WO2018124123A1 - 電源システム - Google Patents

電源システム Download PDF

Info

Publication number
WO2018124123A1
WO2018124123A1 PCT/JP2017/046764 JP2017046764W WO2018124123A1 WO 2018124123 A1 WO2018124123 A1 WO 2018124123A1 JP 2017046764 W JP2017046764 W JP 2017046764W WO 2018124123 A1 WO2018124123 A1 WO 2018124123A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
voltage
wiring
frequency
target value
Prior art date
Application number
PCT/JP2017/046764
Other languages
English (en)
French (fr)
Inventor
佑介 梅津
杉本 和繁
聡一郎 阪東
直輝 山口
清志 木村
卓 高山
貴人 宇田
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to CA3042496A priority Critical patent/CA3042496C/en
Priority to BR112019011400-9A priority patent/BR112019011400B1/pt
Priority to US16/468,882 priority patent/US10985560B2/en
Priority to CN201780080565.7A priority patent/CN110114951B/zh
Priority to EP17885800.7A priority patent/EP3565081B1/en
Publication of WO2018124123A1 publication Critical patent/WO2018124123A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/106Parallel operation of dc sources for load balancing, symmetrisation, or sharing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/04Circuit arrangements for ac mains or ac distribution networks for connecting networks of the same frequency but supplied from different sources
    • H02J3/06Controlling transfer of power between connected networks; Controlling sharing of load between connected networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D2221/00Electric power distribution systems onboard aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D41/00Power installations for auxiliary purposes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/44The network being an on-board power network, i.e. within a vehicle for aircrafts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/008Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators

Definitions

  • the present invention relates to a power supply system.
  • a power supply system used for an aircraft or the like
  • a power supply system provided with a plurality of generators is known.
  • Such power supply systems are broadly classified into a split method, a parallel operation method, a BTB (Back To Back) method, and the like.
  • the split system is configured such that a plurality of generators are connected to independent AC wiring sections (power supply BUS), and one generator supplies power to a load connected to each power supply BUS.
  • power supply BUS independent AC wiring sections
  • one generator supplies power to a load connected to each power supply BUS.
  • a load wiring
  • the corresponding power source BUS is connected to another power source BUS or an auxiliary power unit (APU: Auxiliary Power Unit), so that the corresponding power source BUS
  • APU Auxiliary Power Unit
  • a power conversion device is connected to each power source BUS in the split system.
  • Each power conversion device is configured to convert AC power of the power source BUS into DC power, and each power conversion device corresponding to each power source BUS is connected to each other at the DC unit.
  • power adjustment to the power source BUS is performed based on the AC voltage of the power source BUS to which each power conversion device corresponds, and a predetermined one of a plurality of power conversion devices connected to each other in the DC unit is used.
  • the power conversion device adjusts the power to the power source BUS based on the voltage of the DC unit.
  • a power conversion device that performs power adjustment to the power source BUS based on the voltage of the direct current unit among a plurality of power conversion devices is determined in advance. Therefore, when a power failure occurs in the power source BUS corresponding to the power conversion device that performs control based on the voltage of the DC unit, it is not possible to perform power adjustment between the plurality of power conversion devices. In other words, the BTB method is not a system that assumes the occurrence of a power outage.
  • the present invention solves the above-described problem, and in a power supply system in which a plurality of wiring units each including at least one generator are connected to each other, each wiring unit is in the case where an abnormality occurs in one generator. It is an object of the present invention to provide a power supply system that can continue power supply to the power supply unit and can prevent other wiring units from being affected when an abnormality occurs in a part of the wiring unit.
  • a power supply system is a power supply system including a plurality of generators, each of a plurality of AC wiring portions connected to each of the plurality of generators, and each of the plurality of AC wiring portions.
  • a plurality of power converters connected to each other, a DC wiring unit connecting the plurality of power converters to each other, a corresponding AC wiring unit by transmitting a drive signal to the plurality of power converters, and the DC wiring unit
  • Each of the plurality of generators has a predetermined frequency relationship with respect to the generator active power output from each generator to the corresponding AC wiring section.
  • the plurality of power conversion devices convert AC power input through each AC wiring unit into DC power and DC power input through the DC wiring unit.
  • the control device is configured so that the frequency relationship with respect to the power conversion device active power output from each power conversion device to the corresponding AC wiring portion has a predetermined second drooping characteristic.
  • the drive signal for each power converter is generated by determining a target value of the control element and correcting the target value of the control element according to a DC voltage in the DC wiring section.
  • the power converter has a first drooping characteristic, and each power converter outputs a target value of a control element for AC / DC conversion in the power converter to the corresponding AC wiring section. It is determined to have a second drooping characteristic in the relationship of frequency to active power.
  • the target value of the control element is corrected according to the DC voltage in the DC wiring section. Thereby, it can suppress that direct current voltage falls or rises excessively, and can balance transfer of the electric power between the some power converters connected by the common direct current wiring part.
  • the plurality of power conversion devices execute the same control mode while taking into consideration the DC voltage in the DC wiring section, whereby the power output in each AC wiring section is controlled. Therefore, it is possible to continue the power supply to each wiring unit when an abnormality occurs in one generator while executing the same control mode regardless of whether there is an abnormality in the generator or the wiring unit. When an abnormality occurs in a part of the wiring, it is possible to prevent other wiring portions from being affected.
  • the control device determines a target value of the control element such that a relationship between the AC voltage and the power conversion device reactive power output to the AC wiring section corresponding to each power conversion device has a predetermined third drooping characteristic. It may be configured as follows. According to this, not only the power converter active power output from the power converter but also the power converter reactive power output from the power converter is controlled using the drooping characteristic. Therefore, power can be exchanged between the plurality of wiring units in accordance with the change in reactive power accompanying the load change.
  • the control device calculates a frequency target value by a frequency target value calculation process including a calculation of multiplying a value based on a deviation of the power converter active power with respect to a predetermined active power command value by a coefficient indicating the second drooping characteristic.
  • a frequency target value calculation unit may be provided.
  • the frequency target value calculation unit calculates a frequency reference value obtained by multiplying a value based on a deviation of the power conversion device active power from the active power command value by a coefficient indicating the second drooping characteristic, and a predetermined DC voltage
  • a frequency correction value obtained by multiplying a deviation of the DC voltage with respect to the command value by a predetermined correction coefficient is calculated, and the frequency reference value is calculated by adding the frequency reference value and the frequency correction value to the predetermined frequency command value. Also good.
  • the frequency target value calculation unit calculates an active power correction value obtained by multiplying a deviation of the DC voltage with respect to a predetermined DC voltage command value by a predetermined correction coefficient, and a deviation of the power converter active power with respect to the active power command value
  • the value obtained by adding the active power correction value to the value may be multiplied by a coefficient indicating the second drooping characteristic.
  • the control device calculates an active power target value by an active power target value calculation process including an operation of multiplying a value based on a deviation of the frequency with respect to a predetermined frequency command value by a coefficient indicating the second drooping characteristic.
  • a target value calculation unit may be provided.
  • the active power target value calculation unit calculates an active power reference value obtained by multiplying a value based on a deviation of the frequency with respect to the frequency command value by a coefficient indicating the second drooping characteristic, and calculates a predetermined DC voltage command value.
  • An active power correction value obtained by multiplying the deviation of the DC voltage by a predetermined correction coefficient is calculated, and the active power target value is calculated by adding the active power reference value and the active power correction value to a predetermined active power command value. May be.
  • the control device performs an AC voltage target value calculation process including an operation of multiplying a value based on a deviation of the power converter reactive power with respect to a predetermined reactive power command value by a coefficient indicating the third drooping characteristic. You may provide the alternating voltage target value calculating part which computes.
  • the control device calculates a reactive power target value by a reactive power target value calculation process including a calculation of multiplying a value based on a deviation of the AC voltage with respect to a predetermined AC voltage command value by a coefficient indicating the third drooping characteristic.
  • a reactive power target value calculation unit may be provided.
  • the control device is configured such that the control element serving as a reference for the target value of the control element is based on a value obtained by averaging the frequencies of the plurality of AC wiring portions so that outputs of the generators are equal to each other.
  • a command value correction unit that corrects the command value may be provided. Accordingly, it is possible to balance the outputs of the plurality of generators while appropriately transferring power between the plurality of wiring units.
  • the present invention in a power supply system in which a plurality of wiring units each including at least one generator are connected to each other, when an abnormality occurs in one generator, power supply to each wiring unit is continued. In the case where an abnormality occurs in a part of the wiring portion, it is possible to prevent other wiring portions from being affected.
  • FIG. 1 is a block diagram showing a schematic configuration of the power supply system according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram showing a schematic configuration of a control system when the control device of the power conversion device in the power supply system shown in FIG. 1 is a voltage control type control device.
  • FIG. 3 is a graph showing the second drooping characteristic in the present embodiment.
  • FIG. 4 is a block diagram showing a schematic configuration of a control system when the control device of the power conversion device in the power supply system shown in FIG. 1 is a current control type control device.
  • FIG. 5 is a block diagram showing a schematic configuration of a control system when the control device of the power conversion device in the power supply system shown in FIG. 1 is a control device for virtual generator model control.
  • FIG. 6 is a block diagram showing a configuration of a frequency target value calculation unit in the control device shown in FIG.
  • FIG. 7 is a block diagram showing a configuration of an active power correction value calculation unit in the control device shown in FIG.
  • FIG. 8 is a block diagram showing a configuration of an internal phase difference angle calculation unit in the control device shown in FIG.
  • FIG. 9 is a block diagram showing a configuration of an internal electromotive force target value calculation unit in the control device shown in FIG.
  • FIG. 10 is a block diagram showing a configuration of a target current value calculation unit in the control device shown in FIG.
  • FIG. 11 is a graph showing simulation results for changes in active power when equal loads are connected to two AC wiring portions.
  • FIG. 12 is a graph showing simulation results for changes in frequency and DC voltage when equal loads are connected to two AC wiring portions.
  • FIG. 13 is a graph showing a simulation result of active power change when a 60 kW load is connected to one AC wiring section and a 30 kW load is connected to the other AC wiring section.
  • FIG. 14 is a graph showing simulation results for changes in frequency and DC voltage when a 60 kW load is connected to one AC wiring section and a 30 kW load is connected to the other AC wiring section.
  • FIG. 15 is a graph showing a simulation result of a change in active power when one generator is disconnected from the AC wiring section in the steady state of FIG.
  • FIG. 16 is a graph showing simulation results for changes in frequency and DC voltage when one generator is disconnected from the AC wiring section in the steady state of FIG.
  • FIG. 17 is a block diagram showing a schematic configuration of the power supply system according to Embodiment 2 of the present invention.
  • FIG. 18 is a block diagram showing an example of the configuration of the command value correction unit shown in FIG.
  • FIG. 19 is a block diagram illustrating one application example of the power supply system according to the first embodiment to an aircraft.
  • FIG. 20 is a block diagram illustrating one example of application of the power supply system in the first embodiment to an aircraft.
  • FIG. 21 is a block diagram illustrating one application example of the power supply system according to Embodiment 1 to a hybrid propulsion ship.
  • FIG. 1 is a block diagram showing a schematic configuration of the power supply system according to Embodiment 1 of the present invention.
  • the power supply system 1 includes a plurality of AC wiring portions (AC BUS) 3i connected to each of the plurality of generators 2i. That is, one generator 2 i is connected to one AC wiring unit 3 i and supplies AC power to a load 5 connected to the AC wiring unit 3 i.
  • AC BUS AC wiring portions
  • each generator 2i is configured such that the frequency relationship with respect to the electric power output from each generator 2i has a predetermined first drooping characteristic to the corresponding AC wiring section 3i. That is, each generator 2i has a characteristic of increasing the output power (generator active power) as the frequency (system frequency) in the corresponding AC wiring section 3i decreases.
  • the generator 2i is a motor generator
  • the output power of the generator 2i increases and the frequency becomes Balance with values according to drooping characteristics.
  • the generator 2i is not particularly limited as long as it has such drooping characteristics, and may be, for example, a prime mover generator or a fuel cell generator. Further, the predetermined first drooping characteristic may include a voltage relationship with respect to the generator reactive power output by each generator.
  • the power supply system 1 includes a plurality of power conversion devices 4i connected to each of the plurality of AC wiring portions 3i (with the AC portion 4ia) and a DC wiring portion that connects the DC portions 4id of the plurality of power conversion devices 4i. (DC BUS) 6.
  • Each power conversion device 4i converts AC power input through each AC wiring unit 3i into DC power, and converts DC power input through the DC wiring unit 6 into AC power.
  • the power conversion device 41 converts AC power output from the generator 21 connected to the corresponding AC wiring unit 31 into DC power by the power conversion device 41, and other power connected to the DC wiring unit 6.
  • the AC power is converted again into AC power by the converter 42 and then supplied to the other AC wiring unit 32 and the DC power supplied from the other AC wiring unit 32 via the power converter 42 is converted into power. It is possible to convert into alternating current power by the conversion device 41 and supply it to the corresponding alternating current wiring unit 31.
  • the power conversion device 42 can perform the same power transfer.
  • Each power converter 4i is composed of, for example, a three-phase inverter that outputs a three-phase AC voltage from a DC voltage and outputs a DC voltage from the three-phase AC voltage.
  • Each power conversion device 4i receives a drive signal So such as a PWM signal determined based on a target value of a predetermined control element transmitted from a control device 17i described later, and performs a switching operation based on the drive signal So. Power conversion between AC power and DC power is performed.
  • flow part 4id of the some power converter device 4i has illustrated the structure connected via direct current
  • flow part 4id of the some power converter device 4i connects directly. It is good also as a structure (The location directly connected is comprised as the direct current
  • the power supply system 1 includes a plurality of control devices 17i that perform power conversion control between the corresponding AC wiring unit 3i and the DC wiring unit 6 by transmitting a drive signal So to the plurality of power conversion devices 4i.
  • the some control apparatus 17i is provided corresponding to the number of the power converter devices 4i. That is, one control device 17i controls one power conversion device 4i. Instead of this, one control device 17i may control a plurality of power conversion devices 4i.
  • the control device 17i allows the frequency fac to have a predetermined second drooping characteristic with respect to the power conversion device active power Pac output from each power conversion device 4i (hereinafter sometimes simply referred to as active power Pac). Determine the target value of the control element.
  • the control device 17i is configured to generate a drive signal So (for example, a PWM signal) for each power conversion device 4i by correcting the target value of the control element according to the DC voltage Vdc in the DC wiring unit 6. Is done.
  • the control device 17i can employ the following three control modes: a voltage control type, a current control type, and a virtual generator model control type as more specific control modes for performing the above-described control. . Each will be described in detail below.
  • FIG. 2 is a block diagram showing a schematic configuration of a control system when the control device of the power conversion device in the power supply system shown in FIG. 1 is a voltage control type control device.
  • FIG. 2 shows only one control device 17i for one power conversion device 4i. The same control is performed in the control device 17i for the other power conversion device 4i.
  • the voltage control type control device 17i controls the power conversion device 4i using the frequency fac of the corresponding AC wiring section 3i as a control element.
  • the voltage control type control device 17i includes a calculation for obtaining the frequency reference value ⁇ fac_ref by multiplying the deviation of the active power Pac from the predetermined active power command value Pac_cmd by the coefficient Dr_p indicating the second drooping characteristic.
  • a frequency target value calculation unit 74 that calculates the frequency target value fac_ref by the frequency target value calculation processing is provided.
  • the control device 17i controls the corresponding power conversion device 4i using the frequency target value fac_ref as one of the target values of the control elements.
  • the power supply system 1 includes an AC voltage measuring device 8 that detects an AC voltage of the AC unit 4ia of the power converter 4i, an AC current measuring device 9 that detects an AC current of the AC unit 4ia, and a DC unit of the power converter 4i. And a DC voltage measuring device 10 that detects a 4 id DC voltage Vdc.
  • PT Physical Transformer
  • CT Current Transformer
  • DC voltage measuring instrument 10 for example, a detection circuit using DCVT (DC Voltage Transducer) or resistance voltage division is used.
  • the AC voltage measuring device 8 and the AC current measuring device 9 detect the instantaneous value of each phase in the three-phase AC wiring, and the AC voltage Vac, the AC current Iac and the like are calculated from the instantaneous values in the calculation units 71 and 72 described later.
  • the AC voltage and AC of AC wiring section 3i are detected by detecting the instantaneous value of each phase of AC voltage and AC current in the wiring section branched from corresponding AC wiring section (AC BUS) 3i.
  • AC BUS AC wiring section
  • the current is indirectly detected and the DC voltage Vdc is detected in the wiring part branched from the DC wiring part (DC BUS) 6, the DC voltage Vdc of the DC wiring part 6 is detected.
  • the AC voltage measuring device 8 and / or the AC current measuring device 9 may be directly connected to the corresponding AC wiring unit 3 i or the DC voltage measuring device 10 may be directly connected to the DC wiring unit 6.
  • Each value detected by each measuring instrument 8, 9, 10 is input to the control device 17i.
  • the control device 17i controls each of the voltage / frequency / phase calculation unit 71, current calculation unit 72, active / reactive power calculation unit 73, frequency target value calculation unit 74, AC voltage target value calculation unit 75, and drive signal generation unit 76. Has a block.
  • Voltage / frequency / phase calculation section Voltage, frequency, phase calculating unit 71, the instantaneous voltage v a of each phase detected by the AC voltage measuring instrument 8, v b, calculates the AC voltage Vac from v c by the following equation.
  • the voltage, frequency, phase calculating section 71 by a known PLL (Phase Lock Loop) operation to calculate the frequency fac and phase phi ac corresponding AC wiring portion 3i. Further, the voltage / frequency / phase calculation unit 71 calculates the voltage (d in each coordinate axis of the rotational coordinate (dq coordinate) system of the AC voltage from the instantaneous voltage v a , v b , v c and the phase ⁇ ac of each phase according to the following equation. Axial voltage Vd, q-axis voltage Vq) is calculated.
  • the effective / reactive power calculation unit 73 uses the voltages Vd and Vq calculated by the voltage / frequency / phase calculation unit 71 and the currents Id and Iq calculated by the current calculation unit 72 to correspond to the power converter active power Pac corresponding to the following equation. And power converter reactive power Qac (hereinafter, simply referred to as reactive power Qac) is calculated.
  • the active / reactive power acquisition unit that acquires the active power Pac and the reactive power Qac includes the AC voltage measuring unit 8, the AC current measuring unit 9, and the voltage / frequency / phase.
  • the active / reactive power acquisition unit may be configured by a known wattmeter or the like that inputs the active power Pac and the reactive power Qac measured in the control device 17i.
  • the frequency target value calculation unit 74 calculates the frequency target value fac_ref based on the active power Pac calculated by the active / reactive power calculation unit 73.
  • the frequency target value calculation unit 74 calculates the frequency target value fac_ref so that the relationship of the frequency fac to the active power output from the power conversion device 4i to the corresponding AC wiring unit 3i has a predetermined second drooping characteristic. To do.
  • the frequency target value calculation unit 74 calculates the frequency reference value ⁇ fac_ref by multiplying the deviation of the active power Pac from the predetermined active power command value Pac_cmd by the droop coefficient Dr_p corresponding to the second drooping characteristic.
  • the frequency target value calculator 74 calculates a frequency target value fac_ref based on the calculated frequency reference value ⁇ fac_ref and a predetermined frequency command value fac_cmd.
  • the frequency target value calculation unit 74 corrects the frequency target value fac_ref according to the DC voltage Vdc in the DC wiring unit 6. More specifically, the frequency target value calculation unit 74 calculates the frequency correction value fac_cmp by multiplying the deviation of the DC voltage Vdc from the predetermined DC voltage command value Vdc_cmd by a predetermined correction coefficient (correction gain) ( ⁇ Kdc). To do. The frequency target value calculation unit 74 adds the frequency reference value ⁇ fac_ref and the frequency correction value fac_cmp to the frequency command value fac_cmd to calculate the frequency target value fac_ref.
  • FIG. 3 is a graph showing the second drooping characteristic in the present embodiment.
  • the generator 2i When the generator 2i is connected to the AC wiring unit 3i, when the power consumption of the load 5 connected to the AC wiring unit 3i increases, the frequency fac in the AC wiring unit 3i decreases. For example, as shown in FIG. 3, the frequency fac decreases from f1 to f2. For this reason, the advance phase of the alternating voltage in the alternating current wiring part 3i increases with respect to the alternating voltage which the power converter device 4i outputs.
  • the control device 17i decreases the frequency target value fac_ref in order to cancel the advance phase.
  • the effective power Pac output from the power conversion device 4i increases. For example, as shown in FIG. 3, the active power Pac increases from P1 to P2.
  • the frequency fac in the AC wiring unit 3i increases, so that the AC wiring unit 3i with respect to the AC voltage output from the power conversion device 4i.
  • the delay phase of the AC voltage at increases.
  • the control device 17i increases the frequency target value fac_ref to cancel the delay phase.
  • the effective power Pac output from the power conversion device 4i decreases. For example, in FIG. 3, when the frequency fac increases from f2 to f1, the active power Pac decreases from P2 to P1.
  • each power conversion device 4 i performing power conversion in accordance with a voltage change in the AC wiring portion 3 i of the plurality of power conversion devices 4 i connected to the common DC wiring portion 6, a DC voltage of the DC wiring portion 6 is obtained.
  • Vdc changes
  • the frequency target value fac_ref is corrected based on the deviation from the DC voltage command value Vdc_cmd.
  • the control device 17i controls the active power Pac to decrease even if the frequency fac in the AC wiring unit 3i is the same.
  • the active power Pac is adjusted based on the corrected droop characteristic schematically represented as a straight line Lc.
  • the straight line Lc is obtained by reducing the frequency intercept of the straight line L indicating the second drooping characteristic before correction by the frequency correction value fac_cmp.
  • the active power Pac at the frequency f2 is corrected from P2 to P2c.
  • the control device 17i controls the active power Pac to increase even if the frequency fac in the AC wiring unit 3i is the same.
  • the voltage control type drive signal generator 76 receives the frequency fac of the AC wiring unit 3 i and the frequency target value fac_ref calculated by the frequency target value calculator 74. Based on these input values, the drive signal generation unit 76 generates a drive signal So so that the frequency fac of the AC wiring unit 3i becomes the frequency target value fac_ref, and outputs the drive signal So to the power conversion device 4i.
  • the generator 2i has the first drooping characteristic, and the target value fac_ref of the frequency fac, which is a control element for AC / DC conversion in the power converter 4i, is applied to each AC wiring section 3i.
  • the relationship of the frequency fac to the active power Pac output from the converter 4i is determined so as to have the second drooping characteristic.
  • the frequency target value fac_ref is corrected according to the DC voltage Vdc in the DC wiring unit 6.
  • the plurality of power conversion devices 4i execute the same control mode while taking into consideration the DC voltage Vdc in the DC wiring section 6, thereby controlling the power output in each AC wiring section 3i. Therefore, it is possible to continue supplying power to each wiring unit 3i when an abnormality occurs in one generator 2i while executing the same control mode regardless of whether the generator 2i or the wiring unit 3i is abnormal. In the case where an abnormality occurs in a part of the wiring part 3i, the other wiring part 3i can be prevented from being affected.
  • the power supply system 1 even when one generator 2i stops for some reason, such as a failure, the power supply to the load 5 connected to the corresponding AC wiring unit 3i is interrupted. This can be prevented. Further, even if a wiring abnormality such as a short circuit or a ground fault occurs in one AC wiring portion 3i, it is possible to prevent the influence from spreading to other AC wiring portions 3i.
  • the frequency command value fac_cmd, the active power command value Pac_cmd, and the DC voltage command value Vdc_cmd may be values set inside the control device 17i or may be input from the outside.
  • each command value may be a fixed value, or may be a value that changes based on the frequency fac of each AC wiring unit 3i, as will be described later.
  • control device 17i controls AC voltage Vac, which is a control element, so that the relationship of AC voltage Vac to power conversion device reactive power Qac corresponding to each power conversion device 4i has a predetermined third drooping characteristic.
  • the target value Vac_ref is determined.
  • the AC voltage target value calculation unit 75 calculates the AC voltage target value Vac_ref based on the reactive power Qac calculated by the active / reactive power calculation unit 73.
  • AC voltage target value calculation unit 75 calculates AC voltage target value Vac_ref so that the relationship of AC voltage Vac to reactive power Qac has a predetermined third drooping characteristic.
  • the AC voltage target value calculation unit 75 calculates the AC voltage reference value ⁇ Vac_ref by multiplying the deviation of the reactive power Qac from the predetermined reactive power command value Qac_cmd by the droop coefficient Dr_q corresponding to the third drooping characteristic. To do.
  • the AC voltage target value calculator 75 calculates the AC voltage target value Vac_ref by adding the calculated AC voltage reference value ⁇ Vac_ref to the predetermined AC voltage command value Vac_cmd.
  • the voltage control type drive signal generator 76 generates a drive signal So such that the AC voltage Vac of the AC wiring unit 3i becomes the AC voltage target value Vac_ref, and outputs the drive signal So to the power converter 4i.
  • the second droop characteristic and the third droop characteristic may be set to have the same characteristic as the first droop characteristic (the same slope in the graph of FIG. 3), or may be set as different characteristics. Good.
  • the AC voltage target value Vac_ref is also calculated using the third drooping characteristic.
  • the AC voltage target value Vac_ref may be a fixed target value without performing such calculation.
  • AC voltage command value Vac_cmd and the reactive power command value Qac_cmd may be values set inside the control device 17i or may be inputted from the outside.
  • each command value may be a fixed value, or may be a value that changes based on the frequency fac of each AC wiring unit 3i, as will be described later.
  • FIG. 4 is a block diagram showing a schematic configuration of a control system when the control device of the power conversion device in the power supply system shown in FIG. 1 is a current control type control device.
  • FIG. 4 shows only one control device 17i for one power conversion device 4i. The same control is performed in the control device 17i for the other power conversion device 4i.
  • the current control type control device 17i controls the power conversion device 4i using the alternating currents Id and Iq of the corresponding AC wiring part 3i as control elements.
  • the current control type control device 17i multiplies the deviation of the frequency fac with respect to the predetermined frequency command value fac_cmd by the coefficient 1 / Dr_p indicating the second drooping characteristic to obtain the active power reference value ⁇ Pac_ref.
  • An active power target value calculation unit 77 that calculates the active power target value Pac_ref by target value calculation processing is provided.
  • the control device 17i controls the corresponding power conversion device 4i with the active power target value Pac_ref as one of the target values of the control elements.
  • the current control type power supply system 1 also includes an AC voltage measuring instrument 8, an AC current measuring instrument 9, and a DC voltage measuring instrument 10 as in the case of the voltage control type.
  • Each value detected by each measuring instrument 8, 9, 10 is input to the control device 17i.
  • the control device 17i includes a voltage / frequency / phase calculation unit 71, a current calculation unit 72, an active / reactive power calculation unit 73, an active power target value calculation unit 77, a reactive power target value calculation unit 78, and a drive signal generation unit 79.
  • a control block is provided.
  • the configurations of the voltage / frequency / phase calculation unit 71, the current calculation unit 72, and the active / reactive power calculation unit 73 are the same as those of the voltage control type, and thus the description thereof is omitted.
  • the active power target value calculator 77 calculates the active power target value Pac_ref based on the frequency fac calculated by the voltage / frequency / phase calculator 71.
  • the active power target value calculation unit 77 sets the frequency target value Pac_ref so that the relationship of the frequency fac to the active power Pac output from the power conversion device 4i to the corresponding AC wiring unit 3i has a predetermined second drooping characteristic. Is calculated.
  • the active power target value calculation unit 77 calculates the active power reference value ⁇ Pac_ref by multiplying the deviation of the frequency fac from the predetermined frequency command value fac_cmd by the droop coefficient 1 / Dr_p corresponding to the second drooping characteristic. To do.
  • the active power target value calculator 77 calculates an active power target value Pac_ref based on the calculated active power reference value ⁇ Pac_ref and a predetermined active power command value Pac_cmd.
  • the active power target value calculation unit 77 corrects the active power target value Pac_ref according to the DC voltage Vdc in the DC wiring unit 6. More specifically, the active power target value calculation unit 77 multiplies the deviation of the DC voltage Vdc with respect to the predetermined DC voltage command value Vdc_cmd by a predetermined correction coefficient (correction gain) ( ⁇ Kdc), and thereby corrects the active power correction value Pac_cmp. Is calculated.
  • the active power target value calculation unit 77 calculates the active power target value Pac_ref by adding the active power reference value ⁇ Pac_ref and the active power correction value Pac_cmp to the active power command value Pac_cmd.
  • control device 17i has reactive power Qac as a control element such that the relationship of power conversion device reactive power Qac to AC voltage Vac corresponding to each power conversion device 4i has a predetermined third drooping characteristic.
  • the target value Qac_ref is determined.
  • the reactive power target value calculator 78 calculates the reactive power target value Qac_ref based on the AC voltage Vac calculated by the voltage / frequency / phase calculator 71.
  • the reactive power target value calculation unit 78 reacts the reactive power target so that the relationship of the AC voltage Vac to the reactive power Qac output from the power converter 4i to the corresponding AC wiring unit 3i has a predetermined third drooping characteristic.
  • the value Qac_ref is calculated.
  • the reactive power target value calculation unit 78 multiplies the deviation of the AC voltage Vac with respect to the predetermined AC voltage command value Vac_cmd by the droop coefficient 1 / Dr_q corresponding to the third drooping characteristic, to thereby generate the reactive power reference value ⁇ Qac_ref Is calculated.
  • the reactive power target value calculator 78 calculates the reactive power target value Qac_ref by adding the calculated reactive power reference value ⁇ Qac_ref to the predetermined reactive power command value Qac_cmd.
  • the current control type drive signal generator 79 receives AC currents Id and Iq, phase ⁇ ac, active power target value Pac_ref, and reactive power target value Qac_ref of the AC wiring unit 3i.
  • the drive signal generation unit 79 calculates the alternating current target values Id_ref and Iq_ref from the active power target value Pac_ref and the reactive power target value Qac_ref by the following formula.
  • the equation (4) may be used instead of the above equation.
  • the drive signal generation unit 79 obtains a drive signal So such that the AC currents Id and Iq of the AC wiring unit 3i become the AC current target values Id_ref and Iq_ref, and outputs the drive signal So to the power conversion device 4i.
  • the drive signal generator 79 calculates the AC voltage target values Vd_ref and Vq_ref from the AC current target values Id_ref and Iq_ref according to the following formula.
  • Kd and Kq represent predetermined gains
  • T_id and T_iq represent predetermined time constants.
  • the drive signal generation unit 79 calculates target values Va_ref, Vb_ref, and Vc_ref of the instantaneous voltages Va, Vb, and Vc of the AC wiring unit 3i that is a three-phase AC from the AC voltage target values Vd_ref and Vq_ref by the following formula.
  • the same control result as in the voltage control type control mode is obtained.
  • the generator 2i When the generator 2i is connected to the AC wiring part 3i, when the power consumption of the load 5 connected to the AC wiring part 3i increases, the load sharing of the generator 2i increases, and the first power generator 2i has Due to the drooping characteristic, the rotational speed ⁇ ac of the generator 2i and thus the frequency fac is lowered. For this reason, the advance phase of the alternating voltage in the alternating current wiring part 3i increases with respect to the alternating voltage which the power converter device 4i outputs. In response to this, the control device 17i increases the active power target value Pac_ref to cancel the advance phase. As a result, the effective power Pac output from the power conversion device 4i increases.
  • the generator 2i has the first drooping characteristic, and the target value Pac_ref of the active power Pac that is a control element for the AC / DC conversion in the power converter 4i is the active power Pac in the AC wiring unit 3i. Is determined so as to have a second drooping characteristic.
  • the active power target value Pac_ref is corrected according to the DC voltage Vdc in the DC wiring unit 6.
  • the plurality of power conversion devices 4i execute the same control mode while taking into consideration the DC voltage Vdc in the DC wiring section 6, thereby controlling the power output in each AC wiring section 3i. Therefore, even in the current control type control mode, when the same control mode is executed regardless of whether or not the generator 2i or the wiring unit 3i is abnormal, each wiring unit 3i It is possible to continue the power supply to and to prevent the other wiring part 3i from being affected when an abnormality occurs in a part of the wiring part 3i.
  • the power supply system 1 even when one generator 2i stops for some reason, such as a failure, the power supply to the load 5 connected to the corresponding AC wiring unit 3i is interrupted. This can be prevented. Further, even if a wiring abnormality such as a short circuit or a ground fault occurs in one AC wiring portion 3i, it is possible to prevent the influence from spreading to other AC wiring portions 3i.
  • the second drooping characteristic and the third drooping characteristic may be set to have the same characteristic as the first drooping characteristic or may be set as different characteristics. Good.
  • the reactive power target value Qac_ref is also calculated using the third drooping characteristic.
  • the reactive power target value Qac_ref may be a fixed target value without performing such calculation.
  • the frequency command value fac_cmd, the active power command value Pac_cmd, the DC voltage command value Vdc_cmd, the AC voltage command value Vac_cmd, and the reactive power command value Qac_cmd may be values set inside the control device 17i or input from the outside. Also good.
  • each command value may be a fixed value, or may be a value that changes based on the frequency fac of each AC wiring unit 3i, as will be described later.
  • FIG. 5 is a block diagram showing a schematic configuration of a control system when the control device of the power conversion device in the power supply system shown in FIG. 1 is a control device for virtual generator model control.
  • FIG. 5 shows only one control device 17i for one power conversion device 4i. The same control is performed in the control device 17i for the other power conversion device 4i.
  • the control device 17i for virtual generator model control controls the power conversion device 4i using the alternating currents Id and Iq of the corresponding AC wiring section 3i as control elements.
  • the virtual generator model control type control device 17i includes a frequency including a calculation of multiplying a value based on a deviation of the active power Pac from a predetermined active power command value Pac_cmd by a coefficient Dr_p indicating the second drooping characteristic.
  • a frequency target value calculation unit 80 that calculates the frequency target value fac_ref by target value calculation processing is provided.
  • the control device 17i controls the corresponding power conversion device 4i using the current target values Id_ref and Iq_ref calculated based on the frequency target value fac_ref as the control element target values.
  • the control device 17i performs virtual generator model control for controlling the power output to the AC unit 4ia of the power conversion device 4i on the assumption that a virtual generator is connected to the AC wiring unit 3i.
  • the virtual generator model control type power supply system 1 also includes an AC voltage measuring instrument 8, an AC current measuring instrument 9, and a DC voltage measuring instrument 10 as in the case of the voltage control type.
  • Each value detected by each measuring instrument 8, 9, 10 is input to the control device 17i.
  • the control device 17i includes a voltage / frequency / phase calculation unit 71, a current calculation unit 72, an active / reactive power calculation unit 73, a frequency target value calculation unit 80, an active power correction value calculation unit 81, an internal phase difference angle calculation unit 82, an internal
  • Each control block includes an electromotive voltage target value calculation unit 83, a current target value calculation unit 84, and a drive signal generation unit 85.
  • the configurations of the voltage / frequency / phase calculation unit 71, the current calculation unit 72, and the active / reactive power calculation unit 73 are the same as those of the voltage control type, and thus the description thereof is omitted.
  • [Frequency target value calculator] 6 is a block diagram showing a configuration of a frequency target value calculation unit in the control device shown in FIG.
  • the frequency target value calculation unit 80 adds the active power correction value Pac_cmp described later to the deviation of the active power Pac from the predetermined active power command value Pac_cmd to the droop corresponding to the second drooping characteristic.
  • a value multiplied by the coefficient Dr_p is calculated.
  • the frequency target value calculation unit 80 inputs the calculated value to the first-order lag calculation unit 86 and performs the first-order lag calculation.
  • the moment of inertia generated in the actual generator is simulated in the virtual generator model. Note that the moment of inertia generated in the generator may be simulated by a calculation process other than the first-order lag calculation.
  • the value output from the first-order lag calculator 86 is input to the upper / lower limiter 87.
  • the upper / lower limiter 87 limits the value output from the first-order lag calculation unit 86 between a predetermined upper limit value and a predetermined lower limit value, and outputs a frequency reference value ⁇ fac_ref.
  • the frequency reference value ⁇ fac_ref may be calculated without providing the first-order lag calculation unit 86 and / or the upper / lower limiter 87 in the frequency target value calculation unit 80.
  • the frequency target value calculation unit 80 calculates a frequency target value fac_ref by adding a predetermined frequency command value fac_cmd to the frequency reference value ⁇ fac_ref output from the upper / lower limiter 87.
  • FIG. 7 is a block diagram showing a configuration of an active power correction value calculation unit in the control device shown in FIG. As shown in FIG. 7, the active power correction value calculation unit 81 multiplies the deviation of the DC voltage Vdc with respect to the predetermined DC voltage command value Vdc_cmd by a predetermined correction coefficient (correction gain) ( ⁇ Kdc), thereby correcting the active power correction value.
  • Pac_cmp is calculated.
  • the calculated active power correction value Pac_cmp is a negative value. For this reason, in the frequency target value calculating part 80, it correct
  • FIG. 8 is a block diagram showing a configuration of an internal phase difference angle calculation unit in the control device shown in FIG.
  • the internal phase difference angle calculation unit 82 calculates the deviation of the frequency fac of the AC wiring unit 3 i from the frequency target value fac_ref calculated by the frequency target value calculation unit 80, and inputs this to the integrator 88. To do.
  • the integrator 88 calculates the internal phase difference angle ⁇ in the virtual generator by integrating the rotational speed of the virtual generator obtained by multiplying the deviation by the unit conversion coefficient Kw.
  • FIG. 9 is a block diagram showing a configuration of an internal electromotive force target value calculation unit in the control device shown in FIG.
  • the internal electromotive voltage target value calculation unit 83 calculates the AC voltage target value Vac_ref based on the reactive power Qac calculated by the active / reactive power calculation unit 73.
  • the internal electromotive voltage target value calculation unit 83 calculates the AC voltage target value Vac_ref so that the relationship of the AC voltage Vac to the reactive power Qac has a predetermined third drooping characteristic.
  • the internal electromotive force target value calculation unit 83 refers to the AC voltage based on a value obtained by multiplying the deviation of the reactive power Qac from the predetermined reactive power command value Qac_cmd by the droop coefficient Dr_q corresponding to the third drooping characteristic.
  • the value ⁇ Vac_ref is calculated.
  • the internal electromotive force target value calculation unit 83 includes a first-order lag calculation unit 89 and an upper / lower limiter 90, similarly to the frequency target value calculation unit 80.
  • the AC voltage reference value ⁇ Vac_ref may be calculated without providing the internal electromotive force target value calculation unit 83 with the first-order lag calculation unit 89 and / or the upper and lower limiter 90.
  • the internal electromotive force target value calculation unit 83 calculates the AC voltage target value Vac_ref by adding the calculated AC voltage reference value ⁇ Vac_ref to the predetermined AC voltage command value Vac_cmd.
  • the AC voltage target value Vac_ref is input to the first function calculation unit 91.
  • the first function calculation unit 91 performs the calculation shown in the following equation and outputs the internal electromotive voltage target value Ef_ref.
  • the internal electromotive force target value Ef obtained by the above equation is the sum of the internal impedance of the DC wiring section 6 and the external impedance between the DC wiring section 6 and the AC wiring section 3i from the AC voltage target value Vac_ref. It can be said that the voltage drop due to the impedance (r, x) is subtracted.
  • the internal impedance can be obtained by, for example, Thevenin's theorem.
  • the internal impedance of an actual motor generator is generally said to be a very small value (nearly zero).
  • the external impedance includes a reactor and a wiring resistance provided between the power conversion device 4i and the AC wiring unit 3i.
  • the internal electromotive voltage target value Ef can be obtained from the alternating voltage Vac of the alternating current wiring portion 3i by back calculation.
  • FIG. 10 is a block diagram showing a configuration of a target current value calculation unit in the control device shown in FIG.
  • the current target value calculation unit 84 includes the internal phase difference angle ⁇ calculated by the internal phase difference angle calculation unit 82, and the internal electromotive voltage target value Ef_ref calculated by the internal electromotive voltage target value calculation unit 83.
  • the AC voltage Vd, Vq calculated by the voltage / frequency / phase calculation unit 71 is input to the second function calculation unit 92.
  • the second function calculation unit 92 performs the calculation shown in the following equation and outputs the alternating current target values Id_ref and Iq_ref.
  • the AC current target values Id_ref and Iq_ref obtained by the above formulas are assumed when the total impedance is connected between the power source that is the AC voltage Vac of the AC wiring part 3i and the power source that is the internal electromotive voltage target value Ef_ref. This is the current value that flows through the total impedance.
  • the internal impedance of the DC wiring unit 6 when calculating the internal electromotive voltage target value Ef_ref, the current target values Id_ref, and Iq_ref, the internal impedance of the DC wiring unit 6, the DC wiring unit 6 and the AC wiring unit 3i It was decided to use the total impedance which is the sum of the external impedance between the two.
  • the internal impedance of the DC wiring part 6 is virtually increased to obtain the total impedance, and the internal electromotive voltage target value Ef_ref, the AC current target values Id_ref, and Iq_ref are calculated using the virtual impedance, stable operation is achieved. Is possible. This is because, when a plurality of power converters 4i are operated in parallel, the output balance is greatly lost due to a slight voltage difference between the power converters 4i because the impedance of the power converter 4i is low, and the DC wiring This is because, by virtually increasing the internal impedance of the unit 6, the impedance of the power conversion device 4 i is increased, and the output balance due to the voltage difference can be prevented from becoming unstable. For example, when the internal impedance is practically almost zero, if the resistance is 0.1 pu and the reactance is 0.4 pu in the total impedance, considerable stabilization can be achieved.
  • the current target value calculation unit 84 performs AC wiring when the virtual power conversion device 4i generates the internal electromotive voltage obtained by the internal electromotive voltage target value calculation unit 83 and the internal phase difference angle calculation unit 82.
  • the current value output to the unit 3i is estimated. Thereby, the apparent impedance of the power conversion device 4i increases, and the system is suppressed from becoming unstable during parallel operation of the plurality of power conversion devices 4i.
  • the virtual generator model control type drive signal generator 85 receives the AC currents Id and Iq, the phase ⁇ ac, and the AC current target values Id_ref and Iq_ref of the AC wiring unit 3i.
  • the drive signal generation unit 85 generates a drive signal So such that the AC currents Id and Iq of the AC wiring unit 3i become the AC current target values Id_ref and Iq_ref, and outputs the drive signal So to the power conversion device 4i.
  • the drive signal generation unit 79 calculates the AC voltage target values Vd_ref and Vq_ref from the AC current target values Id_ref and Iq_ref, similarly to the current control type drive signal generation unit 79, and AC wiring from these values.
  • Target values Va_ref, Vb_ref, and Vc_ref of the instantaneous voltages Va, Vb, and Vc of the unit 3i are calculated.
  • the frequency target value fac_ref is generated such that the frequency fac in the AC wiring unit 3i changes according to the change in the power consumption of the load 5 connected to the AC wiring unit 3i based on the second drooping characteristic. Then, the frequency target value fac_ref is corrected according to the change in the DC voltage Vdc of the DC wiring unit 6.
  • the second droop characteristic and the third droop characteristic may be set to have the same characteristic as the first droop characteristic or may be set as different characteristics. May be.
  • the reactive power target value Qac_ref is also calculated using the third drooping characteristic.
  • the reactive power target value Qac_ref may be a fixed target value without performing such calculation.
  • the frequency command value fac_cmd, the active power command value Pac_cmd, the DC voltage command value Vdc_cmd, the AC voltage command value Vac_cmd, and the reactive power command value Qac_cmd may be values set inside the control device 17i or input from the outside. Also good.
  • each command value may be a fixed value, or may be a value that changes based on the frequency fac of each AC wiring unit 3i, as will be described later.
  • FIG. 1 A simulation result in the power supply system 1 of the above embodiment is shown below.
  • a power supply system 1 is used in which one generator 21, 22 and power converters 41, 42 are connected to two AC wiring portions 31, 32, respectively.
  • capacitance of each power converter device 41 and 42 is 45 kW, respectively, and the rated voltage of the DC wiring part 6 shall be 540V.
  • 11 to 16 are graphs showing simulation results in the present embodiment.
  • P11 indicates a change in the generator active power output from the generator 21
  • P12 indicates a change in the power converter effective power output from the power converter 41 to the AC wiring unit 31
  • P21 indicates A change in the generator active power output from the generator 22 is shown
  • P22 shows a change in the power converter active power output from the power converter 42 to the AC wiring unit 32.
  • F1 indicates a change in the frequency of the AC wiring part
  • f2 indicates a change in the frequency of the AC wiring part 32
  • Vdc indicates a change in the DC voltage of the DC wiring part 6.
  • FIG. 11 is a graph showing a change in active power when an equal load is connected to two AC wiring portions
  • FIG. 12 is a graph of frequency and DC voltage when an equal load is connected to two AC wiring portions. It is a graph which shows a change.
  • the simulation result is shown when a 45 kW load is connected to each AC wiring section 31 and 32, 3 seconds after the start of the simulation.
  • FIG. 11 and FIG. 12 show that the response of each value due to load connection converges to a constant value and becomes a steady state. At this time, there is no power interchange between the two AC wiring sections 31 and 32.
  • FIG. 13 is a graph showing changes in active power when a 60 kW load is connected to one AC wiring section 31 and a 30 kW load is connected to the other AC wiring section 32
  • FIG. 14 is a graph illustrating one AC wiring section.
  • 6 is a graph showing changes in frequency and DC voltage when a 60 kW load is connected to the section 31 and a 30 kW load is connected to the other AC wiring section 32.
  • the load is connected 3 seconds after the start of the simulation.
  • the load connected to the two AC wiring portions 31 and 32 is biased, the response of each value due to the load connection converges to a constant value and becomes a steady state. It has been shown. At this time, since P12 is increased and P22 is decreased, it is understood that power is interchanged from the power converter 42 to the power converter 41.
  • FIG. 15 is a graph showing a change in active power when one generator 21 is disconnected from the AC wiring section 31 in the steady state of FIG. 13, and FIG. 16 is one generator in the steady state of FIG. It is a graph which shows the change of a frequency at the time of isolate
  • the generator 21 is disconnected from the AC wiring section 31 10 seconds after the simulation is started. At this time, while P11 becomes 0, P21 increases immediately thereafter, P12 increases, and P22 decreases accordingly.
  • FIG. 17 is a block diagram showing a schematic configuration of the power supply system according to Embodiment 2 of the present invention.
  • the power supply system 1B according to the second embodiment is different from the power supply system 1 according to the first embodiment in that the control device uses the frequencies f i of the plurality of AC wiring sections 3i so that the outputs of the generators 2i are equal to each other.
  • a command value correction unit 101 that corrects a command value of a control element that serves as a reference for a target value of the control element based on a value obtained by averaging ac is provided.
  • control devices 17i are individually connected corresponding to the plurality of power conversion devices 4i.
  • the power supply system 1B is provided with another one control apparatus (high-order control apparatus) 100 which transmits a command value correction value to each of these control apparatuses 17i.
  • FIG. 18 is a block diagram illustrating a configuration example of the command value correction unit illustrated in FIG.
  • the example of FIG. 18 shows a configuration example of the command value correction unit 101 when the control device 17i is a voltage control type (FIG. 2) or a virtual generator model control type (FIG. 5).
  • a plurality of frequencies f i ac input is input to the average calculator 102.
  • Average calculator 102 outputs the average value of a plurality of frequencies f i ac.
  • the average value calculating unit 102 calculates an average value fac_ave divided by the plurality of frequencies f i number of ac AC wiring portion 3i on which the sum (sum Awashi number was) n.
  • Command value correcting portion 101 calculates the respective deviations of the plurality of frequencies f i ac for the calculated average value Fac_ave, to enter each of the calculated deviation to the integrator 103.
  • the integrator 103 integrates the respective deviations, in the predetermined correction coefficient frequency command value of each power converter 4i of the value obtained by multiplying a k corresponding to the AC wiring portion 3i fac_cmd (18 denoted as f i ac_cmd ).
  • the frequency command value f i ac_cmd is input to the frequency target value calculator 80 of the controller 17i frequency target value computing unit 74 or the virtual generator model control type of the control device 17i of the voltage-controlled.
  • each control device 17i controls the corresponding power conversion device 4i so that the frequencies fac of the AC wiring portions 3i in the steady state are equal to each other.
  • the generator 2i has a first drooping characteristic in the relationship of the generator active power with respect to the frequency
  • the control device 17i is a power converter active power output from the power converter 4i to the AC wiring unit 3i with respect to the frequency fac.
  • the power converter 4i is controlled so as to have the second drooping characteristic in relation to Pac. That is, the generator active power output from the generator 2i can be controlled by controlling the frequency fac in the AC wiring part 3i. Therefore, according to the present embodiment, it is possible to balance the outputs of the plurality of generators 2i while appropriately transferring power between the plurality of wiring portions 3i.
  • the command value correction unit 101 has been described as an example configured as a functional block of the host control device 100 different from the control device 17i that generates the target value of the control element.
  • the command value correction unit 101 may be provided in each control device 17i.
  • the average value calculation unit 102 is provided in one control device among the plurality of control devices 17i, and the other control devices 17i perform frequency command based on the frequency average value input from the one control device.
  • the value f i ac_cmd may be calculated.
  • the command value correction unit 101 is provided only in one control device among the plurality of control devices 17i, and the corresponding frequency command value f i ac_cmd calculated by the one control device is provided in the other control device 17i. May be input.
  • the frequency f i ac of the AC wiring portion 3i is configured to acquire from the corresponding control device 17i.
  • host controller 100 the frequency f i ac to based on the alternating voltage obtained from the AC voltage measuring instrument 8 obtains (host controller 100 the voltage, frequency, phase calculating unit of the AC wiring portion 3i 71).
  • the command value correction unit 101 in the present embodiment is also applicable to the current control type control device 17i.
  • the output of each integrator 103 can be set to the active power command value P i ac_cmd.
  • a power supply system can be configured by applying a transmission built-in generator (IDG: ⁇ ⁇ Integrated Drive Generator) used as an aircraft generator as the two generators 21 and 22.
  • the IDG has a constant speed drive control device (CSD: Constant Speed-Drive unit, not shown) to which power from the main engine of the aircraft is input, regardless of the speed of the main engine.
  • the rotation speed (frequency) can be held at a constant target value.
  • a circuit breaker (breakers 111 to 114 in FIG. 19 described later) is connected between the DC wiring unit 6 and the DC unit 4id of each power converter 4i. Reference) may be provided, and connection or disconnection of the plurality of generators 2i may be appropriately changed.
  • FIG. 19 is a block diagram illustrating one application example of the power supply system according to the first embodiment to an aircraft.
  • the power supply system 1 ⁇ / b> C in FIG. 19 includes four generators 21, 22, 23, and 24 that are connected to individual AC wiring sections 31, 32, 33, and 34, respectively.
  • a DC wiring portion 61 is connected between a DC portion 41d of the power conversion device 41 to which the AC wiring portion 31 is connected and a DC portion 42d of the power conversion device 42 to which the AC wiring portion 32 is connected.
  • a DC wiring unit 62 is connected between the DC unit 43d of the power conversion device 43 to which the wiring unit 33 is connected and the DC unit 44d of the power conversion device 44 to which the AC wiring unit 34 is connected. These two DC wiring portions 61 and 62 are connected to each other through a bypass circuit 63.
  • the bypass circuit 63 is provided with a circuit breaker 115.
  • the circuit breaker 11i (111,112,113,114) is provided between the direct current
  • FIG. 20 is a block diagram illustrating one example of application of the power supply system in the first embodiment to an aircraft.
  • auxiliary power units (APU) 22A and 24A are connected to the generators 22 and 24 in Application Example 2 instead of the IDG.
  • the generators 21 and 23 are configured as IDGs.
  • the auxiliary power units 22A and 24A are connected to the same power converters 42A and 44A as in the above embodiment, but the auxiliary power units 22A and 24A and the power converters 42A and 44A have an AC BUS and The load 5 is not connected.
  • the IDGs 21 and 23 supply power to the loads 5 connected to the corresponding AC wiring units 31 and 33, respectively. While the IDGs 21 and 23 are stopped, the AC wiring units 31 and 33 are continuously supplied with power to the load 5 connected to the AC wiring units 31 and 33 to which the APUs 22A and 24A correspond. In addition, by closing the circuit breaker 115 of the bypass circuit 63, it is possible to supply power from the IDG 21 and / or APU 22A to the load 5 connected to the AC wiring unit 33, or from the IDG 23 and / or APU 24A to AC. It is also possible to supply power to the load 5 connected to the wiring unit 31.
  • FIG. 21 is a block diagram illustrating one application example of the power supply system according to Embodiment 1 to a hybrid propulsion ship.
  • the power supply system 1E in this application example has a generator 21 in the power supply system 1 shown in FIG. 1 as a diesel generator and a generator 22 as a gas turbine power generation facility. Further, in the power supply system 1E, a transformer 120 is provided between the AC wiring unit 32 to which the generator 22 is connected and the power conversion device 42.
  • the hybrid propulsion ship uses a small-capacity diesel generator 21 and an AC wiring unit 31 as an inboard power supply system as compared with the generator 22, and has a large-capacity gas turbine power generation facility 22 compared with the generator 21.
  • the AC wiring section 32 is mainly used for propulsion assistance. Even in the power supply system 1E having such different types of generators 21 and 22, it is possible to exchange power between the two AC wiring sections 31 and 32 in accordance with the operation state. Thereby, in the hybrid propulsion ship, one of the generators 21 and 22 can be stopped, and the degree of freedom of the operation method can be increased.
  • a transformer 120 is provided.
  • the transformer 120 outputs the voltage of the AC wiring section 32 by the output of the generator 22. It is configured to step down to approximately the same voltage as the voltage. Thereby, the difference of the alternating voltage Vac which the power converter devices 41 and 42 output to each alternating current wiring part 31 and 32 can be prevented from becoming large.
  • the AC wiring unit 3i to which the power supply system is applied is a three-phase system
  • the present invention is not limited thereto.
  • the AC wiring unit 3i is a single-phase two-wire system or a single-phase three-wire system
  • a similar power supply system can be constructed except that various calculation methods differ depending on the system method.
  • the power supply system of the above embodiment can be suitably applied as long as it is a power supply system including a plurality of generators. is there.
  • the power supply system of the above embodiment can be applied to a mobile power supply system such as a normal ship, a private power generation system, and the like.
  • the present invention continues to supply power to each wiring unit when an abnormality occurs in one generator. This is useful in order not to affect other wiring portions when an abnormality occurs in a part of the portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

複数の発電機のそれぞれは、対応する交流配線部に各発電機が出力する発電機有効電力に対する周波数の関係が所定の第1の垂下特性を有するよう構成され、複数の電力変換装置は、各交流配線部を通じて入力される交流電力を直流電力に変換するとともに、直流配線部を通じて入力される直流電力を交流電力に変換するよう構成され、制御装置は、対応する交流配線部に各電力変換装置が出力する電力変換装置有効電力に対する周波数の関係が所定の第2の垂下特性を有するように制御要素の目標値を決定し、制御要素の目標値を直流配線部における直流電圧に応じて補正することにより、各電力変換装置のための駆動信号を生成するよう構成される。

Description

電源システム
 本発明は、電源システムに関する。
 例えば航空機等に用いられる電源システムにおいて、複数の発電機が設けられた電源システムが知られている。このような電源システムには、大別してスプリット方式、並列運転方式およびBTB(Back To Back)方式等が含まれる。
 スプリット方式は、複数の発電機が互いに独立した交流配線部(電源BUS)に接続され、各電源BUSに接続された負荷に対して一の発電機が電力を供給するように構成されている。スプリット方式においては、1つの電源BUSに接続されている発電機が1つだけであるため、故障等、何らかの理由で一の発電機が停止した場合、対応する電源BUSに接続される負荷(配線系統)は一時的に停電状態となる。スプリット方式において、一の発電機が停止した場合、対応する電源BUSを他の電源BUSまたは補助動力装置(APU: Auxiliary Power Unit)に接続するような切替処理を行うことで、対応する電源BUSにおける電力供給を継続することは可能であるが、一時的な停電状態は避けられない。したがって、電源BUSに接続される負荷によっては動作の継続が行えず、再起動等の処理が必要となる場合も生じ得る。
 これに対して、並列運転方式は、複数の発電機が1つの電源BUSに接続されている。したがって、一の発電機が停止しても他の発電機が電力供給を継続するため、当該電源BUSを含む配線系統が停電状態となることを回避できる。しかし、並列運転方式では、配線系統内に短絡または地絡等の配線異常が生じた場合、その影響が配線系統全体に波及し、当該配線異常が生じた個所が除去されるまでの間、配線系統全体が停電状態となり、正常な給電を行うことができない。特に、航空機に搭載される電源システムにおいて、一時的であっても全電源を消失してしまうことは避けるべきであり、直流電源系統等の他の電源系統等を併用するといった対策が別途必要となる。
 また、BTB方式は、スプリット方式における各電源BUSに電力変換装置が接続されている。各電力変換装置は、電源BUSの交流電力を直流電力に変換するように構成され、各電源BUSに対応する各電力変換装置が直流部で互いに接続されるものである。BTB方式においては、各電力変換装置が対応する電源BUSの交流電圧に基づいて電源BUSへの電力調整を行うとともに、直流部において互いに接続される複数の電力変換装置のうちの予め定められた一の電力変換装置が、直流部の電圧に基づいて電源BUSへの電力調整を行う。
 このように、BTB方式においては、複数の電力変換装置のうち、直流部の電圧に基づいて電源BUSへの電力調整を行う電力変換装置が予め定められている。したがって、直流部の電圧に基づいた制御を行う電力変換装置に対応する電源BUSにおいて停電状態が生じた場合、複数の電力変換装置間の電力調整を行うことができなくなる。言い換えると、BTB方式は、停電状態の発生を想定したシステムにはなっていない。
 また、BTB方式のような複数の電力変換装置を直流部で接続した構成において、発電機における異常の発生を検知する構成とし、当該異常の発生を検知した場合に、対応する電源BUSを含む配線系統が停電状態となる前に制御態様を切り替えて、当該配線系統が停電状態となることを防止する構成も提案されている(例えば特許文献1参照)。
特許第4725010号公報
 しかし、特許文献1のような方式では、制御態様を2つ用意し、それらを故障状態か否かを検出した上で切り替える必要が生じる。したがって、システムが複雑になる。
 また、特許文献1のような方式では、正常時においては複数の電源BUS間の電力の授受は行われない。このため、並列運転方式またはBTB方式のように、複数の電源BUS間で電力を融通し合い、発電機の負荷バランスを自立的に行うことができない。また、特許文献1のような方式では、負荷急変時の電圧または周波数変化を抑制し、適切な電源品質を確保することが困難である。
 本発明は、上記課題を解決するものであり、それぞれが少なくとも1つの発電機を含む複数の配線部が互いに接続された電源システムにおいて、一の発電機に異常が生じた場合において、各配線部への電力供給を継続することができ、配線部の一部に異常が生じた場合において、他の配線部に影響を与えないようにすることができる電源システムを提供することを目的とする。
 本発明の一態様に係る電源システムは、複数の発電機を備えた電源システムであって、前記複数の発電機のそれぞれに接続される複数の交流配線部と、前記複数の交流配線部のそれぞれに接続される複数の電力変換装置と、前記複数の電力変換装置同士を接続する直流配線部と、前記複数の電力変換装置に駆動信号を送信することにより対応する交流配線部と前記直流配線部との間の電力変換制御を行う制御装置と、を備え、前記複数の発電機のそれぞれは、対応する前記交流配線部に各発電機が出力する発電機有効電力に対する周波数の関係が所定の第1の垂下特性を有するよう構成され、前記複数の電力変換装置は、各交流配線部を通じて入力される交流電力を直流電力に変換するとともに、前記直流配線部を通じて入力される直流電力を交流電力に変換するよう構成され、前記制御装置は、対応する前記交流配線部に各電力変換装置が出力する電力変換装置有効電力に対する周波数の関係が所定の第2の垂下特性を有するように制御要素の目標値を決定し、前記制御要素の目標値を前記直流配線部における直流電圧に応じて補正することにより、各電力変換装置のための前記駆動信号を生成するよう構成される。
 上記構成によれば、発電機が第1の垂下特性を有するとともに、電力変換装置における交直変換のための制御要素の目標値が、対応する交流配線部に各電力変換装置が出力する電力変換装置有効電力に対する周波数の関係に第2の垂下特性を有するように決定される。これにより、負荷変化に伴う交流配線部における有効電力の変化に応じた電力の授受を複数の配線部間で行うことができる。さらに、制御要素の目標値は、直流配線部における直流電圧に応じて補正される。これにより、直流電圧が過度に低下または上昇することを抑制し、共通の直流配線部で接続された複数の電力変換装置間の電力の授受をバランスさせることができる。このようにして、複数の電力変換装置がそれぞれ直流配線部における直流電圧を勘案しつつ同じ制御態様を実行することにより、それぞれの交流配線部において出力される電力が制御される。したがって、発電機または配線部の異常の有無にかかわらず同じ制御態様を実行しつつ、一の発電機に異常が生じた場合において、各配線部への電力供給を継続することができ、配線部の一部に異常が生じた場合において、他の配線部に影響を与えないようにすることができる。
 前記制御装置は、各電力変換装置が対応する前記交流配線部に出力する電力変換装置無効電力に対する交流電圧の関係が所定の第3の垂下特性を有するように前記制御要素の目標値を決定するよう構成されてもよい。これによれば、電力変換装置が出力する電力変換装置有効電力だけでなく電力変換装置が出力する電力変換装置無効電力についても垂下特性を用いた制御が行われる。したがって、負荷変化に伴う無効電力の変化に応じた電力の授受を複数の配線部間で行うことができる。
 前記制御装置は、所定の有効電力指令値に対する前記電力変換装置有効電力の偏差に基づく値に、前記第2の垂下特性を示す係数を掛ける演算を含む周波数目標値演算処理によって周波数目標値を算出する周波数目標値演算部を備えてもよい。
 前記周波数目標値演算部は、前記有効電力指令値に対する前記電力変換装置有効電力の偏差に基づく値に、前記第2の垂下特性を示す係数を掛けた周波数参照値を算出し、所定の直流電圧指令値に対する前記直流電圧の偏差に所定の補正係数を掛けた周波数補正値を算出し、所定の周波数指令値に、前記周波数参照値および前記周波数補正値を加えて前記周波数目標値を算出してもよい。
 前記周波数目標値演算部は、所定の直流電圧指令値に対する前記直流電圧の偏差に所定の補正係数を掛けた有効電力補正値を算出し、前記有効電力指令値に対する前記電力変換装置有効電力の偏差に前記有効電力補正値を加えた値に、前記第2の垂下特性を示す係数を掛ける演算を行ってもよい。
 前記制御装置は、所定の周波数指令値に対する前記周波数の偏差に基づく値に、前記第2の垂下特性を示す係数を掛ける演算を含む有効電力目標値演算処理によって有効電力目標値を算出する有効電力目標値演算部を備えてもよい。
 前記有効電力目標値演算部は、前記周波数指令値に対する前記周波数の偏差に基づく値に、前記第2の垂下特性を示す係数を掛けた有効電力参照値を算出し、所定の直流電圧指令値に対する前記直流電圧の偏差に所定の補正係数を掛けた有効電力補正値を算出し、所定の有効電力指令値に、前記有効電力参照値および前記有効電力補正値を加えて前記有効電力目標値を算出してもよい。
 前記制御装置は、所定の無効電力指令値に対する前記電力変換装置無効電力の偏差に基づく値に、前記第3の垂下特性を示す係数を掛ける演算を含む交流電圧目標値演算処理によって交流電圧目標値を算出する交流電圧目標値演算部を備えてもよい。
 前記制御装置は、所定の交流電圧指令値に対する前記交流電圧の偏差に基づく値に、前記第3の垂下特性を示す係数を掛ける演算を含む無効電力目標値演算処理によって無効電力目標値を算出する無効電力目標値演算部を備えてもよい。
 前記制御装置は、各発電機の出力が互いに均等になるように、前記複数の交流配線部の前記周波数を平均化した値に基づいて、前記制御要素の目標値の基準となる前記制御要素の指令値を補正する指令値補正部を備えてもよい。これによれば、複数の配線部間における電力の授受を適切に行いつつ、複数の発電機の出力をバランスさせることができる。
 本発明の上記目的、他の目的、特徴、および利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
 本発明によれば、それぞれが少なくとも1つの発電機を含む複数の配線部が互いに接続された電源システムにおいて、一の発電機に異常が生じた場合において、各配線部への電力供給を継続することができ、配線部の一部に異常が生じた場合において、他の配線部に影響を与えないようにすることができる。
図1は、本発明の実施の形態1に係る電源システムの概略構成を示すブロック図である。 図2は、図1に示す電源システムにおける電力変換装置の制御装置が電圧制御型の制御装置である場合の制御系の概略構成を示すブロック図である。 図3は、本実施の形態における第2の垂下特性を示すグラフである。 図4は、図1に示す電源システムにおける電力変換装置の制御装置が電流制御型の制御装置である場合の制御系の概略構成を示すブロック図である。 図5は、図1に示す電源システムにおける電力変換装置の制御装置が仮想発電機モデル制御の制御装置である場合の制御系の概略構成を示すブロック図である。 図6は、図5に示す制御装置における周波数目標値演算部の構成を示すブロック図である。 図7は、図5に示す制御装置における有効電力補正値演算部の構成を示すブロック図である。 図8は、図5に示す制御装置における内部相差角演算部の構成を示すブロック図である。 図9は、図5に示す制御装置における内部起電圧目標値演算部の構成を示すブロック図である。 図10は、図5に示す制御装置における電流目標値演算部の構成を示すブロック図である。 図11は、2つの交流配線部に均等な負荷を接続した場合の有効電力変化についてのシミュレーション結果を示すグラフである。 図12は、2つの交流配線部に均等な負荷を接続した場合の周波数および直流電圧の変化についてのシミュレーション結果を示すグラフである。 図13は、一方の交流配線部に60kWの負荷を接続し、他方の交流配線部に30kWの負荷を接続した場合の有効電力変化についてのシミュレーション結果を示すグラフであり 図14は、一方の交流配線部に60kWの負荷を接続し、他方の交流配線部に30kWの負荷を接続した場合の周波数および直流電圧の変化についてのシミュレーション結果を示すグラフである。 図15は、図13の定常状態において、一方の発電機を交流配線部から切り離した場合の有効電力変化についてのシミュレーション結果を示すグラフである。 図16は、図14の定常状態において、一方の発電機を交流配線部から切り離した場合の周波数および直流電圧の変化についてのシミュレーション結果を示すグラフである。 図17は、本発明の実施の形態2に係る電源システムの概略構成を示すブロック図である。 図18は、図17に示す指令値補正部の一の構成例を示すブロック図である。 図19は、実施の形態1における電源システムの航空機への適用例の1つを説明するブロック図である。 図20は、実施の形態1における電源システムの航空機への適用例の1つを説明するブロック図である。 図21は、実施の形態1における電源システムのハイブリッド推進船への適用例の1つを説明するブロック図である。
 以下、本発明の実施の形態を、図面を参照しながら説明する。なお、以下では全ての図を通じて同一または同じ機能を有する要素には同一の参照符号を付して、その重複する説明を省略する。
 [実施の形態1]
 [システム構成]
 以下、本発明の実施の形態1について説明する。図1は、本発明の実施の形態1に係る電源システムの概略構成を示すブロック図である。本実施の形態における電源システム1は、複数(図1の例では2つ)の発電機2i(i=1,2)を備えている。電源システム1は、複数の発電機2iのそれぞれに接続される複数の交流配線部(交流BUS)3iを備えている。すなわち、一の発電機2iは、一の交流配線部3iに接続され、当該交流配線部3iに接続される負荷5に交流電力を供給する。
 本実施の形態において、各発電機2iは、対応する交流配線部3iに各発電機2iが出力する電力に対する周波数の関係が所定の第1の垂下特性を有するよう構成されている。すなわち、各発電機2iは、対応する交流配線部3iにおける周波数(系統周波数)が減少するに従って出力する電力(発電機有効電力)を増加する特性を有している。例えば、発電機2iが原動機発電機の場合、負荷5の消費電力が増大して当該負荷5が接続される交流配線部3iにおける周波数が減少すると、発電機2iの出力電力が増加し、周波数が垂下特性に応じた値でバランスする。なお、発電機2iは、このような垂下特性を有する限り、特に限定されず、例えば、原動機発電機でもよいし、燃料電池発電機でもよい。また、所定の第1の垂下特性には、各発電機が出力する発電機無効電力に対する電圧の関係も含まれてもよい。
 さらに、電源システム1は、複数の交流配線部3iのそれぞれに(交流部4iaが)接続される複数の電力変換装置4iと、複数の電力変換装置4iの直流部4id同士を接続する直流配線部(直流BUS)6とを備えている。各電力変換装置4iは、各交流配線部3iを通じて入力される交流電力を直流電力に変換するとともに、直流配線部6を通じて入力される直流電力を交流電力に変換する。
 例えば、電力変換装置41は、対応する交流配線部31に接続された発電機21から出力される交流電力を電力変換装置41により直流電力に変換し、直流配線部6に接続された他の電力変換装置42で再度交流電力に変換した上で、他の交流配線部32に当該交流電力を供給するとともに、他の交流配線部32から電力変換装置42を経由して供給される直流電力を電力変換装置41により交流電力に変換して対応する交流配線部31に供給することが可能である。電力変換装置42においても同様の電力授受が可能である。
 各電力変換装置4iは、例えば、直流電圧から三相交流電圧を出力し、三相交流電圧から直流電圧を出力する三相インバータ等により構成される。各電力変換装置4iは、後述する制御装置17iから送信される所定の制御要素の目標値に基づいて定められるPWM信号等の駆動信号Soを受信し、当該駆動信号Soに基づいてスイッチング動作が行われることにより、交流電力と直流電力との間の電力変換を行う。
 なお、本実施の形態においては、複数の電力変換装置4iの直流部4idが直流BUSを介して接続された構成を例示しているが、複数の電力変換装置4iの直流部4id同士が直接接続された構成(直接接続された箇所が直流配線部6として構成される)としてもよい。
 電源システム1は、複数の電力変換装置4iに駆動信号Soを送信することにより対応する交流配線部3iと直流配線部6との間の電力変換制御を行う複数の制御装置17iを備えている。本実施の形態において、複数の制御装置17iは、電力変換装置4iの数に対応して設けられている。すなわち、一の制御装置17iが一の電力変換装置4iを制御する。これに代えて、一の制御装置17iが複数の電力変換装置4iを制御してもよい。
 制御装置17iは、各電力変換装置4iが出力する電力変換装置有効電力Pac(以下、単に有効電力Pacと表記する場合がある)に対する周波数facの関係が所定の第2の垂下特性を有するように制御要素の目標値を決定する。また、制御装置17iは、制御要素の目標値を直流配線部6における直流電圧Vdcに応じて補正することにより、各電力変換装置4iのための駆動信号So(例えばPWM信号)を生成するよう構成される。
 制御装置17iは、上記のような制御を行うためのより具体的な制御態様として、以下に示す電圧制御型、電流制御型、および仮想発電機モデル制御型の3種の制御態様を採用し得る。以下、それぞれ詳説する。
 [電圧制御型]
 図2は、図1に示す電源システムにおける電力変換装置の制御装置が電圧制御型の制御装置である場合の制御系の概略構成を示すブロック図である。図2においては一の電力変換装置4iに対する一の制御装置17iについてのみ示す。他の電力変換装置4iに対する制御装置17iにおいても同様の制御が行われる。電圧制御型の制御装置17iは、制御要素として対応する交流配線部3iの周波数facを用い、電力変換装置4iを制御する。より具体的には、電圧制御型の制御装置17iは、所定の有効電力指令値Pac_cmdに対する有効電力Pacの偏差に第2の垂下特性を示す係数Dr_pを掛けて周波数参照値Δfac_refを求める演算を含む周波数目標値演算処理によって周波数目標値fac_refを算出する周波数目標値演算部74を備えている。制御装置17iは、周波数目標値fac_refを制御要素の目標値の1つとして対応する電力変換装置4iを制御する。
 電源システム1は、電力変換装置4iの交流部4iaの交流電圧を検出する交流電圧計測器8と、当該交流部4iaの交流電流を検出する交流電流計測器9と、電力変換装置4iの直流部4idの直流電圧Vdcを検出する直流電圧計測器10とを備えている。例えば、交流電圧計測器8として、PT(Potential Transformer)が用いられ、交流電流計測器9として、CT(Current Transformer)が用いられる。また、直流電圧計測器10として、例えばDCVT(DC Voltage Transducer)または抵抗分圧による検出回路が用いられる。交流電圧計測器8および交流電流計測器9は、三相交流配線における各相の瞬時値を検出し、後述する演算部71,72において各瞬時値から交流電圧Vacおよび交流電流Iac等が算出される。
 なお、本実施の形態においては、対応する交流配線部(交流BUS)3iから分岐した配線部において交流電圧および交流電流の各相の瞬時値を検出することにより交流配線部3iの交流電圧および交流電流を間接的に検出し、直流配線部(直流BUS)6から分岐した配線部において直流電圧Vdcを検出することにより直流配線部6の直流電圧Vdcを検出するように構成されているが、これに代えて、交流電圧計測器8および/または交流電流計測器9を対応する交流配線部3iに直接接続したり、直流電圧計測器10を直流配線部6に直接接続したりしてもよい。
 各計測器8,9,10で検出された各値は、制御装置17iに入力される。制御装置17iは、電圧・周波数・位相演算部71、電流演算部72、有効・無効電力演算部73、周波数目標値演算部74、交流電圧目標値演算部75および駆動信号生成部76の各制御ブロックを備えている。
 [電圧・周波数・位相演算部]
 電圧・周波数・位相演算部71は、交流電圧計測器8で検出された各相の瞬時電圧v,v,vから次式により交流電圧Vacを算出する。
Figure JPOXMLDOC01-appb-M000001
また、電圧・周波数・位相演算部71は、公知のPLL(Phase Lock Loop)演算により、対応する交流配線部3iの周波数facおよび位相φacを算出する。また、電圧・周波数・位相演算部71は、各相の瞬時電圧v,v,vおよび位相φacから次式により交流電圧の回転座標(dq座標)系の各座標軸における電圧(d軸電圧Vd、q軸電圧Vq)を算出する。
Figure JPOXMLDOC01-appb-M000002
[電流演算部]
 電流演算部72は、各相の瞬時電流i,i,iおよび電圧・周波数・位相演算部71で演算された位相φacから次式により交流電流の回転座標系の各座標軸における電流(d軸電流Id、q軸電流Iq)を算出する。
Figure JPOXMLDOC01-appb-M000003
 
[有効・無効電力演算部]
 有効・無効電力演算部73は、電圧・周波数・位相演算部71で算出された電圧Vd,Vqおよび電流演算部72で算出された電流Id,Iqから次式により対応する電力変換装置有効電力Pacおよび電力変換装置無効電力Qac(以下、単に無効電力Qacと表記する場合がある)を算出する。
Figure JPOXMLDOC01-appb-M000004
 なお、本実施の形態において、上記のように、有効電力Pacおよび無効電力Qacを取得する有効・無効電力取得器が、交流電圧計測器8と、交流電流計測器9と、電圧・周波数・位相演算部71、電流演算部72および有効・無効電力演算部73の各制御ブロックとして機能する制御装置17iにより構成される例を示した。これに代えて、有効・無効電力取得器が、制御装置17iに計測された有効電力Pacおよび無効電力Qacを入力する公知の電力計等により構成されてもよい。
 [周波数目標値演算部]
 周波数目標値演算部74は、有効・無効電力演算部73で算出された有効電力Pacに基づいて周波数目標値fac_refを算出する。ここで、周波数目標値演算部74は、対応する交流配線部3iに電力変換装置4iが出力する有効電力に対する周波数facの関係が所定の第2の垂下特性を有するように周波数目標値fac_refを算出する。
 具体的には、周波数目標値演算部74は、所定の有効電力指令値Pac_cmdに対する有効電力Pacの偏差に第2の垂下特性に応じたドループ係数Dr_pを掛けて、周波数参照値Δfac_refを算出する。周波数目標値演算部74は、算出された周波数参照値Δfac_refと所定の周波数指令値fac_cmdとに基づいて周波数目標値fac_refを算出する。
 この際、周波数目標値演算部74は、周波数目標値fac_refを直流配線部6における直流電圧Vdcに応じて補正する。より具体的には、周波数目標値演算部74は、所定の直流電圧指令値Vdc_cmdに対する直流電圧Vdcの偏差に所定の補正係数(補正ゲイン)(-Kdc)を掛けて、周波数補正値fac_cmpを算出する。周波数目標値演算部74は、周波数指令値fac_cmdに周波数参照値Δfac_refおよび周波数補正値fac_cmpを加えて周波数目標値fac_refを算出する。
 図3は、本実施の形態における第2の垂下特性を示すグラフである。交流配線部3iに発電機2iが接続されている場合、交流配線部3iに接続される負荷5の消費電力が増大すると、交流配線部3iにおける周波数facが低下する。例えば、図3に示すように、周波数facがf1からf2に低下する。このため、電力変換装置4iが出力する交流電圧に対して、交流配線部3iにおける交流電圧の進み位相が増大する。これを受けて、制御装置17iは、当該進み位相を相殺すべく、周波数目標値fac_refを低下させる。この結果、電力変換装置4iが出力する有効電力Pacが増大する。例えば、図3に示すように、有効電力PacがP1からP2に増大する。
 反対に、交流配線部3iに接続される負荷5の消費電力が減少すると、交流配線部3iにおける周波数facが上昇することにより、電力変換装置4iが出力する交流電圧に対して、交流配線部3iにおける交流電圧の遅れ位相が増大する。これを受けて、制御装置17iは、当該遅れ位相を相殺すべく、周波数目標値fac_refを上昇させる。この結果、電力変換装置4iが出力する有効電力Pacが減少する。例えば、図3において、周波数facがf2からf1に上昇すると、有効電力PacがP2からP1に減少する。
 ここで、共通の直流配線部6に接続された複数の電力変換装置4iの交流配線部3iにおける電圧変化に伴い、各電力変換装置4iが電力変換を行った結果、直流配線部6の直流電圧Vdcが変化した場合、直流電圧指令値Vdc_cmdとの偏差に基づいて、周波数目標値fac_refが補正される。例えば、制御装置17iは、直流配線部6の直流電圧Vdcが低下した場合、交流配線部3iにおける周波数facが同じでも有効電力Pacが減少するように制御する。図3のグラフにおいて、直線Lcとして模式的に表される補正後の垂下特性に基づいて有効電力Pacが調整される。直線Lcは、補正を行う前の第2の垂下特性を示す直線Lの周波数切片を周波数補正値fac_cmp分低下させたものである。この結果、周波数f2における有効電力PacがP2からP2cに補正される。反対に、制御装置17iは、直流配線部6の直流電圧Vdcが上昇した場合、交流配線部3iにおける周波数facが同じでも有効電力Pacが増大するように制御する。
 [駆動信号生成部]
 電圧制御型の駆動信号生成部76には、交流配線部3iの周波数facおよび周波数目標値演算部74で算出された周波数目標値fac_refが入力される。当該駆動信号生成部76は、入力されたこれらの値に基づいて、交流配線部3iの周波数facが周波数目標値fac_refになるような駆動信号Soを生成し、電力変換装置4iに出力する。
 上記構成によれば、発電機2iが第1の垂下特性を有するとともに、電力変換装置4iにおける交直変換のための制御要素である周波数facの目標値fac_refが、対応する交流配線部3iに各電力変換装置4iが出力する有効電力Pacに対する周波数facの関係に第2の垂下特性を有するように決定される。これにより、負荷変化に伴う交流配線部3iにおける有効電力Pacの変化に応じた電力の授受を複数の配線部3i間で行うことができる。さらに、周波数目標値fac_refは、直流配線部6における直流電圧Vdcに応じて補正される。これにより、直流電圧Vdcが過度に低下または上昇することを抑制し、共通の直流配線部6で接続された複数の電力変換装置4i間の電力の授受をバランスさせることができる。
 このようにして、複数の電力変換装置4iがそれぞれ直流配線部6における直流電圧Vdcを勘案しつつ同じ制御態様を実行することにより、それぞれの交流配線部3iにおいて出力される電力が制御される。したがって、発電機2iまたは配線部3iの異常の有無にかかわらず同じ制御態様を実行しつつ、一の発電機2iに異常が生じた場合において、各配線部3iへの電力供給を継続することができ、配線部3iの一部に異常が生じた場合において、他の配線部3iに影響を与えないようにすることができる。
 この結果、本実施の形態における電源システム1において、故障等、何らかの理由で一の発電機2iが停止した場合でも、対応する交流配線部3iに接続される負荷5への給電が瞬断されることを防止することができる。また、一の交流配線部3i内に短絡または地絡等の配線異常が生じても、その影響が他の交流配線部3iに拡がることを防止することができる。
 なお、周波数指令値fac_cmd、有効電力指令値Pac_cmd、および直流電圧指令値Vdc_cmdは、制御装置17i内部で設定された値でもよいし、外部から入力されてもよい。また、各指令値は、固定値でもよいし、後述するように各交流配線部3iの周波数facに基づいて変化する値としてもよい。
 [交流電圧目標値演算部]
 本実施の形態において、制御装置17iは、各電力変換装置4iに対応する電力変換装置無効電力Qacに対する交流電圧Vacの関係が所定の第3の垂下特性を有するように制御要素である交流電圧Vacの目標値Vac_refを決定するよう構成されている。
 交流電圧目標値演算部75は、有効・無効電力演算部73で算出された無効電力Qacに基づいて交流電圧目標値Vac_refを算出する。ここで、交流電圧目標値演算部75は、無効電力Qacに対する交流電圧Vacの関係が所定の第3の垂下特性を有するように交流電圧目標値Vac_refを算出する。
 具体的には、交流電圧目標値演算部75は、所定の無効電力指令値Qac_cmdに対する無効電力Qacの偏差に第3の垂下特性に応じたドループ係数Dr_qを掛けて、交流電圧参照値ΔVac_refを算出する。交流電圧目標値演算部75は、所定の交流電圧指令値Vac_cmdに、算出された交流電圧参照値ΔVac_refを加えて交流電圧目標値Vac_refを算出する。
 電圧制御型の駆動信号生成部76は、交流配線部3iの交流電圧Vacが交流電圧目標値Vac_refになるような駆動信号Soを生成し、電力変換装置4iに出力する。
 これによれば、有効電力Pacと周波数facとの間の関係だけでなく無効電力Qacと交流電圧Vacとの間の関係についても垂下特性を用いた制御が行われる。交流配線部3iに発電機2iが接続されている場合、交流配線部3iに接続される負荷5の無効電力が増大すると、交流配線部3iにおける交流電圧Vacが低下する。このため、交流配線部3iにおける交流電圧Vacと電力変換装置4iの交流部4iaに出力される交流電圧との間の電圧差が増大する。これを受けて、制御装置17iは、当該電圧差を相殺すべく、交流電圧目標値Vac_refを低下させる。この結果、電力変換装置4iが出力する無効電力Qacが増大する。
 一方、交流配線部3iに接続される負荷5の無効電力が減少すると、交流配線部3iにおける交流電圧Vacが上昇する。このため、交流配線部3iにおける交流電圧Vacと電力変換装置4iの交流部4iaに出力される交流電圧との間の電圧差が増大する。これを受けて、制御装置17iは、当該電圧差を相殺すべく、交流電圧目標値Vac_refを上昇させる。この結果、電力変換装置4iが出力する無効電力Qacが減少する。したがって、負荷変化に伴う無効電力Qacの変化に応じた電力の授受を複数の配線部3i間で行うことができる。
 なお、第2の垂下特性および第3の垂下特性は、第1の垂下特性と同じ特性(図3のグラフにおいて同じ傾き)を有するように設定されてもよいし、異なる特性として設定されてもよい。
 また、本実施の形態においては、交流電圧目標値Vac_refについても第3の垂下特性を用いて演算したが、交流電圧目標値Vac_refについてはこのような演算を行わず固定の目標値としてもよい。
 また、交流電圧指令値Vac_cmdおよび無効電力指令値Qac_cmdは、制御装置17i内部で設定された値でもよいし、外部から入力されてもよい。また、各指令値は、固定値でもよいし、後述するように各交流配線部3iの周波数facに基づいて変化する値としてもよい。
 [電流制御型]
 図4は、図1に示す電源システムにおける電力変換装置の制御装置が電流制御型の制御装置である場合の制御系の概略構成を示すブロック図である。図4においては一の電力変換装置4iに対する一の制御装置17iについてのみ示す。他の電力変換装置4iに対する制御装置17iにおいても同様の制御が行われる。電流制御型の制御装置17iは、制御要素として対応する交流配線部3iの交流電流Id,Iqを用い、電力変換装置4iを制御する。より具体的には、電流制御型の制御装置17iは、所定の周波数指令値fac_cmdに対する周波数facの偏差に第2の垂下特性を示す係数1/Dr_pを掛けて有効電力参照値ΔPac_refを求める有効電力目標値演算処理によって有効電力目標値Pac_refを算出する有効電力目標値演算部77を備えている。制御装置17iは、有効電力目標値Pac_refを制御要素の目標値の1つとして対応する電力変換装置4iを制御する。
 電流制御型の電源システム1においても、電圧制御型の場合と同様に、交流電圧計測器8、交流電流計測器9、および直流電圧計測器10を備えている。各計測器8,9,10で検出された各値は、制御装置17iに入力される。制御装置17iは、電圧・周波数・位相演算部71、電流演算部72、有効・無効電力演算部73、有効電力目標値演算部77、無効電力目標値演算部78および駆動信号生成部79の各制御ブロックを備えている。電圧・周波数・位相演算部71、電流演算部72および有効・無効電力演算部73の構成は、電圧制御型と同様であるため説明を省略する。
 [有効電力目標値演算部]
 有効電力目標値演算部77は、電圧・周波数・位相演算部71で算出された周波数facに基づいて有効電力目標値Pac_refを算出する。ここで、有効電力目標値演算部77は、対応する交流配線部3iに電力変換装置4iが出力する有効電力Pacに対する周波数facの関係が所定の第2の垂下特性を有するように周波数目標値Pac_refを算出する。
 具体的には、有効電力目標値演算部77は、所定の周波数指令値fac_cmdに対する周波数facの偏差に第2の垂下特性に応じたドループ係数1/Dr_pを掛けて、有効電力参照値ΔPac_refを算出する。有効電力目標値演算部77は、算出された有効電力参照値ΔPac_refと所定の有効電力指令値Pac_cmdとに基づいて有効電力目標値Pac_refを算出する。
 この際、有効電力目標値演算部77は、有効電力目標値Pac_refを直流配線部6における直流電圧Vdcに応じて補正する。より具体的には、有効電力目標値演算部77は、所定の直流電圧指令値Vdc_cmdに対する直流電圧Vdcの偏差に所定の補正係数(補正ゲイン)(-Kdc)を掛けて、有効電力補正値Pac_cmpを算出する。有効電力目標値演算部77は、有効電力指令値Pac_cmdに有効電力参照値ΔPac_refおよび有効電力補正値Pac_cmpを加算して有効電力目標値Pac_refを算出する。
 [無効電力目標値演算部]
 本実施の形態において、制御装置17iは、各電力変換装置4iに対応する交流電圧Vacに対する電力変換装置無効電力Qacの関係が所定の第3の垂下特性を有するように制御要素である無効電力Qacの目標値Qac_refを決定するよう構成されている。
 無効電力目標値演算部78は、電圧・周波数・位相演算部71で算出された交流電圧Vacに基づいて無効電力目標値Qac_refを算出する。ここで、無効電力目標値演算部78は、対応する交流配線部3iに電力変換装置4iが出力する無効電力Qacに対する交流電圧Vacの関係が所定の第3の垂下特性を有するように無効電力目標値Qac_refを算出する。
 具体的には、無効電力目標値演算部78は、所定の交流電圧指令値Vac_cmdに対する交流電圧Vacの偏差に第3の垂下特性に応じたドループ係数1/Dr_qを掛けて、無効電力参照値ΔQac_refを算出する。無効電力目標値演算部78は、所定の無効電力指令値Qac_cmdに、算出された無効電力参照値ΔQac_refを加えて無効電力目標値Qac_refを算出する。
 [駆動信号生成部]
 電流制御型の駆動信号生成部79には、交流配線部3iの交流電流Id,Iq、位相φac、有効電力目標値Pac_refおよび無効電力目標値Qac_refが入力される。当該駆動信号生成部79は、下記式により有効電力目標値Pac_refおよび無効電力目標値Qac_refから交流電流目標値Id_ref,Iq_refを算出する。
Figure JPOXMLDOC01-appb-M000005
なお、有効電力目標値Pac_refおよび無効電力目標値Qac_refから交流電流目標値Id_ref,Iq_refを算出する際には、上記式に代えて式(4)を用いてもよい。
 さらに、駆動信号生成部79は、交流配線部3iの交流電流Id,Iqが交流電流目標値Id_ref,Iq_refになるような駆動信号Soを求め、電力変換装置4iに出力する。具体的には、駆動信号生成部79は、下記式により交流電流目標値Id_ref,Iq_refから交流電圧目標値Vd_ref,Vq_refを算出する。ここで、Kd,Kqは所定のゲインを表し、T_id,T_iqは、所定の時定数を表す。
Figure JPOXMLDOC01-appb-M000006
駆動信号生成部79は、下記式により交流電圧目標値Vd_ref,Vq_refから三相交流である交流配線部3iの各瞬時電圧Va,Vb,Vcの目標値Va_ref,Vb_ref,Vc_refを算出する。
Figure JPOXMLDOC01-appb-M000007
電流制御型の制御態様においても、電圧制御型の制御態様と同様の制御結果がもたらされる。交流配線部3iに発電機2iが接続されている場合、交流配線部3iに接続される負荷5の消費電力が増大すると、発電機2iの負荷分担が増加し、発電機2iが有する第1の垂下特性により発電機2iの回転速度ωacひいては周波数facが低下する。このため、電力変換装置4iが出力する交流電圧に対して、交流配線部3iにおける交流電圧の進み位相が増大する。これを受けて、制御装置17iは、当該進み位相を相殺すべく、有効電力目標値Pac_refを上昇させる。この結果、電力変換装置4iが出力する有効電力Pacが増大する。
 反対に、交流配線部3iに接続される負荷5の消費電力が減少すると、発電機2iの負荷分担が低下し、発電機2iが有する第1の垂下特性により発電機2iの回転速度ωacひいては周波数facが上昇する。このため、電力変換装置4iが出力する交流電圧に対して、交流配線部3iにおける交流電圧の遅れ位相が増大する。これを受けて、制御装置17iは、当該遅れ位相を相殺すべく、有効電力目標値Pac_refを低下させる。この結果、電力変換装置4iが出力する有効電力Pacが減少する。
 ここで、共通の直流配線部6に接続された複数の電力変換装置4iの交流配線部3iにおける電圧変化に伴い、各電力変換装置4iが電力変換を行った結果、直流配線部6の直流電圧Vdcが変化した場合、直流電圧指令値Vdc_cmdとの偏差に基づいて、有効電力目標値Pac_refが補正される。例えば、制御装置17iは、直流配線部6の直流電圧Vdcが低下した場合、交流配線部3iにおける周波数facが同じでも有効電力Pacが減少するように制御する。反対に、制御装置17iは、直流配線部6の直流電圧Vdcが上昇した場合、交流配線部3iにおける周波数facが同じでも有効電力Pacが増大するように制御する。
 上記構成によれば、発電機2iが第1の垂下特性を有するとともに、電力変換装置4iにおける交直変換のための制御要素である有効電力Pacの目標値Pac_refが、交流配線部3iにおける有効電力Pacに対する周波数facの関係に第2の垂下特性を有するように決定される。これにより、負荷変化に伴う有効電力Pacの変化に応じた電力の授受を複数の配線部3i間で行うことができる。さらに、有効電力目標値Pac_refは、直流配線部6における直流電圧Vdcに応じて補正される。これにより、直流電圧Vdcが過度に低下または上昇することを抑制し、共通の直流配線部6で接続された複数の電力変換装置4i間の電力の授受をバランスさせることができる。
 このようにして、複数の電力変換装置4iがそれぞれ直流配線部6における直流電圧Vdcを勘案しつつ同じ制御態様を実行することにより、それぞれの交流配線部3iにおいて出力される電力が制御される。したがって、電流制御型の制御態様においても、発電機2iまたは配線部3iの異常の有無にかかわらず同じ制御態様を実行しつつ、一の発電機2iに異常が生じた場合において、各配線部3iへの電力供給を継続することができ、配線部3iの一部に異常が生じた場合において、他の配線部3iに影響を与えないようにすることができる。
 この結果、本実施の形態における電源システム1において、故障等、何らかの理由で一の発電機2iが停止した場合でも、対応する交流配線部3iに接続される負荷5への給電が瞬断されることを防止することができる。また、一の交流配線部3i内に短絡または地絡等の配線異常が生じても、その影響が他の交流配線部3iに拡がることを防止することができる。
 また、有効電力Pacと周波数facとの間の関係だけでなく無効電力Qacと交流電圧Vacとの間の関係についても垂下特性を用いた制御が行われる。交流配線部3iに接続される負荷5の消費電力が増大すると、発電機2iの無効電力分担が増加し、発電機2iが有する第1の垂下特性により発電機2iが出力する交流電圧Vacが低下する。このため、交流配線部3iにおける交流電圧と電力変換装置4iの交流部4iaに出力される交流電圧との間の電圧差が増大する。これを受けて、制御装置17iは、当該電圧差を相殺すべく、無効電力目標値Qac_refを上昇させる。この結果、電力変換装置4iが出力する無効電力Qacが増大する。
 反対に、交流配線部3iに接続される負荷5の消費電力が減少すると、発電機2iの無効電力分担が低下し、発電機2iが有する第1の垂下特性により発電機2iが出力する交流電圧Vacが上昇する。このため、交流配線部3iにおける交流電圧と電力変換装置4iの交流部4iaに出力される交流電圧との間の電圧差が増大する。これを受けて、制御装置17iは、当該電圧差を相殺すべく、無効電力目標値Qac_refを低下させる。この結果、電力変換装置4iが出力する無効電力Qacが減少する。したがって、無効電力Qacの変化に伴う交流電圧Vacの変化に応じた電力の授受を複数の配線部3i間で行うことができる。
 なお、電流制御型の制御態様においても、第2の垂下特性および第3の垂下特性は、第1の垂下特性と同じ特性を有するように設定されてもよいし、異なる特性として設定されてもよい。
 また、本実施の形態においては、無効電力目標値Qac_refについても第3の垂下特性を用いて演算したが、無効電力目標値Qac_refについてはこのような演算を行わず固定の目標値としてもよい。
 また、周波数指令値fac_cmd、有効電力指令値Pac_cmd、直流電圧指令値Vdc_cmd、交流電圧指令値Vac_cmdおよび無効電力指令値Qac_cmdは、制御装置17i内部で設定された値でもよいし、外部から入力されてもよい。また、各指令値は、固定値でもよいし、後述するように各交流配線部3iの周波数facに基づいて変化する値としてもよい。
 [仮想発電機モデル制御型]
 図5は、図1に示す電源システムにおける電力変換装置の制御装置が仮想発電機モデル制御の制御装置である場合の制御系の概略構成を示すブロック図である。図5においては一の電力変換装置4iに対する一の制御装置17iについてのみ示す。他の電力変換装置4iに対する制御装置17iにおいても同様の制御が行われる。仮想発電機モデル制御の制御装置17iは、制御要素として対応する交流配線部3iの交流電流Id,Iqを用い、電力変換装置4iを制御する。
 より具体的には、仮想発電機モデル制御型の制御装置17iは、所定の有効電力指令値Pac_cmdに対する有効電力Pacの偏差に基づく値に第2の垂下特性を示す係数Dr_pを掛ける演算を含む周波数目標値演算処理によって周波数目標値fac_refを算出する周波数目標値演算部80を備えている。制御装置17iは、周波数目標値fac_refに基づいて算出される電流目標値Id_ref,Iq_refを制御要素の目標値として対応する電力変換装置4iを制御する。この際、制御装置17iは、交流配線部3iに仮想の発電機が接続されたと仮定して電力変換装置4iの交流部4iaに出力する電力を制御する仮想発電機モデル制御を行う。
 仮想発電機モデル制御型の電源システム1においても、電圧制御型の場合と同様に、交流電圧計測器8、交流電流計測器9、および直流電圧計測器10を備えている。各計測器8,9,10で検出された各値は、制御装置17iに入力される。制御装置17iは、電圧・周波数・位相演算部71、電流演算部72、有効・無効電力演算部73、周波数目標値演算部80、有効電力補正値演算部81、内部相差角演算部82、内部起電圧目標値演算部83、電流目標値演算部84および駆動信号生成部85の各制御ブロックを備えている。電圧・周波数・位相演算部71、電流演算部72および有効・無効電力演算部73の構成は、電圧制御型と同様であるため説明を省略する。
 [周波数目標値演算部]
 図6は、図5に示す制御装置における周波数目標値演算部の構成を示すブロック図である。図6に示すように、周波数目標値演算部80は、所定の有効電力指令値Pac_cmdに対する有効電力Pacの偏差に後述する有効電力補正値Pac_cmpを加えた値に第2の垂下特性に応じたドループ係数Dr_pを掛けた値を算出する。本実施の形態において、周波数目標値演算部80は、算出された値を一次遅れ演算部86に入力し、一次遅れ演算を行う。これにより、実際の発電機において生じる慣性モーメントが仮想発電機モデルにおいて模擬される。なお、一次遅れ演算以外の演算処理により発電機において生じる慣性モーメントを模擬してもよい。
 さらに、一次遅れ演算部86から出力された値は、上下限リミッタ87に入力される。上下限リミッタ87は、一次遅れ演算部86から出力された値を所定の上限値と所定の下限値との間に制限して周波数参照値Δfac_refを出力する。なお、周波数目標値演算部80に、一次遅れ演算部86および/または上下限リミッタ87を設けずに、周波数参照値Δfac_refが算出されてもよい。
 周波数目標値演算部80は、上下限リミッタ87から出力された周波数参照値Δfac_refに所定の周波数指令値fac_cmdを加算して周波数目標値fac_refを算出する。
 [有効電力補正値演算部]
 図7は、図5に示す制御装置における有効電力補正値演算部の構成を示すブロック図である。図7に示すように、有効電力補正値演算部81は、所定の直流電圧指令値Vdc_cmdに対する直流電圧Vdcの偏差に所定の補正係数(補正ゲイン)(-Kdc)を掛けて、有効電力補正値Pac_cmpを算出する。
 直流電圧Vdcが直流電圧指令値Vdc_cmdより小さい場合、算出される有効電力補正値Pac_cmpは負の値となる。このため、周波数目標値演算部80において、電力変換装置4iから出力される交流電圧Vacが減少する方向に補正される。逆に、直流電圧Vdcが直流電圧指令値Vdc_cmdより大きい場合、算出される有効電力補正値Pac_cmpは正の値となる。このため、周波数目標値演算部80において、電力変換装置4iから出力される交流電圧Vacが増加する方向に補正される。
 [内部相差角演算部]
 図8は、図5に示す制御装置における内部相差角演算部の構成を示すブロック図である。図8に示すように、内部相差角演算部82は、周波数目標値演算部80で算出された周波数目標値fac_refに対する交流配線部3iの周波数facの偏差を算出し、それを積分器88に入力する。積分器88では、当該偏差に単位変換用の係数Kwを掛けた仮想発電機の回転速度を積分することにより、仮想発電機における内部相差角θを算出する。
 [内部起電圧目標値演算部]
 図9は、図5に示す制御装置における内部起電圧目標値演算部の構成を示すブロック図である。図9に示すように、内部起電圧目標値演算部83は、有効・無効電力演算部73で算出された無効電力Qacに基づいて交流電圧目標値Vac_refを算出する。ここで、内部起電圧目標値演算部83は、無効電力Qacに対する交流電圧Vacの関係が所定の第3の垂下特性を有するように交流電圧目標値Vac_refを算出する。
 具体的には、内部起電圧目標値演算部83は、所定の無効電力指令値Qac_cmdに対する無効電力Qacの偏差に第3の垂下特性に応じたドループ係数Dr_qを掛けた値に基づいて交流電圧参照値ΔVac_refを算出する。本実施の形態において、内部起電圧目標値演算部83は、周波数目標値演算部80と同様に、一次遅れ演算部89および上下限リミッタ90を備えている。なお、内部起電圧目標値演算部83に、一次遅れ演算部89および/または上下限リミッタ90を設けずに、交流電圧参照値ΔVac_refが算出されてもよい。
 内部起電圧目標値演算部83は、所定の交流電圧指令値Vac_cmdに、算出された交流電圧参照値ΔVac_refを加えて交流電圧目標値Vac_refを算出する。交流電圧目標値Vac_refは、第1の関数演算部91に入力される。第1の関数演算部91は、次式に示す演算を行い、内部起電圧目標値Ef_refを出力する。
Figure JPOXMLDOC01-appb-M000008
上記式で求められる内部起電圧目標値Efは、交流電圧目標値Vac_refから、直流配線部6の内部インピーダンスと、直流配線部6と交流配線部3iとの間の外部インピーダンスとの和である総合インピーダンス(r,x)による電圧降下を差し引いて求めたものということができる。内部インピーダンスは、例えばテブナンの定理により求めることができる。実際の電動機発電機における内部インピーダンスは一般に非常に小さな値(ほぼゼロ)であるといわれている。外部インピーダンスは電力変換装置4iと交流配線部3iとの間に設けられたリアクトルと配線抵抗とからなる。交流配線部3iに流れる交流電流Iacは計測されるので、総合インピーダンスが定まれば、交流配線部3iの交流電圧Vacから内部起電圧目標値Efは逆算により求めることができる。
 [電流目標値演算部]
 図10は、図5に示す制御装置における電流目標値演算部の構成を示すブロック図である。図10に示すように、電流目標値演算部84は、内部相差角演算部82で算出された内部相差角θと、内部起電圧目標値演算部83で算出された内部起電圧目標値Ef_refと、電圧・周波数・位相演算部71で算出された交流電圧Vd,Vqとを第2の関数演算部92に入力する。第2の関数演算部92は、次式に示す演算を行い、交流電流目標値Id_ref,Iq_refを出力する。
Figure JPOXMLDOC01-appb-M000009
上記式で求められる交流電流目標値Id_ref,Iq_refは、交流配線部3iの交流電圧Vacである電源と内部起電圧目標値Ef_refである電源との間に総合インピーダンスが接続されたと仮定した場合に、総合インピーダンスに流れる電流値である。
 ところで、実際の直流配線部6における内部インピーダンスr,xはほぼゼロに等しく、総合インピーダンスr=ra+r、x=x+xはほぼ直流配線部6と交流配線部3iとの間の外部インピーダンスr,xに等しい。しかしながら、前述のとおり、本実施の形態においては、内部起電圧目標値Ef_ref、電流目標値Id_ref、Iq_refを算出するに際して、直流配線部6の内部インピーダンスと、直流配線部6と交流配線部3iとの間の外部インピーダンスとの和である総合インピーダンスを用いることとした。
 特に、直流配線部6の内部インピーダンスを仮想的に大きくして、総合インピーダンスを求め、この仮想インピーダンスを用いて内部起電圧目標値Ef_ref、交流電流目標値Id_ref、Iq_refを算出すれば、安定した運転が可能となる。なぜならば、複数の電力変換装置4iを並列運転した場合、電力変換装置4i間のわずかな電圧差で大きく出力バランスが崩れてしまうのは、電力変換装置4iのインピーダンスが低いためであり、直流配線部6の内部インピーダンスを仮想的に大きくすることにより、電力変換装置4iのインピーダンスが高くなり、電圧差による出力バランスが不安定になるのを防止できるからである。例えば、内部インピーダンスが現実的にはほぼゼロのところ、総合インピーダンスにおいて抵抗分を0.1pu、リアクタンス分を0.4puとすればかなりの安定化を図ることができる。
 つまり、電流目標値演算部84は、仮想的な電力変換装置4iが内部起電圧目標値演算部83と内部相差角演算部82とにより求められた内部起電圧を発生させた場合に、交流配線部3iに出力される電流値を推定している。これにより、電力変換装置4iの見掛け上のインピーダンスが上昇し、複数の電力変換装置4iの並列運転時においてシステムが不安定になることを抑制している。
 [駆動信号生成部]
 仮想発電機モデル制御型の駆動信号生成部85には、交流配線部3iの交流電流Id,Iq、位相φacおよび交流電流目標値Id_ref,Iq_refが入力される。当該駆動信号生成部85は、交流配線部3iの交流電流Id,Iqが交流電流目標値Id_ref,Iq_refになるような駆動信号Soを生成し、電力変換装置4iに出力する。具体的には、駆動信号生成部79は、電流制御型の駆動信号生成部79と同様に、交流電流目標値Id_ref,Iq_refから交流電圧目標値Vd_ref,Vq_refを算出し、これらの値から交流配線部3iの各瞬時電圧Va,Vb,Vcの目標値Va_ref,Vb_ref,Vc_refを算出する。
 仮想発電機モデル制御型の制御態様においても、電圧制御型の制御態様と同様の制御結果がもたらされる。すなわち、第2の垂下特性に基づいて交流配線部3iに接続される負荷5の消費電力の変化に応じて交流配線部3iにおける周波数facが変化するような周波数目標値fac_refが生成される。そして、直流配線部6の直流電圧Vdcの変化に応じて当該周波数目標値fac_refが補正される。
 したがって、仮想発電機モデル制御型の制御態様においても、発電機2iまたは配線部3iの異常の有無にかかわらず同じ制御態様を実行しつつ、一の発電機2iに異常が生じた場合において、各配線部3iへの電力供給を継続することができ、配線部3iの一部に異常が生じた場合において、他の配線部3iに影響を与えないようにすることができる。
 また、交流配線部3iに電力変換装置4iが出力する有効電力Pacと周波数facとの間の関係だけでなく交流配線部3iに電力変換装置4iが出力する無効電力Qacと交流電圧Vacとの間の関係についても垂下特性を用いた制御が行われる。したがって、無効電力Qacの変化に伴う交流電圧Vacの変化に応じた電力の授受を複数の配線部3i間で行うことができる。
 なお、仮想発電機モデル制御型の制御態様においても、第2の垂下特性および第3の垂下特性は、第1の垂下特性と同じ特性を有するように設定されてもよいし、異なる特性として設定されてもよい。
 また、本実施の形態においては、無効電力目標値Qac_refについても第3の垂下特性を用いて演算したが、無効電力目標値Qac_refについてはこのような演算を行わず固定の目標値としてもよい。
 また、周波数指令値fac_cmd、有効電力指令値Pac_cmd、直流電圧指令値Vdc_cmd、交流電圧指令値Vac_cmdおよび無効電力指令値Qac_cmdは、制御装置17i内部で設定された値でもよいし、外部から入力されてもよい。また、各指令値は、固定値でもよいし、後述するように各交流配線部3iの周波数facに基づいて変化する値としてもよい。
 [シミュレーション結果]
 上記実施の形態の電源システム1におけるシミュレーション結果を以下に示す。本シミュレーションでは、図1に示すように、2つの交流配線部31,32のそれぞれに1つの発電機21,22および電力変換装置41,42が接続されている電源システム1を用いている。発電機21,22における有効・無効電力に対する周波数・電圧の垂下特性(第1の垂下特性)を2%とし、電力変換装置41,42における有効・無効電力に対する周波数・電圧の垂下特性(第1および第2の垂下特性)を1%(Dr_p=Dr_q=0.01)、直流電圧Vdcによる補正のための補正係数(-Kdc)を-0.3とする。各電力変換装置41,42の容量はそれぞれ45kWであり、直流配線部6の定格電圧を540Vとする。
 図11から図16は、本実施の形態におけるシミュレーション結果を示すグラフである。各図において、P11は、発電機21が出力する発電機有効電力の変化を示し、P12は、電力変換装置41が交流配線部31に出力する電力変換装置有効電力の変化を示し、P21は、発電機22が出力する発電機有効電力の変化を示し、P22は、電力変換装置42が交流配線部32に出力する電力変換装置有効電力の変化を示す。また、f1は、交流配線部31の周波数の変化を示し、f2は、交流配線部32の周波数の変化を示し、Vdcは、直流配線部6の直流電圧の変化を示す。
 図11は、2つの交流配線部に均等な負荷を接続した場合の有効電力変化を示すグラフであり、図12は、2つの交流配線部に均等な負荷を接続した場合の周波数および直流電圧の変化を示すグラフである。シミュレーション開始後3秒において、各交流配線部31,32にそれぞれ45kWの負荷を接続した場合のシミュレーション結果を示している。図11および図12により、負荷接続による各値の応答が一定値に収束して定常状態となることが示された。この際、2つの交流配線部31,32間での電力融通は発生していない。
 図13は、一方の交流配線部31に60kWの負荷を接続し、他方の交流配線部32に30kWの負荷を接続した場合の有効電力変化を示すグラフであり、図14は、一方の交流配線部31に60kWの負荷を接続し、他方の交流配線部32に30kWの負荷を接続した場合の周波数および直流電圧の変化を示すグラフである。図13および図14のシミュレーションにおいてもシミュレーション開始後3秒において負荷を接続する。図13および図14に示すように、2つの交流配線部31,32に接続される負荷に偏りが生じた場合でも、負荷接続による各値の応答が一定値に収束して定常状態となることが示された。この際、P12が増加し、P22が減少していることから、電力変換装置42から電力変換装置41へ電力の融通が生じていることが分かる。
 図15は、図13の定常状態において、一方の発電機21を交流配線部31から切り離した場合の有効電力変化を示すグラフであり、図16は、図14の定常状態において、一方の発電機21を交流配線部31から切り離した場合の周波数および直流電圧の変化を示すグラフである。図15および図16において、シミュレーション開始後10秒において発電機21が交流配線部31から切り離されている。このとき、P11が0になる一方で、その直後からP21が増加し、それに伴ってP12が増加し、P22が減少している。
 このことから、発電機21が交流配線部31から切り離された直後に、電力変換装置42および電力変換装置41を通じて発電機22からの電力が交流配線部31の負荷に供給されていることが分かる。したがって、本実施の形態の電源システム1において、一方の発電機21が故障等の異常により停止しても、交流配線部31への電力供給を継続することができるとともに、複数の交流配線部31,32間の電力の授受を適切に行うことができることが示された。また、発電機21が切り離された後、各値の応答が一定値に収束して定常状態となることが示された。したがって、本実施の形態における電源システム1は、安定であることが示された。
 [実施の形態2]
 次に、本発明の実施の形態2について説明する。図17は、本発明の実施の形態2に係る電源システムの概略構成を示すブロック図である。実施の形態2において実施の形態1と同様の構成については同じ符号を付し、説明を省略する。実施の形態2における電源システム1Bが実施の形態1の電源システム1と異なる点は、制御装置が、各発電機2iの出力が互いに均等になるように、複数の交流配線部3iの周波数facを平均化した値に基づいて、制御要素の目標値の基準となる制御要素の指令値を補正する指令値補正部101を備えていることである。
 本実施の形態においては、図1の例と同様に、複数の電力変換装置4iに対応して同じ数の制御装置17iが個別に接続されている。そして、電源システム1Bは、これらの制御装置17iのそれぞれに指令値補正値を送信する別の1つの制御装置(上位制御装置)100を備えている。
 図18は、図17に示す指令値補正部の一の構成例を示すブロック図である。図18の例においては、制御装置17iが電圧制御型(図2)または仮想発電機モデル制御型(図5)である場合の指令値補正部101の構成例を示している。
 指令値補正部101には、複数の交流配線部3iの周波数fac(図18においてはfac(i=1,2,…,n)と表記する)が入力される。入力された複数の周波数facは、平均値演算部102に入力される。平均値演算部102は、複数の周波数facの平均値を出力する。例えば、平均値演算部102は、複数の周波数facを足し合わせた上で交流配線部3iの数(足し合わした数)nで割った平均値fac_aveを算出する。
 指令値補正部101は、算出された平均値fac_aveに対する複数の周波数facのそれぞれの偏差を算出し、当該算出された偏差のそれぞれを積分器103に入力する。積分器103は、各偏差を積分し、所定の補正係数kを掛けた値を各交流配線部3iに対応する各電力変換装置4iの周波数指令値fac_cmd(図18においてはfac_cmdと表記する)として出力する。この周波数指令値fac_cmdが電圧制御型の制御装置17iの周波数目標値演算部74または仮想発電機モデル制御型の制御装置17iの周波数目標値演算部80に入力される。
 上記シミュレーションで示したように、各交流配線部3iに互いに異なる負荷5が接続された場合、電力変換装置4iにより交流配線部3i間の電力の授受が行われる結果、各発電機2iの出力(発電機有効電力)は互いに均等にならずに定常状態となる(図13のP11,P21参照)。
 そこで、本実施の形態において、各制御装置17iは、定常状態における各交流配線部3iの周波数facが互いに等しくなるように対応する電力変換装置4iを制御する。発電機2iは、周波数に対する発電機有効電力の関係において第1の垂下特性を有し、制御装置17iは、周波数facに対して電力変換装置4iが交流配線部3iに出力する電力変換装置有効電力Pacの関係において第2の垂下特性を有するように電力変換装置4iを制御する。すなわち、交流配線部3iにおける周波数facを制御することにより、発電機2iから出力する発電機有効電力を制御することができる。したがって、本実施の形態によれば、複数の配線部3i間における電力の授受を適切に行いつつ、複数の発電機2iの出力をバランスさせることができる。
 なお、本実施の形態において、指令値補正部101は、制御要素の目標値を生成する制御装置17iとは別の上位制御装置100の機能ブロックとして構成されている例について説明したが、これに限られない。例えば、指令値補正部101は、各制御装置17i内に設けられてもよい。この場合、例えば平均値演算部102を、複数の制御装置17iのうちの1つの制御装置に設け、その他の制御装置17iは、当該1つの制御装置から入力される周波数平均値に基づいて周波数指令値fac_cmdを算出するように構成されてもよい。
 また、複数の制御装置17iのうちの1つの制御装置にのみ指令値補正部101が設けられ、その他の制御装置17iには、当該1つの制御装置で算出された対応する周波数指令値fac_cmdが入力されるように構成されてもよい。
 また、本実施の形態において、図17に示すように、各交流配線部3iの周波数facは、対応する制御装置17iから取得するように構成される。これに代えて、上位制御装置100は、各交流配線部3iの周波数facを交流電圧計測器8から取得した交流電圧に基づいて取得する(上位制御装置100が電圧・周波数・位相演算部71を備える)構成としてもよい。
 また、本実施の形態における指令値補正部101は、電流制御型の制御装置17iに対しても適用可能である。積分器103の補正係数kの値を適切に設定することにより、各積分器103の出力を有効電力指令値Pac_cmdとすることができる。
 [適用例1]
 以下、上記実施の形態における電源システム1,1Bの適用例についていくつか例示する。なお、以下の適用例では、実施の形態1における電源システム1の適用例について例示するが、実施の形態2における電源システム1Bについても同様に適用可能である。
 まず、電源システム1を航空機の電源システムとして適用した場合について説明する。図1に示すような、2つの発電機21,22として、航空機の発電機として用いられる変速機内蔵型発電機(IDG: Integrated Drive Generator)を適用して電源システムを構成することができる。IDGは、航空機の主エンジンからの動力が入力される定速駆動制御装置(CSD: Constant Speed-Drive unit、図示せず)を有しており、主エンジンの回転数に拘わらず、発電機の回転数(周波数)を一定の目標値に保持することができる。
 このようなIDGを、上記実施の形態における電源システム1の発電機2iとして用いて電源システムを構築することにより、各発電機(IDG)2iに接続された交流配線部3i間で電力の授受を適切に行うことができる。また、発電機2iまたは交流配線部3iの異常の有無にかかわらず各制御装置17iにおいて同じ制御態様を実行しつつ、一の発電機2iに異常が生じた場合において、各配線部3iへの電力供給を継続することができ、配線部3iの一部に異常が生じた場合において、他の配線部3iに影響を与えないようにすることができる。
 なお、電源システム1を航空機等の実際のシステムに適用する際には、直流配線部6と各電力変換装置4iの直流部4idとの間に遮断器(後述する図19の遮断器111~114参照)を設け、複数の発電機2iの接続または遮断を適宜変更可能としてもよい。
 [適用例2]
 図19は、実施の形態1における電源システムの航空機への適用例の1つを説明するブロック図である。図19における電源システム1Cは、それぞれが個別の交流配線部31,32,33,34に接続される4つの発電機21,22,23,24を備えている。各発電機21~24として適用例1と同様のIDGが用いられている。また、交流配線部31が接続される電力変換装置41の直流部41dと交流配線部32が接続される電力変換装置42の直流部42dとの間に直流配線部61が接続されるとともに、交流配線部33が接続される電力変換装置43の直流部43dと交流配線部34が接続される電力変換装置44の直流部44dとの間に直流配線部62が接続される。これら2つの直流配線部61,62同士がバイパス回路63を介して接続されている。バイパス回路63には、遮断器115が設けられている。また、直流配線部61,62と各電力変換装置4iの直流部4idとの間には、遮断器11i(111,112,113,114)が設けられている。
 本適用例においても適用例1と同様に、最大4つの発電機2iで4つの交流配線部3iの負荷5を分担することができる。また、これにより、負荷急変時の電圧および周波数変動が抑制される。また、何れかの発電機2iが停止しても他の発電機2iによりすべての負荷5に電力供給を継続することが可能である。さらに、バイパス回路63および/または各遮断器11iの接続または遮断を切り替えることにより、一の交流配線部3iに接続される負荷5を一の発電機2iで負担するか複数の発電機2iで負担するか等の電源システム1Cの構成変更を容易に行うことができる。
 [適用例3]
 図20は、実施の形態1における電源システムの航空機への適用例の1つを説明するブロック図である。図20における電源システム1Dは、適用例2における発電機22,24においてIDGの代わりに補助動力装置(APU)22A,24Aが接続されている。発電機21,23はIDGとして構成される。補助動力装置22A,24Aには、上記実施の形態と同様の電力変換装置42A,44Aが接続されているが、補助動力装置22A,24Aと電力変換装置42A,44Aとの間には交流BUSおよび負荷5は接続されていない。
 本適用例において、IDG21,23は、それぞれ対応する交流配線部31,33に接続される負荷5に対して電力供給を行う。IDG21,23の停止中、交流配線部31,33には、APU22A,24Aが対応する交流配線部31,33に接続される負荷5に対して継続的に電力供給を行う。また、バイパス回路63の遮断器115を閉成することにより、IDG21および/またはAPU22Aから交流配線部33に接続される負荷5への電力供給を行うこともできるし、IDG23および/またはAPU24Aから交流配線部31に接続される負荷5への電力供給を行うこともできる。
 従来のスプリット方式では主エンジン始動時、APU22A,24Aを用いて負荷5への電力供給を行った状態で、主エンジンを始動することによりIDG21,23を起動し、負荷5への電力供給源をAPU22A,24AからIDG21,23に切り替える制御を行う場合がある。主エンジンを停止する際には逆の制御が行われ得る。このような発電機の切替を行う際、従来であれば無瞬断切替等の操作が別途必要となっていた。しかし、上記実施の形態における電源システムを適用することにより、主エンジン始動時および停止時の操作が容易になる。
 [適用例4]
 図21は、実施の形態1における電源システムのハイブリッド推進船への適用例の1つを説明するブロック図である。本適用例における電源システム1Eは、図1に示す電源システム1における発電機21をディーゼル発電機とし、発電機22をガスタービン発電設備としたものである。さらに、電源システム1Eにおいて、発電機22が接続される交流配線部32と電力変換装置42との間には、変圧器120が設けられている。ハイブリッド推進船は、発電機22と比較して小容量のディーゼル発電機21および交流配線部31を主に船内電源系統として使用し、発電機21と比較して大容量のガスタービン発電設備22および交流配線部32を主に推進補助のために使用する。このような異なる種類の発電機21,22を有する電源システム1Eにおいても運用状態に応じて2つの交流配線部31,32間で電力の授受を行うことができる。これにより、ハイブリッド推進船において、一方の発電機21,22を停止させる等、運用方法の自由度を高くすることができる。
 なお、本適用例のように、異なる種類の発電機21,22において上記実施の形態の電源システムを適用する場合であって、発電機21,22の容量差が大きい場合には、上述したような変圧器120が設けられる。例えば、発電機21の定格電圧が450Vで、発電機22の定格電圧が6.6kVである場合、変圧器120は、発電機22が出力し、交流配線部32の電圧を発電機21の定格電圧とほぼ同じ電圧に降圧するように構成される。これにより、電力変換装置41,42が各交流配線部31,32に出力する交流電圧Vacの差が大きくならないようにすることができる。
 [その他の変形例]
 以上、本発明の実施の形態について説明したが、本発明は上記実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲内で種々の改良、変更、修正が可能である。
 例えば、上記実施の形態においては、電源システムが適用される交流配線部3iが三相系統である場合について説明したが、これに限られない。例えば、交流配線部3iが単相二線系統または単相三線系統の場合であっても、各種演算の方法が系統の方式に応じて異なることを除いて同様の電源システムを構築可能である。
 また、上記実施の形態においては、1つの交流配線部3iに1つの発電機2iが接続された例について説明したが、1つの交流配線部3iに2以上の発電機2iが接続されてもよい。
 また、上記適用例においては、主に航空機またはハイブリッド推進船に適用できる旨説明したが、上記実施の形態の電源システムは、複数の発電機を備えた電源システムであれば、好適に適用可能である。例えば、上記実施の形態の電源システムを、通常船舶等の移動体電源システム、自家発電システム等に適用可能である。
 本発明は、それぞれが少なくとも1つの発電機を含む複数の配線部が互いに接続された電源システムにおいて、一の発電機に異常が生じた場合において、各配線部への電力供給を継続し、配線部の一部に異常が生じた場合において、他の配線部に影響を与えないようにするために有用である。
1,1B 電源システム
2i(i=1,2,…) 発電機
3i 交流配線部
4i 電力変換装置
6,61,62 直流配線部
17i 制御装置
74,80 周波数目標値演算部
75 交流電圧目標値演算部
77 有効電力目標値演算部
78 無効電力目標値演算部
101 指令値補正部

Claims (10)

  1.  複数の発電機を備えた電源システムであって、
     前記複数の発電機のそれぞれに接続される複数の交流配線部と、
     前記複数の交流配線部のそれぞれに接続される複数の電力変換装置と、
     前記複数の電力変換装置同士を接続する直流配線部と、
     前記複数の電力変換装置に駆動信号を送信することにより対応する交流配線部と前記直流配線部との間の電力変換制御を行う制御装置と、を備え、
     前記複数の発電機のそれぞれは、対応する前記交流配線部に各発電機が出力する発電機有効電力に対する周波数の関係が所定の第1の垂下特性を有するよう構成され、
     前記複数の電力変換装置は、各交流配線部を通じて入力される交流電力を直流電力に変換するとともに、前記直流配線部を通じて入力される直流電力を交流電力に変換するよう構成され、
     前記制御装置は、対応する前記交流配線部に各電力変換装置が出力する電力変換装置有効電力に対する周波数の関係が所定の第2の垂下特性を有するように制御要素の目標値を決定し、前記制御要素の目標値を前記直流配線部における直流電圧に応じて補正することにより、各電力変換装置のための前記駆動信号を生成するよう構成される、電源システム。
  2.  前記制御装置は、対応する前記交流配線部に各電力変換装置が出力する電力変換装置無効電力に対する交流電圧の関係が所定の第3の垂下特性を有するように前記制御要素の目標値を決定するよう構成される、請求項1に記載の電源システム。
  3.  前記制御装置は、所定の有効電力指令値に対する前記電力変換装置有効電力の偏差に基づく値に、前記第2の垂下特性を示す係数を掛ける演算を含む周波数目標値演算処理によって周波数目標値を算出する周波数目標値演算部を備えた、請求項1または2に記載の電源システム。
  4.  前記周波数目標値演算部は、前記有効電力指令値に対する前記電力変換装置有効電力の偏差に基づく値に、前記第2の垂下特性を示す係数を掛けた周波数参照値を算出し、所定の直流電圧指令値に対する前記直流電圧の偏差に所定の補正係数を掛けた周波数補正値を算出し、所定の周波数指令値に、前記周波数参照値および前記周波数補正値を加えて前記周波数目標値を算出する、請求項3に記載の電源システム。
  5.  前記周波数目標値演算部は、所定の直流電圧指令値に対する前記直流電圧の偏差に所定の補正係数を掛けた有効電力補正値を算出し、前記有効電力指令値に対する前記電力変換装置有効電力の偏差に前記有効電力補正値を加えた値に、前記第2の垂下特性を示す係数を掛ける演算を行う、請求項3に記載の電源システム。
  6.  前記制御装置は、所定の周波数指令値に対する前記周波数の偏差に基づく値に、前記第2の垂下特性を示す係数を掛ける演算を含む有効電力目標値演算処理によって有効電力目標値を算出する有効電力目標値演算部を備えた、請求項1または2に記載の電源システム。
  7.  前記有効電力目標値演算部は、前記周波数指令値に対する前記周波数の偏差に基づく値に、前記第2の垂下特性を示す係数を掛けた有効電力参照値を算出し、所定の直流電圧指令値に対する前記直流電圧の偏差に所定の補正係数を掛けた有効電力補正値を算出し、所定の有効電力指令値に、前記有効電力参照値および前記有効電力補正値を加えて前記有効電力目標値を算出する、請求項6に記載の電源システム。
  8.  前記制御装置は、所定の無効電力指令値に対する前記電力変換装置無効電力の偏差に基づく値に、前記第3の垂下特性を示す係数を掛ける演算を含む交流電圧目標値演算処理によって交流電圧目標値を算出する交流電圧目標値演算部を備えた、請求項2に記載の電源システム。
  9.  前記制御装置は、所定の交流電圧指令値に対する前記交流電圧の偏差に基づく値に、前記第3の垂下特性を示す係数を掛ける演算を含む無効電力目標値演算処理によって無効電力目標値を算出する無効電力目標値演算部を備えた、請求項2に記載の電源システム。
  10.  前記制御装置は、各発電機の出力が互いに均等になるように、前記複数の交流配線部の前記周波数を平均化した値に基づいて、前記制御要素の目標値の基準となる前記制御要素の指令値を補正する指令値補正部を備えた、請求項1から9の何れかに記載の電源システム。
PCT/JP2017/046764 2016-12-27 2017-12-26 電源システム WO2018124123A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA3042496A CA3042496C (en) 2016-12-27 2017-12-26 Power supply system
BR112019011400-9A BR112019011400B1 (pt) 2016-12-27 2017-12-26 Sistema de fonte de alimentação
US16/468,882 US10985560B2 (en) 2016-12-27 2017-12-26 Power supply system
CN201780080565.7A CN110114951B (zh) 2016-12-27 2017-12-26 电源系统
EP17885800.7A EP3565081B1 (en) 2016-12-27 2017-12-26 Power supply system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-254003 2016-12-27
JP2016254003A JP6764338B2 (ja) 2016-12-27 2016-12-27 電源システム

Publications (1)

Publication Number Publication Date
WO2018124123A1 true WO2018124123A1 (ja) 2018-07-05

Family

ID=62709996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046764 WO2018124123A1 (ja) 2016-12-27 2017-12-26 電源システム

Country Status (6)

Country Link
US (1) US10985560B2 (ja)
EP (1) EP3565081B1 (ja)
JP (1) JP6764338B2 (ja)
CN (1) CN110114951B (ja)
CA (1) CA3042496C (ja)
WO (1) WO2018124123A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021046760A1 (en) 2019-09-11 2021-03-18 Abb Schweiz Ag Flexible interconnection device and method for controlling a flexible interconnection device
CN114709853A (zh) * 2022-03-29 2022-07-05 西北工业大学 供电系统和方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2874658T3 (es) * 2017-03-14 2021-11-05 Abb Schweiz Ag Procedimiento y sistema de control para controlar un convertidor de potencia
US11437813B2 (en) * 2018-11-05 2022-09-06 Rolls-Royce North American Technologies Inc. System controller for a hybrid aircraft propulsion system
JP7161398B2 (ja) * 2018-12-27 2022-10-26 川崎重工業株式会社 電力変換装置
WO2020152808A1 (ja) * 2019-01-23 2020-07-30 株式会社 東芝 電力供給システム、及び電力供給システムの制御方法
JP7112973B2 (ja) * 2019-02-01 2022-08-04 三菱重工エンジン&ターボチャージャ株式会社 指令生成装置および指令生成方法
JP7351620B2 (ja) * 2019-02-01 2023-09-27 三菱重工エンジン&ターボチャージャ株式会社 複数発電電源システムにおける指令生成装置および指令生成方法
WO2021117192A1 (ja) * 2019-12-12 2021-06-17 東芝三菱電機産業システム株式会社 電力変換装置
EP3869682B8 (en) * 2020-02-24 2024-06-12 Danfoss A/S A method and a control device for controlling a power converter
CN111641203B (zh) * 2020-08-03 2021-08-20 深圳市永联科技股份有限公司 直流电压源系统、控制方法以及存储介质
EP4250528A4 (en) * 2020-11-20 2024-10-16 Furukawa Electric Co Ltd POWER SUPPLY SYSTEM AND METHOD FOR CONTROLLING THE POWER SUPPLY SYSTEM
WO2022168283A1 (ja) * 2021-02-05 2022-08-11 三菱電機株式会社 電力制御システム
CN113507143B (zh) * 2021-07-08 2022-09-20 东北电力大学 基于改进vsg技术的混合微电网ic自适应控制策略
CN113595157B (zh) * 2021-08-03 2022-03-22 国家电投集团电站运营技术(北京)有限公司 风电场有功功率的协调控制方法、装置、设备及存储介质
CN113809749B (zh) * 2021-08-31 2024-01-23 西安理工大学 包含下垂控制dg的mg基于虚拟阻抗的粒子群优化方法
FR3129377B1 (fr) * 2021-11-25 2023-11-24 Safran Fourniture d’energie dans un aeronef utilisant un contrôle de statisme
CN115833183B (zh) * 2023-02-16 2023-05-02 中国科学院电工研究所 一种主动支撑场景下柔性交直流配电系统协调控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7923857B2 (en) * 2007-01-16 2011-04-12 Airbus France System and method for supplying power for actuators on board an aircraft
JP4725010B2 (ja) 2003-10-31 2011-07-13 シンフォニアテクノロジー株式会社 2系統相互バックアップ式電源装置
JP2015532081A (ja) * 2012-07-30 2015-11-05 川崎重工業株式会社 航空機用電気系統安定化システム
JP2015533699A (ja) * 2012-07-30 2015-11-26 川崎重工業株式会社 航空機用電気系統安定化システム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19739917A1 (de) * 1997-09-11 1999-03-18 Siemens Ag System zur Versorgung elektromotorischer Verbraucher mit elektrischer Energie
CN101494384B (zh) * 2008-12-25 2010-12-08 吴晓勇 正弦波发电机多机并联用控制电路及多机并联系统
WO2012116378A2 (en) * 2011-02-25 2012-08-30 Tesuco Services (Pty) Ltd Power system and method for operating a power system
DK2503146T3 (da) * 2011-03-21 2014-02-10 Siemens Ag Fremgangsmåde og indretning til styring af driften af et elektrisk energiproduktionsanlæg under en afbrydelse fra et forsyningsnet
WO2014032668A1 (en) * 2012-09-03 2014-03-06 Vestas Wind Systems A/S Connection system for power generation system with dc output
JP5957094B2 (ja) * 2012-12-27 2016-07-27 川崎重工業株式会社 電力変換装置を備えた複合発電システム
GB2510121A (en) * 2013-01-24 2014-07-30 Rolls Royce Plc An aircraft electrical generator supplemented by an energy store until the generator is ramped up to meet the load requirement.
US9548619B2 (en) * 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
GB201308292D0 (en) * 2013-05-09 2013-06-12 Rolls Royce Plc Aircraft electrical system
CN103683331B (zh) * 2013-12-26 2015-07-15 电子科技大学 一种单相逆变器控制系统
FR3017257B1 (fr) * 2014-01-31 2017-11-10 Hispano-Suiza Systeme de distribution et de conversion electrique pour un aeronef
CN105634309B (zh) * 2014-11-06 2018-06-22 台达电子工业股份有限公司 一种用于逆变系统的控制方法及控制装置
CN204316175U (zh) * 2014-12-16 2015-05-06 安徽鑫龙电器股份有限公司 不间断供电电源
CN105790310B (zh) * 2015-04-23 2018-05-08 浙江大学 一种应用于微型电网系统孤岛模式中基于环流功率理论的分布式并联控制方法
CN105262096B (zh) * 2015-08-06 2017-11-03 国家电网公司 计及光伏最大功率跟踪的主动配电网电压频率调整方法
CN105870963B (zh) * 2016-03-31 2018-06-12 西安交通大学 一种基于频率电压斜率控制的vsc换流站控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4725010B2 (ja) 2003-10-31 2011-07-13 シンフォニアテクノロジー株式会社 2系統相互バックアップ式電源装置
US7923857B2 (en) * 2007-01-16 2011-04-12 Airbus France System and method for supplying power for actuators on board an aircraft
JP2015532081A (ja) * 2012-07-30 2015-11-05 川崎重工業株式会社 航空機用電気系統安定化システム
JP2015533699A (ja) * 2012-07-30 2015-11-26 川崎重工業株式会社 航空機用電気系統安定化システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3565081A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021046760A1 (en) 2019-09-11 2021-03-18 Abb Schweiz Ag Flexible interconnection device and method for controlling a flexible interconnection device
EP4029102A4 (en) * 2019-09-11 2023-06-07 Hitachi Energy Switzerland AG FLEXIBLE INTERCONNECT DEVICE AND METHOD OF ORDERING FLEXIBLE INTERCONNECT DEVICE
US11984725B2 (en) 2019-09-11 2024-05-14 Hitachi Energy Ltd Flexible interconnection device and method for controlling a flexible interconnection device
CN114709853A (zh) * 2022-03-29 2022-07-05 西北工业大学 供电系统和方法
CN114709853B (zh) * 2022-03-29 2024-03-08 西北工业大学 供电系统和方法

Also Published As

Publication number Publication date
US20200083709A1 (en) 2020-03-12
JP2018107959A (ja) 2018-07-05
EP3565081B1 (en) 2023-02-01
EP3565081A4 (en) 2020-08-05
CA3042496C (en) 2021-10-05
CN110114951B (zh) 2023-07-25
BR112019011400A2 (pt) 2019-10-15
CA3042496A1 (en) 2018-07-05
CN110114951A (zh) 2019-08-09
EP3565081A1 (en) 2019-11-06
US10985560B2 (en) 2021-04-20
JP6764338B2 (ja) 2020-09-30

Similar Documents

Publication Publication Date Title
WO2018124123A1 (ja) 電源システム
JP5956991B2 (ja) 複合発電システム向け電力変換装置
KR101699410B1 (ko) 전력 변환 장치를 구비한 복합 발전 시스템
JP6371603B2 (ja) 複合発電システム用電力変換装置
KR101804469B1 (ko) 각 상 개별제어 기술을 탑재한 3 레그 3상 4선식 인버터를 구비하는 무정전 전원 장치
JP2012143018A (ja) 系統安定化装置および系統安定化方法
JP2012130146A (ja) 自立電源系統調整装置および自立電源系統の調整方法
US9531191B2 (en) Method and apparatus for power imbalance correction in a multi-phase power generator
US11128245B2 (en) Power supply system
JP2006254659A (ja) 分散型電源装置
JP2023086352A (ja) 電力変換器の制御器および制御方法
JP3682544B2 (ja) インバータドライブ装置によるプラント電源カ率制御方式
JP7365116B2 (ja) 電力系統安定化装置
JP3187257B2 (ja) 交流励磁同期機の運転制御装置
BR112019011400B1 (pt) Sistema de fonte de alimentação
US20240348178A1 (en) Power conversion apparatus
BR112020007535B1 (pt) Sistema de fonte de alimentação
WO2015124911A1 (en) Battery control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885800

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3042496

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019011400

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017885800

Country of ref document: EP

Effective date: 20190729

ENP Entry into the national phase

Ref document number: 112019011400

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190603