WO2014075297A1 - 液晶透镜组件以及立体影像显示器 - Google Patents

液晶透镜组件以及立体影像显示器 Download PDF

Info

Publication number
WO2014075297A1
WO2014075297A1 PCT/CN2012/084760 CN2012084760W WO2014075297A1 WO 2014075297 A1 WO2014075297 A1 WO 2014075297A1 CN 2012084760 W CN2012084760 W CN 2012084760W WO 2014075297 A1 WO2014075297 A1 WO 2014075297A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
electrode
polarizer
image display
stereoscopic image
Prior art date
Application number
PCT/CN2012/084760
Other languages
English (en)
French (fr)
Inventor
陈峙彣
萧嘉强
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US13/703,416 priority Critical patent/US8928824B2/en
Priority to DE112012007134.4T priority patent/DE112012007134T5/de
Publication of WO2014075297A1 publication Critical patent/WO2014075297A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices

Definitions

  • the present invention relates to a liquid crystal lens assembly and a stereoscopic image display, and more particularly to a liquid crystal lens assembly having a high lens power and a stereoscopic image display.
  • the human brain further forms a so-called three-dimensional ( ⁇ -dimension, 3D) image based on the spatial distance difference between the two different perspectives seen by the eyes. This spatial distance difference is called parallax. .
  • the so-called 3D display simulates the field of view of different angles of human eyes, allowing the left and right eyes to receive two two-dimensional (2-dimension, 2D) images with parallax, so that the human brain can obtain different 2D images seen by the left and right eyes. After that, it can be perceived as a 3D image.
  • the current 3D displays are mainly divided into two categories, namely an auto-stereoscopic display and a non-automatic stereoscopic display. Users of automatic stereoscopic image displays can see 3D stereoscopic images without wearing special-structured glasses. Another non-automatic stereoscopic display requires observers to wear special glasses to see
  • the parallax barrier uses a grating to control the direction in which light travels, allowing the observer's left and right eyes to see an image with parallax, and this parallax creates a three-dimensional effect in the brain.
  • the lenticular lens the difference in refractive index is used to control the direction of the light.
  • ITO indium tin oxide
  • the special pattern of indium tin oxide (ITO) of the glass substrate is designed to cause uneven distribution of potential lines in the space of the liquid crystal layer, and the arrangement of liquid crystal molecules is changed. Since the alignment of the liquid crystal molecules affects the difference in refractive index, after proper design, the overall refractive index changes like a lenticular lens, controlling the direction of refraction of the incident light.
  • Figures la and lb are schematic views of the prior art GRIN lens before and after the applied voltage.
  • the GRIN lens 10 is a Gradient in the Index of Refraction Lens.
  • the GRIN lens 10 is a liquid crystal lens. When no voltage is applied, the arrangement of the liquid crystal molecules is as shown in la. Due to the special design of the indium tin oxide electrode pattern (not shown), when an electric field is generated by applying a voltage, the alignment direction of the liquid crystal molecules will be as shown in FIG.
  • fcmiN is the focal length of the GRIN lens 10
  • d is the thickness of the liquid crystal cell
  • r is the radius of the lens
  • i ax is equal to the extraordinary refractive index ne of the liquid crystal molecules of the liquid crystal lens
  • n(r) is the refractive index r The function.
  • the invention provides a stereoscopic image display, which comprises a backlight module, a polarizer, a transparent substrate, a liquid crystal layer and a delay unit.
  • the backlight module is used to generate light.
  • the polarizer is disposed on the backlight module, and the light emitted by the backlight module is polarized in a first direction.
  • the transparent substrate is disposed on the polarizer.
  • the transparent substrate is provided with a plurality of electrodes, and each of the electrodes extends toward a second direction, and the second direction is different from the first direction.
  • the liquid crystal layer is located on the transparent substrate, and the liquid crystal molecules of the liquid crystal layer adjust the arrangement direction according to the voltages of the plurality of electrodes.
  • the delay unit is disposed between the transparent substrate and the polarizer for adjusting a polarization direction of the light emitted from the polarizer into a third direction, the third direction being different from the first direction and the second direction.
  • the third direction is perpendicular to the second direction.
  • the delay unit is a one-half wavelength retardation film.
  • the electrode layer comprises a first electrode, a second electrode and a third electrode, the second electrode being located between the first electrode and the third electrode, when close to the
  • the alignment direction of the liquid crystal molecules of the first electrode and the third electrode becomes a propagation direction in which the optical axis is parallel to the light emitted from the polarizer, and the alignment direction of the liquid crystal molecules adjacent to the second electrode becomes the optical axis parallel to the polarizer.
  • the stereoscopic image display is used to display a three-dimensional image when the polarization direction of the light is emitted.
  • the stereoscopic image display is used to display a two-dimensional image.
  • the present invention provides a liquid crystal lens assembly including a polarizer, a transparent substrate, a liquid crystal layer, and a delay unit.
  • the polarizer is used to direct the direction of polarization of the emitted light toward a first direction.
  • the transparent substrate is disposed on the polarizer, and a plurality of electrodes are disposed on the transparent substrate, each electrode extending along a second direction, wherein the second direction is different from the first direction.
  • the liquid crystal layer is located on the transparent substrate, and the liquid crystal molecules of the liquid crystal layer adjust the arrangement direction according to the voltages of the plurality of electrodes.
  • the delay unit is disposed between the transparent substrate and the polarizer for adjusting a polarization direction of incident light into a third direction, wherein the third direction is different from the first direction and the second direction .
  • the third direction is perpendicular to the second direction.
  • the delay unit is a one-half wavelength retardation film.
  • the electrode layer includes a first electrode, a second electrode, and a third electrode, and the second electrode is located between the first electrode and the third electrode, when the liquid crystal lens
  • the alignment direction of the liquid crystal molecules close to the first electrode and the third electrode becomes a propagation direction in which the optical axis is parallel to the light emitted from the polarizer, and the alignment direction of the liquid crystal molecules near the second electrode is changed.
  • the polarization direction of the light is emitted parallel to the polarizer for the optical axis.
  • the liquid crystal lens assembly and the stereoscopic image display of the present invention comprise a delay unit.
  • the delay unit can make the polarization direction of the emitted light perpendicular to the arrangement direction of the electrode layer.
  • the optical axis of the liquid crystal molecules of the liquid crystal layer is parallel to the polarization direction of the light emitted by the delay unit, that is, the optical axis of the liquid crystal molecules of the liquid crystal layer matches the emission unit of the delay unit.
  • the direction of polarization Therefore, the present invention not only has the best focusing effect, but also can reduce the thickness of the liquid crystal layer and effectively reduce the cost.
  • FIG. 2 is a schematic view of a stereoscopic image display of the present invention.
  • Fig. 3 is a view showing a cross section of a liquid crystal lens assembly of the present invention applied to a 3D mode and a direction in which liquid crystal molecules are aligned.
  • Fig. 4 is a cross-sectional view showing the cross section of the liquid crystal lens assembly of Fig. 2 when applied to the 2D mode and the alignment of liquid crystal molecules.
  • FIG. 5 is a polarization direction of the polarizer of FIG. 2, a polarization direction of a delay unit, and a liquid crystal lens assembly
  • FIG. 2 is a schematic diagram of a stereoscopic image display 100 of the present invention.
  • the stereoscopic image display 100 includes a backlight module 110, a display panel 140, and a liquid crystal lens assembly 120.
  • the backlight module 110 provides a uniform surface light source for the display panel 140.
  • the backlight module 110 can be a direct light emitting diode (LED), a direct cold cathode ray tube (CCFL) or a side light LED.
  • the display panel 140 includes a polarizer 144 composed of a plurality of pixels, a pixel array 141, a color filter 142, and a liquid crystal layer 143 between the pixel array 141 and the color filter 142.
  • the liquid crystal in the liquid crystal layer 143 may be a twisted nematic (TN) liquid crystal, a vertical alignment (VA) liquid crystal, or an In-Plane-Switching (IPS) liquid crystal.
  • the pixel array 141 on the display panel 140 includes a plurality of sub-pixels.
  • the color filter 142 includes a filter unit 142a for displaying the three primary colors of red, blue, and green, and a black matrix layer 142b between any two adjacent filter units 142a. Each sub-pixel corresponds to a filter unit 142a. When the light passes through the filter elements of the three primary colors of red, blue and green
  • the polarizer 144 has a transmission axis and an absorption axis perpendicular to the transmission axis.
  • the transmission axis direction of the polarizer 144 is parallel to the horizontal direction A, and the light emitted from the polarizer 144 is linearly polarized light whose polarization direction is parallel to the horizontal direction A.
  • the liquid crystal lens assembly 120 includes a polarizer 126, a delay unit 124, transparent glass substrates 121a, 121b, a plurality of elongated electrode layers 123 that are parallel to each other and extend in the second direction D (shown in FIG. 5), and are sandwiched between the glass substrates 121a. , a liquid crystal layer 122 between 121b.
  • the transmission axis direction of the polarizer 126 is parallel to the first direction B (i.e., perpendicular to the horizontal direction A).
  • the light emitted from the polarizer 126 is linearly polarized light having a polarization direction parallel to the first direction B, that is, the polarizing plates 126 and 144 are 90° out of phase with each other.
  • the electrode layer 123 is formed on the first glass substrate 121a. Looking at the direction E observed by the observer of Fig. 2, the angle between the second direction D and the first direction B is between 9 and 17 degrees.
  • An alignment film (not shown) is disposed above the electrode layer 123, and the alignment film is used to align the liquid crystal molecules in a specific direction when an electric field is not applied.
  • the liquid crystal lens assembly 120 can function as a birefringent convex lens.
  • the liquid crystal layer 122 has an ordinary refractive index n. And unusual refractive index ne.
  • the delay unit 124 is disposed between the polarizer 126 and the second glass substrate 121b for adjusting the polarization direction of the light emitted from the polarizer 126 to a third direction C, and the third direction C is different from
  • the delay unit 124 may be a half-wave retardation film, and the third direction C has an angle of 90 degrees with the second direction D.
  • FIG. 3 is a cross-sectional view showing the cross-section of the liquid crystal lens assembly 120 of the present invention applied to the 3D mode and the alignment direction of the liquid crystal molecules.
  • the electrodes 123a, 123b, and 123c are taken as an example for explanation.
  • the light emitted from the polarizer 126 is polarized in the direction parallel to the first direction B, but is not limited thereto.
  • the generated electric field will cause the liquid crystal molecules in the liquid crystal layer 122 to rotate, causing the alignment of the liquid crystal molecules near the electrodes 123a, 123c to become parallel to the direction of propagation of the polarized light.
  • the electrode 123b to which no voltage is applied close to the electrode
  • the alignment direction of the liquid crystal molecules of 123b becomes that the optical axis is parallel to the polarization direction of the incident light.
  • the liquid crystal molecules in 122 have birefringence characteristics.
  • the liquid crystal molecules When the direction of polarization of the incident liquid crystal lens assembly 120 is perpendicular to the optical axis direction of the liquid crystal molecules, the liquid crystal molecules have an ordinary refractive index no, and when polarized light incident on the liquid crystal lens assembly 120 When the direction is parallel to the optical axis direction of the liquid crystal molecules, the liquid crystal molecules have an extraordinary refractive index ne , and the extraordinary refractive index ne is greater than the refractive index refractive index no . Therefore, when the light travels, the light close to the electrodes 123a, 123c has the lowest refractive index due to the liquid crystal molecules encountered, and the traveling speed is the fastest.
  • the light close to the electrode 123b has the slowest traveling speed because the refractive index of the liquid crystal molecules encountered is the largest. .
  • the alignment of the liquid crystal molecules causes a change in the overall refractive index, and the liquid crystal lens assembly 120 acts as a convex lens to control the direction of refraction of the incident light.
  • the left and right eyes respectively receive light in different directions. In this way, the left eye of the observer can see the left eye image, while the right eye sees the right eye image. In this way, the observer's brain can perceive 3D images according to different images seen by the left and right eyes.
  • FIG. 4 is a schematic diagram showing the cross section and the alignment direction of the liquid crystal molecules when the liquid crystal lens assembly of FIG. 2 is applied to the 2D mode.
  • the voltage applied to the electrodes 123a, 123b, 123c is changed (e.g., no voltage is applied), and the generated electric field will cause the liquid crystal molecules in the liquid crystal layer 122 to rotate, all of the electrodes 123a, 123b, 123c
  • the alignment direction of the liquid crystal molecules becomes such that the optical axis is parallel to the polarization direction of the incident light, which corresponds to the absence of any lens. Therefore, the polarization directions of the light passing through the liquid crystal layer 122 are the same, and the light will propagate along a straight line, so the observer will see the 2D image.
  • the liquid crystal layer 122 is made of a positive liquid crystal molecule, that is, when an electric field is applied to the electrode 123 to generate an electric field, the alignment direction of the liquid crystal molecules is parallel to the direction of the electric field.
  • the liquid crystal layer 122 may also employ negative liquid crystal molecules, but the arrangement and extension direction of the electrodes must be changed to achieve a proper design.
  • Figure 5 is a schematic illustration of the polarization direction of the polarizer 126 of Figure 2, the polarization direction of the delay unit 124, and the alignment of the electrode layers 123 of the liquid crystal lens assembly 120. Since the polarization direction of the light incident on the liquid crystal lens assembly 120 does not match the orientation of the liquid crystal lens assembly 120, the focusing ability of the liquid crystal lens assembly 120 is affected. In order to maintain the focusing ability, the liquid crystal lens assembly 120 of the present embodiment further includes a delay unit 124.
  • the optical axis of the liquid crystal molecules of the liquid crystal layer 123 when no voltage is applied It is parallel to the third direction C, that is, the optical axis of the liquid crystal molecules of the liquid crystal layer 123 matches the third direction C.
  • the liquid crystal lens assembly 120 is not provided with the delay unit 124, the polarization direction of the light incident from the polarizer 126 is toward the first direction B.
  • the optical axis of the liquid crystal molecules of the liquid crystal layer 123 is not parallel to the first direction B, so the optical axes of the liquid crystal molecules of the liquid crystal layer 123 do not match first.

Abstract

一种液晶透镜组件(120)以及立体影像显示器(100),立体影像显示器(100)包含背光模块(110)及液晶透镜组件(120)。液晶透镜组件(120)包含偏光片(126)、透明基板(121a)、液晶层(122)及延迟单元(124)。偏光片(126)用来将背光模块(110)射出的光线使其偏振方向朝第一方向。透明基板(121a)之上设置有多条电极(123a,123b,123c),每一电极朝一第二方向沿伸,第二方向不同于第一方向。液晶层(122)的液晶分子依据多条电极(123a,123b,123c)的电压调整其排列方向。延迟单元位(124)于透明基板(121a)以及偏光片(126)之间,用来将偏光片(126)射出的光线的偏振方向调整成一第三方向,第三方向不同于第一方向和第二方向。延迟单元(124)可以让射出光线的偏振方向垂直于电极层(123)的排列方向。如此一来,在未施加电压时,液晶层(122)的液晶分子的光轴匹配于延迟单元(124)射出光线的偏振方向。因此,液晶透镜组件(120)以及立体影像显示器(100)不仅具有最佳聚焦效果,也可以降低液晶层的厚度,有效降低成本。

Description

液晶透镜组件以及立体影像显示器
技术领域
本发明涉及一种液晶透镜组件以及立体影像显示器, 尤指一种具高透镜 光学能力(high lens power)的液晶透镜组件以及立体影像显示器。
背景技术
人类是透过双眼所看到的展望而感知到真实世界的影像。 而人类的大 脑会进一步根据双眼所看到两个不同角度的展望之间的空间距离差异而形成 所谓的三维 (^-dimension, 3D) 影像, 这种空间距离差异则被称为视差 (parallax)。 所谓的 3D显示器就是模拟人类双眼不同角度的视野, 让左、 右 眼分别接收到有视差的两个二维 (2-dimension, 2D)影像, 使人脑获取左、 右 眼看到的不同 2D影像后, 能感知为 3D影像。
目前的 3D显示器主要分为两类, 分别是自动立体影像显示器 (Auto- stereoscopic display)以及非自动立体影像显示器 (Stereoscopic display)。 自动 立体影像显示器的用户不用戴上特殊结构的眼镜就可以看出 3D立体影像。 而另一种非自动立体影像显示器则需要观察者戴上特制的眼镜, 才能看到
3D 立体影像。 常见的自动立体影像显示器有两种: 主要分成视差光栅 (Parallax barrier)和柱状透镜(Lenticular Lenses)两种。 视差光栅是利用光栅来 控制光前进的方向, 让观察者的左右眼看到具有视差的影像, 而此视差就会 在大脑中形成立体感。 至于柱状透镜则是利用折射率的不同来控制光的方 向, 可以有多种作法, 其中一种作法是以液晶层来取代实体透镜, 藉由上下 玻璃基板的氧化铟锡 (ITO)特殊图案设计, 来造成液晶层空间中电位线分布 不均, 使液晶分子的排列改变。 由于液晶分子的排列会影响到折射率的不 同, 经过适当的设计后, 整体的折射率变化就像柱状透镜一样, 控制入射光 的折射方向。
请参阅图 la与图 lb, 图 la与图 lb是现有技术的 GRIN透镜被施加电 压前后的示意图。 GRIN透镜 10就是折射率随着梯度分布的透镜 (Gradient in the Index of Refraction Lens)。 GRIN透镜 10是一种液晶透镜。 当未被施加任 何电压时, 液晶分子的排列如图 la所示。 由于前述氧化铟锡电极图案 (未 显示) 的特殊设计, 于施加电压产生电场时, 液晶分子的排列方向将如图 lb所示, 造成中心的液晶分子折射率最大 (ne), 愈往两边的液晶分子折射 率愈小, 直到最小液晶分子折射率 (no) 为止。 而当光线行进时, 两边的光 线因为遇到的液晶分子折射率最小, 行进速度最快, 而中间的光线因为遇到 的液晶分子折射率最大, 所以行进速度最慢。 以入射平面波而言, 波前将会 被弯曲, 造成具有类似凸透镜的性质, 将光线聚焦于 F点, 并可推导出焦距 的公式如下:
Figure imgf000004_0001
其中, fcmiN为 GRIN透镜 10的焦距, d为液晶盒的厚度, r是透镜的半径, i ax等于液晶透镜的液晶分子的非寻常光折射率 ne, 而 n(r)则代表折射率是 r的函数。 当以 4mm 的适当焦距作为设计目标时, 若液晶分子的 Δη为 0.21, 则必需将液晶盒的厚度 d保持在大约 30μπι。 然而, 如果射入 GRIN
替换页 (细则第 26条) 透镜 10的光线的偏振方向和 GRIN透镜 10液晶的方向不匹配, 则透镜的聚 焦能力会受到影响。 为了维持聚焦能力, 此时必须将液晶盒的厚度 d增加, 无疑地也会增加成本。 因此若能制作一种立体影像显示器, 在不必增加液晶 厚度的前提之下, 就能够提升聚焦能力, 将可有效地降低成本。 发明内容
因此本发明的目的是提供一种液晶透镜组件以及立体影像显示器, 该液 晶透镜组件是利用一个延迟单元, 来增进透镜的聚焦能力, 以解决背景技术 的问题。
本发明提供一种立体影像显示器, 立体影像显示器包含背光模块、 偏光 片、 透明基板、 液晶层及延迟单元。 该背光模块用来产生光线。 该偏光片位 于所述背光模块之上, 用来将该背光模块射出的光线使其偏振方向朝第一方 向。 该透明基板设置于所述偏光片之上, 该透明基板之上设置有多条电极, 每一电极朝一第二方向沿伸, 该第二方向不同于该第一方向。 该液晶层位于 所述透明基板之上, 该液晶层的液晶分子依据该多条电极的电压调整其排列 方向。 该延迟单元位于该透明基板以及该偏光片之间, 用来将该偏光片射出 的光线的偏振方向调整成一第三方向, 该第三方向不同于该第一方向和该第 二方向。
依据本发明的实施例, 所述第三方向垂直于所述第二方向。
依据本发明的实施例, 所述延迟单元是一二分之一波长延迟膜。
依据本发明的实施例, 所述电极层包含一第一电极、 一第二电极以及一 第三电极, 所述第二电极位于所述第一电极以及第三电极之间, 当靠近所述
替换页 (细则第 26条) 第一电极和第三电极的液晶分子排列方向变为光轴平行于所述偏光片射出光 线的传播方向, 同时靠近所述第二电极的液晶分子排列方向变为光轴平行于 所述偏光片射出光线的偏振方向时, 所述立体影像显示器用来显示三维影 像。
依据本发明的实施例, 当靠近所述第一电极、 所述第二电极和所述第三 电极的液晶分子排列方向皆变为光轴平行于所述偏光片射出光线的偏振方向 时, 所述立体影像显示器用来显示二维影像。
本发明提供一种液晶透镜组件, 其包括一偏光片、 一透明基板、 一液晶 层以及一延迟单元。 所述偏光片用来使射出的光线的偏振方向朝一第一方 向。 所述透明基板设置于所述偏光片之上, 所述透明基板之上设置有多条电 极, 每一电极朝一第二方向沿伸, 所述第二方向不同于所述第一方向。 所述 液晶层位于所述透明基板之上, 所述液晶层的液晶分子依据所述多条电极的 电压调整其排列方向。 所述延迟单元, 位于所述透明基板以及所述偏光片之 间, 用来将入射光线的偏振方向调整成一第三方向, 所述第三方向不同于所 述第一方向和所述第二方向。
依据本发明的实施例, 所述第三方向垂直于所述第二方向。
依据本发明的实施例, 所述延迟单元是一二分之一波长延迟膜。
依据本发明的实施例, 所述电极层包含一第一电极、 一第二电极以及一 第三电极, 所述第二电极位于所述第一电极以及第三电极之间, 当所述液晶 透镜组件处于三维模式时, 靠近所述第一电极和第三电极的液晶分子排列方 向变为光轴平行于所述偏光片射出光线的传播方向, 同时靠近所述第二电极 的液晶分子排列方向变为光轴平行于所述偏光片射出光线的偏振方向。
替换页 (细则第 26条) 依据本发明的实施例, 当所述液晶透镜组件处于二维模式时, 靠近所述 第一电极、 所述第二电极和所述第三电极的液晶分子排列方向皆变为光轴平 行于所述偏光片射出光线的偏振方向时。 相较于现有技术, 本发明的液晶透镜组件和立体影像显示器包含一延迟 单元。 该延迟单元可以让射出光线的偏振方向垂直于该电极层的排列方向。 如此一来, 在未施加电压时, 该液晶层的液晶分子的光轴是平行于该延迟单 元射出光线的偏振方向, 也就是说, 液晶层的液晶分子的光轴匹配于该延迟 单元射出光线的偏振方向。 因此本发明不仅具有最佳聚焦效果, 也可以降低 液晶层的厚度, 有效降低成本。
为让本发明的上述内容能更明显易懂, 下文特举较佳实施例, 并配合所 附图式, 作详细说明如下:
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。 图 la与图 lb是现有技术的 GRIN透镜被施加电压前后的示意图。
图 2是本发明的立体影像显示器的示意图。
图 3是本发明的液晶透镜组件应用于 3D模式时的剖面及液晶分子排列 方向示意图。
图 4是图 2的液晶透镜组件应用于 2D模式时的剖面及液晶分子排列方 向示意图。
图 5是图 2的偏光片的偏振方向、 延迟单元的偏振方向和液晶透镜组件
替换页 (细则第 26条) 的电极层 3的排列方向的示意图。 具体实施方式
以下各实施例的说明是参考附加的图式, 用以例示本发明可用以实施之 特定实施例。 本发明所提到的方向用语, 例如 「上」、 「下」、 「前」、 「后」、 「左」、 「右」、 「顶」、 「底」、 「水平」、 「垂直」 等, 仅是参考附加图式的方 向。 因此, 使用的方向用语是用以说明及理解本发明, 而非用以限制本发 明。
请参阅图 2, 图 2是本发明的立体影像显示器 100的示意图。 观察者观 看立体影像显示器 100时, 可以切换观看 2D或 3D影像。 立体影像显示器 100包含一背光模块 110、 一显示面板 140以及一液晶透镜组件 120。
背光模块 110为显示面板 140提供均匀的面光源。 背光模块 110可以是 直下式发光二极管 (Light emitting diode, LED), 直下式冷阴极射线管 (CCFL) 或是侧光式 LED构成。
显示面板 140包含由数个像素组成的偏光片 144、 像素阵列 141、 彩色滤 光片 142以及位于像素阵列 141以及彩色滤光片 142之间的液晶层 143。 在 本实施例中, 液晶层 143 内的液晶可以是扭转向列 (twisted nematic, TN)液 晶、 垂直排列 (Vertical alignment , VA)液晶或是平面内切换 (In-Plane- Switching, IPS)液晶。 显示面板 140上的像素阵列 141包含多个子像素。 彩 色滤光片 142则包含用来显示红、 蓝、 绿三原色的滤光单元 142a以及位于 任两个相邻滤光单元 142a之间的黑色阵列 (Black matrix)层 142b。 每一子像 素是对应一个滤光单元 142a。 当光线通过红、 蓝、 绿三原色的滤光单元
替换页 (细则第 26条) 142a后, 就会显示出对应的颜色, 但是光线将不会通过黑色阵列层 142b。 当背光模块 110产生的光线照射在显示面板 140上, 通过驱动像素阵列 141 可以调整每一子像素对应液晶层 143的液晶的转动方向, 以便调整光线射出 的强度。 之后不同强度光线通过红、 蓝、 绿的滤光单元 142a而显示不同灰 阶。
偏光片 144具有透射轴以及与所述透射轴垂直的吸收轴, 光线射向偏光 片 144时, 偏光轴方向与透射轴大致平行的光线会透射, 而偏光轴方向与吸 收轴大致平行的光线会被阻隔。 偏光片 144的透射轴方向与水平方向 A平 行, 由偏光片 144射出的光线会是偏振方向平行水平方向 A的线偏振光。
液晶透镜组件 120包括偏光片 126、 延迟单元 124、 透明玻璃基板 121a, 121b, 数个彼此平行并朝第二方向 D (绘示图 5)延伸的长条状电极层 123以及夹在玻璃基板 121a、 121b之间的液晶层 122。 在本实施例中, 偏光 片 126 的透射轴方向平行第一方向 B (亦即垂直于水平方向 A)。 由偏光片 126射出的光线会是偏振方向平行第一方向 B的线偏振光, 也就是说偏光片 126、 144彼此的透射轴方向相差 90°。 电极层 123形成于第一玻璃基板 121a 上。 以图 2观察者观察的方向 E来看, 第二方向 D与第一方向 B之间的夹 角介于 9~17度之间。 电极层 123的上方会设置一配向膜 (未图示), 该配向膜 用来使液晶分子在未被施加电场时沿着特定方向排列。 液晶透镜组件 120可 作为一个双折射凸透镜。 液晶层 122具有寻常光折射率 n。和非寻常光折射率 ne。
延迟单元 124设置在偏光片 126和第二玻璃基板 121b之间, 用来将偏 光片 126射出的光线的偏振方向调整成一第三方向 C, 且第三方向 C不同于
替换页 (细则第 26条) 第一方向 B以及第二方向 D。 较佳地, 延迟单元 124可以是二分之一波长延 迟膜, 且第三方向 C与第二方向 D有 90度的夹角。
请参阅图 3, 图 3是本发明的液晶透镜组件 120应用于 3D模式时的剖 面及液晶分子排列方向示意图。 在本实施例中是以电极 123a、 123b、 123c 为例作为说明。 本实施例中是以从偏光片 126射出的光线, 偏振方向平行于 第一方向 B为例进行说明, 但不限于此。
当施加电压于电极 123a、 123c之上时, 所产生的电场将会使液晶层 122 中的液晶分子旋转, 造成靠近电极 123a、 123c的液晶分子排列方向变为光 轴平行于偏振光传播方向。 对于未被施加电压的电极 123b来说, 靠近电极
123b 的液晶分子排列方向变为光轴平行于入射光的偏振方向。 由于液晶层
122内的液晶分子具有双折射率特性, 当入射液晶透镜组件 120的偏振光方 向垂直于液晶分子的光轴方向时, 液晶分子具有寻常光折射率 no, 而当入 射液晶透镜组件 120的偏振光方向平行于液晶分子的光轴方向时, 液晶分子 具有非寻常光折射率 ne, 且非寻常光折射率 ne大于寻长光折射率 no。 因此当光线行进时, 靠近电极 123a、 123c的光线因为遇到的液晶分子 折射率最小, 行进速度最快, 反之, 靠近电极 123b的光线因为遇到的液晶 分子折射率最大, 所以行进速度最慢。 经此适当设计, 液晶分子的排列改变 造成整体折射率的变化, 液晶透镜组件 120就如同一个凸透镜, 控制入射光 的折射方向。 而当入射光经过液晶透镜组件 120折射后, 会让左右眼分别收 到不同方向的光线。 利用此方式, 观察者的左眼可以看到左眼影像, 而右眼 看到右眼影像。 如此一来, 观察者的大脑可以依据左右眼看到的不同影像感 知为 3D影像。
替换页 (细则第 26条) 图 3中的液晶透镜组件 120亦可适用于 2D模式。 请参阅图 4, 图 4是图 2 的液晶透镜组件应用于 2D模式时的剖面及液晶分子排列方向示意图。 当 应用于 2D模式时, 改变施加于电极 123a、 123b, 123c之上的电压 (例如未 施加电压), 所产生的电场将会使液晶层 122 中的液晶分子旋转, 所有电极 123a, 123b, 123c 的液晶分子排列方向变为光轴平行于入射光的偏振方 向, 相当于无任何透镜的存在。 所以通过液晶层 122的光线的偏振方向都是 相同的, 光线会沿直线传播, 故观察者会看到 2D影像。
在图 3、 图 4中, 液晶层 122釆用正性液晶分子, 也就是说, 当施加电 压于电极 123而产生电场时, 液晶分子的排列方向是平行于电场方向。 在另 一实施例中, 液晶层 122亦可采用负性液晶分子, 但是电极的排列以及延伸 方向必需改变, 以达到适当的设计。
请参阅图 2和图 5, 图 5是图 2的偏光片 126的偏振方向、 延迟单元 124的偏振方向和液晶透镜组件 120的电极层 123的排列方向的示意图。 由 于射入液晶透镜组件 120的光线的偏振方向和液晶透镜组件 120的指向不匹 配, 会影响液晶透镜组件 120的聚焦能力。 为了维持聚焦能力, 本实施例的 液晶透镜组件 120另包含延迟单元 124。 因为从延迟单元 124射出光线的偏 振方向是朝向第三方向 C, 而且第三方向 C与电极层 123排列的第二方向 D 垂直, 所以在未施加电压时, 液晶层 123的液晶分子的光轴是与第三方向 C 平行, 也就是说, 液晶层 123 的液晶分子的光轴匹配第三方向 C。 相比之 下, 如果液晶透镜组件 120没有设置延迟单元 124, 则从偏光片 126射入光 线的偏振方向是朝第一方向 B。 在未施加电压时, 液晶层 123的液晶分子的 光轴与第一方向 B并非平行, 所以液晶层 123的液晶分子的光轴不匹配第一
替换页 (细则第 26条) 方向 B。 如此一来, 即使不用增加液晶透镜组件 120的厚度, 设置延迟单元 124的液晶透镜组件 120将具有最佳聚焦效果。
综上所述, 虽然本发明已以较佳实施例揭露如上, 但该较佳实施例并非 用以限制本发明, 该领域的普通技术人员, 在不脱离本发明的精祌和范围 内, 均可作各种更动与润饰, 因此本发明的保护范围以权利要求界定的范围 为准。
替换页 (细则第 26条)

Claims

权利要求
1. 一种立体影像显示器, 其包含:
一背光模块, 用来产生光线;
一偏光片, 位于所述背光模块之上, 用来将所述背光模块射出的光线使 其偏振方向朝一第一方向;
一透明基板, 设置于所述偏光片之上, 所述透明基板之上设置有多条电 极, 每一电极朝一第二方向沿伸, 所述第二方向不同于所述第一方向; 以及 一液晶层, 位于所述透明基板之上, 所述液晶层的液晶分子依据所述多 条电极的电压调整其排列方向; 及
一延迟单元, 位于所述透明基板以及所述偏光片之间, 用来将所述偏光 片射出的光线的偏振方向调整成一第三方向, 所述第三方向不同于所述第一 方向和所述第二方向。
2. 根据权利要求 1所述的立体影像显示器, 其中所述第三方向垂直于所述 第二方向。
3. 根据权利要求 2所述的立体影像显示器, 其中所述延迟单元是一二分之 一波长延迟膜。
4. 根据权利要求 1所述的立体影像显示器, 其中所述电极层包含一第一电 极、 一第二电极以及一第三电极, 所述第二电极位于所述第一电极以及 第三电极之间, 当靠近所述第一电极和第三电极的液晶分子排列方向变 为光轴平行于所述偏光片射出光线的传播方向, 同时靠近所述第二电极 的液晶分子排列方向变为光轴平行于所述偏光片射出光线的偏振方向 时, 所述立体影像显示器用来显示三维影像。
5. 根据权利要求 4所述的立体影像显示器, 其中当靠近所述第一电极、 所 述第二电极和所述第三电极的液晶分子排列方向皆变为光轴平行于所述 偏光片射出光线的偏振方向时, 所述立体影像显示器用来显示二维影 像。
6. 一种液晶透镜组件, 其包括:
一偏光片, 用来使射出的光线的偏振方向朝一第一方向;
一透明基板, 设置于所述偏光片之上, 所述透明基板之上设置有多条电 极, 每一电极朝一第二方向沿伸, 所述第二方向不同于所述第一方向; 以及 一液晶层, 位于所述透明基板之上, 所述液晶层的液晶分子依据所述多 条电极的电压调整其排列方向; 及
一延迟单元, 位于所述透明基板以及所述偏光片之间, 用来将入射光线 的偏振方向调整成一第三方向, 所述第三方向不同于所述第一方向和所述第 二方向。
7. 根据权利要求 6所述的液晶透镜组件, 其中所述第三方向垂直于所述第 二方向。
8. 根据权利要求 7所述的液晶透镜组件, 其中所述延迟单元是一二分之一 波长延迟膜。
9. 根据权利要求 6所述的液晶透镜组件, 其中所述电极层包含一第一电 极、 一第二电极以及一第三电极, 所述第二电极位于所述第一电极以及 第三电极之间, 当所述液晶透镜组件处于三维模式时, 靠近所述第一电 极和第三电极的液晶分子排列方向变为光轴平行于所述偏光片射出光线 的传播方向, 同时靠近所述第二电极的液晶分子排列方向变为光轴平行 于所述偏光片射出光线的偏振方向。
根据权利要求 9所述的液晶透镜组件, 其中当所述液晶透镜组件处于二 维模式时, 靠近所述第一电极、 所述第二电极和所述第三电极的液晶分 子排列方向皆变为光轴平行于所述偏光片射出光线的偏振方向时。
PCT/CN2012/084760 2012-11-15 2012-11-16 液晶透镜组件以及立体影像显示器 WO2014075297A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/703,416 US8928824B2 (en) 2012-11-15 2012-11-16 Liquid crystal lens unit and stereoscopic display
DE112012007134.4T DE112012007134T5 (de) 2012-11-15 2012-11-16 Flüssigkristall-Linsenkomponente und stereoskopische Bildanzeigevorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210460290.9 2012-11-15
CN201210460290.9A CN102944962B (zh) 2012-11-15 2012-11-15 液晶透镜组件以及立体影像显示器

Publications (1)

Publication Number Publication Date
WO2014075297A1 true WO2014075297A1 (zh) 2014-05-22

Family

ID=47727921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084760 WO2014075297A1 (zh) 2012-11-15 2012-11-16 液晶透镜组件以及立体影像显示器

Country Status (3)

Country Link
CN (1) CN102944962B (zh)
DE (1) DE112012007134T5 (zh)
WO (1) WO2014075297A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022022246A1 (zh) * 2020-07-31 2022-02-03 华为技术有限公司 一种显示装置和电子设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105511180B (zh) 2016-03-04 2019-10-01 京东方科技集团股份有限公司 液晶面板、显示装置以及显示方法
CN105700167B (zh) * 2016-04-08 2019-09-10 武汉华星光电技术有限公司 3d显示装置
TWI699592B (zh) * 2019-04-17 2020-07-21 友達光電股份有限公司 顯示裝置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000102038A (ja) * 1998-09-18 2000-04-07 Sanyo Electric Co Ltd 2次元映像/3次元映像互換型映像表示装置
CN1525243A (zh) * 2003-02-06 2004-09-01 株式会社东芝 立体图像显示装置
CN101303456A (zh) * 2007-05-09 2008-11-12 精工爱普生株式会社 指向性显示器
CN101419351A (zh) * 2007-10-24 2009-04-29 乐金显示有限公司 显示装置
CN101833170A (zh) * 2009-03-11 2010-09-15 索尼公司 立体显示设备
US20120242651A1 (en) * 2011-03-24 2012-09-27 Liu Sheng-Chi Display system for generating three-dimensional images and method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL1967017T3 (pl) * 2005-12-20 2020-06-01 Koninklijke Philips N.V. Autostereoskopowe urządzenie wyświetlające
CN102062985B (zh) * 2010-11-16 2012-02-22 深圳超多维光电子有限公司 液晶透镜及其控制方法以及3d显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000102038A (ja) * 1998-09-18 2000-04-07 Sanyo Electric Co Ltd 2次元映像/3次元映像互換型映像表示装置
CN1525243A (zh) * 2003-02-06 2004-09-01 株式会社东芝 立体图像显示装置
CN101303456A (zh) * 2007-05-09 2008-11-12 精工爱普生株式会社 指向性显示器
CN101419351A (zh) * 2007-10-24 2009-04-29 乐金显示有限公司 显示装置
CN101833170A (zh) * 2009-03-11 2010-09-15 索尼公司 立体显示设备
US20120242651A1 (en) * 2011-03-24 2012-09-27 Liu Sheng-Chi Display system for generating three-dimensional images and method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022022246A1 (zh) * 2020-07-31 2022-02-03 华为技术有限公司 一种显示装置和电子设备

Also Published As

Publication number Publication date
CN102944962A (zh) 2013-02-27
CN102944962B (zh) 2015-02-25
DE112012007134T5 (de) 2015-08-06

Similar Documents

Publication Publication Date Title
US8564874B2 (en) Transmission mode switching device and 2D/3D switchable display apparatus
JP5142356B2 (ja) 立体画像変換パネル
KR101201848B1 (ko) 입체영상 변환패널 및 이를 갖는 입체영상 표시장치
WO2012048485A1 (zh) 2d/3d切换的液晶透镜组件及显示装置
JP5528846B2 (ja) 液晶レンズおよび表示装置
US8582043B2 (en) 2D/3D switchable LC lens unit for use in a display device
JP2013041052A (ja) 表示装置
KR20070006122A (ko) 2차원/3차원 영상 호환용 입체영상 디스플레이 장치
CN101893788B (zh) 自动立体显示装置
KR20140023844A (ko) 입체영상 표시장치
WO2014196125A1 (ja) 画像表示装置及び液晶レンズ
WO2013181910A1 (zh) 液晶透镜及2d-3d可切换立体显示装置
JP5802571B2 (ja) 表示装置
WO2014075297A1 (zh) 液晶透镜组件以及立体影像显示器
TWI467245B (zh) 顯示裝置及液晶透鏡
KR20150032387A (ko) 입체영상 표시장치
TW201334510A (zh) 裸眼與眼鏡可切換式立體顯示裝置
KR20140147542A (ko) 2d/3d 영상표시장치
US8928824B2 (en) Liquid crystal lens unit and stereoscopic display
KR20070073445A (ko) 2차원/3차원 영상 표시용 렌티큘러 액정셔터 및 이를 갖는디스플레이 장치
KR102120422B1 (ko) 렌즈를 포함하는 표시 장치
KR102041152B1 (ko) 영상표시장치
JP2013054321A (ja) 液晶表示装置及び光制御素子
KR20140078267A (ko) 하이브리드 입체 영상 표시장치
US9256074B2 (en) Liquid crystal optical element and stereoscopic image display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13703416

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12888224

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112012007134

Country of ref document: DE

Ref document number: 1120120071344

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12888224

Country of ref document: EP

Kind code of ref document: A1