WO2018124660A1 - 신규한 화합물 반도체 및 그 활용 - Google Patents

신규한 화합물 반도체 및 그 활용 Download PDF

Info

Publication number
WO2018124660A1
WO2018124660A1 PCT/KR2017/015374 KR2017015374W WO2018124660A1 WO 2018124660 A1 WO2018124660 A1 WO 2018124660A1 KR 2017015374 W KR2017015374 W KR 2017015374W WO 2018124660 A1 WO2018124660 A1 WO 2018124660A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound semiconductor
compound
mol
formula
heat treatment
Prior art date
Application number
PCT/KR2017/015374
Other languages
English (en)
French (fr)
Inventor
고경문
박철희
박치성
김민경
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170177275A external-priority patent/KR102123042B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP17886732.1A priority Critical patent/EP3447812B1/en
Priority to CN201780025805.3A priority patent/CN109275341B/zh
Priority to JP2018552661A priority patent/JP6775841B2/ja
Priority to US16/095,029 priority patent/US11072530B2/en
Publication of WO2018124660A1 publication Critical patent/WO2018124660A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0272Selenium or tellurium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/853Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N99/00Subject matter not provided for in other groups of this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • thermoelectric conversion element may be applied to thermoelectric conversion power generation or thermoelectric conversion cooling, among which thermoelectric conversion power generation converts thermal energy into electrical energy by using thermoelectric power generated by placing a temperature difference in the thermoelectric conversion element. It is a form of development.
  • thermoelectric conversion element The energy conversion efficiency of such a thermoelectric conversion element depends on ZT, which is a figure of merit value of the thermoelectric conversion material.
  • ZT is determined according to Seebeck coefficient, electrical conductivity, thermal conductivity, etc. More specifically, ZT is proportional to the square and electrical conductivity of the Seebeck coefficient and inversely proportional to the thermal conductivity. Therefore, in order to increase the energy conversion efficiency of the thermoelectric conversion element, it is necessary to develop a thermoelectric conversion material having high Seebeck coefficient or high electrical conductivity or low thermal conductivity.
  • compound semiconductor solar cells use compound semiconductors in the light absorption layer that absorbs sunlight to generate electron-hole pairs, and in particular, group V compound semiconductors such as GaAs, InP, GaAlAs, GalnAs, CdS, CdTe, ZnS, etc.
  • group V compound semiconductors such as GaAs, InP, GaAlAs, GalnAs, CdS, CdTe, ZnS, etc.
  • Group VI compound semiconductors, Group m compound semiconductors represented by CuInSe2, and the like can be used.
  • the light absorbing layer of the solar cell is required to be excellent in long-term electrical and optical stability, high photoelectric conversion efficiency, and to easily adjust band gap energy or conductivity by changing composition or doping.
  • requirements such as manufacturing cost and yield must also be satisfied.
  • many conventional compound semiconductors do not meet all of these requirements together.
  • thermoelectric conversion material such as thermoelectric conversion material, solar cell, etc. of the thermoelectric conversion element
  • thermoelectric conversion element such as thermoelectric conversion material, solar cell, etc.
  • An object of the present invention is to provide a conventional thermoelectric conversion element, a solar cell, and the like.
  • the present inventors after repeated studies on the compound semiconductor, the C Sb Scutherdite compound; Sn and S contained in the internal void of the Co-Sb skater diet compound; And a C substituted with Sb of the Sb Scutterudite compound, and having successfully synthesized a compound semiconductor represented by Formula 1, wherein the compound is a thermoelectric conversion material of a thermoelectric conversion element or a solar cell. Confirmed that the light absorbing layer can be used to complete the present invention.
  • the compound semiconductor represented by Formula 1 wherein the compound is a thermoelectric conversion material of a thermoelectric conversion element or a solar cell.
  • the present invention provides a Co-Sb scrutherite compound; Sn and S contained in the internal pores of the C Sb Scutherdite compound; And a Q substituted with Sb of the Co-Sb scrutherite compound, and represented by Chemical Formula 1 as follows.
  • Q is one or more selected from the group consisting of 0, Se, and Te, and 0 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ l, and 0 ⁇ z ⁇ 12. At least one element selected from the group consisting of 0, Se, and Te may mean 0, Se, Te alone, or a mixture of two or more thereof.
  • Sn is an element symbol representing a tin (t in) element
  • S is an element symbol representing a sulfur element
  • Co is an element symbol representing a cobalt element
  • Sb is an element symbol representing an ant imony element
  • Q is substituted for at least one element selected from the group consisting of oxygen, selenium, and tellurium
  • X is a relative molar ratio of the tin element
  • y is a relative molar ratio of the sulfur element
  • z is oxygen, selenium, and tellurium (tel lur ium).
  • Q may be Se or Te.
  • Q in Formula 1 may be Te.
  • X may be 0.01 ⁇ x ⁇ 0.18.
  • X is preferably 0.05 ⁇ x ⁇ 0.15.
  • thermoelectric performance may decrease.
  • y is 0 ⁇ y ⁇ 0.5.
  • the present inventors have conducted research on an N-type scudrudite thermoelectric material having excellent thermoelectric performance, multi-layered the elements of Sn and S as a layering material on a Co-Sb scudrudite compound, and specified the Sb site. In the case of doping the charge compensation material, the experiments confirmed that the lattice thermal conductivity was lowered and the output factor increased to show high thermoelectric conversion efficiency.
  • the scrutherite compound may have a unit lattice structure as shown in FIG. 2, specifically, in the unit lattice, metal atoms are located at eight vertices, and four nonmetallic atoms have a planar structure therein. It may contain six cube structures, two metal atoms located at eight vertices, and two empty cube structures.
  • Sn and S elements are filled in the voids included in the unit grid of Co-Sb scrutherite compound with a filler as shown in FIG. 1 to induce a rattling effect.
  • This can reduce the lattice thermal conductivity, control the charge carrier concentration to an optimal level through the chemical properties of supplying additional electrons through Sn and holes through S.
  • the lattice thermal conductivity is reduced, and the N-type scutterudite thermoelectric material with improved output factor is more effective. It can exhibit improved thermoelectric properties.
  • the doping amount z of has a value in the range of 0 ⁇ z ⁇ 12. In particular, when the doping amount z value exceeds 0.2, since the thermoelectric properties may be reduced by the formation of the secondary phase, 0 ⁇ z ⁇ 0.2 is preferable.
  • the N-type scudrudite thermoelectric material in which a specific charge compensation material is substituted (doped) at Sb can be optimized by controlling the charge carrier concentration, and has a higher thermoelectric performance index ZT by reducing the lattice thermal conductivity. Can be.
  • the charge is substituted (doped) at the Sb site.
  • Te or Se as a compensating material, which is different in detail depending on the degree of ionization of each atom in the N-type contemplatruded thermoelectric material, and in the case of Te or Se, the concentration of electrons provided therefrom This is because of its high level, which can provide additional electrons and control and optimize the charge carrier concentration.
  • thermoelectric material substituted (doped) at the Sb site when Sn is used as the charge compensation material substituted (doped) at the Sb site, the concentration of electrons provided from Sn is small to provide additional holes, which is suitable for P-type scrutherite thermoelectric materials, and There are limitations in that it is difficult to use as a type scutterrudite thermoelectric material.
  • the compound semiconductor of the embodiment may include a Co— Sb skaterite compound; Sn and S contained in the internal void of the said Co-Sb scerrudite compound; And it may include a Q substituted with Sb of the Co-Sb casterudite compound.
  • the compound semiconductor of the embodiment may be used as an N-type compound semiconductor.
  • the compound semiconductor of Formula 1 includes Sn and S together ; The high stability to oxidation even at high temperatures, while minimizing the process cost, not only can improve the durability in the thermoelectric models, but also can significantly improve the thermal conductivity of the compound semiconductor of Formula 1 to implement improved thermoelectric performance.
  • the molar ratio of X to 1 mole of y in Formula 1 is 0. 1 mol to 0.9 mol, or 0.2 mol to 0.8 mol, or 0.25 mol to 0.75 mol. Remind When the molar ratio of X to mole of y in Formula 1 is greater than 0.9, as the thermal conductivity of the compound semiconductor of Chemical Formula 1 increases rapidly, thermoelectric performance may decrease. In addition, when the molar ratio of X to 1 mol of y in the general formula (1) decreases to less than 0.1, the content of Sn in the compound semiconductor of the general formula (1) is not sufficient, and the effect of adding Sn is sufficiently It is difficult.
  • z is 0 ⁇ z ⁇ 4.
  • z may be 0 ⁇ 2 ⁇ 5. Most preferably, ⁇ in Chemical Formula 1 is 0 ⁇ 1.5.
  • the compound semiconductor represented by Formula 1 may include a part of the secondary phase, the amount may vary depending on the heat treatment conditions.
  • the compound semiconductor according to the present invention comprises the steps of forming a mixture comprising at least one element selected from the group consisting of 0, Se, and Te, Sn, S, Co, and Sb, and heat-treating the mixture. It can be prepared to include. At least one element selected from the group consisting of 0, Se, and Te may mean 0, Se, Te alone, or a combination of two or more thereof.
  • each raw material to be mixed in the mixture forming step may be in the form of a powder, the present invention is not necessarily limited by the specific form of such a mixed raw material.
  • the heat treatment step may be performed in a vacuum or by arranging a gas such as Ar, He, N 2 , which contains some hydrogen or does not contain hydrogen.
  • the heat treatment temperature may be 400 ° C to 800 ⁇ .
  • the heat treatment temperature may be 450 ° C to 700 ° C. More preferably, the heat treatment temperature may be 500 ° C to 700 ° C.
  • the heat treatment step may include two or more heat treatment steps.
  • the second heat treatment may be performed at a second temperature of the complex formed in the step of forming the mixture, that is, mixing raw materials. have.
  • the heat treatment step may include three heat treatment steps of a first heat treatment step, a second heat treatment step, and a third heat treatment step.
  • the first heat treatment step may be performed at a temperature range of 400 ° C to 600 ° C
  • the second heat treatment step and the third heat treatment step may be performed at a temperature range of 600 ° C to 800 ° C.
  • the first heat treatment step may be performed during the formation of the mixture in which the raw materials are mixed
  • the second heat treatment step and the third heat treatment step may be sequentially performed thereafter.
  • the heat treatment step may include the step of subjecting the heat treated mixture.
  • the engraving step is carried out to reach the temperature of the heat-treated mixture to room temperature (about 20 ° C to 30 ° C), it is possible to use a variety of conventional cooling methods or relief devices known in the art.
  • the heat treatment, or if necessary, after the heat treatment, the mixture may be further subjected to further pressure sintering step.
  • An example of a specific method of performing the pressure sintering step is not particularly limited, but preferably, a hot press method or a spark plasma sintering (SPS) method may be used.
  • the pressure sintering step may be performed for 10 minutes to 60 minutes at a silver degree of 500 ° C. to 700 and a pressure of 20 MPa to 50 MPa.
  • the sintering temperature is less than 500 ° C. or the sintering time and pressure is low, a high density sintered body cannot be obtained. High pressures are also undesirable because they can pose a risk for the application mold and equipment.
  • Spark Plasma Sintering is a method of sintering a powder or sheet by applying a DC pils current in a direction parallel to the pressing direction while pressing the powder or sheet in one axis. This is a sintering method that applies high energy of plasma generated by the spark generated at this time and electric field diffusion, thermal diffusion, etc.
  • the discharge plasma sintering method has a lower sintering temperature and can be completed in a short time including the temperature and the holding time, compared to the conventional hot press method, so that the power consumption is greatly reduced and the handling is easy. , Running Course It is cheap.
  • the pressure sintering step may further comprise the step of pulverizing the cooled mixture after heat treatment or heat treatment as necessary.
  • the grinding method are not particularly limited, and various grinding methods or grinding devices known in the art may be applied without limitation.
  • thermoelectric conversion element according to the present invention may include the compound semiconductor described above. That is, the compound semiconductor according to the present invention can be used as a thermoelectric conversion material of the thermoelectric conversion element.
  • the compound semiconductor according to the present invention has a large ⁇ , which is a performance index value of the thermoelectric conversion material.
  • the Seebeck coefficient and electrical conductivity are large, and the thermal conductivity is low, so the thermoelectric conversion performance is excellent. Therefore, the compound semiconductor according to the present invention can be usefully used in thermoelectric conversion elements in place of conventional thermoelectric conversion materials or in addition to conventional compound semiconductors.
  • the solar cell according to the present invention may include the compound semiconductor described above. That is, the compound semiconductor according to the present invention can be used as a light absorbing layer of a solar cell, especially a solar cell.
  • the solar cell can be manufactured in a structure in which a front transparent electrode, a buffer layer, a light absorbing layer, a back electrode, a substrate, and the like are sequentially stacked from the side where sunlight is incident.
  • the engine located at the bottom may be made of glass, and the back electrode formed entirely thereon may be formed by depositing a metal such as Mo.
  • the light absorbing layer may be formed by stacking the compound semiconductor according to the present invention on the back electrode by an electron beam deposition method, a sol-gel method, or a PLLKpulse laser deposition method.
  • a buffer layer which completes the lattice constant difference and the band gap difference between the ZnO layer and the light absorbing layer, which are used as the front transparent electrode. It may be formed by depositing by a method such as ion).
  • a front transparent electrode may be formed on the buffer layer by sputtering or the like as a laminated film of ZnO or ZnO and ITC).
  • the solar cell according to the present invention may be variously modified.
  • Example it is possible to manufacture a laminated solar cell in which a solar cell using the compound semiconductor according to the present invention as a light absorbing layer is laminated.
  • the other solar cells stacked in this way may use solar cells using silicon or other known compound semiconductors.
  • the band gap of the compound semiconductor of the present invention a plurality of solar cells using compound semiconductors having different band gaps as the light absorbing layer can be laminated.
  • the band gap of the compound semiconductor according to the present invention can be controlled by changing the composition ratio of the constituent elements, in particular Te, which constitute the compound.
  • the compound semiconductor according to the present invention may be applied to an infrared window (IR window) or an infrared sensor that selectively passes infrared rays.
  • IR window infrared window
  • infrared sensor that selectively passes infrared rays.
  • a novel compound semiconductor material is provided. According to one aspect of the present invention, such a novel compound semiconductor can be used as another material to replace the conventional compound semiconductor or in addition to the conventional compound semiconductor.
  • thermoelectric conversion performance of the compound semiconductor is good, and thus may be usefully used in the thermoelectric conversion device.
  • the compound semiconductor according to the present invention can be used as a thermoelectric conversion material of the thermoelectric conversion element.
  • a compound semiconductor can be used in a solar cell.
  • the compound semiconductor according to the present invention can be used as a light absorption layer of a solar cell.
  • the compound semiconductor may be used in an infrared window (IR window) for selectively passing infrared rays, an infrared sensor, a magnetic element, a memory, and the like.
  • IR window infrared window
  • the compound semiconductor may be used in an infrared window (IR window) for selectively passing infrared rays, an infrared sensor, a magnetic element, a memory, and the like.
  • Figure 1 shows a unit grid of the compound of Example 1.
  • Figure 2 shows the unit grid of the skudrudite compound.
  • Co 4 Sb 12 scerrudite compound The Co 4 Sb 12 hibiscus Teruel die agent compound is Sn, and S are layered inside the pores of the Co 4 Sb 12 hibiscus Teruel die bit Sb compound of Sno.osS ⁇ Co A Sbn.Jeo.s Te doped in the It synthesize
  • the synthesized compound was filled in a graphite mold for discharging plasma and then discharged and plasma sintered for 10 minutes at a temperature of 650 " C and 50 MPa to manufacture the compound semiconductor of Example 1.
  • the compound peninsula The relative density of the sieves was determined to be at least 98%.
  • a compound semiconductor was manufactured in the same manner as in Example 1, except that the complex composition was changed to Sno.iSo.sCo ⁇ bn. ⁇ Eo.ij.
  • Example 3
  • composition of the composition was Sno. ⁇ o . i ⁇ Sbu. ⁇ eo .
  • a compound semiconductor was manufactured in the same manner as in Example 1, except that s was changed to s. Comparative Examples 1 to 3: Preparation of Compound Semiconductor Comparative Example 1
  • a compound semiconductor was manufactured according to the same method as Example 1 except for changing to So.z MSbu Teo.e. Comparative Example 2
  • Example 2 A compound semiconductor was manufactured in the same manner as in Example 1, except that the mixture composition was changed to Sno.sSo.zCo ⁇ bn.Jeo.e. ⁇ Experimental Example: Measurement of Physical Properties of Compound Semiconductors Obtained in Examples and Comparative Examples> The physical properties of the compound semiconductors obtained in Examples and Comparative Examples were measured by the following methods, and the results are shown in Tables 1 and 2.
  • the compound semiconductors obtained in Examples and Comparative Examples were processed into coin-types having a diameter of 12.7 mm and a height of 1.5 mm 3 to prepare specimens. Then, for the specimen, the thermal conductivity was calculated from the measured values of thermal diffusivity, specific heat and density by the laser flash method (Netzsch, LFA-457) in the range of 50 ° C to 500 ° C. The lattice thermal conductivity was also obtained by calculating and applying the calculated value to the calculated thermal conductivity, and the results are shown in Table 1 below.
  • the compound semiconductors obtained in Examples and Comparative Examples were processed into rectangul ar-types having a width of 3 mm, a length of 3 mm, and a height of 12 mm 3 to prepare a specimen. Then, the electrical conductivity and the Seebeck coefficient of the specimens were measured using ZEM-3 J1 vac- Ri co, Inc) in the range of 50 ° C to 500 ° C.
  • ZT thermoelectric performance index
  • the electrical conductivity
  • S the Seebeck coefficient
  • the temperature
  • the thermal conductivity
  • the compound semiconductors of Examples 1 to 3 were confirmed to improve the thermoelectric performance index as compared to Comparative Examples 1 and 2 over the entire temperature measurement interval as Sn and S layered at the same time.
  • thermoelectric performance index is significantly lower than that of the embodiment, making it difficult to apply as a thermoelectric material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 Co-Sb 스커테루다이트 화합물; 상기 Co-Sb 스커테루다이트 화합물의 내부 공극에 포함된 Sn 및 S; 및 상기 Co-Sb 스커테루다이트 화합물의 Sb와 치환된 Q를 포함하고, [화학식 1] SnxSyCo4Sb12-zQz (화학식 1에서, Q는 O, Se 및 Te로 이루어진 군으로부터 선택된 1종 이상이고, 0<x<0.2, 0<y≤1 및 0<z<12) 로 표시되며, 태양전지, 열전 재료 등의 용도로 사용될 수 있는 신규한 화합물 반도체 및 그 활용에 관한 것이다.

Description

【발명의 명칭】
신규한 화합물 반도체 및 그 활용
【기술분야】
관련 출원 (들)과의 상호 인용
본 출원은 2016년 12월 28일자 한국 특허 출원 제 10-2016-0181147호 및 2017년 12월 21일자 한국 특허 출원 제 10-2017-0177275호에 기초한 우 선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내 용은 본 명세서의 일부로서 포함된다.
본 발명은 태양 전지, 열전 재료 등의 용도로 사용될 수 있는 신규한 화합물 반도체 물질 및 그 제조방법과, 이를 이용한 용도에 관한 것이다. 【발명의 배경이 되는 기술】
화합물 반도체는 실리콘이나 게르마늄과 같은 단일 원소가 아닌 2종 이상의 원소가 결합되어 반도체로서 동작하는 화합물이다. 이러한 화합물 반도체는 현재 다양한 종류가 개발되어 다양한 분야에서 사용되고 있다. 대 표적으로, 펠티어 효과 (Pel t ier Ef fect )를 이용한 열전 변환 소자, 광전 변 환 효과를 이용한 발광 다이오드나 레이저 다이오드 등의 발광 소자와 태양 전지 등에 화합물 반도체가 이용될 수 있다.
이 중 열전 변환 소자는 열전 변환 발전이나 열전 변환 냉각 등에 적 용될 수 있는데, 이 중 열전 변환 발전은 열전 변환 소자에 온도차를 둠으 로써 발생하는 열기전력을 이용하여, 열 에너지를 전기 에너지로 변환시키 는 발전 형태이다.
이러한 열전 변환 소자의 에너지 변환 효율은 열전 변환 재료의 성능 지수 값인 ZT에 의존한다. 여기서, ZT는 제백 (Seebeck) 계수, 전기 전도도 및 열 전도도 등에 따라 결정되는데, 보다 구체적으로는 제백 계수의 제곱 및 전기 전도도에 비례하며, 열전도도에 반비례한다. 따라서, 열전 변환 소 자의 에너지 변환 효율올 높이기 위하여, 제백 계수 또는 전기 전도도가 높 거나 열전도도가 낮은 열전 변환 재료의 개발이 필요하다.
한편, 태양 전지는 자연에 존재하는 태양광 이외에 별도의 에너지원 을 필요로 하지 않는다는 점에서 친환경적이므로, 미래의 대체 에너지원으 로 활발히 연구되고 있다. 태양 전지는, 주로 실리콘의 단일 원소를 이용하 는 실리콘 태양 전지와, 화합물 반도체를 이용하는 화합물 반도체 태양 전 지, 그리고 서로 다른 밴드갭 에너지 (bandgap energy)를 갖는 태양 전지를 둘 이상 적층한 적층형 ( t andem) 태양 전지 등으로 구별될 수 있다.
이 중 화합물 반도체 태양 전지는, 태양광을 흡수하여 전자 -정공 쌍 을 생성하는 광흡수층에 화합물 반도체를 사용하는데, 특히 GaAs , InP , GaAlAs , GalnAs 등의 V족 화합물 반도체, CdS , CdTe , ZnS 등의 VI족 화합 물 반도체, CuInSe2로 대표되는 m족 화합물 반도체 등을 사용할 수 있다. 태양 전지의 광흡수층은, 장기적인 전기, 광학적 안정성이 우수하고, 광전 변환 효율이 높으며, 조성의 변화나 도핑에 의해 밴드갭 에너지나 도 전형을 조절하기가 용이할 것 등이 요구된다. 또한, 실용화를 위해서는 제 조 비용이나 수율 등의 요건도 만족해야 한다. 그러나, 종래의 여러 화합물 반도체들은 이러한 요건들을 모두 함께 만족시키지는 못하고 있다.
【발명의 내용】
【해결하고자 하는 과제】
따라서, 본 발명은 상기와 같은 문제점을 해결하기 위해 창안된 것으 로서, 열전 변환 소자의 열전 변환 재료, 태양 전지 등과 같이 다양한 용도 로 활용될 수 있는 신규한 화합물 반도체 물질과 그 제조 방법, 및 이를 이 용한 열전 변환 소자나 태양 전지 등을 제공하는 것을 목적으로 한다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
【과제의 해결 수단】
상기와 같은 목적을 달성하기 위해, 본 발명자는 화합물 반도체에 관 한 거듭된 연구 끝에 C으 Sb 스커테루다이트 화합물; 상기 Co-Sb 스커테루다 이트 화합물의 내부 공극에 포함된 Sn 및 S ; 및 상기 C으 Sb 스커테루다이트 화합물의 Sb와 치환된 Q를 포함하고, 하가 화학식 1로 표시되는 화합물 반 도체를 합성하는데 성공하고, 이 화합물이 열전 변환 소자의 열전 변환 재 료나 태양 전지의 광흡수층 등에 사용될 수 있음을 확인하여 본 발명을 완 성하였다. 이하, 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적 인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가 장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다 는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해 석되어야만 한다.
따라서, 본 명세서에 기재된 실시예에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상에 모두 대변하 는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균 등물과 변형예들이 있을 수 있음을 이해하여야 한다. 본 발명은 Co-Sb 스커테루다이트 화합물; 상기 C으 Sb 스커테루다이트 화합물의 내부 공극에 포함된 Sn 및 S ; 및 상기 Co-Sb 스커테루다이트 화합 물의 Sb와 치환된 Q를 포함하고, 다음과 같은 화학식 1로 표시되는 신규한 화합물 반도체를 제공한다.
[화학식 1]
SnxSyCo4Sbi2-zQz
상기 화학식 1에서, Q는 0, Se 및 Te로 이루어진 군으로부터 선택된 1종 이상이고, 0<x<0.2 , 0<y< l 및 0<z<12이다. 상기 0, Se 및 Te로 이루어 진 군에서 선택된 1종 이상의 원소란 0, Se , Te 단독 또는 이들의 2종 이상 의 흔합을 의미할 수 있다.
상기 화학식 1에서 Sn은 주석 (t in) 원소를 표시하는 원소기호이며 , S 는 황 (sul fur ) 원소를 표시하는 원소기호이며, Co는 코발트 (cobal t ) 원소를 표시하는 원소기호이며, Sb는 안티모니 (ant imony) 원소를 표시하는 원소기 호이며, Q는 산소 (oxygen) , 샐레늄 (selenium) , 및 텔루륨 ( tel lur ium)으로 이루어진 군에서 선택된 1종 이상의 원소를 대신하는 의미로 사용되었다. 또한, 상기 화학식 1에서 X는 주석 ( t i n) 원소의 상대적인 몰비율, y는 황 (sul fur ) 원소의 상대적인 몰비율, z는 산소 (oxygen) , 셀레늄 (selenium) , 및 텔루륨 (tel lur ium)으로 이루어진 군에서 선택된 1종 이상의 원소의 상대 적인 몰비율을 의미한다. 바람직하게는, 상기 화학식 1에서 Q는 Se 또는 Te일 수 있다.
더욱 바람직하게는, 상기 화학식 1에서 Q는 Te일 수 있다.
상기 화학식 1에서 Sb 위치에 Q를 치환시킴으로서, 캐리어 농도 (carrier concentrat ion)가 증가하고, 이를 통해 상기 화학식 1의 화.합물 반 도체의 전기적 특성이 향상될 수 있다.
또한 바람직하게는, 상기 화학식 1에서 X는, 0.01≤x≤0.18인 것이 좋다.
더욱 바람직하게는, 상기 화학식 1에서 X는, 0.05≤x≤0.15인 것이 좋다.
상기 화학식 1에서 X가 0.2 이상으로 증가할 경우, Sn 및 S가 Co-Sb 격자 내부의 빈 공간에 위치하지 못한채 SnS 등의 이차상을 형성하므로 상 기 화학식 1의 화합물 반도체의 열전도도가 급격히 증가함에 따라, 열전 성 능이 감소할 수 있다.
또한 바람직하게는, 상기 화학식 1에서 y는, 0<y≤0.5안 것이 좋다. 본 발명자들은 우수한 열전 성능을 갖는 N 형 스커테루다이트 열전재 료에 관한 연구를 진행하여, Co-Sb 스커테루다이트 화합물에 층진재로 Sn 및 S의 원소를 멀티 층진하고, Sb 자리에 특정 전하 보상재를 도핑하는 경 우, 격자 열전도도가 낮아지고, 출력인자가 상승하여 높은 열전변환 효율을 나타냄을 실험을 통하여 확인하고 발명을 완성하였다.
상기 스커테루다이트 화합물은 하기 도 2에 나타난 바와 같은 단위격 자 구조를 가질 수 있으며 , 구체적으로 단위격자 내에서는, 금속원자가 8개 의 꼭지점에 위치하고, 내부에 비금속원자 4개가 평면구조를 이루고 있는 정육면체 구조를 6개 함유하고, 금속원자가 8개의 꼭지점에 위치하고, 내부 가 비어있는 정육면체 구조를 2개 함유할 수 있다.
본 발명에서는, Co-Sb 스커테루다이트 화합물 단위격자에 포함된 공 극 (void)에 Sn 및 S 원소를 하기 도 1과 같이 층진재 (filler)로 충진하여 래를링 (rattling)효과를 유발시킴으로써 격자 열전도도를 감소시키고, Sn을 통해 추가 전자를 공급하고, S에 의해 홀을 공급하는 화학적 특성을 통해 전하 운반자 농도를 최적 수준으로 조절할 수 있다. 이와 같이, 격자 열전 도도가 감소되고, 출력인자가 향상된 N 형 스커테루다이트 열전재료는 보다 향상된 열전 특성을 나타낼 수 있다.
또한, 상기 Co-Sb 스커테루다이트 화합물에서, Sb 자리에 0, Se 및 Te 로 이루어진 군으로부터 선택되는 1 종 이상의 원소가 치환 (도핑)될 수 있으며, 상기 Sb 자리에 치환 (도핑)된 원소의 도핑량 z 는 0<z<12 범위의 값을 갖는다. 특히, 상기 도핑량 z 값이 0.2 를 초과하는 경우, 이차상의 형성으로 열전특성이 저하될 수 있기 때문에, 0<z≤0.2 인 것이 바람직하다.
이와 같이, Sb 자리에 특정 전하 보상재가 치환 (도핑)된 N 형 스커테루다이트 열전재료는 전하운반자 농도를 제어하여 최적화할 수 있고, 격자 열전도도를 감소시켜 보다 높은 열전 성능지수 ZT 값을 가질 수 있다.
특히, Sb 자리에 치환 (도핑)되는 전하. 보상재로는 Te 또는 Se 를 사용하는 것이 바람직한데, 이는 N 형 스커테루다이트 열전재료에서, Te 또는 Se 의 경우 각 원자의 이온화도에 따라 세부적으로는 차이가 있지만, 이로부터 제공되는 전자의 농도가 층분히 높아 추가적인 전자를 제공할 수 있어, 전하운반자 농도를 제어 및 최적화할 수 있기 때문이다.
반면, 상기 Sb 자리에 치환 (도핑)되는 전하 보상재로 Sn 을 사용하는 경우, Sn 으로부터 제공되는 전자의 농도가 작아 추가적인 정공을 제공하게 되어, P 형 스커테루다이트 열전재료에 적합하며, N 형 스커테루다이트 열전재료로 사용하기 어려운 한계가 있다.
즉, 상기 일 구현예의 화합물 반도체는 Co— Sb 스커테루다이트 화합물; 상기 Co-Sb 스커테루다이트 화합물의 내부 공극에 포함된 Sn 및 S ; 및 상기 Co-Sb 스커테루다이트 화합물의 Sb 와 치환된 Q 를 포함할 수 있다. 또한, 상기 일 구현예의 화합물 반도체는 N형 화합물 반도체로 사용될 수 있다. 한편, 상기 화학식 1의 화합물 반도체는 Sn과 S를 함께 포함함에 따라 ; 고온에서도 산화에 대한 안정성이 높아 공정 비용을 최소화하면서, 열전 모 들 내에서 내구성을 향상시킬수 있을 뿐 아니라, 상기 화학식 1의 화합물 반 도체의 열전도도를 현저히 감소시켜 향상된 열전성능을 구현할 수 있다.
이때, 상기 화학식 1의 y 1몰에 대한 X의 몰비는 0 . 1 몰 내지 0.9 몰, 또는 0.2 몰 내지 0.8 몰, 또는 0.25 몰 내지 0.75 몰일 수 있다. 상기 화 학식 1의 y 1몰에 대한 X의 몰비가 0.9 초과로 증가할 경우, 상기 화학식 1 의 화합물 반도체의 열전도도가 급격히 증가함에 따라, 열전 성능이 감소할 수 있다. 또한, 상기 화학식 1의 y 1몰에 대한 X의 몰비가 0. 1 미만으로 감 소할 경우, 상기 화학식 1의 화합물 반도체 내에서 Sn의 함량이 층분치 못해, Sn 첨가에 따른 효과를 층분히 구현하기 어렵다.
바람직하게는, 상기 화학식 1에서 z는, 0<z≤4이다.
더욱 바람직하게는, 상기 화학식 1에서 z는, 0<ζ≤2 · 5인 것이 좋다. 가장 바람직하게는, 상기 화학식 1에서 ζ는, 0<ζ≤1.5인 것이 좋다. 한편, 상기 화학식 1로 표시되는 화합물 반도체에는, 2차상이 일부 포함될 수 있으며, 그 양은 열처리 조건에 따라 달라질 수 있다.
본 발명에 따른 화합물 반도체는, 0, Se 및 Te로 이루어진 군에서 선 택된 1종 이상의 원소, Sn, S, Co 및 Sb를 포함하는 흔합물을 형성하는 단 계 및 이러한 흔합물을 열처리하는 단계를 포함하여 제조될 수 있다. 상기 0, Se 및 Te로 이루어진 군에서 선택된 1종 이상의 원소는 0, Se , Te 단독 또는 이들의 2종 이상의 흔합을 의미할 수 있다.
한편, 상기 흔합물 형성 단계에서 흔합되는 각 원료는 분말 형태일 수 있으나, 본 발명이 반드시 이러한 흔합 원료의 특정 형태에 의해 제한되 는 것은 아니다.
또한 바람직하게는, 상기 열처리 단계는, 진공 중 또는 수소를 일부 포함하고 있거나 수소를 포함하지 않는 Ar , He , N2 등의 기체를 홀리면서 수 행될 수 있다.
이때, 열처리 온도는 400 °C 내지 800 ^일 수 있다. 바람직하게는, 상기 열처리 온도는 450 °C 내지 700 °C 일 수 있다. 더욱 바람직하게는, 상기 열처리 온도는 500 °C 내지 700 °C일 수 있다.
한편, 상기 열처리 단계는, 둘 이상의 열처리 단계를 포함할 수 있다. 예를 들어, 상기 흔합물을 형성하는 단계, 즉 원료를 흔합하는 단계에서 형 성된 흔합물에 대하여, 게 1 온도에서 1차 열처리를 수행한 후, 제 2 온도에 서 2차 열처리를 수행할 수도 있다.
이 경우, 상기 복수의 열처리 단계 중 일부 열처리 단계는, 원료를 흔합하는 상기 흔합물 형성 단계에서 수행될 수 있다. 예를 들어, 상기 열처리 단계는, 1차 열처리 단계, 2차 열처리 단계 및 3차 열처리 단계의 3개의 열처리 단계를 포함할 수 있다. 그리고, 1차 열처리 단계는 400 °C 내지 600 °C의 온도 범위에서 수행될 수 있고, 2차 열처리 단계 및 3차 열처리 단계는 600 °C 내지 800 °C의 온도 범위에서 수 행될 수 있다. 이때, 1차 열처리 단계는 원료가 흔합되는 흔합물 형성 단계 중에 수행되고, 2차 열처리 단계 및 3차 열처리 단계는 그 이후에 순차적으 로 수행될 수 있다.
상기 열처리 단계 이후에는, 열처리된 흔합물을 넁각시키는 단계를 포함할 수 있다. 상기 넁각단계는 상기 열처리된 흔합물의 온도를 상온 (약 20 °C 내지 30 °C )에 이르도록 수행되며, 종래 알려진 다양한 냉각방법 또 는 넁각장치를 제한없이 사용할 수 있다.
한편, 상기 열처리 또는 필요에 따라 열처리 후 냉각된 흔합물쎄 대 해서 추가적으로 가압 소결단계를 더 거칠 수 있다. 상기 가압 소결 단계를 진행하는 구체적인 방법의 예가 크게 한정되는 것은 아니나, 바람직하게는 핫프레스 방식 또는 방전 플라즈마 소결 (spark plasma s inter ing: SPS) 방 식을 사용할 수 있다. 상기 가압 소결단계는 구체적으로, 500 °C 내지 700 의 은도.및 20 MPa 내지 50 MPa 압력에서 10 분 내지 60 분 간 진행될 수 있다.
상기 소결 온도가 500 °C 미만이거나 소결시간 및 압력이 낮을 경우 고밀도 의 소결체를 얻을 수 없다. 또한 압력이 높을 경우, 적용 몰드 및 장비의 위험을 초래할 수 있기 때문에 바람직하지 못하다.
특히, 바람직하게는 방전 플라즈마 소결 (spark plasma sinter ing: SPS) 방식을 사용할 수 있다. 방전플라즈마 소결법 ( spark pl asma s inter ing , SPS)은 분말이나 판재를 1축으로 가압하면서 가압방향과 평행한 방향으로 직류필스 전류를 인가하여 소결하는 방법으로서, 분말이나 판재에 압력과 저전압 및 대전류를 투입하고 이때 발생하는 스파크에 의해 순식간 에 발생하는 플라즈마의 고에너지를 전계확산, 열확산 등에 응용하는 소결 법이다. 이러한 방전 플라즈마 소결법은 종래 열간압축법 (Hot Press )에 비 해서, 소결 온도가 더 낮고, 승온 및 유지시간을 포함하여 단시간에 소결을 완료할 수 있기 때문에, 전력소비가 크게 줄며, 취급이 간편하고, 러닝코스 트가 저렴하다. 또한 소결기술에 대한 숙련이 필요하지 않고, 난소결재 및 고온에서 가공이 어려운 재료들에 대해서도 적용이 가능하다는 이점이 있다. 상기 가압 소결단계을 진행하기 전에 열처리 또는 필요에 따라 열처 리 후 냉각된 혼합물을 분쇄하는 단계를 더 포함할 수 있다. 상기 분쇄방법 의 예는 크게 한정되지 않으며, 종래 알려진 다양한 분쇄방법 또는 분쇄장 치를 제한없이 적용할 수 있다.
본 발명에 따른 열전 변환 소자는, 상술한 화합물 반도체를 포함할 수 있다. 즉, 본 발명에 따른 화합물 반도체는 열전 변환 소자의 열전 변환 재료로 이용될 수 있다. 특히, 본 발명에 따른 화합물 반도체는 열전 변환 재료의 성능 지수값인 ζτ가 크다. 또한, 제백 계수 및 전기 전도도가 크고, 열 전도도가 낮아 열전 변환 성능이 우수하다. 따라서, 본 발명에 따른 화 합물 반도체는, 종래의 열전 변환 재료를 대체하거나 종래의 화합물 반도체 에 더하여 열전 변환 소자에 유용하게 이용될 수 있다.
또한, 본 발명에 따른 태양 전지는, 상술한 화합물 반도체를 포함할 수 있다. 즉, 본 발명에 따른 화합물 반도체는 태양 전지, 특히 태양 전지 의 광 흡수층으로 이용될 수 있다.
태양 전지는, 태양광이 입사되는 쪽에서부터 순차적으로, 전면 투명 전극, 버퍼층, 광 흡수층, 배면 전극 및 기판 등이 적층된 구조로 제조할 수 있다. 가장 아래에 위치하는 기관은 유리로 이루어질 수 있으며, 그 위 에 전면적으로 형성되는 배면 전극은 Mo 등의 금속을 증착함으로써 형성될 수 있다.
이어서, 배면 전극 상부에 본 발명에 따른 화합물 반도체를 전자빔 증착법, 졸-겔 (sol-gel )법, PLLKPul sed Laser Depos i t ion) 등의 방법으로 적층함으로써 상기 광 흡수층을 형성할 수 있다. 이러한 광 흡수층의 상부 에는, 전면 투명 전극으로 사용되는 ZnO층과 광 흡수층 간의 격자 상수 차 이 및 밴드갭 차이를 완층하는 버퍼층이 존재할 수 있는데, 이러한 버퍼층 은 CdS 등의 재료를 CBD Chemi cal Bath Deposi t ion) 등의 방법으로 증착함 으로써 형성될 수 있다. 다음으로, 버퍼층 위에 ZnO나 ZnO 및 ITC)의 작층막 으로 전면 투명 전극이 스퍼터링 등의 방법으로 형성될 수 있다.
본 발명에 따른 태양 전지는 다양한 변형이 가능할 수 있다. 예를 들 어, 본 발명에 따른 화합물 반도체를 광 흡수층으로 사용한 태양 전지를 적 층한 적층형 태양 전지를 제조할 수 있다. 그리고, 이와 같이 적층된 다른 태양전지는 실리콘이나 다른 알려진 화합물 반도체를 이용한 태양 전지를 사용할 수 있다.
또한, 본 발명의 화합물 반도체의 밴드 갭을 변화시킴으로써 서로 다 른 밴드갭을 가지는 화합물 반도체를 광 흡수층으로 사용하는 복수의 태양 전지를 적층할 수도 있다. 본 발명에 따른 화합물 반도체의 밴드 갭은 이 화합물을 이루는 구성 원소, 특히 Te의 조성비를 변화시킴으로써 조절이 가 능할 수 있다.
또한, 본 발명에 따른 화합물 반도체는 적외선을 선택적으로 통과시 키는 적외선 원도우 ( IR window)나 적외선 센서 등에도 적용될 수 있다. 【발명의 효과】
본 발명에 의하면, 신규한 화합물 반도체 물질이 제공된다. 본 발명 의 일 측면에 의하면, 이러한 신규한 화합물 반도체는 종래의 화합물 반도 체를 대체하거나 종래의 화합물 반도체에 더하여 또 다른 하나의 소재로서 사용될 수 있다.
더욱이, 본 발명의 일 측면에 의하면 화합물 반도체의 열전 변환 성 능이 양호하여 열전 변환 소자에 유용하게 이용될 수 있다. 특히, 본 발명 에 따른 화합물 반도체는 열전 변환 소자의 열전 변환 재료로 이용될 수 있 다.
또한, 본 발명의 다른 측면에 의하면, 화합물 반도체가 태양 전지에 이용될 수 있다. 특히, 본 발명에 따른 화합물 반도체는 태양 전지의 광흡 수층으로 이용될 수 있다.
뿐만 아니라, 본 발명의 또 다른 측면에 의하면, 화합물 반도체가 적 외선을 선택적으로 통과시키는 적외선 원도우 ( IR window)나 적외선 센서, 마그네틱 소자, 메모리 등에도 이용될 수 있다.
【도면의 간단한 설명】
도 1은 실시예 1 화합물의 단위격자를 나타낸 것이다.
도 2는 스커테루다이트 화합물의 단위격자를 나타낸 것이다. 【발명을 실시하기 위한 구체적인 내용】
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시 예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하 여 한정되는 것은 아니다.
<실시예 1내지 3: 화합물 반도체의 제조 >
실시예 1
Co4Sb12 스커테루다이트 화합물; 상기 Co4Sb12 스커테루다이트 화합물 의 내부 공극에 Sn 및 S이 층진되고, 상기 Co4Sb12 스커테루다이트 화합물의 Sb에 Te가 도핑된 Sno.osS^CoASbn.Jeo.s를 다음 방법으로 합성하였다.
파우더 형태의 Sn, S , Co , Sb 및 Te를 칭량한 후, 이들을 알루미나 몰타르 (ahimina mortar )에 넣고 흔합하였다. 흔합된 재료는 초경 몰드에 넣 어 펠렛을 만들고, 퓨즈드 실리카 튜브 ( fused s i l i ca tube) 에 넣고 진공 밀봉하였다. 그리고, 이를 박스 퍼니스 (box furnace)에 넣어 680 °C에서 15 시간 가열하고, 이후 실온까지 서서히 식혀 Sno.osSo^o bn.^eo.s를 합성하 였다.
그리고, 상기 합성된 화합물을 방전 폴라즈마 소결용 그라파이트 몰 드에 충진한 후, 650 "C 온도, 50MPa 압력에서 10 분간 방전 플라즈마 소결 하여 상기 실시예 1의 화합물 반도체를 제조하였다. 이때, 상기 화합물 반도 체의 상대 밀도는 98%이상으로 측정되었다. 실시예 2
흔합물 조성을 Sno.iSo.sCo^bn.^eo.ij로 변경한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 화합물 반도체를 제조하였다. 실시예 3
흔합물 조성을 Sno. ^o.i ^Sbu.^eo.s로 변경한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 화합물 반도체를 제조하였다. <비교예 1내지 3: 화합물 반도체의 제조 > 비교예 1
시약으로 S , Co , Sb 및 Te를 준비하고, 흔합물 조성을
So.z MSbu Teo.e로 변경한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 화합물 반도체를 제조하였다. 비교예 2
시약으로 Sn, Co , Sb 및 Te를 준비하고, 흔합물 조성을 Sno.05CO4Sbn.4Teo.6로 변경한 것을 제외하고 상기 실시예 1과 동일한 방법으 로 화합물 반도체를 제조하였다. 비교여 13
흔합물 조성을 Sno.sSo.zCo^bn.Jeo.e로 변경한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 화합물 반도체를 제조하였다. <실험예: 실시예 및 비교예에서 얻어진 화합물 반도체의 물성 측정 > 상기 실시예 및 비교에에서 얻어진 화합물 반도체의 물성을 하기 방 법으로 측정하였으며, 그 결과를 표 1 및 표 2에 나타내었다.
1. 격자 열전도도 (W/mK)
상기 실시예 및 비교예에서 얻어진 화합물 반도체를 직경 12.7 mm , 높이 1.5 隱의 coin-type으로 가공하여 시편을 제조하였다. 그리고, 상기 시편에 대하여, 50 °C 에서 500 °C까지의 범위에서 레이저 플래시법 (Netzsch, LFA-457)에 의한 열확산도, 비열 그리고 밀도의 측정값으로부터 열전도도를 산출한 다음, 로렌츠 넘버를 계산하고 그 값을 산출된 열전도도 에 적용시켜 격자 열전도도 구하였고, 그 결과를 하기 표 1 에 나타내었다.
【표 1]
실시예 및 비교예 화합물 반도체의 격자 열전도도
Figure imgf000013_0001
Figure imgf000014_0001
Figure imgf000015_0001
상기 표 1에 나타난 바와 같이, 실시예 1 내지 3의 화합물 반도체는 Sn 및 S가 동시에 충진됨에 따라, 전체 은도 측정 구간에 걸쳐 비교예 1 및 2에 비해 격자열전도도가 낮아지는 것을 확인할 수 있었다.
또한, 비교예 3과 같이 Sn을 과량으로 충진시킨 경우, Sn 및 S가 Co- Sb 격자 내부의 빈 공간에 위치하지 못한채 SnS 등의 이차상을 형성하므로 실시예에 비해 격자 열전도도가 높아짐을 확인할 수 있었다.
2. 열전성능지수 (ZT)
상기 실시예 및 비교예에서 얻어진 화합물 반도체를 가로 3 mm, 세로 3 mm, 높이 12 隱의 rectangul ar-type으로 가공하여 시편을 제조하였다. 그 리고, 상기 시편에 대하여 50 °C 에서 500 °C까지의 범위에서 ZEM-3 J1 vac- Ri co , Inc)를 사용하여 전기전도도 및 제백 계수를 측정하였다.
그리고, 상기 측정된 전기전도도, 제백 계수와, 상술한 실험예 1의 열 전도도 값을 이용하여 하기 수학식을 통해 열전성능지수 (ZT)를 산출하고 그 결과를 하기 표 2에 나타내었다.
[수학식]
ZT = σ S2T/K
여기서, ZT는 열전성능지수, σ는 전기 전도도, S는 제백 계수, Τ는 온도, Κ는 열전도도를 나타낸다.
【표 2】
실시예 및 비교예 화합물 반도체의 열전성
Figure imgf000015_0002
Figure imgf000016_0001
Figure imgf000017_0001
상기 표 2에 나타난 바와 같이, 실시예 1 내지 3의 화합물 반도체는 Sn 및 S가 동시에 층진됨에 따라, 전체 온도 측정 구간에 걸쳐 비교예 1 및 2에 비해 열전성능지수가 향상되는 것을 확인할 수 있었다.
또한, 비교예 3과 같이 Sn을 과량으로 충진시킨 경우, 실시예에 비해 열전성능지수가 현저히 낮아져 열전재료로서 적용이 어렵다는 점을 확인할 수 있었다.

Claims

【청구범위】 【청구항 1】 Co-Sb 스커테루다이트 화합물; 상기 Co-Sb 스커테루다이트 화합물의 내부 공극에 포함된 Sn 및 S ; 및 상기 Co-Sb 스커테루다이트 화합물의 Sb와 치환된 Q를 포함하고, 하기 화학식 1로 표시되는 화합물 반도체 :
[화학식 1]
SnxSyCo4Sbi2-zQz
상기 화학식 1에서, Q는 0, Se 및 Te로 이루어진 군으로부터 선택된 1종 이상이고, 0<x<0.2 , 0<y < l 및 0<z<12이다.
【청구항 2]
게 1항에 있어서,
상기 화학식 1의 y 1몰에 대한 X의 몰비는 0. 1 몰 내지 0.9 몰인, 화 합물 반도체 .
【청구항 3]
제 1항에 있어서,
상기 y 1몰에 대한 X의 뭅비는 0.2 몰 내지 0.8 몰인, 화합물 반도체.
【청구항 4】
제 1항에 있어서,
상기 화학식 1의 z는 0<z≤4인, 화합물 반도체.
【청구항 5】
제 1항에 있어서,
상기 화학식 1의 z 1몰에 대한 X의 몰비는 0.01 몰 내지 0.5 몰인, 화합물 반도체 .
【청구항 6】
제 1항에 있어서, 상기 화학식 1의 z 1몰에 대한 X의 몰비는 0.05 몰 내지 0.3 몰인, 화합물 반도체 .
【청구항 7]
제 1항에 있어서,
상기 Co-Sb 스커테루다이트 화합물은 단위격자당 2개의 공극을 포함 하는, 화합물 반도체 .
【청구항 8]
제 1항에 있어서,
상기 화합물 반도체는,
N형 화합물 반도체인, 화합물 반도체 .
【청구항 9】
0, Se 및 Te로 이루어진 군에서 선택된 1종 이상의 원소, Sn, S, Co 및 Sb를 포함하는 흔합물을 형성하는 단계; 및
상기 흔합물을 열처리하는 단계를 포함하는 제 1항의 화합물 반도체의 제조 방법 .
【청구항 10】
제 9항에 있어서,
상기 열처리 단계는, 400 °C 내지 800 °C에서 수행되는 것을 특징으 로 하는 화합물 반도체의 제조 방법 .
【청구항 11】
제 9항에 있어서,
상기 열처리 단계는, 둘 이상의 열처리 단계를 포함하는 것을 특징으 로 하는 화합물 반도체의 제조 방법 .
【청구항 12】 거 19항에 있어서,
상기 혼합물을 열처리 단계 이후, 가압 소결 단계를 더 포함하는 것 을 특징으로 하는 화합물 반도체의 제조 방법.
【청구항 13】
거 11항 내지 게 8항 중 어느 한 항에 따른 화합물 반도체를 포함하는 열전 변환 소자.
【청구항 14】
제 1항 내지 제 8항 중 어느 한 항에 따른 화합물 반도체를 포함하는 태양 전지.
PCT/KR2017/015374 2016-12-28 2017-12-22 신규한 화합물 반도체 및 그 활용 WO2018124660A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17886732.1A EP3447812B1 (en) 2016-12-28 2017-12-22 Novel compound semiconductor and use thereof
CN201780025805.3A CN109275341B (zh) 2016-12-28 2017-12-22 化合物半导体及其用途
JP2018552661A JP6775841B2 (ja) 2016-12-28 2017-12-22 新規な化合物半導体およびその活用
US16/095,029 US11072530B2 (en) 2016-12-28 2017-12-22 Compound semiconductor and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0181147 2016-12-28
KR20160181147 2016-12-28
KR1020170177275A KR102123042B1 (ko) 2016-12-28 2017-12-21 신규한 화합물 반도체 및 그 활용
KR10-2017-0177275 2017-12-21

Publications (1)

Publication Number Publication Date
WO2018124660A1 true WO2018124660A1 (ko) 2018-07-05

Family

ID=62710356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015374 WO2018124660A1 (ko) 2016-12-28 2017-12-22 신규한 화합물 반도체 및 그 활용

Country Status (1)

Country Link
WO (1) WO2018124660A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196647A (ja) * 2000-01-14 2001-07-19 Toshiba Corp 熱電材料とその設計法
KR20090026667A (ko) * 2007-09-10 2009-03-13 충주대학교 산학협력단 Sn 충진 및 Te 도핑된 스커테루다이트계 열전재료 및그 제조방법
KR20090026665A (ko) * 2007-09-10 2009-03-13 충주대학교 산학협력단 CoSb3 스커테루다이트계 열전재료 및 그 제조방법
US20100155675A1 (en) * 2004-07-23 2010-06-24 Gm Global Technology Operations, Inc. Filled Skutterudites for Advanced Thermoelectric Applications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196647A (ja) * 2000-01-14 2001-07-19 Toshiba Corp 熱電材料とその設計法
US20100155675A1 (en) * 2004-07-23 2010-06-24 Gm Global Technology Operations, Inc. Filled Skutterudites for Advanced Thermoelectric Applications
KR20090026667A (ko) * 2007-09-10 2009-03-13 충주대학교 산학협력단 Sn 충진 및 Te 도핑된 스커테루다이트계 열전재료 및그 제조방법
KR20090026665A (ko) * 2007-09-10 2009-03-13 충주대학교 산학협력단 CoSb3 스커테루다이트계 열전재료 및 그 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BO DUAN: "Enhanced thermoelectric performance in sulfur-doped Co4Sb11.9-x TexSO.l skutterudites", MATERIALS LETTERS, vol. 79, 15 July 2012 (2012-07-15), pages 69 - 71, XP055340280 *
See also references of EP3447812A4 *

Similar Documents

Publication Publication Date Title
KR101614062B1 (ko) 신규한 화합물 반도체 및 그 활용
KR20120127303A (ko) 신규한 화합물 반도체 및 그 활용
KR20150035398A (ko) 신규한 화합물 반도체 및 그 활용
KR20120122932A (ko) 신규한 화합물 반도체 및 그 활용
KR102123042B1 (ko) 신규한 화합물 반도체 및 그 활용
WO2018124660A1 (ko) 신규한 화합물 반도체 및 그 활용
KR101357159B1 (ko) 신규한 화합물 반도체 및 그 활용
KR102122573B1 (ko) 신규한 화합물 반도체 및 그 활용
KR102003352B1 (ko) 신규한 화합물 반도체 및 그 활용
JP6749716B2 (ja) 新規な化合物半導体及びその活用
KR101711527B1 (ko) 화합물 반도체 및 그 제조 방법
KR20120127313A (ko) 신규한 화합물 반도체 및 그 활용

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018552661

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017886732

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017886732

Country of ref document: EP

Effective date: 20181018

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE