WO2012048485A1 - 2d/3d切换的液晶透镜组件及显示装置 - Google Patents

2d/3d切换的液晶透镜组件及显示装置 Download PDF

Info

Publication number
WO2012048485A1
WO2012048485A1 PCT/CN2010/078755 CN2010078755W WO2012048485A1 WO 2012048485 A1 WO2012048485 A1 WO 2012048485A1 CN 2010078755 W CN2010078755 W CN 2010078755W WO 2012048485 A1 WO2012048485 A1 WO 2012048485A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
refractive index
lens
light
concave
Prior art date
Application number
PCT/CN2010/078755
Other languages
English (en)
French (fr)
Inventor
贺成明
康志聪
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US12/996,998 priority Critical patent/US8582043B2/en
Publication of WO2012048485A1 publication Critical patent/WO2012048485A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/291Two-dimensional analogue deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices

Definitions

  • the present invention relates to a display device, and more particularly to a 2D/3D switched liquid crystal lens assembly and display device therefor.
  • Dragon
  • the human brain further forms a so-called 3-dimensional (3D) image based on the spatial distance difference between the two different perspectives seen by both eyes. This spatial distance difference is called parallax.
  • the so-called 3D display device simulates the field of view of different angles of human eyes, allowing the left and right eyes to receive two 2D images with parallax respectively, so that the human brain can acquire 3D images after seeing different 2D images seen by the left and right eyes. .
  • the current 3D display devices are mainly divided into two categories, namely, an auto-stereoscopic display device and a Stereoscopic display device.
  • the user of the autostereoscopic display device can see the 3D stereoscopic image without wearing the special structure glasses.
  • Another non-automatic stereoscopic display device requires the user to wear special glasses to see 3D stereoscopic images.
  • the principle of the slit grating autostereoscopic display device is to rely on the opaque parallax barrier to allow the left and right eyes of the user to see the image with parallax, and this parallax will form a stereoscopic effect in the brain.
  • the microlens array type stereoscopic display device it is blown into a grating piece (Lenticular Lens) using a lens assembly and attached to a liquid crystal panel, and the lens assembly is It consists of a single refractive index microlens array and a birefringent microlens array.
  • the material of the birefringent microlens array is liquid crystal.
  • the alignment of the liquid crystal molecules is changed from the horizontal direction to the vertical direction, and the refractive index is represented by the ordinary light refractive index n.
  • n e a refractive index
  • the light incident on the lens assembly has different light exit directions due to the birefringence rate of the microlens.
  • the observer can see two different angles of refraction, so that 2D/3D image switching can be achieved.
  • the present invention provides a 2D/3D display image switching display device, including a backlight module, a liquid crystal panel, and a liquid crystal lens assembly, the backlight module is configured to generate light, and the liquid crystal panel is used to generate according to the backlight module.
  • the light ray displays an image, and the light transmitted by the liquid crystal panel is polarized light.
  • the liquid crystal lens assembly sequentially includes a plurality of adjacently arranged elongated concave lenses and a plurality of adjacently arranged elongated liquid crystal convex lenses from the light exit surface to the light incident surface.
  • the plurality of adjacently arranged elongated liquid crystal convex lenses respectively correspond to the plurality of concave lenses
  • the plurality of elongated liquid crystal convex lenses comprise a transparent substrate, an electrode layer on the transparent substrate, and a a first liquid crystal layer, the first liquid crystal The layer is sandwiched between the concave lens and the transparent substrate.
  • the electrode layer includes a plurality of control electrodes for controlling an alignment direction of liquid crystal molecules of the liquid crystal convex lens to adjust an equivalent refractive index thereof, such that an equivalent refractive index of the liquid crystal convex lens is equal to or greater than The first index of refraction of the concave lens.
  • the present invention further provides a liquid crystal lens assembly comprising, in order from the light exit surface to the light incident surface, a plurality of adjacent elongated concave lenses and a plurality of adjacent elongated liquid crystal convex lenses.
  • the plurality of adjacently arranged elongated liquid crystal convex lenses respectively correspond to the plurality of concave lenses, and the plurality of elongated liquid crystal convex lenses comprise a transparent substrate, an electrode layer on the transparent substrate, and a The first liquid crystal layer is sandwiched between the concave lens and the transparent substrate.
  • the electrode layer includes a plurality of control electrodes for controlling an alignment direction of liquid crystal molecules of the liquid crystal convex lens to adjust an equivalent refractive index thereof, such that an equivalent refractive index of the liquid crystal convex lens is equal to or greater than The first index of refraction of the concave lens.
  • the refractive index of the concave lens is equal to the ordinary refractive index of the liquid crystal molecules of the first liquid crystal layer.
  • the control electrode is elongated, and its extending direction is consistent with the extending direction of the elongated liquid crystal convex lens.
  • the liquid crystal lens assembly is used in conjunction with linearly polarized light, and the plurality of elongated liquid crystal convex lenses extend along a first direction and are arranged along a second direction, the first direction being perpendicular to the second direction, the polarized light The polarization direction is perpendicular to the first direction.
  • the liquid crystal convex lens further includes an alignment film disposed on a surface of the transparent substrate adjacent to the first liquid crystal layer, the alignment film is such that liquid crystal molecules of the first liquid crystal layer are parallel to each other when an electric field is not applied In the first direction.
  • the liquid crystal molecules of the first liquid crystal layer are positive liquid crystals arranged in an optical axis direction parallel to the direction of the electric field, and the liquid crystal molecules of the first liquid crystal layer are applied with an electric field, the optical axis and the One direction is at an angle.
  • the extraordinary light refractive index of the liquid crystal molecules of the first liquid crystal layer is greater than 1.2 times the ordinary light refractive index.
  • the concave lens is a birefringent liquid crystal concave lens comprising a second liquid crystal layer comprising a plurality of liquid crystal molecules arranged in a direction perpendicular to the transparent substrate.
  • the concave lens is a birefringent liquid crystal concave lens comprising a second liquid crystal layer comprising a plurality of liquid crystal molecules arranged in a direction parallel to the transparent substrate.
  • the display device of the present invention can control the rotation angle of the liquid crystal molecules of the liquid crystal convex lens through the driving voltage, and can change the equivalent refractive index of the liquid crystal convex lens to dynamically adjust the refractive index of the equivalent refractive index and the refractive index of the concave lens. Rate difference. The purpose is to compensate for the need for the human eye to observe the angle of light refraction when the distance of the display device is different.
  • the extraordinary refractive index of the liquid crystal convex lens is much larger than the ordinary light refractive index
  • the incident polarized light obtains a large refractive index change to achieve the purpose of 3D/2D switching.
  • This switching of a small angle of rotation also means that a smaller electric field is required, which indirectly saves power consumption.
  • FIG. 1 is a schematic view of a display device for displaying a three-dimensional image of the present invention.
  • Fig. 2 is a view showing the arrangement direction of liquid crystal molecules and the polarization direction of incident polarized light.
  • FIG. 3 is a schematic view showing the optical path of the polarized light when the cross section of the liquid crystal lens assembly of the first embodiment of FIG. 1 and the liquid crystal molecules in the convex lens are not changed.
  • FIG. 4 is a schematic view showing the optical path of the incident polarized light after the cross section of the liquid crystal lens assembly of the first embodiment of FIG. 1 and the alignment of the liquid crystal molecules in the convex lens.
  • FIG. 5 is a schematic view showing the optical path of the polarized light when the cross section of the liquid crystal lens assembly of the second embodiment and the liquid crystal molecules in the convex lens are not changed.
  • Fig. 6 is a view showing the optical path of the incident polarized light after the cross section of the liquid crystal lens assembly of the second embodiment and the liquid crystal molecules in the convex lens are changed in the arrangement direction.
  • Fig. 7 is a view showing the optical path of the polarized light when the cross section of the liquid crystal lens assembly of the third embodiment and the liquid crystal molecules in the convex lens are not changed.
  • FIG. 8 is a schematic view showing the optical path of the incident polarized light after the cross section of the liquid crystal lens assembly of the third embodiment and the alignment of the liquid crystal molecules in the convex lens.
  • the display device 100 includes a backlight module 102, a liquid crystal panel 110, polarizer films 114 and 115 located on both sides of the liquid crystal panel 110, and a liquid crystal lens assembly 120.
  • the backlight module 102 provides a uniform surface light source for the liquid crystal panel.
  • the liquid crystal panel 110 provides a liquid crystal material between a pair of transparent glass substrates, and a transparent indium tin oxide (Indium Tin Oxide) is disposed on the glass substrate.
  • the liquid crystal panel 110 includes a pixel array composed of a plurality of pixels 112.
  • the rotation direction of the liquid crystal molecules corresponding to each pixel can be adjusted by driving the pixels 112 to adjust the intensity of the backlight emission to display different gray levels.
  • the liquid crystal panel 110 is located in the polarizer. Between 114 and 115, and the polarization axes of the polarizers 114 and 115 are different from each other by 90°. 114, 115 will make the transmitted light only have the direction of the corresponding polarization axis according to the angle of its polarization axis. In the present invention, the polarization direction of the light emitted from the polarizer 115 is parallel to the B direction, but the present invention is not limited thereto.
  • FIG. 2 is a schematic diagram showing the arrangement direction of liquid crystal molecules and the polarization direction of incident polarized light.
  • 3 is a cross-sectional view of the liquid crystal lens assembly 120 of the first embodiment of FIG. 1 from the direction indicated by the arrow A in FIG. 1 and the optical path of the polarized light when the liquid crystal molecules in the convex lens 122 are not changed.
  • the liquid crystal lens assembly 120 includes a transparent glass substrate 121a from the light exit surface 132 to the light incident surface 130, a plurality of elongated concave lenses 124 extending parallel to each other and extending in the first direction A, and a plurality of parallel planes extending in the first direction A and extending in the first direction A.
  • the liquid crystal convex lens 122 of the liquid crystal convex lens 122 includes a transparent substrate 121b, an electrode layer 123 on the transparent glass substrate 121b, and a first liquid crystal layer sandwiched by the concave lens. 124 is between the transparent glass substrate 121b.
  • Each of the elongated concave lenses 124 and each of the elongated liquid crystal convex lenses i22 are arranged in the second direction B, and the first direction A and the second direction B are perpendicular to each other.
  • the liquid crystal lens assembly 120 does not require the transparent glass substrate 121a, and it is only necessary to apply a protective film on the light outgoing side of the concave lens 124.
  • the electrode layer 123 includes a plurality of parallel elongated control electrodes with a gap left between the two elongated control electrodes.
  • An alignment film (not shown) is disposed above the electrode layer 123, and the alignment film is used to align the liquid crystal molecules in a specific direction when an electric field is not applied.
  • the liquid crystal convex lens 122 is a refractive convex lens.
  • the first liquid crystal layer of the liquid crystal convex lens m has a first ordinary refractive index n. And a first extraordinary refractive index n e .
  • the convex lens 122 When the polarization direction of the polarized light incident on the convex lens 122 is perpendicular to the optical axis direction of the liquid crystal molecules, the convex lens 122 has a first ordinary refractive index n for the incident polarized light. .
  • the incident bias is In terms of vibration, the convex lens 122 has a first extraordinary refractive index n e .
  • the refractive index n of the concave lens 124 is equal to the first ordinary refractive index n. . As shown in FIG.
  • the alignment direction of the liquid crystal molecules located between the two elongated control electrodes is perpendicular to the action of the alignment film. Paper orientation.
  • the polarization direction of the polarized light incident on the liquid crystal convex lens 122 from the polarizing plate 115 via the light incident surface 130 is perpendicular to the optical axis of the liquid crystal molecules. Since the refractive index n of the concave lens 124 is equal to the first ordinary refractive index n of the liquid crystal convex lens 122.
  • FIG. 4 is a schematic diagram showing the optical path of the incident polarized light after the cross section of the liquid crystal lens assembly 120 of the first embodiment of FIG. 1 and the alignment of the liquid crystal molecules in the convex lens 122.
  • a driving voltage is applied between the two elongated control electrodes of the electrode layer 123, liquid crystal molecules located between the two elongated control electrodes are rotated.
  • the polarization direction of the polarized light emitted from the polarizer 115 is at an angle ⁇ to the fast axis of the liquid crystal molecules (i.e., the direction perpendicular to the optical axis), and the liquid crystal convex lens 122 has an equivalent refractive index neff.
  • the angle ⁇ is also larger.
  • the refractive index of the liquid crystal convex lens 122 is the first extraordinary refractive index n e for the polarized light.
  • the equivalent refractive index neff of the angle ⁇ between 0° and 90° corresponds to the equivalent refractive index neff of 90° to 180°, for example, the equivalent refractive index of the angle ⁇ at 45° and 135°.
  • the driving voltage between the two elongated control electrodes applied to the electrode layer 123 can be adjusted such that the angle between the polarization direction of the incident polarized light and the fast axis of the liquid crystal molecules and the liquid crystal convex lens 122
  • the equivalent refractive index neff is also adjusted accordingly.
  • the difference in refractive index between the equivalent refractive index neff of the liquid crystal convex lens 122 and the refractive index n of the concave lens 124 is also changed, so that the incident polarized light is slightly different in the refractive direction of the liquid crystal convex lens 122 and the concave lens 124.
  • the first extraordinary refractive index n e may be selected to be much larger than the first ordinary refractive index n.
  • the liquid crystal for example, n e ⁇ 1.2xn. .
  • the liquid crystal convex lens 122 uses a positive liquid crystal, that is, when the two elongated control electrodes of the electrode layer 123 generate an arrow B as shown in the arrow of FIG.
  • the liquid crystal alignment direction of the liquid crystal convex lens 122 is parallel to the electric field direction.
  • the liquid crystal convex lens 122 may also adopt a negative liquid crystal.
  • the elongated electrodes are arranged along the A direction along the B direction. Extended.
  • FIG. 5 is a schematic diagram showing the optical path of the polarized light when the cross section of the liquid crystal lens assembly 220 of the second embodiment and the liquid crystal molecules in the convex lens 222 are not changed.
  • the liquid crystal lens assembly 220 includes a transparent glass substrate 221a from the light exit surface 230 to the light incident surface 232, and a plurality of parallel and parallel The elongated liquid crystal concave lens 224 extending in the first direction A and the plurality of elongated liquid crystal convex lenses 222 extending parallel to the first direction A and correspondingly fitting the liquid crystal concave lens 224 in one-to-one correspondence.
  • the liquid crystal convex lens 222 includes a transparent substrate 221b, an electrode layer 223 on the transparent glass substrate 221b, and a first liquid crystal layer sandwiched between the liquid crystal concave lens 224 and the transparent glass substrate 221b.
  • Each of the elongated liquid crystal concave lenses 224 and each of the elongated liquid crystal convex lenses 222 are arranged in the second direction B, and the first direction A and the second direction B are perpendicular to each other.
  • the difference from the liquid crystal lens assembly 220 of the foregoing embodiment is that the liquid crystal concave lens 224 has a second liquid crystal layer.
  • the liquid crystal convex lens 222 is a birefringent convex lens.
  • the birefringent liquid crystal convex lens 222 has a first ordinary refractive index ⁇ . I and the first extraordinary refractive index nei.
  • the second ordinary refractive index n of the liquid crystal concave lens 224. 2 is equal to the first ordinary light refractive index n()1 . As shown in FIG.
  • FIG. 6 is a schematic diagram showing the optical path of the incident polarized light after the cross section of the liquid crystal lens assembly 220 of the second embodiment and the alignment of the liquid crystal molecules in the convex lens 222.
  • a driving voltage is applied between the two elongated control electrodes of the electrode layer 223, liquid crystal molecules located between the two elongated control electrodes are rotated.
  • the polarization direction of the polarized light emitted from the polarizer 115 and the fast axis of the liquid crystal molecules At an angle ⁇ , the liquid crystal convex lens 222 has an equivalent refractive index neff.
  • the refractive index of the liquid crystal convex lens 222 is the first extraordinary refractive index nei for the polarized light.
  • the equivalent refractive index neff of the liquid crystal convex lens 222 is between the first ordinary light refractive index and the first extraordinary light refractive index nei. Since the equivalent refractive index neff of the liquid crystal convex lens 222 is larger than the second ordinary light refractive index 11 of the liquid crystal concave lens 224.
  • the polarized light enters the light-diffusing medium from the optically dense medium, so the incident polarized light is refracted at the junction of the liquid crystal convex lens 222 and the liquid crystal concave lens 224 and concentrated to the human eye, The observer on the side of the light-emitting surface 232 will see the 3D image.
  • the driving voltage between the two elongated control electrodes applied to the electrode layer 223 can be adjusted such that the angle between the polarization direction of the incident polarized light and the fast axis of the liquid crystal molecules and the liquid crystal convex lens 222
  • the equivalent refractive index neff is also adjusted accordingly.
  • the equivalent refractive index neff of the liquid crystal convex lens 222 and the second ordinary refractive index n of the liquid crystal concave lens 224 The refractive index difference of 2 is also changed so that the incident polarized light is slightly different in the refractive directions of the liquid crystal convex lens 222 and the liquid crystal concave lens 224.
  • the liquid crystal convex lens 222 adopts a positive liquid crystal, that is, when the two elongated control electrodes of the electrode layer 223 generate an arrow B as shown in FIG. 5 (that is, an electric field in the direction indicated by the arrow in FIG. 1). At this time, the liquid crystal alignment direction of the liquid crystal convex lens 222 is parallel to the electric field direction. In another embodiment, the liquid crystal convex lens 222 may also employ a negative liquid crystal. In this embodiment, the elongated electrodes are arranged along the A direction and extend along the B direction.
  • FIG. 7 is a schematic diagram showing the optical path of the polarized light when the cross section of the liquid crystal lens assembly 320 of the third embodiment and the liquid crystal molecules in the convex lens 222 are not changed.
  • 8 is a schematic view showing the optical path of the incident polarized light after the cross section of the liquid crystal lens assembly 320 of the third embodiment and the alignment of the liquid crystal molecules in the convex lens 222.
  • the components indicated in FIG. 7 and FIG. 8 have the same reference numerals as those in FIGS. 5 and 6, and their functions are the same, and are not described herein.
  • the second liquid crystal layer of the birefringent liquid crystal concave lens 224 of the liquid crystal lens assembly 320 includes a plurality of liquid crystal molecules whose alignment direction is parallel to the transparent substrate 221b, that is, the optical axis direction of the liquid crystal molecules is parallel to the polarization direction of the incident light. For the polarized light, it has a second extraordinary refractive index n e2 .
  • the difference between the liquid crystal lens assembly 320 and the liquid crystal lens assembly 220 is that the refractive index of the liquid crystal concave lens 224 of the liquid crystal lens assembly 320 is fixed to the second extraordinary refractive index n e2 .
  • the equivalent refractive index neff of the liquid crystal convex lens 222 is adjusted to be between the first ordinary refractive index and the first The extraordinary refractive index nei can be between. That is, when the equivalent refractive index neff of the liquid crystal convex lens 222 matches the second extraordinary refractive index n e2 of the liquid crystal concave lens 224, there is no refractive index difference between the liquid crystal convex lens 222 and the liquid crystal concave lens 224, so the light will follow a straight line.
  • the polarized light enters the light-diffusing medium from the optically dense medium, and the incident polarized light is incident on the liquid crystal convex lens 222 and the liquid crystal.
  • the junction of the concave lens 224 is refracted and concentrated to the human eye, so that the observer on the side of the light-emitting surface 232 sees the 3D image.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Description

2D/3D切换的液晶透镜组件及显示装置 技术领域
本发明涉及一种显示装置, 尤指一种 2D/3D切换的液晶透镜组件及其显 示装置。 龍
人类是透过双眼所看到的展望而感知到真实世界的影像。 而人类的大脑 会进一步根据双眼所看到两个不同角度的展望之间的空间距离差异而形成所 谓的 3 维 (3-dimension, 3D)影像。 这种空间距离差异被称为视差 (parallax)。 所谓的 3D 显示装置就是模拟人类双眼不同角度的视野, 让左、 右眼分别接 收到有视差的两个 2D影像, 使人脑获取左、 右眼看到的不同 2D影像后, 能 感知为 3D影像。
目前的 3D 显示装置主要分为两类, 分别是自动立体显示装置 (Auto-stereoscopic display)以及 |≡自动立体显示装置 (Stereoscopic display)。 自 动立体显示装置的用户不用戴上特殊结构的眼镜就可以看出 3D立体影像。 而另一种非自动立体显示装置则需要使用者戴上特制的眼镜, 才能看到 3D 立体影像。 常见的自动立体显示装置有两种: 狭缝光栅式自动立体显示装置 和微透镜阵列式立体显示装置。 狭缝光栅式自动立体显示装置的原理是依靠 不透光的视差屏障 (parallax barrier)让使用者的左右眼看到具有视差之影像, 而此视差就会在大脑中形成立体感。 至于微透镜阵列式立体显示装置是使用 透镜组件炸为一光栅片 (Lenticular Lens)并贴附在液晶面板上, 该透镜组件是 由单折射率微透镜阵列和双折射率微透镜数组契合组成。 该双折射率微透镜 阵列的材料是液晶。 利用施加于¾折射率微透镜的电场变化, 使得液晶分子 的排列由水平方向转变成垂直方向, 而其折射率则由寻常光折射率 n。变成非 寻常光折射率 ne。如此一 ·来,入射至该透镜组件的光线因双折射 (Birefringence) 率微透镜的折射率变动而有不同的出光方向。 藉由这个原理, 观察者可以看 到两种不同折射角度的光线, 所以可以达到 2D/3D影像的切换。 然而, 传统 透镜组件是将两层控制电极分别放在该双折射率微透镜的上、 下两端, 并利 用该两层控制电极的驱动电压差所产生的电场将液晶分子由水平方向调整成 垂直方向, 一般来说该驱动电压差达到 5V 以上。 因此若能制作一种用于 2D/3D影像切换的低驱动电压透镜组件, 将更符合绿色环保的需求。 发明内容
因此本发明的目的是提供一种 2D/3D 切换的液晶透镜组件及其显示装 置, 该液晶透镜组件是利用位于一电极层上的控制电极所产生的电场, 来调 整双折射率凸透镜的折射率, 以解决背景技术的问题。
本发明提供一种 2D/3D显示影像切换的显示装置, 包括一背光模块、 一 液晶面板和一液晶透镜组件, 所述背光模块用于产生光线, 所述液晶面板用 来依据所述背光模块产生的光线显示影像, 所述液晶面板透射出的光线为偏 振光。 所述液晶透镜组件自出光面至入光面依序包括多个相邻排列的长条状 凹透镜以及多个相邻排列的长条状液晶凸透镜。 所述多个相邻排列的长条状 液晶凸透镜, 其一一对应所述多个凹透镜, 所述多个长条状液晶凸透镜包括 一透明基板, 一位于该透明基板上的电极层, 及一第一液晶层, 该第一液晶 层夹于该凹透镜与透明基板之间。 该电极层包含多个控制电极, 所述多个控 制电极用于控制所述液晶凸透镜的液晶分子的排列方向以调整其等效折射 率, 使得所述液晶凸透镜的等效折射率等于或者大于所述凹透镜的第一折射 率。
本发明另提供一种液晶透镜组件, 其自出光面至入光面依序包括多个相 邻排列的长条状凹透镜以及多个相邻排列的长条状液晶凸透镜。所述多个相 邻排列的长条状液晶凸透镜, 其一一对应所述多个凹透镜, 所述多个长条状 液晶凸透镜包括一透明基板, 一位于该透明基板上的电极层, 及一第一液晶 层, 该第一液晶层夹于该凹透镜与透明基板之间。该电极层包含多个控制电 极, 所述多个控制电极用于控制所述液晶凸透镜的液晶分子的排列方向以调 整其等效折射率, 使得所述液晶凸透镜的等效折射率等于或者大于所述凹透 镜的第一折射率。
根据本发明的实施例, 所述凹透镜的折射率等于所述第一液晶层的液晶 分子的寻常光折射率。
根据本发明的实施例, 所述控制电极为长条状, 其延伸方向与所述长条状 液晶凸透镜延伸方向一致。 该液晶透镜组件配合线性偏振光使用, 且所述多 个长条状液晶凸透镜沿一第一方向延伸, 并沿一第二方向排列, 该第一方向 垂直于该第二方向, 所述偏振光的偏振方向垂直于第一方向。 所述液晶凸透 镜进一步包括一设置于所述透明基板的靠近所述第一液晶层的表面的配向 膜, 该配向膜使得所述第一液晶层的液晶分子在未被施加电场时, 光轴平行 于所述第一方向。 所述第一液晶层的液晶分子为光轴方向会沿平行于电场方 向排列的正性液晶, 所述第一液晶层的液晶分子在被施加电场时, 光轴与第 一方向成一定角度。 根据本发明的实施例, 所述第一液晶层的液晶分子的非寻常光折射率大 于 1.2倍的寻常光折射率。 根据本发明的实施例, 所述凹透镜是一双折射液晶凹透镜, 其包括一第 二液晶层, 该液晶层包括多个排列方向垂直于所述透明基板的液晶分子。 根据本发明的实施例, 所述凹透镜是一双折射液晶凹透镜, 其包括一第 二液晶层, 该液晶层包括多个排列方向平行于所述透明基板的液晶分子。 相较于现有技术, 本发明的显示装置可透过驱动电压控制液晶凸透镜的 液晶分子转动角度, 可变化液晶凸透镜的等效折射率以动态调整该等效折射 率与凹透镜的折射率的折射率差。 其目的在于补偿人眼观察显示装置距离不 同时, 光折射角度的需求。 此外, 让液晶凸透镜的非寻常光折射率远大于寻 常光折射率, 则液晶分子转动少许角度时, 入射偏振光便得到较大的折射率 变化达到 3D/2D切换的目的。 此一切换少许角度转动也代表需要较小的电场 便能达成, 间接可节省电力的消耗。
为让本发明的上述内容能更明显易懂, 下文特举较佳实施例, 并配合所 附图式, 作详细说明如下:
附图说明
图 1是本发明的显示三维影像的显示设备的示意图。
图 2是液晶分子的排列方向和入射偏振光偏振方向的示意图。
图 3绘示图 1的第一实施例的液晶透镜组件的剖面及凸透镜内的液晶分子 未改变排列方向时偏振光的光路示意图。
图 4绘示图 1的第一实施例的液晶透镜组件的剖面及凸透镜内的液晶分子 改变排列方向后的入射偏振光的光路示意图。 图 5 绘示第二实施例的液晶透镜组件的剖面及凸透镜内的液晶分子未改 变排列方向时偏振光的光路示意图。
图 6 绘示第二实施例的液晶透镜组件的剖面及凸透镜内的液晶分子改变 排列方向后的入射偏振光的光路示意图。
图 7 绘示第三实施例的液晶透镜组件的剖面及凸透镜内的液晶分子未改 变排列方向时偏振光的光路示意图。
图 8 绘示第三实施例的液晶透镜组件的剖面及凸透镜内的液晶分子改变 排列方向后的入射偏振光的光路示意图。 具体实施方式 以下各实施例的说明是参考附加的图式, 用以例示本发明可用以实施之 特定实施例。本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、 「右」、 「顶」、 「底」、 「水平」、 「垂直」 等, 仅是参考附加图式的方向。 因此, 使用的方向用语是用以说明及理解本发明, 而非用以限制本发明。 请参阅图 1, 图 1是本发明的显示三维影像的显示设备 100的示意图。 使用者观看显示设备 100时, 可以切换观看 2D或 3D影像。显示设备 100包 含背光模块 102、 液晶面板 110、 位于液晶面板 110两侧的偏光片 (polarizer film)114、 115以及液晶透镜组件 120。 背光模块 102为该液晶面板提供均匀 的面光源。 液晶面板 110在一对透明玻璃基板之间提供了液晶材料, 并在玻 璃基板上布设透明氧化铟锡 (Indium Tin Oxide, ΙΤθΜ乍为导电电极。液晶面板 110包含由多个像素 112组成的像素阵列,当背光模块 102产生的背光照射在 液晶显示面板 110上, 通过驱动像素 112可以调整对应每一像素的液晶分子 的转动方向以便调整背光射出的强度而显示不同灰阶。 液晶面板 110位于偏 光片 114、 115之间, 且偏光片 114、 115彼此的偏光轴方向相差 90°。 偏光片 114、 115会依据其偏光轴的角度使得透射的光线仅具有对应偏光轴方向。 本 发明以从偏光片 115射出的光线偏振方向平行于 B方向为例进行说明, 但不 限于此。
请参阅图 1至图 3,图 2是液晶分子的排列方向和入射偏振光偏振方向的 示意图。 图 3绘示图 1的第一实施例的液晶透镜组件 120从图 1箭头 A所示 方向的剖面图及凸透镜 122内的液晶分子未改变排列方向时偏振光的光路示 意图。 液晶透镜组件 120自出光面 132到入光面 130依序包括透明玻璃基板 121a, 数个彼此平行并朝第一方向 A延伸的长条状凹透镜 124以及数个彼此 平行并朝第一方向 A延伸且一一对应嵌合凹透镜 124 的长条状液晶凸透镜 122 液晶凸透镜 i22包括一透明基板 121b、一位于透明玻璃基板 121b上的 电极层 123及一第一液晶层, 该第一液晶层夹于凹透镜 124与透明玻璃基板 121b之间。 每一长条状凹透镜 124和每一长条状液晶凸透镜 i22是朝第二方 向 B排列, 第一方向 A与第二方向 B是彼此垂直的。 在另一实施例中 液晶 透镜组件 120并不需要透明玻璃基板 121a, 只需要在凹透镜 124的出光侧涂 布保护膜即可。
电极层 123包含多个平行细长控制电极, 两细长控制电极之间留有一间 隙。电极层 123的上方会设置一配向膜 (未图示:),该配向膜用来使液晶分子在 未被施加电场时沿着特定方向排列。 液晶凸透镜 122是一个取折射凸透镜。 液晶凸透镜 m的第一液晶层具有第一寻常光折射率 n。和第一非寻常光折射 率 ne。 当入射凸透镜 122的偏振光的偏振方向垂直于液晶分子的光轴方向, 此时对入射的偏振光而言, 凸透镜 122具有第一寻常光折射率 n。。 当入射凸 透镜 122的偏振光的偏振方向平行于液晶分子的光轴方向, 此时对入射的偏 振光而言, 凸透镜 122具有第一非寻常光折射率 ne。 在本实施例中, 凹透镜 124的折射率 n等于该第一寻常光折射率 n。。 如图 3所示, 当电极层 123的 两细长控制电极之间未被施予驱动电压时, 位于该两细长控制电极之间的液 晶分子的排列方向会因配向膜的作用而垂直于纸面方向。 由偏光片 115经由 入光面 130射入液晶凸透镜 122的偏振光的偏振方向与液晶分子的光轴垂直。 由于凹透镜 124的折射率 n等于该液晶凸透镜 122的第一寻常光折射率 n。, 所以对于射入液晶凸透镜 122的偏振光而言, 液晶凸透镜 122和凹透镜 124 之间无折射率差, 因此光线会沿直线传播, 故在出光面 132—侧的观察者会 看到 2D影像。
请参阅图 4,图 4绘示图 1的第一实施例的液晶透镜组件 120的剖面及凸 透镜 122内的液晶分子改变排列方向后的入射偏振光的光路示意图。 当电极 层 123的两细长控制电极之间被施予驱动电压时, 位于该两细长控制电极之 间的液晶分子发生旋转。 从偏光片 115射出的的偏振光的偏振方向与液晶分 子的快轴 (即与光轴垂直的方向) 呈一角度 Θ, 同时液晶凸透镜 122具有等 效折射率 neff。 当驱动电压增加时, 该角度 Θ也会越大, 直到角度 Θ等于 90 度时, 对于该偏振光, 该液晶凸透镜 122的折射率为该第一非寻常光折射率 ne。 实质上, 角度 Θ在 0°~90°的等效折射率 neff与 90°~180°的等效折射率 neff 是对应的, 举例来说, 角度 Θ在 45°和 135°的等效折射率 neff是相同的。 也就 是说, 第一寻常光折射率 n。 (角度 0=0°:)与第一非寻常光折射率 ne (角度 θ=90 的折射率差是最大的。 所以液晶凸透镜 122的等效折射率 neff是介于第一寻 常光折射率 n。和第一非寻常光折射率 ne之间。因为液晶凸透镜 122的等效折 射率 neff大于凹透镜 124的折射率 n(=n。),因此该偏振光由光密介质进入光疏 介质, 所以射入的偏振光会在液晶凸透镜 122和凹透镜 124的接面处发生折 射并集中到人眼, 故在出光面 132—侧的观察者会看到 3D影像。
另, 本实施例可以调整施加于电极层 123 的两细长控制电极之间的驱动 电压大小, 使得射入的偏振光的偏振方向与液晶分子的快轴之间的角度 Θ以 及液晶凸透镜 122的等效折射率 neff亦随之调整。如此一来, 液晶凸透镜 122 的等效折射率 neff与凹透镜 124的折射率 n的折射率差也会改变, 使得射入 的偏振光在液晶凸透镜 122和凹透镜 124的折射方向也略有差异。也就是说, 当观察者与出光面 132之间的距离分别是 D1与 D2 , 利用调整驱动电压的方 式改变液晶凸透镜 122的等效折射率 neff后, 仍可观看到清晰且栩栩如生的 3D影像。 除此之外, 在选择凸透镜 122的液晶材料时, 可选用第一非寻常光 折射率 ne远大于第一寻常光折射率 n。的液晶, 例如 ne≥1.2xn。。 这时, 只要 极小的驱动电压就可以产生一定的电场让液晶分子转动特定角度, 而使入射 的偏振光经过折射率变化较大的两层透镜以让显示设备 100达到 2D /3D切换 的目的, 因此可以节省电力的消耗。
在图 3、 图 4中, 液晶凸透镜 122采用正性液晶, 也就是说, 当电极层 123的两细长控制电极产生如图 3的箭头 B (亦即图 1箭头 所示方向的电场 时, 液晶凸透镜 122的液晶排列方向是平行于电场方向。 在另一实施例中, 液晶凸透镜 122亦可采用负性液晶。 在该实施例中, 细长电极的沿着 A方向 排列, 沿着 B方向延伸。
请参阅图 5, 图 5绘示第二实施例的液晶透镜组件 220的剖面及凸透镜 222内的液晶分子未改变排列方向时偏振光的光路示意图。液晶透镜组件 220 自出光面 230到入光面 232依序包括透明玻璃基板 221a、 数个彼此平行并朝 第一方向 A延伸延伸的长条状液晶凹透镜 224以及数个彼此平行并朝第一方 向 A延伸且一一对应嵌合液晶凹透镜 224的长条状液晶凸透镜 222。 液晶凸 透镜 222包括一透明基板 221b、位于透明玻璃基板 221b上的电极层 223及 一第一液晶层,该第一液晶层夹于液晶凹透镜 224与透明玻璃基板 221b之间。 每一长条状液晶凹透镜 224和每一长条状液晶凸透镜 222是朝第二方向 B排 列, 第一方向 A与第二方向 B是彼此垂直的。 与前述实施例的液晶透镜组件 220差异之处在于, 液晶凹透镜 224具有一第二液晶层。当该第二液晶层的 液晶分子的光轴方向平行于入射光的传播方向 (亦即垂直于透明基板 221b), 其具有第二寻常光折射率 n。2。液晶凸透镜 222是一个双折射凸透镜。双折射 液晶凸透镜 222具有第一寻常光折射率 η。ι和第一非寻常光折射率 nei。 液晶 凹透镜 224的第二寻常光折射率 n。2等于该第一寻常光折射率 n()1。 如图 5所 示, 当电极层 223的两细长控制电极之间未被施予驱动电压时, 位于该两细 长控制电极之间的液晶分子的排列方向会垂直于纸面方向。此时由偏光片 115 经由入光面 230射入的偏振光的偏振方向与液晶分子的光轴垂直。 由于液晶 凸透镜 222的第一寻常光折射率 η。ι等于液晶凹透镜 224的第二寻常光折射率 n。2, 所以对射入液晶凸透镜 222的偏振光而言, 液晶凸透镜 222和液晶凹透 镜 224之间无折射率差, 因此光线会沿直线传播, 故在出光面 232—侧的观 察者会看到 2D影像。
请参阅图 6, 图 6绘示第二实施例的液晶透镜组件 220的剖面及凸透镜 222内的液晶分子改变排列方向后的入射偏振光的光路示意图。当电极层 223 的两细长控制电极之间被施予驱动电压时, 位于该两细长控制电极之间的液 晶分子发生旋转。 从偏光片 115射出的偏振光的偏振方向与液晶分子的快轴 呈一角度 θ, 同时液晶凸透镜 222具有等效折射率 neff。 当驱动电压增加时, 该角度 Θ也会越大, 直到角度 Θ等于 90度时, 对于该偏振光, 该液晶凸透镜 222的折射率为该第一非寻常光折射率 nei。液晶凸透镜 222的等效折射率 neff 是介于第一寻常光折射率 和第一非寻常光折射率 nei之间。 因为液晶凸透 镜 222的等效折射率 neff大于液晶凹透镜 224的第二寻常光折射率 11。2(=11。1:), 因此该偏振光由光密介质进入光疏介质, 所以射入的偏振光会在液晶凸透镜 222和液晶凹透镜 224的接面处发生折射并集中到人眼, 故在出光面 232— 侧的观察者会看到 3D影像。
另, 本实施例可以调整施加于电极层 223 的两细长控制电极之间的驱动 电压大小, 使得射入的偏振光的偏振方向与液晶分子的快轴之间的角度 Θ以 及液晶凸透镜 222的等效折射率 neff亦随之调整。如此一来, 液晶凸透镜 222 的等效折射率 neff与液晶凹透镜 224的第二寻常光折射率 n。2的折射率差也会 改变, 使得射入的偏振光在液晶凸透镜 222和液晶凹透镜 224的折射方向也 略有差异。 也就是说, 当观察者与出光面 232之间的距离分别是 D1与 D2 , 利用调整驱动电压的方式改变液晶凸透镜 222的等效折射率 neff后, 仍可观 看到清晰且栩栩如生的 3D影像。 除此之外, 在选择凸透镜 222的液晶材料 时, 可选用第一非寻常光折射率 nel远大于第一寻常光折射率 的液晶, 例 如 nei≥1.2xn。i。 这时, 只要极小的驱动电压就可以产生一定的电场让液晶分 子转动特定角度, 可是入射的偏振光就经过折射率变化较大的两层透镜以让 显示设备 100达到 3D/2D切换的目的, 因此可以节省电力的消耗。
在图 5、 图 6中, 液晶凸透镜 222采用正性液晶, 也就是说, 当电极层 223的两细长控制电极产生如图 5的箭头 B (亦即图 1箭头 所示方向的电场 时, 液晶凸透镜 222的液晶排列方向是平行于电场方向。 在另一实施例中, 液晶凸透镜 222亦可采用负性液晶, 在此实施例中, 细长电极的沿着 A方向 排列, 沿着 B方向延伸。
请参阅图 7和图 8,图 7绘示第三实施例的液晶透镜组件 320的剖面及凸 透镜 222内的液晶分子未改变排列方向时偏振光的光路示意图。 图 8绘示第 三实施例的液晶透镜组件 320的剖面及凸透镜 222内的液晶分子改变排列方 向后的入射偏振光的光路示意图。 图 7和图 8所标示的组件与图 5和图 6具 有相同标号者, 其功能相同, 在此不另赘述。 液晶透镜组件 320的双折射液 晶凹透镜 224的第二液晶层包括多个排列方向平行于透明基板 221b的液晶分 子, 也就是液晶分子的光轴方向平行于入射光的偏振方向。 对于该偏振光而 言, 其具有第二非寻常光折射率 ne2。 液晶透镜组件 320与液晶透镜组件 220 的差异在于, 液晶透镜组件 320的液晶凹透镜 224的折射率固定为该第二非 寻常光折射率 ne2。 显示立体影像时, 只要选择液晶凸透镜 222的第一寻常光 折射率 等于第二非寻常光折射率 ne2, 之后调整液晶凸透镜 222的等效折 射率 neff介于第一寻常光折射率 和第一非寻常光折射率 nei之间即可。 也 就是说, 当液晶凸透镜 222的等效折射率 neff匹配于液晶凹透镜 224的第二 非寻常光折射率 ne2, 则液晶凸透镜 222和液晶凹透镜 224之间无折射率差, 因此光线会沿直线传播, 故在出光面 232—侧的观察者会看到 2D影像。 当 液晶凸透镜 222的等效折射率 neff大于液晶凹透镜 224的第二非寻常光折射 率 ne2时, 该偏振光由光密介质进入光疏介质,射入的偏振光会在液晶凸透镜 222和液晶凹透镜 224的接面处发生折射并集中到人眼, 故在出光面 232— 侧的观察者会看到 3D影像。 综上所述, 虽然本发明已以较佳实施例揭露如上, 但该较佳实施例并非 用以限制本发明, 该领域的普通技术人员, 在不脱离本发明的精神和范围内, 均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims

权 利 要 求
1.一种 2D/3D显示影像切换的显示装置, 依序包括一背光模块、 一液晶面板 和一液晶透镜组件, 所述背光模块用于产生光线, 所述液晶面板用来依据所 述背光模块产生的光线显示影像, 所述液晶面板透射出的光线为偏振光, 该 液晶透镜组件其自出光面至入光面依序包括:
多个相邻排列的长条状双折射液晶凹透镜;
多个相邻排列的长条状液晶凸透镜, 其一一对应所述多个凹透镜, 所述多 个长条状液晶凸透镜包括一透明基板, 一位于该透明基板上的电极层, 及一第一液晶层, 该第一液晶层夹于该凹透镜与透明基板之间; 其特征在于:
该电极层包含多个控制电极,所述多个控制电极用于控制所述液晶凸透镜 的液晶分子的排列方向以调整其等效折射率,使得所述液晶凸透镜的等 效折射率等于或者大于所述凹透镜的第一折射率,
其中第一液晶层的液晶分子的非寻常光折射率大于 1.2 倍的寻常光折射 率。
2. 一种 2D/3D 显示影像切换的显示装置, 依序包括一背光模块、 一液晶面 板和一液晶透镜组件, 所述背光模块用于产生光线, 所述液晶面板用来依据 所述背光模块产生的光线显示影像, 所述液晶面板透射出的光线为偏振光, 该液晶透镜组件其自出光面至入光面依序包括:
多个相邻排列的长条状凹透镜;
多个相邻排列的长条状液晶凸透镜, 其一一对应所述多个凹透镜, 所述多 个长条状液晶凸透镜包括一透明基板, 一位于该透明基板上的电极层, 及一第一液晶层, 该第一液晶层夹于该凹透镜与透明基板之间; 其特征在于:
该电极层包含多个控制电极,所述多个控制电极用于控制所述液晶凸透镜 的液晶分子的排列方向以调整其等效折射率,使得所述液晶凸透镜的等 效折射率等于或者大于所述凹透镜的第一折射率。
3. 根据权利要求 2所述的显示装置, 其特征在于: 所述凹透镜的折射率等于 所述第一液晶层的液晶分子的寻常光折射率。
4. 根据权利要求 2所述的显示装置, 其特征在于: 所述控制电极为长条状, 其延伸方向与所述长条状液晶凸透镜延伸方向一致。
5. 根据权利要求 4所述的显示装置, 其特征在于: 该液晶透镜组件配合线性 偏振光使用, 且所述多个长条状液晶凸透镜沿一第一方向延伸, 并沿一第 二方向排列, 该第一方向垂直于该第二方向, 所述偏振光的偏振方向垂直 于第一方向。
6. 根据权利要求 5所述的显示装置, 其特征在于: 所述液晶凸透镜进一步包 括一设置于所述透明基板的靠近所述第一液晶层的表面的配向膜,该配向 膜使得所述第一液晶层的液晶分子在未被施加电场时,光轴平行于所述第 一方向。
7. 根据权利要求 6所述的显示装置, 其特征在于: 所述第一液晶层的液晶分 子为光轴方向会沿平行于电场方向排列的正性液晶,所述第一液晶层的液 晶分子在被施加电场时, 光轴与第一方向成一定角度。
8. 根据权利要求 2所述的显示装置, 其特征在于: 所述凹透镜是一双折射液 晶凹透镜, 其包括一第二液晶层, 该第二液晶层包括多个排列方向垂直于 所述透明基板的液晶分子。
9. 根据权利要求 2所述的显示装置, 其特征在于: 所述凹透镜是一双折射液 晶凹透镜, 其包括一第二液晶层, 该第二液晶层包括多个排列方向平行于 所述透明基板的液晶分子。
10.一种液晶透镜组件, 其自出光面至入光面依序包括:
多个相邻排列的长条状凹透镜;
多个相邻排列的长条状液晶凸透镜, 其一一对应所述多个凹透镜, 所述多 个长条状液晶凸透镜包括一透明基板, 一位于该透明基板上的电极层, 及一第一液晶层, 该第一液晶层夹于该凹透镜与该透明基板之间; 其特征在于:
该电极层包含多个控制电极, 所述多个控制电极用于控制所述液晶凸透镜 的液晶分子的排列方向以调整其等效折射率, 使得所述液晶凸透镜的 等效折射率等于或者大于所述凹透镜的第一折射率。
11.根据权利要求 10所述的液晶透镜组件, 其特征在于: 所述凹透镜的折射 率等于所述第一液晶层的液晶分子的寻常光折射率。
12.根据权利要求 10所述的液晶透镜组件, 其特征在于: 所述控制电极为长 条状, 其延伸方向与所述长条状液晶凸透镜延伸方向一致。
13.根据权利要求 12所述的液晶透镜组件, 其特征在于: 该液晶透镜组件配 合线性偏振光使用, 且所述多个长条状液晶凸透镜沿一第一方向延伸, 并 沿一第二方向排列, 该第一方向垂直于该第二方向, 所述偏振光的偏振方 向垂直于第一方向。 根据权利要求 13所述的液晶透镜组件, 其特征在于: 所述液晶凸透镜进 一步包括一设置于所述透明基板的靠近所述第一液晶层的表面的配向膜, 该配向膜使得所述第一液晶层的液晶分子在未被施加电场时,光轴平行于 所述第一方向。
根据权利要求 14所述的液晶透镜组件, 其特征在于: 所述第一液晶层的 液晶分子为光轴方向会沿平行于电场方向排列的正性液晶,所述第一液晶 层的液晶分子在被施加电场时, 光轴与第一方向成一定角度。
根据权利要求 10所述的液晶透镜组件, 其特征在于: 所述第一液晶层的 液晶分子的非寻常光折射率大于 1.2倍的寻常光折射率。
根据权利要求 10所述的液晶透镜组件, 其特征在于: 所述凹透镜是一双 折射液晶凹透镜, 其包括一第二液晶层, 该第二液晶层包括多个排列方向 垂直于所述透明基板的液晶分子。
根据权利要求 10所述的液晶透镜组件, 其特征在于: 所述凹透镜是一双 折射液晶凹透镜, 其包括一第二液晶层, 该第二液晶层包括多个排列方向 平行于所述透明基板的液晶分子。
PCT/CN2010/078755 2010-10-13 2010-11-15 2d/3d切换的液晶透镜组件及显示装置 WO2012048485A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/996,998 US8582043B2 (en) 2010-10-13 2010-11-15 2D/3D switchable LC lens unit for use in a display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010512421.4 2010-10-13
CN2010105124214A CN101968595B (zh) 2010-10-13 2010-10-13 2d/3d切换的液晶透镜组件及显示装置

Publications (1)

Publication Number Publication Date
WO2012048485A1 true WO2012048485A1 (zh) 2012-04-19

Family

ID=43547773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078755 WO2012048485A1 (zh) 2010-10-13 2010-11-15 2d/3d切换的液晶透镜组件及显示装置

Country Status (2)

Country Link
CN (1) CN101968595B (zh)
WO (1) WO2012048485A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103454806A (zh) * 2012-06-04 2013-12-18 群康科技(深圳)有限公司 3d显示装置

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102109706A (zh) * 2011-02-11 2011-06-29 深圳超多维光电子有限公司 一种立体显示器及其光栅
TWI435119B (zh) * 2011-03-03 2014-04-21 Futis Internat Ltd 微結構光相位膜及柱狀透鏡
TWI417583B (zh) * 2011-03-03 2013-12-01 Futis Internat Ltd 微結構光相位膜及柱狀透鏡
CN102692744A (zh) * 2011-05-05 2012-09-26 京东方科技集团股份有限公司 一种3d眼镜
CN102226858B (zh) * 2011-06-16 2013-02-06 昆山龙腾光电有限公司 立体显示设备
CN102279500A (zh) * 2011-08-26 2011-12-14 深圳市华星光电技术有限公司 液晶透镜及3d显示装置
CN102331626B (zh) * 2011-09-23 2016-08-17 深圳超多维光电子有限公司 立体显示装置
CN102654654A (zh) 2011-11-14 2012-09-05 京东方科技集团股份有限公司 一种3d显示器件及其制造方法
JP5629717B2 (ja) * 2012-03-28 2014-11-26 株式会社東芝 液晶レンズ装置及び画像表示装置
CN102707539B (zh) * 2012-06-05 2015-09-09 京东方科技集团股份有限公司 一种2d-3d可切换立体显示装置及液晶透镜
CN103513465B (zh) * 2012-06-20 2016-04-27 上海天马微电子有限公司 2d/3d可切换的液晶棱镜及显示装置
JP5921376B2 (ja) * 2012-08-01 2016-05-24 株式会社ジャパンディスプレイ 立体表示装置
CN102830495A (zh) * 2012-08-17 2012-12-19 京东方科技集团股份有限公司 一种3d显示装置
TWI479199B (zh) * 2013-01-21 2015-04-01 Au Optronics Corp 可切換二維顯示模式與三維顯示模式之顯示裝置及其液晶透鏡
US9696583B2 (en) * 2013-12-27 2017-07-04 Lg Display Co., Ltd. Switchable type display device and method of driving the same
TWI502222B (zh) * 2014-02-18 2015-10-01 Au Optronics Corp 可切換透鏡單元及其製造方法及包含其的可切換式平面立體顯示器
KR102207192B1 (ko) * 2014-09-30 2021-01-25 엘지디스플레이 주식회사 편광 제어 필름 및 이를 이용한 입체 표시 장치
CN107797356B (zh) * 2015-05-28 2020-10-27 江苏双星彩塑新材料股份有限公司 一种具有3d显示的液晶透镜组件的显示器
CN104977772B (zh) * 2015-07-13 2017-08-01 张家港康得新光电材料有限公司 表面起浮型液晶柱状透镜阵列装置、制造方法及显示装置
CN106959528B (zh) * 2016-01-08 2023-09-19 京东方科技集团股份有限公司 一种显示装置
CN105511180B (zh) * 2016-03-04 2019-10-01 京东方科技集团股份有限公司 液晶面板、显示装置以及显示方法
CN105589228B (zh) 2016-03-08 2018-03-13 武汉华星光电技术有限公司 一种视角调节器及液晶显示器
CN106444208A (zh) * 2016-08-31 2017-02-22 张家港康得新光电材料有限公司 显示装置以及其2d显示模式的实现方法
CN106291943B (zh) * 2016-10-24 2017-10-27 京东方科技集团股份有限公司 一种显示面板及显示装置
CN106468842A (zh) * 2016-12-27 2017-03-01 宁波视睿迪光电有限公司 双折射透镜膜及其制造方法
EP3385779A1 (en) * 2017-04-05 2018-10-10 Koninklijke Philips N.V. Multi-view display device and method
CN107238981B (zh) * 2017-06-30 2020-05-26 张家港康得新光电材料有限公司 2d/3d可切换的显示装置
CN109307956A (zh) * 2017-07-28 2019-02-05 江苏集萃智能液晶科技有限公司 一种光学各向异性膜的制备方法
US11126060B2 (en) 2017-10-02 2021-09-21 Liqxtal Technology Inc. Tunable light projector
CN108490702B (zh) * 2018-03-27 2021-01-22 京东方科技集团股份有限公司 一种显示面板及其驱动方法、显示装置
TWI662320B (zh) 2018-06-08 2019-06-11 友達光電股份有限公司 具有可調整光強度方向之設計的顯示裝置
TWI778262B (zh) * 2019-02-13 2022-09-21 源奇科技股份有限公司 可調式光投射器
TWI699592B (zh) * 2019-04-17 2020-07-21 友達光電股份有限公司 顯示裝置
GB2585188B (en) * 2019-06-26 2023-02-01 Flexenable Ltd Stacked liquid crystal cell device electrically operable to generate refractive index pattern
CN111427193B (zh) * 2020-04-14 2021-09-24 深圳市华星光电半导体显示技术有限公司 液晶显示装置
CN113741069B (zh) * 2020-05-27 2022-12-27 华为技术有限公司 视角可控的模组、控制视角的方法及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007025263A (ja) * 2005-07-15 2007-02-01 Casio Comput Co Ltd 液晶表示装置
KR20070082606A (ko) * 2006-02-17 2007-08-22 삼성전자주식회사 액정표시장치
CN101126840A (zh) * 2007-09-29 2008-02-20 北京超多维科技有限公司 2d-3d可切换立体显示装置
CN101246262A (zh) * 2008-03-31 2008-08-20 北京超多维科技有限公司 一种2d/3d可切换立体显示装置
CN201229434Y (zh) * 2008-07-24 2009-04-29 北京超多维科技有限公司 2d/3d可切换显示设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060078405A (ko) * 2004-12-31 2006-07-05 삼성전자주식회사 마이크로 렌즈 기판 어레이, 그를 포함하는 입체 영상디스플레이 장치 및 그의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007025263A (ja) * 2005-07-15 2007-02-01 Casio Comput Co Ltd 液晶表示装置
KR20070082606A (ko) * 2006-02-17 2007-08-22 삼성전자주식회사 액정표시장치
CN101126840A (zh) * 2007-09-29 2008-02-20 北京超多维科技有限公司 2d-3d可切换立体显示装置
CN101246262A (zh) * 2008-03-31 2008-08-20 北京超多维科技有限公司 一种2d/3d可切换立体显示装置
CN201229434Y (zh) * 2008-07-24 2009-04-29 北京超多维科技有限公司 2d/3d可切换显示设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103454806A (zh) * 2012-06-04 2013-12-18 群康科技(深圳)有限公司 3d显示装置
TWI472804B (zh) * 2012-06-04 2015-02-11 Innolux Corp 3d顯示裝置
CN103454806B (zh) * 2012-06-04 2016-12-28 群康科技(深圳)有限公司 3d显示装置

Also Published As

Publication number Publication date
CN101968595A (zh) 2011-02-09
CN101968595B (zh) 2013-12-25

Similar Documents

Publication Publication Date Title
WO2012048485A1 (zh) 2d/3d切换的液晶透镜组件及显示装置
US8582043B2 (en) 2D/3D switchable LC lens unit for use in a display device
US9514692B2 (en) Display device and switching method of its display modes
KR101876558B1 (ko) 무안경 방식의 2차원/3차원 영상 표시장치
US8823889B2 (en) Stereo display and image display method thereof
KR101729682B1 (ko) 광학 유닛 및 이를 포함하는 표시 장치
US9772500B2 (en) Double-layered liquid crystal lens and 3D display apparatus
US20140049706A1 (en) Stereoscopic Image Display Device
KR20160092150A (ko) 표시 장치 및 표시장치의 구동 방법
JP2007219526A (ja) 立体画像変換パネル及びこれを有する立体画像表示装置
WO2014153992A1 (zh) 立体液晶显示装置
CN104020624A (zh) 裸眼3d立体显示装置
KR101857819B1 (ko) 액정 프리즘
KR101705566B1 (ko) 액정 표시장치 및 그 제조방법
KR101291806B1 (ko) 입체영상 표시장치
WO2014075297A1 (zh) 液晶透镜组件以及立体影像显示器
KR20140147542A (ko) 2d/3d 영상표시장치
KR20170089472A (ko) 3차원 영상 표시 장치 및 그 구동 방법
KR100811818B1 (ko) 2차원/3차원 영상 표시용 렌티큘러 액정셔터 및 이를 갖는디스플레이 장치
KR20130053997A (ko) 편광 어셈블리 및 입체 영상 표시 장치
KR101938692B1 (ko) 입체 영상 표시 장치
KR101859375B1 (ko) 입체 영상 디스플레이 장치와 이의 구동방법
US9769464B2 (en) Image display device
KR20140094156A (ko) 광편향패널과 이를 사용한 표시장치
KR20130020751A (ko) 렌티큘러 어레이방식 입체영상표시장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 12996998

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858317

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10858317

Country of ref document: EP

Kind code of ref document: A1