-01-06 2019-07-06 Channel state information processing method and apparatus, and system

Publications (1)

Publication Number Publication Date
WO2018127149A1 true WO2018127149A1 (zh) 2018-07-12

Family

ID=62789240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071634 WO2018127149A1 (zh) 2017-01-06 2018-01-05 一种信道状态信息处理的方法、装置和系统

Country Status (1)

Country Link
WO (1) WO2018127149A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110740020A (zh) * 2018-07-19 2020-01-31 中兴通讯股份有限公司 信号传输方法、装置、设备及计算机存储介质
CN110831196A (zh) * 2018-08-14 2020-02-21 维沃移动通信有限公司 Csi报告配置方法、终端设备和网络设备
CN111194040A (zh) * 2018-11-15 2020-05-22 成都华为技术有限公司 波束上报的方法与装置
CN112888012A (zh) * 2019-11-29 2021-06-01 维沃移动通信有限公司 测量目的确定方法、装置、设备及介质
CN113747491A (zh) * 2021-08-26 2021-12-03 上海擎昆信息科技有限公司 干扰上报方法和用户设备
US20210391907A1 (en) * 2020-06-12 2021-12-16 Qualcomm Incorporated Sidelink channel state information reporting for sidelink relaying that uses multiple transmit receive points
CN114080041A (zh) * 2020-08-19 2022-02-22 华为技术有限公司 一种信息传输方法和通信装置
CN115276890A (zh) * 2021-04-30 2022-11-01 维沃移动通信有限公司 传输处理方法、终端及网络侧设备
CN115314935A (zh) * 2021-05-06 2022-11-08 联发科技股份有限公司 报告信道状态信息csi的方法及装置
CN115834017A (zh) * 2019-02-01 2023-03-21 华为技术有限公司 上报信道状态信息的方法和装置
CN115997353A (zh) * 2022-10-21 2023-04-21 北京小米移动软件有限公司 一种信道状态信息反馈方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102291764A (zh) * 2011-08-05 2011-12-21 电信科学技术研究院 配置测量信息和进行上报的方法、系统及设备
CN102468927A (zh) * 2010-11-15 2012-05-23 华为技术有限公司 上报信道状态的方法、设备及系统
WO2015184707A1 (zh) * 2014-06-06 2015-12-10 中兴通讯股份有限公司 一种信息反馈方法、发送方法、反馈装置及发送装置
WO2016131176A1 (zh) * 2015-02-16 2016-08-25 富士通株式会社 信道状态测量方法、装置以及通信系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468927A (zh) * 2010-11-15 2012-05-23 华为技术有限公司 上报信道状态的方法、设备及系统
CN102291764A (zh) * 2011-08-05 2011-12-21 电信科学技术研究院 配置测量信息和进行上报的方法、系统及设备
WO2015184707A1 (zh) * 2014-06-06 2015-12-10 中兴通讯股份有限公司 一种信息反馈方法、发送方法、反馈装置及发送装置
WO2016131176A1 (zh) * 2015-02-16 2016-08-25 富士通株式会社 信道状态测量方法、装置以及通信系统

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110740020A (zh) * 2018-07-19 2020-01-31 中兴通讯股份有限公司 信号传输方法、装置、设备及计算机存储介质
US12107783B2 (en) 2018-07-19 2024-10-01 Zte Corporation Signal transmission method, apparatus, device, and computer storage medium
CN110831196A (zh) * 2018-08-14 2020-02-21 维沃移动通信有限公司 Csi报告配置方法、终端设备和网络设备
CN111194040B (zh) * 2018-11-15 2023-03-28 成都华为技术有限公司 波束上报的方法与装置
CN111194040A (zh) * 2018-11-15 2020-05-22 成都华为技术有限公司 波束上报的方法与装置
CN115834017A (zh) * 2019-02-01 2023-03-21 华为技术有限公司 上报信道状态信息的方法和装置
CN112888012A (zh) * 2019-11-29 2021-06-01 维沃移动通信有限公司 测量目的确定方法、装置、设备及介质
CN112888012B (zh) * 2019-11-29 2022-09-30 维沃移动通信有限公司 测量目的确定方法、装置、设备及介质
US12389246B2 (en) 2019-11-29 2025-08-12 Vivo Mobile Communication Co., Ltd. Method and apparatus for determining measurement target based on configuration information, device, and medium
US20210391907A1 (en) * 2020-06-12 2021-12-16 Qualcomm Incorporated Sidelink channel state information reporting for sidelink relaying that uses multiple transmit receive points
US11838080B2 (en) * 2020-06-12 2023-12-05 Qualcomm Incorporated Sidelink channel state information reporting for sidelink relaying that uses multiple transmit receive points
CN114080041A (zh) * 2020-08-19 2022-02-22 华为技术有限公司 一种信息传输方法和通信装置
CN115276890A (zh) * 2021-04-30 2022-11-01 维沃移动通信有限公司 传输处理方法、终端及网络侧设备
CN115314935A (zh) * 2021-05-06 2022-11-08 联发科技股份有限公司 报告信道状态信息csi的方法及装置
CN113747491A (zh) * 2021-08-26 2021-12-03 上海擎昆信息科技有限公司 干扰上报方法和用户设备
CN115997353A (zh) * 2022-10-21 2023-04-21 北京小米移动软件有限公司 一种信道状态信息反馈方法、装置、设备及存储介质

Similar Documents

Publication Publication Date Title
CN108282212B (zh) 一种信道状态信息处理的方法、装置和系统
US11936584B2 (en) System and method for control signaling
WO2018127149A1 (zh) 一种信道状态信息处理的方法、装置和系统
CN111512587B (zh) 配置信息的接收和发送方法、装置及通信系统
CN108282198B (zh) 一种信号传输方法和装置
RU2545527C2 (ru) Изменение режимов согласования скорости при наличии опорного сигнала информации о состоянии канала
US20130039199A1 (en) Methods of Point Association for Cooperative Multiple Point Transission
CN107888268A (zh) Csi测量方法及装置
JP2015529056A (ja) Ri報告を制御するための方法および装置
CN108599832A (zh) 上报信道状态信息的方法、用户设备及基站
JP2014506099A (ja) 非周期チャネル状態情報(a−csi)報告をcsi基準信号(csi−rs)リソースに暗黙的にリンクすること
CN104662969A (zh) 用于在通信系统中配置信道状态信息的系统和方法
WO2020029293A1 (zh) 无线通信方法、用户设备和基站
US12167397B2 (en) Signal reception apparatus and method and communications system
WO2021019287A1 (en) Methods and apparatuses for time-domain beam-sweeping
WO2018059470A1 (zh) 传输信息的方法和设备
JP2013503542A (ja) 広帯域無線接続システムにおいて効率的な多重アンテナ転送モード実行方法
CN104468182B (zh) 在时分双工系统中处理测量模式的方法及其通信装置
CN107733540A (zh) 测量的方法和装置
WO2018028687A1 (zh) 一种信道状态反馈的方法及装置
CN118870409A (zh) 波束管理方法、装置、终端及存储介质
CN119678400A (zh) 用于支持时域信道属性的ue csi报告的方法和装置
WO2024228081A1 (en) Group-based reporting enhancement supporting simultaneous uplink transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18736359

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2018736359

Country of ref document: EP

Effective date: 20190625

NENP Non-entry into the national phase

Ref country code: DE