WO2018123988A1 - Rare earth-transition metal system ferromagnetic alloy - Google Patents
Rare earth-transition metal system ferromagnetic alloy Download PDFInfo
- Publication number
- WO2018123988A1 WO2018123988A1 PCT/JP2017/046476 JP2017046476W WO2018123988A1 WO 2018123988 A1 WO2018123988 A1 WO 2018123988A1 JP 2017046476 W JP2017046476 W JP 2017046476W WO 2018123988 A1 WO2018123988 A1 WO 2018123988A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase
- rare earth
- transition metal
- ferromagnetic alloy
- alloy
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
Definitions
- the present invention relates to a rare earth-transition metal ferromagnetic alloy, and more particularly to a rare earth-transition metal ferromagnetic alloy suitably used for a permanent magnet.
- the rare earth element refers to at least one element selected from the group consisting of scandium (Sc), yttrium (Y), and lanthanoid.
- the lanthanoid is a general term for 15 elements from lanthanum to lutetium.
- RT 12 R is at least one rare earth element, T is Fe, Co, or Ni having a body-centered tetragonal ThMn 12 type crystal structure.
- RT 12 has high magnetization, but has a problem that its crystal structure is thermally unstable.
- Patent Document 1 discloses a rare earth permanent magnet in which part of Fe as a T element is partially replaced by Ti as a structure stabilizing element, and the thermal stability is improved in exchange for high magnetization. Yes.
- the R element of the RFe 12- based compound is partially substituted with a substitution element M1 such as Zr or Hf, so that the amount of substitution element M2 such as Ti that substitutes the transition metal element is reduced and saturated.
- a substitution element M1 such as Zr or Hf
- substitution element M2 such as Ti that substitutes the transition metal element is reduced and saturated.
- a rare earth permanent magnet is disclosed in which the ThMn 12 structure is stabilized while maintaining the magnetization.
- Patent Document 3 discloses an R′—Fe—Co based ferromagnetic alloy in which Y or Gd is selected as part of the R element of RFe 12 , and this R′—Fe—Co based ferromagnetic alloy is disclosed. It is described that the alloy exhibits a high magnetic property because it has a ThMn 12 type crystal structure formed by a rapid quenching method.
- Single-crystal-like main phase particles used in anisotropic sintered magnets which are often used as high-performance magnets, generally coarsen the crystal grains of the raw material alloy, pulverize the raw material alloy, and then sinter
- the main phase compound is required to be stably present at least 900 ° C. or higher, preferably 1000 ° C. or higher.
- Patent Document 1 Although the rare earth permanent magnet described in Patent Document 1 has improved thermal stability due to elemental substitution of Fe by Ti, since the amount of Fe substitution by Ti is large, magnetization is reduced by that amount, and sufficient magnetic properties are obtained. I can't get it.
- the R′—Fe—Co based ferromagnetic alloy described in Patent Document 3 does not substitute the Fe element with the structural stabilizing element M, and thus has high magnetization, large magnetic anisotropy, and high Curie temperature. However, since it is a non-equilibrium phase, the main phase compound may decompose in a densification process at a high temperature such as sintering.
- an object of the present invention is to provide a rare earth-transition metal ferromagnetic alloy having improved magnetic properties and thermal stability.
- a preferred embodiment of the rare earth-transition metal ferromagnetic alloy according to the present invention is characterized by having a composition represented by the following formula (1).
- R1 1-x R2 x (Fe 1-y Co y ) wz Ti z (1) (In the formula (1), R1 is Y or Y and Gd, R2 is Sm, La, Ce, Nd and One or more selected from the group consisting of Pr, and at least Sm-containing rare earth element, x, y, z, and w are 0 ⁇ x ⁇ 1.0, 0 ⁇ y ⁇ 0.4, and 11 ⁇ , respectively. (W ⁇ 12.5, 1/3 ⁇ z ⁇ 0.7 and x ⁇ 6z ⁇ 2)
- a rare earth-transition metal ferromagnetic alloy with improved magnetic properties and thermal stability can be realized.
- a phase fraction ⁇ phases ferromagnetic compound having ThMn 12 type crystal structure of the ribbon is a diagram showing the relationship between the Sm substitution amount x. It is a figure which shows the composition range map of the composition which shows a high temperature stable phase. It is a figure which shows the relationship between a magnetic anisotropic magnetic field and heat processing temperature. It is a figure which shows the Sm substitution amount x dependence of the lattice constant a, the lattice constant c, the unit cell volume, and the axial ratio c / a for every Co substitution amount y.
- FIG. 1 It is a figure which shows Sm substitution amount x dependence of axial ratio c / a for every Ti substitution amount z. It is a figure which shows the relationship between Co substitution amount y and Curie temperature. It is a figure which shows the initial magnetization curve in the room temperature about the ferromagnetic alloy which concerns on Example 4.
- FIG. 1 It is a figure of the polarization microscope image of the cross-sectional structure
- the rare earth-transition metal ferromagnetic alloy according to the embodiment is an R1-R2-Fe—Co—Ti ferromagnetic alloy having a composition represented by the following formula (1).
- R1 1-x R2 x (Fe 1-y Co y ) wz T i z R1 1-x R2 x (Fe 1-y Co y ) wz T i z (1)
- R1 includes at least Y, and may further include Gd.
- R2 has at least Sm, and may further contain at least one rare earth element selected from the group consisting of La, Ce, Nd, and Pr.
- x (R2 substitution amount x) indicating the ratio of R2 atoms to the total of R1 and R2, Co atomic ratio y (Co substitution amount y) to the total of Fe and Co, Fe Z (Ti content z) indicating the atomic ratio of the Ti content to the total amount of Co, Ti, and w indicating the atomic ratio of the total amount of Fe, Co, and Ti to the total amount of R1 and R2, respectively.
- ⁇ X ⁇ 1.0, 0 ⁇ y ⁇ 0.4, 11 ⁇ w ⁇ 12.5, 1/3 ⁇ z ⁇ 0.7 and x ⁇ 6z ⁇ 2.
- the rare earth-transition metal ferromagnetic alloy (hereinafter simply referred to as a ferromagnetic alloy) was obtained.
- the thermal stability of the main phase is improved when a bulk magnet is produced by a sintering method.
- At least Sm is adopted as R2, and at least one rare earth element selected from the group consisting of La, Ce, Nd, and Pr is used as necessary.
- the present inventors have found that magnetic anisotropy, which is important for increasing the coercive force of alloys, can be improved.
- Ti is added as a stabilizing element for replacing a part of Fe or Co to enhance thermal stability.
- the present inventors have found that the main phase can be a stable ferromagnetic alloy at high temperatures. Specifically, when the amount x of R2 and the amount z of Ti satisfy the relationship of x ⁇ 6z ⁇ 2, the main phase can exist stably at a high temperature.
- the lower limit value of the amount z of Ti is 1/3, and is further defined by x ⁇ 6z ⁇ 2 in relation to x.
- the filling rate of the magnet powder is approximately 80% or less. That is, the rare earth element content per unit volume is reduced as compared with the sintered magnet.
- the residual magnetic flux density (B r ) at this time is about 1.2 T at the maximum.
- the value of the residual magnetic flux density (B r ) can be obtained only below that of a conventional bonded magnet.
- the merit in terms of both magnetic characteristics and rare earth reduction is reduced. Therefore, it is desired that a sintered magnet obtained from an alloy using a ferromagnetic compound with a reduced amount of rare earth can have a residual magnetic flux density (B r ) of 1.2 T or more.
- the residual magnetic flux density (B r ) is mainly determined by the saturation magnetization (J s ) of the main phase compound, the volume ratio, and the degree of orientation. For this reason, in order to increase the residual magnetic flux density (B r ), it is effective as one means to orient and sinter powder composed of single-crystal-like main phase particles in a magnetic field. Considering the degree of orientation and the main phase ratio obtained, it is required to increase the saturation magnetization (J s ) of the main phase compound. Specifically, in order to obtain a residual magnetic flux density (B r ) of 1.2 T or higher, the saturation magnetization (J s ) of the main phase compound is desirably 1.4 T or higher.
- the saturation magnetization (J s ) of the main phase is difficult to exceed 1.4T, and may not be suitable as a raw material alloy for obtaining a high-performance magnet.
- the saturation magnetization (J s ) of the main phase may be obtained, for example, a value of 1.4 T or more, and the residual exceeding the conventional rare earth bonded magnet It can be suitably used as a raw material alloy for obtaining a permanent magnet having a magnetic flux density (Br).
- a more preferable range of Ti amount z is 1/3 ⁇ z ⁇ 0.6, and a more preferable range of Ti amount z. Is 1/3 ⁇ z ⁇ 0.5.
- a part of Ti may be substituted with an element such as Mo, V, etc. within a range of 50 mol% or less.
- the structure stabilizing element M for substituting a part of Ti is not limited to Mo and V.
- Si, Al, Cr, Mn, W, Re, Be, Nb, or the like may be used.
- X is 0 ⁇ x ⁇ 1.0. From the viewpoint of increasing the magnetic anisotropy energy, it is preferable that the amount x of R2 is large. However, if the amount x of R2 is too large, the stability of the main phase at a high temperature decreases. Therefore, x is more preferably 0.5 ⁇ x ⁇ 0.8.
- the range of x where the main phase is stabilized is defined as a range satisfying the relationship of x ⁇ 6z ⁇ 2, but in the range of z ⁇ 0.5, the main phase is The range of x that stabilizes at a particular high temperature (eg, 1050 ° C.) does not depend on the value of z.
- the Co substitution amount y is desirably 0 ⁇ y ⁇ 0.4, and more desirably 0.1 ⁇ y ⁇ 0.3.
- w represents the total amount of Fe, Co, and Ti, and 11 ⁇ w ⁇ 12.5. If w is less than 11, formation of a different phase Th 2 Zn 17 type crystal structure or Th 2 Ni 17 type crystal structure (hereinafter referred to as 2-17 phase) is not preferable. On the other hand, if w is larger than 12.5, the formation of ⁇ - (Fe, Co, Ti) phase or (Fe, Co) 2 Ti phase becomes remarkable, which is not preferable.
- the rare earth-transition metal ferromagnetic alloy (R1-R2-Fe—Co—Ti ferromagnetic alloy) according to the embodiment obtained as described above has a ThMn 12 type crystal structure as a main phase.
- -R2-Fe-Co-Ti ferromagnetic compound is contained.
- such a phase of a compound having a ThMn 12 type crystal structure hereinafter also referred to as a ThMn 12 type phase
- the ThMn 12 type phase contained in the ferromagnetic alloy according to the embodiment is a high temperature equilibrium phase in a temperature range of 1000 ° C. or higher.
- the R1-R2-Fe—Co—Ti ferromagnetic compound has a temperature range that becomes an equilibrium phase at 1000 ° C. or higher. More specifically, the R1-R2-Fe—Co—Ti ferromagnetic compound has a temperature range that becomes an equilibrium phase at 1000 ° C. to 1300 ° C. Therefore, the ferromagnetic alloy according to the embodiment has good thermal stability of the main phase, and can be suitably used for adopting a high-performance magnet manufacturing process such as a sintering method. Therefore, for example, a sintered body can contain a ThMn 12 type phase in a high ratio.
- the ferromagnetic alloy according to the embodiment can achieve both the above characteristics and high magnetic characteristics.
- “having a temperature range that becomes an equilibrium phase at 1000 ° C. or more and 1300 ° C. or less” does not require the main phase to be an equilibrium phase in all temperature ranges of 1000 ° C. or more and 1300 ° C. or less. That is, the temperature range used as an equilibrium phase includes the aspect which becomes 1050 degreeC or more and 1200 degrees C or less, for example, and the aspect which becomes 950 to 1250 degreeC. These temperature ranges for the equilibrium phase may vary depending on the detailed alloy composition.
- the “ThMn 12- type crystal structure” is a tetragonal crystal.
- the tetragonal crystal lattice is slightly distorted and the target is orthorhombic. Even when the periodicity of atoms in the crystal is slightly disturbed, it is regarded as “ThMn 12 type crystal structure”.
- the rare earth-transition metal-based ferromagnetic alloy (R1-R2-Fe—Co—Ti-based ferromagnetic alloy) may be produced by a die casting method, a centrifugal casting method, a strip casting method, or a liquid ultra rapid cooling method. It is possible to adopt known methods such as For example, ⁇ - (Fe, Co, Ti) phase (However, Co and Ti are not essential. Hereinafter, they may be described as “bcc-Fe phase” or “bcc- (Fe, Co, Ti) phase”). In particular, when the generation of a phase that is not preferable as a raw material alloy for a magnet is suppressed as much as possible, a strip casting method or a liquid ultra-quenching method having a relatively high cooling rate can be employed.
- a reduction diffusion method in which an oxide or metal of a constituent element is mixed with granular calcium metal and heated and reacted in an inert gas atmosphere may be used.
- the reduction diffusion method has an advantage that a uniform structure is formed, so that it is easy to generate especially during the solidification process and it is difficult to generate an ⁇ - (Fe, Co, Ti) phase that causes a decrease in magnetic properties.
- the rare earth-transition metal-based ferromagnetic alloy according to the embodiment allows the ThMn 12- type phase to exist stably even in a temperature range of 1000 ° C. or higher by adding a small amount of Ti to the composition system of the non-equilibrium phase. Can do.
- the formation of the bcc-Fe phase can be suppressed relatively easily, and can be 3 wt% or less based on the entire alloy.
- the formation of the bcc-Fe phase becomes obvious, and the content becomes 4 wt% or more based on the entire alloy. This seems to be related to the formation of Zr (Fe, Co) 2 phase.
- the rare earth-transition metal ferromagnetic alloy according to the embodiment further reduces the number of heterogeneous phases generated during the solidification process by applying heat treatment, or is a single crystal-like material useful as a raw material for anisotropic sintered magnets.
- the crystal grains may be coarsened.
- the heat treatment temperature at this time is preferably 900 ° C. or higher and 1250 ° C. or lower, and more preferably 1050 ° C. or higher and 1250 ° C. or lower.
- the heat treatment time is usually from 5 minutes to 48 hours.
- the alloy obtained by using the liquid ultra-quenching method represented by the single roll ultra-quenching method and the atomizing method may have fine crystal grains, in which case the raw material alloy for anisotropic sintered magnets Not suitable for. However, even in this case, it is suitably used as a magnet powder for an isotropic bonded magnet by performing an appropriate heat treatment.
- the heat treatment temperature at this time is preferably 900 ° C. or higher and 1000 ° C. or lower.
- the heat treatment time is usually 5 minutes or more and 4 hours or less.
- ThMn 12 type phase is often a high-temperature stable phase, it may be decomposed when the heat treatment temperature is less than 900 ° C. Therefore, care must be taken when setting the heat treatment temperature.
- Example 1 the influence of the Sm substitution amount x and the Ti substitution amount z on the phase stability was examined.
- a single roll ultra-quenching method which is a kind of liquid ultra-quenching method, was applied as an alloy production method.
- Y (purity 99.9%), Sm (purity 99.9%), electrolytic iron (purity 99.9%), electrolytic cobalt (purity 99.9%), and Ti (purity 99.3%) 9%) was weighed respectively.
- Y was 3 mass% and Sm was 5 mass% higher than the target composition.
- the weighed metals were mixed, put into an alumina crucible, and melted by high frequency melting.
- the molten metal is emitted onto a copper roll (roll diameter: 230 mm) rotating at high speed and rapidly solidified.
- a ribbon-shaped alloy (hereinafter referred to as a quenched ribbon) was produced.
- the roll peripheral speed was set to 40 m / s.
- the quenched ribbon obtained in step B was wrapped in Nb foil and heat-treated at 800 ° C. to 1100 ° C. for 20 minutes in an Ar flow environment to obtain a rare earth-transition metal ferromagnetic alloy.
- evaluation results The relationship between the phase ratio of the bcc- (Fe, Co, Ti) phase contained in the thus prepared ribbon and the heat treatment temperature was evaluated. The evaluation results are shown in FIG. The phase ratio of the bcc- (Fe, Co, Ti) phase was identified using X-ray Rietveld analysis.
- the relationship with quantity x was evaluated.
- the results are shown in FIG.
- the phase ratio ⁇ of the ThMn 12 type phase was identified using X-ray Rietveld analysis.
- the change in the phase ratio ⁇ of the mold phase is shown.
- each sample of the plot shown in FIG. 2 used what was heat-processed at 1050 degreeC.
- the bcc- (Fe, Co, Ti) phase (bcc-Fe phase) that is soft magnetic and significantly deteriorates the magnetic properties is 1000 ° C.
- the amount of the bcc- (Fe, Co, Ti) phase was reduced to 3 wt% or less, especially in the heat treatment at 1050 ° C. by the above heat treatment.
- the phase ratio ⁇ of the ThMn 12 type phase showed a high value of almost constant 90 wt% without depending on the Sm substitution amount x.
- the phase ratio ⁇ of the ThMn 12 type phase did not depend on the Sm substitution amount x, and was almost constant 90 wt%.
- it was confirmed that the phase ratio ⁇ of the ThMn 12 type phase decreased linearly (phase ratio ⁇ 131 ⁇ 109x) as the Sm substitution amount x increased.
- FIG. 3 a composition range map of the composition showing the high temperature stable phase is shown in FIG.
- evaluation was made with a white circle mark indicating that the phase stability was confirmed, and a cross mark indicating that the phase was unstable and partially decomposed.
- the phase stability was judged by whether or not the 2-17 phase, which is a different phase, precipitated in the alloy.
- the diffraction pattern of the 2-17 phase and the 1-12 phase, which is a ThMn 12 type phase are similar, if either one is a trace amount, the presence or absence of the 2-17 phase can be determined by X-ray diffraction alone. It is difficult to judge. Therefore, for the phase stability, the presence or absence of the 2-17 phase was evaluated using a thermomagnetic balance capable of detecting a trace amount of phase in combination with the X-ray Rietveld analysis.
- thermomagnetic balance used in this study is a magnetic field (10 to 15 mT) applied to a sample installation part by attaching a permanent magnet to a thermogravimetric measuring device (thermobalance) (TG: TGA / SDTA851 e manufactured by METTTLER TOLEDO).
- TG thermogravimetric measuring device
- the magnetic attractive force acting on the ferromagnetic phase in the sample can be detected as the weight value of TG.
- 0.0 ⁇ x ⁇ 0.4, 0.8 ⁇ x ⁇ 1.0, 0.5 ⁇ z ⁇ 0.6 For any composition in the range, an alloy was prepared by the same procedure as described above, and the phase stability was evaluated.
- Example 2 and Example 3 to be described later higher magnetic characteristics are obtained toward the upper left side in the region in the graph shown in FIG. Therefore, the composition of the region in the vicinity of the upper left line among the lines indicating the boundary of the region where the phase stability can be obtained is most desirable as the magnetic material.
- a specific preferable numerical range of x and z is examined.
- z is a value satisfying 1/3 ⁇ z ⁇ 0.6 or 1/3 ⁇ z ⁇ 0.5.
- it includes a range in which the magnetic characteristics are suitable, and if x is a value satisfying 0.5 ⁇ x ⁇ 0.8, it is understood that the range in which the magnetic characteristics are stable is included.
- Example 2 the relationship between the Sm substitution amount x and the magnetic property value was examined.
- the composition has the chemical formula Y 1-x Sm x (Fe 0.83 Co 0.17 ) 11.5 Ti 0.5
- Y purity 99.9%
- Sm purity 99.9%
- electrolytic iron purity 99.9%
- Ti purity 99.9%
- the magnetic anisotropy magnetic field of each alloy obtained by changing the heat treatment temperature in the range of 20 to 140 ° C. was measured. Identification of the magnetic anisotropy field was performed in the same manner as in Table 1 except that it was performed in dilute He to suppress oxidation of the sample.
- FIG. 4 shows the relationship between the magnetic anisotropic magnetic field and the heat treatment temperature.
- the temperature coefficient of magnetic anisotropy was poor, and the magnetic anisotropy magnetic field rapidly decreased as the temperature increased. This result is considered to be due to the fact that the temperature coefficient of the exchange interaction between the rare earth element and the Fe element is worse than the temperature coefficient of the exchange interaction between the Fe elements. Therefore, it is possible to design a rare earth alloy having a smaller temperature coefficient of magnetic anisotropy magnetic field as the concentration of non-magnetic Y element is higher.
- Nd 2 Fe 14 B has a magnetic anisotropy field of approximately 5 T in the vicinity of 140 ° C., which is a typical driving temperature of a practically important hybrid vehicle or electric vehicle motor. It can be confirmed that the ferromagnetic alloy exhibits a magnetic anisotropy magnetic field superior to this in the composition range of x ⁇ 0.5. From the viewpoint of increasing the magnetic anisotropy magnetic field at a high temperature, x preferably satisfies x ⁇ 0.5.
- Example 3 the relationship between the Ti substitution amount z and the magnetic property value was examined.
- Example 4 the relationship between the Sm substitution amount x and the Co substitution amount y, the lattice change, and the magnetic property value were examined.
- FIG. 5 shows the dependency of the lattice constant a, the lattice constant c, and the axial ratio c / a on the Sm substitution amount for each Co substitution amount. From FIG. 5, it was confirmed that when the Sm substitution amount x increases, the lattice constants a and c increase, whereas when the Co substitution amount y increases, the lattice constants a and c decrease.
- the size of the crystal structure is related to the phase stability of the ThMn 12 type crystal structure.
- the axial ratio c / a in the crystal structure is generally in the range of 0.56 to 0.57. In general, the axial ratio c / a tends to decrease as the M element substitution amount increases and the phase stability improves. is there.
- the axial ratio c / a decreases as the value of z increases. Accordingly, it can be understood from FIG. 6 that the axial ratio c / a tends to decrease as the Ti substitution amount z increases and the phase stability improves. That is, it is judged that the smaller the axial ratio c / a, the higher the phase stability of the ThMn 12 type phase.
- the lattice constants a and c and the axial ratio c / a vary depending on the Co substitution amount y. Therefore, it is considered that Co substitution as well as Sm substitution contributes to the stability of the crystal structure. It is important from the viewpoint of phase stability to adjust both the Sm substitution amount x and the Co substitution amount y to be within an appropriate range.
- the axial ratio c / a indicates the degree of tetragonal crystal and is also related to the magnetic anisotropy. Specifically, although depending on the crystal field of the rare earth site, qualitatively, the magnetic anisotropy tends to be larger when the axial ratio c / a is smaller.
- the aspect ratio axial ratio c / a
- 0.6 ⁇ x ⁇ 0.8 at y 2/12 can be said to be an appropriate aspect ratio for obtaining large magnetic anisotropy and high phase stability ( (See FIG. 6).
- the axial ratio c / a tends to be smaller as the Co substitution amount y is smaller (see FIG. 5D).
- the range of the desirable Sm substitution amount x described above does not change significantly in the range of 1/3 ⁇ z ⁇ 0.6, which is the range indicated as the appropriate Ti substitution amount z in Example 1.
- the Co substitution amount y is appropriate in the vicinity of 2/12. Considering that it conforms to the Slater-Polling curve, specifically, it can be determined that the Co substitution amount y is preferably 0 ⁇ y ⁇ 0.4, and more preferably 0.1 ⁇ y ⁇ 0.3.
- the Sm substitution amount x at that time is preferably 0.6 ⁇ x ⁇ 0.8.
- Example 5 the coarsening of crystal grains was examined.
- the composition is the chemical formula Sm 0.4 Y 0.6 (Fe 0.83 Co 0.17 ) 12-z T i z
- Y purity 99.9%
- Sm purity 99.9%
- electrolytic iron purity 99.9%
- electrolytic cobalt purity 99.99.
- Ti purity 99.9%
- the lower side is the base material side.
- the ThM n12 type phase is unidirectionally solidified from the substrate side along the heat removal direction (vertical direction). Since the domain wall is substantially along the vertical direction, it can be seen that the c-axis direction, which is the easy axis of magnetization, is oriented in the vertical direction.
- the crystal grains are about 10 to 30 ⁇ m in the direction parallel to the base material, and it can be confirmed that they have grown 30 to 100 ⁇ m or more in the heat removal direction. From the above, it was shown that coarse crystal grains long in the c-axis direction can be formed by controlling the heat removal direction and solidifying in one direction. Such a shape long in the c-axis direction is advantageous from the viewpoint of shape magnetic anisotropy.
- Example 6 the rare earth-transition metal ferromagnetic alloy was analyzed by neutron diffraction.
- Process A First, in order to obtain a raw material alloy whose composition is represented by the chemical formula Y 0.2 Sm 0.8 (Fe 0.8 Co 0.2 ) 11.5 Ti 0.5 , Y (purity 99.9%) and Sm (Purity 99.9%), electrolytic iron (purity 99.9%), electrolytic cobalt (purity 99.9%), and Ti (purity 99.9%) were weighed, respectively. In consideration of evaporation of Y and Sm at high temperature, weighed so that Y was 3 mass% and Sm was 5 mass% higher than the target composition.
- the obtained rare earth-transition metal ferromagnetic alloy was pulverized to recover an alloy powder of 75 ⁇ m or less.
- a hollow vanadium cylinder (outer diameter of 5.0 mm) is placed in a vanadium container (inner diameter of 5.8 mm) so that the absorption correction of Sm with large neutron absorption can be performed, and the powder (rare earth- Transition metal based ferromagnetic alloy).
- the vanadium container containing the powder was subjected to material structure analysis in Ibaraki Prefecture installed at BL20 in the Materials and Life Science Experimental Facility (MLF) of the Japan Proton Accelerator Research Complex (J-PARC).
- the device was set in an apparatus (iMATERIA), irradiated with pulsed neutrons in a single frame mode (25 Hz) with an output of 300 kW at room temperature, and held until the accumulated count reached 50 MCounts or more, and neutron diffraction data was acquired.
- iMATERIA apparatus iMATERIA
- pulsed neutrons in a single frame mode (25 Hz) with an output of 300 kW at room temperature, and held until the accumulated count reached 50 MCounts or more, and neutron diffraction data was acquired.
- the analysis of the acquired data was performed using the data of the back bank obtained by subtracting the background of the vanadium container, and the interplanar spacing d was in the range of 0.49 mm ⁇ d ⁇ 2.57 mm.
- the analysis code used was Z-Riedverd 1.0.2. Since the magnetic structure is collinear with ferromagnetic coupling and the diffraction patterns of nuclear scattering and magnetic scattering match, the nuclear scattering intensity does not depend on d except for the Debye-Waller factor, and the magnetic scattering intensity is d ⁇ 2.
- the obtained diffraction pattern includes diffraction patterns from Y or Zr and a 3d transition metal grating and contains almost no information on magnetic scattering from Sm having a large absorption. Therefore, the magnetic moment of Sm was set to a literature value of 1.50 ⁇ B (g factor was 1.07), and refinement was not performed.
- the bcc-Fe phase in the produced rare earth-transition metal ferromagnetic alloy was 1.9 wt%, and the rest were all ThMn 12 type compounds.
- a Zr 0.2 Sm 0.8 (Fe 0.8 Co 0.2 ) 11.5 Ti 0.5 composition alloy produced by the same method was analyzed by the same method.
- the bcc-Fe phase showed a high value of 4.6 wt%.
- most of Co for example, 80 mol% or more is at least one of 8f site and 8j site. It was confirmed that the occupation rates in the sites were 26% and 27% for 8f and 8j, respectively, and that most of Ti occupied the 8i site and the occupation rate in the sites was 20%.
- the present invention can be used particularly for permanent magnets and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Provided is a rare earth-transition metal system ferromagnetic alloy which has improved magnetic characteristics and improved thermal stability. The present invention proposes a rare earth-transition metal system ferromagnetic alloy which is characterized by having a composition represented by formula (1).
R11-xR2x(Fe1-yCoy)w-zTiz (1)
In formula (1), R1 comprises at least Y, and may additionally comprise Gd; R2 comprises at least Sm and may additionally comprise at least one rare earth element selected from the group consisting of La, Ce, Nd and Pr; and x, y, z and w are numbers that respectively satisfy 0 < x < 1.0, 0 ≤ y ≤ 0.4, 11 ≤ w ≤ 12.5, 1/3 ≤ z ≤ 0.7 and x ≤ 6z - 2.)
Description
本発明は、希土類-遷移金属系強磁性合金に係り、特に永久磁石に好適に用いられる希土類-遷移金属系強磁性合金に関する。
The present invention relates to a rare earth-transition metal ferromagnetic alloy, and more particularly to a rare earth-transition metal ferromagnetic alloy suitably used for a permanent magnet.
近年、希土類元素の含有量を低減した磁石の開発が求められている。本明細書において希土類元素とは、スカンジウム(Sc)、イットリウム(Y)、およびランタノイドからなる群から選択された少なくとも1つの元素をいう。ここで、ランタノイドとは、ランタンからルテチウムまでの15の元素の総称である。含有する希土類元素の組成比率が相対的に小さい強磁性合金として、体心正方晶のThMn12型結晶構造を有するRT12(Rは希土類元素の少なくとも1種、TはFe、Co又はNi)が知られている。RT12は高い磁化を有するが、結晶構造が熱的に不安定であるという問題がある。
In recent years, there has been a demand for the development of a magnet with a reduced content of rare earth elements. In this specification, the rare earth element refers to at least one element selected from the group consisting of scandium (Sc), yttrium (Y), and lanthanoid. Here, the lanthanoid is a general term for 15 elements from lanthanum to lutetium. As a ferromagnetic alloy in which the composition ratio of the rare earth element is relatively small, RT 12 (R is at least one rare earth element, T is Fe, Co, or Ni) having a body-centered tetragonal ThMn 12 type crystal structure. Are known. RT 12 has high magnetization, but has a problem that its crystal structure is thermally unstable.
特許文献1には、T元素であるFeの一部を、構造安定化元素であるTiにより部分的に置換して、高い磁化と引き換えに、熱安定性を高めた希土類永久磁石が開示されている。
Patent Document 1 discloses a rare earth permanent magnet in which part of Fe as a T element is partially replaced by Ti as a structure stabilizing element, and the thermal stability is improved in exchange for high magnetization. Yes.
特許文献2には、RFe12系化合物のR元素を、Zr、Hf等の置換元素M1により部分的に置換することで、遷移金属元素を置換するTi等の置換元素M2の量を減らして飽和磁化を保ったまま、ThMn12構造を安定化した希土類永久磁石が開示されている。
In Patent Document 2, the R element of the RFe 12- based compound is partially substituted with a substitution element M1 such as Zr or Hf, so that the amount of substitution element M2 such as Ti that substitutes the transition metal element is reduced and saturated. A rare earth permanent magnet is disclosed in which the ThMn 12 structure is stabilized while maintaining the magnetization.
また、特許文献3には、RFe12のR元素の一部としてY又はGdを選択した、R´-Fe-Co系強磁性合金が開示されており、このR´-Fe-Co系強磁性合金が、超急冷法により生成させたThMn12型結晶構造を有することで、高い磁気特性を示す点が記載されている。
Patent Document 3 discloses an R′—Fe—Co based ferromagnetic alloy in which Y or Gd is selected as part of the R element of RFe 12 , and this R′—Fe—Co based ferromagnetic alloy is disclosed. It is described that the alloy exhibits a high magnetic property because it has a ThMn 12 type crystal structure formed by a rapid quenching method.
高性能磁石として多用されている異方性焼結磁石に用いられる、単結晶ライクの主相粒子は、一般的に原料合金の結晶粒を粗大化し、この原料合金を微粉砕した後、焼結工程を経て得られており、この焼結工程の際の一般的な処理温度を考慮すると、主相化合物は、少なくとも900℃以上、好ましくは1000℃以上で安定に存在することが求められる。
Single-crystal-like main phase particles used in anisotropic sintered magnets, which are often used as high-performance magnets, generally coarsen the crystal grains of the raw material alloy, pulverize the raw material alloy, and then sinter In view of the general processing temperature during this sintering step, the main phase compound is required to be stably present at least 900 ° C. or higher, preferably 1000 ° C. or higher.
特許文献1に記載の希土類永久磁石は、TiによるFeの元素置換により、熱安定性が高められているものの、TiによるFe置換量が多いため、その分磁化が小さくなり、十分な磁気特性を得られない。
Although the rare earth permanent magnet described in Patent Document 1 has improved thermal stability due to elemental substitution of Fe by Ti, since the amount of Fe substitution by Ti is large, magnetization is reduced by that amount, and sufficient magnetic properties are obtained. I can't get it.
一方、特許文献2に記載の希土類永久磁石では、Ti等で遷移金属元素を置換することによりThMn12構造の安定化を図っているものの、その効果は必ずしも十分でない。
On the other hand, in the rare earth permanent magnet described in Patent Document 2, although the ThMn 12 structure is stabilized by substituting the transition metal element with Ti or the like, the effect is not necessarily sufficient.
特許文献3に記載のR´-Fe-Co系強磁性合金は、Fe元素を構造安定化元素Mで置換していないため、高い磁化と大きい磁気異方性と高いキュリー温度を得られているが、非平衡相であるために、焼結等の高温での緻密化プロセスにおいて主相化合物が分解することがある。
The R′—Fe—Co based ferromagnetic alloy described in Patent Document 3 does not substitute the Fe element with the structural stabilizing element M, and thus has high magnetization, large magnetic anisotropy, and high Curie temperature. However, since it is a non-equilibrium phase, the main phase compound may decompose in a densification process at a high temperature such as sintering.
そこで、本発明の目的は、磁気特性及び熱安定性を向上させた希土類-遷移金属系強磁性合金を提供することにある。
Therefore, an object of the present invention is to provide a rare earth-transition metal ferromagnetic alloy having improved magnetic properties and thermal stability.
本発明に係る希土類-遷移金属系強磁性合金の好ましい実施形態としては、下記式(1)で表される組成を有することを特徴とする。
A preferred embodiment of the rare earth-transition metal ferromagnetic alloy according to the present invention is characterized by having a composition represented by the following formula (1).
R11-xR2x(Fe1-yCoy)w-zTiz…(1)(式(1)中、R1は、YまたはYとGd、R2は、Sm、La、Ce、Nd及びPrからなる群から選択される1種以上であり、少なくともSmを含む希土類元素、x、y、z、wは、それぞれ、0<x<1.0、0≦y≦0.4、11≦w≦12.5、1/3≦z≦0.7かつx≦6z-2を満足する値である。)
R1 1-x R2 x (Fe 1-y Co y ) wz Ti z (1) (In the formula (1), R1 is Y or Y and Gd, R2 is Sm, La, Ce, Nd and One or more selected from the group consisting of Pr, and at least Sm-containing rare earth element, x, y, z, and w are 0 <x <1.0, 0 ≦ y ≦ 0.4, and 11 ≦, respectively. (W ≦ 12.5, 1/3 ≦ z ≦ 0.7 and x ≦ 6z−2)
本発明によれば、磁気特性及び熱安定性を向上させた希土類-遷移金属系強磁性合金を実現することができる。
According to the present invention, a rare earth-transition metal ferromagnetic alloy with improved magnetic properties and thermal stability can be realized.
[希土類遷移金属系強磁性合金の組成]
実施形態に係る希土類-遷移金属系強磁性合金は、下記式(1)で表される組成を有するR1-R2-Fe-Co-Ti系強磁性合金である。 [Composition of rare earth transition metal ferromagnetic alloys]
The rare earth-transition metal ferromagnetic alloy according to the embodiment is an R1-R2-Fe—Co—Ti ferromagnetic alloy having a composition represented by the following formula (1).
実施形態に係る希土類-遷移金属系強磁性合金は、下記式(1)で表される組成を有するR1-R2-Fe-Co-Ti系強磁性合金である。 [Composition of rare earth transition metal ferromagnetic alloys]
The rare earth-transition metal ferromagnetic alloy according to the embodiment is an R1-R2-Fe—Co—Ti ferromagnetic alloy having a composition represented by the following formula (1).
R11-xR2x(Fe1-yCoy)w-zTiz …(1)
上記式(1)において、「R1」は、少なくともYを含み、さらにGdを含んでいてもよい。また、上記式(1)において、「R2」は、少なくともSmを有し、さらにLa、Ce、Nd及びPrからなる群から選択される少なくとも1種の希土類元素を含んでいてもよい。また、上記式(1)中、R1とR2の合計に対するR2の原子数比率を示すx(R2置換量x)、FeとCoの合計に対するCoの原子数比率y(Co置換量y)、FeとCoとTiの総量に対するTiの含有量の原子数比率を示すz(Ti含有量z)、R1とR2の総量に対するFe、Co、Tiの総量の原子数比率を示すwは、それぞれ、0<x<1.0、0≦y≦0.4、11≦w≦12.5、1/3≦z≦0.7かつx≦6z-2を満足する数である。 R1 1-x R2 x (Fe 1-y Co y ) wz T i z (1)
In the above formula (1), “R1” includes at least Y, and may further include Gd. In the formula (1), “R2” has at least Sm, and may further contain at least one rare earth element selected from the group consisting of La, Ce, Nd, and Pr. In the above formula (1), x (R2 substitution amount x) indicating the ratio of R2 atoms to the total of R1 and R2, Co atomic ratio y (Co substitution amount y) to the total of Fe and Co, Fe Z (Ti content z) indicating the atomic ratio of the Ti content to the total amount of Co, Ti, and w indicating the atomic ratio of the total amount of Fe, Co, and Ti to the total amount of R1 and R2, respectively. <X <1.0, 0 ≦ y ≦ 0.4, 11 ≦ w ≦ 12.5, 1/3 ≦ z ≦ 0.7 and x ≦ 6z−2.
上記式(1)において、「R1」は、少なくともYを含み、さらにGdを含んでいてもよい。また、上記式(1)において、「R2」は、少なくともSmを有し、さらにLa、Ce、Nd及びPrからなる群から選択される少なくとも1種の希土類元素を含んでいてもよい。また、上記式(1)中、R1とR2の合計に対するR2の原子数比率を示すx(R2置換量x)、FeとCoの合計に対するCoの原子数比率y(Co置換量y)、FeとCoとTiの総量に対するTiの含有量の原子数比率を示すz(Ti含有量z)、R1とR2の総量に対するFe、Co、Tiの総量の原子数比率を示すwは、それぞれ、0<x<1.0、0≦y≦0.4、11≦w≦12.5、1/3≦z≦0.7かつx≦6z-2を満足する数である。 R1 1-x R2 x (Fe 1-y Co y ) wz T i z (1)
In the above formula (1), “R1” includes at least Y, and may further include Gd. In the formula (1), “R2” has at least Sm, and may further contain at least one rare earth element selected from the group consisting of La, Ce, Nd, and Pr. In the above formula (1), x (R2 substitution amount x) indicating the ratio of R2 atoms to the total of R1 and R2, Co atomic ratio y (Co substitution amount y) to the total of Fe and Co, Fe Z (Ti content z) indicating the atomic ratio of the Ti content to the total amount of Co, Ti, and w indicating the atomic ratio of the total amount of Fe, Co, and Ti to the total amount of R1 and R2, respectively. <X <1.0, 0 ≦ y ≦ 0.4, 11 ≦ w ≦ 12.5, 1/3 ≦ z ≦ 0.7 and x ≦ 6z−2.
本発明者らが鋭意研究した結果、以下の点を見出し、上記の希土類-遷移金属系強磁性合金(以下、単に強磁性合金という)を得た。
As a result of intensive studies by the present inventors, the following points were found and the rare earth-transition metal ferromagnetic alloy (hereinafter simply referred to as a ferromagnetic alloy) was obtained.
即ち、上記式(1)において、R1として少なくともYを採用し、必要に応じてGdを用いることで、Zr、Hf等の置換元素を用いなくとも主相の高温安定性を確保するための構造安定化元素であるTiの量zを、z=1/3程度まで低減することができる点を見出した。さらに、ThMn12型結晶構造を構成する、希土類元素R1の一部をSmなどのR2で置換しても、少ないTi添加量でもThMn12型結晶構造が高温平衡相となることを見出した。これにより、Tiの添加による磁気特性の低下を抑制しつつ、高い熱安定性を維持することができる。このため、例えば焼結法によりバルク磁石を作製するときの、主相の熱安定性が向上する。
That is, in the above formula (1), at least Y is adopted as R1, and Gd is used as necessary, so that the high-phase stability of the main phase is ensured without using a substitution element such as Zr or Hf. It was found that the amount z of Ti as a stabilizing element can be reduced to about z = 1/3. Furthermore, it has been found that even if a part of the rare earth element R1 constituting the ThMn 12 type crystal structure is replaced with R2 such as Sm, the ThMn 12 type crystal structure becomes a high temperature equilibrium phase even with a small Ti addition amount. Thereby, high thermal stability can be maintained, suppressing the fall of the magnetic characteristic by addition of Ti. For this reason, for example, the thermal stability of the main phase is improved when a bulk magnet is produced by a sintering method.
また、上記式(1)において、R2として、少なくともSmを採用し、さらに必要に応じてLa、Ce、Nd及びPrからなる群から選択される少なくとも1種の希土類元素を用いることで、強磁性合金の高保磁力化に重要となる、磁気異方性を向上させることができる点を見出した。
In the above formula (1), at least Sm is adopted as R2, and at least one rare earth element selected from the group consisting of La, Ce, Nd, and Pr is used as necessary. The present inventors have found that magnetic anisotropy, which is important for increasing the coercive force of alloys, can be improved.
上記したように、Tiは、Fe又はCoの一部を置換して熱安定性を高めるための安定化元素として添加する。主相が高温で安定となるTiの量zとR2の量xの上限との間にはトレードオフの関係が存在し、R2の量xとTiの量zとが所定の関係を満たすことで、主相が高温下で安定な強磁性合金とすることができることを見出した。具体的には、R2の量xとTiの量zとが、x≦6z-2の関係を満たすことで、主相が高温下で安定に存在できるものとすることができる。
As described above, Ti is added as a stabilizing element for replacing a part of Fe or Co to enhance thermal stability. There is a trade-off relationship between the amount z of Ti at which the main phase is stable at a high temperature and the upper limit of the amount x of R2, and the amount x of R2 and the amount z of Ti satisfy a predetermined relationship. The present inventors have found that the main phase can be a stable ferromagnetic alloy at high temperatures. Specifically, when the amount x of R2 and the amount z of Ti satisfy the relationship of x ≦ 6z−2, the main phase can exist stably at a high temperature.
主相が高温下で安定に存在できるものとするため、Tiの量zの下限値は1/3であり、さらにxとの関係で、x≦6z-2により規定される。
In order to allow the main phase to exist stably at a high temperature, the lower limit value of the amount z of Ti is 1/3, and is further defined by x ≦ 6z−2 in relation to x.
Nd-Fe-B系磁石やSm-Fe-N系磁石等の従来の希土類磁石を、ボンド磁石として用いた場合、磁石粉末の充填率は、概ね80%、若しくはそれ以下となる。すなわち、焼結磁石の場合と比較して、単位体積当たりの希土類元素の含有量は少なくなる。この時の残留磁束密度(Br)は最大で1.2T程度である。仮に、本実施形態に係る希土類-遷移金属系を十分に緻密化した焼結磁石のような態様で作製したときに残留磁束密度(Br)の値が従来のボンド磁石以下しか得られないと、磁気特性及び希土類削減の両立という観点でのメリットが小さくなってしまう。従って、希土類量を低減した強磁性化合物を用いた合金で得られた焼結磁石は1.2T以上の残留磁束密度(Br)が得られることが望まれる。
When conventional rare earth magnets such as Nd—Fe—B magnets and Sm—Fe—N magnets are used as bonded magnets, the filling rate of the magnet powder is approximately 80% or less. That is, the rare earth element content per unit volume is reduced as compared with the sintered magnet. The residual magnetic flux density (B r ) at this time is about 1.2 T at the maximum. Temporarily, when the rare earth-transition metal system according to the present embodiment is produced in a mode such as a sintered magnet sufficiently densified, the value of the residual magnetic flux density (B r ) can be obtained only below that of a conventional bonded magnet. In addition, the merit in terms of both magnetic characteristics and rare earth reduction is reduced. Therefore, it is desired that a sintered magnet obtained from an alloy using a ferromagnetic compound with a reduced amount of rare earth can have a residual magnetic flux density (B r ) of 1.2 T or more.
残留磁束密度(Br)は、主に主相化合物の飽和磁化(Js)と体積比率及び配向度により決定される。このため、残留磁束密度(Br)を高めるには、単結晶ライクの主相粒子からなる粉末を磁界中で配向させて焼結することが、一つの手段として有効ではあるが、現実的に得られる配向度や主相比率を考慮すると、主相化合物の飽和磁化(Js)を高めることが求められる。具体的には、1.2T以上の残留磁束密度(Br)を得るためには、主相化合物の飽和磁化(Js)は、1.4T以上であることが望ましい。
The residual magnetic flux density (B r ) is mainly determined by the saturation magnetization (J s ) of the main phase compound, the volume ratio, and the degree of orientation. For this reason, in order to increase the residual magnetic flux density (B r ), it is effective as one means to orient and sinter powder composed of single-crystal-like main phase particles in a magnetic field. Considering the degree of orientation and the main phase ratio obtained, it is required to increase the saturation magnetization (J s ) of the main phase compound. Specifically, in order to obtain a residual magnetic flux density (B r ) of 1.2 T or higher, the saturation magnetization (J s ) of the main phase compound is desirably 1.4 T or higher.
Tiの量zが0.7を超えると、主相の飽和磁化(Js)が1.4Tを超え難くなり、高性能磁石を得るための原料合金として適さなくなるおそれがある。Tiの量zを0.7以下とすることで、主相の飽和磁化(Js)として、例えば1.4T以上の値を得られる可能性のあるものとなり、従来の希土類ボンド磁石を超える残留磁束密度(Br)を有する永久磁石を得るための原料合金として好適に用いることができる。主相の高温下での安定性を保ちつつ、高い磁気特性を得る観点からは、より好ましいTi量zの範囲は、1/3≦z≦0.6であり、さらに好ましいTi量zの範囲は、1/3≦z<0.5である。
When the amount z of Ti exceeds 0.7, the saturation magnetization (J s ) of the main phase is difficult to exceed 1.4T, and may not be suitable as a raw material alloy for obtaining a high-performance magnet. By setting the amount z of Ti to 0.7 or less, the saturation magnetization (J s ) of the main phase may be obtained, for example, a value of 1.4 T or more, and the residual exceeding the conventional rare earth bonded magnet It can be suitably used as a raw material alloy for obtaining a permanent magnet having a magnetic flux density (Br). From the viewpoint of obtaining high magnetic properties while maintaining the stability of the main phase at a high temperature, a more preferable range of Ti amount z is 1/3 ≦ z ≦ 0.6, and a more preferable range of Ti amount z. Is 1/3 ≦ z <0.5.
上記式(1)において、Tiの一部を、50モル%以下の範囲で、Mo、V、等の元素で置換してもよい。なお、Tiの一部を置換する構造安定化元素Mとしては、Mo、Vに限られず、例えばSi、Al、Cr、Mn、W、Re、Be、Nb等を用いてもよい。
In the above formula (1), a part of Ti may be substituted with an element such as Mo, V, etc. within a range of 50 mol% or less. The structure stabilizing element M for substituting a part of Ti is not limited to Mo and V. For example, Si, Al, Cr, Mn, W, Re, Be, Nb, or the like may be used.
xは、0<x<1.0である。磁気異方性エネルギーを高める観点からは、R2の量xが多い方が好ましいが、R2の量xが多すぎると、主相の高温下での安定性が低下する。そのためxは、0.5≦x≦0.8であることがより好ましい。
X is 0 <x <1.0. From the viewpoint of increasing the magnetic anisotropy energy, it is preferable that the amount x of R2 is large. However, if the amount x of R2 is too large, the stability of the main phase at a high temperature decreases. Therefore, x is more preferably 0.5 ≦ x ≦ 0.8.
xに関しては、上記したx≦6z-2の関係より、以下の知見が得られる。即ち、z<0.5の範囲では、主相が安定化するxの範囲は、x≦6z-2の関係を満たす範囲に規定されるものの、z≧0.5の範囲では、主相が特定の高温下(例えば1050℃)で安定化するxの範囲はzの値に依らない。
Regarding x, the following knowledge is obtained from the relationship of x ≦ 6z−2 described above. That is, in the range of z <0.5, the range of x where the main phase is stabilized is defined as a range satisfying the relationship of x ≦ 6z−2, but in the range of z ≧ 0.5, the main phase is The range of x that stabilizes at a particular high temperature (eg, 1050 ° C.) does not depend on the value of z.
磁気モーメントの増大及びキュリー温度向上に伴う実用温度での磁化向上と磁気異方性向上の観点から、CoによるFeの部分置換を行うことが好ましい。ただし、Coによる置換量が多すぎると、却って磁化や磁気異方性の低下をもたらすため望ましくない。Co置換量yは、具体的には、0≦y≦0.4が望ましく、0.1≦y≦0.3がより望ましい。上記式(1)において、R1として少なくともYを採用することで、原料合金におけるCoによる置換量が比較的少なくても高い磁気異方性のThMn12型化合物を得ることができる。このとき、得られたThMn12型化合物中では、Coの80mol%以上は8fまたは8jサイトを占有する。
From the viewpoint of increasing the magnetic moment and improving the magnetization at practical temperatures accompanying the improvement of the Curie temperature and improving the magnetic anisotropy, it is preferable to perform partial substitution of Fe by Co. However, if the amount of substitution by Co is too large, the magnetization and magnetic anisotropy are lowered, which is not desirable. Specifically, the Co substitution amount y is desirably 0 ≦ y ≦ 0.4, and more desirably 0.1 ≦ y ≦ 0.3. By adopting at least Y as R1 in the above formula (1), a highly magnetically anisotropic ThMn 12 type compound can be obtained even if the amount of substitution by Co in the raw material alloy is relatively small. At this time, in the obtained ThMn 12 type compound, 80 mol% or more of Co occupies 8f or 8j sites.
wは、Fe、Co及びTiの総量を表すものであり、11≦w≦12.5である。wが11未満であると、異相である、Th2Zn17型結晶構造やTh2Ni17型結晶構造(以下、2-17相と示す)の生成が顕著になるため好ましくない。一方、wが12.5より大きいと、α-(Fe、Co、Ti)相や(Fe、Co)2Ti相の生成が顕著となるため好ましくない。
w represents the total amount of Fe, Co, and Ti, and 11 ≦ w ≦ 12.5. If w is less than 11, formation of a different phase Th 2 Zn 17 type crystal structure or Th 2 Ni 17 type crystal structure (hereinafter referred to as 2-17 phase) is not preferable. On the other hand, if w is larger than 12.5, the formation of α- (Fe, Co, Ti) phase or (Fe, Co) 2 Ti phase becomes remarkable, which is not preferable.
上記のようにして得られる、実施形態に係る希土類-遷移金属系強磁性合金(R1-R2-Fe-Co-Ti系強磁性合金)は、主相として、ThMn12型結晶構造を有する、R1-R2-Fe-Co-Ti系強磁性化合物を含有する。実施形態に係る強磁性合金には、このような、ThMn12型結晶構造を有する化合物の相(以下、ThMn12型相ともいう)が、典型的には1000℃以上でも安定に存在することができる。即ち、実施形態に係る強磁性合金に含まれるThMn12型相は、1000℃以上の温度範囲で高温平衡相である。このように、前記R1-R2-Fe-Co-Ti系強磁性化合物は、1000℃以上において、平衡相となる温度範囲を有する。より詳細には、前記R1-R2-Fe-Co-Ti系強磁性化合物は、1000℃以上1300℃以下において、平衡相となる温度範囲を有する。従って、実施形態に係る強磁性合金は、主相の熱安定性が良好であり、焼結法等の高性能磁石作製プロセスを採用するのに好適に用いることができる。従って、例えば焼結体において、ThMn12型相を高比率で含有するものとすることができる。
The rare earth-transition metal ferromagnetic alloy (R1-R2-Fe—Co—Ti ferromagnetic alloy) according to the embodiment obtained as described above has a ThMn 12 type crystal structure as a main phase. -R2-Fe-Co-Ti ferromagnetic compound is contained. In the ferromagnetic alloy according to the embodiment, such a phase of a compound having a ThMn 12 type crystal structure (hereinafter also referred to as a ThMn 12 type phase) typically exists stably at 1000 ° C. or higher. it can. That is, the ThMn 12 type phase contained in the ferromagnetic alloy according to the embodiment is a high temperature equilibrium phase in a temperature range of 1000 ° C. or higher. As described above, the R1-R2-Fe—Co—Ti ferromagnetic compound has a temperature range that becomes an equilibrium phase at 1000 ° C. or higher. More specifically, the R1-R2-Fe—Co—Ti ferromagnetic compound has a temperature range that becomes an equilibrium phase at 1000 ° C. to 1300 ° C. Therefore, the ferromagnetic alloy according to the embodiment has good thermal stability of the main phase, and can be suitably used for adopting a high-performance magnet manufacturing process such as a sintering method. Therefore, for example, a sintered body can contain a ThMn 12 type phase in a high ratio.
また、実施形態に係る強磁性合金は、上記した特性と、高い磁気特性とを両立させることができる。なお、例えば「1000℃以上1300℃以下において、平衡相となる温度範囲を有する」とは、1000℃以上1300℃以下の全ての温度範囲で主相が平衡相とならなくてもよい。すなわち、平衡相となる温度範囲が、例えば1050℃以上1200℃以下となる態様や、950℃以上1250℃となる態様を含む。これら、平衡相となる温度範囲は、詳細な合金組成によって変化しうる。
Further, the ferromagnetic alloy according to the embodiment can achieve both the above characteristics and high magnetic characteristics. For example, “having a temperature range that becomes an equilibrium phase at 1000 ° C. or more and 1300 ° C. or less” does not require the main phase to be an equilibrium phase in all temperature ranges of 1000 ° C. or more and 1300 ° C. or less. That is, the temperature range used as an equilibrium phase includes the aspect which becomes 1050 degreeC or more and 1200 degrees C or less, for example, and the aspect which becomes 950 to 1250 degreeC. These temperature ranges for the equilibrium phase may vary depending on the detailed alloy composition.
なお、一般的に、「ThMn12型結晶構造」は正方晶であるが、実施形態に係る希土類-遷移金属系強磁性合金においては、正方晶の結晶格子がわずかに歪んで斜方晶の対象性を有する場合や、結晶中の原子の周期性がわずかに乱れた場合についても、「ThMn12型結晶構造」とみなすものとする。
In general, the “ThMn 12- type crystal structure” is a tetragonal crystal. However, in the rare earth-transition metal ferromagnetic alloy according to the embodiment, the tetragonal crystal lattice is slightly distorted and the target is orthorhombic. Even when the periodicity of atoms in the crystal is slightly disturbed, it is regarded as “ThMn 12 type crystal structure”.
[R1-R2-Fe-Co-Ti系強磁性合金の作製方法]
実施形態に係る希土類-遷移金属系強磁性合金(R1-R2-Fe-Co-Ti系強磁性合金)の作製方法としては、金型鋳造法、遠心鋳造法、ストリップキャスト法、液体超急冷法等の公知の手法を採用できる。例えばα-(Fe、Co、Ti)相(但し、Co及びTiは必須でない。以下、「bcc-Fe相」又は「bcc-(Fe、Co、Ti)相」と記載する場合がある)等の、特に磁石用原料合金として好ましくない相の生成を極力抑える場合には、比較的冷却速度の高い、ストリップキャスト法や液体超急冷法を採用することができる。 [Method for producing R1-R2-Fe-Co-Ti-based ferromagnetic alloy]
The rare earth-transition metal-based ferromagnetic alloy (R1-R2-Fe—Co—Ti-based ferromagnetic alloy) according to the embodiment may be produced by a die casting method, a centrifugal casting method, a strip casting method, or a liquid ultra rapid cooling method. It is possible to adopt known methods such as For example, α- (Fe, Co, Ti) phase (However, Co and Ti are not essential. Hereinafter, they may be described as “bcc-Fe phase” or “bcc- (Fe, Co, Ti) phase”). In particular, when the generation of a phase that is not preferable as a raw material alloy for a magnet is suppressed as much as possible, a strip casting method or a liquid ultra-quenching method having a relatively high cooling rate can be employed.
実施形態に係る希土類-遷移金属系強磁性合金(R1-R2-Fe-Co-Ti系強磁性合金)の作製方法としては、金型鋳造法、遠心鋳造法、ストリップキャスト法、液体超急冷法等の公知の手法を採用できる。例えばα-(Fe、Co、Ti)相(但し、Co及びTiは必須でない。以下、「bcc-Fe相」又は「bcc-(Fe、Co、Ti)相」と記載する場合がある)等の、特に磁石用原料合金として好ましくない相の生成を極力抑える場合には、比較的冷却速度の高い、ストリップキャスト法や液体超急冷法を採用することができる。 [Method for producing R1-R2-Fe-Co-Ti-based ferromagnetic alloy]
The rare earth-transition metal-based ferromagnetic alloy (R1-R2-Fe—Co—Ti-based ferromagnetic alloy) according to the embodiment may be produced by a die casting method, a centrifugal casting method, a strip casting method, or a liquid ultra rapid cooling method. It is possible to adopt known methods such as For example, α- (Fe, Co, Ti) phase (However, Co and Ti are not essential. Hereinafter, they may be described as “bcc-Fe phase” or “bcc- (Fe, Co, Ti) phase”). In particular, when the generation of a phase that is not preferable as a raw material alloy for a magnet is suppressed as much as possible, a strip casting method or a liquid ultra-quenching method having a relatively high cooling rate can be employed.
また、発明者が鋭意研究した結果、後述する実施例に示すように、溶湯の冷却時に抜熱方向を制御して、溶湯に含まれる成分を一方向凝固させることで、より確実に比較的少ないTi量zでも、α-Fe相の生成を抑えながら、粗大な結晶粒を形成することが可能であることを見出した。
In addition, as a result of earnest research by the inventors, as shown in the examples described later, by controlling the heat removal direction during cooling of the molten metal and solidifying the components contained in the molten metal unidirectionally, it is relatively less reliable. It has been found that even when the Ti amount is z, coarse crystal grains can be formed while suppressing the formation of the α-Fe phase.
また、上記した方法に代えて、構成元素の酸化物や金属を粒状金属カルシウムと混合して、不活性ガス雰囲気中で加熱反応させる還元拡散法などを使用してもよい。還元拡散法は、均一な組織が形成されるため、特に凝固過程で生成し易く、磁気特性の低下要因となるα-(Fe、Co、Ti)相が生成し難いという利点がある。
Further, instead of the above-described method, a reduction diffusion method in which an oxide or metal of a constituent element is mixed with granular calcium metal and heated and reacted in an inert gas atmosphere may be used. The reduction diffusion method has an advantage that a uniform structure is formed, so that it is easy to generate especially during the solidification process and it is difficult to generate an α- (Fe, Co, Ti) phase that causes a decrease in magnetic properties.
主成分にTiを含まない、R1-R2-Fe-Coの4元系の非平衡相では、熱処理に伴いTbCu7型結晶構造からThMn12型結晶構造への連続的な構造変化が生じる。この非平衡相では、熱処理の際に熱分解が生じ、2-17相やbcc相(bcc-Fe相)が析出する。このような非平衡相は、組成にも依るが、主に900℃以下でしか安定に存在せず、焼結工程などで典型的に適用される1000℃以上の温度範囲では、そのほとんどが分解する。
In the R1-R2-Fe—Co quaternary nonequilibrium phase containing no Ti as the main component, a continuous structural change from the TbCu 7- type crystal structure to the ThMn 12- type crystal structure occurs with the heat treatment. In this non-equilibrium phase, thermal decomposition occurs during heat treatment, and a 2-17 phase or a bcc phase (bcc-Fe phase) is precipitated. Such a non-equilibrium phase is stable only mainly at 900 ° C. or less, depending on the composition, and most of the non-equilibrium phase is decomposed in a temperature range of 1000 ° C. or more typically applied in a sintering process or the like. To do.
実施形態に係る希土類-遷移金属系強磁性合金は、上記した非平衡相の組成系にTiを微量添加することで、1000℃以上の温度範囲でも、ThMn12型相を、安定に存在させることができる。
The rare earth-transition metal-based ferromagnetic alloy according to the embodiment allows the ThMn 12- type phase to exist stably even in a temperature range of 1000 ° C. or higher by adding a small amount of Ti to the composition system of the non-equilibrium phase. Can do.
なお、実施形態に係る希土類-遷移金属系強磁性合金では、bcc-Fe相の生成を比較的容易に抑制することができ、合金全体に対して3wt%以下にすることができる。これに対し、例えば特許文献2に記載されている、RFe12合金のR元素をZrで置換した場合にはbcc-Fe相の生成が顕在化し、合金全体に対して4wt%以上となる。これは、Zr(Fe、Co)2相の生成と関連しているものと思われる。
Note that, in the rare earth-transition metal ferromagnetic alloy according to the embodiment, the formation of the bcc-Fe phase can be suppressed relatively easily, and can be 3 wt% or less based on the entire alloy. On the other hand, for example, when the R element of the RFe 12 alloy described in Patent Document 2 is replaced with Zr, the formation of the bcc-Fe phase becomes obvious, and the content becomes 4 wt% or more based on the entire alloy. This seems to be related to the formation of Zr (Fe, Co) 2 phase.
また、実施形態に係る希土類-遷移金属系強磁性合金は、さらに熱処理を適用することで、凝固過程において生成した異相を低減したり、異方性焼結磁石用原料として有用な単結晶ライクの粒子からなる粉末を粉砕法により容易に得るために、結晶粒を粗大化させてもよい。この時の熱処理温度は、900℃以上1250℃以下が好ましく、1050℃以上1250℃以下がより好ましい。熱処理時間は通常5分以上48時間以下である。
In addition, the rare earth-transition metal ferromagnetic alloy according to the embodiment further reduces the number of heterogeneous phases generated during the solidification process by applying heat treatment, or is a single crystal-like material useful as a raw material for anisotropic sintered magnets. In order to easily obtain a powder composed of particles by a pulverization method, the crystal grains may be coarsened. The heat treatment temperature at this time is preferably 900 ° C. or higher and 1250 ° C. or lower, and more preferably 1050 ° C. or higher and 1250 ° C. or lower. The heat treatment time is usually from 5 minutes to 48 hours.
なお、単ロール超急冷法やアトマイズ法に代表される液体超急冷法を用いて得られた合金は、結晶粒が微細となる場合があり、その場合は異方性焼結磁石用の原料合金としては適さない。但し、この場合でも、適当な熱処理を施すことにより、等方性ボンド磁石用の磁石粉末として好適に用いられる。この時の熱処理温度は900℃以上1000℃以下が好ましい。熱処理時間は通常5分以上4時間以下である。
In addition, the alloy obtained by using the liquid ultra-quenching method represented by the single roll ultra-quenching method and the atomizing method may have fine crystal grains, in which case the raw material alloy for anisotropic sintered magnets Not suitable for. However, even in this case, it is suitably used as a magnet powder for an isotropic bonded magnet by performing an appropriate heat treatment. The heat treatment temperature at this time is preferably 900 ° C. or higher and 1000 ° C. or lower. The heat treatment time is usually 5 minutes or more and 4 hours or less.
なお、上記した、ThMn12型相は、高温安定相の場合が多いため、熱処理温度が900℃未満になると分解する可能性がある。このため、熱処理温度の設定には注意が必要である。
Since the above-described ThMn 12 type phase is often a high-temperature stable phase, it may be decomposed when the heat treatment temperature is less than 900 ° C. Therefore, care must be taken when setting the heat treatment temperature.
以下、本発明の実施例を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
Examples of the present invention will be specifically described below, but the present invention is not limited to these examples.
実施例1では、Sm置換量xとTi置換量zとが相安定性に与える影響について検討した。なお、実施例1の検討では、α-(Fe、Co、Ti)相の生成抑制を確実に行うため、合金作製方法として、液体超急冷法の一種である単ロール超急冷法を適用した。
(工程A)
まず、組成が化学式でY1-xSmx(Fe0.83Co0.17)12-zTiz(x=0.0~1.0、z=0.0~1.0)で示される原料合金を得るため、Y(純度99.9%)とSm(純度99.9%)と電解鉄(純度99.9%)と電解コバルト(純度99.9%)とTi(純度99.9%)をそれぞれ秤量した。高温でのY及びSmの蒸発を考慮し、狙い組成よりも、Yが3質量%、Smが5質量%多くなるように秤量した。秤量した各金属を混合してアルミナ坩堝に投入し、高周波溶解によって溶解した。
(工程B)
工程(A)においてY-Sm-Fe-Co-Ti系合金が十分に溶解したことを確認した後、高速回転する銅ロール(ロール直径230mm)上に溶融金属を出射して急冷凝固させることで、リボン形状の合金(以下、急冷薄帯という)を作製した。実施例1では、ロール周速度を40m/sに設定した。
(工程C)
工程Bにより得られた急冷薄帯をNb箔に包み、Arフロー環境下で800℃から1100℃で20分間の熱処理を行って、希土類-遷移金属系強磁性合金を得た。
(評価結果)
このようにして作製した薄帯に含まれるbcc-(Fe、Co、Ti)相の相比率と、熱処理温度との関係を評価した。評価結果を図1に示す。なお、bcc-(Fe、Co、Ti)相の相比率は、X線リートベルト解析を使用して同定した。xの値を0.4とし、zの値を0.0~0.5の範囲で異ならせた各組成の強磁性合金についての、熱処理温度とbcc-(Fe、Co、Ti)相の相比率との関係を図1に示す。 In Example 1, the influence of the Sm substitution amount x and the Ti substitution amount z on the phase stability was examined. In the examination of Example 1, in order to surely suppress the formation of the α- (Fe, Co, Ti) phase, a single roll ultra-quenching method, which is a kind of liquid ultra-quenching method, was applied as an alloy production method.
(Process A)
First, the composition is represented by the chemical formula Y 1-x Sm x (Fe 0.83 Co 0.17 ) 12-z Ti z (x = 0.0 to 1.0, z = 0.0 to 1.0). Y (purity 99.9%), Sm (purity 99.9%), electrolytic iron (purity 99.9%), electrolytic cobalt (purity 99.9%), and Ti (purity 99.3%) 9%) was weighed respectively. In consideration of evaporation of Y and Sm at high temperature, weighed so that Y was 3 mass% and Sm was 5 mass% higher than the target composition. The weighed metals were mixed, put into an alumina crucible, and melted by high frequency melting.
(Process B)
After confirming that the Y—Sm—Fe—Co—Ti alloy is sufficiently dissolved in the step (A), the molten metal is emitted onto a copper roll (roll diameter: 230 mm) rotating at high speed and rapidly solidified. A ribbon-shaped alloy (hereinafter referred to as a quenched ribbon) was produced. In Example 1, the roll peripheral speed was set to 40 m / s.
(Process C)
The quenched ribbon obtained in step B was wrapped in Nb foil and heat-treated at 800 ° C. to 1100 ° C. for 20 minutes in an Ar flow environment to obtain a rare earth-transition metal ferromagnetic alloy.
(Evaluation results)
The relationship between the phase ratio of the bcc- (Fe, Co, Ti) phase contained in the thus prepared ribbon and the heat treatment temperature was evaluated. The evaluation results are shown in FIG. The phase ratio of the bcc- (Fe, Co, Ti) phase was identified using X-ray Rietveld analysis. The heat treatment temperature and the phase of the bcc- (Fe, Co, Ti) phase for each of the ferromagnetic alloys having different values of x in the range of 0.4 and z in the range of 0.0 to 0.5 The relationship with the ratio is shown in FIG.
(工程A)
まず、組成が化学式でY1-xSmx(Fe0.83Co0.17)12-zTiz(x=0.0~1.0、z=0.0~1.0)で示される原料合金を得るため、Y(純度99.9%)とSm(純度99.9%)と電解鉄(純度99.9%)と電解コバルト(純度99.9%)とTi(純度99.9%)をそれぞれ秤量した。高温でのY及びSmの蒸発を考慮し、狙い組成よりも、Yが3質量%、Smが5質量%多くなるように秤量した。秤量した各金属を混合してアルミナ坩堝に投入し、高周波溶解によって溶解した。
(工程B)
工程(A)においてY-Sm-Fe-Co-Ti系合金が十分に溶解したことを確認した後、高速回転する銅ロール(ロール直径230mm)上に溶融金属を出射して急冷凝固させることで、リボン形状の合金(以下、急冷薄帯という)を作製した。実施例1では、ロール周速度を40m/sに設定した。
(工程C)
工程Bにより得られた急冷薄帯をNb箔に包み、Arフロー環境下で800℃から1100℃で20分間の熱処理を行って、希土類-遷移金属系強磁性合金を得た。
(評価結果)
このようにして作製した薄帯に含まれるbcc-(Fe、Co、Ti)相の相比率と、熱処理温度との関係を評価した。評価結果を図1に示す。なお、bcc-(Fe、Co、Ti)相の相比率は、X線リートベルト解析を使用して同定した。xの値を0.4とし、zの値を0.0~0.5の範囲で異ならせた各組成の強磁性合金についての、熱処理温度とbcc-(Fe、Co、Ti)相の相比率との関係を図1に示す。 In Example 1, the influence of the Sm substitution amount x and the Ti substitution amount z on the phase stability was examined. In the examination of Example 1, in order to surely suppress the formation of the α- (Fe, Co, Ti) phase, a single roll ultra-quenching method, which is a kind of liquid ultra-quenching method, was applied as an alloy production method.
(Process A)
First, the composition is represented by the chemical formula Y 1-x Sm x (Fe 0.83 Co 0.17 ) 12-z Ti z (x = 0.0 to 1.0, z = 0.0 to 1.0). Y (purity 99.9%), Sm (purity 99.9%), electrolytic iron (purity 99.9%), electrolytic cobalt (purity 99.9%), and Ti (purity 99.3%) 9%) was weighed respectively. In consideration of evaporation of Y and Sm at high temperature, weighed so that Y was 3 mass% and Sm was 5 mass% higher than the target composition. The weighed metals were mixed, put into an alumina crucible, and melted by high frequency melting.
(Process B)
After confirming that the Y—Sm—Fe—Co—Ti alloy is sufficiently dissolved in the step (A), the molten metal is emitted onto a copper roll (roll diameter: 230 mm) rotating at high speed and rapidly solidified. A ribbon-shaped alloy (hereinafter referred to as a quenched ribbon) was produced. In Example 1, the roll peripheral speed was set to 40 m / s.
(Process C)
The quenched ribbon obtained in step B was wrapped in Nb foil and heat-treated at 800 ° C. to 1100 ° C. for 20 minutes in an Ar flow environment to obtain a rare earth-transition metal ferromagnetic alloy.
(Evaluation results)
The relationship between the phase ratio of the bcc- (Fe, Co, Ti) phase contained in the thus prepared ribbon and the heat treatment temperature was evaluated. The evaluation results are shown in FIG. The phase ratio of the bcc- (Fe, Co, Ti) phase was identified using X-ray Rietveld analysis. The heat treatment temperature and the phase of the bcc- (Fe, Co, Ti) phase for each of the ferromagnetic alloys having different values of x in the range of 0.4 and z in the range of 0.0 to 0.5 The relationship with the ratio is shown in FIG.
また、図1で検討した強磁性合金のうち、z=0.3、z=0.4、z=0.5のものについて、薄帯に含まれるThMn12型相の相比率ΩとSm置換量xとの関係を評価した。結果を図2に示す。なお、ThMn12型相の相比率Ωは、X線リートベルト解析を使用して同定した。図2のグラフは、z=0.3、z=0.4、z=0.5のそれぞれについて、Sm置換量xを0.40~0.80の範囲で変化させたときの、ThMn12型相の相比率Ωの変化を示している。なお、図2に示すプロットの各試料は、いずれも、1050℃で熱処理したものを使用した。
Further, among the ferromagnetic alloys studied in FIG. 1, the phase ratio Ω and Sm substitution of the ThMn 12 type phase contained in the ribbon are those for z = 0.3, z = 0.4, and z = 0.5. The relationship with quantity x was evaluated. The results are shown in FIG. The phase ratio Ω of the ThMn 12 type phase was identified using X-ray Rietveld analysis. The graph of FIG. 2 shows ThMn 12 when the Sm substitution amount x is changed in the range of 0.40 to 0.80 for each of z = 0.3, z = 0.4, and z = 0.5. The change in the phase ratio Ω of the mold phase is shown. In addition, each sample of the plot shown in FIG. 2 used what was heat-processed at 1050 degreeC.
図1に示すように、z=0.4、0.5の組成では、軟磁性であり磁気特性を著しく低下させるbcc-(Fe、Co、Ti)相(bcc-Fe相)が、1000℃以上の熱処理により減少し特に1050℃での熱処理において、bcc-(Fe、Co、Ti)相の量は3wt%以下まで低減された。
As shown in FIG. 1, in the composition of z = 0.4 and 0.5, the bcc- (Fe, Co, Ti) phase (bcc-Fe phase) that is soft magnetic and significantly deteriorates the magnetic properties is 1000 ° C. The amount of the bcc- (Fe, Co, Ti) phase was reduced to 3 wt% or less, especially in the heat treatment at 1050 ° C. by the above heat treatment.
この結果は、この組成(z=0.4、0.5)の合金中に存在するThMn12型結晶構造の強磁性化合物が、1000℃以上の温度範囲でも安定であることを示している。なお、熱処理温度1100℃では、各合金において、希土類の蒸発が生じた。このため、図1における熱処理温度1100℃でのbcc-(Fe、Co、Ti)相の相比率が1050℃よりも若干高くなっていることは本質的ではない。
This result shows that the ferromagnetic compound having a ThMn 12 type crystal structure present in the alloy having this composition (z = 0.4, 0.5) is stable even in a temperature range of 1000 ° C. or higher. Note that, at a heat treatment temperature of 1100 ° C., rare earth evaporation occurred in each alloy. Therefore, it is not essential that the phase ratio of the bcc- (Fe, Co, Ti) phase at the heat treatment temperature of 1100 ° C. in FIG. 1 is slightly higher than 1050 ° C.
図2に示すように、z=0.5の組成では、ThMn12型相の相比率Ωは、Sm置換量xに依存せず、ほぼ一定の90wt%と高い値を示した。z=0.4の組成では、x=0.4において、ThMn12型相の相比率Ωは90wt%を超えていた。x≦0.4では、図2において図示していないが、ThMn12型相の相比率ΩはSm置換量xに依存せず、ほぼ一定の90wt%を示した。一方、x≧0.4では、Sm置換量xの増加に伴い、ThMn12型相の相比率Ωが線形(相比率Ω=131-109x)で減少することが確認できた。
As shown in FIG. 2, in the composition of z = 0.5, the phase ratio Ω of the ThMn 12 type phase showed a high value of almost constant 90 wt% without depending on the Sm substitution amount x. In the composition of z = 0.4, the phase ratio Ω of the ThMn 12 type phase exceeded 90 wt% at x = 0.4. When x ≦ 0.4, although not shown in FIG. 2, the phase ratio Ω of the ThMn 12 type phase did not depend on the Sm substitution amount x, and was almost constant 90 wt%. On the other hand, when x ≧ 0.4, it was confirmed that the phase ratio Ω of the ThMn 12 type phase decreased linearly (phase ratio Ω = 131−109x) as the Sm substitution amount x increased.
また、z=0.4の場合と同様に、z=0.3の組成でも、Sm置換量xの増加に伴い、ThMn12型相の相比率Ωが、線形(相比率Ω=74-100x)に減少することが確認された。z=0.3の組成では、図2においてx=0に外挿したときの相比率Ωは74wt%であり、いずれのSm置換量xでも、高性能磁石の原料合金として十分な水準に到達しないと推定される。
Similarly to the case of z = 0.4, even in the composition of z = 0.3, as the Sm substitution amount x increases, the phase ratio Ω of the ThMn 12 type phase becomes linear (phase ratio Ω = 74-100x ) Was confirmed to decrease. In the composition of z = 0.3, the phase ratio Ω when extrapolated to x = 0 in FIG. 2 is 74 wt%, and any Sm substitution amount x reaches a level sufficient as a raw material alloy for high-performance magnets. It is estimated not to.
以上の結果を簡潔に示すために、高温安定相を示す組成の組成範囲マップを図3に示す。なお、図3は、相安定が確認できたものを白丸印、相が不安定で一部分解したものを×印として評価した。
In order to simply show the above results, a composition range map of the composition showing the high temperature stable phase is shown in FIG. In FIG. 3, evaluation was made with a white circle mark indicating that the phase stability was confirmed, and a cross mark indicating that the phase was unstable and partially decomposed.
相安定性は、合金中に、異相である2-17相が析出するか否かで判断した。但し、2-17相とThMn12型相である1-12相とは回折パターンが似ているため、いずれか一方が微量の場合には、X線回折だけでは、2-17相の有無を判断し難い。そこで、相安定性は、X線リートベルト解析と併せて、微量相を検出可能な熱磁気天秤を使用して、2-17相の有無を評価した。本検討で用いた熱磁気天秤は、熱重量測定装置(熱天秤)(TG:METTLER TOLEDO製 TGA/SDTA851e)に永久磁石を取付けることにより、サンプル設置部に付与された磁場(10~15mT)がサンプル中の強磁性相に作用する磁気的な吸引力をTGの重量値として検出できるようにしたものである。なお、図3においては、図2で検討した各グラフのプロットの組成に加え、0.0<x<0.4、0.8<x<1.0、0.5<z<0.6の範囲における任意の組成について、上記したのと同様の手順にて合金を作製し、相安定性を評価した。
The phase stability was judged by whether or not the 2-17 phase, which is a different phase, precipitated in the alloy. However, since the diffraction pattern of the 2-17 phase and the 1-12 phase, which is a ThMn 12 type phase, are similar, if either one is a trace amount, the presence or absence of the 2-17 phase can be determined by X-ray diffraction alone. It is difficult to judge. Therefore, for the phase stability, the presence or absence of the 2-17 phase was evaluated using a thermomagnetic balance capable of detecting a trace amount of phase in combination with the X-ray Rietveld analysis. The thermomagnetic balance used in this study is a magnetic field (10 to 15 mT) applied to a sample installation part by attaching a permanent magnet to a thermogravimetric measuring device (thermobalance) (TG: TGA / SDTA851 e manufactured by METTTLER TOLEDO). The magnetic attractive force acting on the ferromagnetic phase in the sample can be detected as the weight value of TG. In addition to the composition of the plot of each graph examined in FIG. 2, in FIG. 3, 0.0 <x <0.4, 0.8 <x <1.0, 0.5 <z <0.6 For any composition in the range, an alloy was prepared by the same procedure as described above, and the phase stability was evaluated.
後述する実施例2及び実施例3で示すように、図3に示すグラフ内の領域のうち、左上側に向かうほど、高い磁気特性が得られる。従って、相安定性を得られる領域の境界を示す線のうち、左上側の線付近の領域の組成が、磁性材料として最も望ましいものとなる。この境界について詳細に調査したところ、図3中左上側の境界は、x=6z-2の関係式で与えられることが把握できた。即ち、x及びzがx≦6z-2の関係を満たす時に、ThMn12型結晶構造の強磁性化合物が安定に存在できることが確認できた。
As shown in Example 2 and Example 3 to be described later, higher magnetic characteristics are obtained toward the upper left side in the region in the graph shown in FIG. Therefore, the composition of the region in the vicinity of the upper left line among the lines indicating the boundary of the region where the phase stability can be obtained is most desirable as the magnetic material. When this boundary was examined in detail, it was found that the upper left boundary in FIG. 3 was given by the relational expression x = 6z−2. That is, when x and z satisfy the relationship of x ≦ 6z−2, it was confirmed that a ferromagnetic compound having a ThMn 12 type crystal structure can exist stably.
図3を考慮して、x、zの具体的な好ましい数値範囲を検討すると、zが、1/3≦z≦0.6あるいは、1/3≦z<0.5を満足する値のとき、特に磁気特性が好適である範囲を含み、xが、0.5≦x≦0.8を満足する値であれば、磁気特性が安定している範囲を含むことがわかる。
Considering FIG. 3, a specific preferable numerical range of x and z is examined. When z is a value satisfying 1/3 ≦ z ≦ 0.6 or 1/3 ≦ z <0.5. In particular, it includes a range in which the magnetic characteristics are suitable, and if x is a value satisfying 0.5 ≦ x ≦ 0.8, it is understood that the range in which the magnetic characteristics are stable is included.
実施例2では、Sm置換量xと磁気物性値との関係について検討した。
(工程A)
まず、組成が化学式でY1-xSmx(Fe0.83Co0.17)11.5Ti0.5
(x=0.4~0.8)で示される原料合金を得るため、Y(純度99.9%)とSm(純度99.9%)と電解鉄(純度99.9%)と電解コバルト(純度99.9%)とTi(純度99.9%)をそれぞれ秤量した。高温でのYとSmの蒸発を考慮し、狙い組成よりもYが3質量%、Smが5質量%多くなるように秤量した。秤量した各金属を混合してアルミナ坩堝に投入し、高周波溶解によって溶解した。
(工程B)
工程(A)においてY-Sm-Fe-Co-Ti系合金が十分に溶解したことを確認した後、高速回転する銅ロール(ロール直径230mm)上に溶融金属を出射して急冷凝固させることで、均一な凝固組織を有するリボン形状の合金を作製した。実施例2では、ロール周速度を40m/sに設定した。
(工程C)
工程Bにより得られた急冷薄帯をNb箔に包み、Arフロー環境下で1050℃20分間の熱処理を行った。
(評価結果)
上記により作製された、各強磁性合金について、室温での磁気異方性磁場を測定した。磁気異方性磁場は、10Tの磁場を印加可能な振動試料型磁力計(Vibrating sample magnetometer, VSM)を使用して、特異点検出法にて同定した。各強磁性合金についての磁気異方性磁場の測定結果を、表1に示す。 In Example 2, the relationship between the Sm substitution amount x and the magnetic property value was examined.
(Process A)
First, the composition has the chemical formula Y 1-x Sm x (Fe 0.83 Co 0.17 ) 11.5 Ti 0.5
In order to obtain a raw material alloy represented by (x = 0.4 to 0.8), Y (purity 99.9%), Sm (purity 99.9%), electrolytic iron (purity 99.9%), and electrolytic cobalt (Purity 99.9%) and Ti (purity 99.9%) were weighed respectively. In consideration of evaporation of Y and Sm at a high temperature, the sample was weighed so that Y was 3 mass% and Sm was 5 mass% higher than the target composition. The weighed metals were mixed, put into an alumina crucible, and melted by high frequency melting.
(Process B)
After confirming that the Y—Sm—Fe—Co—Ti alloy is sufficiently dissolved in the step (A), the molten metal is emitted onto a copper roll (roll diameter: 230 mm) rotating at high speed and rapidly solidified. A ribbon-shaped alloy having a uniform solidified structure was produced. In Example 2, the roll peripheral speed was set to 40 m / s.
(Process C)
The quenched ribbon obtained in step B was wrapped in Nb foil and heat-treated at 1050 ° C. for 20 minutes in an Ar flow environment.
(Evaluation results)
About each ferromagnetic alloy produced by the above, the magnetic anisotropy magnetic field at room temperature was measured. The magnetic anisotropic magnetic field was identified by a singular point detection method using a vibrating sample magnetometer (VSM) capable of applying a 10T magnetic field. Table 1 shows the measurement results of the magnetic anisotropic magnetic field for each ferromagnetic alloy.
(工程A)
まず、組成が化学式でY1-xSmx(Fe0.83Co0.17)11.5Ti0.5
(x=0.4~0.8)で示される原料合金を得るため、Y(純度99.9%)とSm(純度99.9%)と電解鉄(純度99.9%)と電解コバルト(純度99.9%)とTi(純度99.9%)をそれぞれ秤量した。高温でのYとSmの蒸発を考慮し、狙い組成よりもYが3質量%、Smが5質量%多くなるように秤量した。秤量した各金属を混合してアルミナ坩堝に投入し、高周波溶解によって溶解した。
(工程B)
工程(A)においてY-Sm-Fe-Co-Ti系合金が十分に溶解したことを確認した後、高速回転する銅ロール(ロール直径230mm)上に溶融金属を出射して急冷凝固させることで、均一な凝固組織を有するリボン形状の合金を作製した。実施例2では、ロール周速度を40m/sに設定した。
(工程C)
工程Bにより得られた急冷薄帯をNb箔に包み、Arフロー環境下で1050℃20分間の熱処理を行った。
(評価結果)
上記により作製された、各強磁性合金について、室温での磁気異方性磁場を測定した。磁気異方性磁場は、10Tの磁場を印加可能な振動試料型磁力計(Vibrating sample magnetometer, VSM)を使用して、特異点検出法にて同定した。各強磁性合金についての磁気異方性磁場の測定結果を、表1に示す。 In Example 2, the relationship between the Sm substitution amount x and the magnetic property value was examined.
(Process A)
First, the composition has the chemical formula Y 1-x Sm x (Fe 0.83 Co 0.17 ) 11.5 Ti 0.5
In order to obtain a raw material alloy represented by (x = 0.4 to 0.8), Y (purity 99.9%), Sm (purity 99.9%), electrolytic iron (purity 99.9%), and electrolytic cobalt (Purity 99.9%) and Ti (purity 99.9%) were weighed respectively. In consideration of evaporation of Y and Sm at a high temperature, the sample was weighed so that Y was 3 mass% and Sm was 5 mass% higher than the target composition. The weighed metals were mixed, put into an alumina crucible, and melted by high frequency melting.
(Process B)
After confirming that the Y—Sm—Fe—Co—Ti alloy is sufficiently dissolved in the step (A), the molten metal is emitted onto a copper roll (roll diameter: 230 mm) rotating at high speed and rapidly solidified. A ribbon-shaped alloy having a uniform solidified structure was produced. In Example 2, the roll peripheral speed was set to 40 m / s.
(Process C)
The quenched ribbon obtained in step B was wrapped in Nb foil and heat-treated at 1050 ° C. for 20 minutes in an Ar flow environment.
(Evaluation results)
About each ferromagnetic alloy produced by the above, the magnetic anisotropy magnetic field at room temperature was measured. The magnetic anisotropic magnetic field was identified by a singular point detection method using a vibrating sample magnetometer (VSM) capable of applying a 10T magnetic field. Table 1 shows the measurement results of the magnetic anisotropic magnetic field for each ferromagnetic alloy.
表1に示すように、Sm置換量xが増えるに従い、磁気異方性磁場が増加することが確認できた。従って、磁気異方性を高める観点からは、Sm置換量xが多いほうが望ましい。表1に示すように、x=0.5において、Nd2Fe14Bと同等の磁気異方性磁場(6.7μ0Ha(T))を示すことから、x≧0.5が好ましい。
As shown in Table 1, it was confirmed that the magnetic anisotropic magnetic field increased as the Sm substitution amount x increased. Therefore, from the viewpoint of increasing the magnetic anisotropy, it is desirable that the Sm substitution amount x is large. As shown in Table 1, when x = 0.5, the magnetic anisotropy magnetic field (6.7 μ 0 H a (T)) equivalent to Nd 2 Fe 14 B is shown, and therefore x ≧ 0.5 is preferable. .
次に、表1に示す各強磁性合金について、熱処理温度を20~140℃の範囲で変化させて得られた各合金についての、それぞれの磁気異方性磁場を測定した。磁気異方性磁場の同定は、試料の酸化を抑制するため希薄He中で行ったこと以外は、表1のときと同様にして行った。
Next, for each ferromagnetic alloy shown in Table 1, the magnetic anisotropy magnetic field of each alloy obtained by changing the heat treatment temperature in the range of 20 to 140 ° C. was measured. Identification of the magnetic anisotropy field was performed in the same manner as in Table 1 except that it was performed in dilute He to suppress oxidation of the sample.
図4に、磁気異方性磁場と熱処理温度との関係を示す。図4に示すように、Sm置換量xが多い組成では、磁気異方性の温度係数が悪く、温度上昇に伴い、磁気異方性磁場が急激に低下した。この結果は、希土類元素とFe元素との交換相互作用の温度係数が、Fe元素間の交換相互作用の温度係数よりも悪いことによるものと考えられる。従って、非磁性であるY元素の濃度が高いほど、磁気異方性磁場の温度係数の小さい希土類合金を設計することは可能である。
FIG. 4 shows the relationship between the magnetic anisotropic magnetic field and the heat treatment temperature. As shown in FIG. 4, in the composition having a large Sm substitution amount x, the temperature coefficient of magnetic anisotropy was poor, and the magnetic anisotropy magnetic field rapidly decreased as the temperature increased. This result is considered to be due to the fact that the temperature coefficient of the exchange interaction between the rare earth element and the Fe element is worse than the temperature coefficient of the exchange interaction between the Fe elements. Therefore, it is possible to design a rare earth alloy having a smaller temperature coefficient of magnetic anisotropy magnetic field as the concentration of non-magnetic Y element is higher.
但し、例えば、実用上重要なハイブリッド自動車や電気自動車用モータの典型的な駆動温度である140℃近傍では、Nd2Fe14Bは、磁気異方性磁場が概ね5Tを有するが、実施例に係る強磁性合金は、x≧0.5の組成範囲において、これより優位な磁気異方性磁場を発現することが確認できる。高温での磁気異方性磁場を高める観点からも、xはx≧0.5が好ましい。
However, for example, Nd 2 Fe 14 B has a magnetic anisotropy field of approximately 5 T in the vicinity of 140 ° C., which is a typical driving temperature of a practically important hybrid vehicle or electric vehicle motor. It can be confirmed that the ferromagnetic alloy exhibits a magnetic anisotropy magnetic field superior to this in the composition range of x ≧ 0.5. From the viewpoint of increasing the magnetic anisotropy magnetic field at a high temperature, x preferably satisfies x ≧ 0.5.
実施例3では、Ti置換量zと磁気物性値との関係を検討した。
(工程A)
まず、組成が化学式でY0.6Sm0.4(Fe0.83Co0.17)12-zTizで(z=0.0~0.5)示される原料合金を得るため、Y(純度99.9%)とSm(純度99.9%)と電解鉄(純度99.9%)と電解コバルト(純度99.9%)とTi(純度99.9%)をそれぞれ秤量した。高温でのYとSmの蒸発を考慮し、狙い組成よりもYが3質量%、Smが5質量%多くなるように秤量した。秤量した各金属を混合してアルミナ坩堝に投入し、高周波溶解によって溶解した。
(工程B)
工程(A)においてY-Sm-Fe-Co-Ti系合金が十分に溶解したことを確認した後、高速回転する銅ロール(ロール直径230mm)上に溶融金属を出射して急冷凝固させることで、均一な凝固組織を有するリボン形状の合金を作製した。実施例3では、ロール周速度を40m/sに設定した。
(工程C)
工程Bにより得られた急冷薄帯をNb箔に包み、Arフロー環境下で、ThMn12型相の分解が全組成範囲で抑制可能な、900℃20分間の熱処理を行った。これは、1000℃での熱処理を行った場合、z<1/3の組成範囲の試料ではThMn12型相が分解してしまい、Ti置換量zの違いによる一貫した評価ができないからである。
(評価結果)
得られた各強磁性合金について、室温のThMn12型相の体積磁化を測定した。各強磁性合金の体積磁化の測定結果を、Sm置換量xと併せて表2に示す。ただし、体積磁化は57Feメスバウア測定の内部磁場の大きさから同定した。その際に、Feの磁気モーメントは内部磁場との間に15.7T/μBの比例関係、Coの磁気モーメントは選択配位する8fサイトのFeの磁気モーメントの0.77倍、Tiは8iサイトに選択配位、Smの磁気モーメントは1.49μB、という確からしい仮定を置いた。表2に示すように、Ti添加量の増加に伴い体積磁化が顕著に低下することが確認された。従って、体積磁化を向上させる観点からは、Ti置換量zは出来るだけ少なくした方がよいことが示された。特に、zが0.8まで大きくなるとJs<1.4Tとなった。 In Example 3, the relationship between the Ti substitution amount z and the magnetic property value was examined.
(Process A)
First, since the composition to obtain a Y 0.6 Sm 0.4 (Fe 0.83 Co 0.17) at 12-z Ti z (z = 0.0 ~ 0.5) material alloy represented by the chemical formula, Y (Purity 99.9%), Sm (purity 99.9%), electrolytic iron (purity 99.9%), electrolytic cobalt (purity 99.9%), and Ti (purity 99.9%) were weighed, respectively. In consideration of evaporation of Y and Sm at a high temperature, the sample was weighed so that Y was 3 mass% and Sm was 5 mass% higher than the target composition. The weighed metals were mixed, put into an alumina crucible, and melted by high frequency melting.
(Process B)
After confirming that the Y—Sm—Fe—Co—Ti alloy is sufficiently dissolved in the step (A), the molten metal is emitted onto a copper roll (roll diameter: 230 mm) rotating at high speed and rapidly solidified. A ribbon-shaped alloy having a uniform solidified structure was produced. In Example 3, the roll peripheral speed was set to 40 m / s.
(Process C)
The quenched ribbon obtained in step B was wrapped in Nb foil, and was subjected to heat treatment at 900 ° C. for 20 minutes, under which the decomposition of the ThMn 12 type phase can be suppressed over the entire composition range in an Ar flow environment. This is because when heat treatment is performed at 1000 ° C., the ThMn 12 type phase is decomposed in the sample having a composition range of z <1/3, and consistent evaluation based on the difference in Ti substitution amount z cannot be performed.
(Evaluation results)
About each obtained ferromagnetic alloy, the volume magnetization of the ThMn 12 type phase at room temperature was measured. The measurement results of the volume magnetization of each ferromagnetic alloy are shown in Table 2 together with the Sm substitution amount x. However, the volume magnetization was identified from the magnitude of the internal magnetic field measured by 57 Fe Mossbauer. At that time, 0.77 times the 15.7T / μ proportional, the magnetic moment of Fe 8f site magnetic moment of Co is selecting coordination B between the magnetic moment inside the magnetic field of Fe, Ti is 8i A probable assumption was made that the site has selective coordination and the magnetic moment of Sm is 1.49 μ B. As shown in Table 2, it was confirmed that the volume magnetization was remarkably lowered as the Ti addition amount increased. Therefore, it was shown that it is better to reduce the Ti substitution amount z as much as possible from the viewpoint of improving the volume magnetization. In particular, when z increased to 0.8, Js <1.4T.
(工程A)
まず、組成が化学式でY0.6Sm0.4(Fe0.83Co0.17)12-zTizで(z=0.0~0.5)示される原料合金を得るため、Y(純度99.9%)とSm(純度99.9%)と電解鉄(純度99.9%)と電解コバルト(純度99.9%)とTi(純度99.9%)をそれぞれ秤量した。高温でのYとSmの蒸発を考慮し、狙い組成よりもYが3質量%、Smが5質量%多くなるように秤量した。秤量した各金属を混合してアルミナ坩堝に投入し、高周波溶解によって溶解した。
(工程B)
工程(A)においてY-Sm-Fe-Co-Ti系合金が十分に溶解したことを確認した後、高速回転する銅ロール(ロール直径230mm)上に溶融金属を出射して急冷凝固させることで、均一な凝固組織を有するリボン形状の合金を作製した。実施例3では、ロール周速度を40m/sに設定した。
(工程C)
工程Bにより得られた急冷薄帯をNb箔に包み、Arフロー環境下で、ThMn12型相の分解が全組成範囲で抑制可能な、900℃20分間の熱処理を行った。これは、1000℃での熱処理を行った場合、z<1/3の組成範囲の試料ではThMn12型相が分解してしまい、Ti置換量zの違いによる一貫した評価ができないからである。
(評価結果)
得られた各強磁性合金について、室温のThMn12型相の体積磁化を測定した。各強磁性合金の体積磁化の測定結果を、Sm置換量xと併せて表2に示す。ただし、体積磁化は57Feメスバウア測定の内部磁場の大きさから同定した。その際に、Feの磁気モーメントは内部磁場との間に15.7T/μBの比例関係、Coの磁気モーメントは選択配位する8fサイトのFeの磁気モーメントの0.77倍、Tiは8iサイトに選択配位、Smの磁気モーメントは1.49μB、という確からしい仮定を置いた。表2に示すように、Ti添加量の増加に伴い体積磁化が顕著に低下することが確認された。従って、体積磁化を向上させる観点からは、Ti置換量zは出来るだけ少なくした方がよいことが示された。特に、zが0.8まで大きくなるとJs<1.4Tとなった。 In Example 3, the relationship between the Ti substitution amount z and the magnetic property value was examined.
(Process A)
First, since the composition to obtain a Y 0.6 Sm 0.4 (Fe 0.83 Co 0.17) at 12-z Ti z (z = 0.0 ~ 0.5) material alloy represented by the chemical formula, Y (Purity 99.9%), Sm (purity 99.9%), electrolytic iron (purity 99.9%), electrolytic cobalt (purity 99.9%), and Ti (purity 99.9%) were weighed, respectively. In consideration of evaporation of Y and Sm at a high temperature, the sample was weighed so that Y was 3 mass% and Sm was 5 mass% higher than the target composition. The weighed metals were mixed, put into an alumina crucible, and melted by high frequency melting.
(Process B)
After confirming that the Y—Sm—Fe—Co—Ti alloy is sufficiently dissolved in the step (A), the molten metal is emitted onto a copper roll (roll diameter: 230 mm) rotating at high speed and rapidly solidified. A ribbon-shaped alloy having a uniform solidified structure was produced. In Example 3, the roll peripheral speed was set to 40 m / s.
(Process C)
The quenched ribbon obtained in step B was wrapped in Nb foil, and was subjected to heat treatment at 900 ° C. for 20 minutes, under which the decomposition of the ThMn 12 type phase can be suppressed over the entire composition range in an Ar flow environment. This is because when heat treatment is performed at 1000 ° C., the ThMn 12 type phase is decomposed in the sample having a composition range of z <1/3, and consistent evaluation based on the difference in Ti substitution amount z cannot be performed.
(Evaluation results)
About each obtained ferromagnetic alloy, the volume magnetization of the ThMn 12 type phase at room temperature was measured. The measurement results of the volume magnetization of each ferromagnetic alloy are shown in Table 2 together with the Sm substitution amount x. However, the volume magnetization was identified from the magnitude of the internal magnetic field measured by 57 Fe Mossbauer. At that time, 0.77 times the 15.7T / μ proportional, the magnetic moment of Fe 8f site magnetic moment of Co is selecting coordination B between the magnetic moment inside the magnetic field of Fe, Ti is 8i A probable assumption was made that the site has selective coordination and the magnetic moment of Sm is 1.49 μ B. As shown in Table 2, it was confirmed that the volume magnetization was remarkably lowered as the Ti addition amount increased. Therefore, it was shown that it is better to reduce the Ti substitution amount z as much as possible from the viewpoint of improving the volume magnetization. In particular, when z increased to 0.8, Js <1.4T.
実施例4では、Sm置換量x及びCo置換量yと、格子変化との関係並びに磁気物性値との関係について検討した。
(工程A)
まず、組成が化学式でY1-xSmx(Fe1―yCoy)11.5Ti0.5(x=0.4~1.0、y=0.17(=2/12)、0.25(=3/12)、0.33(=4/12))で示される原料合金を得るため、Y(純度99.9%)とSm(純度99.9%)と電解鉄(純度99.9%)と電解コバルト(純度99.9%)とTi(純度99.9%)をそれぞれ秤量した。高温でのYとSmの蒸発を考慮し、狙い組成よりもYが3質量%、Smが5質量%多くなるように秤量した。秤量した各金属を混合してアルミナ坩堝に投入し、高周波溶解によって溶解した。
(工程B)
工程(A)においてY-Sm-Fe-Co-Ti系合金が十分に溶解したことを確認した後、高速回転する銅ロール(ロール直径230mm)上に溶融金属を出射して急冷凝固させることで、均一な凝固組織を有するリボン形状の合金を作製した。実施例4では、ロール周速度を40m/sに設定した。
(工程C)
工程Bにより得られた急冷薄帯をNb箔に包み、Arフロー環境下で1050℃20分間の熱処理を行った。 In Example 4, the relationship between the Sm substitution amount x and the Co substitution amount y, the lattice change, and the magnetic property value were examined.
(Process A)
First, the composition is Y 1-x Sm x (Fe 1-y Co y ) 11.5 Ti 0.5 (x = 0.4 to 1.0, y = 0.17 (= 2/12), In order to obtain a raw material alloy represented by 0.25 (= 3/12), 0.33 (= 4/12)), Y (purity 99.9%), Sm (purity 99.9%) and electrolytic iron ( Purity 99.9%), electrolytic cobalt (purity 99.9%) and Ti (purity 99.9%) were weighed, respectively. In consideration of evaporation of Y and Sm at a high temperature, the sample was weighed so that Y was 3 mass% and Sm was 5 mass% higher than the target composition. The weighed metals were mixed, put into an alumina crucible, and melted by high frequency melting.
(Process B)
After confirming that the Y—Sm—Fe—Co—Ti alloy is sufficiently dissolved in the step (A), the molten metal is emitted onto a copper roll (roll diameter: 230 mm) rotating at high speed and rapidly solidified. A ribbon-shaped alloy having a uniform solidified structure was produced. In Example 4, the roll peripheral speed was set to 40 m / s.
(Process C)
The quenched ribbon obtained in step B was wrapped in Nb foil and heat-treated at 1050 ° C. for 20 minutes in an Ar flow environment.
(工程A)
まず、組成が化学式でY1-xSmx(Fe1―yCoy)11.5Ti0.5(x=0.4~1.0、y=0.17(=2/12)、0.25(=3/12)、0.33(=4/12))で示される原料合金を得るため、Y(純度99.9%)とSm(純度99.9%)と電解鉄(純度99.9%)と電解コバルト(純度99.9%)とTi(純度99.9%)をそれぞれ秤量した。高温でのYとSmの蒸発を考慮し、狙い組成よりもYが3質量%、Smが5質量%多くなるように秤量した。秤量した各金属を混合してアルミナ坩堝に投入し、高周波溶解によって溶解した。
(工程B)
工程(A)においてY-Sm-Fe-Co-Ti系合金が十分に溶解したことを確認した後、高速回転する銅ロール(ロール直径230mm)上に溶融金属を出射して急冷凝固させることで、均一な凝固組織を有するリボン形状の合金を作製した。実施例4では、ロール周速度を40m/sに設定した。
(工程C)
工程Bにより得られた急冷薄帯をNb箔に包み、Arフロー環境下で1050℃20分間の熱処理を行った。 In Example 4, the relationship between the Sm substitution amount x and the Co substitution amount y, the lattice change, and the magnetic property value were examined.
(Process A)
First, the composition is Y 1-x Sm x (Fe 1-y Co y ) 11.5 Ti 0.5 (x = 0.4 to 1.0, y = 0.17 (= 2/12), In order to obtain a raw material alloy represented by 0.25 (= 3/12), 0.33 (= 4/12)), Y (purity 99.9%), Sm (purity 99.9%) and electrolytic iron ( Purity 99.9%), electrolytic cobalt (purity 99.9%) and Ti (purity 99.9%) were weighed, respectively. In consideration of evaporation of Y and Sm at a high temperature, the sample was weighed so that Y was 3 mass% and Sm was 5 mass% higher than the target composition. The weighed metals were mixed, put into an alumina crucible, and melted by high frequency melting.
(Process B)
After confirming that the Y—Sm—Fe—Co—Ti alloy is sufficiently dissolved in the step (A), the molten metal is emitted onto a copper roll (roll diameter: 230 mm) rotating at high speed and rapidly solidified. A ribbon-shaped alloy having a uniform solidified structure was produced. In Example 4, the roll peripheral speed was set to 40 m / s.
(Process C)
The quenched ribbon obtained in step B was wrapped in Nb foil and heat-treated at 1050 ° C. for 20 minutes in an Ar flow environment.
(評価結果)
図5に、格子定数a、格子定数c及び軸比c/aのSm置換量依存性を、Co置換量毎に示す。図5から、Sm置換量xが増加すると、格子定数a、cが大きくなる一方、Co置換量yが増加すると格子定数a、cが小さくなることが確認できた。結晶構造の大きさはThMn12型結晶構造の相安定性に関係する。結晶構造における軸比c/aは、概ね0.56~0.57の範囲にあり、一般に、M元素置換量が多くなり相安定性が向上するに従い、軸比c/aは小さくなる傾向にある。 (Evaluation results)
FIG. 5 shows the dependency of the lattice constant a, the lattice constant c, and the axial ratio c / a on the Sm substitution amount for each Co substitution amount. From FIG. 5, it was confirmed that when the Sm substitution amount x increases, the lattice constants a and c increase, whereas when the Co substitution amount y increases, the lattice constants a and c decrease. The size of the crystal structure is related to the phase stability of the ThMn 12 type crystal structure. The axial ratio c / a in the crystal structure is generally in the range of 0.56 to 0.57. In general, the axial ratio c / a tends to decrease as the M element substitution amount increases and the phase stability improves. is there.
図5に、格子定数a、格子定数c及び軸比c/aのSm置換量依存性を、Co置換量毎に示す。図5から、Sm置換量xが増加すると、格子定数a、cが大きくなる一方、Co置換量yが増加すると格子定数a、cが小さくなることが確認できた。結晶構造の大きさはThMn12型結晶構造の相安定性に関係する。結晶構造における軸比c/aは、概ね0.56~0.57の範囲にあり、一般に、M元素置換量が多くなり相安定性が向上するに従い、軸比c/aは小さくなる傾向にある。 (Evaluation results)
FIG. 5 shows the dependency of the lattice constant a, the lattice constant c, and the axial ratio c / a on the Sm substitution amount for each Co substitution amount. From FIG. 5, it was confirmed that when the Sm substitution amount x increases, the lattice constants a and c increase, whereas when the Co substitution amount y increases, the lattice constants a and c decrease. The size of the crystal structure is related to the phase stability of the ThMn 12 type crystal structure. The axial ratio c / a in the crystal structure is generally in the range of 0.56 to 0.57. In general, the axial ratio c / a tends to decrease as the M element substitution amount increases and the phase stability improves. is there.
図6に、y=2/12における、軸比c/aのSm置換量依存性を、Ti置換量z毎に示す。図6に示すように、z=0.3、z=0.4、z=0.5と、zの値が大きくなるに従い、軸比c/aが小さくなっている。従って、Ti置換量zが多くなり相安定性が向上するに従い、軸比c/aは小さくなる傾向が、図6からも把握される。即ち、軸比c/aが小さい方が、ThMn12型相の相安定性が高いと判断される。
FIG. 6 shows the Sm substitution amount dependency of the axial ratio c / a at y = 2/12 for each Ti substitution amount z. As shown in FIG. 6, z = 0.3, z = 0.4, z = 0.5, and the axial ratio c / a decreases as the value of z increases. Accordingly, it can be understood from FIG. 6 that the axial ratio c / a tends to decrease as the Ti substitution amount z increases and the phase stability improves. That is, it is judged that the smaller the axial ratio c / a, the higher the phase stability of the ThMn 12 type phase.
図5(a)、(b)、(d)において検討したように、格子定数a、cや軸比c/aは、Co置換量yに依存して変化する。従って、Sm置換はもとよりCo置換も、結晶構造の安定性に寄与すると考えられる。Sm置換量x、Co置換量yの双方を調整して、適切な範囲にすることは、相安定性の観点において重要である。一方、軸比c/aは、正方晶度合いを示すものであり、磁気異方性にも関係する。詳細には、希土類サイトの結晶場に依るが、定性的には軸比c/aが小さい方が、磁気異方性は大きい傾向にある。
As discussed in FIGS. 5A, 5B, and 5D, the lattice constants a and c and the axial ratio c / a vary depending on the Co substitution amount y. Therefore, it is considered that Co substitution as well as Sm substitution contributes to the stability of the crystal structure. It is important from the viewpoint of phase stability to adjust both the Sm substitution amount x and the Co substitution amount y to be within an appropriate range. On the other hand, the axial ratio c / a indicates the degree of tetragonal crystal and is also related to the magnetic anisotropy. Specifically, although depending on the crystal field of the rare earth site, qualitatively, the magnetic anisotropy tends to be larger when the axial ratio c / a is smaller.
具体的には、z=0.5の場合、y=2/12では0.6≦x≦0.8の組成範囲(図6参照)、y=3/12では0.6≦x≦0.8の組成範囲(図5(d)参照)、y=4/12では0.7≦x≦0.8の組成範囲(図5(d)参照)が、それぞれ大きい磁気異方性及び高い相安定性を得られるアスペクト比(軸比c/a)といえる。また、z=0.4の場合には、y=2/12では0.6≦x≦0.8が、大きい磁気異方性及び高い相安定性を得るのに適切なアスペクト比と言える(図6参照)。
Specifically, in the case of z = 0.5, the composition range of 0.6 ≦ x ≦ 0.8 (see FIG. 6) at y = 2/12 (see FIG. 6), and 0.6 ≦ x ≦ 0 at y = 3/12. .8 composition range (see FIG. 5 (d)), and y = 4/12, the composition range of 0.7 ≦ x ≦ 0.8 (see FIG. 5 (d)) is large and high in magnetic anisotropy, respectively. It can be said that the aspect ratio (axial ratio c / a) can provide phase stability. Further, when z = 0.4, 0.6 ≦ x ≦ 0.8 at y = 2/12 can be said to be an appropriate aspect ratio for obtaining large magnetic anisotropy and high phase stability ( (See FIG. 6).
また、図5において検討した3組成においては、Co置換量yが少ないほど、軸比c/aが小さい傾向にある(図5(d)参照)。このため、相安定性と磁気異方性を向上させる観点から、y、zは、y=2/12で0.6≦x≦0.8が望ましい。上記した望ましいSm置換量xの範囲は、実施例1において適切なTi置換量zとして示した範囲である、1/3≦z≦0.6の範囲において大きくは変わらない。
Further, in the three compositions examined in FIG. 5, the axial ratio c / a tends to be smaller as the Co substitution amount y is smaller (see FIG. 5D). For this reason, from the viewpoint of improving phase stability and magnetic anisotropy, y and z are preferably y = 2/12 and 0.6 ≦ x ≦ 0.8. The range of the desirable Sm substitution amount x described above does not change significantly in the range of 1/3 ≦ z ≦ 0.6, which is the range indicated as the appropriate Ti substitution amount z in Example 1.
次に、図5において検討した3組成について、Co置換量yとキュリー温度との関係について検討した。キュリー温度は、熱磁気天秤を使用して測定した。具体的には、750℃からの降温過程で評価し、変曲点をキュリー温度と定義した。図7に、x=0.7のときの、Co置換量yとキュリー温度との関係を示す。図7より、Co置換量yの増加に伴い、キュリー温度が上昇することが確認できた。従って、キュリー温度を高める観点からは、Co置換量yは多いほうが望ましい。
Next, the relationship between the Co substitution amount y and the Curie temperature was examined for the three compositions examined in FIG. The Curie temperature was measured using a thermomagnetic balance. Specifically, the temperature was lowered from 750 ° C., and the inflection point was defined as the Curie temperature. FIG. 7 shows the relationship between the Co substitution amount y and the Curie temperature when x = 0.7. From FIG. 7, it was confirmed that the Curie temperature increased with the increase of the Co substitution amount y. Therefore, from the viewpoint of increasing the Curie temperature, it is desirable that the Co substitution amount y is large.
図8に、x=0.7組成の、y=2/12及びy=3/12の試料についての、室温における技術磁化過程(初磁化曲線)を示す。技術磁化過程は、振動試料型磁力計を使用して評価した。図8に示すように、Co置換量の多いy=3/12の試料は、Co置換量の少ないy=2/12の試料と比較して、磁気飽和し易いことが確認できた。この点を反映して、飽和漸近則から10Tよりも大きな磁場での磁化を推定すると、y=2/12の試料の方がy=3/12の試料よりも飽和磁化も大きくなると推察される。このことは、Sm置換量xの値に依存せず、また実用上重要な140℃までの温度範囲においても同様であることも確認した。このCo置換に対する磁化の変化は、スレーター・ポーリング曲線に則っており、Co置換量yが多過ぎると、却って磁化特性が低下することを反映している。
FIG. 8 shows the technical magnetization process (initial magnetization curve) at room temperature for samples of x = 2 / 0.7 and y = 2/12 and y = 3/12. The technical magnetization process was evaluated using a vibrating sample magnetometer. As shown in FIG. 8, it was confirmed that the sample with y = 3/12 with a large amount of Co substitution was more easily magnetically saturated than the sample with y = 2/12 with a small Co substitution amount. Reflecting this point, if the magnetization in a magnetic field larger than 10T is estimated from the saturation asymptotic rule, it is presumed that the saturation magnetization of the sample of y = 2/12 is larger than that of the sample of y = 3/12. . It was confirmed that this was not dependent on the value of the Sm substitution amount x, and the same was true in the temperature range up to 140 ° C., which is important for practical use. This change in magnetization due to Co substitution is in accordance with the Slater-Polling curve, and reflects that when the Co substitution amount y is too large, the magnetization characteristics deteriorate.
以上の点から、実施例に係る希土類-遷移金属系強磁性合金の場合、Co置換量yが多過ぎると、磁化のみならず、磁気異方性の低下も招くため望ましくない。磁化と磁気異方性の観点から、Co置換量yは、2/12付近の量が適切と判断できる。スレーター・ポーリング曲線に則っていることも勘案すると、具体的には、Co置換量yは0≦y≦0.4が望ましく、0.1≦y≦0.3がより望ましいと判断できる。またその時のSm置換量xは、0.6≦x≦0.8が望ましい。
From the above points, in the rare earth-transition metal ferromagnetic alloy according to the example, if the Co substitution amount y is too large, not only magnetization but also magnetic anisotropy is reduced, which is not desirable. From the viewpoints of magnetization and magnetic anisotropy, it can be determined that the Co substitution amount y is appropriate in the vicinity of 2/12. Considering that it conforms to the Slater-Polling curve, specifically, it can be determined that the Co substitution amount y is preferably 0 ≦ y ≦ 0.4, and more preferably 0.1 ≦ y ≦ 0.3. The Sm substitution amount x at that time is preferably 0.6 ≦ x ≦ 0.8.
実施例5では、結晶粒の粗大化について検討した。
(工程A)
まず、組成が化学式でSm0.4Y0.6(Fe0.83Co0.17)12-zTiz
(z=0.4)で示される原料合金を得るため、Y(純度99.9%)とSm(純度99.9%)と電解鉄(純度99.9%)と電解コバルト(純度99.9%)とTi(純度99.9%)をそれぞれ秤量した。高温でのYとSmの蒸発を考慮し、狙い組成よりもYが3質量%、Smが5質量%多くなるように秤量した。秤量した各金属を混合してアルミナ坩堝に投入し、高周波溶解によって溶解した。
(工程B)
工程(A)においてY-Sm-Fe-Co-Ti系合金が十分に溶解したことを確認した後、ガスアトマイズ法で最大粒度が100μm以下の微小な液滴を生成してCu基の基材の上で凝固させた。Cu基の基材の上で微小な液滴が急冷凝固を繰り返すことで堆積させた。
(工程C)
こうして得られた堆積物を基板から外して、Arフロー環境下で1050℃4時間の熱処理を行った。得られた試料の偏光顕微鏡による組織断面図を図9に示す。ただし、図9中、下側が基材側である。基材側から脱熱方向(鉛直方向)に沿ってThMn12型相が一方向凝固している様子がわかる。磁壁が概ね鉛直方向に沿っていることから、磁化容易軸であるc軸方向が鉛直方向に向いていることがわかる。結晶粒は基材と平行方向に10~30μm程度であり、脱熱方向には30~100μmないしそれ以上成長している様子が確認できる。以上から、抜熱方向を制御して一方向凝固させることで、c軸方向に長い粗大な結晶粒を形成可能であることが示された。このようなc軸方向に長い形状は、形状磁気異方性の観点で優位である。 In Example 5, the coarsening of crystal grains was examined.
(Process A)
First, the composition is the chemical formula Sm 0.4 Y 0.6 (Fe 0.83 Co 0.17 ) 12-z T i z
In order to obtain a raw material alloy represented by (z = 0.4), Y (purity 99.9%), Sm (purity 99.9%), electrolytic iron (purity 99.9%), and electrolytic cobalt (purity 99.99). 9%) and Ti (purity 99.9%) were weighed respectively. In consideration of evaporation of Y and Sm at a high temperature, the sample was weighed so that Y was 3 mass% and Sm was 5 mass% higher than the target composition. The weighed metals were mixed, put into an alumina crucible, and melted by high frequency melting.
(Process B)
After confirming that the Y—Sm—Fe—Co—Ti alloy was sufficiently dissolved in the step (A), fine droplets having a maximum particle size of 100 μm or less were generated by a gas atomization method to form a Cu-based substrate. Solidified on top. Fine droplets were deposited on the Cu-based substrate by repeated rapid solidification.
(Process C)
The deposit thus obtained was removed from the substrate, and heat treatment was performed at 1050 ° C. for 4 hours in an Ar flow environment. FIG. 9 shows a cross-sectional view of the structure of the obtained sample using a polarizing microscope. However, in FIG. 9, the lower side is the base material side. It can be seen that the ThM n12 type phase is unidirectionally solidified from the substrate side along the heat removal direction (vertical direction). Since the domain wall is substantially along the vertical direction, it can be seen that the c-axis direction, which is the easy axis of magnetization, is oriented in the vertical direction. The crystal grains are about 10 to 30 μm in the direction parallel to the base material, and it can be confirmed that they have grown 30 to 100 μm or more in the heat removal direction. From the above, it was shown that coarse crystal grains long in the c-axis direction can be formed by controlling the heat removal direction and solidifying in one direction. Such a shape long in the c-axis direction is advantageous from the viewpoint of shape magnetic anisotropy.
(工程A)
まず、組成が化学式でSm0.4Y0.6(Fe0.83Co0.17)12-zTiz
(z=0.4)で示される原料合金を得るため、Y(純度99.9%)とSm(純度99.9%)と電解鉄(純度99.9%)と電解コバルト(純度99.9%)とTi(純度99.9%)をそれぞれ秤量した。高温でのYとSmの蒸発を考慮し、狙い組成よりもYが3質量%、Smが5質量%多くなるように秤量した。秤量した各金属を混合してアルミナ坩堝に投入し、高周波溶解によって溶解した。
(工程B)
工程(A)においてY-Sm-Fe-Co-Ti系合金が十分に溶解したことを確認した後、ガスアトマイズ法で最大粒度が100μm以下の微小な液滴を生成してCu基の基材の上で凝固させた。Cu基の基材の上で微小な液滴が急冷凝固を繰り返すことで堆積させた。
(工程C)
こうして得られた堆積物を基板から外して、Arフロー環境下で1050℃4時間の熱処理を行った。得られた試料の偏光顕微鏡による組織断面図を図9に示す。ただし、図9中、下側が基材側である。基材側から脱熱方向(鉛直方向)に沿ってThMn12型相が一方向凝固している様子がわかる。磁壁が概ね鉛直方向に沿っていることから、磁化容易軸であるc軸方向が鉛直方向に向いていることがわかる。結晶粒は基材と平行方向に10~30μm程度であり、脱熱方向には30~100μmないしそれ以上成長している様子が確認できる。以上から、抜熱方向を制御して一方向凝固させることで、c軸方向に長い粗大な結晶粒を形成可能であることが示された。このようなc軸方向に長い形状は、形状磁気異方性の観点で優位である。 In Example 5, the coarsening of crystal grains was examined.
(Process A)
First, the composition is the chemical formula Sm 0.4 Y 0.6 (Fe 0.83 Co 0.17 ) 12-z T i z
In order to obtain a raw material alloy represented by (z = 0.4), Y (purity 99.9%), Sm (purity 99.9%), electrolytic iron (purity 99.9%), and electrolytic cobalt (purity 99.99). 9%) and Ti (purity 99.9%) were weighed respectively. In consideration of evaporation of Y and Sm at a high temperature, the sample was weighed so that Y was 3 mass% and Sm was 5 mass% higher than the target composition. The weighed metals were mixed, put into an alumina crucible, and melted by high frequency melting.
(Process B)
After confirming that the Y—Sm—Fe—Co—Ti alloy was sufficiently dissolved in the step (A), fine droplets having a maximum particle size of 100 μm or less were generated by a gas atomization method to form a Cu-based substrate. Solidified on top. Fine droplets were deposited on the Cu-based substrate by repeated rapid solidification.
(Process C)
The deposit thus obtained was removed from the substrate, and heat treatment was performed at 1050 ° C. for 4 hours in an Ar flow environment. FIG. 9 shows a cross-sectional view of the structure of the obtained sample using a polarizing microscope. However, in FIG. 9, the lower side is the base material side. It can be seen that the ThM n12 type phase is unidirectionally solidified from the substrate side along the heat removal direction (vertical direction). Since the domain wall is substantially along the vertical direction, it can be seen that the c-axis direction, which is the easy axis of magnetization, is oriented in the vertical direction. The crystal grains are about 10 to 30 μm in the direction parallel to the base material, and it can be confirmed that they have grown 30 to 100 μm or more in the heat removal direction. From the above, it was shown that coarse crystal grains long in the c-axis direction can be formed by controlling the heat removal direction and solidifying in one direction. Such a shape long in the c-axis direction is advantageous from the viewpoint of shape magnetic anisotropy.
実施例6では、希土類-遷移金属系強磁性合金を中性子回折で解析した。
(工程A)
まず、組成が化学式でY0.2Sm0.8(Fe0.8Co0.2)11.5Ti0.5で示される原料合金を得るため、Y(純度99.9%)とSm(純度99.9%)と電解鉄(純度99.9%)と電解コバルト(純度99.9%)とTi(純度99.9%)をそれぞれ秤量した。高温でのY及びSmの蒸発を考慮し、狙い組成よりも、Yが3質量%、Smが5質量%多くなるように秤量した。秤量した各金属を混合してアルミナ坩堝に投入し、高周波溶解によって溶解した。
(工程B)
工程(A)においてY-Sm-Fe-Co-Ti系合金が十分に溶解したことを確認した後、高速回転する銅ロール(ロール直径230mm)上に溶融金属を出射して急冷凝固させることで、リボン形状の合金(以下、急冷薄帯という)を作製した。実施例6では、ロール周速度を40m/sに設定した。
(工程C)
工程Bにより得られた急冷薄帯をNb箔に包み、Arフロー環境下で1050℃で20分間の熱処理を行って、希土類-遷移金属系強磁性合金を得た。 In Example 6, the rare earth-transition metal ferromagnetic alloy was analyzed by neutron diffraction.
(Process A)
First, in order to obtain a raw material alloy whose composition is represented by the chemical formula Y 0.2 Sm 0.8 (Fe 0.8 Co 0.2 ) 11.5 Ti 0.5 , Y (purity 99.9%) and Sm (Purity 99.9%), electrolytic iron (purity 99.9%), electrolytic cobalt (purity 99.9%), and Ti (purity 99.9%) were weighed, respectively. In consideration of evaporation of Y and Sm at high temperature, weighed so that Y was 3 mass% and Sm was 5 mass% higher than the target composition. The weighed metals were mixed, put into an alumina crucible, and melted by high frequency melting.
(Process B)
After confirming that the Y—Sm—Fe—Co—Ti alloy is sufficiently dissolved in the step (A), the molten metal is emitted onto a copper roll (roll diameter: 230 mm) rotating at high speed and rapidly solidified. A ribbon-shaped alloy (hereinafter referred to as a quenched ribbon) was produced. In Example 6, the roll peripheral speed was set to 40 m / s.
(Process C)
The quenched ribbon obtained in step B was wrapped in Nb foil and heat-treated at 1050 ° C. for 20 minutes in an Ar flow environment to obtain a rare earth-transition metal ferromagnetic alloy.
(工程A)
まず、組成が化学式でY0.2Sm0.8(Fe0.8Co0.2)11.5Ti0.5で示される原料合金を得るため、Y(純度99.9%)とSm(純度99.9%)と電解鉄(純度99.9%)と電解コバルト(純度99.9%)とTi(純度99.9%)をそれぞれ秤量した。高温でのY及びSmの蒸発を考慮し、狙い組成よりも、Yが3質量%、Smが5質量%多くなるように秤量した。秤量した各金属を混合してアルミナ坩堝に投入し、高周波溶解によって溶解した。
(工程B)
工程(A)においてY-Sm-Fe-Co-Ti系合金が十分に溶解したことを確認した後、高速回転する銅ロール(ロール直径230mm)上に溶融金属を出射して急冷凝固させることで、リボン形状の合金(以下、急冷薄帯という)を作製した。実施例6では、ロール周速度を40m/sに設定した。
(工程C)
工程Bにより得られた急冷薄帯をNb箔に包み、Arフロー環境下で1050℃で20分間の熱処理を行って、希土類-遷移金属系強磁性合金を得た。 In Example 6, the rare earth-transition metal ferromagnetic alloy was analyzed by neutron diffraction.
(Process A)
First, in order to obtain a raw material alloy whose composition is represented by the chemical formula Y 0.2 Sm 0.8 (Fe 0.8 Co 0.2 ) 11.5 Ti 0.5 , Y (purity 99.9%) and Sm (Purity 99.9%), electrolytic iron (purity 99.9%), electrolytic cobalt (purity 99.9%), and Ti (purity 99.9%) were weighed, respectively. In consideration of evaporation of Y and Sm at high temperature, weighed so that Y was 3 mass% and Sm was 5 mass% higher than the target composition. The weighed metals were mixed, put into an alumina crucible, and melted by high frequency melting.
(Process B)
After confirming that the Y—Sm—Fe—Co—Ti alloy is sufficiently dissolved in the step (A), the molten metal is emitted onto a copper roll (roll diameter: 230 mm) rotating at high speed and rapidly solidified. A ribbon-shaped alloy (hereinafter referred to as a quenched ribbon) was produced. In Example 6, the roll peripheral speed was set to 40 m / s.
(Process C)
The quenched ribbon obtained in step B was wrapped in Nb foil and heat-treated at 1050 ° C. for 20 minutes in an Ar flow environment to obtain a rare earth-transition metal ferromagnetic alloy.
次に得られた希土類-遷移金属系強磁性合金を粉砕して、75μm以下の合金粉末を回収した。中性子の吸収が大きなSmの吸収補正を行えるようにするため、バナジウム容器内(内径5.8mm)に中空のバナジウム円筒(外径5.0mm)を配置し、それらの隙間に前記粉末(希土類-遷移金属系強磁性合金)を充填した。その後、前記粉末が入ったバナジウム容器を、大強度陽子加速器施設(J-PARC:Japan Proton Accelerator Research Complex)の物質・生命科学実験施設(MLF)内にあるBL20に設置された茨城県材料構造解析装置(iMATERIA)にセットし、室温にて、出力300kWのシングルフレームモード(25Hz)でパルス中性子を照射して積算カウント数が50MCounts以上になるまで保持し、中性子回折データを取得した。
Next, the obtained rare earth-transition metal ferromagnetic alloy was pulverized to recover an alloy powder of 75 μm or less. A hollow vanadium cylinder (outer diameter of 5.0 mm) is placed in a vanadium container (inner diameter of 5.8 mm) so that the absorption correction of Sm with large neutron absorption can be performed, and the powder (rare earth- Transition metal based ferromagnetic alloy). After that, the vanadium container containing the powder was subjected to material structure analysis in Ibaraki Prefecture installed at BL20 in the Materials and Life Science Experimental Facility (MLF) of the Japan Proton Accelerator Research Complex (J-PARC). The device was set in an apparatus (iMATERIA), irradiated with pulsed neutrons in a single frame mode (25 Hz) with an output of 300 kW at room temperature, and held until the accumulated count reached 50 MCounts or more, and neutron diffraction data was acquired.
取得したデータの解析には、バナジウム容器のバックグラウンドを差し引いた背面バンクのデータを用い、面間隔dが0.49Å<d<2.57Åの範囲で行った。解析コードはZ-Riedverd 1.0.2を使用した。なお、磁気構造は強磁性結合のコリニアであり、核散乱と磁気散乱の回折パターンは一致することから、核散乱強度はデバイ・ワラー因子以外はdに依存せず、磁気散乱強度はd-2に比例する。これらの特徴を利用して、 低d側となる0.49<d<1.4にある回折ピークを用いて構造パラメータを概ねフィッティングしたあと、高d側となる1.4≦Å<d<2.57にある回折パターンを取り込み、磁気モーメントも変数にしてフィッティングを行った。なお、フィッティングの際には、YとZrとTiの磁気モーメントをゼロ、FeとCoは同じサイトでは同じ磁気モーメントであると仮定した。また、得られた回折パターンにはYまたはZrと3d遷移金属格子からの回折パターンが観測されており吸収が大きなSmからの磁気散乱の情報はほぼ含まれていない、と見てさしつかえない。よって、 Smの磁気モーメントは文献値1.50μB(g因子は1.07)に設定し、精密化は実施しなかった。
The analysis of the acquired data was performed using the data of the back bank obtained by subtracting the background of the vanadium container, and the interplanar spacing d was in the range of 0.49 mm <d <2.57 mm. The analysis code used was Z-Riedverd 1.0.2. Since the magnetic structure is collinear with ferromagnetic coupling and the diffraction patterns of nuclear scattering and magnetic scattering match, the nuclear scattering intensity does not depend on d except for the Debye-Waller factor, and the magnetic scattering intensity is d −2. Is proportional to Using these features, after fitting the structural parameters roughly using the diffraction peak at 0.49 <d <1.4 on the low d side, 1.4 ≦ Å <d <on the high d side The diffraction pattern at 2.57 was taken in and fitting was performed using the magnetic moment as a variable. In the fitting, it was assumed that the magnetic moments of Y, Zr and Ti were zero, and Fe and Co were the same magnetic moment at the same site. In addition, it can be understood that the obtained diffraction pattern includes diffraction patterns from Y or Zr and a 3d transition metal grating and contains almost no information on magnetic scattering from Sm having a large absorption. Therefore, the magnetic moment of Sm was set to a literature value of 1.50 μ B (g factor was 1.07), and refinement was not performed.
一連の検討の結果、作製した希土類-遷移金属系強磁性合金中のbcc-Fe相は1.9wt%で、残りはすべてThMn12型化合物であった。一方、参考例として、同様の方法で作製した、Zr0.2Sm0.8(Fe0.8Co0.2)11.5Ti0.5組成の合金を同様の方法で解析した結果、bcc-Fe相は4.6wt%と高い値を示した。
As a result of a series of studies, the bcc-Fe phase in the produced rare earth-transition metal ferromagnetic alloy was 1.9 wt%, and the rest were all ThMn 12 type compounds. On the other hand, as a reference example, a Zr 0.2 Sm 0.8 (Fe 0.8 Co 0.2 ) 11.5 Ti 0.5 composition alloy produced by the same method was analyzed by the same method. The bcc-Fe phase showed a high value of 4.6 wt%.
さらに、本実施例の希土類-遷移金属系強磁性合金におけるThMn12型化合物中のCoおよびTiの占有サイトを見積もった結果、Coのほとんど、例えば80mol%以上が8fサイトおよび8jサイトの少なくとも一つを占有し、サイト中の占有率は8f、8jそれぞれで26%、27%であること、Tiのほとんどが8iサイトを占有し、サイト中の占有率は20%であることを確認した。
Furthermore, as a result of estimating the occupied sites of Co and Ti in the ThMn 12 type compound in the rare earth-transition metal ferromagnetic alloy of this example, most of Co, for example, 80 mol% or more is at least one of 8f site and 8j site. It was confirmed that the occupation rates in the sites were 26% and 27% for 8f and 8j, respectively, and that most of Ti occupied the 8i site and the occupation rate in the sites was 20%.
本発明は、特に永久磁石等に用いることが可能である。
The present invention can be used particularly for permanent magnets and the like.
Claims (10)
- 下記式(1)で表される組成を有することを特徴とする希土類-遷移金属系強磁性合金。
R11-xR2x(Fe1-yCoy)w-zTiz …(1)
(式(1)中、R1は、YまたはYとGd、R2は、Sm、La、Ce、Nd及びPrからなる群から選択される1種以上であり、少なくともSmを含む、x、y、z
、wは、それぞれ、0<x<1.0、0≦y≦0.4、11≦w≦12.5、1/3≦z≦0.7かつx≦6z-2を満足する値である。) A rare earth-transition metal ferromagnetic alloy having a composition represented by the following formula (1):
R1 1-x R2 x (Fe 1-y Co y ) wz T i z (1)
(In the formula (1), R1 is Y or Y and Gd, and R2 is one or more selected from the group consisting of Sm, La, Ce, Nd and Pr, and includes at least Sm, x, y, z
, W are values satisfying 0 <x <1.0, 0 ≦ y ≦ 0.4, 11 ≦ w ≦ 12.5, 1/3 ≦ z ≦ 0.7 and x ≦ 6z−2, respectively. is there. ) - 前記式(1)において、zは、1/3≦z≦0.6を満足する値であることを特徴とする請求項1に記載の希土類-遷移金属系強磁性合金。 2. The rare earth-transition metal ferromagnetic alloy according to claim 1, wherein in the formula (1), z is a value satisfying 1/3 ≦ z ≦ 0.6.
- 前記式(1)において、zは、1/3≦z<0.5を満足する値であることを特徴とする請求項1に記載の希土類-遷移金属系強磁性合金。 2. The rare earth-transition metal ferromagnetic alloy according to claim 1, wherein in the formula (1), z is a value satisfying 1/3 ≦ z <0.5.
- 前記式(1)において、yは、0.1≦y≦0.3を満足する値であることを特徴とする請求項1に記載の希土類-遷移金属系強磁性合金。 2. The rare earth-transition metal ferromagnetic alloy according to claim 1, wherein in the formula (1), y is a value satisfying 0.1 ≦ y ≦ 0.3.
- 前記式(1)において、xは、0.5≦x≦0.8を満足する値であることを特徴とする請求項1に記載の希土類-遷移金属系強磁性合金。 2. The rare earth-transition metal ferromagnetic alloy according to claim 1, wherein, in the formula (1), x is a value satisfying 0.5 ≦ x ≦ 0.8.
- 前記希土類-遷移金属系強磁性合金は、ThMn12型結晶構造を有するR1-R2-Fe-Co-Ti系強磁性化合物を主相として含有することを特徴とする請求項1に記載の希土類-遷移金属系強磁性合金。 The rare earth-transition metal ferromagnetic alloy according to claim 1, wherein the rare earth-transition metal ferromagnetic alloy contains an R1-R2-Fe-Co-Ti ferromagnetic compound having a ThMn 12 type crystal structure as a main phase. Transition metal ferromagnetic alloy.
- 前記R1-R2-Fe-Co-Ti系強磁性化合物は、1000℃以上において、平衡相となる温度範囲を有する、請求項6に記載の希土類-遷移金属系強磁性合金。 The rare earth-transition metal ferromagnetic alloy according to claim 6, wherein the R1-R2-Fe-Co-Ti ferromagnetic compound has a temperature range that becomes an equilibrium phase at 1000 ° C or higher.
- 前記R1-R2-Fe-Co-Ti系強磁性化合物は、1000℃以上1300℃以下において、平衡相となる温度範囲を有する、請求項6に記載の希土類-遷移金属系強磁性合金。 The rare earth-transition metal ferromagnetic alloy according to claim 6, wherein the R1-R2-Fe-Co-Ti ferromagnetic compound has a temperature range that becomes an equilibrium phase at 1000 ° C or higher and 1300 ° C or lower.
- bcc-Fe相の量が3wt%以下であることを特徴とする、請求項1から8のいずれかに記載の希土類-遷移金属系強磁性合金。 9. The rare earth-transition metal ferromagnetic alloy according to claim 1, wherein the amount of the bcc-Fe phase is 3 wt% or less.
- ThMn12型強磁性化合物中でCoの80mol%以上が8jサイトまたは8fサイトを占有することを特徴とする、請求項1から9のいずれかに記載の希土類-遷移金属系強磁性合金。 10. The rare earth-transition metal ferromagnetic alloy according to claim 1, wherein 80 mol% or more of Co occupies 8j sites or 8f sites in the ThMn 12 type ferromagnetic compound.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780069492.1A CN109952621B (en) | 2016-12-26 | 2017-12-25 | Rare earth-transition metal system ferromagnetic alloy |
JP2018559471A JP6614365B2 (en) | 2016-12-26 | 2017-12-25 | Rare earth-transition metal ferromagnetic alloys |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016251218 | 2016-12-26 | ||
JP2016-251218 | 2016-12-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018123988A1 true WO2018123988A1 (en) | 2018-07-05 |
Family
ID=62709425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/046476 WO2018123988A1 (en) | 2016-12-26 | 2017-12-25 | Rare earth-transition metal system ferromagnetic alloy |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6614365B2 (en) |
CN (1) | CN109952621B (en) |
WO (1) | WO2018123988A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019151244A1 (en) * | 2018-01-30 | 2019-08-08 | Tdk株式会社 | Permanent magnet |
JP2020155437A (en) * | 2019-03-18 | 2020-09-24 | 日立金属株式会社 | Bulk body for rare earth magnet |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02175830A (en) * | 1986-07-18 | 1990-07-09 | Philips Gloeilampenfab:Nv | Hard magnetic material |
JP2014047366A (en) * | 2012-08-29 | 2014-03-17 | Hitachi Metals Ltd | Ferromagnetic alloy and production method thereof |
JP2015156436A (en) * | 2014-02-20 | 2015-08-27 | 日立金属株式会社 | Ferromagnetic alloy and manufacturing method thereof |
WO2016162990A1 (en) * | 2015-04-08 | 2016-10-13 | 株式会社日立製作所 | Rare earth permanent magnet and method for producing same |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5314115A (en) * | 1976-07-26 | 1978-02-08 | Namiki Precision Jewel Co Ltd | Permanent magnetic alloy of rare earth metals and cobalt system |
EP0386286B1 (en) * | 1987-09-17 | 1995-10-18 | Shin-Etsu Chemical Co., Ltd. | Rare earth iron-based permanent magnet |
CN1079580A (en) * | 1992-05-30 | 1993-12-15 | 北京大学 | Rare-earth-iron-metalloid magnetic material |
JP3157659B2 (en) * | 1993-08-17 | 2001-04-16 | 住友特殊金属株式会社 | Manufacturing method of permanent magnet powder |
JP4218032B2 (en) * | 2004-02-13 | 2009-02-04 | 日立金属株式会社 | Magnetic alloy and method for producing the same |
EP2043111A1 (en) * | 2007-09-10 | 2009-04-01 | Nissan Motor Co., Ltd. | Rare earth permanent magnetic alloy and producing method thereof |
DE102013009940A1 (en) * | 2013-06-13 | 2014-12-18 | Hochschule Aalen | Magnetic material, its use and process for its preparation |
WO2017164312A1 (en) * | 2016-03-24 | 2017-09-28 | Tdk株式会社 | Rare-earth permanent magnet |
CN107785139A (en) * | 2016-08-24 | 2018-03-09 | 株式会社东芝 | Ferromagnetic material, permanent magnet, electric rotating machine and vehicle |
CN107785140A (en) * | 2016-08-24 | 2018-03-09 | 株式会社东芝 | Ferromagnetic material, permanent magnet, electric rotating machine and vehicle |
-
2017
- 2017-12-25 WO PCT/JP2017/046476 patent/WO2018123988A1/en active Application Filing
- 2017-12-25 CN CN201780069492.1A patent/CN109952621B/en active Active
- 2017-12-25 JP JP2018559471A patent/JP6614365B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02175830A (en) * | 1986-07-18 | 1990-07-09 | Philips Gloeilampenfab:Nv | Hard magnetic material |
JP2014047366A (en) * | 2012-08-29 | 2014-03-17 | Hitachi Metals Ltd | Ferromagnetic alloy and production method thereof |
JP2015156436A (en) * | 2014-02-20 | 2015-08-27 | 日立金属株式会社 | Ferromagnetic alloy and manufacturing method thereof |
WO2016162990A1 (en) * | 2015-04-08 | 2016-10-13 | 株式会社日立製作所 | Rare earth permanent magnet and method for producing same |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019151244A1 (en) * | 2018-01-30 | 2019-08-08 | Tdk株式会社 | Permanent magnet |
US11335484B2 (en) | 2018-01-30 | 2022-05-17 | Tdk Corporation | Permanent magnet |
JP2020155437A (en) * | 2019-03-18 | 2020-09-24 | 日立金属株式会社 | Bulk body for rare earth magnet |
JP7238504B2 (en) | 2019-03-18 | 2023-03-14 | 株式会社プロテリアル | Bulk body for rare earth magnet |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018123988A1 (en) | 2019-10-31 |
CN109952621A (en) | 2019-06-28 |
CN109952621B (en) | 2021-01-26 |
JP6614365B2 (en) | 2019-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6144359B2 (en) | NdFeB-based sintered magnet and method for producing the same | |
WO2015129861A1 (en) | R-t-b sintered magnet and manufacturing method therefor | |
WO2018163967A1 (en) | Magnetic powder containing sm-fe-n crystal grains, sintered magnet produced from same, method for producing said magnetic powder, and method for producing said sintered magnet | |
KR101936174B1 (en) | Rare earth permanent magnet and method for manufacturing rare earth permanent magnet | |
JP6614647B2 (en) | Samarium-iron-nitrogen based sintered magnet and method for producing samarium-iron-nitrogen based sintered magnet | |
JP6094612B2 (en) | Method for producing RTB-based sintered magnet | |
JP6142792B2 (en) | Rare earth magnets | |
Rial et al. | Application of a novel flash-milling procedure for coercivity development in nanocrystalline MnAl permanent magnet powders | |
Shao et al. | One step preparation of pure 𝝉-MnAl phase with high magnetization using strip casting method | |
JP2017057471A (en) | Magnetic compound and manufacturing method therefor | |
JP2020123735A (en) | Rare earth magnets | |
JP6728860B2 (en) | Rare earth magnets | |
JP7287220B2 (en) | Rare earth magnet and manufacturing method thereof | |
JP6614365B2 (en) | Rare earth-transition metal ferromagnetic alloys | |
JP2018174314A (en) | R-T-B based sintered magnet | |
JP6142793B2 (en) | Rare earth magnets | |
JP6332479B2 (en) | Rare earth permanent magnet and method for producing rare earth permanent magnet | |
CN106103776B (en) | Rare earth-containing alloy cast piece, method for producing same, and sintered magnet | |
JP6728862B2 (en) | Rare earth magnets | |
JP7028239B2 (en) | MnAl alloy | |
JPWO2019065481A1 (en) | Method for producing RTB-based sintered magnet | |
Tao et al. | Magnetic and structural properties of rapidly solidified Nd3Pr3Fe67Co3Nb3Ti1B20 nanomagnet | |
JP6728861B2 (en) | Rare earth magnets | |
JP6519300B2 (en) | Rare earth permanent magnet and method of manufacturing rare earth permanent magnet | |
JP7556248B2 (en) | Sm-Fe-N magnetic material and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17886710 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018559471 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17886710 Country of ref document: EP Kind code of ref document: A1 |