WO2018124039A1 - 燃料電池の製造方法および加工装置 - Google Patents

燃料電池の製造方法および加工装置 Download PDF

Info

Publication number
WO2018124039A1
WO2018124039A1 PCT/JP2017/046572 JP2017046572W WO2018124039A1 WO 2018124039 A1 WO2018124039 A1 WO 2018124039A1 JP 2017046572 W JP2017046572 W JP 2017046572W WO 2018124039 A1 WO2018124039 A1 WO 2018124039A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte membrane
temperature
fuel cell
heating step
heating
Prior art date
Application number
PCT/JP2017/046572
Other languages
English (en)
French (fr)
Inventor
仁志 長▲崎▼
丈弘 麥島
和秀 松尾
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2018559500A priority Critical patent/JP6740376B2/ja
Priority to CA3046443A priority patent/CA3046443C/en
Priority to US16/473,846 priority patent/US11245120B2/en
Priority to CN201780080879.7A priority patent/CN110114926B/zh
Publication of WO2018124039A1 publication Critical patent/WO2018124039A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2418Grouping by arranging unit cells in a plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a planar array type fuel cell in which unit cells are arrayed in a planar shape, and an interconnector forming processing apparatus.
  • a fuel cell is a device that obtains electric power from hydrogen and oxygen. In recent years, it has been attracting attention as a clean power source because it only generates water with power generation. Since the voltage of the unit cell of such a fuel cell is as low as about 0.6 to 0.8 V, a plurality of unit cells composed of membrane electrode assemblies (MEA) and separators are stacked and connected in series. Fuel cell stacks that obtain output have been put into practical use. This fuel cell stack has a problem that it takes time and labor to stack the fuel cell stack.
  • MEA membrane electrode assemblies
  • the interconnector portion forms a void in a part of the electrolyte membrane, and the void is filled with an anode catalyst layer material or a cathode catalyst layer material. Formed. In such a configuration, there is a problem that it takes time and labor since several steps are required to form the interconnector portion.
  • the present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a fuel that can easily form an interconnector portion that electrically connects adjacent unit cells in a planar array type fuel cell.
  • An object of the present invention is to provide a battery manufacturing method and an interconnector forming apparatus.
  • the method for producing a fuel cell of the present invention includes electrode layers on both surfaces of an electrolyte membrane made of a proton conductive resin,
  • the electrode layers on both sides have a plurality of electrode regions divided by dividing grooves, one electrode region on one surface side of the both surfaces, and one on the other surface side facing the one electrode region
  • a unit cell is composed of a laminated structure including an electrode region and the electrolyte membrane, A plurality of the unit cells are arranged,
  • An interconnector portion that electrically connects an electrode region on the one surface side of one unit cell and an electrode region on the other surface side of the unit cell arranged next to the one unit cell is the electrolyte.
  • the interconnector portion is a method for producing a fuel cell comprising a conductive carbide derived from the proton conductive resin of the electrolyte membrane,
  • the interconnector portion is formed through a local heating step of locally heating the electrolyte membrane to carbonize the proton conductive resin,
  • the local heating step includes a first heating step of heating a portion of the electrolyte membrane to a temperature not higher than a first temperature at a first temperature rising rate, and the portion of the electrolyte membrane after the first heating step.
  • the interconnector portion is made of a conductive carbide derived from the proton conductive resin of the electrolyte membrane by the first and second heating steps, so that no complicated process is required. Can be formed. This is because a conductive carbide, that is, an interconnector portion can be obtained only by carbonizing a part of the electrolyte membrane. Moreover, a favorable interconnector part can be reliably formed by providing two heating steps.
  • the processing apparatus of the present invention comprises electrode layers on both surfaces of an electrolyte membrane made of a proton conductive resin, the electrode layers on both surfaces having a plurality of electrode regions divided by dividing grooves, and the one surface
  • a unit cell is formed by a laminated structure including one electrode region on the side, one electrode region on the other surface facing the one electrode region, and the electrolyte membrane, and a plurality of the unit cells are arranged.
  • An interconnector for electrically connecting the electrode region on the one surface side of one unit cell and the electrode region on the other surface side of the unit cell arranged next to the one unit cell;
  • a processing apparatus provided in the electrolyte membrane, wherein the interconnector portion forms the interconnector portion of a fuel cell made of a conductive carbide derived from the proton conductive resin of the electrolyte membrane,
  • a machining head that moves relatively along the main surface of the electrolyte membrane;
  • the processing head includes: a first laser light irradiation head that heats a part of the electrolyte membrane to a temperature not higher than a first temperature increase rate and lower than a first temperature by laser light irradiation; and a laser beam irradiation of the electrolyte membrane. And a second laser light irradiation head for heating the part to a second temperature higher than the first temperature at a temperature increase rate higher than the first temperature increase rate.
  • a first laser light irradiation head that heats
  • the first and second laser light irradiation heads locally heat a part of the electrolyte membrane of the proton conductive resin, and carbonize the proton conductive resin of the portion to form the conductive carbide.
  • the interconnector portion can be formed only by doing so, and can be easily and reliably formed without requiring a complicated process.
  • the proton conductive resin is preferably an aromatic polymer compound in which a sulfonic acid group is introduced into a hydrocarbon polymer such as aromatic polyarylene ether ketones or aromatic polyarylene ether sulfones. Such a compound is easily changed to a conductive carbide by heating.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a fuel cell to which the present invention is applied. Sectional drawing which expands and shows the principal part of the fuel cell shown in FIG.
  • the schematic cross section which shows the components of the fuel cell for demonstrating the manufacturing method of the fuel cell of this invention.
  • the schematic cross section which shows the components of the fuel cell for demonstrating the manufacturing method of the fuel cell of this invention.
  • the schematic cross section which shows the components of the fuel cell for demonstrating the manufacturing method of the fuel cell of this invention.
  • the schematic cross section which shows the components of the fuel cell for demonstrating the manufacturing method of the fuel cell of this invention.
  • the schematic cross section which shows the components of the fuel cell for demonstrating the manufacturing method of the fuel cell of this invention The schematic cross section which shows the components of the fuel cell for demonstrating the manufacturing method of the fuel cell of this invention.
  • the schematic cross section which shows the components of the fuel cell for demonstrating the manufacturing method of the fuel cell of this invention.
  • the schematic cross section which shows the components of the fuel cell for demonstrating the manufacturing method of the fuel cell of this invention.
  • the schematic cross section which shows the components of the fuel cell for demonstrating the manufacturing method of the fuel cell of this invention.
  • the schematic cross section which shows the components of the fuel cell for demonstrating the manufacturing method of the fuel cell of this invention.
  • the graph which shows an example of the temperature profile of the local heating of the electrolyte membrane in the manufacturing method of the fuel cell of this invention.
  • the graph which shows another example of the temperature profile of the local heating of the electrolyte membrane in the manufacturing method of the fuel cell of this invention The schematic cross section which shows the components of the fuel cell for demonstrating another example of the manufacturing method of the fuel cell of this invention.
  • the figure which shows the FT-IR spectrum before heating an aromatic polymer The figure which shows the FT-IR spectrum after heating an aromatic polymer.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a fuel cell to which the present invention is applied
  • FIG. 2 is an enlarged view showing a main part of FIG. 1, in which an upper side is an anode and a lower side is a cathode.
  • a membrane electrode assembly (MEA) 11 of the fuel cell 10 shown in FIG. 2 includes a gas diffusion layer 18 on both sides of an electrolyte membrane 12 (PEM) and a catalyst layer 16 as an electrode layer on the lower side.
  • a protective layer 14 in contact with the catalyst layer 16 and the electrolyte membrane 12 is provided as an electrode layer on the upper side.
  • the upper electrode layer is composed of two layers of the catalyst layer 16 and the protective layer 14. Further, an upper plate 20 is provided above the upper gas diffusion layer 18, a lower plate 22 is provided below the lower gas diffusion layer 18, and the upper plate 20 and the lower plate 22 are membrane electrode assemblies. 11 is sandwiched. In FIG. 1, the laminated structure located in the center is omitted.
  • a plurality of flow channel grooves 20T and 22T are opposed to the surfaces of the upper plate 20 and the lower plate 22 on the gas diffusion layer 18 side. Each is provided.
  • a seal 24 is provided between the peripheral portion of the upper surface (anode side) of the electrolyte membrane 12 and the upper plate 20. The seal 24 abuts on the electrolyte membrane 12 and the upper plate 20 and seals a space between the upper plate 20 and the electrolyte membrane 12.
  • the upper plate 20 is provided with a hydrogen inlet (not shown) through which hydrogen supplied from a hydrogen supply means (not shown) is introduced between the upper plate 20 and the electrolyte membrane 12.
  • the lower surface (cathode side) of the electrolyte membrane 12 is structured to take in oxygen from the surrounding air without being sealed like the upper surface.
  • a graphite sheet 26 is disposed between the gas diffusion layer 18 and the lower plate 22 on the lower surfaces of both end portions (left end and right end in FIG. 1) of the membrane electrode assembly 11.
  • the graphite sheet 26 is configured to contact the gas diffusion layer 18.
  • a conductive wire 28 is connected to each graphite sheet 26, and the electric power generated in the fuel cell 10 is taken out through the conductive wire 28.
  • the electrolyte membrane 12, the catalyst layer 16 on the lower surface side, and the gas diffusion layer 18 are pressed and sandwiched between the upper plate 20 and the lower plate 22 at a constant pressure (for example, 2 MPa or less).
  • the protective layer 14, the catalyst layer 16, and the gas diffusion layer 18 on the upper surface side of the electrolyte membrane 12, and the catalyst layer 16 and the gas diffusion layer 18 on the lower surface side of the electrolyte membrane 12 are divided by a plurality of dividing grooves 17.
  • electrode region have a rectangular shape in which the extending direction of the dividing groove 17 is a long side and a short side is between two dividing grooves.
  • the electrode region on the upper surface side of the electrolyte membrane 12 is disposed so as to face the electrode region on the lower surface side.
  • a unit cell (power generation cell) is configured by the laminated structure. That is, in FIG. 1, a unit cell is a laminated structure including the electrolyte membrane 12, the protective layer 14 on the upper surface side, the catalyst layer 16, and the gas diffusion layer 18, and the catalyst layer 16 and gas diffusion layer 18 on the lower surface side. . Only the leftmost unit cell in FIG.
  • interconnector portion 30 Inside the electrolyte membrane 12, there is an interconnector portion 30 that electrically connects the electrode region on the upper surface side of one unit cell and the electrode region on the lower surface side of the unit cell adjacent to the one unit cell.
  • the interconnector unit 30 electrically connects adjacent unit cells in series.
  • each electrode region (the interval between the two dividing grooves 17) can be, for example, about 5 mm, and the width of the interconnector portion 30 can be about 0.1 mm.
  • Electrode membrane There is no limitation in particular in the electrolyte membrane 12 in the fuel cell 10 of this invention, A various electrolyte membrane is employable. And as above-mentioned, the interconnector part 30 which electrically connects adjacent unit cells in series in the electrolyte membrane 12 is provided. The interconnector portion 30 is formed by locally heating and carbonizing a part of the electrolyte membrane 12 as will be described later.
  • the proton conductive resin of the electrolyte membrane 12 is preferably an aromatic polymer compound in which a sulfonic acid group is introduced into a hydrocarbon polymer such as aromatic polyarylene ether ketones or aromatic polyarylene ether sulfones.
  • a hydrocarbon polymer such as aromatic polyarylene ether ketones or aromatic polyarylene ether sulfones.
  • the interconnector portion 30 can be easily formed by carbonization as compared with a perfluorosulfonic acid resin such as Nafion (registered trademark).
  • Nafion registered trademark
  • the aromatic polymer is easily graphitized by pyrolysis because it contains a carbon 6-membered ring structure in the molecular structure.
  • Such an aromatic polymer is changed to a conductive carbide by heating at about 900 ° C., for example.
  • the catalyst layer 16 includes, for example, carbon particles (catalyst particles) supporting a catalyst metal.
  • carbon particles carbon black can be used.
  • carbon compounds such as carbon nanofiber and carbon nanotube can be adopted.
  • a catalyst metal metals such as platinum, ruthenium, iridium, rhodium, palladium, osnium, tungsten, lead, iron, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, and aluminum are used alone or in combination. Can be used in combination.
  • the catalyst layer 16 contains a proton conductive resin in addition to the catalyst particles.
  • the catalyst layer 16 has a porous structure so that the contact area with the hydrogen gas or oxygen-containing gas is increased. Therefore, the packing density of the proton conductive resin is set smaller than the protective layer 14 described later.
  • the proton conductive resin in the catalyst layer 16 may be 30 to 50 wt%.
  • a protective layer 14 is provided on each of one side or both sides of the electrolyte membrane 12. Is preferred. In FIG. 1, a protective layer 14 is provided on the upper surface side of the electrolyte membrane 12.
  • the protective layer 14 may be of any form as long as it can prevent cross-leakage, but is preferably a protective layer 14 having gas barrier properties and further having electrical conductivity and proton conductivity.
  • the protective layer 14 may be composed of a proton conductive resin and conductive carbon (carbon). In order to improve the gas barrier property, the packing density of the proton conductive resin is set higher than that of the catalyst layer 16.
  • the proton conductive resin in the protective layer 14 may be 70 wt% or more.
  • the proton conductive resin may be the same material as the catalyst layer 16 or a different material.
  • a perfluorosulfonic acid resin such as Nafion (registered trademark) or the aforementioned aromatic polymer compound can be used.
  • Examples of conductive carbon include carbon black, acetylene black, and ketjen black.
  • the protective layer 14 as described above is formed, for example, by applying and drying a coating liquid prepared by adding conductive carbon such as Ketjen Black to a dispersion of proton conductive resin such as Nafion (registered trademark). can do.
  • the thickness of the protective layer 14 may be 5 to 50 ⁇ m, for example.
  • the gas diffusion layer 18 is configured by laminating a base material and a porous layer. Carbon paper or carbon cloth can be used as the substrate.
  • the upper plate 20 and the lower plate 22 include the flow grooves 20T and 22T (recessed portions) for gas on the gas diffusion layer 18 side, and the portions between the flow grooves 20T and 20T and 22T and 22T.
  • the gas diffusion layer 18 is pressed at a portion (convex portion) between the two.
  • the upper plate 20 and the lower plate 22 are preferably formed of an insulating resin.
  • the general-purpose resin include polypropylene resin (PP) and polyphenylene sulfide resin (PPS).
  • carbon paper as a material for the gas diffusion layer 18 is prepared.
  • an ink containing a catalyst and a proton conductive resin is applied.
  • an electrode layer composed of the catalyst layer 16 is formed on the gas diffusion layer 18 as shown in FIG.
  • FIG. 3 there is one surface of carbon paper (gas diffusion layer) 18 on the plane in the xy direction of orthogonal coordinates, and the catalyst layer 16 is applied in the z direction from the one surface.
  • a plurality of divided grooves 17 having a predetermined length are formed on the produced laminate LB of gas diffusion layers 18 and electrode layers (hereinafter referred to as “diffusion electrode laminate”).
  • the diffusion electrode laminate LB is partitioned into a plurality of electrode regions ER by forming a straight line in the x direction. Formation of the division grooves can be performed by a method of mechanically removing a part of the diffusion electrode laminate LB using a needle-like cutting tool or a method of evaporating the part by irradiating laser light.
  • the electrolyte membrane 12 is placed on the catalyst layer 16 of the diffusion electrode laminate LB in which the dividing grooves 17 are formed.
  • the formation planned location 30a of the interconnector portion 30 of the electrolyte membrane 12 is locally heated by the heating means (first local heating step).
  • a laser beam irradiation processing head HD that moves relatively linearly in the x direction along the main surface of the electrolyte membrane 12 is used.
  • the laser light source include a CO 2 laser.
  • the laser beam irradiation processing head HD includes a first laser beam irradiation head 29a, and the laser beam irradiation heats a portion 30a of the electrolyte membrane 12 to a temperature equal to or lower than the first temperature at a first temperature increase rate.
  • the first local heating step for example, a part of the electrolyte membrane 12 is heated to a temperature at which it is not carbonized (for example, about 400 ° C.) using a CO 2 laser.
  • a temperature at which it is not carbonized for example, about 400 ° C.
  • the first temperature raising rate is preferably 3 ° C./msec or less.
  • the laser beam irradiation processing head HD also includes a second laser beam irradiation head 29b, and a part of the laser beam irradiation processing head HD is irradiated by the laser beam irradiation of the second laser beam irradiation head 29b more than the first temperature increase rate (for example, 3 ° C./msec) Heating to a second temperature higher than the first temperature (for example, 900 ° C.) or higher at a large second temperature increase rate.
  • the first and second local heating steps on the same part, after removing moisture locally, the part is carbonized, thereby making the interconnector part 30 without an increase in thickness. it can.
  • irradiation was performed at a low intensity at the beginning of irradiation to evaporate the water of the electrolyte membrane 12, and then irradiation was performed at a high intensity to promote carbonization without increasing the thickness. It was found that the interconnector portion 30 can be formed.
  • another diffusion electrode laminate LBa is prepared.
  • the catalyst layer 16 and the protective layer 14 are formed as electrode layers on the gas diffusion layer 18, and a plurality of dividing grooves 17 having a predetermined length are formed linearly in the x direction. And partitioned into a plurality of electrode regions ER.
  • the protective layer 14 is formed by applying an ink containing a conductive material (Ketjen Black or the like) and a proton conductive resin to the catalyst layer 16.
  • the division grooves 17 can be formed by a method of mechanically removing a part of the diffusion electrode laminate LBa using a needle-like cutting tool or a method of evaporating the part by irradiating a laser beam.
  • another diffusion electrode laminate LBa is formed on the surface of the electrolyte membrane 12 on which the interconnector portion 30 is formed as described above on the side opposite to the diffusion electrode laminate LB.
  • the electrode layer is placed on the electrolyte membrane 12 side.
  • the other diffusion electrode laminate LBa is also formed with the dividing groove 17 before placement, and the dividing groove 17 is positioned at a predetermined position with respect to the interconnector portion 30 (that is, the interconnector portion 30 is in the diffusion state). So as to be covered with the electrode region of the electrode laminate LB).
  • the diffusion electrode laminate LB After the diffusion electrode laminate LB, the electrolyte membrane 12 and another diffusion electrode laminate LBa are stacked, they are integrated by hot pressing in the stacking direction, and the membrane electrode assembly 11 is formed. Manufactured. Thereby, adjacent unit cells are electrically connected in series via the interconnector portion 30.
  • an upper plate 20 is prepared.
  • a plurality of flow channel grooves 20T for introducing hydrogen gas and convex portions 20P between adjacent grooves are linearly formed in the x direction on the surface of the upper plate 20 on the gas diffusion layer side on the anode side of the membrane electrode assembly 11. It is provided in parallel.
  • the projecting portion 20P presses the gas diffusion layer 18 on the anode side of the membrane electrode assembly 11 when assembly is completed.
  • a seal 24 is provided so as to surround a region where the plurality of convex portions 20P of the upper plate 20 are present. The top surface of the seal 24 abuts on the membrane electrode assembly 11 when assembly is completed, and seals the space where the flow channel 20T and the convex portion 20P between the upper plate 20 and the membrane electrode assembly 11 are present.
  • the lower plate 22 is prepared.
  • a plurality of flow channel grooves 22T for introducing an oxygen-containing gas (air) and adjacent pairs of flow channel grooves 22T and 22T are formed on the surface of the lower plate 22 on the cathode side gas diffusion layer side of the membrane electrode assembly 11.
  • a convex portion 22P between the two is provided in a straight line parallel to the x direction.
  • the projecting portion 22P presses the gas diffusion layer 18 on the cathode side of the membrane electrode assembly 11 when assembly is completed.
  • graphite sheets 26 are provided in advance at both ends of the lower plate 22, respectively.
  • the upper plate 20 and the lower plate 22 are arranged so that the convex portions of the upper plate 20 and the lower plate 22 sandwich the interconnector portion 30 of the membrane electrode assembly 11.
  • the electrolyte membrane 12, the protective layer 14, the catalyst layer 16, and the gas diffusion layer 18 are pressed and sandwiched with a constant pressure.
  • the pair of graphite sheets 26 are electrically connected to the gas diffusion layer 18 on the cathode side of the membrane electrode assembly 11.
  • the conducting wire 28 is connected to each graphite sheet 26, and an assembly is completed.
  • the first laser light irradiation head 29a having a low output irradiation intensity and the first output irradiation intensity having a higher output irradiation intensity are used.
  • the laser beam irradiation processing head HD provided with the two laser beam irradiation heads 29b is sent out in a straight line in the x direction so that the two laser beams B1 and B2 have the same trajectory.
  • Laser light irradiation is performed so that the temperature profile as shown in FIG. In the temperature profile, a part of the electrolyte membrane 12 is heated to a temperature of 400 ° C. or lower at the first temperature increase rate in the first local heating step 1st, and the part is changed in the second local heating step 2nd. Heating is performed at 900 ° C. at a second temperature increase rate that is higher than the temperature increase rate of 1.
  • the heating rate for heating to the above-mentioned constant temperature is set to be equal to or lower than the first heating rate.
  • the first and second local heating steps can be configured by one irradiation.
  • a laser light irradiation processing head HD provided with only a single laser light irradiation head 29c is linearly sent out in the x direction, and the output irradiation intensity and feed speed of the laser light irradiation head are controlled.
  • the laser beam B3 can be irradiated to perform two-stage heating.
  • FIG. 16 when the electrolyte membrane 12 is irradiated with laser light, the irradiated portion becomes high temperature, and the peripheral portion is also heated more gently than the irradiated portion due to heat conduction, and the temperature rises.
  • the two local heating steps are executed by adjusting the laser light irradiation range in which the temperature near the center of the laser light is equal to or higher than the second temperature and the relative movement speed between the laser light irradiation processing head HD and the electrolyte membrane 12. be able to.
  • the first local is obtained by changing the temperature profile fast when the relative movement speed of the laser beam irradiation processing head HD is high to the temperature profile slow when the relative movement speed is low.
  • the length of the heating step 1st and the first temperature increase rate can be adjusted.
  • the first local heating step is performed once.
  • the second local heating step can also be configured by irradiation with laser light.
  • the electrode region can be easily formed. Suitable for continuous production by the (Roll to Roll) method.
  • SYMBOLS 10 Fuel cell, 12 ... Electrolyte membrane, 14 ... Protective layer, 16 ... Catalyst layer, 17 ... Dividing groove, 18 ... Gas diffusion layer, 20 ... Upper plate, 22 ... Lower plate, 24 ... Seal, 26 ... Graphite sheet, 28... Conductor, 29 a... First laser light irradiation head, 29 b... Second laser light irradiation head, 30.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

平面配列型の燃料電池における隣接する単位セル同士を電気的に接続するインターコネクタ部を容易に形成し得る燃料電池の製造方法を提供する。インターコネクタ部(30)は、電解質膜(12)に局所的に熱をかけてプロトン伝導性樹脂を炭化させる局所加熱工程を経て形成され、局所加熱工程では、電解質膜(12)の一部分を第1の昇温速度以下で第1の温度以下の温度に加熱する第1の加熱ステップと、第1の加熱ステップ後に電解質膜(12)の一部分を第1の昇温速度よりも大なる昇温速度で第1の温度よりも高い第2の温度以上に加熱する第2の加熱ステップとを含む。

Description

燃料電池の製造方法および加工装置
 本発明は、単位セルを平面状に配列した平面配列型の燃料電池の製造方法およびインターコネクタ部形成用加工装置に関する。
 燃料電池は、水素と酸素とから電力を得る装置である。発電に伴い水を生成するのみなのでクリーンな電力源として近年注目されている。このような燃料電池の単位セルの電圧は0.6~0.8V程度と低いため、膜電極接合体(MEA:Membrane Electrode Assembly)とセパレータよりなる単位セルを複数積層して直列に接続し高出力を得る燃料電池スタックが実用化されている。この燃料電池スタックは、積層するに当たり作業工程が多いため手間がかかるという問題がある。
 一方、1枚の電解質膜に平面状に複数の単位セルを形成するとともに、隣接する単位セル同士を接続するためのインターコネクタ部を形成し、複数の単位セルを直列に接続した燃料電池が知られている(例えば、特許文献1参照)。このような構成では1枚の電解質膜で高電圧化することができるということや、単位セルを積層する必要がないといったメリットがある。
特開2011-204609号公報
 しかしながら、特許文献1に記載のような燃料電池においては、インターコネクタ部は、電解質膜の一部に空隙部を形成し、その空隙部にアノード触媒層用材料またはカソード触媒層用材料を充填して形成される。このような構成では、インターコネクタ部を形成するに当たり、いくつかの工程を経る必要があり時間と手間がかかるという問題がある。
 本発明は、上記従来の問題点に鑑みなされたものであり、その目的は、平面配列型の燃料電池において、隣接する単位セル同士を電気的に接続するインターコネクタ部を容易に形成し得る燃料電池の製造方法およびインターコネクタ部形成用加工装置を提供することにある。
 かかる課題を解決するため、本発明の燃料電池の製造方法は、プロトン伝導性樹脂よりなる電解質膜の両面に電極層を備え、
 前記両面の電極層は、分割溝により分割された複数の電極領域を有し、前記両面の一方の面側における一つの電極領域と、前記一つの電極領域に対向する他方の面側における一つの電極領域と、前記電解質膜と、を含む積層構造により単位セルが構成され、
 前記単位セルが複数配列されてなり、
 一つの前記単位セルの前記一方の面側における電極領域と、前記一つの単位セルの隣に配列された単位セルの他方の面側の電極領域とを電気的に接続するインターコネクタ部を前記電解質膜内に備え、
 前記インターコネクタ部が前記電解質膜の前記プロトン伝導性樹脂由来の導電性炭化物からなる燃料電池の製造方法であって、
 前記インターコネクタ部は、前記電解質膜に局所的に熱をかけて前記プロトン伝導性樹脂を炭化させる局所加熱工程を経て形成され、
 前記局所加熱工程は、前記電解質膜の一部分を第1の昇温速度以下で第1の温度以下の温度に加熱する第1の加熱ステップと、前記第1の加熱ステップ後に前記電解質膜の前記一部分を前記第1の昇温速度よりも大なる昇温速度で前記第1の温度よりも高い第2の温度以上に加熱する第2の加熱ステップと、を含むことを特徴とする。
 本発明の燃料電池の製造方法では、第1および第2の加熱ステップにより、インターコネクタ部を、電解質膜のプロトン伝導性樹脂由来の導電性炭化物とすることで、煩雑な工程を要することなく容易に形成することができる。電解質膜の一部を炭化することのみで導電性炭化物、すなわちインターコネクタ部が得られるからである。また、2つの加熱ステップを備えることで、良好なインターコネクタ部を確実に形成できる。
 一方、本発明の加工装置は、プロトン伝導性樹脂よりなる電解質膜の両面に電極層を備え、前記両面の電極層は、分割溝により分割された複数の電極領域を有し、前記一方の面側における一つの電極領域と、前記一つの電極領域に対向する他方の面側における一つの電極領域と、前記電解質膜と、を含む積層構造により単位セルが構成され、前記単位セルが複数配列されてなり、一つの前記単位セルの前記一方の面側における電極領域と前記一つの単位セルの隣に配列された単位セルの他方の面側の電極領域とを電気的に接続するインターコネクタ部を前記電解質膜内に備え、前記インターコネクタ部が前記電解質膜の前記プロトン伝導性樹脂由来の導電性炭化物からなる燃料電池の前記インターコネクタ部を形成する加工装置であって、
 前記電解質膜の主面に沿って相対的に移動する加工ヘッドを備え、
 前記加工ヘッドは、レーザー光照射により前記電解質膜の一部分を第1の昇温速度以下で第1の温度以下の温度に加熱する第1のレーザー光照射ヘッドと、レーザー光照射により前記電解質膜の前記一部分を前記第1の昇温速度よりも大なる昇温速度で前記第1の温度よりも高い第2の温度以上に加熱する第2のレーザー光照射ヘッドと、を備えていることを特徴とする。
 本発明の加工装置では、第1および第2のレーザー光照射ヘッドにより、プロトン伝導性樹脂の電解質膜の一部分を局所的に加熱し、該一部分のプロトン伝導性樹脂を炭化して導電性炭化物とすることのみでインターコネクタ部を形成することができ、煩雑な工程を要することなく容易にかつ確実に形成することができる。
 前記プロトン伝導性樹脂としては、芳香族ポリアリーレンエーテルケトン類や芳香族ポリアリーレンエーテルスルホン類等の炭化水素系ポリマーにスルホン酸基を導入した芳香族系高分子化合物が好ましい。このような化合物は加熱により導電性炭化物に変化しやすい。
 本発明によれば、平面配列型の燃料電池における隣接する単位セル同士を電気的に接続するインターコネクタ部を容易に形成し得る燃料電池の製造方法を提供することができる。
本発明を適用した燃料電池の一実施形態をを示す模式断面図。 図1に示す燃料電池の要部を拡大して示す断面図。 本発明の燃料電池の製造方法を説明するための燃料電池の部品を示す模式断面図。 本発明の燃料電池の製造方法を説明するための燃料電池の部品を示す模式断面図。 本発明の燃料電池の製造方法を説明するための燃料電池の部品を示す模式断面図。 本発明の燃料電池の製造方法を説明するための燃料電池の部品を示す模式断面図。 本発明の燃料電池の製造方法を説明するための燃料電池の部品を示す模式断面図。 本発明の燃料電池の製造方法を説明するための燃料電池の部品を示す模式断面図。 本発明の燃料電池の製造方法を説明するための燃料電池の部品を示す模式断面図。 本発明の燃料電池の製造方法を説明するための燃料電池の部品を示す模式断面図。 本発明の燃料電池の製造方法を説明するための燃料電池の部品を示す模式断面図。 本発明の燃料電池の製造方法を説明するための燃料電池の部品を示す模式断面図。 本発明の燃料電池の製造方法における電解質膜の局所加熱の温度プロファイルの一例を示すグラフ。 本発明の燃料電池の製造方法における電解質膜の局所加熱の温度プロファイルの他の一例を示すグラフ。 本発明の燃料電池の製造方法の他の一例を説明するための燃料電池の部品を示す模式断面図。 本発明の燃料電池製造方法の他の一例におけるレーザービーム光軸に関する照射位置の電解質膜の昇温の温度プロファイルおよび同電解質膜の熱伝導による加熱の温度プロファイルの一例を示すグラフ。 本発明の燃料電池製造方法の他の一例における電解質膜の局所加熱の温度プロファイルの他の一例を示すグラフ。 芳香族系高分子を加熱する前のFT-IRスペクトルを示す図。 芳香族系高分子を加熱した後のFT-IRスペクトルを示す図。 芳香族系高分子の加熱前後におけるラマンスペクトルを示す図。
 以下、図面を参照しながら、本発明に実施の形態についてさらに詳しく説明する。
<燃料電池>
 図1は、本発明を適用した燃料電池の一実施形態を示す模式断面図であり、図2は図1の要部を拡大して示す図であり、上側がアノード、下側がカソードである。図2に示す燃料電池10の膜電極接合体(MEA)11は、電解質膜12(PEM:polymer electrolyte membrane)の両面側に、ガス拡散層18を備え、下側には電極層として触媒層16が設けられ、上側には電極層として触媒層16と電解質膜12に接する保護層14が設けられている。すなわち、本実施形態では上側の電極層は触媒層16と保護層14の2層で構成されている。さらに、上側のガス拡散層18の上方には上板20が設けられ、下側のガス拡散層18の下方には下板22が設けられ、上板20と下板22とが膜電極接合体11を挟持するように構成されている。なお、図1においては、中央に位置する積層構造を省略して描いている。
 上板20および下板22のガス拡散層18側の面には水素ガスおよび酸素含有ガス(空気)のための複数の流路溝20Tおよび22T(図中の凹部分)が対向するように、それぞれ設けられている。電解質膜12の上面(アノード側)の周縁部と上板20との間にはシール24が設けられる。シール24は電解質膜12と上板20とに当接し、上板20と電解質膜12との間の空間を密封する。なお上板20には、図示しない水素供給手段から供給される水素を、上板20と電解質膜12との間に導入する、図示しない水素導入口が設けられている。一方、電解質膜12の下面(カソード側)は上面のように密封されることなく、周囲の空気から酸素を取り入れる構造となっている。
 また、電解質膜12の下面(カソード側)では、膜電極接合体11の両端部(図1中左端および右端)下面のガス拡散層18と下板22との間には黒鉛シート26が配され、黒鉛シート26はガス拡散層18に当接するよう構成される。それぞれの黒鉛シート26には導線28が接続され、燃料電池10にて生じた電力は導線28を通じて外部に取り出されることになる。なお、電解質膜12と、その下面側の触媒層16、およびガス拡散層18は、上板20と下板22とにより一定の圧力(例えば、2MPa以下)で押圧され挟持される。
 電解質膜12の上面側の保護層14、触媒層16、およびガス拡散層18、並び電解質膜12の下面側の触媒層16およびガス拡散層18は複数の分割溝17により分割され、複数の領域(以下、「電極領域」と呼ぶ。)が形成されている。これら電極領域は、前記分割溝17の延伸方向を長辺とし2つの分割溝間を短辺とする矩形状である。また、電解質膜12の上面側における電極領域は、下面側の電極領域と対向するように配置されている。
 膜電極接合体11において、電解質膜12の上面側の一つの電極領域と、この電極領域の一部に対向する下面側における電極領域と、それらの電極領域の間に位置する電解質膜12とを含む積層構造により単位セル(発電セル)が構成されている。つまり、図1において、電解質膜12、その上面側の保護層14、触媒層16、およびガス拡散層18、ならびに、下面側の触媒層16およびガス拡散層18からなる積層構造が単位セルである。図1において最も左に位置する単位セルのみを破線Aで示す。
 電解質膜12の内部には、一つの単位セルの上面側における電極領域と、前記一つの単位セルの隣の単位セルの下面側の電極領域とを電気的に接続するインターコネクタ部30を有する。インターコネクタ部30により、隣接する単位セル同士が電気的に直列接続される。
 図1、図2において、各電極領域の幅(2つの分割溝17の間隔)は、例えば、約5mmとすることができ、インターコネクタ部30の幅は約0.1mmであってもよい。
 以上の構成において、アノード側に水素ガスが供給され、カソード側に酸素含有ガス(空気)が供給されることで各単位セルにおいて発電され、2つの黒鉛シート26に接続した導線28を通じて電力を取り出すことができる。そして、各単位セルは直列接続されているため、各単位セルの電圧の和が燃料電池10の電圧となる。
 燃料電池10の構成要素について、以下に詳述する。
 [電解質膜]
 本発明の燃料電池10における電解質膜12に特に限定はなく、種々の電解質膜を採用することができる。そして、上記の通り、電解質膜12内に、隣接する単位セル同士を電気的に直列接続するインターコネクタ部30を備える。インターコネクタ部30は、後述するように、電解質膜12の一部分を局所的に加熱して炭化することで形成される。
 電解質膜12のプロトン伝導性樹脂としては、芳香族ポリアリーレンエーテルケトン類や芳香族ポリアリーレンエーテルスルホン類等の炭化水素系ポリマーにスルホン酸基を導入した芳香族系高分子化合物が好ましい。ナフィオン(登録商標)等のパーフルオロスルホン酸樹脂に比べ、炭化によるインターコネクタ部30の形成が容易にできるからである。理由は定かではないが、芳香族系高分子は分子構造中に炭素の6員環構造を含むため熱分解により黒鉛化しやすいものと考えられる。このような芳香族系高分子は例えば、約900℃で加熱することにより導電性を有する炭化物に変化する。
 [触媒層]
 触媒層16は、例えば、触媒金属を担持した炭素粒子(触媒粒子)を含んで構成される。炭素粒子としては、カーボンブラックを用いることができるが、この他にも、例えば、黒鉛、炭素繊維、活性炭等やこれらの粉砕物、カーボンナノファイバーおよびカーボンナノチューブ等の炭素化合物を採用することができる。一方、触媒金属としては、白金、ルテニウム、イリジウム、ロジウム、パラジウム、オスニウム、タングステン、鉛、鉄、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウム等の金属を単独でまたは2種以上組み合わせて使用することができる。
 触媒層16は前記触媒粒子の他、プロトン伝導性樹脂を含む。触媒層16は水素ガスまたは酸素含有ガスとの接触面積が大きくなるよう多孔性の構造をとる。そのため、プロトン伝導性樹脂の充填密度は後述の保護層14よりも小さく設定される。例えば、触媒層16におけるプロトン伝導性樹脂は30~50wt%であってもよい。
 [保護層]
 電解質膜12、または電解質膜12内のインターコネクタ部30またはその近傍において、ガスがリークするいわゆるクロスリークを防止するために、電解質膜12の片面側または両面側のそれぞれに保護層14を設けることが好ましい。図1においては、電解質膜12の上面側に保護層14を設けている。
 保護層14は、クロスリークを防止できるのであればその形態について問わないが、ガスバリア性を備えつつ、さらに電気伝導性およびプロトン伝導性を備えた保護層14が好ましい。
 保護層14は、プロトン伝導性樹脂と導電性カーボン(炭素)とから構成されていてもよい。ガスバリア性を高めるため、プロトン伝導性樹脂の充填密度は、触媒層16のそれよりも高く設定される。例えば、保護層14におけるプロトン伝導性樹脂は70wt%以上であってもよい。なお、プロトン伝導性樹脂は触媒層16と同じ材料であっても異なる材料であってもよい。
 プロトン伝導性樹脂としては、ナフィオン(登録商標)等のパーフルオロスルホン酸樹脂や前述の芳香族系高分子化合物を用いることができる。
 導電性カーボンとしては、カーボンブラック、アセチレンブラック、ケッチェンブラック等が挙げられる。
 上記のような保護層14は、例えば、ナフィオン(登録商標)等のプロトン伝導性樹脂の分散液にケッチェンブラック等の導電性カーボンを添加して調製した塗布液を塗布し乾燥することで形成することができる。なお、保護層14の厚みは、例えば5~50μmであってもよい。
 [ガス拡散層]     
 ガス拡散層18は、基材と、多孔質層とが積層されて構成される。基材は、カーボンペーパーやカーボンクロスを用いることができる。
 [上板、下板]
 上板20および下板22は、前述のようにガス拡散層18側にガスのための流路溝20Tおよび22T(凹部分)を備え、流路溝20T,20Tの間の部分および22T、22Tの間の部分(凸部分)でガス拡散層18を押圧する。膜電極接合体11の単位セル同士はインターコネクタ部30を通して直列に接続されるので、上板20および下板22は絶縁性の樹脂で形成することが好ましい。当該汎用樹脂としては、ポリプロピレン樹脂(PP)、ポリフェニレンサルファイド樹脂(PPS)等を挙げることができる。
<燃料電池の製造方法>
 燃料電池10は、以下に説明する本発明の製造方法により製造することができる。
 まず、ガス拡散層18の素材となるカーボンペーパーを準備する。このカーボンペーパーのガス拡散層18の一面に対し触媒層16を形成すべく、触媒とプロトン伝導性樹脂とを含むインクを塗工する。これにより、図3に示すようにガス拡散層18上に、触媒層16からなる電極層が形成される。なお、本製造方法において、図3に示すように直交座標のxy方向の平面にカーボンペーパー(ガス拡散層)18の一面があり、当該一面からz方向において触媒層16の塗工がなされるものとする。
 次に、図4に示すように、作成したガス拡散層18と電極層との積層体LB(以下、「拡散電極積層体」と呼ぶ。)に、所定の長さの複数の分割溝17をx方向に直線状に形成して、拡散電極積層体LBを複数の電極領域ERに区画する。分割溝の形成は、針状の刃具を用いて機械的に拡散電極積層体LBの部分を除去する方法やレーザー光を照射し当該部分を蒸発させる方法により行うことができる。
 次に、図5に示すように、分割溝17を形成した拡散電極積層体LBの触媒層16上に電解質膜12を載置する。
 次に、図6に示すように、電解質膜12のインターコネクタ部30の形成予定箇所30aが、加熱手段により局所的に加熱される(第1局所加熱ステップ)。当該加熱手段としては、電解質膜12の主面に沿ってx方向に直線状に相対的に移動するレーザー光照射加工ヘッドHDを使用する。レーザー光源としては、例えば、CO2レーザーを挙げることができる。レーザー光照射加工ヘッドHDは第1のレーザー光照射ヘッド29aを備え、そのレーザー光照射により電解質膜12の一部分30aを第1の昇温速度以下で第1の温度以下の温度に加熱する。第1局所加熱ステップでは、例えばCO2レーザーを用いて炭化しない温度(例えば約400℃)まで電解質膜12の一部を昇温する。400℃(第1の温度)まで上昇させることでインターコネクタ部30となる部分30aの電解質膜12の水分を十分除去することができる。また、急激な水分の蒸発を防止するため、第1の昇温速度は3℃/msec以下とすることが好ましい。
 次に、図7に示すように、第1局所加熱ステップの後に、電解質膜12の当該一部分(図6の30a)を再度加熱手段により局所的に加熱して炭化させ、インターコネクタ部30を形成する(第2局所加熱ステップ)。レーザー光照射加工ヘッドHDは第2のレーザー光照射ヘッド29bをも備え、第2のレーザー光照射ヘッド29bのレーザー光照射により当該一部分を第1の昇温速度(例えば3℃/msec)よりも大なる第2の昇温速度で第1の温度よりも高い第2の温度(例えば900℃)以上に加熱する。このように同一部分に第1、第2局所加熱ステップを実行することにより、水分を局所的に除去した後、当該部分を炭化させることで、厚みの増加のないインターコネクタ部30を作ることができる。
 なお、電解質膜12の一部を炭化させる場合、第1局所加熱ステップを経ずに、第2局所加熱ステップのみで電解質膜12を900℃以上に熱する場合、出力照射強度の高いレーザーを電解質膜12に対して照射した時、電解質膜12が保持する水分が急激に蒸発するため、発泡した状態で炭化が起こり、当該部分の厚み(体積)が増大することを知見した。厚みが増大すると、触媒層16とインターコネクタ部30の接触が不充分となり、性能が低下する。本発明者らが鋭意研究を行ったところ、照射当初は低い強度で照射を行い電解質膜12の水を蒸発させ、その後高い強度で照射を行い、炭化を促進させることによって、厚みを増大させずにインターコネクタ部30を形成できることを見出した。
 次に、図8に示すように、他の拡散電極積層体LBaを準備する。他の拡散電極積層体LBaは、ガス拡散層18上に電極層として触媒層16と保護層14とが作成され、所定の長さの複数の分割溝17がx方向に直線状に形成されて、複数の電極領域ERに区画されたものである。保護層14は導電材(ケッチェンブラック等)とプロトン伝導性樹脂とを含むインクを触媒層16に塗工して形成される。分割溝17の形成は、針状の刃具を用いて機械的に拡散電極積層体LBaの部分を除去する方法またはレーザー光を照射し当該部分を蒸発させる方法により行うことができる。
 次に、図9に示すように、上記のようにしてインターコネクタ部30が形成された電解質膜12の前記拡散電極積層体LBとは逆の面側に、さらに他の拡散電極積層体LBaをその電極層が電解質膜12側となるよう載置する。前記他の拡散電極積層体LBaも載置前に分割溝17が形成されており、該分割溝17が前記インターコネクタ部30に対し所定の位置となるよう(すなわち、インターコネクタ部30が当該拡散電極積層体LBの電極領域で被覆されるよう)、位置合わせして載置される。
 このように拡散電極積層体LBと電解質膜12と他の拡散電極積層体LBaとを重ねた上で、その積層方向にホットプレスを行うことでこれらを一体化させて、膜電極接合体11が製造される。これにより、インターコネクタ部30を介して隣接する単位セル同士が電気的に直列接続される。
 次に、図10に示すように、上板20を準備する。上板20の膜電極接合体11のアノード側のガス拡散層側になる面には水素ガス導入のための複数の流路溝20Tおよび隣接溝の間の凸部分20Pがx方向に直線状に平行に設けられている。凸部分20Pは、組み立て完了時に膜電極接合体11のアノード側のガス拡散層18を押圧するものである。さらに、上板20の複数の凸部分20Pがある領域を囲むようにシール24が設けられる。シール24の頂面は、組み立て完了時に膜電極接合体11に当接し、上板20と膜電極接合体11との間の流路溝20Tおよび凸部分20Pがある空間を密封する。
 次に、図11に示すように、下板22を準備する。下板22の膜電極接合体11のカソード側のガス拡散層側になる面には酸素含有ガス(空気)導入のための複数の流路溝22Tおよび隣接する各対の流路溝22T、22Tの間の凸部分22Pがx方向に直線状に平行に設けられている。凸部分22Pは、組み立て完了時に膜電極接合体11のカソード側のガス拡散層18を押圧するものである。さらに、下板22の両端部にはそれぞれ黒鉛シート26が予め設けられている。
 次に、再び図1に示すように、上板20および下板22のそれぞれの凸部分同士が膜電極接合体11のインターコネクタ部30を挟持するようにして、上板20と下板22とにより、電解質膜12、保護層14、触媒層16およびガス拡散層18を一定の圧力で押圧して挟持する。これにより、一対の黒鉛シート26は膜電極接合体11のカソード側のガス拡散層18に電気的に接続される。そして、それぞれの黒鉛シート26に導線28を接続して、組み立てが完了する。
 上記の第1、第2局所加熱ステップ(図6、図7)においては、図12に示すように、低い出力照射強度の第1のレーザー光照射ヘッド29aと、これより高い出力照射強度の第2のレーザー光照射ヘッド29bとを備えたレーザー光照射加工ヘッドHDを、2つのレーザービームB1、B2が同一軌跡を描くように、x方向に直線状に送り出し、分割溝17毎に、図13に示すような温度プロファイルとなるようにレーザー光照射を行う。当該温度プロファイルにおいては、第1局所加熱ステップ1stにて電解質膜12の一部分を第1の昇温速度で400℃温度以下の温度に加熱して、第2局所加熱ステップ2ndにて当該一部分を第1の昇温速度よりも大なる第2の昇温速度で900℃に加熱している。
 他の加熱変形例としては、電解質膜12の局所の水分を十分除去することができればよいので、第1のレーザー光照射ヘッド29aの出力照射強度を制御して図14に示す温度プロファイルのような第1局所加熱ステップ1stにおいて温度を一定となるようにレーザー光照射を行うこともできる。このとき、前述の一定の温度まで加熱する昇温速度は、第1の昇温速度以下となるようにする。
 また、上記のようにレーザーを2回照射するのではなく、1回の照射で第1、第2局所加熱ステップを構成することもできる。例えば、図15に示すように、単一のレーザー光照射ヘッド29cのみを備えたレーザー光照射加工ヘッドHDをx方向に直線状に送り出し、レーザー光照射ヘッドの出力照射強度と送り速度を制御することで、レーザー光B3の照射を行い、2段階の加熱を行うこともできる。図16に示すように、レーザー光を電解質膜12に照射すると、照射部分は高温になるとともに、周辺部も熱伝導により照射部分よりゆるやかに加熱され温度が上昇する。よって、レーザー光中心付近の温度が第2の温度以上となるレーザー光の照射範囲およびレーザー光照射加工ヘッドHDと電解質膜12との相対移動速度を調整することで2つの局所加熱ステップを実行することができる。この場合、図17に示す温度プロファイルのように、レーザー光照射加工ヘッドHDの相対移動速度が速いときの温度プロファイルfastから同相対移動速度が遅いときの温度プロファイルslowに変化させることで第1局所加熱ステップ1stの期間の長さおよび第1の昇温速度を調整できる。
 さらに、上記のようにレーザーを2回照射するのではなく、第1局所加熱ステップとして電熱線等をインターコネクタ部30となるべき部分に接近させて当該部分の水分を十分除去した後に、1回のレーザー光照射で第2局所加熱ステップを構成することもできる。
 なお、上記図4のように、まず触媒層16と保護層14とを積層させ、次いで分割溝17を形成する製造方法では、容易に電極領域を形成することができるため、ロール・トゥ・ロール(Roll to Roll)方式で連続的に製造するのに適している。
 なお、ここで、プロトン伝導性樹脂として芳香族系高分子を用いた場合の前記インターコネクタ部30の箇所の前記加熱前と加熱後とにおける、赤外線分光(FT-IR)と、ラマン分光の測定結果について示す。図18、図19はそれぞれ加熱前、加熱後のFT-IRスペクトルを示す。加熱前の図18ではプロトン伝導性樹脂中の原子間の結合由来の吸収線が見られるのに対し、加熱後の図19では前記吸収線が消失した。これは加熱によりプロトン伝導性樹脂が分解し、炭素質に変化したためと考えられる。
 一方、ラマン分光の測定結果では、加熱前にはピークが現れていないものの、加熱後には1350cm-1付近と1600℃m-1付近にピークが出現していることが分かる(図20)。これらは炭素質材料由来のそれぞれDバンド、Gバンドと考えられ、前記加熱により当該箇所が炭素質に変化していると考えられる。
 以上のようにプロトン伝導性樹脂を加熱により炭化させることで、当該箇所に対し体積抵抗率が0.1Ω・mm程度の導電性を容易に付与することができる。
10‥燃料電池、12‥電解質膜、14‥保護層、16‥触媒層、17‥分割溝、18‥ガス拡散層、20‥上板、22‥下板、24‥シール、26‥黒鉛シート、28‥導線、29a‥第1のレーザー光照射ヘッド、29b‥第2のレーザー光照射ヘッド、30‥インターコネクタ部、HD‥レーザー光照射加工ヘッド。

Claims (5)

  1.  プロトン伝導性樹脂よりなる電解質膜の両面に電極層を備え、
     前記両面の電極層は、分割溝により分割された複数の電極領域を有し、前記両面の一方の面側における一つの電極領域と、前記一つの電極領域に対向する他方の面側における一つの電極領域と、前記電解質膜と、を含む積層構造により単位セルが構成され、
     前記単位セルが複数配列されてなり、
     一つの前記単位セルの前記一方の面側における電極領域と、前記一つの単位セルの隣に配列された単位セルの他方の面側の電極領域とを電気的に接続するインターコネクタ部を前記電解質膜内に備え、
     前記インターコネクタ部が前記電解質膜の前記プロトン伝導性樹脂由来の導電性炭化物からなる燃料電池の製造方法であって、
     前記インターコネクタ部は、前記電解質膜に局所的に熱をかけて前記プロトン伝導性樹脂を炭化させる局所加熱工程を経て形成され、
     前記局所加熱工程は、前記電解質膜の一部分を第1の昇温速度以下で第1の温度以下の温度に加熱する第1の加熱ステップと、前記第1の加熱ステップ後に前記電解質膜の前記一部分を前記第1の昇温速度よりも大なる昇温速度で前記第1の温度よりも高い第2の温度以上に加熱する第2の加熱ステップと、を含むことを特徴とする燃料電池の製造方法。
  2.  前記第1の加熱ステップおよび前記第2の加熱ステップにおいて、前記電解質膜にレーザー光を照射することにより熱をかけることを特徴とする請求項1に記載の燃料電池の製造方法。
  3.  前記第1の加熱ステップにおいて、第1の照射強度でレーザー光を前記電解質膜に照射し、前記第2の加熱ステップにおいて、前記第1の照射強度よりも高い第2の照射強度でレーザー光を前記電解質膜に照射することを特徴とする請求項2に記載の燃料電池の製造方法。
  4.  前記プロトン伝導性樹脂は、芳香族系高分子であることを特徴とする請求項1記載の燃料電池の製造方法。
  5.  プロトン伝導性樹脂よりなる電解質膜の両面に電極層を備え、前記両面の電極層は、分割溝により分割された複数の電極領域を有し、前記両面の一方の面側における一つの電極領域と、前記一つの電極領域に対向する他方の面側における一つの電極領域と、前記電解質膜と、を含む積層構造により単位セルが構成され、前記単位セルが複数配列されてなり、一つの前記単位セルの前記一方の面側における電極領域と前記一つの単位セルの隣に配列された単位セルの他方の面側の電極領域とを電気的に接続するインターコネクタ部を前記電解質膜内に備え、前記インターコネクタ部が前記電解質膜の前記プロトン伝導性樹脂由来の導電性炭化物からなる燃料電池の前記インターコネクタ部を形成する加工装置であって、
     前記電解質膜の主面に沿って相対的に移動する加工ヘッドを備え、
     前記加工ヘッドは、レーザー光照射により前記電解質膜の一部分を第1の昇温速度以下で第1の温度以下の温度に加熱する第1のレーザー光照射ヘッドと、レーザー光照射により前記電解質膜の前記一部分を前記第1の昇温速度よりも大なる昇温速度で前記第1の温度よりも高い第2の温度以上に加熱する第2のレーザー光照射ヘッドと、を備えていることを特徴とする加工装置。
PCT/JP2017/046572 2016-12-28 2017-12-26 燃料電池の製造方法および加工装置 WO2018124039A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018559500A JP6740376B2 (ja) 2016-12-28 2017-12-26 燃料電池の製造方法および加工装置
CA3046443A CA3046443C (en) 2016-12-28 2017-12-26 A method and processing device for manufacturing a fuel cell with electrode interconnector part formed by local heating and carbonization of a proton conductive resin of an electrolyte membrane
US16/473,846 US11245120B2 (en) 2016-12-28 2017-12-26 Fuel cell manufacturing method and processing device
CN201780080879.7A CN110114926B (zh) 2016-12-28 2017-12-26 燃料电池的制造方法及加工装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016256604 2016-12-28
JP2016-256604 2016-12-28

Publications (1)

Publication Number Publication Date
WO2018124039A1 true WO2018124039A1 (ja) 2018-07-05

Family

ID=62709768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046572 WO2018124039A1 (ja) 2016-12-28 2017-12-26 燃料電池の製造方法および加工装置

Country Status (5)

Country Link
US (1) US11245120B2 (ja)
JP (1) JP6740376B2 (ja)
CN (1) CN110114926B (ja)
CA (1) CA3046443C (ja)
WO (1) WO2018124039A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020136063A (ja) * 2019-02-19 2020-08-31 本田技研工業株式会社 燃料電池の製造方法、及び燃料電池の製造装置
JP2022503477A (ja) * 2018-07-20 2022-01-12 ダイソン・テクノロジー・リミテッド エネルギー貯蔵装置のためのスタック
DE112020003883T5 (de) 2019-11-12 2022-05-05 Honda Motor Co., Ltd. Brennstoff-batteriestapel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011204609A (ja) * 2010-03-25 2011-10-13 Sanyo Electric Co Ltd 燃料電池層、燃料電池システム、および燃料電池層の製造方法
JP2013115036A (ja) * 2011-11-29 2013-06-10 Sanyo Electric Co Ltd 燃料電池層および燃料電池層の製造方法
WO2017047343A1 (ja) * 2015-09-18 2017-03-23 本田技研工業株式会社 燃料電池及びその製造方法
WO2017047342A1 (ja) * 2015-09-18 2017-03-23 本田技研工業株式会社 燃料電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100511794C (zh) * 2004-08-30 2009-07-08 旭硝子株式会社 固体高分子型燃料电池用膜电极接合体及固体高分子型燃料电池
TW200847514A (en) * 2006-11-27 2008-12-01 Sumitomo Chemical Co Process for producing polymer electrolyte membrane and polymer electrolyte membrane
FR2923654B1 (fr) 2007-11-13 2010-02-12 Commissariat Energie Atomique Pile a combustible comportant une pluralite de cellules elementaires connectees en serie par les collecteurs de courant.
KR101294825B1 (ko) * 2010-05-20 2013-08-08 주식회사 제이앤티지 고분자 전해질형 연료전지의 기체확산층용 탄소기재의 제조방법과 그에 의하여 형성된 탄소기재 및 이의 제조에 사용되는 시스템
EP2887444B1 (fr) * 2013-12-19 2016-11-16 The Swatch Group Research and Development Ltd. Pile à surface structurée

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011204609A (ja) * 2010-03-25 2011-10-13 Sanyo Electric Co Ltd 燃料電池層、燃料電池システム、および燃料電池層の製造方法
JP2013115036A (ja) * 2011-11-29 2013-06-10 Sanyo Electric Co Ltd 燃料電池層および燃料電池層の製造方法
WO2017047343A1 (ja) * 2015-09-18 2017-03-23 本田技研工業株式会社 燃料電池及びその製造方法
WO2017047342A1 (ja) * 2015-09-18 2017-03-23 本田技研工業株式会社 燃料電池

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022503477A (ja) * 2018-07-20 2022-01-12 ダイソン・テクノロジー・リミテッド エネルギー貯蔵装置のためのスタック
JP7125538B2 (ja) 2018-07-20 2022-08-24 ダイソン・テクノロジー・リミテッド エネルギー貯蔵装置のためのスタック
US11990587B2 (en) 2018-07-20 2024-05-21 Dyson Technology Limited Stack for an energy storage device
JP2020136063A (ja) * 2019-02-19 2020-08-31 本田技研工業株式会社 燃料電池の製造方法、及び燃料電池の製造装置
JP7041641B2 (ja) 2019-02-19 2022-03-24 本田技研工業株式会社 燃料電池の製造方法、及び燃料電池の製造装置
DE112020003883T5 (de) 2019-11-12 2022-05-05 Honda Motor Co., Ltd. Brennstoff-batteriestapel

Also Published As

Publication number Publication date
CN110114926B (zh) 2022-04-15
US20190341628A1 (en) 2019-11-07
JP6740376B2 (ja) 2020-08-12
US11245120B2 (en) 2022-02-08
JPWO2018124039A1 (ja) 2019-10-31
CA3046443A1 (en) 2018-07-05
CN110114926A (zh) 2019-08-09
CA3046443C (en) 2022-05-31

Similar Documents

Publication Publication Date Title
JP6595605B2 (ja) 燃料電池及びその製造方法
US10547065B2 (en) Fuel battery
US9570758B2 (en) Manufacturing method and manufacturing apparatus for gas diffusion layer of fuel cell, and fuel cell
JP6740376B2 (ja) 燃料電池の製造方法および加工装置
JP4977945B2 (ja) 膜電極接合体及びその製造方法、並びに燃料電池
US20080096094A1 (en) Membrane electrode assembly and fuel cell
JP4539145B2 (ja) 膜電極接合体及び燃料電池
US20100190084A1 (en) Single fuel cell
KR101072828B1 (ko) 연료전지용 막-전극 접합체의 연속제조장치
JP2012015093A (ja) 複合膜および燃料電池
JP6867424B2 (ja) 燃料電池の製造方法、及び燃料電池
JP7103971B2 (ja) 燃料電池及びその製造方法
JP7041641B2 (ja) 燃料電池の製造方法、及び燃料電池の製造装置
JP7103970B2 (ja) 燃料電池及びその製造方法
JP4240285B2 (ja) 固体高分子型燃料電池のガス拡散層の製造方法
JP6325025B2 (ja) 電解質膜・電極構造体の製造方法
JP2009009750A (ja) 固体高分子型燃料電池
CN114667618A (zh) 分隔件、燃料电池和分隔件的制造方法
JP2018077980A (ja) 膜電極接合体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886104

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018559500

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3046443

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17886104

Country of ref document: EP

Kind code of ref document: A1