JP6769479B2 - Rare earth permanent magnet - Google Patents

Rare earth permanent magnet Download PDF

Info

Publication number
JP6769479B2
JP6769479B2 JP2018507410A JP2018507410A JP6769479B2 JP 6769479 B2 JP6769479 B2 JP 6769479B2 JP 2018507410 A JP2018507410 A JP 2018507410A JP 2018507410 A JP2018507410 A JP 2018507410A JP 6769479 B2 JP6769479 B2 JP 6769479B2
Authority
JP
Japan
Prior art keywords
rare earth
permanent magnet
phase
same manner
grain boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018507410A
Other languages
Japanese (ja)
Other versions
JPWO2017164312A1 (en
Inventor
将来 冨田
将来 冨田
龍司 橋本
龍司 橋本
鈴木 健一
健一 鈴木
祥悟 門田
祥悟 門田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Publication of JPWO2017164312A1 publication Critical patent/JPWO2017164312A1/en
Application granted granted Critical
Publication of JP6769479B2 publication Critical patent/JP6769479B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties

Description

本発明は、希土類永久磁石におけるRの一部にLaを含み、高い保磁力を特徴とした希土類永久磁石に関する。 The present invention relates to a rare earth permanent magnet containing La as a part of R in the rare earth permanent magnet and characterized by a high coercive force.

従来、高性能希土類永久磁石としては特許文献1に記載のNd−Fe−B系永久磁石が知られており、現在、民生、産業、輸送機器などに広く用いられている。近年、HVやHEV等の普及により、希少元素であるNdの消費量が増加しているため、よりNd含有率の少ない希土類永久磁石が求められている。 Conventionally, as a high-performance rare earth permanent magnet, the Nd-Fe-B type permanent magnet described in Patent Document 1 is known, and is currently widely used in consumer, industrial, transportation equipment and the like. In recent years, with the spread of HVs and HEVs, the consumption of Nd, which is a rare element, has increased, so that a rare earth permanent magnet having a lower Nd content is required.

非特許文献1、2では、ThMn12型結晶構造を有する希土類永久磁石が提案されている。これらの希土類永久磁石は、Ndを低減した組成、あるいは含有していない組成で、磁化が高く、さらに高い結晶磁気異方性を有している。Non-Patent Documents 1 and 2 propose a rare earth permanent magnet having a ThMn 12- type crystal structure. These rare earth permanent magnets have a composition in which Nd is reduced or not contained, have high magnetization, and have a higher magnetocrystalline anisotropy.

特開昭59−46008号公報JP-A-59-4608

Journal of Applied Physics、70巻、6009頁、1991年Journal of Applied Physics, Vol. 70, p. 6009, 1991 Journal of Alloys and Compounds、519巻、144頁、2012年Journal of Allys and Compounds, Vol. 5, pp. 144, 2012

しかしながら、非特許文献1、2にて開示されている希土類永久磁石は、実用上十分な保磁力が得られていない。非特許文献2に記載されているSmFe11Tiにて0.4MA/m程度と、保磁力は低い値となっている。However, the rare earth permanent magnets disclosed in Non-Patent Documents 1 and 2 have not obtained a sufficient coercive force for practical use. The coercive force of SmFe 11 Ti described in Non-Patent Document 2 is as low as about 0.4 MA / m.

本発明は、このような状況に鑑みてなされたものであり、ThMn12型結晶構造を有するR−T化合物を主相とする希土類永久磁石において、資源的に豊富なLaを使用することで、磁化を著しく低下させることなく、従来よりも高い保磁力を有する希土類永久磁石を提供することを目的とする。The present invention has been made in view of such a situation, and by using a resource-rich La in a rare earth permanent magnet having an RT compound having a ThMn 12- type crystal structure as a main phase. An object of the present invention is to provide a rare earth permanent magnet having a higher coercive force than the conventional one without significantly lowering the magnetization.

上述した課題を解決し、目的を達成するために、本発明の希土類永久磁石は、主相および粒界相を有し、前記主相がThMn12型結晶構造を有するR−T化合物であり、RはLaを必須とし、Y、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuから選択される1種以上の希土類元素、Tは、Fe、またはFeおよびCo、またはその一部をM(Ti、V、Cr、Mo、W、Zr、Hf、Nb、Ta、Al、Si、Cu、Zn、GaおよびGeから選択される1種以上)で置換した元素であり、前記粒界相はLaリッチ相σを有し、前記Laリッチ相σは立方晶系の結晶構造で、La組成比が20at%以上であり、前記粒界相に占める前記Laリッチ相σの断面積比が20%以上であることを特徴とする。In order to solve the above-mentioned problems and achieve the object, the rare earth permanent magnet of the present invention is an RT compound having a main phase and a grain boundary phase, and the main phase has a ThMn 12 type crystal structure. R requires La, and one or more rare earth elements selected from Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, and T is Fe, Or Fe and Co, or a part thereof with M (one or more selected from Ti, V, Cr, Mo, W, Zr, Hf, Nb, Ta, Al, Si, Cu, Zn, Ga and Ge). It is a substituted element, and the grain boundary phase has a La-rich phase σ, and the La-rich phase σ has a cubic crystal structure, a La composition ratio of 20 at% or more, and occupies the grain boundary phase. The cross-sectional area ratio of the La-rich phase σ is 20% or more.

従来よりも高い保磁力を発現するメカニズムについて、本発明者らは以下のように推察する。一般的に希土類元素と遷移金属元素は反応して化合物を作りやすい組み合わせとして知られているが、Laと遷移金属元素の組合せの場合、他の希土類元素に比べて非常に反応性が低い。よってLaを主成分とする粒界相は、磁性元素であるFeやCoとの化合物を形成しにくく、非磁性相となりやすいため、主相間にある非磁性粒界相が主相間の磁気的な分離を促進し、高い保磁力が発現することが期待される。しかしながら、これまでにこの効果を示唆する報告はなされていない。その理由として、常温でのLaは六方晶系の結晶構造をとり、正方晶系の主相との界面歪みが大きいため、主相の磁気特性を低下させている可能性が考えられる。一方、約300℃以上の高温では、Laは立方晶系の結晶構造になる。そこで本発明者らは、常温で立方晶系の結晶構造を持つLa粒界相を実現し、粒界相と正方晶系の主相との界面歪みを低減することで、希土類永久磁石が高い保磁力を発現することを見出した。 The present inventors infer the mechanism of developing a higher coercive force than the conventional one as follows. Generally, a rare earth element and a transition metal element are known as a combination that easily reacts to form a compound, but the combination of La and a transition metal element is much less reactive than other rare earth elements. Therefore, the grain boundary phase containing La as a main component does not easily form a compound with Fe or Co, which are magnetic elements, and tends to be a non-magnetic phase. Therefore, the non-magnetic grain boundary phase between the main phases is magnetic between the main phases. It is expected to promote separation and develop a high coercive force. However, no report suggesting this effect has been made so far. The reason for this is that La at room temperature has a hexagonal crystal structure and has a large interfacial strain with the tetragonal main phase, which may reduce the magnetic properties of the main phase. On the other hand, at a high temperature of about 300 ° C. or higher, La has a cubic crystal structure. Therefore, the present inventors realize a La grain boundary phase having a cubic crystal structure at room temperature and reduce the interfacial strain between the grain boundary phase and the tetragonal main phase, so that the rare earth permanent magnet is high. It was found that a coercive force is exhibited.

本発明の希土類永久磁石は、ThMn12型結晶構造を有するR−T化合物を主相とし、資源的に豊富なLaを使用することで、磁化を著しく低下させることなく、従来よりも高い保磁力が得られる。The rare earth permanent magnet of the present invention uses an RT compound having a ThMn 12- type crystal structure as a main phase and uses resource-rich La, so that the coercive force is higher than before without significantly reducing the magnetization. Is obtained.

本発明を実施するための形態(実施形態)につき、詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能である。 An embodiment (embodiment) for carrying out the present invention will be described in detail. The present invention is not limited to the contents described in the following embodiments. In addition, the components described below include those that can be easily assumed by those skilled in the art and those that are substantially the same. Furthermore, the components described below can be combined as appropriate.

本実施形態に係る希土類永久磁石において、主相はThMn12型結晶構造を有するR−T化合物である。RはLaを必須とし、Y、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuから選択される1種以上の希土類元素とする。また、Rの量は4.2at%以上25.0at%以下が好ましい。Rの量が4.2at%未満であると、主相の生成が十分でなく、軟磁性を持つα−Feなどが析出し、保磁力が著しく低下する。一方、Rが25.0at%を超えると主相の体積比率が低下し、飽和磁束密度が低下する。かかる範囲とすることで、飽和磁束密度を向上させることができる。In the rare earth permanent magnet according to the present embodiment, the main phase is an RT compound having a ThMn 12- type crystal structure. La is essential for La, and is one or more rare earth elements selected from Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. The amount of R is preferably 4.2 at% or more and 25.0 at% or less. If the amount of R is less than 4.2 at%, the formation of the main phase is not sufficient, α-Fe having soft magnetism or the like is precipitated, and the coercive force is remarkably lowered. On the other hand, when R exceeds 25.0 at%, the volume ratio of the main phase decreases and the saturation magnetic flux density decreases. Within such a range, the saturation magnetic flux density can be improved.

本実施形態に係る希土類永久磁石において、TはFe、もしくはFeおよびCo、またはその一部をM(Ti、V、Cr、Mo、W、Zr、Hf、Nb、Ta、Al、Si、Cu、Zn、GaおよびGeから選択される1種以上)で置換した元素とする。Co量はT総量に対して0at%より大きく、50.0at%以下が望ましい。適切な量のCoを加えることで飽和磁束密度を向上させることができる。また、Co量の増加によって希土類永久磁石の耐食性を向上させることができる。M量はT総量に対して0.4at%以上25.0at%以下が望ましい。MがT総量に対して0.4at%未満では軟磁性を持つRFe17やα−Feが析出して主相の体積比率が低下し、25.0at%を超えると飽和磁束密度が著しく低下する。In the rare earth permanent magnet according to the present embodiment, T is Fe, or Fe and Co, or a part thereof is M (Ti, V, Cr, Mo, W, Zr, Hf, Nb, Ta, Al, Si, Cu, It is an element substituted with one or more selected from Zn, Ga and Ge). The amount of Co is preferably larger than 0 at% and 50.0 at% or less with respect to the total amount of T. The saturation magnetic flux density can be improved by adding an appropriate amount of Co. Further, the corrosion resistance of the rare earth permanent magnet can be improved by increasing the amount of Co. The amount of M is preferably 0.4 at% or more and 25.0 at% or less with respect to the total amount of T. When M is less than 0.4 at% with respect to the total amount of T, R 2 Fe 17 and α-Fe having soft magnetism are precipitated and the volume ratio of the main phase is lowered, and when it exceeds 25.0 at%, the saturation magnetic flux density is remarkably increased. descend.

本実施形態に係る希土類永久磁石には、粒界相にLaリッチ相σが存在する。Laと遷移金属元素の組合せの場合、他の希土類元素に比べて非常に反応性が低い。よってLaを主成分とするLaリッチ相σは、磁性元素であるFeやCoとの化合物を形成しにくく、非磁性相となりやすい。そのため、非磁性粒界相が主相間の磁気的な分離を促進し、高い保磁力が発現することが期待される。Laリッチ相σは、Laの他にFe、Tiなどの元素を含んでも良い。Feなどの磁性元素を含む場合もLa固溶体となることで本来の磁気特性が低減するため、主相間の磁気的な分離を促進できる。そのため、Laリッチ相σはLa組成比が20at%以上であればよい。Laリッチ相σのLa組成比が20at%以上の場合、磁気的な分離効果が高くなり、保磁力は高くなる。 The rare earth permanent magnet according to this embodiment has a La-rich phase σ in the grain boundary phase. In the case of the combination of La and the transition metal element, the reactivity is very low as compared with other rare earth elements. Therefore, the La-rich phase σ containing La as a main component is difficult to form a compound with Fe and Co, which are magnetic elements, and tends to be a non-magnetic phase. Therefore, it is expected that the non-magnetic grain boundary phase promotes magnetic separation between the main phases and a high coercive force is exhibited. The La-rich phase σ may contain elements such as Fe and Ti in addition to La. Even when a magnetic element such as Fe is contained, the La solid solution reduces the original magnetic characteristics, so that magnetic separation between the main phases can be promoted. Therefore, the La-rich phase σ may have a La composition ratio of 20 at% or more. When the La composition ratio of the La-rich phase σ is 20 at% or more, the magnetic separation effect becomes high and the coercive force becomes high.

本実施形態に係る希土類永久磁石において、Laリッチ相σは立方晶系の結晶構造を有する。常温でのLaは六方晶系の結晶構造をとり、正方晶系の主相との界面歪みが大きいため、主相の磁気特性を低下させている可能性が考えられる。一方、約300℃以上の高温では、Laは立方晶系の結晶構造になる。そこで本発明者らは、常温で立方晶系の結晶構造を持つLa粒界相を実現し、粒界相と正方晶系の主相との界面歪みを低減することで、希土類永久磁石が高い保磁力を発現することを見出した。 In the rare earth permanent magnet according to the present embodiment, the La-rich phase σ has a cubic crystal structure. La at room temperature has a hexagonal crystal structure and has a large interfacial strain with the tetragonal main phase, so it is possible that the magnetic characteristics of the main phase are deteriorated. On the other hand, at a high temperature of about 300 ° C. or higher, La has a cubic crystal structure. Therefore, the present inventors realize a La grain boundary phase having a cubic crystal structure at room temperature and reduce the interfacial strain between the grain boundary phase and the tetragonal main phase, so that the rare earth permanent magnet is high. It was found that a coercive force is exhibited.

本実施形態に係る希土類永久磁石において、Laリッチ相σ以外の粒界相は、既存のRリッチ相やα−Fe相、また六方晶系La相などがある。粒界相(主相以外の部分)に占めるLaリッチ相σの断面積比は20%以上であり、好ましくは21%以上であり、さらには24%以上、25%以上、54%以上、91%以上の順により好ましい。粒界相に占めるLaリッチ相σの断面積比を20%以上とすることで、主相間の磁気的な分離効果と、粒界相と主相との界面歪み低減効果が得られ、保磁力が向上する。また、Laリッチ相σは、粒界相に均一に分布することが好ましい。Laリッチ相σの粒界相全体に占める割合は高いほうが好ましい。 In the rare earth permanent magnet according to the present embodiment, the grain boundary phases other than the La-rich phase σ include the existing R-rich phase, α-Fe phase, hexagonal La phase and the like. The cross-sectional area ratio of the La-rich phase σ to the grain boundary phase (part other than the main phase) is 20% or more, preferably 21% or more, and further 24% or more, 25% or more, 54% or more, 91. More preferred in the order of% or more. By setting the cross-sectional area ratio of the La-rich phase σ to the grain boundary phase to 20% or more, a magnetic separation effect between the main phases and an effect of reducing interfacial strain between the grain boundary phase and the main phase can be obtained, and a coercive force can be obtained. Is improved. Further, the La-rich phase σ is preferably uniformly distributed in the grain boundary phase. It is preferable that the ratio of the La-rich phase σ to the entire grain boundary phase is high.

本実施形態に係る希土類永久磁石において、侵入元素Xを含むことが好ましく、XはN、H、BeおよびCから選択される1種以上の元素とする。Xの量は0.0at%以上、14.0at%以下が望ましい。Xが主相の結晶格子内に侵入することで保磁力を向上させることができる。これは、侵入元素によって結晶磁気異方性が向上するためである。 The rare earth permanent magnet according to the present embodiment preferably contains an invading element X, and X is one or more elements selected from N, H, Be and C. The amount of X is preferably 0.0 at% or more and 14.0 at% or less. The coercive force can be improved by allowing X to penetrate into the crystal lattice of the main phase. This is because the invading element improves the crystal magnetic anisotropy.

本実施形態に係る希土類永久磁石は、他の元素の含有を許容する。例えば、Bi、Sn、Ag等の元素を適宜含有させることができる。また、原料に由来する不純物を含んでもよい。 The rare earth permanent magnet according to this embodiment allows the inclusion of other elements. For example, elements such as Bi, Sn, and Ag can be appropriately contained. It may also contain impurities derived from the raw material.

以下、本件発明の製造方法の好適な例について説明する。希土類永久磁石の製造方法は、スパッタリングやレーザーデポジション等の物理的成膜方法などがあるが、スパッタリングによる製造方法の一例について説明する。 Hereinafter, suitable examples of the production method of the present invention will be described. As a method for manufacturing a rare earth permanent magnet, there are a physical film forming method such as sputtering and laser deposition, and an example of the manufacturing method by sputtering will be described.

材料として、先ず単元素ターゲット材を準備する。所望の組成比になるよう、各単元素ターゲットのスパッタパワーを調整し、希土類薄膜永久磁石を作成する。また、R、T、Xの合金ターゲット材を準備し、スパッタリングすることもできる。ここで、合金ターゲット材の組成比とスパッタリングで作製した薄膜の組成比は、各元素のスパッタ率が異なるためにずれる場合があり、調整が必要である。他の元素、例えば、Bi、Sn、Ag等を適宜含有させたい場合も同様に、単元素ターゲット材、合金ターゲット材の両方の方法で含有させることができる。一方で、酸素等の不純物元素を極力低減することが望ましいため、ターゲット材中の不純物含有量も極力低減する。 As a material, first, a single element target material is prepared. The sputtering power of each single element target is adjusted so as to obtain a desired composition ratio, and a rare earth thin film permanent magnet is produced. Further, R, T, and X alloy target materials can be prepared and sputtered. Here, the composition ratio of the alloy target material and the composition ratio of the thin film produced by sputtering may deviate due to the difference in the sputtering rate of each element, and adjustment is necessary. Similarly, when it is desired to appropriately contain other elements such as Bi, Sn, Ag and the like, it can be contained by both the single element target material and the alloy target material. On the other hand, since it is desirable to reduce impurity elements such as oxygen as much as possible, the impurity content in the target material is also reduced as much as possible.

ターゲット材は、保管中に表面から酸化する。特に、希土類ターゲット材の場合は酸化の速度が速い。そのため、これらのターゲット材の使用前には、スパッタリングを十分に行い、ターゲット材の清浄表面を出しておく必要がある。 The target material oxidizes from the surface during storage. In particular, in the case of rare earth target materials, the rate of oxidation is high. Therefore, before using these target materials, it is necessary to sufficiently perform sputtering to expose the clean surface of the target material.

スパッタリングにて成膜を行う基板は、各種の金属、ガラス、シリコン、セラミックスなどを選択して使用することができる。ただし、所望の結晶組織を得るために高温での処理を行う必要上、高融点な基板を選択することが望ましい。なお、高温処理における耐性の他に、希土類薄膜永久磁石との密着性が不足する場合があり、その対策としてCrやTi、Ta,Moなどの下地膜を設けることにより密着性を向上することが通常行われる。希土類薄膜永久磁石の上部には、酸化を防ぐため、Ti、Ta、Moなどの保護膜を設けることができる。 As the substrate for forming a film by sputtering, various metals, glass, silicon, ceramics and the like can be selected and used. However, it is desirable to select a substrate having a high melting point because it is necessary to carry out the treatment at a high temperature in order to obtain a desired crystal structure. In addition to the resistance to high temperature treatment, the adhesion to the rare earth thin film permanent magnet may be insufficient, and as a countermeasure, it is possible to improve the adhesion by providing a base film such as Cr, Ti, Ta, Mo. Usually done. A protective film such as Ti, Ta, or Mo can be provided on the upper part of the rare earth thin film permanent magnet to prevent oxidation.

スパッタリングを行う成膜装置は、酸素、窒素、炭素等の不純物元素を極力低減することが望ましいため、10−6Pa以下、より好ましくは10−8Pa以下となるまで真空槽内が排気されていることが望ましい。高い真空状態を保つため、成膜室と繋がった基板導入室を有することが望ましい。また、ターゲット材の使用前には、スパッタリングを十分に行い、ターゲット材の清浄な表面を出しておく必要があるため、成膜装置は、基板とターゲット材の間に真空状態で操作可能な遮蔽機構を有することが望ましい。スパッタリングの方法は、不純物元素を極力低減するという目的で、より低圧のAr雰囲気でスパッタリングが可能となるマグネトロン・スパッタリング法が好ましい。ここで、Fe、Coを含むターゲット材は、マグネトロン・スパッタリングの漏れ磁束を大きく低減させ、スパッタリングを困難にするため、ターゲット材の厚みを適切に選択することが必要である。スパッタリングの電源は、DC、RFどちらでも使用可能であり、ターゲット材に応じて適宜選択できる。Since it is desirable that the film forming apparatus that performs sputtering reduces impurity elements such as oxygen, nitrogen, and carbon as much as possible, the inside of the vacuum chamber is exhausted until it becomes 10-6 Pa or less, more preferably 10-8 Pa or less. It is desirable to be there. In order to maintain a high vacuum state, it is desirable to have a substrate introduction chamber connected to the film formation chamber. In addition, before using the target material, it is necessary to sufficiently perform sputtering to expose a clean surface of the target material. Therefore, the film forming apparatus is a shield that can be operated in a vacuum state between the substrate and the target material. It is desirable to have a mechanism. As the sputtering method, a magnetron sputtering method that enables sputtering in a lower pressure Ar atmosphere is preferable for the purpose of reducing impurity elements as much as possible. Here, the target material containing Fe and Co greatly reduces the leakage flux of magnetron sputtering and makes sputtering difficult, so that it is necessary to appropriately select the thickness of the target material. The power source for sputtering can be either DC or RF, and can be appropriately selected according to the target material.

仕込み組成のR比を調整することによって、粒界相内のLa量を制御することが可能である。所望の組成の薄膜を得るためには、成膜レートおよび成膜時間を調整してスパッタリングを行う。複数のターゲット材を用いてスパッタリングする際、多元同時スパッタリング、もしくは各ターゲットを単独で交互にスパッタリングする積層スパッタリングのどちらを選択しても良い。 By adjusting the R ratio of the charged composition, it is possible to control the amount of La in the grain boundary phase. In order to obtain a thin film having a desired composition, sputtering is performed by adjusting the film formation rate and the film formation time. When sputtering using a plurality of target materials, either multiple simultaneous simultaneous sputtering or laminated sputtering in which each target is alternately sputtered independently may be selected.

磁性層成膜後に、熱処理をおこなう必要がある。雰囲気は、真空もしくはAr雰囲気とし、300℃/min〜1200℃/minの範囲で昇温し、300℃〜1200℃で、1時間〜24時間保持し、その後300℃/min〜1000℃/minで急冷する。磁性層成膜後に熱処理を長時間行う事で、Laが粒界相に均一に拡散し、さらに急冷を行う事で立方晶系の結晶構造が維持される。すなわち、本熱処理を行うことで、Laリッチ相σの形成が実現し保磁力が向上する。 It is necessary to perform heat treatment after forming the magnetic layer. The atmosphere is a vacuum or Ar atmosphere, the temperature is raised in the range of 300 ° C./min to 1200 ° C./min, the temperature is maintained at 300 ° C. to 1200 ° C. for 1 hour to 24 hours, and then 300 ° C./min to 1000 ° C./min. Quench with. By performing the heat treatment for a long time after forming the magnetic layer, La is uniformly diffused in the grain boundary phase, and further quenching is performed to maintain the cubic crystal structure. That is, by performing this heat treatment, the formation of the La-rich phase σ is realized and the coercive force is improved.

このまま、希土類薄膜磁石として用いてもよいが、さらに希土類ボンド磁石や希土類焼結磁石とすることができる。以下、その製造方法を述べる。 It may be used as it is as a rare earth thin film magnet, but it can also be used as a rare earth bond magnet or a rare earth sintered magnet. The manufacturing method will be described below.

希土類ボンド磁石の製造方法の一例について説明する。先ずスパッタリングで作製したThMn12型R−T化合物を主相とする希土類薄膜磁石を基板から剥がし微粉砕して、粉末にする。その後、樹脂を含む樹脂バインダーと本粉末とを例えば加圧ニーダー等の加圧混練機で混練して、樹脂バインダーとThMn12型R−T化合物を主相とする永久磁石粉末とを含む希土類ボンド磁石用コンパウンド(組成物)を調製する。樹脂は、エポキシ樹脂、フェノール樹脂等の熱硬化性樹脂や、スチレン系、オレフィン系、ウレタン系、ポリエステル系、ポリアミド系のエラストマー、アイオノマー、エチレンプロピレン共重合体(EPM)、エチレン−エチルアクリレート共重合体等の熱可塑性樹脂がある。なかでも、圧縮成形をする場合に用いる樹脂は、熱硬化性樹脂が好ましく、エポキシ樹脂又はフェノール樹脂がより好ましい。また、射出成形をする場合に用いる樹脂は熱可塑性樹脂が好ましい。また、希土類ボンド磁石用コンパウンドには、必要に応じて、カップリング剤やその他の添加材を加えてもよい。An example of a method for manufacturing a rare earth bond magnet will be described. First, a rare earth thin film magnet having a ThMn 12- type RT compound as a main phase produced by sputtering is peeled off from a substrate and finely pulverized to be powdered. Then, the resin binder containing the resin and the present powder are kneaded with a pressure kneader such as a pressure kneader, and a rare earth bond containing the resin binder and the permanent magnet powder containing the ThMn 12 type RT compound as the main phase. Prepare a compound for magnets (composition). The resin includes thermosetting resins such as epoxy resin and phenol resin, styrene-based, olefin-based, urethane-based, polyester-based, polyamide-based elastomers, ionomers, ethylene-propylene copolymers (EPM), and ethylene-ethylacrylate copolymers. There are thermoplastic resins such as coalesced. Among them, the resin used for compression molding is preferably a thermosetting resin, and more preferably an epoxy resin or a phenol resin. Further, the resin used for injection molding is preferably a thermoplastic resin. Further, a coupling agent or other additives may be added to the compound for rare earth bond magnets, if necessary.

また、希土類ボンド磁石におけるThMn12型R−T化合物を主相とする希土類永久磁石粉末と樹脂との含有比率は、本粉末100質量%に対して、樹脂を例えば0.5質量%以上20質量%以下含むことが好ましい。希土類永久磁石粉末100質量%に対して、樹脂の含有量が0.5質量%未満であると、保形性が損なわれる傾向があり、樹脂が20質量%を超えると、十分に優れた磁気特性が得られ難くなる傾向がある。The content ratio of the rare earth permanent magnet powder containing the ThMn 12- type RT compound as the main phase and the resin in the rare earth bond magnet is, for example, 0.5% by mass or more and 20% by mass of the resin with respect to 100% by mass of the present powder. % Or less is preferable. If the resin content is less than 0.5% by mass with respect to 100% by mass of the rare earth permanent magnet powder, the shape retention tends to be impaired, and if the resin exceeds 20% by mass, the magnetism is sufficiently excellent. It tends to be difficult to obtain characteristics.

上述の希土類ボンド磁石用コンパウンドを調製した後、この希土類ボンド磁石用コンパウンドを射出成形することにより、ThMn12型R−T化合物を主相とする希土類永久磁石粉末と樹脂とを含む希土類ボンド磁石を得ることができる。射出成形により希土類ボンド磁石を作製する場合、希土類ボンド磁石用コンパウンドを、必要に応じてバインダー(熱可塑性樹脂)の溶融温度まで加熱し、流動状態とした後、この希土類ボンド磁石用コンパウンドを所定の形状を有する金型内に射出して成形を行う。その後、冷却し、金型から所定形状を有する成形品(希土類ボンド磁石)を取り出す。このようにして希土類ボンド磁石が得られる。希土類ボンド磁石の製造方法は、上述の射出成形による方法に限定されるものではなく、例えば希土類ボンド磁石用コンパウンドを圧縮成形することによりThMn12型R−T化合物を主相とする希土類永久磁石粉末と樹脂とを含む希土類ボンド磁石を得てもよい。圧縮成形により希土類ボンド磁石を作製する場合、上述の希土類ボンド磁石用コンパウンドを調製した後、この希土類ボンド磁石用コンパウンドを所定の形状を有する金型内に充填し、圧力を加えて金型から所定形状を有する成形品(希土類ボンド磁石)を取り出す。金型にて希土類ボンド磁石用コンパウンドを成形し、取り出す際には、機械プレスや油圧プレス等の圧縮成形機を用いて行なわれる。その後、加熱炉や真空乾燥炉などの炉に入れて熱をかけることにより硬化させることで、希土類ボンド磁石が得られる。After preparing the above-mentioned compound for rare earth bond magnets, the compound for rare earth bond magnets is injection-molded to obtain a rare earth bond magnet containing a rare earth permanent magnet powder containing a ThMn 12- type RT compound as a main phase and a resin. Obtainable. When producing a rare earth bond magnet by injection molding, the compound for the rare earth bond magnet is heated to the melting temperature of the binder (thermoplastic resin) as necessary to bring it into a flowing state, and then the compound for the rare earth bond magnet is specified. Molding is performed by injecting into a mold having a shape. After that, it is cooled and a molded product (rare earth bond magnet) having a predetermined shape is taken out from the mold. In this way, a rare earth bond magnet is obtained. The method for producing a rare earth bond magnet is not limited to the above-mentioned injection molding method. For example, a rare earth permanent magnet powder containing a ThMn 12- type RT compound as a main phase by compression molding a compound for a rare earth bond magnet. A rare earth bond magnet containing the resin and the resin may be obtained. When producing a rare earth bond magnet by compression molding, after preparing the above-mentioned compound for a rare earth bond magnet, the compound for a rare earth bond magnet is filled in a mold having a predetermined shape, and pressure is applied to a predetermined compound from the mold. Take out the molded product (rare earth bond magnet) having a shape. The compound for rare earth bond magnets is molded with a mold and taken out by using a compression molding machine such as a mechanical press or a hydraulic press. After that, a rare earth bond magnet is obtained by putting it in a furnace such as a heating furnace or a vacuum drying furnace and curing it by applying heat.

成形して得られる希土類ボンド磁石の形状は特に限定されるものではなく、用いる金型の形状に応じて、例えば平板状、柱状、断面形状がリング状等、希土類ボンド磁石の形状に応じて変更することができる。また、得られた希土類ボンド磁石は、その表面上に酸化層や樹脂層等の劣化を防止するためにめっきや塗装を施してもよい。 The shape of the rare earth bond magnet obtained by molding is not particularly limited, and is changed according to the shape of the rare earth bond magnet, for example, flat plate shape, columnar shape, ring shape, etc., depending on the shape of the mold used. can do. Further, the obtained rare earth bond magnet may be plated or painted on the surface thereof in order to prevent deterioration of the oxide layer, the resin layer and the like.

希土類ボンド磁石用コンパウンドは目的とする所定の形状に成形する際、磁場を印加して成形して得られる成形体を一定方向に配向させてもよい。これにより、希土類ボンド磁石が特定方向に配向するので、より磁性の強い異方性希土類ボンド磁石が得られる。 When the compound for rare earth bond magnets is molded into a desired predetermined shape, the molded product obtained by applying a magnetic field may be oriented in a certain direction. As a result, the rare earth bond magnet is oriented in a specific direction, so that an anisotropic rare earth bond magnet having stronger magnetism can be obtained.

希土類焼結磁石の製造方法の一例について説明する。希土類ボンド磁石と同様に、ThMn12型R−T化合物を主相とする希土類永久磁石粉末を作製し、例えばプレス成形などにより目的とする所定形状に成形する。得られる成形体の形状は特に限定されるものではなく、用いる金型の形状に応じて、例えば平板状、柱状、断面形状がリング状等、希土類焼結磁石の形状に応じて変更することができる。An example of a method for manufacturing a rare earth sintered magnet will be described. Similar to the rare earth bond magnet, a rare earth permanent magnet powder having a ThMn 12- type RT compound as a main phase is produced and molded into a desired predetermined shape by, for example, press molding. The shape of the obtained molded product is not particularly limited, and may be changed according to the shape of the rare earth sintered magnet, for example, a flat plate shape, a columnar shape, or a ring shape in cross section, depending on the shape of the mold used. it can.

次いで、成形体は焼結工程に供される。焼結保持温度および焼結保持時間は、組成、粉砕方法、平均粒径と粒度分布の違い、焼結方法等、諸条件により調整する必要がある。これにより、焼結体(希土類焼結磁石)が得られる。 The molded product is then subjected to a sintering step. The sintering holding temperature and the sintering holding time need to be adjusted according to various conditions such as composition, pulverization method, difference between average particle size and particle size distribution, and sintering method. As a result, a sintered body (rare earth sintered magnet) can be obtained.

得られた希土類焼結磁石は、所望のサイズに切断したり、表面を平滑化することで、所定形状の希土類焼結磁石としてもよい。また、得られた希土類焼結磁石は、その表面上に酸化層や樹脂層等の劣化を防止するため、めっきや塗装を施してもよい。 The obtained rare earth sintered magnet may be made into a rare earth sintered magnet having a predetermined shape by cutting it to a desired size or smoothing the surface. Further, the obtained rare earth sintered magnet may be plated or painted on the surface thereof in order to prevent deterioration of the oxide layer, the resin layer and the like.

また、ThMn12型R−T化合物を主相とする希土類永久磁石粉末を目的とする所定の形状に成形する際、磁場を印加して成形することで得られる成形体を一定方向に配向させてもよい。これにより、希土類焼結磁石が特定方向に配向するので、より磁性の強い異方性希土類焼結磁石が得られる。Further, when molding a rare earth permanent magnet powder containing a ThMn 12- type RT compound as a main phase into a predetermined shape, the molded product obtained by molding by applying a magnetic field is oriented in a certain direction. May be good. As a result, the rare earth sintered magnet is oriented in a specific direction, so that an anisotropic rare earth sintered magnet having stronger magnetism can be obtained.

以上、本件発明を好適に実施するための製造方法に関する形態を説明したが、次いで、本件発明のThMn12型R−T化合物を主相とする希土類永久磁石において、主相と粒界相の組成および結晶構造、さらに粒界相に占めるLaリッチ相σの断面積比を分析する方法について説明する。The form relating to the production method for preferably carrying out the present invention has been described above. Next, in the rare earth permanent magnet containing the ThMn 12 type RT compound of the present invention as the main phase, the composition of the main phase and the grain boundary phase A method for analyzing the crystal structure and the cross-sectional area ratio of the La-rich phase σ in the grain boundary phase will be described.

ThMn12相を主相とする希土類永久磁石の組成は、ICP質量分析法(ICP:Inductively Coupled Plasma Mass Spectrometry)にて決定することが可能であり、ここで、所望の組成であることを確認する。The composition of the rare earth permanent magnet containing the ThMn 12 phase as the main phase can be determined by ICP mass spectrometry (ICP: Inductively Coupled Plasma Mass Spectrometry), and it is confirmed here that the composition is desired. ..

試料である希土類永久磁石の主相の結晶構造について、X線回折法(XRD:X−ray Diffractometry)によって主たる生成相がThMn12型結晶構造に帰属されることを確認する。Regarding the crystal structure of the main phase of the rare earth permanent magnet as a sample, it is confirmed by X-ray diffraction (XRD: X-ray Diffraction) that the main production phase belongs to the ThMn 12 type crystal structure.

主相の組成は、エネルギー分散型X線分光法(EDS:Energy Dispersive Spectroscopy)にて測定する。具体的には、希土類永久磁石を集束イオンビーム(FIB:Focused Ion Beam)装置にて厚さ100nmの薄片状に加工し、走査透過電子顕微鏡(STEM:Scanning Transmission Electron Microscope)に備えられたEDS装置を用いて元素マッピング画像を得て、その元素マッピング画像に基づいて主相の組成を定量化する。EDS装置で検出困難な元素がある場合は、赤外線吸収法や質量分析法を用いて補完する。ここで、主相が、所望の組成であることを確認する。 The composition of the main phase is measured by energy dispersive X-ray spectroscopy (EDS: Energy Dispersive Spectroscopy). Specifically, a rare earth permanent magnet is processed into flakes with a thickness of 100 nm using a focused ion beam (FIB) device, and an EDS device provided in a scanning transmission electron microscope (STEM). To obtain an element mapping image using the above, and quantify the composition of the main phase based on the element mapping image. If there are elements that are difficult to detect with the EDS device, supplement them using infrared absorption or mass spectrometry. Here, it is confirmed that the main phase has a desired composition.

粒界相の組成は、主相と同様、EDS装置によって測定する。EDS装置により得られた元素マッピング像を用いて粒界相のLaを抽出した後、組成を定量化する。 The composition of the grain boundary phase is measured by an EDS device as in the main phase. After extracting La of the grain boundary phase using the element mapping image obtained by the EDS apparatus, the composition is quantified.

粒界相の結晶構造は、電子線回折法にて判断する。元素マッピング像にて確認した粒界相のLa組成比が20at%以上の領域について電子線回折解析を行い、結晶構造を決定する。La組成比が20at%以上であり、結晶構造が立方晶系である領域をLaリッチ相σとする。 The crystal structure of the grain boundary phase is determined by electron diffraction. The crystal structure is determined by performing electron diffraction analysis in a region where the La composition ratio of the grain boundary phase confirmed by the element mapping image is 20 at% or more. The region where the La composition ratio is 20 at% or more and the crystal structure is cubic is defined as the La-rich phase σ.

粒界相に占めるLaリッチ相σの断面積比は、元素マッピング像から算出される、Laリッチ相σの断面積と、粒界相全体の断面積との比率である。 The cross-sectional area ratio of the La-rich phase σ to the grain boundary phase is the ratio of the cross-sectional area of the La-rich phase σ calculated from the element mapping image to the cross-sectional area of the entire grain boundary phase.

磁気特性は、振動試料型磁力計(VSM:Vibrating Sample Magnetometer)を用い、基板に対して垂直方向に±3100kA/mの磁界を加えて測定する。 The magnetic characteristics are measured by applying a magnetic field of ± 3100 kA / m in the direction perpendicular to the substrate using a vibrating sample magnetometer (VSM).

以下、本発明の内容を実施例および比較例を用いて詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the contents of the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

成膜装置は、10−8Pa以下まで排気が可能であり、同一槽内に複数のスパッタリング機構を有する装置を用いた。この成膜装置内にSm、Er、Nd、La、Fe、Ti、Co、Mo、Nbの単元素ターゲット材、さらに下地膜、保護膜に用いるMoターゲット材を、作製する試料の構成に応じて装着した。スパッタリングは、マグネトロン・スパッタリング法を用いることにより、1PaのAr雰囲気とし、RF、DC電源を使用した。尚、RF、DC電源のパワーと成膜時間は、試料の構成に応じて調整した。スパッタ条件は、主相が(R’1−xLa)T11Mとなるように調整した。具体的には、表1〜表3に記載の組成となるよう、R’をSmあるいはErあるいはNdとし、TをFe、またはFeおよびCoとし、MをTiあるいはMoあるいはNbとした。ターゲット材のサイズは3インチ、基板は熱酸化膜付Si基板を10mm×10mmとし、膜の面内均一性が十分に保たれるよう、スパッタ装置の回転機構で基板を回転させながらスパッタリングを行った。As the film forming apparatus, an apparatus capable of exhausting up to 10-8 Pa or less and having a plurality of sputtering mechanisms in the same tank was used. In this film forming apparatus, a single element target material of Sm, Er, Nd, La, Fe, Ti, Co, Mo, Nb, and a Mo target material used for a base film and a protective film are prepared according to the configuration of the sample to be produced. I put it on. For sputtering, a magnetron sputtering method was used to create an Ar atmosphere of 1 Pa, and an RF and DC power supplies were used. The power of the RF and DC power supplies and the film formation time were adjusted according to the composition of the sample. Sputtering conditions were adjusted so that the main phase was (R'1 -x La x ) T 11 M. Specifically, R'was Sm, Er, or Nd, T was Fe, or Fe, and Co, and M was Ti, Mo, or Nb so that the compositions shown in Tables 1 to 3 were obtained. The size of the target material is 3 inches, the substrate is a Si substrate with a thermal oxide film of 10 mm x 10 mm, and sputtering is performed while rotating the substrate with the rotating mechanism of the sputtering device so that the in-plane uniformity of the film is sufficiently maintained. It was.

膜構成は、先ず下地膜としてMoを200℃で50nm成膜した。次に、R’としてSm、Er、Ndを選択し、TとしてFe、またはTiとしてFeおよびCoを選択し、MとしてTiあるいはMoあるいはNbを選択し、仕込み組成で、(R’、La)15.378.46.3とし、各々の表1〜表3に記載の実施例及び比較例に応じてSm、Er、Nd、Laの仕込み組成比を調整した。熱酸化膜付Si基板を500℃に加熱し、磁性層厚みを1000nm狙いで成膜を行い、磁性層成膜後にAr雰囲気で900℃/minで昇温した。そして、900℃で10時間熱処理後、500℃/min〜800℃/minで急冷した。これを熱処理方法Aと定義する。As for the film structure, first, Mo was formed as a base film at 200 ° C. at 50 nm. Next, Sm, Er, Nd are selected as R', Fe or Fe or Co is selected as T, Ti or Mo or Nb is selected as M, and (R', La) is used in the charged composition. It was set to 15.3 T 78.4 M 6.3, and the charged composition ratios of Sm, Er, Nd, and La were adjusted according to the examples and comparative examples shown in Tables 1 to 3 respectively. The Si substrate with a thermal oxide film was heated to 500 ° C., a film was formed aiming at a magnetic layer thickness of 1000 nm, and after the magnetic layer was formed, the temperature was raised at 900 ° C./min in an Ar atmosphere. Then, after heat treatment at 900 ° C. for 10 hours, the mixture was rapidly cooled at 500 ° C./min to 800 ° C./min. This is defined as the heat treatment method A.

一方、上記と同条件にて磁性層成膜を行い、磁性層成膜後に熱処理を行った。熱処理時間を10分間かつ100℃/minで冷却する以外は、熱処理方法Aと同条件で行った。これを熱処理方法Bと定義する。 On the other hand, the magnetic layer was formed under the same conditions as above, and the heat treatment was performed after the magnetic layer was formed. The heat treatment was performed under the same conditions as the heat treatment method A except that the heat treatment time was 10 minutes and the cooling was performed at 100 ° C./min. This is defined as the heat treatment method B.

上記述の成膜方法にてMo下地膜、磁性層を成膜し、その後、熱処理を行わず、後述記載の方法にてMo保護層を成膜した試料を、熱処理無とする。 A sample in which the Mo base film and the magnetic layer are formed by the above-described film forming method, and then the Mo protective layer is formed by the method described later without heat treatment is left without heat treatment.

熱処理後、または磁性層成膜後に酸化防止のため、保護膜として再びMoを200℃で50nm成膜した。その後、真空中で室温まで冷却した後に成膜装置から取り出した。 After the heat treatment or after the formation of the magnetic layer, Mo was formed again as a protective film at 200 ° C. at 50 nm to prevent oxidation. Then, after cooling to room temperature in vacuum, it was taken out from the film forming apparatus.

磁性層成膜後に熱処理を長時間行う事で、Laが粒界相に均一に拡散し、さらに急冷を行う事で立方晶系の結晶構造が維持される。すなわち、熱処理方法Aを行うことで、Laリッチ相σの形成が実現し保磁力が向上する。一方、熱処理方法Bでは、熱処理時間、冷却時間が不十分なことで、保磁力が向上しない。同様に、熱処理無でも、保磁力が向上しない。 By performing the heat treatment for a long time after forming the magnetic layer, La is uniformly diffused in the grain boundary phase, and further quenching is performed to maintain the cubic crystal structure. That is, by performing the heat treatment method A, the formation of the La-rich phase σ is realized and the coercive force is improved. On the other hand, in the heat treatment method B, the coercive force is not improved because the heat treatment time and the cooling time are insufficient. Similarly, the coercive force does not improve even without heat treatment.

作製した試料は、ICP質量分析法によって所望の組成であることを確認し、XRDによって主たる生成相がThMn12型結晶構造に帰属されることを確認した。The prepared sample was confirmed to have a desired composition by ICP mass spectrometry, and it was confirmed by XRD that the main production phase was attributed to the ThMn 12 type crystal structure.

主相および、Laリッチ相σの判別とその断面積比率の算出方法について記載する。STEM−EDSにて、200nm×200nmの視野で、20か所を300μm間隔で測定した。R’、La、T、Mの元素マッピングと電子線回折を行うことで、主相、Laリッチ相σ、その他の粒界相を判別した。主相は、EDS装置を用いて希土類元素とT+M元素の比率が大凡1:12であることから判断した。また、主相間もしくは三重点において、La組成比が20at%以上であり、T元素比率が主相のT元素比率未満である領域を抽出し、電子線回折にてその領域の結晶構造が立方晶系であった場合に、Laリッチ相σであると判断した。さらに視野中のLaリッチ相σの断面積を積算し、粒界相(主相以外の部分)の断面積との比率を計算した。結果を表1に記載する。 The method of discriminating the main phase and the La-rich phase σ and calculating the cross-sectional area ratio thereof will be described. With STEM-EDS, 20 points were measured at intervals of 300 μm in a field of view of 200 nm × 200 nm. The main phase, La-rich phase σ, and other grain boundary phases were discriminated by performing element mapping of R', La, T, and M and electron diffraction. The main phase was determined from the fact that the ratio of rare earth elements to T + M elements was approximately 1:12 using an EDS device. Further, a region where the La composition ratio is 20 at% or more and the T element ratio is less than the T element ratio of the main phase is extracted between the main phases or at the triple point, and the crystal structure of the region is cubic crystal by electron diffraction. When it was a system, it was judged to be La-rich phase σ. Further, the cross-sectional area of the La-rich phase σ in the field of view was integrated, and the ratio to the cross-sectional area of the grain boundary phase (part other than the main phase) was calculated. The results are shown in Table 1.

その後、VSMを用い、膜面の垂直方向に±3100kA/mの磁界を加えて磁気ヒステリシス測定を行った。なお、磁束密度は+2400kA/m印加時と+3100kA/m印加時で±5%の範囲内にあることを確認したうえで、+3100kA/m印加時の値を飽和磁束密度とした。このようにして測定した飽和磁束密度と保磁力を表1に示す。

Figure 0006769479
Then, using VSM, a magnetic field of ± 3100 kA / m was applied in the direction perpendicular to the film surface to perform magnetic hysteresis measurement. After confirming that the magnetic flux density was within the range of ± 5% when + 2400 kA / m was applied and when + 3100 kA / m was applied, the value when + 3100 kA / m was applied was taken as the saturated magnetic flux density. Table 1 shows the saturation magnetic flux density and the coercive force measured in this way.
Figure 0006769479

(実施例1)
表1に示す通り、主相の組成が、(R’1−xLa)Fe11Mになるように、R’にSm、MにTiを選択し、前記述の成膜方法にて(Sm0.9La0.1)Fe11TiのThMn12型結晶構造薄膜永久磁石を得た。得られた薄膜
永久磁石を、前記述の評価方法にて評価を行った。この結果を表1に示す。
(Example 1)
As shown in Table 1, Sm is selected for R'and Ti is selected for M so that the composition of the main phase is (R'1 -x La x ) Fe 11 M, and the film forming method described above is used. A ThMn 12 type crystal structure thin film permanent magnet of Sm 0.9 La 0.1 ) Fe 11 Ti was obtained. The obtained thin-film permanent magnet was evaluated by the evaluation method described above. The results are shown in Table 1.

(実施例2)
(Sm0.7La0.3)Fe11Tiとする以外は、実施例1と同様に薄膜永久磁石を作製した。そして、実施例1と同様に、評価を行った。この結果を表1に示す。
(Example 2)
A thin film permanent magnet was produced in the same manner as in Example 1 except that (Sm 0.7 La 0.3 ) Fe 11 Ti. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

(実施例3)
(Sm0.5La0.5)Fe11Tiとする以外は、実施例1と同様に薄膜永久磁石を作製した。そして、実施例1と同様に、評価を行った。この結果を表1に示す。
(Example 3)
A thin film permanent magnet was produced in the same manner as in Example 1 except that (Sm 0.5 La 0.5 ) Fe 11 Ti. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

(実施例4)
R’にErを選択し、(Er0.9La0.1)Fe11Tiとする以外は、実施例1と同様に薄膜永久磁石を作製した。そして、実施例1と同様に、評価を行った。この結果を表1に示す。
(Example 4)
A thin film permanent magnet was produced in the same manner as in Example 1 except that Er was selected for R'and used as Fe 11 Ti (Er 0.9 La 0.1 ). Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

(実施例5)
MにMoを選択し、(Sm0.9La0.1)Fe11Moとする以外は、実施例1と同様に薄膜永久磁石を作製した。そして、実施例1と同様に、評価を行った。この結果を表1に示す。
(Example 5)
A thin-film permanent magnet was produced in the same manner as in Example 1 except that Mo was selected as M and Fe 11 Mo was used (Sm 0.9 La 0.1 ). Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

(実施例6)
TにFeとCoを選択し、(Sm0.9La0.1)Fe10CoTiとする以外は、実施例1と同様に薄膜永久磁石を作製した。そして、実施例1と同様に、評価を行った。この結果を表1に示す。
(Example 6)
A thin film permanent magnet was produced in the same manner as in Example 1 except that Fe and Co were selected for T and Fe 10 CoTi was used (Sm 0.9 La 0.1 ). Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

(比較例1)
SmFe11Ti薄膜永久磁石を実施例1と同様に作製した。そして、実施例1と同様に、評価を行った。この結果を表1に示す。
(Comparative Example 1)
An SmFe 11 Ti thin film permanent magnet was produced in the same manner as in Example 1. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

(比較例2)
(Sm0.95La0.05)Fe11Tiの薄膜永久磁石を実施例1と同様に作製した。そして、実施例1と同様に、評価を行った。この結果を表1に示す。
(Comparative Example 2)
A thin film permanent magnet of Fe 11 Ti (Sm 0.95 La 0.05 ) was produced in the same manner as in Example 1. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

(比較例3)
(Sm0.9La0.1)Fe11Tiの薄膜永久磁石を、熱処理方法Bにて熱処理を行った以外は実施例1と同様に作製した。そして、実施例1と同様に、評価を行った。この結果を表1に示す。
(Comparative Example 3)
A thin film permanent magnet of (Sm 0.9 La 0.1 ) Fe 11 Ti was produced in the same manner as in Example 1 except that the heat treatment was performed by the heat treatment method B. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

(比較例4)
(Sm0.9La0.1)Fe11Tiとし、熱処理は行わない以外は、実施例1と同様に薄膜永久磁石を作製した。そして、実施例1と同様に、評価を行った。この結果を表1に示す。
(Comparative Example 4)
A thin-film permanent magnet was produced in the same manner as in Example 1 except that Fe 11 Ti was used (Sm 0.9 La 0.1 ) and no heat treatment was performed. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

さらに、侵入元素XがNの場合、熱処理A、B後の段階で窒化処理をすることができる。本薄膜永久磁石を1気圧の窒素ガス中で24時間、500℃で窒化処理を行った。R’をNdとし、侵入元素としてNを侵入させことで、より高い飽和磁束密度を得ることが出来た。結果を表2に示す。

Figure 0006769479
Further, when the penetrating element X is N, the nitriding treatment can be performed at the stage after the heat treatments A and B. This thin film permanent magnet was nitrided in nitrogen gas at 1 atm for 24 hours at 500 ° C. A higher saturation magnetic flux density could be obtained by letting R'become Nd and N as an invading element. The results are shown in Table 2.
Figure 0006769479

(実施例7)
R’をNdとし、侵入元素としてNを上記の方法で侵入させて、(Nd0.9La0.1)Fe11TiN1.5とする以外は、実施例1と同様に薄膜永久磁石を作製した。そして、実施例1と同様に、評価を行った。この結果を表2に示す。
(Example 7)
A thin film permanent magnet is used in the same manner as in Example 1 except that R'is Nd and N is allowed to enter as an intruding element by the above method to obtain Fe 11 TiN 1.5 (Nd 0.9 La 0.1 ). Made. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.

(実施例8)
(Nd0.5La0.5)Fe11TiN1.5とする以外は、実施例7と同様に薄膜永久磁石を作製した。そして、実施例1と同様に、評価を行った。この結果を表2に示す。
(Example 8)
A thin-film permanent magnet was produced in the same manner as in Example 7 except that (Nd 0.5 La 0.5 ) Fe 11 TiN 1.5 . Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.

(実施例9)
TにFeとCoを選択し、(Nd0.9La0.1)Fe10CoTiN1.5とする以外は、実施例7と同様に薄膜永久磁石を作製した。そして、実施例1と同様に、評価を行った。この結果を表2に示す。
(Example 9)
A thin-film permanent magnet was produced in the same manner as in Example 7 except that Fe and Co were selected as T and (Nd 0.9 La 0.1 ) Fe 10 CoTiN 1.5 . Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.

(比較例5)
R’をNdとし、侵入元素としてNを上記の方法で侵入させて、NdFe11TiN1.5薄膜永久磁石を比較例1と同様に作製した。そして、実施例1と同様に、評価を行った。この結果を表2に示す。
(Comparative Example 5)
An NdFe 11 TiN 1.5 thin film permanent magnet was produced in the same manner as in Comparative Example 1 by letting R'become Nd and N as an penetrating element by the above method. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.

(比較例6)
R’をNdとし、侵入元素としてNを上記の方法で侵入させて、(Nd0.95La0.05)Fe11TiN1.5とする以外は、比較例2と同様に薄膜永久磁石を作製した。そして、実施例1と同様に、評価を行った。この結果を表2に示す。
(Comparative Example 6)
A thin-film permanent magnet is used in the same manner as in Comparative Example 2, except that R'is Nd and N is penetrated as an invading element by the above method to obtain Fe 11 TiN 1.5 (Nd 0.95 La 0.05 ). Made. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.

(比較例7)
R’をNdとし、侵入元素としてNを上記の方法で侵入させて、(Nd0.9La0.1)Fe11TiN1.5とする以外は、比較例3と同様に薄膜永久磁石を作製した。そして、実施例1と同様に、評価を行った。この結果を表2に示す。
(Comparative Example 7)
A thin-film permanent magnet is used in the same manner as in Comparative Example 3, except that R'is Nd and N is allowed to enter as an invading element by the above method to obtain Fe 11 TiN 1.5 (Nd 0.9 La 0.1 ). Made. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.

(比較例8)
(Nd0.9La0.1)Fe11TiN1.5とする以外は、比較例4と同様に薄膜永久磁石を作製した。そして、実施例1と同様に、評価を行った。この結果を表2に示す。
(Comparative Example 8)
A thin film permanent magnet was produced in the same manner as in Comparative Example 4 except that (Nd 0.9 La 0.1 ) Fe 11 TiN 1.5 . Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.

さらに、仕込み組成のR量、M量を変更した場合でも、高い磁気特性が得られた。M=NbでもThMn12結晶構造が得られ、高い磁気特性を得ることが出来た。結果を表3に示す。

Figure 0006769479
Further, even when the R amount and the M amount of the charged composition were changed, high magnetic properties were obtained. A ThMn 12 crystal structure was obtained even with M = Nb, and high magnetic properties could be obtained. The results are shown in Table 3.
Figure 0006769479

(実施例10)
MにTiを選択し、仕込み組成で、(R’、La)9.784.26.1とし、主相組成を(Sm0.9La0.1)Fe11Tiとする以外は、実施例1と同様に薄膜永久磁石を作製した。そして、実施例1と同様に、評価を行った。この結果を表3に示す。
(Example 10)
Other than selecting Ti for M, setting the preparation composition to (R', La) 9.7 T 84.2 M 6.1, and setting the main phase composition to (Sm 0.9 La 0.1 ) Fe 11 Ti. Made a thin film permanent magnet in the same manner as in Example 1. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 3.

(実施例11)
MにTiを選択し、仕込み組成で、(R’、La)15.380.44.3とし、主相組成を(Sm0.9La0.1)Fe11.5Ti0.5とする以外は、実施例1と同様に薄膜永久磁石を作製した。そして、実施例1と同様に、評価を行った。この結果を表3に示す。
(Example 11)
Select Ti for M, set the preparation composition to (R', La) 15.3 T 80.4 M 4.3, and set the main phase composition to (Sm 0.9 La 0.1 ) Fe 11.5 Ti 0. A thin film permanent magnet was produced in the same manner as in Example 1 except that the value was 5 . Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 3.

(実施例12)
MにNbを選択し、(Sm0.9La0.1)Fe11Nbとする以外は、実施例10と同様に薄膜永久磁石を作製した。そして、実施例1と同様に、評価を行った。この結果を表3に示す。
(Example 12)
A thin film permanent magnet was produced in the same manner as in Example 10 except that Nb was selected for M and Fe 11 Nb (Sm 0.9 La 0.1 ). Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 3.

(実施例13)
MにNbを選択し、(Sm0.9La0.1)Fe11.5Nb0.5とする以外は、実施例11と同様に薄膜永久磁石を作製した。そして、実施例1と同様に、評価を行った。この結果を表3に示す。
(Example 13)
A thin-film permanent magnet was produced in the same manner as in Example 11 except that Nb was selected as M and (Sm 0.9 La 0.1 ) Fe 11.5 Nb 0.5 . Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 3.

さらに、実施例1を基準とし、熱処理方法Aの熱処理時間を短時間にした場合でも、Laリッチ相σのLa組成比が20at%以上となる事で、磁気特性が向上する結果が得られた。この結果を表4に示す。表4には、飽和磁束密度(mT)、保磁力HcJ(kA/m)、Laリッチ相σのLa組成比、粒界相に占めるLaリッチ相σの断面積比、熱処理時間(時間)を示す。

Figure 0006769479
Further, based on Example 1, even when the heat treatment time of the heat treatment method A was shortened, the La composition ratio of the La-rich phase σ was 20 at% or more, so that the magnetic characteristics were improved. .. The results are shown in Table 4. Table 4 shows the saturation magnetic flux density (mT), coercive force HcJ (kA / m), La composition ratio of La-rich phase σ, cross-sectional area ratio of La-rich phase σ in the grain boundary phase, and heat treatment time (time). Shown.
Figure 0006769479

(実施例14)
実施例1と同様の薄膜永久磁石を作製し、熱処理時間を3時間とする以外は、熱処理時間Aと同様の熱処理を行った。そして、実施例1と同様に、評価を行った。この結果を表4に示す。
(Example 14)
A thin-film permanent magnet similar to that of Example 1 was produced, and the same heat treatment as the heat treatment time A was performed except that the heat treatment time was 3 hours. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 4.

(比較例9)
実施例1と同様の薄膜永久磁石を作製し、熱処理時間を15分とする以外は、熱処理時間Aと同様の熱処理を行った。そして、実施例1と同様に、評価を行った。この結果を表4に示す
(Comparative Example 9)
A thin-film permanent magnet similar to that of Example 1 was produced, and the same heat treatment as the heat treatment time A was performed except that the heat treatment time was 15 minutes. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 4.

(実施例1〜3、比較例1〜4)
粒界相に占めるLaリッチ相σの断面積比が増えるにつれて、保磁力の向上が確認できた。
(Examples 1 to 3 and Comparative Examples 1 to 4)
It was confirmed that the coercive force was improved as the cross-sectional area ratio of the La-rich phase σ in the grain boundary phase increased.

(実施例4〜6)
R’をErに変えた場合にも、Smと同様の結果が得られる事が確認できた。また、MをMoにした場合にも、Tiと同様の結果が得られる事が確認できた。TをFeとCoにした場合にも、Feと同様の結果が得られる事が確認できた。
(Examples 4 to 6)
It was confirmed that the same result as Sm can be obtained even when R'is changed to Er. In addition, it was confirmed that the same result as Ti can be obtained even when M is set to Mo. It was confirmed that the same result as Fe was obtained even when T was set to Fe and Co.

(実施例10、11、12、13)
仕込み組成でR量低減、M量低減、MをNbとした場合でも、保磁力はあまり変わらず、高い飽和磁束密度が得られた。
(Examples 10, 11, 12, 13)
Even when the amount of R was reduced, the amount of M was reduced, and M was set to Nb in the charged composition, the coercive force did not change so much, and a high saturation magnetic flux density was obtained.

(実施例7〜9、比較例5〜8)
侵入元素としてNを侵入させた場合においても、実施例1〜6と同様の結果が得られた。
(Examples 7 to 9, Comparative Examples 5 to 8)
The same results as in Examples 1 to 6 were obtained even when N was introduced as an invading element.

(実施例14)
熱処理方法Aの熱処理時間を変更することで、Laリッチ相σのLa組成比を調整することが出来、保磁力の向上効果が得られた。
(Example 14)
By changing the heat treatment time of the heat treatment method A, the La composition ratio of the La-rich phase σ could be adjusted, and the effect of improving the coercive force was obtained.

(比較例9)
熱処理方法Aの熱処理時間を変更することで、粒界相のLa組成比が20at%以下となることから、磁気的な分離効果が低く、保磁力が低い結果となった。
(Comparative Example 9)
By changing the heat treatment time of the heat treatment method A, the La composition ratio of the grain boundary phase becomes 20 at% or less, so that the magnetic separation effect is low and the coercive force is low.

Claims (2)

主相および粒界相を有し、
前記主相がThMn12型結晶構造を有するR−T化合物であり、
RはLaを必須とし、Y、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuから選択される1種以上の希土類元素であり、
Tは、Fe、またはFeおよびCo、またはその一部をM(Ti、V、Cr、Mo、W、Zr、Hf、Nb、Ta、Al、Si、Cu、Zn、GaおよびGeから選択される1種以上)で置換した元素であり、
前記粒界相はLaリッチ相σを有し、
前記Laリッチ相σは立方晶系の結晶構造で、La組成比が20at%以上であって、
前記粒界相に占める前記Laリッチ相σの断面積比が20%以上である希土類永久磁石。
Has a main phase and a grain boundary phase
The main phase is an RT compound having a ThMn 12- type crystal structure.
R requires La and is one or more rare earth elements selected from Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu.
T is selected from Fe, or Fe and Co, or a part thereof of M (Ti, V, Cr, Mo, W, Zr, Hf, Nb, Ta, Al, Si, Cu, Zn, Ga and Ge. It is an element substituted with (1 or more)
The grain boundary phase has a La-rich phase σ and
The La-rich phase σ has a cubic crystal structure and a La composition ratio of 20 at% or more.
A rare earth permanent magnet in which the cross-sectional area ratio of the La-rich phase σ to the grain boundary phase is 20% or more.
前記主相が、さらに侵入元素X(XはN、H、BeおよびCから選択される1種以上の元素)を含む、請求項1に記載の希土類永久磁石。 The rare earth permanent magnet according to claim 1, wherein the main phase further contains an invading element X (X is one or more elements selected from N, H, Be and C).
JP2018507410A 2016-03-24 2017-03-23 Rare earth permanent magnet Active JP6769479B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016059709 2016-03-24
JP2016059709 2016-03-24
PCT/JP2017/011740 WO2017164312A1 (en) 2016-03-24 2017-03-23 Rare-earth permanent magnet

Publications (2)

Publication Number Publication Date
JPWO2017164312A1 JPWO2017164312A1 (en) 2019-01-31
JP6769479B2 true JP6769479B2 (en) 2020-10-14

Family

ID=59900251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018507410A Active JP6769479B2 (en) 2016-03-24 2017-03-23 Rare earth permanent magnet

Country Status (2)

Country Link
JP (1) JP6769479B2 (en)
WO (1) WO2017164312A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123988A1 (en) * 2016-12-26 2018-07-05 日立金属株式会社 Rare earth-transition metal system ferromagnetic alloy
JP7238504B2 (en) * 2019-03-18 2023-03-14 株式会社プロテリアル Bulk body for rare earth magnet
JP7446971B2 (en) 2020-10-02 2024-03-11 株式会社東芝 Magnet materials, permanent magnets, rotating electric machines and vehicles, and methods for manufacturing magnet materials and permanent magnets
CN115862989B (en) * 2023-01-29 2023-06-02 西南应用磁学研究所(中国电子科技集团公司第九研究所) Rare earth permanent magnet and sintering method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001313205A (en) * 1999-11-24 2001-11-09 Hitachi Metals Ltd Isotropic compound, isotropic bonded magnet, rotating machine, and magnet roll
JP2005272984A (en) * 2004-03-26 2005-10-06 Tdk Corp Permanent magnet powder, method for producing permanent magnet powder and bond magnet
JP2013055076A (en) * 2009-12-04 2013-03-21 Hitachi Ltd Light rare earth magnet and magnetic device

Also Published As

Publication number Publication date
JPWO2017164312A1 (en) 2019-01-31
WO2017164312A1 (en) 2017-09-28

Similar Documents

Publication Publication Date Title
RU2389098C2 (en) Functional-gradient rare-earth permanent magnet
JP7220300B2 (en) Rare earth permanent magnet material, raw material composition, manufacturing method, application, motor
JP6265368B2 (en) R-T-B rare earth sintered magnet and method for producing the same
JP6769479B2 (en) Rare earth permanent magnet
US10529473B2 (en) R-T-B based permanent magnet
JP5370609B1 (en) R-T-B permanent magnet
US10672545B2 (en) R-T-B based permanent magnet
US10529474B2 (en) Rare-earth permanent magnet
EP3128521B1 (en) W-containing r-fe-b-cu sintered magnet and quenching alloy
US9070500B2 (en) R-T-B based permanent magnet
JP2006303434A (en) Gradient functionality rare earth permanent magnet
CN108695033B (en) R-T-B sintered magnet
CN107492429A (en) A kind of high temperature resistant neodymium iron boron magnetic body and preparation method thereof
JP2000114017A (en) Permanent magnet and material thereof
US9082537B2 (en) R-T-B based permanent magnet
US9396852B2 (en) R-T-B based permanent magnet
JP6506182B2 (en) Rare earth-containing alloy flakes, method for producing the same and sintered magnet
JP2011049440A (en) Method for manufacturing r-t-b based permanent magnet
CN108630367A (en) R-t-b based rare earth magnet
JP3683260B2 (en) Rare earth permanent magnet
JP6511844B2 (en) RTB based sintered magnet
JP2000114016A (en) Permanent magnet and manufacture thereof
CN111261353B (en) R-T-B based permanent magnet
JP2017183324A (en) R-t-b system permanent magnet
JP2016207678A (en) Sm-Fe-N-BASED MAGNET

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200907

R150 Certificate of patent or registration of utility model

Ref document number: 6769479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150