WO2018123741A1 - 網膜走査型検眼装置、網膜走査型検眼システム、網膜走査型検眼方法、アイウェア提供システム、アイウェア提供方法及び網膜走査型アイウェア - Google Patents

網膜走査型検眼装置、網膜走査型検眼システム、網膜走査型検眼方法、アイウェア提供システム、アイウェア提供方法及び網膜走査型アイウェア Download PDF

Info

Publication number
WO2018123741A1
WO2018123741A1 PCT/JP2017/045581 JP2017045581W WO2018123741A1 WO 2018123741 A1 WO2018123741 A1 WO 2018123741A1 JP 2017045581 W JP2017045581 W JP 2017045581W WO 2018123741 A1 WO2018123741 A1 WO 2018123741A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
unit
retinal scanning
optometry
subject
Prior art date
Application number
PCT/JP2017/045581
Other languages
English (en)
French (fr)
Inventor
洋宜 宮内
賢治 安井
菅原 充
鈴木 誠
Original Assignee
株式会社Qdレーザ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Qdレーザ filed Critical 株式会社Qdレーザ
Priority to US16/471,274 priority Critical patent/US11019995B2/en
Priority to CN201780080633.XA priority patent/CN110113985B/zh
Priority to EP17887628.0A priority patent/EP3563754B1/en
Publication of WO2018123741A1 publication Critical patent/WO2018123741A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/11Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring interpupillary distance or diameter of pupils
    • A61B3/111Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring interpupillary distance or diameter of pupils for measuring interpupillary distance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0033Operational features thereof characterised by user input arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/1025Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for confocal scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/16Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring intraocular pressure, e.g. tonometers
    • A61B3/165Non-contacting tonometers
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C11/00Non-optical adjuncts; Attachment thereof
    • G02C11/10Electronic devices other than hearing aids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/028Microscale sensors, e.g. electromechanical sensors [MEMS]
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C13/00Assembling; Repairing; Cleaning
    • G02C13/003Measuring during assembly or fitting of spectacles
    • G02C13/005Measuring geometric parameters required to locate ophtalmic lenses in spectacles frames

Definitions

  • the present invention relates to a retinal scanning optometry apparatus, a retinal scanning optometry system, a retinal scanning optometry method, a retinal scanning eyewear providing system, a retinal scanning eyewear providing method, and a retinal scanning eyewear.
  • Maxwell's vision means that the image light based on the image data is once converged at the center of the pupil and then projected onto the retina. It is a method of visual recognition.
  • this retinal scanning head-mounted display When manufacturing this retinal scanning head-mounted display, various parameters for each user are required depending on the state of the user's eyeball. For this reason, when manufacturing and selling a retinal scanning head-mounted display, for example, let the user try on a retinal scanning head-mounted display, acquire the user's parameters, and customize based on the acquired parameters. It becomes a procedure.
  • the above-described method for manufacturing and selling a retinal scanning head-mounted display is complicated in its procedure, and thus is required to be efficient.
  • the conventional method for selling eyeglasses described above only data relating to a lens and a frame can be acquired, and parameters necessary for projecting an image onto a user's retina cannot be acquired. Further, the conventional optometry technique has a problem that, for example, when the anterior eye portion of the subject has a disease, the examination including the retina cannot be performed.
  • the disclosed technology has been made in view of the above circumstances, and aims to improve the manufacturing efficiency of a retinal scanning head mounted display.
  • the disclosed technology includes a storage unit in which inspection image data is stored, and a laser light source that generates an image laser beam based on the inspection image data, and the eyeball of the subject is generated by the image laser beam.
  • a laser irradiating unit that projects an image for examination onto the retina, an optical member that converges the image laser beam in the eyeball of the subject, and the laser irradiating unit centered on a convergence point of the image laser beam.
  • a parameter acquisition unit that acquires parameter information for retinal scanning eyewear, including angle information indicating the rotation angle when rotated, and an output unit that outputs the parameter information to an external device
  • a retinal scanning optometry apparatus A retinal scanning optometry apparatus.
  • FIG. 1 is a diagram illustrating an optometry apparatus according to the first embodiment.
  • the optometry apparatus 10 of this embodiment is a retinal scanning optometry apparatus. Specifically, the optometry apparatus 10 of the present embodiment holds examination image data, and irradiates the retina of the subject P with a laser beam based on the examination image data, whereby the examination image is obtained. Is projected onto the retina of the subject P. Next, the optometry apparatus 10 receives an input from the subject P such as an operation for adjusting the position of the laser irradiation unit of the optometry apparatus 10 or information indicating how to visually check the test image.
  • the optometry apparatus 10 generates and outputs parameter information for projecting an image on the retina of the subject P based on the input information. Further, the optometry apparatus 10 according to the present embodiment may generate, hold, or output optometry result information of the subject P based on the input information.
  • the parameter information of the subject P is information including, for example, the distance between the pupils of the subject P, the visual field, the distance from the laser irradiation unit to the convergence point, the angle of the laser beam emitted from the laser light source, and the like.
  • the parameter information of the present embodiment is information indicating an area scanned by the laser beam in the retina of the subject P.
  • the optometry result information is information indicating the optometry result of the subject P.
  • the optometry result information is information indicating the state of the eyeball of the subject P. Details of the parameter information and the optometry result information will be described later.
  • the optometry apparatus 10 of the present embodiment is installed, for example, on the pedestal 20 or the like, and the optometry is performed in a state where the subject P is close to the eyeball so as to exclude the inside of the eyepiece apparatus of the optometry apparatus 10.
  • FIG. 1 an example in which the subject P sits on a chair and performs an optometry is shown, but is not limited thereto.
  • the subject P may perform an optometry while standing.
  • the optometry apparatus 10 of the present embodiment may be installed, for example, in a store where a retinal scanning head-mounted display (hereinafter, eyewear) is sold, or in a hospital (such as an ophthalmologist). Moreover, the optometry apparatus 10 of this embodiment may be installed in a gymnasium, a sports gym, a commercial facility, etc., for example. The optometry apparatus 10 of the present embodiment may be installed in any place as long as the subject P can perform optometry.
  • a retinal scanning head-mounted display hereinafter, eyewear
  • a hospital such as an ophthalmologist
  • FIG. 2 is a diagram illustrating an example of a system configuration of the eyewear providing system according to the first embodiment.
  • the eyewear providing system 100 includes an optometry apparatus 10 and a terminal device 30.
  • the optometry apparatus 10 and the terminal apparatus 30 communicate with each other via a network or the like.
  • the optometry apparatus 10 when the optometry apparatus 10 acquires the parameter information 40 of the subject P, the optometry apparatus 10 transmits the acquired parameter information 40 to the terminal apparatus 30.
  • the terminal device 30 of the present embodiment may be a terminal device that controls a manufacturing apparatus that manufactures the eyewear 50, for example.
  • the eyewear 50 is a retinal scanning head mounted display.
  • the terminal device 30 reads the parameter information 40 in the manufacturing process of the eyewear 50, and causes the eyewear 50 manufacturing apparatus to perform attachment and setting of various parts in the eyewear 50 based on the parameter information 40. May be.
  • the terminal device 30 of the present embodiment may be a terminal device that is disposed in, for example, a store that sells the eyewear 50 and stores and manages the parameter information 40 together with the customer information.
  • the terminal device 30 may pass the parameter information 40 of the user of the eyewear 50 to the manufacturing factory of the eyewear 50.
  • parameter information necessary for customizing the eyewear 50 for each user can be acquired simply by performing optometry, and can be used for manufacturing the eyewear 50. . Therefore, according to this embodiment, the manufacturing efficiency of the eyewear 50 can be improved.
  • the terminal device 30 of the present embodiment may be, for example, a terminal device possessed by the subject P who has performed an optometry. Furthermore, the terminal device 30 of the present embodiment may be a control device connected to the eyewear 50. Thus, if the user's parameter information 40 is stored in the terminal device or eyewear 50 possessed by the user, the parameter information can be used when, for example, the eyewear 50 is replaced or repaired. .
  • FIG. 3 is a diagram illustrating an example of a hardware configuration of the optometry apparatus.
  • the optometry apparatus 10 includes an input device 11, an output device 12, an arithmetic processing device 13, a storage device 14, a mechanism control device 15, an eyepiece device 16, and an operation device 17.
  • the input device 11 accepts various types of information for the optometry device 10.
  • the input device 11 includes, for example, an operation member that performs an instruction to the optometry device 10, a keyboard, and the like, a receiving device that receives information transmitted to the optometry device 10, and the like.
  • the output device 12 outputs various information from the optometry device 10.
  • the output device 12 includes, for example, a transmission device that transmits information acquired by the optometry device 10 to an external device, a display that displays the results of various processes performed by the optometry device 10, and the like.
  • the arithmetic processing unit 13 is realized by a CPU (Central Processing Unit) that controls the entire optometry apparatus 10.
  • the storage device 14 stores various programs executed in the arithmetic processing device 13, image data for inspection, and the like.
  • the storage device 14 holds parameter information, optometry result information, and the like acquired as a result of the optometry.
  • the mechanism control device 15 receives operations from the operation device 17 and controls operations of various mechanisms included in the eyepiece device 16 included in the optometry apparatus 10. Further, the mechanism control device 15 outputs the inspection image data read from the storage device 14 by the arithmetic processing device 13 to the eyepiece device 16.
  • the eyepiece device 16 includes a laser irradiation unit 60 and has a mechanism for moving the laser irradiation unit 60 in order to irradiate a laser beam irradiated from the laser irradiation unit 60 to a desired position of the subject.
  • the laser irradiation unit 60 irradiates a laser beam so that the inspection image is projected onto the retina of the subject P based on the inspection image data input from the mechanism control device 15. Details of the eyepiece device 16 and the laser irradiation unit 60 will be described later.
  • the operation device 17 is used for an operation for adjusting the position of the laser irradiation unit 60 in the eyepiece device 16.
  • FIG. 4 are figures explaining the structure of a laser irradiation part.
  • the laser irradiation unit 60 of the present embodiment includes a laser light source 62, a MEMS (Micro Electro Mechanical Systems) mirror 63, a mirror 64, a tablet lens 65, a mirror 66, a mirror 67, and a condenser lens 68.
  • MEMS Micro Electro Mechanical Systems
  • the laser light source 62 irradiates the laser beam L so as to project the inspection image onto the retina of the eyeball E based on the inspection image data.
  • the MEMS mirror 63 scans the laser beam L in the vertical direction and the horizontal direction by control based on the inspection image data.
  • the laser beam L scanned by the MEMS mirror 63 is reflected by the mirror 64 and enters the tablet lens 65.
  • the laser beam L transmitted through the tablet lens 65 is polarized in a necessary direction by the mirrors 66 and 67 and is incident on the condenser lens 68.
  • the laser beam L is condensed on the tablet lens 65 and the condenser lens 68 and irradiated from the laser irradiation unit 60 toward the eyeball E of the subject P.
  • the condensed laser beam L is condensed so as to converge at a laser convergence point F, which is substantially the center of the crystalline lens of the eyeball E.
  • the distance from the surface of the condenser lens 68 on the eyeball E side to the laser convergence point F is normally set to about 5 mm to 7 mm.
  • FIG. 4 is an example of an optical system included in the laser irradiation unit 60, and the present invention is not limited to this.
  • the number and arrangement of mirrors and condenser lenses may be changed depending on the configuration of the eyepiece device 16.
  • FIG. 5 is a diagram illustrating the configuration of the eyepiece apparatus.
  • FIG. 5A shows a perspective view of the right portion when the eyepiece device 16 is divided at the central portion.
  • FIG. 5B shows a front view of FIG. 5A viewed from the direction of arrow A.
  • FIG. 5C shows a bottom view of FIG.
  • the configuration of the left side portion is determined by determining the configuration of the right side portion to the left and right, and has the same configuration.
  • the eyepiece device 16 of this embodiment includes a laser irradiation unit 60, a pedestal 70, an X-axis drive motor 71, a Y-axis drive motor 72, a Z-axis drive motor 73, an X-axis rotation motor 74, and a Y-axis rotation motor 75.
  • the laser irradiation unit 60 can be moved in the X-axis direction, the Y-axis direction, and the Z-axis direction shown on the paper surface by the X-axis drive motor 71, the Y-axis drive motor 72, and the Z-axis drive motor 73 on the base 70, respectively. It is supported by. Further, the laser irradiation unit 60 is supported on the pedestal 70 by an X-axis rotation motor 74 and a Y-axis rotation motor 75 so as to be rotatable about the X-axis and the Y-axis shown on the paper surface.
  • the X-axis drive motor 71, the Y-axis drive motor 72, and the Z-axis drive motor 73 are driven according to the operation by the operation device 17, and the X-axis direction, the Y-axis direction, and the Z-axis Moved in the direction.
  • the X-axis rotation motor 74 and the Y-axis rotation motor 75 are driven in the laser irradiation unit 60 according to the operation by the operation device 17 and rotate around the X-axis and the Y-axis.
  • a convergence point F exists on the rotation center axis of the X axis, and a convergence point F exists on the rotation center axis of the Y axis. That is, the laser convergence point F becomes the intersection of the X-axis rotation axis and the Y-axis rotation axis, and the X-axis and Y-axis rotate around the convergence point F.
  • the movement distance in the X-axis direction from the initial state, the movement distance in the Y-axis direction, the movement distance in the Z-axis direction, the rotation angle around the X axis, the rotation angle around the Y axis, etc. May be acquired as parameter information.
  • the rotation angles of the X axis and the Y axis with respect to the laser convergence point F are parameter information.
  • the movement distance in the X-axis direction is used for calculating the interpupillary distance. Specifically, the sum of the movement distance in the X-axis direction and the movement distance in the X-axis direction of the left portion of the eyepiece device 16 is the interpupillary distance.
  • the movement distance in the Y-axis direction is considered to change depending on the position of the eyeball on the face of the subject P, for example. Further, it is considered that the movement distance in the Z-axis direction changes depending on, for example, the nose and forehead of the subject P, the shape of the eyebrows, and the like.
  • the distance from the surface on the eyeball E side of the condenser lens 68 to the laser convergence point F does not change.
  • the rotation angle about the X axis and the rotation angle about the Y axis depend on the state of the eyelids and eyelashes of the subject P, the position where the examination image is projected on the retina of the subject P, and the like. It will change.
  • the position of the laser irradiation unit 60 is adjusted so that the subject P can most easily see the test image.
  • the subject P views the inspection image when the laser beam emitted from the laser irradiation unit 60 passes through the pupil of the subject P and is irradiated on the retina. Therefore, in the present embodiment, the laser light source 62 and the eyeball of the subject P are adjusted by causing the subject P to adjust the position of the laser irradiation unit 60 in the eyepiece device 16 so that the examination image is most easily visible.
  • the positional relationship between the laser light source and the eyeball of the subject P indicated by the parameter information is changed to the positional relationship between the eyewear laser light source and the eyeball of the eyewear user.
  • the parameter information is obtained by performing optometry using the optometry apparatus 10 for the user who intends to use the eyewear, and using this parameter information, Customize the user's eyewear.
  • FIG. 6 is a diagram for explaining the function of the optometry apparatus.
  • the optometry apparatus 10 includes an optometry processor 110.
  • the optometry processor 110 is realized by the arithmetic processing device 13 reading and executing a program stored in the storage device 14.
  • the optometry processing unit 110 of the present embodiment includes an input reception unit 111, an image data reading unit 112, an image projection unit 113, a parameter acquisition unit 114, an optometry result acquisition unit 115, an output unit 116, and a storage unit 117.
  • the input receiving unit 111 receives various inputs to the optometry apparatus 10. Specifically, the input receiving unit 111 receives an optometry start request for the optometry apparatus 10, an operation instruction from the operation device 17, and the like.
  • the image data reading unit 112 reads the inspection image data stored in the storage unit 117.
  • the image projection unit 113 causes the laser irradiation unit 60 to irradiate the laser beam L according to the read inspection image data, and causes the inspection image to be projected onto the retina of the subject P.
  • the parameter acquisition unit 114 acquires parameter information of the eyepiece device 16 held by the mechanism control device 15 in response to an operation from the operation device 17.
  • the optometry result acquisition unit 115 projects information for examination onto the retina of the subject P, and acquires information indicating the result of the optometry performed on the subject P.
  • the test image may be displayed on the output device (display) 12 of the optometry apparatus 10 and the visually recognized region may be input to the subject P.
  • the examination assistant when it is difficult for the subject P to input the optometry result in a state where the eyeball is close to the optometry apparatus 10, an input to the optometry apparatus 10 may be requested to the examination assistant.
  • the subject P may tell the examination assistant the area in which the characters can be read by reading out the visually recognized characters.
  • the optometry apparatus 10 has a voice input unit (such as a microphone) and a voice recognition function, the optometry result is directly input by the voice of the subject P by reading out the characters that the subject P can visually recognize. can do.
  • the output unit 116 transmits the acquired parameter information to the terminal device 30.
  • the output unit 116 may store the acquired optometry information and the like in the storage unit.
  • the storage unit 117 is, for example, a storage area provided in the storage device 14 or the like, and stores examination image data 118, parameter information 119, and optometry result information 120.
  • the inspection image data 118 may be stored in the storage unit 117 in advance.
  • the parameter information 119 and the optometry result information 120 may be temporarily stored after the optometry is performed.
  • FIG. 7 is a diagram illustrating an example of an inspection image according to the first embodiment.
  • the inspection image 711 of the present embodiment is projected onto the retina of the subject P by a laser beam irradiated based on the inspection image data 118.
  • the inspection image 711 is divided into a plurality of areas, and an identifier for identifying each area is assigned to each area.
  • the inspection image 711 is divided into nine regions, and an identifier for identifying each region is given in each region.
  • a subject having an identification number that cannot be visually recognized among the identification numbers 1 to 9 has a field of view corresponding to the region specified by the identification number in the retina. Is determined to be missing.
  • the inspection image 711 is divided into nine regions, but the present invention is not limited to this.
  • the number of division of the inspection image 711 may be arbitrary.
  • the inspection image 711 is divided into nine rectangular areas, but the present invention is not limited to this.
  • the inspection image 711 may be divided into regions having any shape.
  • the identifier that identifies each region of the inspection image 711 is a number, but is not limited thereto.
  • the identifier for specifying the area may not be a number but may be a character or an illustration.
  • the inspection image is not limited to the image as shown in FIG.
  • the inspection image may be a sandstorm image, a Landolt ring, an ETDRS eye chart, an Amsler chart, or the like.
  • FIG. 8 is a diagram illustrating an example of parameter information according to the first embodiment.
  • the parameter information 119 of the present embodiment includes, for example, the interpupillary distance, the rotation angle about the X axis, and the rotation angle about the Y axis.
  • the movement distances in the X-axis direction, the Y-axis direction, and the Z-axis direction may be included.
  • FIG. 9 is a diagram illustrating an example of optometry result information according to the first embodiment.
  • the optometry result information 120 of the present embodiment includes, for example, an identifier of a region visually recognized by the subject P and an identifier of a region not visually recognized by the subject P in the examination image 711. In the present embodiment, it is possible to determine whether or not there is a visual field defect in the subject P from these identifiers.
  • the identifier of the region visually recognized by the subject P is “2, 3, 5, 6, 8, 9”, and the identifier of the region not visually recognized by the subject P is “1, 4, 7 ". Therefore, this subject P lacks the visual field corresponding to the region having the identifier “1, 4, 7”.
  • the optometry result information 120 may include, for example, subjective symptoms of the subject P.
  • the subject P has a distortion in the field of view.
  • FIG. 10 is a flowchart illustrating processing of the optometry apparatus according to the first embodiment.
  • the optometry apparatus 10 determines whether or not an optometry start instruction has been received by the input reception unit 111 of the optometry processing unit 110 (step S1001). Specifically, the input receiving unit 111 may receive an optometry start request when an activation instruction or the like is given to the optometry apparatus 10.
  • step S1001 when an optometry start instruction is not accepted, the optometry processor 110 waits until this instruction is accepted.
  • step S1001 when an optometry start instruction is received, the optometry processing unit 110 reads the test image data 118 from the storage unit 117 by the image data reading unit 112, and projects the test image by the image projection unit 113 ( Step S1002).
  • the optometry processor 110 determines whether or not the position of the laser irradiation unit 60 in the eyepiece device 16 has been determined (step S1003). Specifically, the optometry processing unit 110 determines whether or not the input reception unit 111 has received a notification indicating that the position of the laser irradiation unit 60 has been determined. In the present embodiment, for example, when the adjustment of the position of the laser irradiation unit 60 is completed, the operation device 17 may perform an operation of notifying that effect. When the mechanism control device 15 accepts this operation, the mechanism control device 15 may notify the arithmetic processing device 13 of the confirmation of the position of the laser irradiation unit 60.
  • step S1003 when the position is not fixed, the optometry processing unit 110 stands by until the position is fixed.
  • the optometry processing unit 110 acquires, by the parameter acquisition unit 114, the parameter information 119 indicating the position of the laser irradiation unit 60 in the eyepiece device 16 via the mechanism control device 15, and stores it. Held in the unit 117 (step S1004).
  • the optometry processor 110 determines whether or not an input of the optometry result has been received by the input receiver 111 (step S1005). If the input of the optometry result is not received in step S1005, the optometry processor 110 waits until the input of the optometry result is received.
  • the optometry processing unit 110 holds the optometry result acquisition unit 115 in the storage unit 117 as the optometry result information 120 (step S1006).
  • the optometry processing unit 110 transmits the acquired parameter information to the terminal device 30 through the output unit 116 (step S1007), and ends the process.
  • the output unit 116 may also transmit the optometry result information 120 to the terminal device 30 together with the parameter information 119.
  • the optometry apparatus 10 acquires the parameter information indicating the positional relationship between the eyeball of the subject P and the laser light source, and based on the positional relationship indicated by the parameter information,
  • the eyewear used for the examiner P is manufactured. Therefore, according to this embodiment, it can contribute to the improvement of the manufacturing efficiency of eyewear.
  • FIG. 11 is a diagram illustrating an example of a system configuration of the eyewear providing system according to the second embodiment.
  • the eyewear providing system 100A of the present embodiment includes an optometry apparatus 10, a management apparatus 300, and a terminal apparatus 30A.
  • the terminal device 30A and the management device 300 are connected via a network or the like.
  • the management apparatus 300 and the optometry apparatus 10 are connected so as to satisfy the respective communication standards.
  • the optometry apparatus 10 and the management apparatus 300 are included in the optometry system 200.
  • the number of optometry systems 200 included in the eyewear providing system 100A is one, but the present invention is not limited to this.
  • the number of optometry systems 200 included in the eyewear providing system 100A may be any number.
  • the optometry apparatus 10 outputs parameter information and optometry result information to the management apparatus 300.
  • the management device 300 manages optometry result information and parameter information in association with user information. In addition, the management device 300 transmits parameter information to the terminal device 30A.
  • the management apparatus 300 includes an optometry management processing unit 310.
  • the optometry management processing unit 310 holds user information related to a user who performs optometry, and performs optometry using an examination image corresponding to the attribute of the user.
  • the optometry management processing unit 310 specifies an external server that is an acquisition source of the inspection image according to the user attribute, and acquires the content provided from the specified external server as the inspection image.
  • the inspection image is acquired from any of the servers 400, 500, and 600 as the external server.
  • the terminal device 30A includes a deflection angle setting processing unit 31, and based on the parameter information received from the management device 300, the deflection of the MEMS mirror mounted on the light source unit of the eyewear. Calculate and set the corner.
  • the deflection angle of the MEMS mirror indicates an optical scanning angle.
  • FIG. 12 is a diagram illustrating an example of a hardware configuration of the management apparatus.
  • the management device 300 includes an input device 301, an output device 302, a drive device 303, an auxiliary storage device 304, a memory device 305, an arithmetic processing device 306, and an interface device 307, which are mutually connected by a bus B. .
  • the input device 301 inputs various information.
  • the output device 302 outputs various information.
  • the interface device 307 includes a modem, a LAN card, and the like, and is used for connecting to a network.
  • the optometry management program is at least a part of various programs that control the management apparatus 300.
  • the optometry management program is provided by, for example, distribution of the storage medium 308 or downloading from a network.
  • the storage medium 308 that records the optometry management program is a storage medium that records information optically, electrically, or magnetically, such as a CD-ROM, flexible disk, or magneto-optical disk, or information such as a ROM or flash memory.
  • the optometry management program is installed from the storage medium 308 to the auxiliary storage device 304 via the drive device 303 when the storage medium 308 storing the optometry management program is set in the drive device 303.
  • the optometry management program downloaded from the network is installed in the auxiliary storage device 304 via the interface device 307.
  • the auxiliary storage device 304 stores the installed optometry management program and stores necessary files, data, and the like.
  • the memory device 305 reads and stores the optometry management program from the auxiliary storage device 304 when the computer is activated.
  • the arithmetic processing unit 306 implements various processes as described later according to the optometry management program stored in the memory device 305.
  • terminal device 30A of the present embodiment is a general computer and has the same configuration as the management device 300, and thus the description thereof is omitted.
  • FIG. 13 is a diagram for explaining the function of each device included in the eyewear providing system according to the second embodiment.
  • the management apparatus 300 includes an optometry management processing unit 310, a user information database 330, an attribute correspondence database 340, and a result database 350.
  • the user information database 330 stores user information related to a user who performs optometry by the optometry apparatus 10.
  • the attribute correspondence database 340 associates information indicating user attributes with information indicating a server from which content is acquired.
  • the result database 350 stores user information and optometry results in association with each other. Details of each database included in the management apparatus 300 will be described later.
  • the optometry management processing unit 310 is realized by the arithmetic processing device 306 reading and executing an optometry management program stored in the memory device 305 or the like.
  • the optometry management processing unit 310 of this embodiment includes a user information acquisition unit 311, an attribute determination unit 312, an image acquisition source identification unit 313, a corresponding image acquisition unit 314, an image processing unit 315, an image data output unit 316, and an optometry result acquisition unit. 317, an eyeball state detection unit 318, a parameter transmission unit 319, and a result storage unit 320.
  • the user information acquisition unit 311 acquires user information.
  • the user information may be received by the input reception unit 111 of the optometry apparatus 10 and output to the management apparatus 300.
  • the user information may be input by the input device 301 of the management device 300 or the like. Details of the user information will be described later.
  • the attribute determination unit 312 determines a user attribute from information included in the user information.
  • the image acquisition source identification unit 313 refers to the attribute correspondence database 340 and identifies an external server corresponding to the user attribute.
  • the corresponding image acquisition unit 314 acquires the image data of the content provided from the server specified by the image acquisition source specifying unit 313.
  • the image processing unit 315 processes the image data acquired by the corresponding image acquisition unit 314 to obtain inspection image data. Details of the processing by the image processing unit 315 will be described later.
  • the image data output unit 316 outputs the processed inspection image data to the optometry apparatus 10.
  • the optometry result acquisition unit 317 acquires parameter information and optometry result information from the optometry apparatus 10.
  • the eyeball state detection unit 318 detects the state of the eyeball based on the optometry result information, and outputs it as eyeball state information. Specifically, the eyeball state detection unit 318 holds reference information for determining the state of the eyeball, and may determine the state of the eyeball by comparing the optometry result information with the reference information. .
  • the parameter transmission unit 319 transmits the parameter information acquired from the optometry apparatus 10 to the terminal apparatus 30A.
  • the result storage unit 320 stores the parameter information, optometry result information, and eyeball state information acquired by the optometry result acquisition unit 317 in the result database 350 in association with the user information.
  • the result database 350 of the present embodiment stores result information 351 in which parameter information, optometry result information, and eyeball state information are associated with user information as user information.
  • the user information is, for example, a user ID.
  • the parameter information is the parameter information 119 shown in FIG. 8
  • the optometry result information is the optometry result information 120 shown in FIG. is there.
  • the eyeball state detection unit 318 determines that there is a visual field defect.
  • the eyeball state detection unit 318 determines that there is a possibility of glaucoma for the state of the eyeball of the subject P. Therefore, in this case, the eyeball state information is “There is a visual field defect and there is a possibility of glaucoma”.
  • the eyeball state detection unit 318 is provided in the management apparatus 300, but the present invention is not limited to this.
  • the eyeball state detection unit 318 may be provided in the optometry apparatus 10.
  • the optometry apparatus 10 may transmit parameter information, optometry result information, and eyeball state information to the management apparatus 300.
  • the terminal device 30A of the present embodiment includes a deflection angle setting processing unit 31.
  • the deflection angle setting processing unit 31 of the present embodiment is realized by the arithmetic processing device of the terminal device 30A reading and executing the mirror control program stored in the storage device.
  • the deflection angle setting processing unit 31 of the present embodiment includes a parameter reception unit 32, a deflection angle calculation unit 33, and a deflection angle setting unit 34.
  • the parameter receiving unit 32 acquires the parameter information transmitted from the management device 300. Based on the parameter information, the deflection angle calculation unit 33 obtains an area on the retina that can be visually recognized by the user who performed the optometry based on the parameter information. Then, the deflection angle calculation unit 33 calculates the deflection angle of the MEMS mirror mounted on the eyewear 50 based on the obtained area.
  • the deflection angle setting processing unit 31 of the present embodiment may hold various types of information used for calculating the deflection angle, such as specification information indicating the specifications of the MEMS mirror of the eyewear 50.
  • the deflection angle setting unit 34 sets the deflection angle calculated by the deflection angle calculation unit 33 in the eyewear 50.
  • FIG. 14 is a diagram illustrating an example of a user information database according to the second embodiment.
  • the user information database 330 of this embodiment has user ID, password, gender, and age as information items.
  • the value of the item “user ID” indicates an identifier for identifying a user of the eyewear providing system 100A.
  • the value of the item “password” is a password of the user identified by the user ID.
  • the value of the item “gender” indicates the gender of the user, and the value of the item “age” indicates the age of the user.
  • the item “user ID” is associated with other items, and the user information of the present embodiment is information including the value of the item “user ID” and the value of other items. It is.
  • the value of the item “gender” and the value of the item “age” are information indicating user attributes.
  • the information indicating the user attribute is not limited to the items shown in FIG.
  • Information indicating user attributes may include, for example, items indicating user preferences.
  • FIG. 15 is a diagram illustrating an example of an attribute correspondence database according to the second embodiment.
  • the attribute correspondence database 340 of the present embodiment includes attributes and corresponding servers as information items, and the item “attribute” and the item “corresponding server” are associated with each other.
  • the value of the item “attribute” is information indicating an attribute in the user information database 330.
  • the value of the item “corresponding server” indicates information for identifying the server associated with the attribute. Specifically, the value of the item “corresponding server” may be the name of the server, or a URL (Uniform Resource Locator) specifying the server.
  • the corresponding server is the server 500.
  • the corresponding image acquisition unit 314 accesses the server 500 and acquires image data provided from the server 500.
  • the image data provided here may be, for example, an advertisement image of a product for women. For example, when the user's age is 10 years old or less, an image for children may be used as the inspection image.
  • the image corresponding to the attribute of the user is used as the inspection image in this way, so that the user can perform the optometry with interest.
  • FIG. 16 is a diagram illustrating image processing according to the second embodiment.
  • An image 161 in FIG. 16 is an example of an image projected by image data before processing
  • an image 161-1 is an example of an image projected by image data after processing.
  • the image 161 shown in FIG. 16 is an image of content acquired from the server specified by the attribute correspondence database 340.
  • the image processing unit 315 of the present embodiment processes the image of the content to the extent that the content indicated by the content is not changed.
  • a black frame 162 is superimposed on the outer periphery of the image 161 to form an inspection image 161-1.
  • a user who performs an optometry with the optometry apparatus 10 is likely to notice a visual field defect in the outer peripheral portion of the visual field.
  • the image processing method by the image processing unit 315 is not limited to the method shown in FIG.
  • the image processing unit 315 may change the color of the image indicating the content, or may change the density of the image color.
  • the image processing unit 315 may superimpose, for example, a lattice pattern or the like that divides an image indicating content into a plurality of regions on the image indicating content.
  • the content image acquired from the server is a still image, but the present invention is not limited to this.
  • the content image acquired from the server may be a moving image, for example.
  • FIG. 17 is a sequence diagram for explaining the operation of the eyewear providing system according to the second embodiment.
  • the management apparatus 300 when the management apparatus 300 acquires user information (step S1701), the management apparatus 300 determines a user attribute based on the user information and specifies a server from which image data is acquired ( Step S1702).
  • the management apparatus 300 notifies the specified server of an image data acquisition request (step S1703). Subsequently, the server that has received the notification transmits the image data to the management apparatus 300 in response to the acquisition request (step S1704).
  • the image data transmitted to the management apparatus 300 may be determined as image data provided in advance on the server side, for example.
  • the management apparatus 300 processes the acquired image data (step S1705), and outputs the processed image data to the optometry apparatus 10 as inspection image data (step S1706).
  • the optometry apparatus 10 reads the acquired examination image data (step S1707), projects the examination image, and performs optometry (step S1708). Subsequently, the optometry apparatus 10 outputs parameter information and optometry result information to the management apparatus 300 (steps S1709 and 1710).
  • the management apparatus 300 when acquiring the optometry result information, detects the state of the eyeball (step S1711). Subsequently, the management apparatus 300 stores the parameter information, the optometry result information, and the eyeball state information in the result database 350 in association with the user information (step S1712). Next, the management device 300 transmits parameter information to the terminal device 30A (step S1713).
  • the terminal device 30A When receiving the parameter information, the terminal device 30A calculates a deflection angle based on the parameter information (step S1714). Subsequently, the terminal device 30A sets the calculated deflection angle in the eyewear 50 (step S1715).
  • the parameter information of the user who has performed an optometry using the optometry apparatus 10 is set in the eyewear 50, and the eyewear 50 is set to the user. Can be provided.
  • the eyewear providing system 100A when the management apparatus 300 accepts input of user information, the attribute of the user of the optometry apparatus 10 is determined based on the user information, and the examination according to the user is performed. Optometry is performed by image. Then, the eyewear providing system 100A of the present embodiment stores the optometry result information and parameter information of the user in the management device 300, and transmits the parameter information from the management device 300 to the terminal device 30A. The terminal device 30A sets the received parameter information in the eyewear 50. At this time, the terminal device 30 ⁇ / b> A of the present embodiment may be a terminal device that controls a manufacturing apparatus that manufactures the eyewear 50.
  • the parameter information of the user who performed the optometry is set in the eyewear 50, and the user-specific eyewear 50 is manufactured and provided to the user. be able to.
  • an optometry system 200 including an optometry apparatus 10 and a management apparatus 300 is installed in an eyewear store, and the terminal device 30A is used as a terminal device for controlling an eyewear manufacturing apparatus. It is assumed that it is installed in 50 manufacturing factories.
  • the user when a user visiting an eyewear store purchases his / her own eyewear, the user first performs optometry using the optometry system 200 installed in the store.
  • the optometry system 200 stores the parameter information and the optometry result information in the management apparatus 300 in association with the user information.
  • the user information may include information for specifying a store where the optometry system 200 is installed.
  • the optometry system 200 transmits the parameter information together with the user information from the management device 300 to the terminal device 30A.
  • the terminal device 30A causes the manufacturing device to attach the laser irradiation unit 60 using the received parameter information.
  • the eyewear manufactured here is purchased by the user specified by the user information. Therefore, the eyewear is delivered from the manufacturing factory to the store, and is delivered to the user at the store.
  • eyewear can be provided to the user who has performed optometry in this way. Therefore, according to the present embodiment, in order to customize the eyewear according to the user, it is possible to save time and effort for the user to try on the eyewear and make various adjustments.
  • FIG. 18 is a flowchart for explaining processing of the management apparatus according to the second embodiment.
  • the optometry management processing unit 310 of the management apparatus 300 of this embodiment determines whether or not user information has been received by the user information acquisition unit 311 (step S1801). In step S1801, when user information is not acquired, it waits until user information is acquired.
  • step S1801 when user information is received, the optometry management processing unit 310 causes the attribute determination unit 312 to determine the attribute of the user from the values of the items “sex” and “age” included in the user information (step S1801). S1802).
  • the optometry management processing unit 310 uses the image acquisition source identification unit 313 to refer to the attribute correspondence database 340 and identify a server corresponding to the user attribute (step S1803). Subsequently, the optometry management processing unit 310 acquires image data from the identified server by the corresponding image acquisition unit 314 (step S1804). Next, the optometry management processing unit 310 processes the acquired image data by the image processing unit 315 into inspection image data, and outputs the inspection image data to the optometry apparatus 10 by the image data output unit 316 (step S1). S1805).
  • the optometry management processing unit 310 determines whether the optometry result acquisition unit 317 has acquired parameter information and optometry result information from the optometry apparatus 10 (step S1806). If the corresponding information has not been acquired in step S1806, the optometry management processing unit 310 waits until acquisition.
  • the optometry management processing unit 310 detects the eyeball state from the optometry result information by the eyeball state detection unit 318, and outputs the eyeball state information (step S1807).
  • the optometry management processing unit 310 causes the parameter transmission unit 319 to transmit parameter information to the terminal device 30A (step S1808).
  • the optometry management processing unit 310 stores the parameter information, the optometry result information, and the eyeball state information in the result database 350 in association with the user information by the result storage unit 320 (step S1809), and ends the process. .
  • the optometry management processing unit 310 processes the image data acquired by the corresponding image acquisition unit 314 by the image processing unit 315 to obtain inspection image data. It is not limited.
  • the optometry management processing unit 310 may output the image data acquired by the corresponding image acquisition unit 314 as it is to the optometry apparatus 10 as inspection image data.
  • FIG. 19 is a flowchart for explaining processing of the terminal device according to the second embodiment.
  • the deflection angle setting processing unit 31 of the terminal device 30A determines whether the parameter receiving unit 32 has received parameter information from the management device 300 (step S1901). If parameter information has not been received in step S1901, the deflection angle setting processing unit 31 stands by until parameter information is received.
  • step S1901 when the parameter information is received, the deflection angle setting processing unit 31 uses the deflection angle calculation unit 33 to obtain a region indicating the field of view of the user associated with the parameter information based on the parameter information (step S1902).
  • the deflection angle calculation unit 33 includes a rotation angle around the X axis in the eyepiece device 16, a rotation angle around the Y axis, and a deflection angle of the MEMS mirror 63 in the laser irradiation unit 60. From the above, in the eyepiece device 16, the laser irradiation unit 60 scans the laser beam.
  • the deflection angle calculation unit 33 calculates the deflection angle of the MEMS mirror in the eyewear 50 based on the area obtained in step S1902 (step S1903).
  • the deflection angle setting processing unit 31 may transmit the calculated deflection angle and the user information (user ID) of the user to the management apparatus 300 in association with each other.
  • the management apparatus 300 may store the received deflection angle in association with the corresponding user information in the result database 350.
  • the deflection angle setting processing unit 31 sets the calculated deflection angle in the eyewear 50 by the deflection angle setting unit 34 (step S1904), and ends the process. Specifically, the deflection angle setting unit 34 transmits the calculated deflection angle to the control device included in the eyewear 50.
  • the control device for the eyewear 50 notifies the drive control unit that controls the driving of the MEMS mirror of the eyewear 50 to set the swing angle.
  • the laser beam is irradiated to the region based on the user's visual field in this way. For this reason, for example, in the case of a user having a visual field defect, the laser beam is not irradiated on the missing region, and the eyewear 50 can reduce power consumption accordingly.
  • the deflection angle setting processing unit 31 is provided in the terminal device 30A and the deflection angle is calculated.
  • the deflection angle setting processing unit 31 may be included in, for example, the management apparatus 300 or may be included in the optometry apparatus 10.
  • the eyewear 50 provided to the user can be automatically performed based on the parameter information until the region corresponding to the visual field of the user is scanned with the laser beam. Therefore, in the present embodiment, the procedure for manufacturing and selling the eyewear 50 can be simplified, and the manufacturing efficiency can be improved.
  • Optometry in order to obtain an advertisement image according to the attribute of the user and make it an inspection image, for example, while providing information related to a matter that the user is likely to be interested in, Optometry can be performed.
  • the state of the user's eyeball is detected from the optometry result information, and the eyeball state information is stored in association with the user information. Therefore, according to this embodiment, the user who performed the optometry can know the state of his / her eyeball by a simple optometry. In this embodiment, for example, when a user who has performed an optometry visits a medical institution, optometry result information and eyeball state information can be provided to the user.
  • the third embodiment will be described below with reference to the drawings.
  • the third embodiment is different from the second embodiment in that the management device is arranged on the network.
  • the management device is arranged on the network.
  • only differences from the second embodiment will be described, and those having the same functional configuration as the second embodiment will be used in the description of the second embodiment.
  • the same reference numerals as those used are assigned, and the description thereof is omitted.
  • FIG. 20 is a diagram illustrating an example of a system configuration of the eyewear providing system according to the third embodiment.
  • the eyewear providing system 100B of the present embodiment includes an optometry apparatus 10, a management apparatus 300A, and a terminal apparatus 30.
  • the eyewear providing system 100B may include the terminal device 30A.
  • the optometry apparatus 10 and the terminal apparatus 30 are each connected to the management apparatus 300A via a network.
  • the management device 300A is a server device provided on the cloud, for example.
  • the management apparatus 300A of the present embodiment includes an optometry management processing unit 310, a user information database 330, an attribute correspondence database 340, a result database 350, and an authentication processing unit 360.
  • the authentication processing unit 360 of this embodiment performs an authentication process for determining whether or not there is an access right to the database of the management apparatus 300A.
  • the authentication processing unit 360 provides the result information stored in the result database 350 to the user whose user information is stored in the user information database 330.
  • the management apparatus 300 ⁇ / b> A determines whether or not the user ID and password are stored in the user information database 330 by the authentication processing unit 360.
  • the authentication processing unit 360 determines that the corresponding user ID and password exist in the user information database 330
  • the management apparatus 300A extracts result information including the input user ID from the result database 350. To the terminal device 30.
  • the management device 300A of the present embodiment for example, when an authentication code discounted in advance is input to a related organization such as an eyewear store or a medical institution where the optometry apparatus 10 is installed.
  • the result information associated with the authentication code may be transmitted to the terminal device 30 that is the input source of the authentication code.
  • a user ID included in the result information to be transmitted may be associated with each authentication code.
  • the result information of a specific subject is provided to educational institutions such as schools for the blind, low vision associations, support organizations, etc. can do.
  • FIG. 21 is a diagram for explaining the structure of the retinal scanning eyewear.
  • FIG. 21 shows the eyewear 50 as viewed from above.
  • the eyewear 50 of this embodiment includes a projection unit 51 and a control unit 52.
  • the projection unit 51 of this embodiment includes a light source 53, a scanning mirror 54, a reflection mirror 55, and a projection mirror 56.
  • the traveling direction of the light ray incident on the projection mirror 56 in the projection mirror 56 is the X direction
  • the direction orthogonal to the X direction in the projection mirror 56 is the Y direction.
  • the scanning mirror 54 is, for example, a MEMS mirror, and scans the laser beam (light beam) L emitted from the light source 53 in the two-dimensional direction of the horizontal direction and the vertical direction. Further, the scanning mirror 54 scans the light beam L emitted from the light source 53 two-dimensionally to obtain projection light for projecting an image on the retina 57 of the user's eyeball E.
  • the reflection mirror 55 reflects the light beam L scanned by the scanning mirror 54 toward the lens 58.
  • a projection mirror 56 having a free phase is provided on the surface of the lens 58 on the eyeball E side of the user.
  • the projection mirror 56 projects an image on the retina 57 by irradiating the retina 57 of the eyeball E with the light beam L scanned by the scanning mirror 54 and reflected by the reflection mirror 55. That is, the user can recognize the image by the afterimage effect of the laser light projected on the retina 57.
  • the projection mirror 56 is designed so that the focal position of the light beam L scanned by the scanning mirror 54 becomes the pupil 59 of the eyeball E.
  • the light beam L is incident on the projection mirror 56 from almost right side (that is, substantially in the ⁇ X direction).
  • the distance from the reflection mirror 55 to the convergence position of the pupil 59 can be shortened, and the eyewear 50 can be reduced in size.
  • control part 52 of this embodiment may be implement
  • FIG. 22A shows eyewear before application of the interpupillary distance
  • FIG. 22B shows eyewear after application of the interpupillary distance.
  • the laser irradiation unit 60 is installed on the left eye side.
  • the laser irradiation unit 60 includes a light source 53, a scanning mirror 54, a reflection mirror 55, and a projection mirror 56.
  • the laser irradiation unit 60 is attached to the frame of the eyewear 50 so as to be movable in the X direction and the Y direction, and the interpupillary distance in the parameter information 119 is reflected in the X direction of the laser irradiation unit 60.
  • the laser irradiation unit 60 adapted to the distance between pupils of each user is moved by moving the laser irradiation unit 60 in the X direction according to the value of the inter-pupil distance.
  • the position can be determined.
  • a spacer Sa having a thickness corresponding to the distance between the pupils is inserted between the temple 49 and the laser irradiation unit 60, so that the pupil can be obtained without using a complicated mechanism.
  • the laser irradiation unit 60 can be positioned according to the distance.
  • the structure which moves this laser irradiation part 60 is not restricted to this, The structure of moving along a guide groove etc. can be considered.
  • the present invention has been described based on each embodiment.
  • the present invention is not limited to the requirements shown here, such as the configurations described in the above embodiment and combinations with other elements.
  • the present invention can be changed within a range that does not detract from the gist of the present invention, and can be appropriately determined according to the application form.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Acoustics & Sound (AREA)
  • Otolaryngology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

検査用画像データが記憶された記憶部と、前記検査用画像データに基づいた画像用レーザ光線を生成するレーザ光源を有し、前記画像用レーザ光線によって、被検者の眼球の網膜へ検査用画像を投影するレーザ照射部と、前記画像用レーザ光線を前記被検者の眼球内で収束させる光学部材と、前記画像用レーザ光線の収束点を中心に前記レーザ照射部を回転させたときの、前記回転の角度を示す角度情報を含む、網膜走査型アイウェアのためのパラメータ情報を取得するパラメータ取得部と、前記パラメータ情報を外部装置へ出力する出力部と、を有する、網膜走査型検眼装置である。

Description

網膜走査型検眼装置、網膜走査型検眼システム、網膜走査型検眼方法、アイウェア提供システム、アイウェア提供方法及び網膜走査型アイウェア
 本発明は、網膜走査型検眼装置、網膜走査型検眼システム、網膜走査型検眼方法、網膜走査型アイウェア提供システム、網膜走査型アイウェア提供方法及び網膜走査型アイウェアに関する。
 従来から、眼鏡等を作成する場合、検眼器や検眼装置等により各種の検眼が行われる。この検眼では、検査画像を表示させ、検査画像を被検者に視認させる手法が知られている(特許文献1)。また、従来では、眼鏡等の販売者が、眼鏡のレンズやフレームを作成するために必要となる利用者毎のデータを取得し、このデータを眼鏡の加工工場へ送ることが知られている(特許文献2)。
 ところで、近年では、マクスウェル視を利用した網膜走査型ヘッドマウントディスプレイが知られている。マクスウェル視とは、画像データに基づく画像用光線を一旦瞳孔の中心で収束させてから網膜上に投影することで、人の水晶体の調節機能に影響されずに人に、画像データが表す画像を視認させる方法である。
 この網膜走査型ヘッドマウントディスプレイを製造する場合には、利用者の眼球の状態に応じて、利用者毎の様々なパラメータが必要となる。このため、網膜走査型ヘッドマウントディスプレイを製造・販売する場合には、例えば、利用者に網膜走査型ヘッドマウントディスプレイを試着させ、利用者のパラメータを取得し、取得したパラメータに基づきカスタマイズする、といった手順となる。
特開2002-130495号公報 特開2002-162607号公報
 上述した網膜走査型ヘッドマウントディスプレイの製造・販売の方法は、その手順が煩雑であるため、効率化が望まれている。
 しかしながら、上述した従来の眼鏡の販売の手法では、レンズやフレームに関するデータしか取得することができず、画像を利用者の網膜上に投影するために必要となるパラメータを取得することができない。また、従来の検眼の手法では、例えば被検者の前眼部に疾患のある場合等には、網膜まで含めた検査を行うことができない、といった問題もある。
 開示の技術は、上記事情に鑑みて成されたものであり、網膜走査型ヘッドマウントディスプレイの製造効率の向上を図ることを目的としている。
 開示の技術は、検査用画像データが記憶された記憶部と、前記検査用画像データに基づいた画像用レーザ光線を生成するレーザ光源を有し、前記画像用レーザ光線によって、被検者の眼球の網膜へ検査用画像を投影するレーザ照射部と、前記画像用レーザ光線を前記被検者の眼球内で収束させる光学部材と、前記画像用レーザ光線の収束点を中心に前記レーザ照射部を回転させたときの、前記回転の角度を示す角度情報を含む、網膜走査型アイウェアのためのパラメータ情報を取得するパラメータ取得部と、前記パラメータ情報を外部装置へ出力する出力部と、を有する、網膜走査型検眼装置である。
 網膜走査型ヘッドマウントディスプレイの製造効率の向上を図る。
第一の実施形態の検眼装置について説明する図である。 第一の実施形態のアイウェア提供システムのシステム構成の一例を示す図である。 検眼装置のハードウェア構成の一例を示す図である。 レーザ照射部の構成を説明する図である。 接眼装置の構成を説明する図である。 検眼装置の機能を説明する図である。 第一の実施形態の検査用画像の一例を示す図である。 第一の実施形態のパラメータ情報の一例を示す図である。 第一の実施形態の検眼結果情報の一例を示す図である。 第一の実施形態の検眼装置の処理を説明するフローチャートである。 第二の実施形態のアイウェア提供システムのシステム構成の一例を示す図である。 管理装置のハードウェア構成の一例を示す図である。 第二の実施形態のアイウェア提供システムの有する各装置の機能を説明する図である。 第二の実施形態のユーザ情報データベースの一例を示す図である。 第二の実施形態の属性対応データベースの一例を示す図である。 第二の実施形態の画像の加工を説明する図である。 第二の実施形態のアイウェア提供システムの動作を説明するシーケンス図である。 第二の実施形態の管理装置の処理を説明するフローチャートである。 第二の実施形態の端末装置の処理を説明するフローチャートである。 第三の実施形態のアイウェア提供システムのシステム構成の一例を示す図である。 網膜走査型アイウェアの構造を説明する図である。 瞳孔間距離の適用前のアイウェアを示す図である。 瞳孔間距離の適用後のアイウェアを示す図である。
 (第一の実施形態)
 以下に、図面を参照して第一の実施形態について説明する。図1は、第一の実施形態の検眼装置について説明する図である。
 本実施形態の検眼装置10は、網膜走査型の検眼装置である。具体的には、本実施形態の検眼装置10は、検査用画像データを保持しており、この検査用画像データに基づいたレーザ光線を被検者Pの網膜へ照射することで、検査用画像を被検者Pの網膜に投射する。次に、検眼装置10は、被検者Pから、検眼装置10のレーザ照射部の位置を調整するための操作や、検査用画像の視認の仕方を示す情報等の入力を受け付ける。
 そして、検眼装置10は、入力された情報に基づき、被検者Pの網膜に画像を投影させるためのパラメータ情報を生成し、出力する。また、本実施形態の検眼装置10は、入力された情報に基づき、被検者Pの検眼結果情報を生成し、保持又は出力しても良い。
 被検者Pのパラメータ情報とは、例えば、被検者Pの瞳孔間距離、視野、レーザ照射部から収束点までの距離、レーザ光源から出射されたレーザ光線の角度等を含む情報である。言い換えれば、本実施形態のパラメータ情報は、被検者Pの網膜において、レーザ光線により走査された領域を示す情報である。また、検眼結果情報とは、被検者Pの検眼の結果を示す情報であり、言い換えれば、検眼結果情報は、被検者Pの眼球の状態を示す情報である。パラメータ情報と検眼結果情報の詳細は後述する。
 本実施形態の検眼装置10は、例えば、台座20等に設置され、被検者Pが検眼装置10の接眼装置の中を除くように眼球を近づけた状態で、検眼が行われる。尚、図1の例では、被検者Pが椅子に着席して検眼を行う例を示しているが、これに限定されない。被検者Pは、起立した状態で検眼を行っても良い。
 本実施形態の検眼装置10は、例えば、網膜走査型ヘッドマウントディスプレイ(以下、アイウェア)が販売される店舗や、病院(眼科等)に設置されても良い。また、本実施形態の検眼装置10は、例えは、体育館やスポーツジム、商業施設等に設置されても良い。本実施形態の検眼装置10は、被検者Pが検眼を行うことができる場所であれば、どのような場所に設置されても良い。
 次に、図2を参照して本実施形態の検眼装置10を用いた網膜走査型アイウェア提供システムについて説明する。尚、以下の説明では、網膜走査型アイウェア提供システムを単にアイウェア提供システムと呼ぶ。図2は、第一の実施形態のアイウェア提供システムのシステム構成の一例を示す図である。
 本実施形態のアイウェア提供システム100は、検眼装置10と、端末装置30と、を有する。検眼装置10と、端末装置30とは、ネットワーク等を介して通信が行われる。
 本実施形態のアイウェア提供システム100において、検眼装置10は、被検者Pのパラメータ情報40を取得すると、取得したパラメータ情報40を端末装置30へ送信する。
 本実施形態の端末装置30は、例えば、アイウェア50の製造を行う製造装置を制御する端末装置であっても良い。アイウェア50は、網膜走査型ヘッドマウントディスプレイである。この場合、端末装置30は、アイウェア50の製造工程において、パラメータ情報40を読み出し、パラメータ情報40に基づいてアイウェア50における各種のパーツの取り付けや設定等をアイウェア50の製造装置に行わせても良い。
 また、本実施形態の端末装置30は、例えば、アイウェア50の販売を行う店舗等に配置されており、顧客情報と共にパラメータ情報40を保管し、管理するような端末装置であっても良い。この場合、端末装置30は、例えば、アイウェア50の発注を受け付けたとき、アイウェア50の利用者のパラメータ情報40をアイウェア50の製造工場等へ渡せばよい。
 本実施形態では、このように、検眼を行うだけで、アイウェア50を利用者毎にカスタマイズするために必要となるパラメータ情報を取得することができ、アイウェア50の製造に利用することができる。したがって、本実施形態によれば、アイウェア50の製造効率を向上させることができる。
 さらに、本実施形態の端末装置30は、例えば、検眼を行った被検者Pが所持している端末装置であっても良い。さらには、本実施形態の端末装置30は、アイウェア50と接続される制御装置であっても良い。このように、利用者が有する端末装置やアイウェア50に利用者のパラメータ情報40を保管しておけば、例えばアイウェア50の買い換えや、修理等の際に、このパラメータ情報を用いることができる。
 次に、図3を参照して、本実施形態の検眼装置10について説明する。図3は、検眼装置のハードウェア構成の一例を示す図である。
 本実施形態の検眼装置10は、入力装置11、出力装置12、演算処理装置13、記憶装置14、機構制御装置15、接眼装置16、操作装置17を有する。
 入力装置11は、検眼装置10に対する各種の情報を受け付ける。入力装置11は、例えば、検眼装置10に対する指示を行う操作部材やキーボード等や、検眼装置10に対して送信された情報を受信する受信装置等も含む。
 出力装置12は、検眼装置10から各種の情報を出力する。出力装置12は、例えば、検眼装置10において取得された情報を外部装置へ送信する送信装置や、検眼装置10による各種の処理の結果を表示させるディスプレイ等も含む。
 演算処理装置13は、検眼装置10全体の制御を司るCPU(Central Processing Unit)等により実現される。記憶装置14は、演算処理装置13において実行される各種のプログラム、検査用画像データ等を格納する。また、記憶装置14は、検眼の結果として取得されるパラメータ情報や検眼結果情報等を保持する。
 機構制御装置15は、操作装置17による操作を受けて、検眼装置10が有する接眼装置16が有する各種の機構の動作を制御する。また、機構制御装置15は、演算処理装置13が記憶装置14から読み出した検査用画像データを、接眼装置16へ出力する。
 接眼装置16は、レーザ照射部60を有し、レーザ照射部60から照射されるレーザ光線を被検者の所望の位置へ照射させるために、レーザ照射部60を移動させる機構を有する。レーザ照射部60は、機構制御装置15から入力される検査用画像データに基づき、検査画像を被検者Pの網膜に投影させるように、レーザ光線を照射する。接眼装置16とレーザ照射部60の詳細は後述する。操作装置17は、接眼装置16におけるレーザ照射部60の位置を調整するための操作に用いられる。
 次に、図4を参照して、本実施形態のレーザ照射部60の構成について説明する。図4
は、レーザ照射部の構成を説明する図である。
 本実施形態のレーザ照射部60は、レーザ光源62、MEMS(Micro Electro Mechanical Systems)ミラー63、ミラー64、タブレットレンズ65、ミラー66、ミラー67、集光レンズ68を有する。
 レーザ光源62は、検査用画像データに基づき、検査用画像を眼球Eの網膜に投影させるように、レーザ光線Lを照射する。MEMSミラー63は、検査用画像データに基づく制御によって、レーザ光線Lを垂直方向と水平方向に走査する。
 MEMSミラー63によって走査されたレーザ光線Lは、ミラー64によって反射されてタブレットレンズ65に入射される。タブレットレンズ65を透過したレーザ光線Lは、ミラー66、67によって必要な方向に偏光され、集光レンズ68に入射される。つまり、本実施形態では、タブレットレンズ65と集光レンズ68とにレーザ光線Lが集光され、レーザ照射部60から被検者Pの眼球Eに向かって照射される。このとき、集光されたレーザ光線Lは、眼球Eの水晶体の略中心部であるレーザ収束点Fで収束するように集光される。集光レンズ68の眼球E側の表面からレーザ収束点Fまでの距離は、通常は5mmから7mm程度に設定される。
 尚、図4は、レーザ照射部60が有する光学系の一例であり、これに限定されない。ミラーや集光レンズの数や配置等は、接眼装置16の構成によって変更されて良い。
 次に、図5を参照して、本実施形態の接眼装置16について説明する。図5は、接眼装置の構成を説明する図である。図5(A)は、接眼装置16を中央部分で分断した場合の右側部分の斜視図を示す。図5(B)は、図5(A)を矢印A方向から見た場合の正面図を示す。図5(C)は、図5(A)の底面図を示す。本実施形態の接眼装置16は、左側部分の構成は、右側部分の構成を左右に判定させたものであり、同様の構成を有する。
 本実施形態の接眼装置16は、レーザ照射部60、台座70、X軸駆動モータ71、Y軸駆動モータ72、Z軸駆動モータ73、X軸回転モータ74、Y軸回転モータ75を有する。
 レーザ照射部60は、台座70において、X軸駆動モータ71、Y軸駆動モータ72、Z軸駆動モータ73のそれぞれによって、紙面に示すX軸方向、Y軸方向、Z軸方向のそれぞれに移動可能に支持されている。また、レーザ照射部60は、台座70において、X軸回転モータ74、Y軸回転モータ75によって、紙面に示すX軸、Y軸のそれぞれを中心に回転可能に支持されている。
 レーザ照射部60は、例えば、操作装置17による操作に応じて、X軸駆動モータ71、Y軸駆動モータ72、Z軸駆動モータ73のそれぞれが駆動され、X軸方向、Y軸方向、Z軸方向へ移動される。また、レーザ照射部60は、操作装置17による操作に応じて、X軸回転モータ74、Y軸回転モータ75が駆動され、X軸、Y軸のそれぞれを中心に回転する。このX軸の回転中心軸上に収束点Fが存在し、Y軸の回転中心軸上に収束点Fが存在する。すなわち、レーザ収束点FがX軸回転軸、Y軸回転軸の交点となり、X軸、Y軸は収束点Fを中心に回転することとなる。
 本実施形態では、例えば、初期状態からのX軸方向の移動距離、Y軸方向の移動距離、Z軸方向の移動距離、X軸を中心とした回転角度、Y軸を中心とした回転角度等を、パラメータ情報として取得しても良い。
 つまり、本実施形態では、レーザ収束点Fに対してのX軸およびY軸の回転角度がパラメータ情報となる。
 X軸方向の移動距離は、瞳孔間距離の算出に用いられる。具体的には、X軸方向の移動距離と、接眼装置16の左側部分のX軸方向の移動距離との和が、瞳孔間距離となる。また、Y軸方向の移動距離は、例えば、被検者Pの顔における眼球の位置によって変化すると考えられる。また、Z軸方向の移動距離は、例えば、被検者Pの鼻や額、眉間の形状等によって変化すると考えられる。
 ここで、レーザ照射部60をX軸方向、Y軸方向、Z軸方向に移動させても、集光レンズ68の眼球E側の表面からレーザ収束点Fまでの距離は変化しない。
 さらに、X軸を中心とした回転角度とY軸を中心とした回転角度は、被検者Pのまぶたや睫毛の状態や、被検者Pの網膜における検査用画像が投影される位置等によって変化すると考えられる。
 検眼においては、被検者Pに、最も検査用画像が見えやすくなるように、レーザ照射部60の位置を調整させる。被検者Pは、レーザ照射部60から出射されたレーザ光線が被検者Pの瞳孔を通過し、網膜に照射されたとき、検査用画像を視認する。したがって、本実施形態では、被検者Pに、最も検査用画像が見えやすくなるように、接眼装置16におけるレーザ照射部60の位置を調整させることで、レーザ光源62と被検者Pの眼球との最適な位置関係を示すパラメータ情報を取得できる。
 本実施形態のアイウェア提供システム100では、このパラメータ情報が示す、レーザ光源と被検者Pの眼球との位置関係を、アイウェアのレーザ光源とアイウェアの利用者の眼球との位置関係に反映させる。つまり、本実施形態のアイウェア提供システム100では、アイウェアを利用しようとしている利用者に対して、検眼装置10を用いた検眼を行わせてパラメータ情報を取得し、このパラメータ情報を用いて、この利用者のアイウェアのカスタマイズを行う。
 本実施形態では、このようにパラメータ情報を用いることで、例えば、アイウェアの製造工程において、利用者にアイウェアを試着させ、レーザ光源の位置を手作業で調整する、といった煩雑な工程を省くことができる。
 次に、図6を参照して、本実施形態の検眼装置10の機能構成について説明する。図6は、検眼装置の機能を説明する図である。
 本実施形態の検眼装置10は、検眼処理部110を有する。検眼処理部110は、演算処理装置13が記憶装置14に格納されたプログラムを読み出して実行することで実現される。
 本実施形態の検眼処理部110は、入力受付部111、画像データ読出部112、画像投影部113、パラメータ取得部114、検眼結果取得部115、出力部116、記憶部117を有する。
 入力受付部111は、検眼装置10に対する各種の入力を受け付ける。具体的には、入力受付部111は、検眼装置10に対する検眼開始要求や、操作装置17による操作指示等を受け付ける。
 画像データ読出部112は、記憶部117に格納された検査用画像データを読み出す。画像投影部113は、読み出された検査用画像データに従って、レーザ照射部60によりレーザ光線Lを照射させ、被検者Pの網膜に検査用画像を投影させる。
 パラメータ取得部114は、操作装置17からの操作に応じて、機構制御装置15が保持している接眼装置16のパラメータ情報を取得する。
 検眼結果取得部115は、検査用画像を被検者Pの網膜に投影させ、被検者Pに対して検眼を行った結果を示す情報を取得する。
 ここで、検眼結果取得部115による検眼結果情報の取得の仕方について説明する。本実施形態の検眼装置10では、例えば、検眼装置10の出力装置(ディスプレイ)12等に、検査用画像を表示させ、視認できた領域を被検者Pに入力させても良い。また、被検者Pが、検眼装置10に眼球を近づけた状態で、検眼結果を入力することが困難である場合には、検眼装置10への入力を検査補助者に依頼しても良い。この場合には、例えば、被検者Pは、視認できた文字を読み上げる等して、文字が読めた領域を検査補助者に伝えれば良い。さらに、検眼装置10が音声入力部(マイク等)と、音声認識機能を有する場合には、被検者Pが視認できた文字を読み上げることで、被検者Pの音声により直接検眼結果を入力することができる。
 出力部116は、取得したパラメータ情報を端末装置30へ送信する。また、出力部116は、取得した検眼検査情報等を記憶部に格納されても良い。
 記憶部117は、例えば、記憶装置14等に設けられた記憶領域であり、検査用画像データ118と、パラメータ情報119と、検眼結果情報120とが記憶されている。検査用画像データ118は、予め記憶部117に格納されていても良い。パラメータ情報119と検眼結果情報120とは、検眼が行われた後に一時的に保持されるものであっても良い。
 次に、図7乃至図9を参照し、記憶部117に格納されている情報について説明する。図7は、第一の実施形態の検査用画像の一例を示す図である。
 本実施形態の検査用画像711は、検査用画像データ118に基づき照射されるレーザ光線により、被検者Pの網膜に投影される。
 検査用画像711は、複数の領域に分割されており、各領域の中には、各領域を特定するための識別子が付与されている。図7の例では、検査用画像711は、9つの領域に分割されており、各領域内に、各領域を識別するための識別子が付与されている。
 本実施形態では、例えば、この検査用画像711において、識別番号1~9のうち、視認できない識別番号がある被検者は、網膜において、その識別番号により特定される領域と対応付く領域の視野が欠損していると判定される。
 尚、図7では、検査用画像711は9つの領域に分割されたものとしているが、これに限定されない。検査用画像711を分割する数は、任意であって良い。また、図7では、検査用画像711は、9つの矩形の領域に分割されているが、これに限定されない。検査用画像711は、どのような形状の領域に分割されても良い。また、図7では、検査用画像711の各領域を特定する識別子は、数字としているが、これに限定されない。領域を特定する識別子は、数字でなくても良く、文字やイラスト等であっても良い。
 また、検査用画像は、図7に示すような画像に限定されない。例えば、検査用画像は、砂嵐画像やランドルト環、ETDRS視力表、アムスラーチャート等であっても良い。
 図8は、第一の実施形態のパラメータ情報の一例を示す図である。本実施形態のパラメータ情報119は、例えば、瞳孔間距離、X軸を中心とした回転角度、Y軸を中心とした回転角度を含む。図8では図示していないが、X軸方向、Y軸方向、Z軸方向のそれぞれの移動距離等も含まれて良い。
 図9は、第一の実施形態の検眼結果情報の一例を示す図である。本実施形態の検眼結果情報120は、例えば、検査用画像711において、被検者Pに視認された領域の識別子と、被検者Pに視認されなかった領域の識別子と、を含む。本実施形態では、これらの識別子から、被検者Pに視野の欠損が存在するか否かの判断が可能となる。
 図9の例では、被検者Pに視認された領域の識別子が「2,3,5,6,8,9」であり、被検者Pに視認されなかった領域の識別子が「1,4,7」である。したがって、この被検者Pには、識別子が「1,4,7」である領域と対応する視野が欠損していることになる。
 また、検眼結果情報120では、例えば、被検者Pの自覚症状等が含まれても良い。例えば、図9の例では、被検者Pは、視界に歪みがあることがわかる。
 次に、図10を参照して、本実施形態の検眼装置10の動作を説明する。図10は、第一の実施形態の検眼装置の処理を説明するフローチャートである。
 本実施形態の検眼装置10は、検眼処理部110の入力受付部111により、検眼開始指示を受け付けたか否かを判定する(ステップS1001)。具体的には、入力受付部111は、検眼装置10に対して、起動の指示等がなされた場合に、検眼開始要求を受け付けたものとしても良い。
 ステップS1001において、検眼開始指示を受け付けない場合、検眼処理部110は、この指示を受け付けるまで待機する。
 ステップS1001において、検眼開始指示を受け付けた場合、検眼処理部110は、画像データ読出部112により、記憶部117から検査用画像データ118を読み出し、画像投影部113により、検査用画像を投影する(ステップS1002)。
 続いて、検眼処理部110は、接眼装置16におけるレーザ照射部60の位置が確定したか否かを判定する(ステップS1003)。具体的には、検眼処理部110は、入力受付部111により、レーザ照射部60の位置が確定したことを示す通知が受け付けられたか否かを判定している。本実施形態では、例えば、レーザ照射部60の位置の調整が終了した場合には、操作装置17によって、その旨を通知する操作がなされても良い。機構制御装置15は、この操作を受け付けると、演算処理装置13に対し、レーザ照射部60の位置の確定を通知しても良い。
 ステップS1003において、位置が確定していない場合、検眼処理部110は、位置が確定するまで待機する。ステップS1003において、位置が確定した場合、検眼処理部110は、パラメータ取得部114により、機構制御装置15を介して、接眼装置16におけるレーザ照射部60の位置を示すパラメータ情報119を取得し、記憶部117に保持する(ステップS1004)。
 次に、検眼処理部110は、入力受付部111により、検眼結果の入力を受け付けたか否かを判定する(ステップS1005)。ステップS1005において、検眼結果の入力を受け付けていない場合、検眼処理部110は、検眼結果の入力を受け付けるまで待機する。
 ステップS1005において、検眼結果の入力を受け付けた場合、検眼処理部110は、検眼結果取得部115により、検眼結果情報120として、記憶部117に保持する(ステップS1006)。
 続いて、検眼処理部110は、出力部116により、取得したパラメータ情報を端末装置30へ送信し(ステップS1007)、処理を終了する。尚、このとき、出力部116は、検眼結果情報120も、パラメータ情報119と共に端末装置30へ送信しても良い。
 以上のように、本実施形態によれば、検眼装置10において、被検者Pの眼球と、レーザ光源との位置関係を示すパラメータ情報を取得し、このパラメータ情報が示す位置関係に基づき、被検者Pに利用されるアイウェアを製造する。したがって、本実施形態によれば、アイウェアの製造効率の向上に貢献することができる。
 (第二の実施形態)
 以下に図面を参照して、第二の実施形態について説明する。第二の実施形態は、検眼装置10に、検眼装置10による検眼を管理する管理装置が接続される。以下の第二の実施形態の説明では、第一の実施形態と同様の機能構成を有するものには、第一の実施形態の説明で用いた符号と同様の符号を付与し、その説明を省略する。
 図11は、第二の実施形態のアイウェア提供システムのシステム構成の一例を示す図である。
 本実施形態のアイウェア提供システム100Aは、検眼装置10、管理装置300、端末装置30Aを有する。アイウェア提供システム100Aにおいて、端末装置30Aと管理装置300とは、ネットワーク等を介して接続されている。また、アイウェア提供システム100Aにおいて、管理装置300と検眼装置10とは、それぞれの通信規格を満足するように接続されている。
 本実施形態では、検眼装置10と管理装置300とが、検眼システム200に含まれる。尚、図11の例では、アイウェア提供システム100Aに含まれる検眼システム200は、1つとしているが、これに限定されない。アイウェア提供システム100Aに含まれる検眼システム200は、任意の数であって良い。
 本実施形態の検眼システム200において、検眼装置10は、パラメータ情報、検眼結果情報を管理装置300へ出力する。
 本実施形態の検眼システム200において、管理装置300は、検眼結果情報やパラメータ情報をユーザ情報と対応付けて管理する。また、管理装置300は、パラメータ情報を端末装置30Aへ送信する。
 また、本実施形態の管理装置300は、検眼管理処理部310を有する。検眼管理処理部310は、検眼を行う利用者に関するユーザ情報を保持しておき、利用者の属性に応じた検査用画像を用いて検眼を行う。
 具体的には、検眼管理処理部310は、利用者の属性に応じて、検査用画像の取得元となる外部サーバを特定し、特定した外部サーバより提供されるコンテンツを検査用画像として取得する。図11の例では、外部サーバとして、サーバ400、500、600の何れかから、検査用画像を取得するものとした。
 本実施形態のアイウェア提供システム100Aにおいて、端末装置30Aは、振れ角設定処理部31を有し、管理装置300から受信したパラメータ情報に基づき、アイウェアの光源部に搭載されたMEMSミラーの振れ角を算出して設定する。MEMSミラーの振れ角とは、光学的走査角度を示す。
 以下に、図12を参照して、本実施形態の管理装置300のハードウェア構成について説明する。図12は、管理装置のハードウェア構成の一例を示す図である。
 本実施形態の管理装置300は、それぞれバスBで相互に接続されている入力装置301、出力装置302、ドライブ装置303、補助記憶装置304、メモリ装置305、演算処理装置306及びインターフェース装置307を含む。
 入力装置301は、各種の情報を入力する。出力装置302は、各種の情報を出力する。インターフェース装置307は、モデム、LANカード等を含み、ネットワークに接続する為に用いられる。
 検眼管理プログラムは、管理装置300を制御する各種プログラムの少なくとも一部である。検眼管理プログラムは例えば記憶媒体308の配布やネットワークからのダウンロードなどによって提供される。検眼管理プログラムを記録した記憶媒体308は、CD-ROM、フレキシブルディスク、光磁気ディスク等の様に情報を光学的、電気的或いは磁気的に記録する記憶媒体、ROM、フラッシュメモリ等の様に情報を電気的に記録する半導体メモリ等、様々なタイプの記憶媒体を用いることができる。
 また、検眼管理プログラムは、検眼管理プログラムを記録した記憶媒体308がドライブ装置303にセットされると、記憶媒体308からドライブ装置303を介して補助記憶装置304にインストールされる。ネットワークからダウンロードされた検眼管理プログラムは、インターフェース装置307を介して補助記憶装置304にインストールされる。
 補助記憶装置304は、インストールされた検眼管理プログラムを格納すると共に、必要なファイル、データ等を格納する。メモリ装置305は、コンピュータの起動時に補助記憶装置304から検眼管理プログラムを読み出して格納する。そして、演算処理装置306はメモリ装置305に格納された検眼管理プログラムに従って、後述するような各種処理を実現している。
 尚、本実施形態の端末装置30Aは、一般的なコンピュータであり、管理装置300と同様の構成を有するものであるから、説明を省略する。
 次に、図13を参照して、本実施形態のアイウェア提供システム100Aの有する各装置の機能構成について説明する。
 図13は、第二の実施形態のアイウェア提供システムの有する各装置の機能を説明する図である。
 はじめに、本実施形態の管理装置300の機能について説明する。本実施形態の管理装置300は、検眼管理処理部310と、ユーザ情報データベース330、属性対応データベース340、結果データベース350を有する。
 ユーザ情報データベース330は、検眼装置10により検眼を行う利用者に関するユーザ情報が格納されている。属性対応データベース340は、ユーザの属性を示す情報と、コンテンツの取得元となるサーバを示す情報とを対応付けている。結果データベース350は、ユーザ情報と検眼結果とが対応付けられて格納されている。管理装置300の有する各データベースの詳細は後述する。
 本実施形態の検眼管理処理部310は、演算処理装置306がメモリ装置305等に格納された検眼管理プログラムを読み出して実行することにより実現される。
 本実施形態の検眼管理処理部310は、ユーザ情報取得部311、属性判定部312、画像取得元特定部313、対応画像取得部314、画像加工部315、画像データ出力部316、検眼結果取得部317、眼球状態検出部318、パラメータ送信部319、結果格納部320を有する。
 ユーザ情報取得部311は、ユーザ情報を取得する。ユーザ情報は、例えば、検眼装置10の入力受付部111によって受け付けられて、管理装置300に出力されても良い。また、ユーザ情報は、管理装置300の入力装置301等により入力されても良い。ユーザ情報の詳細は後述する。
 属性判定部312は、ユーザ情報に含まれる情報から、利用者の属性を判定する。画像取得元特定部313は、属性対応データベース340を参照し、利用者の属性と対応する外部のサーバを特定する。
 対応画像取得部314は、画像取得元特定部313により特定されたサーバから提供されるコンテンツの画像データを取得する。画像加工部315は、対応画像取得部314により取得した画像データを加工し、検査用画像データとする。画像加工部315による加工の仕方の詳細は後述する。
 画像データ出力部316は、加工された検査用画像データを検眼装置10へ出力する。検眼結果取得部317は、検眼装置10から、パラメータ情報と検眼結果情報とを取得する。
 眼球状態検出部318は、検眼結果情報に基づき、眼球の状態を検出し、眼球状態情報として出力する。具体的には、眼球状態検出部318は、眼球の状態を判定するための基準情報を保持しており、検眼結果情報と、基準情報とを照合して、眼球の状態を判定しても良い。
 パラメータ送信部319は、検眼装置10から取得したパラメータ情報を端末装置30Aに送信する。結果格納部320は、検眼結果取得部317により取得したパラメータ情報、検眼結果情報、眼球状態情報をユーザ情報と対応付けて結果データベース350に格納する。
 次に、管理装置300の有する各データベースについて説明する。はじめに、結果データベース350について説明する。
 本実施形態の結果データベース350には、ユーザ情報に、パラメータ情報と、検眼結果情報と、眼球状態情報とがユーザ情報に対応付けられた結果情報351が格納されている。ここで、ユーザ情報とは、例えば、ユーザID等である。
 例えば、結果情報351のユーザ情報が、被検者PのユーザIDであった場合、パラメータ情報は、図8に示すパラメータ情報119であり、検眼結果情報は、図9に示す検眼結果情報120である。
 検眼結果情報120では、被検者Pに視認された領域の識別子が「2,3,5,6,8,9」であり、被検者Pに視認されなかった領域の識別子が「1,4,7」である(図9参照)。よって、眼球状態検出部318は、視野欠損が有りと判定する。また、眼球状態検出部318に保持されている基準情報において、「検査用画像の外周の領域に視野欠損が存在した場合=緑内障の可能性あり」という情報が存在していた場合、眼球状態検出部318は、この被検者Pの眼球の状態について、緑内障の可能性有りと判定する。したがって、この場合、眼球状態情報は、「視野欠損有り・緑内障の可能性有り」となる。
 尚、本実施形態では、眼球状態検出部318が管理装置300に設けられているものとしたが、これに限定されない。眼球状態検出部318は、検眼装置10に設けられていても良い。この場合、検眼装置10は、パラメータ情報、検眼結果情報及び眼球状態情報を管理装置300へ送信すれば良い。
 次に、本実施形態の端末装置30Aの機能について説明する。
 本実施形態の端末装置30Aは、振れ角設定処理部31を有する。本実施形態の振れ角設定処理部31は、端末装置30Aの演算処理装置が、記憶装置に格納されたミラー制御プログラムを読み出して実行することで実現される。
 本実施形態の振れ角設定処理部31は、パラメータ受信部32、振れ角算出部33、振れ角設定部34を有する。
 パラメータ受信部32は、管理装置300から送信されたパラメータ情報を取得する。振れ角算出部33は、パラメータ情報に基づき、このパラメータ情報により、検眼を行った利用者によって視認可能とされる網膜上の領域を求める。そして、振れ角算出部33は、求めた領域に基づき、アイウェア50に搭載されたMEMSミラーの振れ角を算出する。
 尚、本実施形態の振れ角設定処理部31は、アイウェア50のMEMSミラーの仕様を示す仕様情報等、振れ角の算出に用いられる各種の情報を保持していても良い。
 振れ角設定部34は、振れ角算出部33により算出された振れ角をアイウェア50に設定する。
 次に、図14、15を参照して、本実施形態のユーザ情報データベース330と、属性対応データベース340について説明する。図14は、第二の実施形態のユーザ情報データベースの一例を示す図である。
 本実施形態のユーザ情報データベース330は、情報の項目として、ユーザID、パスワード、性別、年齢を有する。項目「ユーザID」の値は、アイウェア提供システム100Aの利用者を識別するための識別子を示す。項目「パスワード」の値は、ユーザIDにより識別される利用者のパスワードである。項目「性別」の値は、利用者の性別を示し、項目「年齢」の値は、利用者の年齢を示す。ユーザ情報データベース330では、項目「ユーザID」と、その他の項目とが対応付けられており、本実施形態のユーザ情報は、項目「ユーザID」の値と、その他の項目の値とを含む情報である。
 本実施形態では、項目「性別」の値と、項目「年齢」の値と、を利用者の属性を示す情報としている。尚、利用者の属性を示す情報は、図14に示す項目に限定されない。利用者の属性を示す情報は、例えば、利用者の嗜好を示す項目等が含まれても良い。
 図15は、第二の実施形態の属性対応データベースの一例を示す図である。本実施形態の属性対応データベース340は、情報の項目として、属性と、対応サーバとを有し、項目「属性」と、項目「対応サーバ」とが対応付けられている。
 項目「属性」の値は、ユーザ情報データベース330における、属性を示す情報である。項目「対応サーバ」の値は、属性に対応付けられたサーバを特定する情報を示す。具体的には、項目「対応サーバ」の値は、サーバの名称であっても良いし、サーバを特定するURL(Uniform Resource Locator)等であっても良い。
 図15では、例えば、利用者の属性が「女性」であった場合には、対応するサーバは、サーバ500であることがわかる。この場合、対応画像取得部314は、サーバ500にアクセスし、サーバ500から提供される画像データを取得する。ここで提供される画像データとは、例えば、女性向けの製品の広告画像等であって良い。また、例えば、利用者の年齢が10才以下等であった場合には、子供向けの画像等を検査用画像としても良い。
 本実施形態では、このように、利用者の属性と対応した画像を検査用画像として用いることで、利用者が興味を持って検眼を行えるようにしている。
 次に、図16を参照して、本実施形態の検眼管理処理部310の画像加工部315による画像データの加工について説明する。図16は、第二の実施形態の画像の加工を説明する図である。図16の画像161は、加工前の画像データにより投影される画像の一例であり、画像161-1は、加工後の画像データにより投影される画像の一例である。
 図16に示す画像161は、属性対応データベース340により特定されたサーバから取得したコンテンツの画像である。
 本実施形態の画像加工部315は、コンテンツの画像に対して、コンテンツが示す内容が変更されない程度に、画像に対して加工を施す。図16の例では、画像161に対して外周に黒枠162を重畳させて検査用画像161-1とする。
 本実施形態では、このように、画像データを加工することで、例えば、検眼装置10で検眼を行う利用者は、視野の外周部分に視野の欠損に気付きやすくなる。
 尚、画像加工部315による画像の加工の方法は、図16に示す方法に限定されない。例えば、画像加工部315は、コンテンツを示す画像の色を変更しても良いし、画像の色の濃度を変更しても良い。また、画像加工部315は、例えば、コンテンツを示す画像を複数の領域に分割するような格子柄等を、コンテンツを示す画像に重畳しても良い。
 このように画像加工部315にて画像の加工を行うことによって、網膜症などの眼疾患のある被検者でも視認性を高めることができ、これらの情報をユーザ属性データベース330に反映させることによって、汎用性を高めることができる。
 尚、図16の例では、サーバから取得したコンテンツの画像を静止画としているが、これに限定されない。サーバから取得したコンテンツの画像は、例えば、動画であっても良い。
 次に、図17を参照して、本実施形態のアイウェア提供システム100Aの動作について説明する。図17は、第二の実施形態のアイウェア提供システムの動作を説明するシーケンス図である。
 本実施形態のアイウェア提供システム100Aにおいて、管理装置300は、ユーザ情報を取得すると(ステップS1701)、ユーザ情報に基づき利用者の属性を判定し、画像データの取得元となるサーバを特定する(ステップS1702)。
 続いて、管理装置300は、特定されたサーバに対して、画像データの取得要求を通知する(ステップS1703)。続いて、通知を受け付けたサーバは、取得要求に応じて、画像データを管理装置300へ送信する(ステップS1704)。ここで、管理装置300に送信される画像データは、例えば、サーバ側で予め提供される画像データとして決められていても良い。
 続いて、管理装置300は、取得した画像データを加工し(ステップS1705)、加工後の画像データを、検査用画像データとして検眼装置10へ出力する(ステップS1706)。
 検眼装置10は、取得した検査用画像データを読み出し(ステップS1707)、検査用画像を投影させ、検眼を行う(ステップS1708)。続いて、検眼装置10は、管理装置300に対して、パラメータ情報と、検眼結果情報を出力する(ステップS1709、1710)。
 管理装置300は、検眼結果情報を取得すると、眼球の状態を検出する(ステップS1711)。続いて、管理装置300は、パラメータ情報、検眼結果情報、眼球状態情報をユーザ情報と対応付けて結果データベース350に格納する(ステップS1712)。次に、管理装置300は、パラメータ情報を端末装置30Aに送信する(ステップS1713)。
 端末装置30Aは、パラメータ情報を受信すると、このパラメータ情報に基づき、振れ角を算出する(ステップS1714)。続いて、端末装置30Aは、算出された振れ角をアイウェア50に設定する(ステップS1715)。
 以上のように、本実施形態のアイウェア提供システム100Aによれば、検眼装置10を用いて検眼を行った利用者のパラメータ情報を、アイウェア50に設定し、このアイウェア50を利用者に提供することができる。
 言い換えれば、本実施形態のアイウェア提供システム100Aでは、管理装置300において、ユーザ情報の入力を受け付けると、ユーザ情報に基づき検眼装置10の利用者の属性を判定し、利用者に応じた検査用画像によって検眼を行う。そして、本実施形態のアイウェア提供システム100Aは、管理装置300において、この利用者の検眼結果情報とパラメータ情報とを保持、管理装置300から、端末装置30Aにパラメータ情報を送信する。端末装置30Aは、受信したパラメータ情報を、アイウェア50に設定する。このとき、本実施形態の端末装置30Aは、アイウェア50の製造を行う製造装置を制御する端末装置であっても良い。
 このように、本実施形態のアイウェア提供システム100Aによれば、検眼を行った利用者のパラメータ情報をアイウェア50に設定して利用者固有のアイウェア50を製造し、利用者に提供することができる。
 ここで、本実施形態のアイウェア提供システム100Aの利用シーンについて説明する。以下の例では、検眼装置10と管理装置300とを含む検眼システム200が、アイウェアの販売店に設置されており、端末装置30Aが、アイウェアの製造装置を制御する端末装置として、アイウェア50の製造工場等に設置されているものとする。
 ここで、アイウェアの販売店を訪れた利用者が、自身のアイウェアを購入する場合、利用者は、まず、販売店に設置された検眼システム200により、検眼を行う。検眼システム200は、利用者による検眼が行われると、パラメータ情報と、検眼結果情報と、をユーザ情報と対応付けて管理装置300に保持する。尚、このとき、ユーザ情報には、検眼システム200が設置された販売店を特定するための情報が含まれていても良い。
 そして、検眼システム200は、管理装置300から、端末装置30Aに対して、ユーザ情報と共に、パラメータ情報を送信する。端末装置30Aは、アイウェアの製造工程において、製造装置に、受信したパラメータ情報を用いたレーザ照射部60の取り付け等を行わせる。
 ここで製造されたアイウェアは、ユーザ情報により特定される利用者によって購入されるものである。よって、このアイウェアは、製造工場から、販売店へ引き渡され、販売店において、利用者に引き渡される。
 本実施形態では、このようにして、検眼を行った利用者に対してアイウェアを提供することができる。したがって、本実施形態によれば、アイウェアを利用者に合わせてカスタマイズするために、利用者にアイウェアを試着させて各種の調整を行う等といった手間を省くことができる。
 次に、図18を参照して、本実施形態の管理装置300の動作について説明する。図18は、第二の実施形態の管理装置の処理を説明するフローチャートである。
 本実施形態の管理装置300の検眼管理処理部310は、ユーザ情報取得部311により、ユーザ情報を受け付けたか否かを判定する(ステップS1801)。ステップS1801において、ユーザ情報を取得していない場合、ユーザ情報を取得するまで待機する。
 ステップS1801において、ユーザ情報を受け付けた場合、検眼管理処理部310は、属性判定部312により、ユーザ情報に含まれる項目「性別」、「年齢」の値から、利用者の属性を判定する(ステップS1802)。
 次に、検眼管理処理部310は、画像取得元特定部313により、属性対応データベース340を参照し、利用者の属性と対応するサーバを特定する(ステップS1803)。続いて、検眼管理処理部310は、対応画像取得部314により、特定されたサーバから、画像データを取得する(ステップS1804)。次に、検眼管理処理部310は、画像加工部315により、取得した画像データを加工して検査用画像データとし、画像データ出力部316により、検査用画像データを検眼装置10に出力する(ステップS1805)。
 次に、検眼管理処理部310は、検眼結果取得部317により、パラメータ情報と検眼結果情報を検眼装置10から取得したか否かを判定する(ステップS1806)。ステップS1806において、該当する情報を取得していない場合、検眼管理処理部310は、取得するまで待機する。
 ステップS1806において、該当する情報を取得した場合、検眼管理処理部310は、眼球状態検出部318により、検眼結果情報から、眼球の状態を検出し、眼球状態情報を出力する(ステップS1807)。
 続いて、検眼管理処理部310は、パラメータ送信部319により、パラメータ情報を端末装置30Aに送信する(ステップS1808)。次に、検眼管理処理部310は、結果格納部320により、パラメータ情報と検眼結果情報と眼球状態情報とをユーザ情報と対応付けて、結果データベース350に格納し(ステップS1809)、処理を終了する。
 尚、本実施形態では、検眼管理処理部310は、対応画像取得部314が取得した画像データに対し、画像加工部315により加工を行って、検査用画像データとするものとしたが、これに限定されない。検眼管理処理部310は、対応画像取得部314が取得した画像データをそのまま検査用画像データとして検眼装置10に出力しても良い。
 次に、図19を参照して、本実施形態の端末装置30Aの動作について説明する。図19は、第二の実施形態の端末装置の処理を説明するフローチャートである。
 本実施形態の端末装置30Aの振れ角設定処理部31は、パラメータ受信部32により、管理装置300からパラメータ情報を受信したか否かを判定する(ステップS1901)。ステップS1901において、パラメータ情報を受信していない場合、振れ角設定処理部31は、パラメータ情報を受信するまで待機する。
 ステップS1901において、パラメータ情報を受信すると、振れ角設定処理部31は、振れ角算出部33により、パラメータ情報に基づき、このパラメータ情報と対応付く利用者の視野を示す領域を求める(ステップS1902)。具体的には、例えば、振れ角算出部33は、接眼装置16におけるX軸を中心とした回転角度と、Y軸を中心とした回転角度と、レーザ照射部60にMEMSミラー63の振れ角と、から、接眼装置16において、レーザ照射部60がレーザ光線を走査させた領域を求める。
 続いて、振れ角算出部33は、ステップS1902で求めた領域を、アイウェア50にMEMSミラーの振れ角を算出する(ステップS1903)。尚、このとき、振れ角設定処理部31は、算出された振れ角と、利用者のユーザ情報(ユーザID)とを対応付けて管理装置300へ送信しても良い。そして、管理装置300は、受信した振れ角を、結果データベース350の対応するユーザ情報と対応付けて格納しても良い。
 続いて、振れ角設定処理部31は、振れ角設定部34により、算出した振れ角をアイウェア50に設定し(ステップS1904)、処理を終了する。具体的には、振れ角設定部34は、算出された振れ角を、アイウェア50の有する制御装置へ送信する。アイウェア50の制御装置は、この振れ角をアイウェア50のMEMSミラーの駆動を制御する駆動制御部に通知して、振れ角を設定させる。
 本実施形態では、このように、利用者の視野に基づく領域に対してレーザ光線を照射するようにしている。このため、例えば視野の欠損がある利用者の場合には、欠損している領域にはレーザ光線は照射されず、アイウェア50では、その分の消費電力を削減することができる。
 尚、本実施形態では、端末装置30Aに振れ角設定処理部31を設け、振れ角を算出するものとしたが、これに限定されない。振れ角設定処理部31は、例えば管理装置300が有していても良いし、検眼装置10が有していても良い。
 以上のように、本実施形態では、パラメータ情報に基づき、利用者へ提供するアイウェア50に対し、利用者の視野に応じた領域をレーザ光線で走査させるところまで、自動で行うことができる。したがって、本実施形態では、アイウェア50の製造・販売の手順を簡略化でき、製造効率の向上に貢献できる。
 また、本実施形態によれば、利用者の属性に応じた広告画像を取得して、検査用画像とするため、例えば、利用者が関心を持ちそうな事柄に関連した情報を提供しながら、検眼を行うことができる。
 また、本実施形態では、検眼結果情報から、利用者の眼球の状態を検出し、眼球状態情報をユーザ情報と対応付けて保管する。したがって、本実施形態によれば、検眼を行った利用者は、簡単な検眼によって自身の眼球の状態を知ることができる。また、本実施形態では、例えば、検眼を行った利用者が医療機関を受診する場合には、利用者に対して、検眼結果情報や眼球状態情報を提供することができる。
 (第三の実施形態)
 以下に図面を参照して第三の実施形態について説明する。第三の実施形態では、管理装置をネットワーク上に配置した点が、第二の実施形態と相違する。以下の第三の実施形態の説明では、第二の実施形態との相違点についてのみ説明し、第二の実施形態と同様の機能構成を有するものには、第二の実施形態の説明で用いた符号と同様の符号を付与し、その説明を省略する。
 図20は、第三の実施形態のアイウェア提供システムのシステム構成の一例を示す図である。
 本実施形態のアイウェア提供システム100Bは、検眼装置10と、管理装置300Aと、端末装置30と、を有する。尚、アイウェア提供システム100Bには、端末装置30Aが含まれていても良い。
 検眼装置10と端末装置30は、それぞれが、ネットワークを介して管理装置300Aと接続される。管理装置300Aは、例えばクラウド上に設けられたサーバ装置である。
 本実施形態の管理装置300Aは、検眼管理処理部310と、ユーザ情報データベース330と、属性対応データベース340と、結果データベース350と、認証処理部360と、を有する。
 本実施形態の認証処理部360は、管理装置300Aの有するデータベースに対するアクセス権の有無を判定するための認証処理を行う。
 より具体的には、認証処理部360は、ユーザ情報データベース330にユーザ情報が格納されている利用者に対して、結果データベース350に格納された結果情報を提供する。
 例えば、管理装置300Aは、端末装置30からユーザIDとパスワードを受信すると、認証処理部360により、このユーザIDとパスワードがユーザ情報データベース330に格納されているか否かを判定する。そして、管理装置300Aは、認証処理部360により、該当するユーザIDとパスワードがユーザ情報データベース330に存在すると判定された場合、結果データベース350から、入力されたユーザIDを含む結果情報を抽出して、端末装置30へ送信する。
 また、本実施形態の管理装置300Aは、例えば、検眼装置10が設置されたアイウェアの販売店や医療機関等の関連機関に対し、予め割り降られた認証コード等が入力された場合には、認証コードと対応付けられた結果情報を、認証コードの入力元の端末装置30へ送信しても良い。この場合、管理装置300Aでは、認証コード毎に、送信対象となる結果情報に含まれるユーザIDが対応付けられていても良い。
 本実施形態では、認証コード毎に結果情報をグルーピングしておくことで、例えば、盲学校等の教育機関や、弱視者協会や支援団体等に対して、特定の被検者の結果情報を提供することができる。
 (第四の実施形態)
 以下に、図面を参照して、第四の実施形態について説明する。第四の実施形態では、アイウェアに対するパラメータ情報の適用について説明する。以下の第四の実施形態の説明では、第一乃至第三の実施形態と同様の機能構成を有するものには、第一乃至第三の実施形態の説明で用いた符号と同様の符号を付与し、その説明を省略する。
 はじめに、図21を参照して、アイウェア50の構造について説明する。図21は、網膜走査型アイウェアの構造を説明する図である。図21では、アイウェア50を上方から見た状態を示している。
 本実施形態のアイウェア50は、投影部51、制御部52を備える。本実施形態の投影部51は、光源53、走査ミラー54、反射ミラー55及び投影ミラー56を有する。
 本実施形態のアイウェア50では、投影ミラー56に入射した光線の投影ミラー56内の進行方向をX方向、投影ミラー56におけるX方向に直交する方向をY方向とする。
 走査ミラー54は、例えばMEMSミラーであり、光源53から出射されたレーザ光(光線)Lを水平方向及び垂直方向の2次元方向に走査する。また、走査ミラー54は、光源53から出射された光線Lを2次元に走査して、ユーザの眼球Eの網膜57に画像を投影させるための投影光とする。
 反射ミラー55は、走査ミラー54で走査された光線Lをレンズ58に向かって反射させる。
 レンズ58の利用者の眼球E側の面には、自由局面を有する投影ミラー56が設けられている。投影ミラー56は、走査ミラー54で走査され、反射ミラー55で反射された光線Lを眼球Eの網膜57に照射することにより、網膜57に画像を投影する。つまり、利用者は、網膜57に投射されたレーザ光の残像効果によって、画像を認識することができる。投影ミラー56は、走査ミラー54で走査された光線Lの集束位置が、眼球Eの瞳孔59となるように設計されている。光線Lは投影ミラー56にほぼ真横(すなわちほぼ-X方向)から入射する。
 尚、本実施形態では、投影ミラー56の自由曲面の曲率を大きくすれば、反射ミラー55から瞳孔59の収束位置までの距離を短くすることができ、アイウェア50を小型にすることができる。
 尚、本実施形態の制御部52は、例えば、端末装置30や端末装置30Aにより実現されても良い。
 次に、検眼装置10による検眼によって取得したパラメータ情報のアイウェア50に対する適用について説明する。ここでは、図22A、図22Bを参照して、パラメータ情報119における、瞳孔間距離をアイウェア50に適用する方法をについて説明する。
 図22Aは、瞳孔間距離の適用前のアイウェアを示しており、図22Bは、瞳孔間距離の適用後のアイウェアを示す。
 本実施形態のアイウェア50では、左眼側にレーザ照射部60が設置されている。このレーザ照射部60に、光源53、走査ミラー54、反射ミラー55及び投影ミラー56が含まれている。
 レーザ照射部60は、アイウェア50のフレームに、X方向、Y方向に移動可能に取り付けられており、パラメータ情報119の瞳孔間距離はレーザ照射部60のX方向に反映される。
 本実施形態では、例えば、図22Bに示すように、瞳孔間距離の値に応じて、レーザ照射部60をX方向へ移動させることによって、各ユーザの瞳孔間距離に適応したレーザ照射部60の位置を決めることができる。
 レーザ照射部60をX方向へ移動させるには、ツル49とレーザ照射部60との間に、瞳孔間距離に対応した厚みのスペーサSa等を挿入することによって、複雑な機構を用いずとも瞳孔間距離に応じたレーザ照射部60の位置決めをすることができる。尚、このレーザ照射部60を移動させる構成は、これに限らず、ガイド溝に沿って移動させるなどの構成が考えられる。
 以上、各実施形態に基づき本発明の説明を行ってきたが、上記実施形態にあげた構成、その他の要素との組み合わせなど、ここで示した要件に本発明が限定されるものではない。これらの点に関しては、本発明の主旨をそこなわない範囲で変更することが可能であり、その応用形態に応じて適切に定めることができる。
 また、本国際出願は、2016年12月27日に出願された日本国特許出願2016-253984に基づく優先権を主張するものであり、日本国特許出願2016-253984の全内容を本国際出願に援用する。
 10 検眼装置
 16 接眼装置
 30、30A 端末装置
 31 振れ角設定処理部
 40 パラメータ情報
 50 アイウェア
 60 レーザ照射部
 100、100A、100B アイウェア提供システム
 110 検眼処理部
 200 検眼システム
 300、300A 管理装置
 310 検眼管理処理部
 330 ユーザ情報データベース
 340 属性対応データベース
 350 結果データベース
 360 認証処理部

Claims (19)

  1.  検査用画像データが記憶された記憶部と、
     前記検査用画像データに基づいた画像用レーザ光線を生成するレーザ光源を有し、前記画像用レーザ光線によって、被検者の眼球の網膜へ検査用画像を投影するレーザ照射部と、
     前記画像用レーザ光線を前記被検者の眼球内で収束させる光学部材と、
     前記画像用レーザ光線の収束点を中心に前記レーザ照射部を回転させたときの、前記回転の角度を示す角度情報を含む、網膜走査型アイウェアのためのパラメータ情報を取得するパラメータ取得部と、
     前記パラメータ情報を外部装置へ出力する出力部と、を有する、網膜走査型検眼装置。
  2.  前記被検者による操作を受け付ける操作受付部と、
     前記操作に応じて、前記レーザ照射部の位置を移動及び/又は回転させる機構制御部と、
    を有し、
     前記角度情報は、
     前記機構制御部によって回転された前記レーザ照射部の回転角度を示し、
     前記パラメータ情報は、
     前記機構制御部が前記レーザ照射部を移動させたときの、前記レーザ照射部の位置を示す位置情報を含み、
     前記位置情報は、前記被検者の瞳孔間距離を示す情報を含む、請求項1記載の網膜走査型検眼装置。
  3.  前記被検者から、前記検査用画像を視認した結果の入力を受け付ける入力部を有し、
     前記出力部は、前記被検者が視認した結果を示す検眼結果情報を出力する、請求項1又は2記載の網膜走査型検眼装置。
  4.  前記画像用レーザ光線を走査する走査部を有し、前記パラメータ情報は、前記走査部の光学的走査角度情報を含む、請求項1乃至3の何れか一項に記載の網膜走査型検眼装置。
  5.  被検者の検眼を行う網膜走査型検眼装置と、前記網膜走査型検眼装置と接続される管理装置と、を有する網膜走査型検眼システムであって、
     前記網膜走査型検眼装置は、
     検査用画像データが記憶された記憶部と、
     前記検査用画像データに基づいた画像用レーザ光線を生成するレーザ光源を有し、前記画像用レーザ光線によって、被検者の眼球の網膜へ検査用画像を投影するレーザ照射部と、
     前記画像用レーザ光線を前記被検者の眼球内で収束させる光学部材と、
     前記画像用レーザ光線の収束点を中心に前記レーザ照射部を回転させたときの、前記回転の角度を示す角度情報を含む、網膜走査型アイウェアのためのパラメータ情報を取得するパラメータ取得部と、
     前記パラメータ情報を、前記管理装置に出力する出力部と、を有し、
     前記管理装置は、
     前記パラメータ情報を端末装置へ送信するパラメータ送信部を有する、網膜走査型検眼システム。
  6.  前記網膜走査型検眼装置は、
     前記被検者による操作を受け付ける操作受付部と、
     前記操作に応じて、前記レーザ照射部の位置を移動及び/又は回転させる機構制御部と、
    を有し、
     前記角度情報は、
     前記機構制御部によって回転された前記レーザ照射部の回転角度を示し、
     前記パラメータ情報は、
     前記機構制御部が前記レーザ照射部を移動させたときの、前記レーザ照射部の位置を示す位置情報を含み、
     前記位置情報は、前記被検者の瞳孔間距離を示す情報を含む、請求項5記載の網膜走査型検眼システム。
  7.  前記網膜走査型検眼装置は、
     前記被検者から、前記検査用画像を視認した結果の入力を受け付ける入力部を有し、
     前記出力部は、前記被検者が視認した結果を示す検眼結果情報を前記管理装置に出力し、
     前記管理装置は、
     前記検眼結果情報に基づき、前記被検者の眼球の状態を示す眼球状態情報を出力する眼球状態検出部と、
     前記パラメータ情報と、前記検眼結果情報と、前記眼球状態情報とを対応付けた結果情報を記憶領域に格納する結果格納部と、を有する、請求項6記載の網膜走査型検眼システム。
  8.  前記網膜走査型検眼装置は、画像用レーザ光線を走査する走査部を有し、パラメータ情報は光学的走査角度情報を含む請求項5乃至7の何れか一項に記載の網膜走査型検眼システム。
  9.  網膜走査型検眼装置による網膜走査型検眼方法であって、前記網膜走査型検眼装置が、
     記憶部に記憶された検査用画像データに基づいて、レーザ光源から画像用レーザ光線を生成し、
     前記レーザ光源を有するレーザ照射部により、前記画像用レーザ光線によって、検査用画像を被検者の眼球の網膜へ投影し、
     前記画像用レーザ光線を前記被検者の眼球内で収束させ、
     前記画像用レーザ光線の収束点を中心に前記レーザ照射部を回転させたときの、前記回転の角度を示す角度情報を含む、網膜走査型アイウェアのためのパラメータ情報を取得し、
     前記パラメータ情報を外部装置へ出力する、網膜走査型検眼方法。
  10.  前記網膜走査型検眼装置が、
     前記被検者による操作を受け付け、
     前記操作に応じて、機構制御部により、前記レーザ照射部の位置の移動及び/又は回転を制御し、
     前記角度情報は、
     前記機構制御部によって回転された前記レーザ照射部の回転角度を示し、
     前記パラメータ情報は、
     前記機構制御部が前記レーザ照射部を移動させたときの、前記レーザ照射部の位置を示す位置情報を含み、
     前記位置情報は、前記被検者の瞳孔間距離を示す情報を含む、請求項9記載の網膜走査型検眼方法。
  11.  被検者の検眼を行う網膜走査型検眼装置と、前記網膜走査型検眼装置と通信を行う端末装置と、を有するアイウェア提供システムであって、
     前記網膜走査型検眼装置は、
     検査用画像データが記憶された記憶部と、
     前記検査用画像データに基づいた画像用レーザ光線を生成するレーザ光源を有し、前記画像用レーザ光線によって、被検者の眼球の網膜へ検査用画像を投影するレーザ照射部と、
     前記画像用レーザ光線を前記被検者の眼球内で収束させる光学部材と、
     前記画像用レーザ光線の収束点を中心に前記レーザ照射部を回転させたときの、前記回転の角度を示す角度情報を含む、網膜走査型アイウェアのためのパラメータ情報を取得するパラメータ取得部と、
     前記パラメータ情報を、前記端末装置に出力する出力部と、を有する、アイウェア提供システム。
  12.  被検者の検眼を行う網膜走査型検眼装置と、前記網膜走査型検眼装置と接続される管理装置と、前記管理装置と通信を行う端末装置と、を有するアイウェア提供システムであって、
     前記網膜走査型検眼装置は、
     検査用画像データが記憶された記憶部と、
     前記検査用画像データに基づいた画像用レーザ光線を生成するレーザ光源を有し、前記画像用レーザ光線によって、被検者の眼球の網膜へ検査用画像を投影するレーザ照射部と、
     前記画像用レーザ光線を前記被検者の眼球内で収束させる光学部材と、
     前記画像用レーザ光線の収束点を中心に前記レーザ照射部を回転させたときの、前記回転の角度を示す角度情報を含む、網膜走査型アイウェアのためのパラメータ情報を取得するパラメータ取得部と、
     前記パラメータ情報を、前記管理装置に出力する出力部と、を有し、
     前記管理装置は、
     前記パラメータ情報を前記端末装置へ送信するパラメータ送信部を有する、アイウェア提供システム。
  13.  前記網膜走査型検眼装置は、
     前記被検者による操作を受け付ける操作受付部と、
     前記操作に応じて、前記レーザ照射部の位置を移動及び/又は回転させる機構制御部と、
    を有し、
     前記角度情報は、
     前記機構制御部によって回転された前記レーザ照射部の回転角度を示し、
     前記パラメータ情報は、
     前記機構制御部が前記レーザ照射部を移動させたときの、前記レーザ照射部の位置を示す位置情報を含み、
     前記位置情報は、前記被検者の瞳孔間距離を示す情報を含む、請求項11又は12記載のアイウェア提供システム。
  14.  前記端末装置は、
     網膜走査型ヘッドマウントディスプレイの製造装置と接続される端末装置である、請求項11乃至13の何れか一項に記載のアイウェア提供システム。
  15.  被検者の検眼を行う網膜走査型検眼装置と、前記網膜走査型検眼装置と通信を行う端末装置と、を有するアイウェア提供システムによるアイウェア提供方法であって、
     前記網膜走査型検眼装置が、
     記憶部に記憶された検査用画像データに基づいて、レーザ光源から画像用レーザ光線を生成し、
     前記レーザ光源を有するレーザ照射部により、前記画像用レーザ光線によって、検査用画像を被検者の眼球の網膜へ投影し、
     前記画像用レーザ光線を前記被検者の眼球内で収束させ、
     前記画像用レーザ光線の収束点を中心に前記レーザ照射部を回転させたときの、前記回転の角度を示す角度情報を含む、網膜走査型アイウェアのためのパラメータ情報を取得し、
     前記パラメータ情報を前記端末装置へ出力する、アイウェア提供方法。
  16.  被検者の検眼を行う網膜走査型検眼装置と、前記網膜走査型検眼装置と接続される管理装置と、前記管理装置と通信を行う端末装置と、を有するアイウェア提供システムによるアイウェア提供方法であって、
     前記網膜走査型検眼装置が、
     記憶部に記憶された検査用画像データに基づいて、レーザ光源から画像用レーザ光線を生成し、
     前記レーザ光源を有するレーザ照射部により、前記画像用レーザ光線によって、検査用画像を被検者の眼球の網膜へ投影し、
     前記画像用レーザ光線を前記被検者の眼球内で収束させ、
     前記画像用レーザ光線の収束点を中心に前記レーザ照射部を回転させたときの、前記回転の角度を示す角度情報を含む、網膜走査型アイウェアのためのパラメータ情報を取得し、
     前記パラメータ情報を前記管理装置へ出力し、
     前記管理装置が、
     前記パラメータ情報を前記端末装置へ送信する、アイウェア提供方法。
  17.  前記網膜走査型検眼装置が、
     前記被検者による操作を受け付け、
     前記操作に応じて、機構制御部により、前記レーザ照射部の位置の移動及び/又は回転を制御し、
     前記角度情報は、
     前記機構制御部によって回転された前記レーザ照射部の回転角度を示し、
     前記パラメータ情報は、
     前記機構制御部が前記レーザ照射部を移動させたときの、前記レーザ照射部の位置を示す位置情報を含み、
     前記位置情報は、前記被検者の瞳孔間距離を示す情報を含む、請求項15又は16に記載のアイウェア提供方法。
  18.  光線を出射する光源部と、
     画像データを入力する画像入力部と、
     入力された前記画像データに基づいた画像用光線を生成して、前記光源部からの前記画像用光線の出射制御を行う制御部と、
     前記画像用光線を走査する走査ミラーと、
     前記画像用光線を、前記画像データが表す画像として、利用者の眼球の網膜に投影する投影部と、を有し、
     前記光源部の位置が、外部の網膜走査型検眼装置で取得されたパラメータ情報に基づき決められ、
     前記パラメータ情報は、
     前記網膜走査型検眼装置において、レーザ光線によって、検査用画像を前記利用者の眼球の網膜へ投影し、前記レーザ光線を前記利用者の眼球内で収束させて取得された、前記レーザ光線の収束点を中心に前記レーザ光線を照射するレーザ照射部を回転させたときの、前記回転の角度を示す角度情報を含む、網膜走査型アイウェアのためのパラメータ情報である、網膜走査型アイウェア。
  19.  前記網膜走査型検眼装置は、
     前記利用者による操作を受け付ける操作受付部と、
     前記操作に応じて、前記レーザ照射部の位置を移動及び/又は回転させる機構制御部と、
    を有し、
     前記角度情報は、
     前記機構制御部によって回転された前記レーザ照射部の回転角度を示し、
     前記パラメータ情報は、
     前記機構制御部が前記レーザ照射部を移動させたときの、前記レーザ照射部の位置を示す位置情報を含み、
     前記位置情報は、前記利用者の瞳孔間距離を示す情報を含む、請求項18記載の網膜走査型アイウェア。
PCT/JP2017/045581 2016-12-27 2017-12-19 網膜走査型検眼装置、網膜走査型検眼システム、網膜走査型検眼方法、アイウェア提供システム、アイウェア提供方法及び網膜走査型アイウェア WO2018123741A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/471,274 US11019995B2 (en) 2016-12-27 2017-12-19 Retinal scanning type eye examination device, retinal scanning type eye examination system, eyewear provision system, and retinal scanning type eyewear
CN201780080633.XA CN110113985B (zh) 2016-12-27 2017-12-19 视网膜扫描式验光装置、视网膜扫描式验光系统、视网膜扫描式验光方法、眼镜提供系统以及视网膜扫描式眼镜
EP17887628.0A EP3563754B1 (en) 2016-12-27 2017-12-19 Retinal scanning type eye examination device, retinal scanning type eye examination system, retinal scanning type eye examination method, eyewear provision system, eyewear provision method, and retinal scanning type eyewear

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016253984A JP6255470B1 (ja) 2016-12-27 2016-12-27 網膜走査型検眼装置、網膜走査型検眼システム、網膜走査型検眼方法、網膜走査型アイウェア提供システム、網膜走査型アイウェア提供方法及び網膜走査型アイウェア
JP2016-253984 2016-12-27

Publications (1)

Publication Number Publication Date
WO2018123741A1 true WO2018123741A1 (ja) 2018-07-05

Family

ID=60860213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045581 WO2018123741A1 (ja) 2016-12-27 2017-12-19 網膜走査型検眼装置、網膜走査型検眼システム、網膜走査型検眼方法、アイウェア提供システム、アイウェア提供方法及び網膜走査型アイウェア

Country Status (5)

Country Link
US (1) US11019995B2 (ja)
EP (1) EP3563754B1 (ja)
JP (1) JP6255470B1 (ja)
CN (1) CN110113985B (ja)
WO (1) WO2018123741A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019050049A1 (ja) * 2017-09-11 2019-03-14 株式会社ニコン 眼科機器、管理方法、及び管理装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7290916B2 (ja) * 2018-03-07 2023-06-14 株式会社クリュートメディカルシステムズ 視覚検査装置及び視覚検査プログラム
JP7339900B2 (ja) * 2020-02-26 2023-09-06 新 井上 視野異常診断方法、視野異常診断装置
US11947199B1 (en) * 2020-04-03 2024-04-02 Whaid Rose Method and apparatus for visual field translation to compensate for central field scotomas
JP6937536B1 (ja) * 2020-06-18 2021-09-22 株式会社Qdレーザ 眼底撮影装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0562742A1 (en) * 1992-03-25 1993-09-29 Motorola, Inc. Direct retinal scan display
JP2002130495A (ja) 2000-10-19 2002-05-09 Tokyo Gas Co Ltd L型ガス栓
JP2002162607A (ja) 2000-11-28 2002-06-07 Shigiya Machinery Works Ltd 眼鏡販売システム
JP2012011146A (ja) * 2010-07-05 2012-01-19 Nidek Co Ltd 眼科装置
JP2013537092A (ja) * 2010-09-17 2013-09-30 アルコン レンゼックス, インコーポレーテッド 眼科撮像システムのための電子制御された固視光

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4560801B2 (ja) 2007-01-19 2010-10-13 武敏 鈴木 視覚検査用チャート
US8132911B2 (en) * 2007-07-26 2012-03-13 The United States Of America As Represented By The Department Of Health And Human Services Fundus photo-stimulation system and method
WO2013037050A1 (en) * 2011-09-16 2013-03-21 Annidis Health Systems Corp. System and method for assessing retinal functionality and optical stimulator for use therein
US8223024B1 (en) * 2011-09-21 2012-07-17 Google Inc. Locking mechanism based on unnatural movement of head-mounted display
JP2015504616A (ja) 2011-09-26 2015-02-12 マイクロソフト コーポレーション 透過近眼式ディスプレイのセンサ入力に基づく映像表示修正
US9441946B2 (en) * 2012-05-03 2016-09-13 Wavelight Gmbh Imaging technique for optical coherence tomography
AU2014242096B2 (en) * 2013-03-13 2018-06-28 Amo Development, Llc Laser eye surgery system
JP2014200621A (ja) * 2013-04-10 2014-10-27 Hoya株式会社 眼科用観察装置及びその使用方法
JP6209456B2 (ja) * 2013-05-31 2017-10-04 株式会社Qdレーザ 画像投影装置及び投射装置
JP6227996B2 (ja) * 2013-12-18 2017-11-08 浜松ホトニクス株式会社 計測装置及び計測方法
CN105852798B (zh) * 2014-09-14 2017-11-14 苏州六六视觉科技股份有限公司 广域眼底相机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0562742A1 (en) * 1992-03-25 1993-09-29 Motorola, Inc. Direct retinal scan display
JP2002130495A (ja) 2000-10-19 2002-05-09 Tokyo Gas Co Ltd L型ガス栓
JP2002162607A (ja) 2000-11-28 2002-06-07 Shigiya Machinery Works Ltd 眼鏡販売システム
JP2012011146A (ja) * 2010-07-05 2012-01-19 Nidek Co Ltd 眼科装置
JP2013537092A (ja) * 2010-09-17 2013-09-30 アルコン レンゼックス, インコーポレーテッド 眼科撮像システムのための電子制御された固視光

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3563754A4
SHIMIZU, EIJI: "Retina scan and projection-type display", THE JOURNAL OF THE INSTITUTE OF IMAGE INFORMATION AND TELEVISION ENGINEERS, vol. 65, no. 6, 2011, pages 758 - 763, XP009515367, DOI: 10.3169/itej.65.758 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019050049A1 (ja) * 2017-09-11 2019-03-14 株式会社ニコン 眼科機器、管理方法、及び管理装置
JPWO2019050049A1 (ja) * 2017-09-11 2020-10-29 株式会社ニコン 眼科機器、管理方法、及び管理装置
JP7052800B2 (ja) 2017-09-11 2022-04-12 株式会社ニコン 眼科機器、管理方法、及び管理装置
JP7355144B2 (ja) 2017-09-11 2023-10-03 株式会社ニコン 眼科機器、管理方法、及び管理装置

Also Published As

Publication number Publication date
CN110113985A (zh) 2019-08-09
CN110113985B (zh) 2021-10-01
US20200085295A1 (en) 2020-03-19
EP3563754B1 (en) 2022-08-17
EP3563754A1 (en) 2019-11-06
EP3563754A4 (en) 2020-04-08
JP2018102723A (ja) 2018-07-05
JP6255470B1 (ja) 2017-12-27
US11019995B2 (en) 2021-06-01

Similar Documents

Publication Publication Date Title
WO2018123741A1 (ja) 網膜走査型検眼装置、網膜走査型検眼システム、網膜走査型検眼方法、アイウェア提供システム、アイウェア提供方法及び網膜走査型アイウェア
JP6947480B2 (ja) 人の矯正レンズ処方を決定するためのシステム及び装置
CN107533642B (zh) 用于使用神经网络的生物特征用户识别的设备、方法和系统
US9492074B1 (en) Computerized refraction and astigmatism determination
CN102046067B (zh) 光学相干断层分析设备、方法及系统
US20130339043A1 (en) Vision correction prescription and health assessment facility
KR102190812B1 (ko) 시각적 보상 장치를 맞춤화하기 위한 적어도 하나의 변수 값을 결정하기 위한 방법
US20150127363A1 (en) Method and a system for facilitating a user to avail eye-care services over a communication network
US20040064376A1 (en) Eyeglasses order/sale system over network and its method
JP2002083156A (ja) 無人メガネ情報処理装置およびその方法
JP2002078681A (ja) 無人レンズ情報発信方法およびその装置
US20010042028A1 (en) Method and system for eyeglass ordering on a network
KR20210152176A (ko) 맞춤형 아이웨어 제작 방법 및 장치
JP2002078679A (ja) 無人メガネ情報発信装置およびその方法
US11009715B2 (en) Methods and systems for fitting heads-up display to user
US20150216409A1 (en) Methods And Apparatuses For Providing Laser Scanning Applications
TWI223764B (en) System for determining level of magnification of eyeglasses and contact lenses and method thereof
EP4086693A1 (en) Method, processing device and system for determining at least one centration parameter for aligning spectacle lenses in a spectacle frame to eyes of a wearer
Jo et al. Off-axis alignment based on optical three-dimension rendering for compact adaptive optics scanning laser ophthalmoscope
JP2019097806A (ja) 網膜走査型視力検査装置、網膜走査型視力検査システム、網膜走査型視力検査方法
CN117716435A (zh) 视力测试和处方眼镜的提供
JP5996205B2 (ja) 眼鏡装用シミュレーションシステム、眼鏡装用シミュレーション情報の提供方法及び眼鏡装用シミュレーションプログラム
KR20240126583A (ko) 루페용 3d 스캐너 시스템 및 이를 통해 맞춤형 루페를 제작하는 방법
JP5996206B2 (ja) 眼鏡装用シミュレーションシステム、眼鏡装用シミュレーション情報の提供方法及び眼鏡装用シミュレーションプログラム
CN116646079A (zh) 一种眼科病症辅助诊断方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017887628

Country of ref document: EP

Effective date: 20190729