WO2018126727A1 - 液晶透镜、透镜组件、光学设备和显示装置 - Google Patents

液晶透镜、透镜组件、光学设备和显示装置 Download PDF

Info

Publication number
WO2018126727A1
WO2018126727A1 PCT/CN2017/101205 CN2017101205W WO2018126727A1 WO 2018126727 A1 WO2018126727 A1 WO 2018126727A1 CN 2017101205 W CN2017101205 W CN 2017101205W WO 2018126727 A1 WO2018126727 A1 WO 2018126727A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
electrode
transparent substrate
crystal lens
lens
Prior art date
Application number
PCT/CN2017/101205
Other languages
English (en)
French (fr)
Inventor
牛小辰
董学
陈小川
赵文卿
张大成
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/770,348 priority Critical patent/US10747083B2/en
Publication of WO2018126727A1 publication Critical patent/WO2018126727A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a liquid crystal lens, a lens assembly including the liquid crystal lens, an optical device including the liquid crystal lens, and a display device including the liquid crystal lens.
  • the liquid crystal lens can be switched to different refraction states according to the electric field formed therein, and thus, it is widely used in fields such as display, illumination, and the like.
  • the optical axis (i.e., the long axis) of the liquid crystal molecules is aligned in parallel with the glass substrate of the liquid crystal lens in the initial state, the liquid crystal molecules of the conventional liquid crystal lens require a complicated alignment mode.
  • the optical axis of all liquid crystal molecules is radiated from the center of the sphere, so that the required orientation direction is radiated outward along the center of the sphere, which is difficult to implement in the process and is expensive to manufacture.
  • the present disclosure is directed to at least one of the technical problems existing in the prior art, and provides a liquid crystal lens, a lens assembly including the liquid crystal lens, an optical device including the liquid crystal lens, and a liquid crystal lens including the same Display device.
  • a first aspect of the present disclosure provides a liquid crystal lens.
  • the liquid crystal lens includes: a first transparent substrate; a second transparent substrate disposed opposite to the first transparent substrate; a liquid crystal material layer disposed between the first transparent substrate and the second transparent substrate; At least one first electrode and at least one second electrode disposed on a side of the first transparent substrate or the second transparent substrate facing the liquid crystal material layer; wherein the at least one first electrode and The at least one second electrode is alternately insulated Interval setting.
  • the first electrode and the second electrode are each made of a transparent electrode material.
  • the layer of liquid crystal material comprises a positive liquid crystal material.
  • the liquid crystal lens further includes a polarizing plate disposed on a light incident surface of the liquid crystal lens, and a polarization direction of the polarizing plate is parallel to the first electrode and the second electrode The long axis of the liquid crystal molecules located in the intermediate portion of the first electrode and the second electrode when an electric field is formed after electricity.
  • the liquid crystal lens further includes a buffer layer disposed in the first transparent substrate and the second transparent substrate adjacent to the at least one first electrode and the at least one second electrode And a transparent substrate, and the at least one first electrode and the at least one second electrode are disposed on the buffer layer.
  • the liquid crystal lens further includes an insulating member disposed between the adjacent first electrode and the second electrode.
  • a second aspect of the present disclosure provides a lens assembly including a driving circuit and at least one liquid crystal lens of any one of the above structures, the driving circuit for respectively facing the first electrode and the second
  • the electrode provides a driving voltage to form an electric field between the first electrode and the second electrode.
  • a third aspect of the present disclosure provides an optical device including a lens on a light incident side of the optical device, the lens including a liquid crystal lens of any one of the above structures.
  • a fourth aspect of the present disclosure provides a display device including a display panel and a liquid crystal lens of any one of the above structures, wherein the liquid crystal lens is disposed on a light exiting side of the display panel.
  • the display panel comprises a liquid crystal display panel.
  • FIG. 1 is a first electrode and a liquid crystal lens in an embodiment of the present disclosure Schematic diagram of the structure when the two electrodes do not form an electric field;
  • FIG. 2 is a schematic structural view of a liquid crystal lens in which an electric field is formed by a first electrode and a second electrode in another embodiment of the present disclosure
  • FIG 3 is a schematic view showing a distribution of a refractive index of the liquid crystal lens when an electric field is formed between a first electrode and a second electrode of the liquid crystal lens.
  • Ne refractive index of liquid crystal molecules in the intermediate region
  • Nf refractive index of liquid crystal molecules in the transition region
  • a first aspect of the present disclosure relates to a liquid crystal lens 100.
  • the liquid crystal lens 100 includes a first transparent substrate 110 and a second transparent substrate 120 disposed opposite to each other.
  • the liquid crystal lens 100 further includes a liquid crystal material layer 130 disposed between the first transparent substrate 110 and the second transparent substrate 120.
  • One side of the crystalline material layer 130 is provided with at least one first electrode 140 and at least one second electrode 150, wherein the at least one first electrode 140 and the at least one second electrode 150 are alternately insulated and spaced apart.
  • each of the first transparent substrate 110 and the second transparent substrate 120 may be a glass substrate. It may also be a substrate of another structure. However, the substrate formed by using other materials should be in a transparent state so that the liquid crystal lens 100 is in an operating state, and when external light is incident on the liquid crystal lens 100, incident light can pass through the liquid crystal lens 100, and then can pass through the liquid crystal.
  • the lens 100 changes the direction of light transmission.
  • the liquid crystal material layer 130 described above includes a positive liquid crystal material.
  • the long axis of the liquid crystal molecules of the positive liquid crystal is parallel to the direction of the electric field.
  • the liquid crystal material layer 130 is made of a positive liquid crystal material. As shown in FIG. 1, in the initial state, the long axis of all liquid crystal molecules in the liquid crystal material is perpendicular to the first transparent substrate 110 or the second transparent substrate 120. When there is a potential difference between the first electrode 140 and the second electrode 150, as shown in FIG. 2, an electric field is formed between the first electrode 140 and the second electrode 150.
  • the direction of the electric field lines of the formed electric field is at the first electrode 140 and the The two ends of the two electrodes 150 that are apart from each other are close to vertical, and become close to horizontal at the intermediate positions of the first electrode 140 and the second electrode 150.
  • the long axis of the liquid crystal molecules of the positive liquid crystal material is deflected, and finally the long axis of the liquid crystal molecules is parallel to the direction of the electric field lines of the region where the liquid crystal molecules are located.
  • the deflection of the liquid crystal molecules can be conveniently controlled, and the refractive index of the liquid crystal lens 100 at different positions can be further controlled, thereby realizing the optical lens.
  • the function according to the magnitude of the potential difference between the first electrode 140 and the second electrode 150 and the electric field distribution, the deflection of the liquid crystal molecules can be conveniently controlled, and the refractive index of the liquid crystal lens 100 at different positions can be further controlled, thereby realizing the optical lens.
  • the positive liquid crystal material is in a light transmitting state in an initial state. That is, the long axis of the liquid crystal molecules is perpendicular to the first transparent substrate 110 or the second transparent substrate 120, and the light can be transmitted without changing direction. So in the process On the other hand, it is not necessary to reorient the liquid crystal molecules, which can effectively save costs.
  • the use of the positive liquid crystal molecules as the liquid crystal material layer filled between the first transparent substrate 110 and the second transparent substrate 120 has an advantage that the driving voltage can be lowered.
  • the alignment layer is not present in the liquid crystal lens 100, the rubbing alignment process is omitted, the manufacturing efficiency is improved, and the manufacturing cost is lowered.
  • the first electrode 140 and the second electrode 150 are each made of a transparent electrode material.
  • the first electrode 140 and the second electrode 150 may have good transparency and electrical conductivity. Therefore, in the present embodiment, for example, a transparent electrode material such as indium tin oxide may be selected to form the first electrode 140 and the second electrode 150. In addition to the above-mentioned transparency and conductivity, indium tin oxide It also has good chemical stability, thermal stability and good graphic processing characteristics. Of course, the materials of the first electrode 140 and the second electrode 150 may also be made of other materials as long as the transparency and conductivity are satisfied.
  • the light entering the liquid crystal lens 100 may be linearly polarized light.
  • the above liquid crystal lens 100 further includes a polarizing plate 160.
  • the polarizing plate 160 may be disposed on the light incident side of the liquid crystal lens 100.
  • the polarizing plate 160 may be disposed on the first transparent substrate 110.
  • the polarizing plate 160 may be disposed on the outer surface of the first transparent substrate 110 as shown in FIG.
  • the polarization direction of the polarizer 160 is parallel to the length of the liquid crystal molecules located in the middle of the first electrode 140 and the second electrode 150 when the electric field is formed after the first electrode 140 and the second electrode 150 are electrified. axis.
  • the polarizing plate 160 is not necessarily provided on the liquid crystal lens 100 as long as the light incident on the liquid crystal lens 100 is linearly polarized.
  • the polarizing plate 160 may be disposed on other elements that are mated with the liquid crystal lens 100, such as the light-emitting surface of the display panel.
  • the liquid crystal lens 100 further includes a buffer layer 170, as shown in FIG.
  • the buffer layer 170 is disposed on the transparent substrate, and the first electrode 140 and the second electrode 150 are disposed on the buffer layer 170.
  • the buffer layer 170 may be disposed on the first transparent substrate 110, and the first electrode 140 and the second electrode 150 are disposed on the buffer layer 170.
  • the liquid crystal lens 100 of the present embodiment is provided with a buffer layer 170, and the specific material of the buffer layer 170 is not limited.
  • the material of the buffer layer 170 may be silicon nitride, which may insulate between the electrode and the transparent substrate, and at the same time enhance the adhesion between the electrode and the transparent substrate and prevent the diffusion of impurities.
  • the liquid crystal lens 100 further includes an insulating member 180.
  • the insulating member 180 is disposed between two adjacent first electrodes 140 and the second electrodes 150.
  • the specific material of the insulating member 180 is not limited as long as it satisfies the insulation between the first electrode 140 and the second electrode 150.
  • the electric field lines of the electric field formed between the first electrode 140 and the second electrode 150 are substantially vertically transitioned from the ends of the first electrode 140 and the second electrode 150 away from each other to the first electrode 140 and the second electrode A substantial level at the intermediate position of 150.
  • the area around the positions where the first electrode 140 and the second electrode 150 are located may be divided into an intermediate area, a transition area, and an end area, wherein the end area includes two places, respectively Corresponding to the mutually distant ends of the first electrode 140 and the second electrode 150, the intermediate region is located between the first electrode 140 and the second electrode 150, and the transition region is located between the end region and the intermediate region.
  • the electric field lines located in the intermediate portion are parallel to the first transparent substrate 110 or the second transparent substrate 120, and the electric field lines located in the end portion are perpendicular to the first transparent substrate 110 or the second transparent substrate 120.
  • the electric field lines of the transition region portion are at an oblique angle to the first transparent substrate 110 or the second transparent substrate 120, that is, neither perpendicular nor parallel to the first transparent substrate 110 or the second transparent substrate 120.
  • the electric field distribution when an electric field is formed between the first electrode 140 and the second electrode 150 has been described above. According to the electric field distribution, correspondingly, the liquid crystal molecules located in the electric field are deflected by the electric field, and finally the long axis of the liquid crystal molecules and the position of the liquid crystal molecules The electric field lines at the direction are parallel. Specifically, the positive liquid crystal material at both end portions of the liquid crystal material layer 130 corresponding to the end region is perpendicular to the first transparent substrate 110 or the second transparent substrate 120 because the electric field line direction at the end portion is perpendicular. The liquid crystal molecules in the both end portions are not deflected, that is, remain in an initial state.
  • a positive liquid crystal material in an intermediate portion of the liquid crystal material layer 130 corresponding to the intermediate region wherein the long axes of all the liquid crystal molecules in the intermediate portion are eventually parallel to the electric field lines at the positions where they are located, and therefore, in the middle portion
  • the long axis of the liquid crystal molecules of the positive liquid crystal material is parallel to the first transparent substrate 110 and the second transparent substrate 120.
  • the positive liquid crystal material of the transition portion of the liquid crystal material layer 130 corresponding to the transition region has a tilt angle between the electric field line direction at the transition region and the first transparent substrate 110 or the second transparent substrate 120, so the transition The long axis of all the liquid crystal molecules of the positive liquid crystal material in the portion has an inclination angle with the first transparent substrate 110 or the second transparent substrate 120.
  • the degree of deflection of the liquid crystal molecules of the positive liquid crystal material corresponding to the intermediate region is greater than the degree of deflection of the liquid crystal molecules of the positive liquid crystal material corresponding to the transition region, and the transition region
  • the degree of deflection of the liquid crystal molecules of the corresponding positive liquid crystal material is greater than the degree of deflection of the liquid crystal molecules of the positive liquid crystal material corresponding to the end regions.
  • FIG. 3 is a schematic view showing a distribution of a refractive index of the liquid crystal lens when an electric field is formed between a first electrode and a second electrode of the liquid crystal lens.
  • the horizontal axis represents the position of the liquid crystal material layer 130 corresponding to the intermediate region, the transition region, and the end region around which the first electrode 140 and the second electrode 150 are located, and the vertical axis represents the liquid crystal material layer 130.
  • the refractive index of the liquid crystal molecules of the positive liquid crystal material corresponding to the intermediate region is Ne
  • the liquid crystal molecules of the positive liquid crystal material corresponding to the end regions are The refractive index is No
  • the refractive index of the liquid crystal molecules of the positive liquid crystal material corresponding to the transition region is Nf
  • the Ne, No, and Nf satisfy the following formula:
  • the liquid crystal lens according to the present disclosure has the refractive index of the above distribution, so that the function of the optical lens can be realized, becoming an equivalent lens of the optical lens, having Equivalent focal length. So can
  • the magnitude of the refractive index at different positions of the liquid crystal lens 100 is controlled by controlling the magnitude of the potential difference between the first electrode 140 and the second electrode 150, thereby changing the equivalent focal length of the equivalent lens.
  • the liquid crystal lens 100 can be applied to other fields, for example, the liquid crystal lens 100 can be applied to the field of optical devices, for example, to a camera.
  • a second aspect of the present disclosure relates to a lens assembly (not shown) including a drive circuit (not shown) and the present disclosure as shown in FIG. 1 or FIG. At least one liquid crystal lens 100.
  • the driving circuit is respectively connected to the first electrode 140 and the second electrode 150 for respectively supplying driving voltages to the first electrode 140 and the second electrode 150, so that the first electrode 140 An electric field is formed between the second electrode 150 and the second electrode 150.
  • the specific structure of the driving circuit is not limited.
  • the driving circuit may include circuit devices such as a power source and a switching element, and the power source is electrically connected to the first electrode 140 and the second electrode 150 respectively.
  • a driving voltage is supplied to the first electrode 140 and the second electrode 150.
  • the liquid crystal lens of the lens assembly can have a refractive index distribution adapted to the driving voltage, thereby realizing the function of the optical lens.
  • the lens assembly of the present embodiment includes the liquid crystal lens 100 as shown in FIG. 1 or FIG. 2 provided by the present disclosure, and therefore, when the driving circuit supplies the driving voltage to the first electrode 140 and the second electrode 150 of the liquid crystal lens 100 When a potential difference exists between the first electrode 140 and the second electrode 150 to form an electric field, the lens assembly having the liquid crystal lens 100 has a function of an optical lens, and the direction of light transmission can be changed. At the same time, since the two electrodes are on the same side of the same transparent substrate, the required driving voltage is low. In addition, since the alignment layer is not present in the liquid crystal lens 100, the rubbing alignment process is omitted, the manufacturing efficiency is improved, and the manufacturing cost is lowered.
  • a third aspect of the present disclosure relates to an optical device (not shown) including a lens on a light incident side of the optical device, the lens including the one shown in FIG. 1 or FIG.
  • the liquid crystal lens 100 is described.
  • the optical device of the present embodiment may be, for example, a camera, wherein the lens in the camera is the liquid crystal lens 100 as shown in FIG. 1 or 2 according to the present disclosure, and the remaining components of the camera may be existing components.
  • Conventional cameras mostly use a focusing ring on the lens when focusing, wherein the focusing ring is engraved with a distance scale between the negative film and the object to be photographed, and the focusing ring drives the lens barrel.
  • the multi-start thread on the top causes the lens to move axially so that the focus of the lens falls on the film plane.
  • the optical device of the present embodiment since the liquid crystal lens structure provided by the present disclosure is adopted, the optical device can obtain different focal lengths by adjusting the equivalent focal length of the equivalent lens of the liquid crystal lens, thereby achieving different The distance is imaged without manual focus adjustment. In this way, the operability of the optical device is greatly improved, and at the same time, the structure of the optical device can be made simpler.
  • a fourth aspect of the present disclosure relates to a display device (not shown) including a display panel (not shown).
  • the display device further includes a liquid crystal lens 100 as shown in FIG. 1 or FIG. 2 according to the present disclosure, the liquid crystal lens 100 being disposed on a light exiting side of the display panel.
  • the display device of this embodiment can be used to switch two-dimensional display or three-dimensional display (ie, 2D/3D conversion).
  • two-dimensional display an electric field may not be formed between the first electrode 140 and the second electrode 150 of the liquid crystal lens 100 such that light from the display panel does not pass through the liquid crystal lens 100. Change the direction of propagation to achieve two-dimensional (2D) display.
  • the liquid crystal lens 100 In the case of three-dimensional display, it is only necessary to control the voltage difference between the respective electrodes (the first electrode 140 and the second electrode 150), and the electric field formed between the first electrode 140 and the second electrode 150 causes the liquid crystal lens to
  • the liquid crystal molecules at different positions in the liquid crystal material layer 130 of 100 are rotated at different angles, so that the refractive index distribution of the liquid crystal lens 100 is correspondingly changed, thereby causing the left eye image and the right eye on each pixel of the display panel.
  • the emitted light of the image enters the left and right eyes of the viewer, respectively, thereby realizing a three-dimensional (3D) display. In this way, the conversion of the 2D/3D display mode can be achieved.
  • the above display panel comprises a liquid crystal display panel, of course, it may also be The display panel of his structure.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶透镜(100)、一种透镜组件、一种光学设备以及一种显示装置。液晶透镜(100)包括第一透明基板(110);第二透明基板(120),其与第一透明基板(110)相对设置;液晶材料层(130),其设置在第一透明基板(110)和第二透明基板(120)之间;至少一个第一电极(140)和至少一个第二电极(150),其设置在第一透明基板(110)或第二透明基板(120)的朝向液晶材料层(130)的一侧上;其中,至少一个第一电极(140)和至少一个第二电极(150)交替绝缘间隔设置。该液晶透镜(100),可以根据第一电极(140)和第二电极(150)之间的电势差大小以及所形成的电场分布,方便地控制液晶分子的偏转,进而控制该液晶透镜(100)的在不同位置处的折射率,从而实现光学透镜的功能。

Description

液晶透镜、透镜组件、光学设备和显示装置 技术领域
本公开涉及显示技术领域,具体涉及一种液晶透镜、一种包括该液晶透镜的透镜组件、一种包括该液晶透镜的光学设备以及一种包括该液晶透镜的显示装置。
背景技术
一般的,液晶透镜可以根据其中所形成的电场而切换到不同的折射状态,因此,在显示、照明等领域应用广泛。
但是,在现有的液晶透镜中,在初始状态下液晶分子的光轴(即,长轴)平行于液晶透镜的玻璃基板而排列,因此现有的液晶透镜的液晶分子需要复杂的取向方式。尤其对于球状液晶透镜来说,其所有液晶分子的光轴以球心为始点成辐射状,因此需要的取向方向沿球心向外辐射,这在工艺上很难实现,制造成本很高。
因此,如何设计一个能够无需复杂的取向工艺的液晶透镜已成为本领域亟待解决的技术问题。
发明内容
本公开旨在至少解决现有技术中存在的技术问题之一,提供了一种液晶透镜、一种包括该液晶透镜的透镜组件、一种包括该液晶透镜的光学设备以及一种包括该液晶透镜的显示装置。
在一些实施例中,本公开的第一方面提供了一种液晶透镜。所述液晶透镜包括:第一透明基板;第二透明基板,其与所述第一透明基板相对设置;液晶材料层,其设置在所述第一透明基板和所述第二透明基板之间;至少一个第一电极和至少一个第二电极,其设置在所述第一透明基板或所述第二透明基板的朝向所述液晶材料层的一侧上;其中,所述至少一个第一电极和所述至少一个第二电极交替绝缘 间隔设置。
可选地,所述第一电极和所述第二电极均由透明电极材料制成。
可选地,所述液晶材料层包括正性液晶材料。
可选地,所述液晶透镜还包括偏振片,所述偏振片设置在所述液晶透镜的入光面,且所述偏振片的偏振方向平行于所述第一电极和所述第二电极加电后形成电场时的位于所述第一电极和所述第二电极中间区域的液晶分子的长轴。
可选地,所述液晶透镜还包括缓冲层,所述缓冲层设置在所述第一透明基板和所述第二透明基板中靠近所述至少一个第一电极和所述至少一个第二电极的一个透明基板上,且所述至少一个第一电极和所述至少一个第二电极设置在所述缓冲层上。
可选地,所述液晶透镜还包括绝缘件,所述绝缘件设置在相邻的所述第一电极和所述第二电极之间。
本公开的第二方面提供了一种透镜组件,所述透镜组件包括驱动电路和上述任意一种结构的至少一个液晶透镜,所述驱动电路用于分别向所述第一电极和所述第二电极提供驱动电压,以使得所述第一电极和所述第二电极之间形成电场。
本公开的第三方面提供了一种光学设备,所述光学设备包括位于该光学设备入光侧的透镜,所述透镜包括上述任意一种结构的液晶透镜。
本公开的第四方面提供了一种显示装置,所述显示装置包括显示面板和上述任意一种结构的液晶透镜,其中,所述液晶透镜设置在所述显示面板的出光侧。
可选地,所述显示面板包括液晶显示面板。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施例一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1为本公开一个实施例中的液晶透镜在其中的第一电极和第 二电极未形成电场时的结构示意图;
图2为本公开另一个实施例中的液晶透镜在其中的第一电极和第二电极形成电场时的结构示意图;以及
图3为在所述液晶透镜的第一电极和第二电极形成电场时所述液晶透镜的折射率的分布的示意图。
附图标记说明:
100:液晶透镜;
110:第一透明基板;
120:第二透明基板;
130:液晶材料层;
140:第一电极;
150:第二电极;
160:偏振片;
170:缓冲层;
180:绝缘件;
Ne:中间区域液晶分子的折射率;
Nf:过渡区域液晶分子的折射率;
No:端部区域液晶分子的折射率。
具体实施方式
以下结合附图对本公开的具体实施例进行详细说明。应当理解的是,此处所描述的具体实施例仅用于说明和解释本公开,并不用于限制本公开的范围。
参考图1和图2,本公开的第一方面,涉及一种液晶透镜100。其中,所述液晶透镜100包括相对设置的第一透明基板110和第二透明基板120。所述液晶透镜100还包括液晶材料层130,其中,该液晶材料层130设置于所述第一透明基板110和所述第二透明基板120之间。
所述第一透明基板110或所述第二透明基板120的朝向所述液 晶材料层130的一侧设置有至少一个第一电极140和至少一个第二电极150,其中,所述至少一个第一电极140和所述至少一个第二电极150交替绝缘间隔设置。
需要说明的是,对于第一透明基板110和第二透明基板120的具体结构并未作出限定,例如,该第一透明基板110和第二透明基板120中的每一个可以是玻璃基板,当然,也可以是其他结构的基板。但是,采用其他材料制作形成的基板应当呈透明状态,以便使得该液晶透镜100处于工作状态下,当有外界光线入射到液晶透镜100时,入射光线可以穿过该液晶透镜100,进而可以通过液晶透镜100改变光线的传输方向。
可选地,上述液晶材料层130包括正性液晶材料。在电场的作用下,正性液晶的液晶分子的长轴平行于该电场的方向。
在本实施例的液晶透镜100,上述的液晶材料层130选用正性液晶材料。如图1所示,在初始状态下,液晶材料中的全部液晶分子的长轴垂直于所述第一透明基板110或第二透明基板120。当第一电极140和第二电极150之间存在电势差时,如图2所示,则第一电极140和第二电极150之间便会形成电场。应当理解的是,由于第一电极140和第二电极150同时处于第一透明基板110或第二透明基板120的同一侧上,因此所形成的电场的电场线的方向在第一电极140和第二电极150的彼此远离的两端处接近于竖直,而在第一电极140和第二电极150的中间位置处变为接近于水平。根据正性液晶材料的特性,当存在上述电场时,正性液晶材料的液晶分子的长轴会发生偏转,最终液晶分子的长轴会平行于该液晶分子所处区域的电场线的方向。因此根据第一电极140和第二电极150之间的电势差大小以及电场分布,可以方便地控制液晶分子的偏转,进一步的可以控制该液晶透镜100的在不同位置处的折射率,从而实现光学透镜的功能。
另外,在本实施例的液晶透镜100中,由于在第一透明基板110和第二透明基板120之间设置有正性液晶材料,因此在初始状态下,该正性液晶材料呈透光态,即液晶分子的长轴与第一透明基板110或第二透明基板120垂直,光线可以不改变方向的传输。因此在工艺 方面,不需要对液晶分子再进行取向,能够有效节省成本。另一方面,采用正性液晶分子作为填充在第一透明基板110和第二透明基板120之间的液晶材料层的优点是,可以降低驱动电压。另外,由于该液晶透镜100中不存在取向层,省去了摩擦取向工艺,提高了制造效率,降低了制造成本。
可选地,所述第一电极140和所述第二电极150均由透明电极材料制成。
在本实施例的液晶透镜100中,第一电极140和第二电极150可以具有良好的透明性和导电性。因此,在本实施例中,例如,可以选用诸如氧化铟锡之类的透明电极材料来制成该第一电极140和第二电极150,氧化铟锡除了具有上述的透明性和导电性外,还具有良好的化学稳定性、热稳定性以及良好的图形加工特性。当然,该第一电极140和第二电极150的材料也可以选择其他材料制成,只要满足透明性和导电性即可。
为了使液晶透镜100对光线起到调制作用,进入液晶透镜100中的光可以是线偏振光。为了扩大液晶透镜100的使用范围,上述液晶透镜100还包括偏振片160。例如,该偏振片160可以设置在液晶透镜100的入光侧。具体地,当光线从第一透明基板110进入到该液晶透镜100时,该偏振片160可以设置在第一透明基板110上。例如,该偏振片160可以设置在第一透明基板110的外表面上,如图2所示。该偏振片160的偏振方向平行于所述第一电极140和所述第二电极150加电后形成电场时的位于所述第一电极140和所述第二电极150中间区域的液晶分子的长轴。
应当理解的是,液晶透镜100上不一定必须设置偏振片160,只要保证射入液晶透镜100的光线为线偏振光即可。例如,可以在与液晶透镜100配合的其他元件上(例如显示面板的出光面上)设置偏振片160。
可选地,上述液晶透镜100还包括缓冲层170,如图2所示。其中,该缓冲层170设置在透明基板上,且所述第一电极140和所述第二电极150设置在所述缓冲层170上。具体地,如图2所示,缓冲层 170可以设置在所述第一透明基板110上,第一电极140和第二电极150设置在该缓冲层170上。
本实施例的液晶透镜100,设置有缓冲层170,该缓冲层170的具体材料并没有作出限定。例如,缓冲层170的材料可以是氮化硅,氮化硅可以使得电极与透明基板之间绝缘,同时还能够增强电极与透明基板之间的粘附性以及防止杂质扩散等功能。
可选地,为了使得第一电极140和第二电极150之间相互绝缘,如图2所示,所述液晶透镜100还包括绝缘件180。例如,所述绝缘件180设置在相邻的两个所述第一电极140和所述第二电极150之间。对于该绝缘件180的具体材料并没有作出限定,其只要满足能够使得第一电极140和第二电极150之间相互绝缘即可。
下面详细说明上述液晶透镜100的光学原理。
继续参考图2,当第一电极140和第二电极150之间存在电势差时,由于第一电极140和第二电极150同时处于一个透明基板(例如,第一透明基板110)的同一侧,因此在第一电极140和第二电极150之间形成的电场的电场线由第一电极140和第二电极150的彼此远离的两端处的实质上竖直过渡到第一电极140和第二电极150的中间位置处的实质上水平。根据所形成的电场的电场线的分布规律,可以将第一电极140和第二电极150所处位置周围的区域分成中间区域、过渡区域以及端部区域,其中,端部区域包括两处,分别对应第一电极140和第二电极150的彼此远离的两端,中间区域位于第一电极140和第二电极150的中间,过渡区域位于端部区域和中间区域之间。根据电场线分布规律,位于中间区域部分的电场线与第一透明基板110或第二透明基板120平行,位于端部区域部分的电场线与第一透明基板110或第二透明基板120垂直,位于过渡区域部分的电场线与第一透明基板110或第二透明基板120呈倾斜角度,即与第一透明基板110或第二透明基板120之间既不垂直又不平行。
以上描述了当第一电极140和第二电极150之间形成电场时的电场分布。根据该电场分布,相应的,位于电场中的液晶分子会在电场的作用下发生偏转,最终液晶分子的长轴会与该液晶分子所述位置 处的电场线方向平行。具体的,与上述端部区域对应的液晶材料层130的两端部分的正性液晶材料,由于上述端部区域处的电场线方向与第一透明基板110或第二透明基板120垂直,因此,该两端部分中的液晶分子不会发生偏转,即保持初始状态。与上述中间区域对应的液晶材料层130的中间部分的正性液晶材料,该中间部分中的全部液晶分子的长轴最终会与它们所处位置处的电场线平行,因此,该中间部分中的正性液晶材料的液晶分子的长轴会平行于第一透明基板110和第二透明基板120。与上述过渡区域对应的液晶材料层130的过渡部分的正性液晶材料,由于上述过渡区域处的电场线方向与第一透明基板110或第二透明基板120之间具有倾斜角,因此,该过渡部分中的正性液晶材料的全部液晶分子的长轴与第一透明基板110或第二透明基板120之间具有倾斜角。
因此,在上述电场的作用下,与所述中间区域相对应的正性液晶材料的液晶分子的偏转程度大于与所述过渡区域相对应的正性液晶材料的液晶分子的偏转程度,与过渡区域相对应的正性液晶材料的液晶分子的偏转程度大于处于与所述端部区域对应的正性液晶材料的液晶分子的偏转程度。
图3为在所述液晶透镜的第一电极和第二电极形成电场时所述液晶透镜的折射率的分布的示意图。在图3中,横轴表示液晶材料层130与上述第一电极140和第二电极150所处位置周围的中间区域、过渡区域和端部区域对应的位置,纵轴表示液晶材料层130中的正性液晶材料的液晶分子的折射率。参照图3,根据上述正性液晶材料的偏转规律,与所述中间区域对应的正性液晶材料的液晶分子的折射率为Ne,与所述端部区域对应的正性液晶材料的液晶分子的折射率为No,与所述过渡区域对应的正性液晶材料的液晶分子的折射率为Nf,且所述Ne、No和Nf满足下述公式:
Ne>Nf>No。
因此,当第一电极140和第二电极150之间具有电势差时,根据本公开的液晶透镜便会具有上述分布的折射率,从而可以实现光学透镜的功能,成为光学透镜的等效透镜,具有等效焦距。因此,可以 通过控制第一电极140和第二电极150之间的电势差的大小,来控制该液晶透镜100的不同位置处的折射率大小,从而改变等效透镜的等效焦距。可以将该液晶透镜100应用到其他领域,例如,可以将该液晶透镜100应用到光学设备领域,例如,应用于照相机。传统的照相机在进行调焦时,大多使用镜头上的调焦环,其中,该调焦环上刻有与调焦量对应的底片与被摄景物之间的距离标尺。调焦环带动镜筒上的多头螺纹,让镜头产生轴向移动,使得镜头的焦点落在胶片平面上。将该液晶透镜100应用到照相机时,可以使得该照相机的结构更加紧凑。例如,通过调节液晶透镜100的等效透镜的等效焦距即可使得该照相机具有不同的焦距,实现不同距离的成像,无需手动调焦。
本公开的第二方面,涉及一种透镜组件(图中并未示出),所述透镜组件包括驱动电路(图中并未示出)和本公开所提供的如图1或图2所示的至少一个液晶透镜100。所述驱动电路分别与所述第一电极140和所述第二电极150连接,用于分别向所述第一电极140和所述第二电极150提供驱动电压,以使得所述第一电极140和所述第二电极150之间形成电场。
需要说明的是,对于驱动电路的具体结构并没有作出限定,例如,该驱动电路可以包括电源、开关元件等电路器件,电源分别与第一电极140和第二电极150之间电性连接,以便为第一电极140和第二电极150提供驱动电压。以此方式,可以使所述透镜组件的液晶透镜具有与该驱动电压相适配的折射率分布,从而实现光学透镜的功能。
本实施例的透镜组件,因为包括本公开所提供的如图1或图2所示的液晶透镜100,因此,当驱动电路为该液晶透镜100的第一电极140和第二电极150提供驱动电压以使得第一电极140和第二电极150之间存在电势差以形成电场时,具有该液晶透镜100的透镜组件具有光学透镜的功能,可以改变光线传输的方向。同时,由于两个电极位于同一个透明基板的同一侧上,因此需要的驱动电压较低。另外,由于该液晶透镜100中不存在取向层,省去了摩擦取向工艺,提高了制造效率,降低了制造成本。
本公开的第三方面,涉及一种光学设备(图中并未示出),所述光学设备包括位于该光学设备入光侧的透镜,所述透镜包括如图1或图2所示的所述液晶透镜100。
本实施例的光学设备例如可以是照相机,其中该照相机中的镜头为根据本公开的如图1或图2所示的所述液晶透镜100,该照相机的其余部件可以是现有部件。传统的照相机在进行调焦时,大多使用镜头上的调焦环,其中,该调焦环上刻有与调焦量对应的底片与被摄景物之间的距离标尺,调焦环带动镜筒上的多头螺纹,让镜头产生轴向移动,使得镜头的焦点落在胶片平面上。而本实施例的光学设备,因为采用了本公开所提供的液晶透镜结构,因此,可以通过调节液晶透镜的等效透镜的等效焦距即可使得所述光学设备获得不同的焦距,从而实现不同距离的成像,无需手动调焦。以此方式,使得该光学设备的可操作性大大提高,同时,还可以使得该光学设备的结构更加简单。
本公开的第四方面,涉及一种显示装置(图中并未示出),所述显示装置包括显示面板(图中并未示出)。所述显示装置还包括根据本公开的如图1或图2所示的液晶透镜100,所述液晶透镜100设置在所述显示面板的出光侧。
本实施例的显示装置,可以用于切换二维显示或三维显示(即2D/3D转换)。例如,在二维显示的情况下,所述液晶透镜100的第一电极140和第二电极150之间可以不形成电场,使得来自所述显示面板的光在穿过所述液晶透镜100时不改变传播方向,从而实现二维(2D)显示。在三维显示的情况下,只需要控制相应的电极(第一电极140和第二电极150)之间的电压差,第一电极140和第二电极150之间所形成的电场使所述液晶透镜100的液晶材料层130中不同位置处的液晶分子发生不同角度的旋转,使得液晶透镜100的折射率分布就会相应的改变,从而使所述显示面板的各个像素上的左眼图像和右眼图像的出射光分别进入观看者的左眼和右眼,从而实现三维(3D)显示。以此方式,可以实现2D/3D显示模式的转换。
可选地,上述显示面板包括液晶显示面板,当然,也可以是其 他结构的显示面板。
应当理解的是,以上实施例仅仅是为了说明本公开的原理而采用的示例性实施例,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也属于本公开的保护范围。

Claims (10)

  1. 一种液晶透镜,包括:
    第一透明基板;
    第二透明基板,其与所述第一透明基板相对设置;
    液晶材料层,其设置在所述第一透明基板和所述第二透明基板之间;
    至少一个第一电极和至少一个第二电极,其设置在所述第一透明基板或所述第二透明基板的朝向所述液晶材料层的一侧上;
    其中,所述至少一个第一电极和所述至少一个第二电极交替绝缘间隔设置。
  2. 根据权利要求1所述的液晶透镜,其中,所述第一电极和所述第二电极均由透明电极材料制成。
  3. 根据权利要求1所述的液晶透镜,其中,所述液晶材料层包括正性液晶材料。
  4. 根据权利要求1至3中任意一项所述的液晶透镜,其中,所述液晶透镜还包括偏振片,所述偏振片设置在所述液晶透镜的入光面,且所述偏振片的偏振方向平行于所述第一电极和所述第二电极加电后形成电场时的位于所述第一电极和所述第二电极中间区域的液晶分子的长轴。
  5. 根据权利要求1至4中任意一项所述的液晶透镜,其中,所述液晶透镜还包括缓冲层,所述缓冲层设置在所述第一透明基板和所述第二透明基板中靠近所述至少一个第一电极和所述至少一个第二电极的一个透明基板上,且所述至少一个第一电极和所述至少一个第二电极设置在所述缓冲层上。
  6. 根据权利要求1至5中任意一项所述的液晶透镜,其中,所述液晶透镜还包括绝缘件,所述绝缘件设置在相邻的所述第一电极和所述第二电极之间。
  7. 一种透镜组件,包括驱动电路和根据权利要求1至6中任意一项所述的至少一个液晶透镜,所述驱动电路用于分别向所述第一电极和所述第二电极提供驱动电压,以使得所述第一电极和所述第二电极之间形成电场。
  8. 一种光学设备,包括位于该光学设备入光侧的透镜,其中,所述透镜包括根据权利要求1至6中任意一项所述的液晶透镜。
  9. 一种显示装置,包括显示面板和根据权利要求1至6中任意一项所述的液晶透镜,其中,所述液晶透镜设置在所述显示面板的出光侧。
  10. 根据权利要求9所述的显示装置,其中,所述显示面板包括液晶显示面板。
PCT/CN2017/101205 2017-01-04 2017-09-11 液晶透镜、透镜组件、光学设备和显示装置 WO2018126727A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/770,348 US10747083B2 (en) 2017-01-04 2017-09-11 Liquid crystal lens, lens assembly, optical apparatus and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710004107.7 2017-01-04
CN201710004107.7A CN106647092A (zh) 2017-01-04 2017-01-04 液晶透镜、透镜组件、光学设备和显示装置

Publications (1)

Publication Number Publication Date
WO2018126727A1 true WO2018126727A1 (zh) 2018-07-12

Family

ID=58844121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/101205 WO2018126727A1 (zh) 2017-01-04 2017-09-11 液晶透镜、透镜组件、光学设备和显示装置

Country Status (3)

Country Link
US (1) US10747083B2 (zh)
CN (1) CN106647092A (zh)
WO (1) WO2018126727A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106647092A (zh) * 2017-01-04 2017-05-10 京东方科技集团股份有限公司 液晶透镜、透镜组件、光学设备和显示装置
CN109239997B (zh) * 2018-11-27 2021-10-19 厦门天马微电子有限公司 显示面板和显示装置
CN109782499B (zh) * 2019-02-26 2022-02-01 京东方科技集团股份有限公司 液晶显示装置及电子设备
CN111381395B (zh) * 2020-01-21 2023-11-28 奥提赞光晶(山东)显示科技有限公司 一种电控连续变焦透镜、制备方法和曝光系统
CN114690469A (zh) * 2022-04-14 2022-07-01 广州华星光电半导体显示技术有限公司 3d显示器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080013002A1 (en) * 2006-06-29 2008-01-17 Hyung Ki Hong Lenticular lens and method of fabricating thereof
CN102851034A (zh) * 2012-09-03 2013-01-02 福建华映显示科技有限公司 液晶透镜的液晶组成与包含其的立体显示器
CN103293818A (zh) * 2012-02-28 2013-09-11 株式会社东芝 光学设备和图像显示设备
CN103293819A (zh) * 2013-05-09 2013-09-11 赵耘轩 电控液晶透镜及其三维立体显示装置
CN105259725A (zh) * 2014-07-09 2016-01-20 株式会社东芝 液晶透镜装置以及图像显示装置
CN105388678A (zh) * 2015-11-05 2016-03-09 广东未来科技有限公司 液晶透镜、立体显示装置及其驱动方法
CN106647092A (zh) * 2017-01-04 2017-05-10 京东方科技集团股份有限公司 液晶透镜、透镜组件、光学设备和显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6162370A (en) 1998-08-28 2000-12-19 Ashland Inc. Composition and method for selectively etching a silicon nitride film
JP4476196B2 (ja) 2005-08-23 2010-06-09 富士通マイクロエレクトロニクス株式会社 半導体装置の製造方法
JP2007266490A (ja) 2006-03-29 2007-10-11 Toshiba Corp 基板の処理方法および半導体装置の製造方法
CN102621763B (zh) * 2012-02-15 2014-08-13 华映光电股份有限公司 显示装置及液晶透镜
CN103576407B (zh) * 2012-07-26 2016-01-20 瀚宇彩晶股份有限公司 液晶透镜及可切换二维与三维显示模式的显示装置
JP2014089294A (ja) * 2012-10-30 2014-05-15 Toshiba Corp 液晶レンズ装置およびその駆動方法
JP2014228840A (ja) * 2013-05-27 2014-12-08 株式会社ジャパンディスプレイ 表示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080013002A1 (en) * 2006-06-29 2008-01-17 Hyung Ki Hong Lenticular lens and method of fabricating thereof
CN103293818A (zh) * 2012-02-28 2013-09-11 株式会社东芝 光学设备和图像显示设备
CN102851034A (zh) * 2012-09-03 2013-01-02 福建华映显示科技有限公司 液晶透镜的液晶组成与包含其的立体显示器
CN103293819A (zh) * 2013-05-09 2013-09-11 赵耘轩 电控液晶透镜及其三维立体显示装置
CN105259725A (zh) * 2014-07-09 2016-01-20 株式会社东芝 液晶透镜装置以及图像显示装置
CN105388678A (zh) * 2015-11-05 2016-03-09 广东未来科技有限公司 液晶透镜、立体显示装置及其驱动方法
CN106647092A (zh) * 2017-01-04 2017-05-10 京东方科技集团股份有限公司 液晶透镜、透镜组件、光学设备和显示装置

Also Published As

Publication number Publication date
US10747083B2 (en) 2020-08-18
CN106647092A (zh) 2017-05-10
US20190064631A1 (en) 2019-02-28

Similar Documents

Publication Publication Date Title
WO2018126727A1 (zh) 液晶透镜、透镜组件、光学设备和显示装置
TWI588539B (zh) 液晶透鏡及包含其之顯示器
US8786683B2 (en) Stereoscopic display unit
US8482684B2 (en) Stereoscopic image display apparatus
CN106226930B (zh) 一种菲涅尔透镜装置
WO2015176663A1 (zh) 显示装置
RU2544254C2 (ru) Устройство отображения со многими ракурсами просмотра
US9651792B2 (en) Image display apparatus
US8780287B2 (en) Electrically-driven liquid crystal lens panel and stereoscopic display panel
US9190019B2 (en) Image display apparatus
KR20100013179A (ko) 표시장치
WO2012048485A1 (zh) 2d/3d切换的液晶透镜组件及显示装置
JP2010176019A (ja) レンズアレイデバイスおよび画像表示装置
US9389430B2 (en) Light deflection element and image display apparatus using the same
TW201418777A (zh) 顯示裝置
WO2013029280A1 (zh) 液晶透镜及液晶显示装置
WO2014139242A1 (zh) 导光板、光学膜片、背光模组、阵列基板及液晶模组
WO2013029283A1 (zh) 液晶透镜及3d显示装置
WO2017118224A1 (zh) 视角定向光源装置及显示装置
WO2016086483A1 (zh) 可在2d和3d模式之间切换的显示器及其控制方法
CN108388019B (zh) 一种3d显示装置及显示方法
WO2022267545A1 (zh) 可切换液晶光学器件
TW201416708A (zh) 裸眼式立體顯示裝置及其液晶透鏡
CN209858911U (zh) 显示设备
JP2009150956A (ja) 電気工学装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17890354

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20.12.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17890354

Country of ref document: EP

Kind code of ref document: A1