WO2018127132A1 - 一种信号配置方法、装置及存储介质 - Google Patents

一种信号配置方法、装置及存储介质 Download PDF

Info

Publication number
WO2018127132A1
WO2018127132A1 PCT/CN2018/071570 CN2018071570W WO2018127132A1 WO 2018127132 A1 WO2018127132 A1 WO 2018127132A1 CN 2018071570 W CN2018071570 W CN 2018071570W WO 2018127132 A1 WO2018127132 A1 WO 2018127132A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
frequency domain
time domain
density
phase tracking
Prior art date
Application number
PCT/CN2018/071570
Other languages
English (en)
French (fr)
Inventor
钟科
童辉
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团有限公司 filed Critical 中国移动通信有限公司研究院
Priority to JP2019536921A priority Critical patent/JP2020504545A/ja
Priority to EP18736503.6A priority patent/EP3567785A4/en
Priority to US16/475,852 priority patent/US10965414B2/en
Publication of WO2018127132A1 publication Critical patent/WO2018127132A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2666Acquisition of further OFDM parameters, e.g. bandwidth, subcarrier spacing, or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path

Definitions

  • the present application relates to resource management technologies in the field of communications, and in particular, to a signal configuration method, apparatus, and storage medium.
  • the 5G NR will support full-band access in low frequency (less than 6 GHz band) + high frequency (6 GHz-100 GHz).
  • the phase noise problem in the high frequency band is very prominent, and the phase noise is caused by the non-ideality of the local oscillator.
  • the 6 GHz-100 GHz high-band communication system has a large increase in phase noise due to a large increase in the number of times of multiplication of the reference clock source. Phase noise can degrade the SNR or EVM at the receiving end, causing a large number of errors, which directly limits the use of high-order constellation modulation and seriously affects system capacity.
  • the phase tracking reference signal is configured in a fixed time domain fixed frequency domain.
  • the phase tracking reference signal configured in a fixed manner is excellent in phase tracking performance, but due to the continuity of the time domain and the frequency domain.
  • the invariance of density results in a very large overhead of the reference signal and very low spectral efficiency.
  • the main purpose of the present application is to provide a signal configuration method, apparatus, and storage medium, which are directed to solving the above problems in the prior art.
  • the present application provides a signal configuration method, including:
  • the reference information is used to represent a configuration of the communication network in which it is located;
  • the configuration information includes a density or a pattern corresponding to a time domain and/or a frequency domain resource.
  • the application provides a signal configuration device, including:
  • a reference information acquiring unit configured to acquire at least one type of reference information; the reference information is used to represent a configuration of the communication network;
  • a configuration unit configured to configure time domain and/or frequency domain resources of the phase tracking reference signal based on the at least one reference information, to obtain time domain and/or frequency domain resources for the phase tracking reference signal Configuration information; wherein the configuration information includes a density or a pattern corresponding to a time domain and/or a frequency domain resource.
  • the application provides a signal configuration device, the device comprising:
  • the processor And acquiring, by the processor, at least one reference information; the reference information is used to represent a configuration situation of the communication network; and the time domain and/or frequency domain resources of the reference tracking reference signal are based on the at least one reference information Performing configuration to obtain configuration information for time domain and/or frequency domain resources of the phase tracking reference signal; wherein the configuration information includes a density or pattern corresponding to a time domain and/or a frequency domain resource.
  • the present application proposes a signal configuration apparatus comprising: a processor and a memory for storing a computer program executable on the processor,
  • processor is configured to perform the steps of the foregoing method when the computer program is run.
  • the present application proposes a storage medium storing computer-executable instructions that, when executed, implement the aforementioned method steps.
  • the signal configuration method, device and storage medium provided by the present application configure the phase tracking signal in time domain and frequency domain resources based on the reference information, thereby avoiding the signal caused by the manner of fixing the phase tracking signal.
  • the problem of large overhead increases the spectral efficiency of the phase tracking reference signal.
  • FIG. 1 is a schematic flowchart of a signal configuration method according to an embodiment of the present application.
  • 2-1 is a schematic structural diagram 1 of a signal configuration apparatus according to an embodiment of the present application.
  • FIG. 2-2 is a schematic structural diagram 2 of a signal configuration apparatus according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a resource configuration of a phase tracking reference signal in the prior art
  • FIG. 4 is a third schematic structural diagram of a signal configuration apparatus according to an embodiment of the present application.
  • the embodiment of the present application provides a signal configuration method, as shown in FIG. 1 , including:
  • Step 101 Acquire at least one type of reference information; the reference information is used to represent a configuration of a communication network where the communication network is located;
  • Step 102 Configure time domain and/or frequency domain resources of the phase tracking reference signal based on the at least one reference information, to obtain a configuration of time domain and/or frequency domain resources for the phase tracking reference signal.
  • Information includes a density or a pattern corresponding to a time domain and/or a frequency domain resource.
  • the at least one reference information includes at least one of the following:
  • phase noise single sideband power spectral density can be obtained by a phase noise model. It can be understood that other methods can also be used, which is not exhaustive in this embodiment. Phase noise Single sideband power spectral density, its shape is mainly related to the cost, frequency band, process and power consumption of the local oscillator, which will not be described here.
  • the MCS is a modulation and coding strategy for numbering different modulation and coding modes so that the system can invoke different communication strategies.
  • MCS index (modulation and coding strategy index value) is used in 802.11 communication to rate wireless communication to cope with different communication environments.
  • the configuring the time domain and/or the frequency domain of the phase tracking reference signal based on the at least one reference information including at least one of the following:
  • phase tracking reference signal configuring, according to the at least one reference information, a time domain and/or a frequency domain resource of the phase tracking reference signal, including at least one of the following:
  • the time domain and/or frequency domain resources of the phase tracking reference signal are configured based at least on the communication waveform.
  • the density of the time domain and/or frequency domain resources of the phase tracking reference signal is configured as a first density threshold range; Increasing the phase noise, the rate of decline of the single sideband power spectral density is slowed, and the density of the time domain and/or frequency domain resources of the phase tracking reference signal is configured as a second density threshold range; wherein the first density The values in the threshold range are all smaller than the values in the second density threshold range; the first density threshold range or the second density threshold range respectively includes a subset of density thresholds that intersect or do not intersect each other;
  • phase noise model and the phase tracking reference signal have a time domain and frequency domain configuration relationship: the phase noise single sideband power spectral density decreases as the frequency offset increases, and the required phase tracking reference signal time domain and frequency domain are required. The higher the density; the phase noise single-sideband power spectral density decreases with the increase of the frequency offset, and the lower the time domain and frequency domain density of the required phase tracking reference signal.
  • the density corresponding to the time domain continuous and the frequency domain less than 10% may be used as the upper limit.
  • the density of the time domain and/or the frequency domain resource of the phase tracking reference signal is configured to be within the first density threshold; when the MCS is in the second preset range Configuring a time domain of the phase tracking reference signal and/or a density of the frequency domain resource to be within a second density threshold; wherein, the values in the first preset range are smaller than the values in the second preset range.
  • the values in the first density threshold range are all smaller than the values in the second density threshold range.
  • the first preset range or the second preset range respectively includes preset subsets that cross each other or do not intersect.
  • the MCS and the phase tracking reference signal have a time domain and a frequency domain configuration relationship: the phase tracking reference signal required for the low MCS has a low time domain and frequency domain density; the phase tracking reference signal required for the high MCS has a high time domain and frequency domain density.
  • the subcarrier spacing and the phase tracking reference signal have a time domain and a frequency domain configuration relationship: when the subcarrier spacing is within a third preset range, configuring time domain and/or frequency domain resources of the phase tracking reference signal The density of the time range is within a first density threshold; when the subcarrier spacing is within a fourth predetermined range, the density of the time domain and/or frequency domain resources of the phase tracking reference signal is configured to be within a second density threshold Wherein, the values in the third preset range are greater than the values in the fourth preset range.
  • the third preset range or the fourth preset range may include at least one preset range subset respectively, and details are not described herein.
  • different subcarrier spacings and corresponding time domains and frequency domain densities may be preset correspondence tables, and the corresponding table follows a rule that the subcarrier spacing is larger, and the required phase tracking reference signal time domain is required.
  • the time domain and/or frequency domain configuration relationship of the required scheduled time domain and/or frequency domain resource blocks and the phase tracking reference signal based on the required time domain of the scheduled time domain and/or the frequency domain resource,
  • the time domain and/or frequency domain resource configuration of the phase tracking reference signal can be assigned an upper limit value and an assignable lower limit value. That is to say, the time domain and/or frequency domain configuration of the phase tracking reference signal does not increase proportionally with the increase of the scheduled RB, but the maximum number of time domain and/or frequency domain configurations may be allocated. Upper limit and minimum assignable lower limit.
  • the density of the configured time domain and/or frequency domain resources is the first density; when the communication waveform is OFDM, the density of the configured time domain and/or frequency domain resources is the second density; The first density is less than the second density.
  • Determining, according to the communication waveform, the density corresponding to the time domain and/or the frequency domain resource of the phase tracking reference signal may be a time domain and a frequency domain configuration relationship between the waveform and the phase tracking reference signal: a system using single carrier communication is adopted Systems requiring OFDM communication require phase tracking reference signals with low time domain and frequency domain densities.
  • the configuration information of the pattern can be notified to the receiving end by explicit or implicit signaling indication.
  • the notification is notified to the receiving end by explicit signaling instructions:
  • the method further includes:
  • the time domain and the frequency domain pattern of the phase tracking reference signal are transmitted to the receiving end by using information such as UCI.
  • the terminal when the base station performs configuration, the terminal performs transmission through the downlink signaling, specifically, notifying the terminal by using a signaling indication manner of at least one of DCI, RRC, and UL grant (grant);
  • the terminal When the terminal performs the configuration and receives the base station, the terminal sends the information through the uplink signaling, specifically, the base station is notified by using a signaling indication manner such as UCI.
  • the information indicating the time domain and/or the frequency domain of the phase tracking reference signal and the indication information related to the at least one reference information are sent to the receiving end by using information such as UCI.
  • the downlink when the base station notifies the terminal of the relevant configuration, the downlink: notifies the terminal phase tracking reference signal time domain and frequency domain configuration and the phase noise model by using a signaling indication manner of at least one of DCI, RRC, and UL grant (or)
  • the terminal obtains the time domain and frequency domain configuration of the phase tracking reference signal by looking up the table or the like according to the information.
  • the uplink notifies the base station phase tracking reference signal by using a signaling indication such as UCI, the time domain and frequency domain configuration and the phase noise model or/and the MCS or/and the subcarrier spacing or/and the scheduled RB or / Related to the waveform, the base station obtains the time domain and frequency domain configuration of the phase tracking reference signal by means of table lookup according to the information.
  • a signaling indication such as UCI, the time domain and frequency domain configuration and the phase noise model or/and the MCS or/and the subcarrier spacing or/and the scheduled RB or /
  • the base station obtains the time domain and frequency domain configuration of the phase tracking reference signal by means of table lookup according to the information.
  • the method further includes:
  • the phase tracking reference signal is multiplexed with the configured at least one reference signal.
  • the remaining reference signals including uplink and downlink used to estimate a measurement channel or used as a function for synchronizing, may be DMRS, CSI-RS or SRS.
  • the phase tracking reference signal can be sufficiently multiplexed with the remaining reference signals that already exist. Multiplexing means that if the remaining reference signals already exist in the corresponding time domain and frequency domain resources, there is no need to configure the phase tracking reference signals.
  • the function of the other reference signals is to estimate the estimated measurement channel or use it as a function of synchronization, and the specific transmission information thereof will not be described here.
  • At least one type of reference signal determining whether the at least one reference signal is occupied by a resource location corresponding to a time domain and a frequency domain pattern of the phase tracking reference signal;
  • the phase tracking reference signal is configured at the at least one unoccupied time domain and frequency domain resource location.
  • the required number of time domain and frequency domain of the phase tracking reference signal is related to the phase noise model, MCS, subcarrier spacing, scheduled RB and waveform. If the current number of reference signals in the current time domain and frequency domain is insufficient, it needs to be based on The corresponding configuration of the phase tracking reference signal is complemented accordingly.
  • the phase tracking signal can be configured related to the time domain and the frequency domain resource based on the reference information, thereby avoiding the problem of large signal overhead caused by the manner of fixing the phase tracking signal. This improves the spectral efficiency of the phase tracking reference signal.
  • the embodiment of the present application provides a signal configuration apparatus, as shown in FIG. 2-1, including:
  • the reference information acquiring unit 21 is configured to acquire at least one type of reference information, where the reference information is used to represent a configuration of the communication network;
  • the configuration unit 22 is configured to configure time domain and/or frequency domain resources of the phase tracking reference signal based on the at least one reference information to obtain a time domain and/or a frequency domain for the phase tracking reference signal.
  • the configuration information of the resource wherein the configuration information includes a density or a pattern corresponding to the time domain and/or the frequency domain resource.
  • the at least one reference information includes at least one of the following:
  • phase noise single sideband power spectral density can be obtained by a phase noise model. It can be understood that other methods can also be used, which is not exhaustive in this embodiment. Phase noise Single sideband power spectral density, its shape is mainly related to the cost, frequency band, process and power consumption of the local oscillator, which will not be described here.
  • the MCS is a modulation and coding strategy for numbering different modulation and coding modes so that the system can invoke different communication strategies.
  • MCS index (modulation and coding strategy index value) is used in 802.11 communication to rate wireless communication to cope with different communication environments.
  • the configuration unit is configured to perform at least one of the following processes:
  • the time domain and/or frequency domain resources of the phase tracking reference signal are configured based at least on the communication waveform.
  • the density of the time domain and/or frequency domain resources of the phase tracking reference signal is configured as a first density threshold range; Increasing the phase noise, the rate of decline of the single sideband power spectral density is slowed, and the density of the time domain and/or frequency domain resources of the phase tracking reference signal is configured as a second density threshold range; wherein the first density The values in the threshold range are all smaller than the values in the second density threshold range; the first density threshold range or the second density threshold range respectively includes a subset of density thresholds that intersect or do not intersect each other;
  • phase noise model and the phase tracking reference signal have a time domain and frequency domain configuration relationship: the phase noise single sideband power spectral density decreases as the frequency offset increases, and the required phase tracking reference signal time domain and frequency domain are required. The higher the density; the phase noise single-sideband power spectral density decreases with the increase of the frequency offset, and the lower the time domain and frequency domain density of the required phase tracking reference signal.
  • the density corresponding to the time domain continuous and the frequency domain less than 10% may be used as the upper limit.
  • the density of the time domain and/or the frequency domain resource of the phase tracking reference signal is configured to be within the first density threshold; when the MCS is in the second preset range Configuring a time domain of the phase tracking reference signal and/or a density of the frequency domain resource to be within a second density threshold; wherein, the values in the first preset range are smaller than the values in the second preset range.
  • the values in the first density threshold range are all smaller than the values in the second density threshold range.
  • the first preset range or the second preset range respectively includes preset subsets that intersect or do not intersect each other.
  • the MCS and the phase tracking reference signal have a time domain and a frequency domain configuration relationship: the phase tracking reference signal required for the low MCS has a low time domain and frequency domain density; the phase tracking reference signal required for the high MCS has a high time domain and frequency domain density.
  • the subcarrier spacing and the phase tracking reference signal have a time domain and a frequency domain configuration relationship: when the subcarrier spacing is within a third preset range, configuring time domain and/or frequency domain resources of the phase tracking reference signal The density of the time range is within a first density threshold; when the subcarrier spacing is within a fourth predetermined range, the density of the time domain and/or frequency domain resources of the phase tracking reference signal is configured to be within a second density threshold Wherein, the values in the third preset range are greater than the values in the fourth preset range.
  • the third preset range or the fourth preset range may include at least one preset range subset respectively, and details are not described herein.
  • Time domain and frequency domain configuration relationship between the scheduled RB and the phase tracking reference signal time domain and/or frequency domain resource configuration of the phase tracking reference signal based on the number of time domains and/or frequency domain resources required for scheduling
  • the upper limit can be assigned and the lower limit can be assigned. That is to say, the time domain and/or frequency domain configuration of the phase tracking reference signal does not increase proportionally with the increase of the scheduled RB, but the maximum number of time domain and/or frequency domain configurations may be allocated.
  • the density of the configured time domain and/or frequency domain resources is the first density; when the communication waveform is OFDM, the density of the configured time domain and/or frequency domain resources is the second density; The first density is less than the second density.
  • Determining, according to the communication waveform, the density corresponding to the time domain and/or the frequency domain resource of the phase tracking reference signal may be a time domain and a frequency domain configuration relationship between the waveform and the phase tracking reference signal: a system using single carrier communication is adopted Systems requiring OFDM communication require phase tracking reference signals with low time domain and frequency domain densities.
  • the configuration information of the pattern may be notified to the receiving end by explicit or implicit signaling indication.
  • the notification is notified to the receiving end by explicit signaling instructions:
  • the device further includes:
  • the communication unit 23 is configured to send, by using DCI or RRC, a pattern for the time domain and the frequency domain of the phase tracking reference signal to the receiving end;
  • the time domain and the frequency domain pattern of the phase tracking reference signal are transmitted to the receiving end by using information such as UCI.
  • the terminal when the base station performs configuration, the terminal performs transmission through the downlink signaling, specifically, notifying the terminal by using a signaling indication manner of at least one of DCI, RRC, and UL grant (grant);
  • the terminal When the terminal performs the configuration and receives the base station, the terminal sends the information through the uplink signaling, specifically, the base station is notified by using a signaling indication manner such as UCI.
  • the communication unit 23 is configured to send, by using at least one of a DCI, an RRC, and a UL grant, an indication that the configuration of the time domain and/or the frequency domain of the phase tracking reference signal is related to the at least one reference information to the receiving end. information;
  • the information indicating the time domain and/or the frequency domain of the phase tracking reference signal and the indication information related to the at least one reference information are sent to the receiving end by using information such as UCI.
  • the downlink when the base station notifies the terminal of the relevant configuration, the downlink: notifies the terminal phase tracking reference signal time domain and frequency domain configuration and the phase noise model by using a signaling indication manner of at least one of DCI, RRC, and UL grant (or)
  • the terminal obtains the time domain and frequency domain configuration of the phase tracking reference signal by looking up the table or the like according to the information.
  • the uplink notifies the time domain and the frequency domain configuration of the phase tracking reference signal of the base station by using a signaling indication such as UCI
  • phase noise model or / and MCS or / and subcarrier spacing or / and the scheduled RB or / and waveform related, the base station according to the information by looking up the table or the like to obtain the phase tracking reference signal time domain and frequency domain configuration.
  • the configuration unit is configured to determine, at the resource location corresponding to the time domain and the frequency domain pattern, whether at least one reference signal is configured; wherein the at least one reference signal is the phase tracking reference signal Different other reference signals;
  • the phase tracking reference signal is multiplexed with the configured at least one reference signal.
  • the remaining reference signals including uplink and downlink used to estimate a measurement channel or used as a function for synchronizing, may be DMRS, CSI-RS or SRS.
  • the phase tracking reference signal can be sufficiently multiplexed with the remaining reference signals that already exist.
  • the configuration unit is configured to determine, if the at least one reference signal is configured, whether the at least one reference signal is to be a resource location corresponding to a time domain and a frequency domain pattern of the phase tracking reference signal All occupied;
  • the phase tracking reference signal is configured at the at least one unoccupied time domain and frequency domain resource location.
  • the required number of time domain and frequency domain of the phase tracking reference signal is related to the phase noise model, MCS, subcarrier spacing, scheduled RB and waveform. If the current number of reference signals in the current time domain and frequency domain is insufficient, it needs to be based on The corresponding configuration of the phase tracking reference signal is complemented accordingly.
  • the manner in which the phase tracking reference signal is fixedly configured, the time-frequency resource corresponding to the light-colored block in the figure represents the fixed time domain allocated by the phase tracking reference signal and the position of the frequency domain resource;
  • the phase tracking reference signal is more flexibly configured, thereby avoiding the problem of large signal overhead caused by the manner of fixedly configuring the phase tracking signal, thereby improving the spectral efficiency of the phase tracking reference signal.
  • the embodiment of the present application provides a signal configuration apparatus, as shown in FIG. 4, including:
  • the processor 41 acquires at least one reference information; the reference information is used to represent a configuration situation of the communication network; and the time domain and/or frequency of the phase tracking reference signal is based on the at least one reference information.
  • the domain resource is configured to obtain configuration information of a time domain and/or a frequency domain resource of the phase tracking reference signal, where the configuration information includes a density or a pattern corresponding to a time domain and/or a frequency domain resource.
  • the at least one reference information includes at least one of the following:
  • phase noise single sideband power spectral density can be obtained by a phase noise model. It can be understood that other methods can also be used, which is not exhaustive in this embodiment. Phase noise Single sideband power spectral density, its shape is mainly related to the cost, frequency band, process and power consumption of the local oscillator, which will not be described here.
  • the MCS is a modulation and coding strategy for numbering different modulation and coding modes so that the system can invoke different communication strategies.
  • MCS index (modulation and coding strategy index value) is used in 802.11 communication to rate wireless communication to cope with different communication environments.
  • the processor 41 performs at least one of the following processes:
  • the time domain and/or frequency domain resources of the phase tracking reference signal are configured based at least on the communication waveform.
  • the density of the time domain and/or frequency domain resources of the phase tracking reference signal is configured as a first density threshold range; Increasing the phase noise, the rate of decline of the single sideband power spectral density is slowed, and the density of the time domain and/or frequency domain resources of the phase tracking reference signal is configured as a second density threshold range; wherein the first density The values in the threshold range are all smaller than the values in the second density threshold range; the first density threshold range or the second density threshold range respectively includes a subset of density thresholds that intersect or do not intersect each other;
  • phase noise model and the phase tracking reference signal have a time domain and frequency domain configuration relationship: the phase noise single sideband power spectral density decreases as the frequency offset increases, and the required phase tracking reference signal time domain and frequency domain are required. The higher the density; the phase noise single-sideband power spectral density decreases with the increase of the frequency offset, and the lower the time domain and frequency domain density of the required phase tracking reference signal.
  • the density corresponding to the time domain continuous and the frequency domain less than 10% may be used as the upper limit.
  • the density of the time domain and/or the frequency domain resource of the phase tracking reference signal is configured to be within the first density threshold; when the MCS is in the second preset range Configuring a time domain of the phase tracking reference signal and/or a density of the frequency domain resource to be within a second density threshold; wherein, the values in the first preset range are smaller than the values in the second preset range.
  • the values in the first density threshold range are all smaller than the values in the second density threshold range.
  • the first preset range or the second preset range respectively includes preset subsets that cross each other or do not intersect.
  • the MCS and the phase tracking reference signal have a time domain and a frequency domain configuration relationship: the phase tracking reference signal required for the low MCS has a low time domain and frequency domain density; the phase tracking reference signal required for the high MCS has a high time domain and frequency domain density.
  • the subcarrier spacing and the phase tracking reference signal have a time domain and a frequency domain configuration relationship: when the subcarrier spacing is within a third preset range, configuring time domain and/or frequency domain resources of the phase tracking reference signal The density of the time range is within a first density threshold; when the subcarrier spacing is within a fourth predetermined range, the density of the time domain and/or frequency domain resources of the phase tracking reference signal is configured to be within a second density threshold Wherein, the values in the third preset range are greater than the values in the fourth preset range.
  • the third preset range or the fourth preset range may include at least one preset range subset respectively, and details are not described herein.
  • Time domain and frequency domain configuration relationship between the scheduled RB and the phase tracking reference signal time domain and/or frequency domain resource configuration of the phase tracking reference signal based on the number of time domains and/or frequency domain resources required for scheduling
  • the upper limit can be assigned and the lower limit can be assigned. That is to say, the time domain and/or frequency domain configuration of the phase tracking reference signal does not increase proportionally with the increase of the scheduled RB, but the maximum number of time domain and/or frequency domain configurations may be allocated.
  • the density of the configured time domain and/or frequency domain resources is the first density; when the communication waveform is OFDM, the density of the configured time domain and/or frequency domain resources is the second density; The first density is less than the second density.
  • Determining, according to the communication waveform, the density corresponding to the time domain and/or the frequency domain resource of the phase tracking reference signal may be a time domain and a frequency domain configuration relationship between the waveform and the phase tracking reference signal: a system using single carrier communication is adopted Systems requiring OFDM communication require phase tracking reference signals with low time domain and frequency domain densities.
  • the configuration information of the pattern may be notified to the receiving end by explicit or implicit signaling indication.
  • the notification is notified to the receiving end by explicit signaling instructions:
  • the device also includes:
  • the communication interface 42 is configured to send, by using at least one of the DCI, the RRC, and the UL grant, a pattern for the time domain and the frequency domain of the phase tracking reference signal to the receiving end;
  • the time domain and frequency domain patterns of the phase tracking reference signal are transmitted to the receiving end by using information such as UCI.
  • the terminal when the base station performs configuration, the terminal performs transmission through the downlink signaling, specifically, notifying the terminal by using at least one signaling indication manner of the DCI, the RRC, and the UL grant (grant);
  • the terminal When the terminal performs the configuration and receives the base station, the terminal sends the information through the uplink signaling, specifically, the base station is notified by using a signaling indication manner such as UCI.
  • the communication interface 42 sends, by using at least one of the DCI, the RRC, and the UL grant, indication information related to the configuration of the time domain and/or the frequency domain of the phase tracking reference signal and the at least one reference information to the receiving end;
  • the information indicating the time domain and/or the frequency domain of the phase tracking reference signal and the indication information related to the at least one reference information are sent to the receiving end by using information such as UCI.
  • the downlink notifies the terminal phase tracking reference signal in the time domain and the frequency domain configuration by using a signaling indication manner of at least one of DCI, RRC, and UL grant (grant)
  • the phase noise model or / is associated with the MCS or / with subcarrier spacing or / with the scheduled RB or / and the waveform, the terminal according to the information to obtain the phase tracking reference signal time domain and frequency domain configuration by means of table lookup.
  • the uplink notifies the base station phase tracking reference signal by using a signaling indication such as UCI, the time domain and frequency domain configuration and the phase noise model or/and the MCS or/and the subcarrier spacing or/and the scheduled RB or / Related to the waveform, the base station obtains the time domain and frequency domain configuration of the phase tracking reference signal by means of table lookup according to the information.
  • a signaling indication such as UCI, the time domain and frequency domain configuration and the phase noise model or/and the MCS or/and the subcarrier spacing or/and the scheduled RB or /
  • the base station obtains the time domain and frequency domain configuration of the phase tracking reference signal by means of table lookup according to the information.
  • the processor 41 determines whether at least one reference signal is configured at a resource location corresponding to the time domain and the frequency domain pattern; wherein the at least one reference signal is different from the phase tracking reference signal Other reference signals;
  • the phase tracking reference signal is multiplexed with the configured at least one reference signal.
  • the remaining reference signals including uplink and downlink used to estimate a measurement channel or used as a function for synchronizing, may be DMRS, CSI-RS or SRS.
  • the phase tracking reference signal can be sufficiently multiplexed with the remaining reference signals that already exist.
  • the configuration unit is configured to determine, if the at least one reference signal is configured, whether the at least one reference signal is to be a resource location corresponding to a time domain and a frequency domain pattern of the phase tracking reference signal All occupied;
  • the phase tracking reference signal is configured at the at least one unoccupied time domain and frequency domain resource location.
  • the required number of time domain and frequency domain of the phase tracking reference signal is related to the phase noise model, MCS, subcarrier spacing, scheduled RB and waveform. If the current number of reference signals in the current time domain and frequency domain is insufficient, it needs to be based on The corresponding configuration of the phase tracking reference signal is complemented accordingly.
  • the manner in which the phase tracking reference signal is fixedly configured, the time-frequency resource corresponding to the light-colored block in the figure represents the fixed time domain allocated by the phase tracking reference signal and the position of the frequency domain resource;
  • the phase tracking reference signal is more flexibly configured, thereby avoiding the problem of large signal overhead caused by the manner of fixedly configuring the phase tracking signal, thereby improving the spectral efficiency of the phase tracking reference signal.
  • the embodiment of the invention further provides a signal configuration apparatus, comprising: at least one processor, a memory, and at least one network interface.
  • the various components are coupled together by a bus system.
  • the memory in the embodiments of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the memory stores elements, executable modules or data structures, or a subset thereof, or their extended set: an operating system and an application.
  • the processor is configured to be able to process the method steps of the foregoing first embodiment, and details are not described herein.
  • the embodiment of the present invention provides a storage medium, where the storage medium stores computer executable instructions, and when the computer executable instructions are executed, the method steps of the foregoing first embodiment are implemented.
  • the foregoing embodiment method can be implemented by means of software plus a necessary general hardware platform, and of course, can also be through hardware, but in many cases, the former is better.
  • Implementation Based on such understanding, the technical solution of the present application, which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a device, an air conditioner, or a network device, etc.) to perform the methods described in various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信号配置方法、装置及存储介质,所述方法包括:获取至少一种参考信息;所述参考信息用于表征所处通信网络的配置情况;基于所述至少一种参考信息,对所述相位跟踪参考信号的时域和/或频域资源进行配置,得到针对所述相位跟踪参考信号的时域和/或频域资源的配置信息;其中,所述配置信息包括有时域和/或频域资源所对应的密度或图样。

Description

一种信号配置方法、装置及存储介质
相关申请的交叉引用
本申请基于申请号为201710008062.0、申请日为2017年01月05日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及通信领域中的资源管理技术,尤其涉及一种信号配置方法、装置及存储介质。
背景技术
5G NR将支持低频(小于6GHz频段)+高频(6GHz-100GHz)的全频段接入。高频段的相位噪声问题非常突出,相位噪声是由于本振的非理想性造成的。与小于6GHz的低频段通信系统相比,6GHz-100GHz高频段通信系统由于对参考时钟源的倍频次数大幅增加,其相位噪声也相应大幅增加。相位噪声会恶化收端SNR或EVM,造成大量误码,从而直接限制高阶星座调制的使用,严重影响系统容量。
目前,以一种时域固定连续频域固定密度的方式配置相位跟踪参考信号,这种以固定方式配置的相位跟踪参考信号虽然在相位跟踪性能上优异,但由于时域的连续性以及频域密度的不变性,导致参考信号的开销非常大,频谱效率非常低。
发明内容
本申请的主要目的在于提出一种信号配置方法、装置及存储介质,旨在解决现有技术中存在的上述问题。
为实现上述目的,本申请提供一种信号配置方法,包括:
获取至少一种参考信息;所述参考信息用于表征所处通信网络的配置情况;
基于所述至少一种参考信息,对所述相位跟踪参考信号的时域和/或频域资源进行配置,得到针对所述相位跟踪参考信号的时域和/或频域资源的配置信息;其中,所述配置信息包括有时域和/或频域资源所对应的密度或图样。
本申请提供了一种信号配置装置,包括:
参考信息获取单元,用于获取至少一种参考信息;所述参考信息用于表征所处通信网络的配置情况;
配置单元,用于基于所述至少一种参考信息,对所述相位跟踪参考信号的时域和/或频域资源进行配置,得到针对所述相位跟踪参考信号的时域和/或频域资源的配置信息;其中,所述配置信息包括有时域和/或频域资源所对应的密度或图样。
本申请提供了一种信号配置装置,所述装置包括:
处理器,获取至少一种参考信息;所述参考信息用于表征所处通信网络的配置情况;基于所述至少一种参考信息,对所述相位跟踪参考信号的时域和/或频域资源进行配置,得到针对所述相位跟踪参考信号的时域和/或频域资源的配置信息;其中,所述配置信息包括有时域和/或频域资源所对应的密度或图样。
本申请提出一种信号配置装置,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
其中,所述处理器用于运行所述计算机程序时,执行前述方法的步骤。
本申请提出一种存储介质,所述存储介质存储有计算机可执行指令,所述计算机可执行指令被执行时实现前述方法步骤。
本申请提出的一种信号配置方法、装置及存储介质,基于参考信息对相位跟踪信号进行时域以及频域资源的相关配置,如此,就避免了固定配置相位跟踪信号的方式所带来的信号开销较大的问题,从而提升了相位跟踪参考信号的频谱效率。
附图说明
图1为本申请实施例信号配置方法流程示意图;
图2-1为本申请实施例信号配置装置组成结构示意图一;
图2-2为本申请实施例信号配置装置组成结构示意图二;
图3为现有技术中相位跟踪参考信号的资源配置的图样示意图;
图4为本申请实施例信号配置装置组成结构示意图三。
具体实施方式
下面结合附图和具体实施例对本申请作进一步详细说明。
实施例一、
本申请实施例提供一种信号配置方法,如图1所示,包括:
步骤101:获取至少一种参考信息;所述参考信息用于表征所处通信网络的配置情况;
步骤102:基于所述至少一种参考信息,对所述相位跟踪参考信号的时域和/或频域资源进行配置,得到针对所述相位跟踪参考信号的时域和/或频域资源的配置信息;其中,所述配置信息包括有时域和/或频域资源所对应的密度或图样。
进一步需要说明的是,所述至少一种参考信息,包括以下至少之一:
相位噪声单边带功率谱密度、调制与编码策略MCS、子载波间隔、所需调度的时域和/或频域资源块的数量、通信波形;
其中,所述相位噪声单边带功率谱密度可以通过相位噪声模型获得, 当前可以理解的是,还可以采用其他的方法获得,本实施例中不进行穷举。相位噪声单边带功率谱密度,其形状主要由本振的成本,频段,工艺和功耗有关,这里不进行赘述。
MCS为调制与编码策略,用于对不同的调制和编码方式进行编号,以便系统调用不同的通信策略。比如,在802.11通信中使用MCS index(调制与编码策略索引值)对无线通信进行速率配置,以应对不同的通信环境。
相应的,所述基于所述至少一种参考信息,对所述相位跟踪参考信号的时域和/或频域进行配置,包括以下至少之一:
所述基于所述至少一种参考信息,对所述相位跟踪参考信号的时域和/或频域资源进行配置,包括以下至少之一:
至少基于频偏增加时所对应的所述相位噪声单边带功率谱密度,对所述相位跟踪参考信号的时域和/或频域资源进行配置;
至少基于所述MCS,对所述相位跟踪参考信号的时域和/或频域资源进行配置;
至少基于所述子载波间隔,对所述相位跟踪参考信号的时域和/或频域资源进行配置;
至少基于所述所需调度的时域和/或频域资源块的数量,对所述相位跟踪参考信号的时域和/或频域资源进行配置;
至少基于通信波形,对所述相位跟踪参考信号的时域和/或频域资源进行配置。
具体的:
若随着频偏的增加相位噪声单边带功率谱密度的下降速度增加,则所述相位跟踪参考信号的时域和/或频域资源的密度配置为第一密度阈值范围;若随着频偏的增加相位噪声单边带功率谱密度的下降速度减慢,则所述相位跟踪参考信号的时域和/或频域资源的密度配置为第二密度阈值范 围;其中,所述第一密度阈值范围中的数值均小于第二密度阈值范围中的数值;所述第一密度阈值范围或第二密度阈值范围中,分别包含相互交叉或不交叉的密度阈值子集;
也就是说,相位噪声模型与相位跟踪参考信号时域和频域配置关系:相位噪声单边带功率谱密度随着频偏的增加下降速度越慢,所需相位跟踪参考信号时域和频域密度越高;相位噪声单边带功率谱密度随着频偏的增加下降速度越快,所需相位跟踪参考信号时域和频域密度越低。
需要指出的是,上述第一密度阈值范围以及第二密度阈值范围中,可以以时域连续、频域小于10%所对应的密度作为上限。
当所述MCS处于第一预设范围内时,配置所述相位跟踪参考信号的时域和/或频域资源的密度为第一密度阈值范围内;当所述MCS处于第二预设范围内时,配置所述相位跟踪参考信号的时域和/或频域资源的密度为第二密度阈值范围内;其中,所述第一预设范围中的数值均小于第二预设范围中的数值,所述第一密度阈值范围中的数值均小于第二密度阈值范围中的数值。所述第一预设范围或第二预设范围中,分别包含相互交叉或不交叉的预设子集。
即,MCS与相位跟踪参考信号时域和频域配置关系:低MCS所需相位跟踪参考信号时域和频域密度低;高MCS所需相位跟踪参考信号时域和频域密度高。
进一步地,子载波间隔与相位跟踪参考信号时域和频域配置关系:当所述子载波间隔处于第三预设范围内时,配置所述相位跟踪参考信号的时域和/或频域资源的密度为第一密度阈值范围内;当所述子载波间隔处于第四预设范围内时,配置所述相位跟踪参考信号的时域和/或频域资源的密度为第二密度阈值范围内;其中,所述第三预设范围中的数值均大于第四预设范围中的数值。其中,所述第三预设范围或第四预设范围内可以分别包 括有至少一个预设范围子集,这里不进行赘述。
具体来说,子载波间隔越大,所需相位跟踪参考信号时域和频域密度越低;子载波间隔越小,所需相位跟踪参考信号时域和频域密度越高。可以理解的是,不同的子载波间隔及其对应的时域以及频域密度可以为预先设置好的对应表,该对应表遵循的规律即子载波间隔越大,所需相位跟踪参考信号时域和频域密度越低;子载波间隔越小,所需相位跟踪参考信号时域和频域密度越高;或者,还可以为具备几种级别,当子载波间隔处于第一级范围内时,确定采用第一密度对时域以及频域的密度进行配置,依次类推;其中,每一级范围的数值均不相同。
所述所需调度的时域和/或频域资源块的数量与相位跟踪参考信号时域和频域配置关系:基于所需调度的时域和/或频域资源快的数量,对所述相位跟踪参考信号的时域和/或频域资源配置可分配上限值以及可分配下限值。也就是说,相位跟踪参考信号时域和/或频域配置不用随着所调度RB的增加而相应成比例的增加,而是其时域和/或频域配置个数有某一最大可分配上限值与最小可分配下限值。
当通信波形为单载波时,配置的时域和/或频域资源的密度为第一密度;当通信波形为OFDM时,配置的时域和/或频域资源的密度为第二密度;其中,所述第一密度小于第二密度。基于通信波形,确定所述相位跟踪参考信号的时域和/或频域资源所对应的密度具体可以为,波形与相位跟踪参考信号时域和频域配置关系:采用单载波通信的系统比采用OFDM通信的系统所需相位跟踪参考信号时域和频域密度要低。
在完成相位跟踪参考信号时域和频域的图样配置之后,可以将图样的配置信息可以通过显性或隐性的信令指示方式通知接收端。
首先介绍以显性的信令指示方式通知接收端的处理:
得到针对所述相位跟踪参考信号的时域及频域的图样之后,所述方法 还包括:
通过DCI、RRC、UL授权(grant)中至少之一,将针对所述相位跟踪参考信号的时域及频域的图样发送至接收端;
或者,通过UCI等信息,将针对所述相位跟踪参考信号的时域及频域的图样发送至接收端。
也就是说当基站进行配置,终端进行接收时,通过下行信令进行发送,具体为通过DCI、RRC、UL授权(grant)中至少之一的信令指示方式通知终端;
当终端进行配置、基站接收时,通过上行信令进行发送,具体为通过UCI等信令指示方式通知基站。
接下来针对以隐性的信令指示方式通知接收端的方式进行说明:
通过DCI、RRC、UL授权(grant)中至少之一的,向接收端发送对所述相位跟踪参考信号的时域和/或频域的配置与至少一个参考信息相关的指示信息;
或者,通过UCI等信息,向接收端发送对所述相位跟踪参考信号的时域和/或频域的配置与至少一个参考信息相关的指示信息。
具体的,当基站通知终端相关配置时,下行:通过DCI、RRC、UL授权(grant)中至少之一的信令指示方式通知终端相位跟踪参考信号时域和频域配置与相位噪声模型或/与MCS或/与子载波间隔或/与所调度RB或/与波形有关,终端根据这些信息通过查表等方式得出相位跟踪参考信号时域和频域配置。
当终端通知基站相关配置时,上行:通过UCI等信令指示方式通知基站相位跟踪参考信号时域和频域配置与相位噪声模型或/与MCS或/与子载波间隔或/与所调度RB或/与波形有关,基站根据这些信息通过查表等方式得出相位跟踪参考信号时域和频域配置。
得到针对所述相位跟踪参考信号的时域及频域的图样之后,所述方法还包括:
判断所述时域以及频域的图样所对应的资源位置处,是否配置有至少一种参考信号;其中,所述至少一种参考信号为与所述相位跟踪参考信号不同的其他参考信号;
若配置有至少一种参考信号,则将所述相位跟踪参考信号与所配置的至少一种参考信号进行复用。
其中,所述其余参考信号,包括上行和下行用来估计测量信道或用作同步等功能的已知信号,可以为DMRS,CSI-RS或SRS等。具体的,相位跟踪参考信号可以充分与已经存在的其余参考信号进行复用。复用指的是,如果其余参考信号已经存在相应的时域和频域资源中,就不需要配置所述相位跟踪参考信号了。其它参考信号的作用是估计估计测量信道或用作同步等功能,其具体发射的信息,这里不做赘述。
进一步地,若配置有至少一种参考信号,则判断所述至少一种参考信号是否将针对所述相位跟踪参考信号的时域及频域的图样所对应的资源位置全部占用;
若存在至少一个时域及频域资源位置未占用,则在所述至少一个未占用的时域及频域资源位置处配置所述相位跟踪参考信号。
也就是说,相位跟踪参考信号时域和频域所需数量与相位噪声模型,MCS,子载波间隔,所调度RB以及波形有关,如果当前时域和频域其余参考信号数量不足,则需要根据基于得到的所述相位跟踪参考信号的配置进行相应补充。
可见,通过采用上述方案,就能够基于参考信息对相位跟踪信号进行时域以及频域资源的相关配置,如此,就避免了固定配置相位跟踪信号的方式所带来的信号开销较大的问题,从而提升了相位跟踪参考信号的频谱 效率。
实施例二、
本申请实施例提供一种信号配置装置,如图2-1所示,包括:
参考信息获取单元21,用于获取至少一种参考信息;所述参考信息用于表征所处通信网络的配置情况;
配置单元22,用于基于所述至少一种参考信息,对所述相位跟踪参考信号的时域和/或频域资源进行配置,得到针对所述相位跟踪参考信号的时域和/或频域资源的配置信息;其中,所述配置信息包括有时域和/或频域资源所对应的密度或图样。
进一步需要说明的是,所述至少一种参考信息,包括以下至少之一:
相位噪声单边带功率谱密度、调制与编码策略MCS、子载波间隔、所需调度的时域和/或频域资源块的数量、通信波形;
其中,所述相位噪声单边带功率谱密度可以通过相位噪声模型获得,当前可以理解的是,还可以采用其他的方法获得,本实施例中不进行穷举。相位噪声单边带功率谱密度,其形状主要由本振的成本,频段,工艺和功耗有关,这里不进行赘述。
MCS为调制与编码策略,用于对不同的调制和编码方式进行编号,以便系统调用不同的通信策略。比如,在802.11通信中使用MCS index(调制与编码策略索引值)对无线通信进行速率配置,以应对不同的通信环境。
相应的,所述配置单元,用于执行以下处理至少之一:
至少基于频偏增加时所对应的所述相位噪声单边带功率谱密度,对所述相位跟踪参考信号的时域和/或频域资源进行配置;
至少基于所述MCS,对所述相位跟踪参考信号的时域和/或频域资源进行配置;
至少基于所述子载波间隔,对所述相位跟踪参考信号的时域和/或频域 资源进行配置;
至少基于所述所需调度的时域和/或频域资源块的数量,对所述相位跟踪参考信号的时域和/或频域资源进行配置;
至少基于通信波形,对所述相位跟踪参考信号的时域和/或频域资源进行配置。
具体的:
若随着频偏的增加相位噪声单边带功率谱密度的下降速度增加,则所述相位跟踪参考信号的时域和/或频域资源的密度配置为第一密度阈值范围;若随着频偏的增加相位噪声单边带功率谱密度的下降速度减慢,则所述相位跟踪参考信号的时域和/或频域资源的密度配置为第二密度阈值范围;其中,所述第一密度阈值范围中的数值均小于第二密度阈值范围中的数值;所述第一密度阈值范围或第二密度阈值范围中,分别包含相互交叉或不交叉的密度阈值子集;
也就是说,相位噪声模型与相位跟踪参考信号时域和频域配置关系:相位噪声单边带功率谱密度随着频偏的增加下降速度越慢,所需相位跟踪参考信号时域和频域密度越高;相位噪声单边带功率谱密度随着频偏的增加下降速度越快,所需相位跟踪参考信号时域和频域密度越低。
需要指出的是,上述第一密度阈值范围以及第二密度阈值范围中,可以以时域连续、频域小于10%所对应的密度作为上限。
当所述MCS处于第一预设范围内时,配置所述相位跟踪参考信号的时域和/或频域资源的密度为第一密度阈值范围内;当所述MCS处于第二预设范围内时,配置所述相位跟踪参考信号的时域和/或频域资源的密度为第二密度阈值范围内;其中,所述第一预设范围中的数值均小于第二预设范围中的数值,所述第一密度阈值范围中的数值均小于第二密度阈值范围中的数值。所述第一预设范围或第二预设范围中,分别包含相互交叉或不交叉 的预设子集。
即,MCS与相位跟踪参考信号时域和频域配置关系:低MCS所需相位跟踪参考信号时域和频域密度低;高MCS所需相位跟踪参考信号时域和频域密度高。
进一步地,子载波间隔与相位跟踪参考信号时域和频域配置关系:当所述子载波间隔处于第三预设范围内时,配置所述相位跟踪参考信号的时域和/或频域资源的密度为第一密度阈值范围内;当所述子载波间隔处于第四预设范围内时,配置所述相位跟踪参考信号的时域和/或频域资源的密度为第二密度阈值范围内;其中,所述第三预设范围中的数值均大于第四预设范围中的数值。其中,所述第三预设范围或第四预设范围内可以分别包括有至少一个预设范围子集,这里不进行赘述。
所调度RB与相位跟踪参考信号时域和频域配置关系:基于所需调度的时域和/或频域资源快的数量,对所述相位跟踪参考信号的时域和/或频域资源配置可分配上限值以及可分配下限值。也就是说,相位跟踪参考信号时域和/或频域配置不用随着所调度RB的增加而相应成比例的增加,而是其时域和/或频域配置个数有某一最大可分配上限值与最小可分配下限值。
当通信波形为单载波时,配置的时域和/或频域资源的密度为第一密度;当通信波形为OFDM时,配置的时域和/或频域资源的密度为第二密度;其中,所述第一密度小于第二密度。基于通信波形,确定所述相位跟踪参考信号的时域和/或频域资源所对应的密度具体可以为,波形与相位跟踪参考信号时域和频域配置关系:采用单载波通信的系统比采用OFDM通信的系统所需相位跟踪参考信号时域和频域密度要低。
在完成相位跟踪参考信号时域和频域的图样配置之后,可以将图样的配置信息通过显性或隐性的信令指示方式通知接收端。
首先介绍以显性的信令指示方式通知接收端的处理:
在图2-1的基础上,参见图2-2,所述装置还包括:
通信单元23,用于通过DCI或RRC,将针对所述相位跟踪参考信号的时域及频域的图样发送至接收端;
或者,通过UCI等信息,将针对所述相位跟踪参考信号的时域及频域的图样发送至接收端。
也就是说当基站进行配置,终端进行接收时,通过下行信令进行发送,具体为通过DCI、RRC、UL授权(grant)中至少之一的信令指示方式通知终端;
当终端进行配置、基站接收时,通过上行信令进行发送,具体为通过UCI等信令指示方式通知基站。
接下来针对以隐性的信令指示方式通知接收端的方式进行说明:
通信单元23,用于通过DCI、RRC、UL授权(grant)中至少之一,向接收端发送对所述相位跟踪参考信号的时域和/或频域的配置与至少一个参考信息相关的指示信息;
或者,通过UCI等信息,向接收端发送对所述相位跟踪参考信号的时域和/或频域的配置与至少一个参考信息相关的指示信息。
具体的,当基站通知终端相关配置时,下行:通过DCI、RRC、UL授权(grant)中至少之一的信令指示方式通知终端相位跟踪参考信号时域和频域配置与相位噪声模型或/与MCS或/与子载波间隔或/与所调度RB或/与波形有关,终端根据这些信息通过查表等方式得出相位跟踪参考信号时域和频域配置。
当终端通知基站相关配置时,上行:通过UCI等信令指示方式通知基站相位跟踪参考信号时域和频域配置与
相位噪声模型或/与MCS或/与子载波间隔或/与所调度RB或/与波形有关,基站根据这些信息通过查表等方式得出相位跟踪参考信号时域 和频域配置。
所述配置单元,用于判断所述时域以及频域的图样所对应的资源位置处,是否配置有至少一种参考信号;其中,所述至少一种参考信号为与所述相位跟踪参考信号不同的其他参考信号;
若配置有至少一种参考信号,则将所述相位跟踪参考信号与所配置的至少一种参考信号进行复用。
其中,所述其余参考信号,包括上行和下行用来估计测量信道或用作同步等功能的已知信号,可以为DMRS,CSI-RS或SRS等。具体的,相位跟踪参考信号可以充分与已经存在的其余参考信号进行复用。
进一步地,所述配置单元,用于若配置有至少一种参考信号,则判断所述至少一种参考信号是否将针对所述相位跟踪参考信号的时域及频域的图样所对应的资源位置全部占用;
若存在至少一个时域及频域资源位置未占用,则在所述至少一个未占用的时域及频域资源位置处配置所述相位跟踪参考信号。
也就是说,相位跟踪参考信号时域和频域所需数量与相位噪声模型,MCS,子载波间隔,所调度RB以及波形有关,如果当前时域和频域其余参考信号数量不足,则需要根据基于得到的所述相位跟踪参考信号的配置进行相应补充。
现有技术中如图3中所示的固定配置相位跟踪参考信号的方式,图中浅色方块对应的时频资源表征相位跟踪参考信号所分配的固定的时域以及频域资源的位置;而通过采用本申请提供的方案,更加灵活的针对相位跟踪参考信号进行配置,从而避免了固定配置相位跟踪信号的方式所带来的信号开销较大的问题,从而提升了相位跟踪参考信号的频谱效率。
实施例三、
本申请实施例提供一种信号配置装置,如图4所示,包括:
处理器41,获取至少一种参考信息;所述参考信息用于表征所处通信网络的配置情况;,基于所述至少一种参考信息,对所述相位跟踪参考信号的时域和/或频域资源进行配置,得到针对所述相位跟踪参考信号的时域和/或频域资源的配置信息;其中,所述配置信息包括有时域和/或频域资源所对应的密度或图样。
进一步需要说明的是,所述至少一种参考信息,包括以下至少之一:
相位噪声单边带功率谱密度、调制与编码策略MCS、子载波间隔、所需调度的时域和/或频域资源块的数量、通信波形;
其中,所述相位噪声单边带功率谱密度可以通过相位噪声模型获得,当前可以理解的是,还可以采用其他的方法获得,本实施例中不进行穷举。相位噪声单边带功率谱密度,其形状主要由本振的成本,频段,工艺和功耗有关,这里不进行赘述。
MCS为调制与编码策略,用于对不同的调制和编码方式进行编号,以便系统调用不同的通信策略。比如,在802.11通信中使用MCS index(调制与编码策略索引值)对无线通信进行速率配置,以应对不同的通信环境。
相应的,所述处理器41,执行以下处理至少之一:
至少基于频偏增加时所对应的所述相位噪声单边带功率谱密度,对所述相位跟踪参考信号的时域和/或频域资源进行配置;
至少基于所述MCS,对所述相位跟踪参考信号的时域和/或频域资源进行配置;
至少基于所述子载波间隔,对所述相位跟踪参考信号的时域和/或频域资源进行配置;
至少基于所述所需调度的时域和/或频域资源块的数量,对所述相位跟踪参考信号的时域和/或频域资源进行配置;
至少基于通信波形,对所述相位跟踪参考信号的时域和/或频域资源进 行配置。
具体的:
若随着频偏的增加相位噪声单边带功率谱密度的下降速度增加,则所述相位跟踪参考信号的时域和/或频域资源的密度配置为第一密度阈值范围;若随着频偏的增加相位噪声单边带功率谱密度的下降速度减慢,则所述相位跟踪参考信号的时域和/或频域资源的密度配置为第二密度阈值范围;其中,所述第一密度阈值范围中的数值均小于第二密度阈值范围中的数值;所述第一密度阈值范围或第二密度阈值范围中,分别包含相互交叉或不交叉的密度阈值子集;
也就是说,相位噪声模型与相位跟踪参考信号时域和频域配置关系:相位噪声单边带功率谱密度随着频偏的增加下降速度越慢,所需相位跟踪参考信号时域和频域密度越高;相位噪声单边带功率谱密度随着频偏的增加下降速度越快,所需相位跟踪参考信号时域和频域密度越低。
需要指出的是,上述第一密度阈值范围以及第二密度阈值范围中,可以以时域连续、频域小于10%所对应的密度作为上限。
当所述MCS处于第一预设范围内时,配置所述相位跟踪参考信号的时域和/或频域资源的密度为第一密度阈值范围内;当所述MCS处于第二预设范围内时,配置所述相位跟踪参考信号的时域和/或频域资源的密度为第二密度阈值范围内;其中,所述第一预设范围中的数值均小于第二预设范围中的数值,所述第一密度阈值范围中的数值均小于第二密度阈值范围中的数值。所述第一预设范围或第二预设范围中,分别包含相互交叉或不交叉的预设子集。
即,MCS与相位跟踪参考信号时域和频域配置关系:低MCS所需相位跟踪参考信号时域和频域密度低;高MCS所需相位跟踪参考信号时域和频域密度高。
进一步地,子载波间隔与相位跟踪参考信号时域和频域配置关系:当所述子载波间隔处于第三预设范围内时,配置所述相位跟踪参考信号的时域和/或频域资源的密度为第一密度阈值范围内;当所述子载波间隔处于第四预设范围内时,配置所述相位跟踪参考信号的时域和/或频域资源的密度为第二密度阈值范围内;其中,所述第三预设范围中的数值均大于第四预设范围中的数值。其中,所述第三预设范围或第四预设范围内可以分别包括有至少一个预设范围子集,这里不进行赘述。
所调度RB与相位跟踪参考信号时域和频域配置关系:基于所需调度的时域和/或频域资源快的数量,对所述相位跟踪参考信号的时域和/或频域资源配置可分配上限值以及可分配下限值。也就是说,相位跟踪参考信号时域和/或频域配置不用随着所调度RB的增加而相应成比例的增加,而是其时域和/或频域配置个数有某一最大可分配上限值与最小可分配下限值。
当通信波形为单载波时,配置的时域和/或频域资源的密度为第一密度;当通信波形为OFDM时,配置的时域和/或频域资源的密度为第二密度;其中,所述第一密度小于第二密度。基于通信波形,确定所述相位跟踪参考信号的时域和/或频域资源所对应的密度具体可以为,波形与相位跟踪参考信号时域和频域配置关系:采用单载波通信的系统比采用OFDM通信的系统所需相位跟踪参考信号时域和频域密度要低。
在完成相位跟踪参考信号时域和频域的图样配置之后,可以将图样的配置信息通过显性或隐性的信令指示方式通知接收端。
首先介绍以显性的信令指示方式通知接收端的处理:
所述装置还包括:
通信接口42,用于通过DCI、RRC、UL grant中至少之一,将针对所述相位跟踪参考信号的时域及频域的图样发送至接收端;
或者,通过UCI等信息,将针对所述相位跟踪参考信号的时域及频域的 图样发送至接收端。
也就是说当基站进行配置,终端进行接收时,通过下行信令进行发送,具体为通过DCI、RRC、UL授权(grant)中至少之一信令指示方式通知终端;
当终端进行配置、基站接收时,通过上行信令进行发送,具体为通过UCI等信令指示方式通知基站。
接下来针对以隐性的信令指示方式通知接收端的方式进行说明:
通信接口42,通过DCI、RRC、UL grant中至少之一,向接收端发送对所述相位跟踪参考信号的时域和/或频域的配置与至少一个参考信息相关的指示信息;
或者,通过UCI等信息,向接收端发送对所述相位跟踪参考信号的时域和/或频域的配置与至少一个参考信息相关的指示信息。
具体的,当基站通知终端相关配置时,下行:通过DCI、RRC、UL授权(grant)中至少之一的信令指示方式通知终端相位跟踪参考信号时域和频域配置与
相位噪声模型或/与MCS或/与子载波间隔或/与所调度RB或/与波形有关,终端根据这些信息通过查表等方式得出相位跟踪参考信号时域和频域配置。
当终端通知基站相关配置时,上行:通过UCI等信令指示方式通知基站相位跟踪参考信号时域和频域配置与相位噪声模型或/与MCS或/与子载波间隔或/与所调度RB或/与波形有关,基站根据这些信息通过查表等方式得出相位跟踪参考信号时域和频域配置。
所述处理器41,判断所述时域以及频域的图样所对应的资源位置处,是否配置有至少一种参考信号;其中,所述至少一种参考信号为与所述相位跟踪参考信号不同的其他参考信号;
若配置有至少一种参考信号,则将所述相位跟踪参考信号与所配置的至少一种参考信号进行复用。
其中,所述其余参考信号,包括上行和下行用来估计测量信道或用作同步等功能的已知信号,可以为DMRS,CSI-RS或SRS等。具体的,相位跟踪参考信号可以充分与已经存在的其余参考信号进行复用。
进一步地,所述配置单元,用于若配置有至少一种参考信号,则判断所述至少一种参考信号是否将针对所述相位跟踪参考信号的时域及频域的图样所对应的资源位置全部占用;
若存在至少一个时域及频域资源位置未占用,则在所述至少一个未占用的时域及频域资源位置处配置所述相位跟踪参考信号。
也就是说,相位跟踪参考信号时域和频域所需数量与相位噪声模型,MCS,子载波间隔,所调度RB以及波形有关,如果当前时域和频域其余参考信号数量不足,则需要根据基于得到的所述相位跟踪参考信号的配置进行相应补充。
现有技术中如图3中所示的固定配置相位跟踪参考信号的方式,图中浅色方块对应的时频资源表征相位跟踪参考信号所分配的固定的时域以及频域资源的位置;而通过采用本申请提供的方案,更加灵活的针对相位跟踪参考信号进行配置,从而避免了固定配置相位跟踪信号的方式所带来的信号开销较大的问题,从而提升了相位跟踪参考信号的频谱效率。
本发明实施例还提供了一种信号配置装置,包括:至少一个处理器、存储器、至少一个网络接口。各个组件通过总线系统耦合在一起。可以理解,本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。
在一些实施方式中,存储器存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统和应用程序。
其中,所述处理器配置为:能够处理前述实施例一的方法步骤,这里不再进行赘述。
本发明实施例提供的一种存储介质,所述存储介质存储有计算机可执行指令,所述计算机可执行指令被执行时实施前述实施例一的方法步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,装置,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (23)

  1. 一种信号配置方法,所述方法包括:
    获取至少一种参考信息;所述参考信息用于表征所处通信网络的配置情况;
    基于所述至少一种参考信息,对所述相位跟踪参考信号的时域和/或频域资源进行配置,得到针对所述相位跟踪参考信号的时域和/或频域资源的配置信息;其中,所述配置信息包括有时域和/或频域资源所对应的密度或图样。
  2. 根据权利要求1所述的方法,其中,所述至少一种参考信息,包括以下至少之一:
    相位噪声单边带功率谱密度、调制与编码策略MCS、子载波间隔、所需调度的时域和/或频域资源块的数量、通信波形;
    相应的,所述基于所述至少一种参考信息,对所述相位跟踪参考信号的时域和/或频域资源进行配置,包括以下至少之一:
    至少基于频偏增加时所对应的所述相位噪声单边带功率谱密度,对所述相位跟踪参考信号的时域和/或频域资源进行配置;
    至少基于所述MCS,对所述相位跟踪参考信号的时域和/或频域资源进行配置;
    至少基于所述子载波间隔,对所述相位跟踪参考信号的时域和/或频域资源进行配置;
    至少基于所需调度的时域和/或频域资源块的数量,对所述相位跟踪参考信号的时域和/或频域资源进行配置;
    至少基于通信波形,对所述相位跟踪参考信号的时域和/或频域资源进行配置。
  3. 根据权利要求2所述的方法,其中,所述至少基于频偏增加时所对应的所述相位噪声单边带功率谱密度,对所述相位跟踪参考信号的时域和/或频域资源进行配置,包括:
    若随着频偏的增加相位噪声单边带功率谱密度的下降速度增加,则所述相位跟踪参考信号的时域和/或频域资源的密度配置为第一密度阈值范围;若随着频偏的增加相位噪声单边带功率谱密度的下降速度减慢,则所述相位跟踪参考信号的时域和/或频域资源的密度配置为第二密度阈值范围;其中,所述第一密度阈值范围中的数值均小于第二密度阈值范围中的数值;
    所述至少基于所述MCS,对所述相位跟踪参考信号的时域和/或频域资源进行配置,包括:
    当所述MCS处于第一预设范围内时,配置所述相位跟踪参考信号的时域和/或频域资源的密度为第一密度阈值范围内;当所述MCS处于第二预设范围内时,配置所述相位跟踪参考信号的时域和/或频域资源的密度为第二密度阈值范围内;其中,所述第一预设范围中的数值均小于第二预设范围中的数值;
    所述至少基于所述子载波间隔,对所述相位跟踪参考信号的时域和/或频域资源进行配置,包括:
    当所述子载波间隔处于第三预设范围内时,配置所述相位跟踪参考信号的时域和/或频域资源的密度为第一密度阈值范围内;当所述子载波间隔处于第四预设范围内时,配置所述相位跟踪参考信号的时域和/或频域资源的密度为第二密度阈值范围内;其中,所述第三预设范围中的数值均大于第四预设范围中的数值;
    所述至少基于所需调度的时域和/或频域资源块的数量,对所述相位跟踪参考信号的时域和/或频域资源进行配置,包括:
    基于所需调度的时域和/或频域资源块的数量,对所述相位跟踪参考信号的频域资源配置可分配上限值以及可分配下限值;
    所述至少基于通信波形,对所述相位跟踪参考信号的时域和/或频域资源进行配置,包括:
    当通信波形为单载波时,配置的时域和/或频域资源的密度为第一密度;当通信波形为OFDM时,配置的时域和/或频域资源的密度为第二密度;其中,所述第一密度小于第二密度。
  4. 根据权利要求1-3任一项所述的方法,其中,得到针对所述相位跟踪参考信号的时域和/或频域资源的配置信息之后,所述方法还包括:
    通过下行控制信息DCI、无线资源控制RRC信息、或上行UL授权grant中至少之一,将配置信息发送至接收端;
    或者,通过上行控制信息UCI信息,将配置信息发送至接收端。
  5. 根据权利要求1-3任一项所述的方法,其中,得到针对所述相位跟踪参考信号的时域和/或频域资源的配置信息之后,所述方法还包括:
    通过DCI、RRC、UL grant中至少之一,向接收端发送指示信息;其中,所述指示信息用于指示对所述相位跟踪参考信号的时域和/或频域的配置,与至少一个参考信息相关;
    或者,通过UCI信息,向接收端发送指示信息;其中,所述指示信息用于指示对所述相位跟踪参考信号的时域和/或频域的配置,与至少一个参考信息相关。
  6. 根据权利要求1所述的方法,其中,得到针对所述相位跟踪参考信号的时域和/或频域资源的配置信息之后,所述方法还包括:
    判断所述时域以及频域的图样所对应的资源位置处,是否配置有至少一种参考信号;其中,所述至少一种参考信号为与所述相位跟踪参考信号不同的其他参考信号;
    若配置有至少一种参考信号,则将所述相位跟踪参考信号与所配置的至少一种参考信号进行复用。
  7. 根据权利要求1所述的方法,其中,得到针对所述相位跟踪参考信号的时域和/或频域资源的配置信息之后,所述方法还包括:
    判断所述时域以及频域的图样所对应的资源位置处,是否配置有至少一种参考信号;其中,所述至少一种参考信号为与所述相位跟踪参考信号不同的其他参考信号;
    若配置有至少一种参考信号,则判断所述至少一种参考信号是否将针对所述相位跟踪参考信号的时域及频域的图样所对应的资源位置全部占用;
    若存在至少一个时域及频域资源位置未占用,则在所述至少一个未占用的时域及频域资源位置处配置所述相位跟踪参考信号。
  8. 一种信号配置装置,所述装置包括:
    参考信息获取单元,配置为获取至少一种参考信息;所述参考信息用于表征所处通信网络的配置情况;
    配置单元,配置为基于所述至少一种参考信息,对所述相位跟踪参考信号的时域和/或频域资源进行配置,得到针对所述相位跟踪参考信号的时域和/或频域资源的配置信息;其中,所述配置信息包括有时域和/或频域资源所对应的密度或图样。
  9. 根据权利要求8所述的装置,其中,所述至少一种参考信息,包括以下至少之一:
    相位噪声单边带功率谱密度、调制与编码策略MCS、子载波间隔、所需调度的时域和/或频域资源块的数量、通信波形;
    相应的,所述配置单元,配置为执行以下处理至少之一:
    至少基于频偏增加时所对应的所述相位噪声单边带功率谱密度,对所 述相位跟踪参考信号的时域和/或频域资源进行配置;
    至少基于所述MCS,对所述相位跟踪参考信号的时域和/或频域资源进行配置;
    至少基于所述子载波间隔,对所述相位跟踪参考信号的时域和/或频域资源进行配置;
    至少基于所述所需调度的时域和/或频域资源块的数量,对所述相位跟踪参考信号的时域和/或频域资源进行配置;
    至少基于通信波形,对所述相位跟踪参考信号的时域和/或频域资源进行配置。
  10. 根据权利要求9所述的装置,其中,所述配置单元,配置为若随着频偏的增加相位噪声单边带功率谱密度的下降速度增加,则所述相位跟踪参考信号的时域和/或频域资源的密度配置为第一密度阈值范围;若随着频偏的增加相位噪声单边带功率谱密度的下降速度减慢,则所述相位跟踪参考信号的时域和/或频域资源的密度配置为第二密度阈值范围;其中,所述第一密度阈值范围中的数值均小于第二密度阈值范围中的数值;
    和/或,
    当所述MCS处于第一预设范围内时,配置所述相位跟踪参考信号的时域和/或频域资源的密度为第一密度阈值范围内;当所述MCS处于第二预设范围内时,配置所述相位跟踪参考信号的时域和/或频域资源的密度为第二密度阈值范围内;其中,所述第一预设范围中的数值均小于第二预设范围中的数值,所述第一密度阈值范围中的数值均小于第二密度阈值范围中的数值。
    和/或,
    当所述子载波间隔处于第三预设范围内时,配置所述相位跟踪参考信号的时域和/或频域资源的密度为第一密度阈值范围内;当所述子载波间隔 处于第四预设范围内时,配置所述相位跟踪参考信号的时域和/或频域资源的密度为第二密度阈值范围内;其中,所述第三预设范围中的数值均大于第四预设范围中的数值;
    和/或,
    基于所需调度的时域和/或频域资源快的数量,对所述相位跟踪参考信号的频域资源配置可分配上限值以及可分配下限值;
    和/或,
    当通信波形为单载波时,配置的时域和/或频域资源的密度为第一密度;当通信波形为OFDM时,配置的时域和/或频域资源的密度为第二密度;其中,所述第一密度小于第二密度。
  11. 根据权利要求8-10任一项所述的装置,其中,所述装置还包括:
    通信单元,配置为通过DCI、RRC、UL grant中至少之一,将配置信息发送至接收端;
    或者,通过上行控制信息UCI信息,将配置信息发送至接收端。
  12. 根据权利要求8-10任一项所述的装置,其中,所述装置还包括:
    通信单元,配置为通过DCI、RRC、UL grant中至少之一,向接收端发送指示信息;其中,所述指示信息用于指示对所述相位跟踪参考信号的时域和/或频域的配置,与至少一个参考信息相关;
    或者,通过UCI信息,向接收端发送指示信息;其中,所述指示信息用于指示对所述相位跟踪参考信号的时域和/或频域的配置,与至少一个参考信息相关。
  13. 根据权利要求8所述的装置,其中,所述配置单元,配置为判断所述时域以及频域的图样所对应的资源位置处,是否配置有至少一种参考信号;其中,所述至少一种参考信号为与所述相位跟踪参考信号不同的其他参考信号;若配置有至少一种参考信号,则将所述相位跟踪参考信号与所 配置的至少一种参考信号进行复用。
  14. 根据权利要求8所述的装置,其中,所述配置单元,配置为判断所述时域以及频域的图样所对应的资源位置处,是否配置有至少一种参考信号;其中,所述至少一种参考信号为与所述相位跟踪参考信号不同的其他参考信号;若配置有至少一种参考信号,则判断所述至少一种参考信号是否将针对所述相位跟踪参考信号的时域及频域的图样所对应的资源位置全部占用;若存在至少一个时域及频域资源位置未占用,则在所述至少一个未占用的时域及频域资源位置处配置所述相位跟踪参考信号。
  15. 一种信号配置装置,所述装置包括:
    处理器,获取至少一种参考信息;所述参考信息用于表征所处通信网络的配置情况;基于所述至少一种参考信息,对所述相位跟踪参考信号的时域和/或频域资源进行配置,得到针对所述相位跟踪参考信号的时域和/或频域资源的配置信息;其中,所述配置信息包括有时域和/或频域资源所对应的密度或图样。
  16. 根据权利要求15所述的装置,其中,所述至少一种参考信息,包括以下至少之一:
    相位噪声单边带功率谱密度、调制与编码策略MCS、子载波间隔、所需调度的时域和/或频域资源块的数量、通信波形;
    相应的,所述处理器,执行以下处理至少之一:
    至少基于频偏增加时所对应的所述相位噪声单边带功率谱密度,对所述相位跟踪参考信号的时域和/或频域资源进行配置;
    至少基于所述MCS,对所述相位跟踪参考信号的时域和/或频域资源进行配置;
    至少基于所述子载波间隔,对所述相位跟踪参考信号的时域和/或频域资源进行配置;
    至少基于所述所需调度的时域和/或频域资源块的数量,对所述相位跟踪参考信号的时域和/或频域资源进行配置;
    至少基于通信波形,对所述相位跟踪参考信号的时域和/或频域资源进行配置。
  17. 根据权利要求16所述的装置,其中,所述处理器,若随着频偏的增加相位噪声单边带功率谱密度的下降速度增加,则所述相位跟踪参考信号的时域和/或频域资源的密度配置为第一密度阈值范围;若随着频偏的增加相位噪声单边带功率谱密度的下降速度减慢,则所述相位跟踪参考信号的时域和/或频域资源的密度配置为第二密度阈值范围;其中,所述第一密度阈值范围中的数值均小于第二密度阈值范围中的数值;
    和/或,
    当所述MCS处于第一预设范围内时,配置所述相位跟踪参考信号的时域和/或频域资源的密度为第一密度阈值范围内;当所述MCS处于第二预设范围内时,配置所述相位跟踪参考信号的时域和/或频域资源的密度为第二密度阈值范围内;其中,所述第一预设范围中的数值均小于第二预设范围中的数值,所述第一密度阈值范围中的数值均小于第二密度阈值范围中的数值。
    和/或,
    当所述子载波间隔处于第三预设范围内时,配置所述相位跟踪参考信号的时域和/或频域资源的密度为第一密度阈值范围内;当所述子载波间隔处于第四预设范围内时,配置所述相位跟踪参考信号的时域和/或频域资源的密度为第二密度阈值范围内;其中,所述第三预设范围中的数值均大于第四预设范围中的数值;
    和/或,
    基于所需调度的时域和/或频域资源快的数量,对所述相位跟踪参考信 号的频域资源配置可分配上限值以及可分配下限值;
    和/或,
    当通信波形为单载波时,配置的时域和/或频域资源的密度为第一密度;当通信波形为OFDM时,配置的时域和/或频域资源的密度为第二密度;其中,所述第一密度小于第二密度。
  18. 根据权利要求15-17任一项所述的装置,其中,所述装置还包括:
    通信接口,通过DCI、RRC、UL grant中至少之一,将配置信息发送至接收端;
    或者,通过上行控制信息UCI信息,将配置信息发送至接收端。
  19. 根据权利要求15-17任一项所述的装置,其中,所述装置还包括:
    通信接口,通过DCI、RRC、UL grant中至少之一,向接收端发送指示信息;其中,所述指示信息用于指示对所述相位跟踪参考信号的时域和/或频域的配置,与至少一个参考信息相关;
    或者,通过UCI信息,向接收端发送指示信息;其中,所述指示信息用于指示对所述相位跟踪参考信号的时域和/或频域的配置,与至少一个参考信息相关。
  20. 根据权利要求15所述的装置,其中,所述处理器,判断所述时域以及频域的图样所对应的资源位置处,是否配置有至少一种参考信号;其中,所述至少一种参考信号为与所述相位跟踪参考信号不同的其他参考信号;若配置有至少一种参考信号,则将所述相位跟踪参考信号与所配置的至少一种参考信号进行复用。
  21. 根据权利要求15所述的装置,其中,所述处理器,判断所述时域以及频域的图样所对应的资源位置处,是否配置有至少一种参考信号;其中,所述至少一种参考信号为与所述相位跟踪参考信号不同的其他参考信号;若配置有至少一种参考信号,则判断所述至少一种参考信号是否将针 对所述相位跟踪参考信号的时域及频域的图样所对应的资源位置全部占用;若存在至少一个时域及频域资源位置未占用,则在所述至少一个未占用的时域及频域资源位置处配置所述相位跟踪参考信号。
  22. 一种信号配置装置,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
    其中,所述处理器用于运行所述计算机程序时,执行权利要求1-7任一项所述方法的步骤。
  23. 一种存储介质,所述存储介质存储有计算机可执行指令,所述计算机可执行指令被执行时实现权利要求1-7任一项所述的方法步骤。
PCT/CN2018/071570 2017-01-05 2018-01-05 一种信号配置方法、装置及存储介质 WO2018127132A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019536921A JP2020504545A (ja) 2017-01-05 2018-01-05 信号構成方法、装置および記憶媒体
EP18736503.6A EP3567785A4 (en) 2017-01-05 2018-01-05 SIGNAL CONFIGURATION PROCEDURE, DEVICE AND STORAGE MEDIUM
US16/475,852 US10965414B2 (en) 2017-01-05 2018-01-05 Signal configuration method, device and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710008062.0 2017-01-05
CN201710008062.0A CN108282281B (zh) 2017-01-05 2017-01-05 一种信号配置方法及装置

Publications (1)

Publication Number Publication Date
WO2018127132A1 true WO2018127132A1 (zh) 2018-07-12

Family

ID=62789228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071570 WO2018127132A1 (zh) 2017-01-05 2018-01-05 一种信号配置方法、装置及存储介质

Country Status (5)

Country Link
US (1) US10965414B2 (zh)
EP (1) EP3567785A4 (zh)
JP (2) JP2020504545A (zh)
CN (1) CN108282281B (zh)
WO (1) WO2018127132A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220166565A1 (en) * 2017-04-28 2022-05-26 Panasonic Intellectual Property Corporation Of America Measurement apparatus and measurement method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11070335B2 (en) 2017-01-13 2021-07-20 Qualcomm Incorporated Apparatus and method for determining resources for phase tracking reference signal (PT-RS) pilot signals using frequency domain patterns
CN109150447B (zh) * 2017-06-16 2022-09-27 中兴通讯股份有限公司 信息发送、数据解调方法及装置、通信节点、网络侧设备
US10701724B2 (en) * 2018-01-12 2020-06-30 Apple Inc. Time density and frequency density determination of phase tracking reference signals (PT-RS) in new radio (NR) systems
US11051327B2 (en) * 2018-08-10 2021-06-29 Qualcomm Incorporated Rate-matching around CRS for NR-TDD
CN110855406B (zh) * 2018-08-20 2022-05-03 大唐移动通信设备有限公司 相位跟踪参考信号ptrs传输方法、网络设备及终端
CN111800865A (zh) * 2019-08-12 2020-10-20 维沃移动通信有限公司 一种信号发送方法及发送设备
WO2021146990A1 (zh) * 2020-01-22 2021-07-29 华为技术有限公司 传输相位跟踪参考信号的方法和装置
CN111417187B (zh) * 2020-03-25 2022-02-22 展讯通信(上海)有限公司 实际trs频域资源的确定方法及装置、存储介质、ue
CN117692945A (zh) * 2022-08-29 2024-03-12 维沃移动通信有限公司 感知信号处理方法、装置及通信设备
WO2024077462A1 (en) * 2022-10-10 2024-04-18 Nokia Shanghai Bell Co., Ltd. Time domain resource allocation of demodulation reference signals
CN116506093B (zh) * 2023-06-26 2023-08-18 北京智芯微电子科技有限公司 下行解调参考信号的配置方法、装置、设备、芯片及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101005340A (zh) * 2006-01-19 2007-07-25 华为技术有限公司 一种导频映射方法和无线通信系统
CN101714897A (zh) * 2009-11-12 2010-05-26 普天信息技术研究院有限公司 探测参考信号的配置方法
CN102780532A (zh) * 2011-05-09 2012-11-14 华为技术有限公司 信道测量的方法及装置
US20150271744A1 (en) * 2014-03-21 2015-09-24 Futurewei Technologies, Inc. Device, network, and method for network adaptation and discovery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10595225B2 (en) * 2016-09-13 2020-03-17 Qualcomm Incorporated Phase-noise compensation reference signal configuration reporting and signaling
RU2737391C2 (ru) * 2016-09-28 2020-11-30 Идак Холдингз, Инк. Конструкция опорного сигнала для систем беспроводной связи
CN107888530B (zh) 2016-09-30 2021-01-22 电信科学技术研究院 相位噪声补偿参考信号的传输方法、发送设备及接收设备
BR112019006262B1 (pt) * 2016-09-30 2022-10-11 Lg Electronics Inc Método e equipamento de usuário para receber informação de controle para sinal de referência relacionado à estimativa de ruído de fase
CN110024315B (zh) * 2016-11-04 2022-05-03 瑞典爱立信有限公司 取决于调度参数的pt-rs配置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101005340A (zh) * 2006-01-19 2007-07-25 华为技术有限公司 一种导频映射方法和无线通信系统
CN101714897A (zh) * 2009-11-12 2010-05-26 普天信息技术研究院有限公司 探测参考信号的配置方法
CN102780532A (zh) * 2011-05-09 2012-11-14 华为技术有限公司 信道测量的方法及装置
US20150271744A1 (en) * 2014-03-21 2015-09-24 Futurewei Technologies, Inc. Device, network, and method for network adaptation and discovery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3567785A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220166565A1 (en) * 2017-04-28 2022-05-26 Panasonic Intellectual Property Corporation Of America Measurement apparatus and measurement method
US11711178B2 (en) * 2017-04-28 2023-07-25 Panasonic Intellectual Property Corporation Of America Measurement apparatus and measurement method

Also Published As

Publication number Publication date
JP2020504545A (ja) 2020-02-06
CN108282281A (zh) 2018-07-13
EP3567785A4 (en) 2020-09-09
US10965414B2 (en) 2021-03-30
CN108282281B (zh) 2020-02-21
JP7230119B2 (ja) 2023-02-28
JP2021168487A (ja) 2021-10-21
US20190356437A1 (en) 2019-11-21
EP3567785A1 (en) 2019-11-13

Similar Documents

Publication Publication Date Title
WO2018127132A1 (zh) 一种信号配置方法、装置及存储介质
US11757511B2 (en) Ordering of CSI in UCI
CA3062381C (en) Communication method and communications apparatus
CN109392141B (zh) 一种调整频域资源和发送指示信息的方法、装置及系统
JP6699917B2 (ja) ネットワークノード、ユーザデバイス及びその方法
CN108282433B (zh) 一种上行信号发送方法、接收方法、终端及基站
KR20220070028A (ko) 정보 결정 방법과 장치, 정보 조정 방법, 임계값 사용 방법, 단말 및 저장매체
CN113273295A (zh) 用于物理侧链路(sl)控制信道监听的用户设备、基站和方法
EP3537828B1 (en) User equipment and uplink signal transmission method
US10165517B2 (en) Power allocation method and communications device
US11356228B2 (en) User terminal and radio communication method
US20190260498A1 (en) User equipment and uplink signal transmission method
CN108023705A (zh) 一种半静态参考信号配置、收发方法、基站及终端
US20190349164A1 (en) Reference signal configuration method, base station, and terminal
US8543149B2 (en) Message-based approach for improved interference power estimation
CN106664579A (zh) 基站装置、终端装置以及方法
CN107370586B (zh) 一种信道传输方法及装置
JP2021526749A (ja) 無線通信システムにおけるリソース割り当てのための方法及びデバイス
WO2022191760A1 (en) Indication of proposed channel state information reporting scheme
CN109150435B (zh) Csi-rs配置方法及装置、存储介质、基站、终端
US10645723B2 (en) Signal transmission method, signal transmission control method, user equipment, and base station
CN103369651A (zh) 一种长期演进系统中分配下行发射功率的方法及装置
CN109756921B (zh) 测量方法和装置
JP7400794B2 (ja) 無線通信装置、方法、プログラム、コンピュータに読み取り可能な非一時的記録媒体、及びシステム
EP3342245A1 (en) Scheduling of users for multi-user transmission in a wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18736503

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019536921

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018736503

Country of ref document: EP

Effective date: 20190805