WO2018123679A1 - 第1の列車搭載装置、第2の列車搭載装置、列車衝突防止システム、方法および記録媒体 - Google Patents

第1の列車搭載装置、第2の列車搭載装置、列車衝突防止システム、方法および記録媒体 Download PDF

Info

Publication number
WO2018123679A1
WO2018123679A1 PCT/JP2017/045265 JP2017045265W WO2018123679A1 WO 2018123679 A1 WO2018123679 A1 WO 2018123679A1 JP 2017045265 W JP2017045265 W JP 2017045265W WO 2018123679 A1 WO2018123679 A1 WO 2018123679A1
Authority
WO
WIPO (PCT)
Prior art keywords
train
signal
information
wireless communication
response
Prior art date
Application number
PCT/JP2017/045265
Other languages
English (en)
French (fr)
Inventor
小島 崇
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US16/470,292 priority Critical patent/US11318842B2/en
Priority to JP2018559066A priority patent/JP6756380B2/ja
Publication of WO2018123679A1 publication Critical patent/WO2018123679A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0018Communication with or on the vehicle or train
    • B61L15/0027Radio-based, e.g. using GSM-R
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning or like safety means along the route or between vehicles or trains
    • B61L23/34Control, warning or like safety means along the route or between vehicles or trains for indicating the distance between vehicles or trains by the transmission of signals therebetween
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/025Absolute localisation, e.g. providing geodetic coordinates
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/161Decentralised systems, e.g. inter-vehicle communication
    • G08G1/163Decentralised systems, e.g. inter-vehicle communication involving continuous checking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L2205/00Communication or navigation systems for railway traffic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning or like safety means along the route or between vehicles or trains
    • B61L23/04Control, warning or like safety means along the route or between vehicles or trains for monitoring the mechanical state of the route
    • B61L23/041Obstacle detection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a technique for preventing a collision between trains.
  • FMS Flexible Management System
  • ATS Automatic Train Stop
  • ATC Automatic Train Control
  • ATS and ATC are problematic in terms of installation cost and maintenance cost.
  • Patent Document 1 describes an example of a technology for preventing a rear-end collision of a train.
  • an interrogation device is mounted on the front part of a succeeding train among two trains traveling on the same track.
  • a response device is installed at the rear of the preceding train.
  • the interrogation device transmits an interrogation signal, and the response device transmits a signal synchronized with the interrogation signal.
  • the interrogation device measures the round-trip propagation time based on the signal received from the response device, and calculates the distance between the trains.
  • Patent Document 2 an example of a technique for performing communication with a moving object is described in Patent Document 2 and Patent Document 3.
  • a device installed on a road communicates with a device mounted on each moving body.
  • the road device receives data from a plurality of moving bodies substantially simultaneously, it transmits polling data to each moving body.
  • the mobile unit transmits the data after elapse of time according to the priority order of the own device.
  • the related technique described in Patent Document 3 transmits polling data from the in-vehicle unit to the portable unit, and branches the process depending on whether there is a response from the portable unit. It is assumed that near field communication such as Bluetooth (registered trademark) is used for communication between the in-vehicle unit and the portable unit.
  • near field communication such as Bluetooth (registered trademark) is used for communication between the in-vehicle unit and the portable unit.
  • the present invention has been made to solve the above-described problems. That is, the present invention can present more appropriate information for preventing a collision between trains while suppressing installation cost and maintenance cost even when train traveling is assumed on a plurality of tracks.
  • the purpose is to provide.
  • the 1st train loading device in one form of the present invention represents the radio communication means which performs radio communications via the antenna installed ahead of the own train which carries the own device, and the track in which the own train is in line.
  • Train information acquisition means for acquiring train information including information
  • search signal transmission means for transmitting a search signal for searching for other trains in the vicinity of the own train from the wireless communication means, and a second mounted on the other train.
  • the response signal including the train information including the information indicating the line on which the other train is present is transmitted from the wireless communication unit, the response signal is transmitted by the train mounting apparatus in response to the reception of the search signal.
  • a collision possibility determination means for determining the possibility of a collision between the own train and the other train, and When it is determined by the collision possibility determination means that there is a possibility of the collision, the distance between the other train and the own train is expressed with the measurement signal and the response with the second train mounting apparatus.
  • Distance measuring means for measuring by transmitting and receiving a measurement response signal via the wireless communication means.
  • the 2nd train mounting apparatus in one form of this invention is the track
  • the search signal response means for transmitting to the first train mounting device via the wireless communication means, and receiving the measurement signal from the first train mounting device via the wireless communication means, Distance measurement response means for transmitting the measurement response signal in response to the measurement signal to the first train mounting device via the wireless communication means.
  • the train collision prevention system includes the first train mounting device described above and the second train mounting device described above.
  • the first train mounting device searches for a search signal for searching for other trains in the vicinity of the own train on which the own device is mounted via an antenna installed in front of the own train.
  • Train information including information representing a track in which the other train is on line, which is transmitted in response to reception of the search signal by the second train mounting device mounted on the other train, is included.
  • train information including information representing a track on which the own train is on line is acquired, and based on the acquired train information and the train information included in the response signal, the own train is acquired.
  • the distance between the other train and the own train is determined with the second train mounting device.
  • Measurement signal between A measurement response signal representing the response of the prime mover is measured by sending and receiving by the wireless communication.
  • the recording medium includes a process of transmitting a search signal for searching for other trains in the vicinity of the own train on which the own device is mounted by wireless communication via an antenna installed in front of the own train.
  • the own train and the train based on the train information including the information representing the track on which the own train is present, the acquired train information, and the train information included in the response signal
  • the distance between the other train and the own train is determined with the second train mounting device.
  • the present invention provides a technique capable of presenting more appropriate information for preventing a collision between trains while suppressing installation cost and maintenance cost even when train traveling is assumed on a plurality of tracks. can do.
  • the 1st train mounting apparatus 100 as the 1st Embodiment of this invention is demonstrated with reference to drawings.
  • the first train mounting apparatus 100 includes a wireless communication unit 101, a train information acquisition unit 102, a search signal transmission unit 103, a collision possibility determination unit 104, and a distance measurement unit 105.
  • the first train mounting apparatus 100 can be configured by hardware elements as shown in FIG.
  • the first train mounting apparatus 100 includes a CPU (Central Processing Unit) 1001, a memory 1002, an output device 1003, an input device 1004, a wireless communication interface 1005, and an antenna 1006.
  • the memory 1002 includes a RAM (Random Access Memory), a ROM (Read Only Memory), an auxiliary storage device (such as a hard disk), and the like.
  • the output device 1003 is configured by a device that outputs information, such as a display device or a printer.
  • the input device 1004 is configured by a device that receives an input of a user operation, such as a keyboard or a mouse.
  • the wireless communication interface 1005 is an interface that performs wireless communication with the second train mounting apparatus.
  • the wireless communication interface 1005 outputs data to be transmitted to the antenna 1006.
  • the wireless communication interface 1005 receives data output from the antenna 1006.
  • the antenna 1006 is installed in front of the train on which the first train mounting apparatus 100 is mounted.
  • the antenna 1006 radiates data output from the wireless communication interface 1005 to space as a radio wave.
  • the antenna 1006 converts radio waves in the space into data and outputs the data to the wireless communication interface 1005.
  • the wireless communication unit 101 includes a wireless communication interface 1005 and an antenna 1006.
  • the other functional blocks of the first train mounting apparatus 100 are configured by a CPU 1001 that reads and executes a computer program stored in the memory 1002 and controls each unit.
  • the hardware configuration of the 1st train mounting apparatus 100 and each function block is not limited to the above-mentioned structure.
  • the wireless communication unit 101 performs wireless communication via an antenna 1006 installed in front of the own train on which the own device is mounted.
  • the train information acquisition unit 102 acquires train information including information indicating a track on which the own train is present. Further, the train information may include a train ID for identifying the own train. For example, the train information acquisition unit 102 may acquire train information from the memory 1002. In this case, it is assumed that train information including information representing a track on which the own train is present is stored in the memory 1002 in advance. Specifically, for example, the train information may be acquired in advance by communication with an existing ground control facility system and stored in the memory 1002.
  • the search signal transmission unit 103 transmits a search signal for searching for other trains near the own train from the wireless communication unit 101.
  • the search signal is transmitted for the second train-mounted device that is mounted on each other train that exists in the range where communication from the wireless communication unit 101 is possible.
  • the transmission of information from the wireless communication unit 101 by the search signal transmission unit 103 is also simply referred to as the transmission of the search signal transmission unit 103.
  • the collision possibility determination unit 104 receives a response signal from the wireless communication unit 101.
  • the response signal is transmitted in response to reception of the search signal by the second train mounting device mounted on the other train.
  • a response signal contains the train information regarding the track in which another train is in line.
  • the collision possibility judgment part 104 is based on the train information of the other train contained in the response signal, and the train information of the own train acquired by the train information acquisition part 102. Determine if there is a possibility.
  • the collision possibility determination unit 104 may determine that there is a possibility of collision if the track indicated by the train information of the own train is the same as the track indicated by the train information of the other train. This is because the other train is on the same track as the own train and is considered to be in the vicinity of the own train so that the search signal from the own train can be received.
  • the distance measurement unit 105 determines whether there is a collision between the other train and the own train on which the second train mounting device that is the transmission source of the response signal is mounted. Measure distance. Specifically, the distance measurement unit 105 transmits / receives a measurement signal and a measurement response signal representing the response to the second train mounting apparatus mounted on such another train via the wireless communication unit 101. By doing so, the distance between the other train and the own train is measured. The measurement signal is transmitted for the second train-mounted device at the designated destination.
  • the transmission / reception of information via the wireless communication unit 101 by the distance measurement unit 105 is also simply referred to as the transmission / reception of the distance measurement unit 105.
  • the search signal transmission unit 103 transmits a search signal (step A1).
  • the collision possibility determination unit 104 determines whether or not a response signal responding to the search signal transmitted in step A1 has been received before a predetermined period elapses after transmission of the search signal (step A2). .
  • Step A2 when the response signal is not received before the predetermined period elapses (No in Step A2), the first train mounting apparatus 100 repeats the operation from Step A1.
  • the collision possibility determination unit 104 acquires the train information of the other train included in the response signal (Step A3).
  • the collision possibility determination unit 104 acquires the train information of the own train using the train information acquisition unit 102 (step A4).
  • the collision possibility determination unit 104 determines whether or not there is a collision between the own train and the other train based on the train information of the other train and the train information of the own train (step A5).
  • Step A5 when it is determined that there is no possibility of a collision (No in Step A5), the first train mounting apparatus 100 repeats the operation from Step A1.
  • the distance measuring unit 105 when it is determined that there is a possibility of collision (Yes in Step A5), the distance measuring unit 105 operates as follows. That is, the distance measuring unit 105 measures the distance between the own train and the other train by transmitting and receiving the measurement signal and the measurement response signal to and from the second train mounted device mounted on the other train (step) A6).
  • the distance measurement unit 105 may calculate the distance by transmitting and receiving the measurement signal and the measurement response signal a plurality of times.
  • the distance measuring unit 105 outputs the measured distance (step A7).
  • the output destination may be the output device 1003, for example.
  • the 1st train mounting apparatus 100 repeats the operation
  • the first train mounting apparatus as the first embodiment of the present invention prevents collision between trains while suppressing installation cost and maintenance cost even when train traveling is assumed on a plurality of tracks. More appropriate information can be presented.
  • wireless communication part performs radio
  • a train information acquisition part acquires the train information containing the information showing the track in which the own train is in line.
  • a search signal transmission part transmits the search signal which searches the other train of the vicinity of the own train from a radio
  • a collision possibility judgment part receives the response signal transmitted according to reception of a search signal by the 2nd train mounting apparatus mounted in the other train from a radio
  • the response signal includes train information including information indicating a track on which another train is on line.
  • a collision possibility judgment part judges the possibility of the collision between the own train and other trains based on the train information included in the response signal and the train information acquired by the train information acquisition means. And when it is judged that there exists a possibility of a collision, a distance measurement part measures the distance between another train and the own train. Specifically, the distance measurement unit transmits / receives a measurement signal and a measurement response signal to / from the second train mounting device mounted on such another train via the wireless communication unit, so that the other train This is because the distance between the train and the own train is measured.
  • this embodiment another train on which the second train mounting device that is the transmission source of the response signal according to the search signal is mounted is searched for as a nearby other train.
  • the searched other train exists in a range where communication can be performed from the antenna in front of the own train.
  • this Embodiment measures the distance between trains, when it is judged that there exists a possibility of a collision based on the train information of the searched other train and the train information of the own train.
  • this embodiment does not measure the distance between trains when it is determined that there is no possibility of a collision with another searched train. For this reason, this embodiment can appropriately determine other trains that may have a collision and present the distance to such other trains as appropriate information for preventing a collision between trains. it can.
  • such a configuration of the present embodiment is realized mainly by hardware and software mounted on the train. For this reason, this embodiment does not require equipment that requires laying other than the train (for example, equipment that requires laying for each track), and reduces installation costs. Moreover, in this Embodiment, it is possible to update software collectively with respect to several trains in a garage. In this embodiment, since there is no infrastructure, replacement at the time of hardware failure is easy. Therefore, such a configuration of the present embodiment reduces maintenance costs.
  • second train mounting apparatus 200 includes a radio communication unit 201, a train information acquisition unit 202, a search signal response unit 203, and a distance measurement response unit 205.
  • the second train mounting apparatus 200 can be configured by hardware elements as shown in FIG.
  • the second train mounting apparatus 200 includes a CPU 2001, a memory 2002, an output apparatus 2003, an input apparatus 2004, a wireless communication interface 2005, and an antenna 2006.
  • the memory 2002 includes a RAM, a ROM, an auxiliary storage device, and the like.
  • the output device 2003 is configured by a device that outputs information, such as a display device or a printer.
  • the input device 2004 is configured by a device that receives an input of a user operation, such as a keyboard and a mouse.
  • the wireless communication interface 2005 is an interface that performs wireless communication with the first train-mounted device. In addition, the wireless communication interface 2005 outputs data to be transmitted to the antenna 2006.
  • the wireless communication interface 2005 receives data output from the antenna 2006.
  • the antenna 2006 is installed behind the train on which the second train mounting apparatus 200 is mounted.
  • the antenna 2006 radiates data output from the wireless communication interface 2005 as a radio wave to space.
  • the antenna 2006 converts space radio waves into data and outputs the data to the wireless communication interface 2005.
  • the wireless communication unit 201 includes a wireless communication interface 2005 and an antenna 2006.
  • the other functional blocks of the second train mounting apparatus 200 are configured by a CPU 2001 that reads and executes a computer program stored in the memory 2002 and controls each unit.
  • the hardware configuration of the 2nd train mounting apparatus 200 and its each functional block is not limited to the above-mentioned structure.
  • the wireless communication unit 201 performs wireless communication via an antenna 2006 installed behind the own train on which the own device is mounted.
  • the train information acquisition unit 202 is configured similarly to the train information acquisition unit 102 in the first train mounting apparatus 100 as the first embodiment of the present invention.
  • the search signal response unit 203 receives a search signal from the first train mounting apparatus 100 via the wireless communication unit 201. And the search signal response part 203 includes the train information acquired by the train information acquisition part 202 in a response signal, and transmits to the 1st train mounting apparatus 100 via the wireless communication part 201.
  • the transmission / reception of information via the wireless communication unit 201 by the search signal response unit 203 is also simply referred to as the transmission / reception of the search signal response unit 203.
  • the distance measurement response unit 205 receives a measurement signal from the first train mounting apparatus 100 via the wireless communication unit 201.
  • the distance measurement response unit 205 transmits a measurement response signal that responds to the received measurement signal to the first train mounting apparatus 100 via the wireless communication unit 201.
  • the transmission / reception of information via the wireless communication unit 201 by the distance measurement response unit 205 is also referred to simply as the transmission / reception of the distance measurement response unit 205.
  • the search signal response unit 203 determines whether or not a search signal has been received (step B1). When the search signal is not received (No in Step B1), the search signal response unit 203 repeats Step B1.
  • Step B1 the search signal response unit 203 acquires the train information of the own train using the train information acquisition unit 202 (Step B2).
  • the search signal response unit 203 includes the acquired train information in the response signal and transmits it to the first train mounting apparatus 100 (step B3).
  • the distance measurement response unit 205 determines whether or not a measurement signal has been received before a predetermined period elapses after the response signal is transmitted (step B4).
  • Step B4 when the measurement signal is not received before the predetermined period elapses (No in Step B4), the second train mounting apparatus 200 repeats the operation from Step B1.
  • the distance measurement response unit 205 transmits the measurement response signal to the first train mounting apparatus 100 (Step B5).
  • the 2nd train mounting apparatus 200 may receive a measurement signal in multiple times from the 1st train mounting apparatus 100.
  • the distance measuring unit 105 may transmit a measurement response signal every time it receives a measurement signal.
  • the 2nd train mounting apparatus 200 repeats the operation
  • the second train mounting apparatus can also perform the following when a train travels on a plurality of tracks. That is, the second train mounting apparatus as the second embodiment provides information necessary for determining the possibility of a collision between trains while suppressing installation costs and maintenance costs. Can be offered against.
  • wireless communication part performs radio
  • a train information acquisition part acquires the train information showing the track in which the own train is in line.
  • a search signal response part receives a search signal from a 1st train mounting apparatus via a radio
  • a response signal including the train information of the own train is transmitted to the first train-mounted device that is the transmission source of the search signal.
  • the other train on which the first train mounting device that is the transmission source of the search signal is present is in a range where communication is possible from the antenna behind the own train.
  • the train information of the own train is used as a judgment material for the possibility of a collision with the own train with respect to the first train mounted device mounted on the other train existing in the vicinity. Can be provided.
  • the train collision prevention system 3 includes a first train mounting apparatus 100 as the first embodiment of the present invention, and a second train mounting apparatus 200 as the second embodiment of the present invention. including.
  • first train mounting apparatus 100 and the second train mounting apparatus 200 are as described in the first and second embodiments of the present invention.
  • the search signal transmitting unit 103 transmits a search signal (step A1).
  • the search signal response part 203 receives a search signal (it is Yes at step B1).
  • the search signal response unit 203 uses the train information acquisition unit 202 to acquire the train information of the train B that is its own train (step B2).
  • the train information of train B is also referred to as train information B.
  • the search signal response unit 203 includes the acquired train information B in the response signal and transmits the response signal to the first train mounting apparatus 100 (step B3).
  • the collision possibility determination unit 104 determines that a response signal has been received until a predetermined period has elapsed after the transmission of the search signal (Yes in step A2).
  • the collision possibility determination unit 104 acquires train information B included in the response signal (step A3).
  • the collision possibility determination unit 104 uses the train information acquisition unit 102 to acquire train information of the train A that is its own train (step A4).
  • the train information of train A is also referred to as train information A.
  • the collision possibility determination unit 104 determines whether there is a possibility of collision between the train A and the train B based on the train information A and the train information B.
  • train information A and train information B indicate the same track, it is determined that there is a possibility of a collision (Yes in step A5).
  • the distance measuring unit 105 measures the distance between the train A and the train B by transmitting and receiving a measurement signal and a measurement response signal to and from the second train mounting apparatus 200 mounted on the train B (step) A6).
  • the distance measurement response unit 205 transmits a measurement response signal to the first train mounting apparatus 100 in response to reception of the measurement signal (steps B4 and B5).
  • the distance measurement part 105 calculates and outputs the distance between the train A and the train B based on a measurement signal and a measurement response signal (step A6, A7).
  • the train A on which the first train mounting apparatus 100 is mounted and the train C on which the second train mounting apparatus 200 is mounted are in a range where they can communicate with each other, but are on different lines.
  • the search signal transmission unit 103 transmits a search signal (step A1).
  • the search signal response part 203 receives a search signal (it is Yes at step B1).
  • the search signal response unit 203 uses the train information acquisition unit 202 to acquire the train information of the train C that is its own train (step B2).
  • the train information of the train C is also referred to as train information C.
  • the search signal response unit 203 includes the acquired train information C in the response signal and transmits the response signal to the first train mounting apparatus 100 (step B3).
  • the collision possibility determination unit 104 determines that a response signal has been received until a predetermined period has elapsed after transmission of the search signal (Yes in step A2).
  • the collision possibility determination unit 104 acquires train information C included in the response signal (step A3).
  • the collision possibility determination unit 104 acquires the train information A of the own train using the train information acquisition unit 102 (step A4).
  • the collision possibility determination unit 104 determines whether there is a collision between the train A and the train C based on the train information A and the train information C.
  • train information A and train information C indicate different tracks, it is determined that there is no possibility of collision (No in step A5).
  • the first train mounting apparatus 100 of the train A ends the process based on the response signal received in step A2.
  • the distance measurement response unit 205 did not receive the measurement signal until the predetermined period has elapsed after the response signal was transmitted (No in step B4). The process based on is terminated.
  • FIG. 10 a specific example of the present embodiment is schematically shown in FIG.
  • a train A, a train B, and a train D are on the track 1.
  • the train A, the train B, and the train D are each traveling toward the direction indicated by the white arrow.
  • Train B is in front of train A.
  • Train D is in front of train B.
  • the train C is on the track 2 and is traveling in the direction indicated by the white arrow.
  • the search signal transmission unit 103 of the first train mounting apparatus 100 mounted on the train A transmits a search signal.
  • the search signal is received by the second train mounting apparatus 200 mounted on the train B and the train C. Since the second train mounting apparatus 200 mounted on the train D is not within a range in which communication is possible from the first train mounting apparatus 100 of the train A, it does not receive the search signal. It is considered that there is no possibility of a collision between trains at a distance that is not within a range where the installed train-mounted devices can communicate.
  • the search signal response unit 203 of the second train mounting apparatus 200 of the train B transmits a response signal including the train information B indicating “track 1” to the first train mounting apparatus 100 of the train A. To do. Further, the search signal response unit 203 of the second train mounting apparatus 200 of the train C transmits a response signal including the train information C indicating “track 2” to the first train mounting apparatus 100 of the train A. .
  • the collision possibility judgment part 104 of the 1st train mounting apparatus 100 of the train A is about collision signal about the response signal containing the train information B which shows the same track as the "track 1" which the train information A of the own train shows. Judge that there is a possibility.
  • the distance measuring unit 105 calculates the distance between the train A and the train B.
  • the collision possibility determination unit 104 of the first train mounting apparatus 100 of the train A can collide with the response signal including the train information C indicating the track different from the “track 1” indicated by the train information A of the own train. Judge that there is no sex. Therefore, the distance measuring unit 105 does not calculate the distance between the train A and the train C.
  • the train collision prevention system is for preventing collision between trains while suppressing installation cost and maintenance cost even when train traveling is assumed on a plurality of tracks. More appropriate information can be presented.
  • the 1st train mounting apparatus mounted in the train 1 mounted the 2nd train mounting apparatus of the transmission source of the response signal according to the search signal sent from the antenna ahead of the own train.
  • Search for train 2 The antenna mounted on the rear side of the searched train 2 exists in a communication range from the antenna in front of the train 1.
  • the 2nd train mounting apparatus mounted in the searched train 2 includes the train information of the own train in a response signal, and transmits to the 1st train mounting apparatus of the train 1.
  • the 1st train mounting apparatus of the train 1 is between the train 1 and the train 2 based on the train information of the train 2 contained in the received response signal, and the train information of the train 1 which is the own train. Determine if there is a possibility of a collision.
  • the first train mounting device of the train 1 measures the distance between the train 1 and the train 2. On the other hand, when it is determined that there is no possibility of a collision, the first train mounting device of the train 1 does not perform the process of measuring the distance between the train 1 and the train 2.
  • the possibility of a collision based on each other's train information when the first and second train mounting apparatuses respectively mounted on different trains exist in a range where they can communicate with each other, the possibility of a collision based on each other's train information. Determine the presence or absence.
  • the present embodiment when there is a possibility of collision, such as when two trains are on the same track and are close enough to communicate with each other, between the two trains Present the distance.
  • two trains are close enough to communicate with each other, but are on different lines, such as when there is no possibility of a collision, between the two trains Do not measure distance.
  • this Embodiment can output the distance between trains with the possibility of a collision as appropriate information for preventing the collision between trains.
  • FIG. 11 shows a configuration of a train collision prevention system 4 as a fourth embodiment of the present invention.
  • the train collision prevention system 4 includes a first train mounting device 140 instead of the first train mounting device 100 with respect to the train collision prevention system 3 as the third embodiment of the present invention. The point is different.
  • the first train mounting device 140 is different from the first train mounting device 100 in that it includes a collision possibility determination unit 144 instead of the collision possibility determination unit 104, and a distance measurement unit 145 instead of the distance measurement unit 105. It has different points.
  • the train collision prevention system 4 can be configured by the same hardware elements as the train collision prevention system 3 according to the third embodiment of the present invention described with reference to FIGS. 2 and 5.
  • the hardware configuration of the train collision prevention system 4 and each functional block thereof is not limited to the above-described configuration.
  • the collision possibility determination unit 144 is configured in substantially the same manner as the collision possibility determination unit 104 in the first embodiment of the present invention, but differs in the following points. That is, when a plurality of response signals responding to the same search signal are received via the wireless communication unit 101, the collision possibility determination unit 144 gives priority to the response signal received earlier and determines the possibility of collision. to decide. Specifically, the collision possibility determination unit 144 determines the possibility of collision in the order in which the response signals are received. Then, the collision possibility determination unit 144 notifies the distance measurement unit 145 to process the response signal that is first determined to have a collision possibility. The collision possibility determination unit 144 does not have to determine the possibility of collision for a response signal received after the response signal.
  • the distance measuring unit 145 is configured in substantially the same manner as the distance measuring unit 105 in the first embodiment of the present invention, but differs in the following points. That is, the distance measurement unit 145 measures the distance between the response signal that is received earlier and is determined to have a possibility of a collision with the train on which the transmission source is mounted. The distance measurement unit 145 does not execute the process of measuring the distance for the response signal received after the response signal.
  • the first train mounting apparatus 140 operates in substantially the same manner as the first train mounting apparatus 100 as the first embodiment of the present invention described with reference to FIG. However, the following points are different.
  • step A5 If it is determined in step A5 that there is no possibility of collision, the collision possibility determination unit 144 determines whether or not there is a response signal received next to the search signal transmitted in step A1 (step S1). A11).
  • Step A11 when there is a response signal received next (Yes in Step A11), the collision possibility determination unit 144 acquires train information of other trains included in the response signal (Step A3). And the 1st train mounting apparatus 140 performs the operation
  • Step A11 when there is no response signal received next (No in Step A11), the first train mounting apparatus 140 repeats the operation from Step A1.
  • step A5 If it is determined in step A5 that there is a possibility of a collision, the distance measuring unit 145 executes steps A6 to A7 as in the first embodiment of the present invention, and the distance between the own train and other trains. Is measured and output.
  • the first train mounting device 140 when the first train mounting device 140 receives a plurality of response signals responding to the same search signal, the first train mounting device 140 mounts the transmission source of the response signal that is first determined to be a collision. Measure the distance to the train. And the 1st train mounting apparatus 140 does not perform the process based on the response signal received after that.
  • the search signal transmission unit 103 transmits a search signal (step A1). And in each 2nd train loading apparatus 200 of train B, train C, and train D, search signal response part 203 receives a search signal (it is Yes at Step B1).
  • the search signal response unit 203 uses the train information acquisition unit 202, and the train information B of the own train, the train information C, or the train Information D is acquired (step B2).
  • the search signal response unit 203 includes the acquired train information B, train information C, or train information D in the response signal, and train It transmits with respect to the 1st train mounting apparatus 140 of A (step B3).
  • the collision possibility determination unit 144 receives response signals from the second train mounting devices 200 of the train B, the train C, and the train D in this order. (Yes in step A2).
  • the collision possibility determination unit 144 acquires the train information B included in the response signal received first (step A3).
  • the collision possibility determination unit 144 acquires the train information A of the own train using the train information acquisition unit 102 (step A4).
  • the collision possibility determination unit 144 determines that there is no possibility of collision between the train A and the train B (No in Step A5).
  • the collision possibility determination unit 144 acquires the train information C included in the response signal received next (Step A3).
  • the collision possibility determination unit 144 acquires the train information A of the own train using the train information acquisition unit 102 (step A4).
  • the collision possibility determination unit 144 determines that there is a possibility of collision between the train A and the train C (Yes in Step A5).
  • the distance measurement part 145 measures and outputs the distance between the train A and the train C by transmitting / receiving a measurement signal and its measurement response signal between the 2nd train mounting apparatuses 200 of the train C ( Step A6, A7).
  • the distance measurement part 145 does not process about the response signal from the 2nd train mounting apparatus 200 of the train D received after that.
  • each second train mounting apparatus 200 of train B and train D receives the next search signal because the measurement signal is not received until the predetermined period has elapsed after the response signal is transmitted (No in step B4). Wait.
  • the train collision prevention system 4 is a distance from the train based on the response signal first determined that there is a possibility of collision among the plurality of response signals received with respect to the same search signal. , And no processing is performed for response signals received thereafter.
  • the train collision prevention system as the fourth embodiment of the present invention is for preventing collision between trains while suppressing installation cost and maintenance cost even when train traveling is assumed on a plurality of tracks. The process of acquiring more appropriate information can be executed efficiently.
  • the collision possibility determination unit receives the response received earlier. Prioritize signals to determine the possibility of collision. Then, the distance measurement unit measures the distance between the response signal that has been received earlier and is determined to have the possibility of a collision with the train on which the second train mounting device that is the transmission source is mounted. It is.
  • a train collision occurs before and after on the same track. Therefore, a plurality of trains with a possibility of collision do not exist ahead of a certain train. Therefore, when the first train mounting apparatus receives response signals from the plurality of second train mounting apparatuses existing in a communicable range, the response signal determined to have a possibility of collision earlier. If processing is performed, processing for the remaining response signals becomes unnecessary. As described above, the present embodiment improves processing efficiency by omitting unnecessary processing.
  • the train collision prevention system 5 includes a first train mounting apparatus 150 instead of the first train mounting apparatus 140 with respect to the train collision prevention system 4 as the fourth embodiment of the present invention.
  • the point is different.
  • the train collision prevention system 5 is different in that it includes a second train mounting device 250 instead of the second train mounting device 200.
  • the first train mounting apparatus 150 is different from the first train mounting apparatus 140 in that it includes a distance measurement unit 155 instead of the distance measurement unit 145 and further includes a synchronization unit 156.
  • the second train mounting apparatus 250 is different from the second train mounting apparatus 200 in that it includes a distance measurement response unit 255 instead of the distance measurement response unit 205 and further includes a synchronization unit 256.
  • the first train mounting apparatus 150 includes a timing detection apparatus 1007 and an antenna 1008 in addition to the same hardware elements as those of the first train mounting apparatus 100 described with reference to FIG. Composed.
  • the second train mounting device 250 includes a timing detection device 2007 and an antenna 2008 in addition to the same hardware elements as those of the second train mounting device 200 described with reference to FIG.
  • the Antennas 1008 and 2008 receive radio waves indicating timing, convert them into signals, and output the signals.
  • Timing detection apparatuses 1007 and 2007 receive signals output from antennas 1008 and 2008, respectively, as timing signals.
  • the antennas 1008 and 2008 may be, for example, GPS (Global Positioning System) antennas.
  • a PPS (Pulse per Second) signal can be applied as a signal representing the timing.
  • the synchronization unit 156 includes a timing detection device 1007, an antenna 1008, and a CPU 1001 that reads and executes a computer program stored in the memory 1002.
  • the synchronization unit 256 includes a timing detection device 2007, an antenna 2008, and a CPU 2001 that reads and executes a computer program stored in the memory 2002.
  • the hardware configuration of the train collision prevention system 5 and each functional block thereof is not limited to the above-described configuration.
  • the synchronization unit 156 of the first train mounting apparatus 150 synchronizes the timing signal used in the own train apparatus with a predetermined timing signal synchronized with the timing signal used in the second train mounting apparatus 250.
  • the predetermined timing may be a timing based on a signal received via the antenna 1008, for example.
  • the antenna 1008 is a GPS antenna
  • the synchronization unit 156 may receive a GPS PPS signal by the antenna 1008 and synchronize the timing signal of the own apparatus with the timing based on the PPS signal.
  • the synchronization unit 256 of the second train mounting apparatus 250 synchronizes the timing signal used in the own apparatus with a predetermined timing signal synchronized with the timing signal used in the first train mounting apparatus 150.
  • the predetermined timing may be a timing based on a signal received via the antenna 2008, for example.
  • the synchronization unit 156 may receive the GPS PPS signal by the antenna 2008 and synchronize the timing signal of the own device with the timing based on the PPS signal.
  • the timing signals used in the first train mounting device 150 and the second train mounting device 250 are synchronized with each other.
  • the synchronization unit 156 and the synchronization unit 256 may not perform the process of synchronizing the timing signal with a predetermined timing while the train is running.
  • the synchronization unit 156 and the synchronization unit 256 perform a process of synchronizing the timing signal to a predetermined timing in an environment where the reception status of the radio wave by the antenna 1008 or the antenna 2008 is good, such as when a train is waiting in a garage or the like. Just keep it.
  • the distance measuring unit 155 of the first train mounting apparatus 150 transmits a measurement signal to the second train mounting apparatus 250 at the timing indicated by the timing signal of the own apparatus. Further, the first train mounting apparatus 150 measures the distance between the own train and other trains based on the delay time included in the measurement response signal received from the second train mounting apparatus 250.
  • the delay time represents the time from when the measurement signal is transmitted until it is received, and can be regarded as a one-way communication time between trains.
  • the distance measurement response unit 255 of the second train mounting device 250 calculates a delay time based on the timing of receiving the measurement signal and the timing signal of the own device.
  • the 2nd train mounting apparatus 250 can acquire the timing at which the received measurement signal was transmitted based on the timing signal of an own apparatus. This is because the timing signal of the own apparatus and the timing signal of the first train mounting apparatus 150 are synchronized.
  • the distance measurement response unit 255 includes the calculated delay time in the measurement response signal and transmits it to the first train mounting apparatus 150 that is the transmission source of the measurement signal.
  • the distance measurement response unit 255 may include the train ID in the measurement response signal in addition to the delay time.
  • FIG. 16 shows a timegram of mutual communication by the distance measuring unit 155 of the first train mounting apparatus 150 and the distance measurement response unit 255 of the second train mounting apparatus 250.
  • FIG. 16 when a measurement signal is sent from the distance measurement unit 155 to the distance measurement response unit 255, a time difference occurs in the transmission / reception timing of the measurement signal depending on the distance between trains.
  • This delay time is expressed as T i.
  • the timing signal used in each of the first train mounting apparatus 150 and the second train mounting apparatus 250 has a minimum resolvable resolution. The value of this minimum resolution is represented as T symbol .
  • Ranging response unit 255 receives the measurement signal, for calculating the delay time T i. Specifically, the timing at which the measurement signal is transmitted by the distance measuring unit 155 is based on the timing signal of the first train mounting apparatus 150.
  • the distance measurement response unit 255 can calculate the delay time T i from the timing signal of the own device synchronized with the timing signal of the first train mounting device 150 and the timing at which the measurement signal is received. Then, the distance measurement response unit 255 returns a measurement response signal including the delay time T i and the train ID to the first train mounting apparatus 150 that is the transmission source of the measurement signal.
  • the distance measuring section 155 based on the delay time T i included in the measurement response signal may be calculated the distance between the train and the train indicated by the train ID.
  • the distance measuring unit 155 may transmit the measurement signal a predetermined number of times n (n is a positive integer). In this case, the distance measuring section 155, based on the n delay time T i that is included in the n measurement response signal may calculate the distance between trains.
  • the distance measurement unit 155 may stop the process of measuring the distance if the measurement response signal corresponding to the transmitted measurement signal cannot be received before a predetermined period elapses after the measurement signal is transmitted. Or in that case, the distance measurement part 155 may calculate the distance between trains based on the measurement signal and measurement response signal which were transmitted / received until then.
  • T symbol is in units of microseconds (10 ⁇ 6 seconds).
  • the present embodiment first detects 1 kilometer as the distance from the train ahead. At this point, stop control for the own train is possible. Furthermore, this Embodiment detects 700 meters next as a distance with the same front train. Even at this time, the second stop control is possible for the own train. As described above, if the range in which the radio wave reaches is within 1 km and the resolution of the calculated distance is 300 meters, the stop control can be made redundant.
  • the timing signals respectively used in the first train mounting device 150 and the second train mounting device 250 are synchronized with the following errors.
  • the timing signal used in each of the first train mounting device 150 and the second train mounting device 250 is an error of, for example, several nanoseconds (10 ⁇ 9 seconds) in consideration of the influence on the distance calculation based on the minimum resolution. It is desirable to synchronize with.
  • step A56 is executed instead of step A6 as an operation for measuring the distance. Details of the operation of step A56 are shown in FIG.
  • the distance measurement unit 155 sets the transmission / reception frequency i to 0 (step A5601).
  • the distance measurement unit 155 transmits a measurement signal to the second train mounting apparatus 250 that is the transmission source of the response signal at a timing based on the timing signal (step A5602).
  • the measurement signal includes information indicating the transmission / reception frequency i.
  • the distance measurement unit 155 determines whether or not a measurement response signal has been received before a predetermined period has elapsed after transmitting the latest measurement signal (step A5603).
  • Step A5603 when the measurement response signal has not been received before the predetermined period elapses (No in Step A5603), the operation of the first train mounting apparatus 150 proceeds to Step A5604 described later.
  • the distance measuring unit 155 from the received measurement response signal, the delay time obtained by temporarily storing T i (Step A5605).
  • the distance measuring unit 155 adds 1 to the transmission / reception count i (step A5606).
  • Step A5607 If i is less than n (Yes in Step A5607), the distance measuring unit 155 repeats the processing from Step A5602.
  • i is long reaches to n (No in step A5607), the distance measuring section 155 temporarily based on the stored n delay time T i, and calculates the distance between the train (step A5608) .
  • the distance measurement unit 155 uses one or more than n of the delay time T i stored so far, and calculates the distance between the train (step A5608).
  • the distance measuring unit 155 ends the operation of measuring the distance in step A56.
  • step B54 is executed instead of steps B4 to B5. Details of the operation of step B54 are shown in FIG.
  • the distance measurement response unit 255 determines whether or not a measurement signal has been received before a predetermined period has elapsed since the most recent transmission of the response signal or measurement response signal (step B5401).
  • the distance measurement response unit 255 ends the operation in response to the measurement signal.
  • step B5401 when the measurement signal is received before the predetermined period has elapsed (Yes in step B5401), the distance measurement response unit 255 delays based on the timing signal of the own device and the timing at which the measurement signal is received. Time T i is calculated (step B5402).
  • the distance measurement response unit 255 includes the delay time T i in the measurement response signal and transmits it to the first train mounting apparatus 150 that is the transmission source of the measurement signal (step B5403).
  • Step B5404 if the i included in the received measurement signal is less than n ⁇ 1 (Yes in Step B5404), the distance measurement response unit 255 repeats the processing from Step B5401.
  • the distance measurement response unit 255 ends the operation in response to the distance measurement.
  • the distance measurement response unit 255 ends the operation in response to the measurement signal.
  • the train collision prevention system calculates the distance between trains more accurately while suppressing installation costs and maintenance costs even when train traveling is assumed on a plurality of tracks. can do.
  • each synchronization unit uses its own timing signal as a predetermined timing signal. Synchronize with.
  • the distance measuring unit transmits the measurement signal at the timing indicated by the timing signal of the own device.
  • the distance measurement response unit calculates the delay time of the measurement signal based on the timing signal of the own device and the reception timing of the measurement signal. Then, the distance measurement response unit includes the calculated delay time in the measurement response time, and transmits it to the first train mounting apparatus.
  • the distance measuring unit calculates the distance between the trains based on the delay time included in the received measurement response signal.
  • the respective synchronization units synchronize the timing signal with a predetermined timing signal in advance during standby, such as while in the garage.
  • the respective timing signals are synchronized with each other.
  • this Embodiment can calculate the delay time of transmission / reception of a measurement signal with a sufficient precision, and improves the precision of the distance calculated based on a delay time.
  • the distance is calculated based on the delay time calculated a plurality of times, so that the accuracy of the distance can be further improved.
  • the distance measurement part of the 1st train mounting apparatus demonstrated the example which considers the delay time contained in a measurement response signal as the one-way communication time of a signal, and calculates the distance between trains. . Furthermore, the distance measurement part of the 1st train mounting apparatus may calculate the delay time of a measurement response signal, and may calculate the distance between trains based on the round-trip communication time of a signal. At this time, the distance measurement unit of the first train-mounted device determines the delay time of the measurement response signal based on the timing signal of the own device, the reception timing of the measurement response signal, and the processing time in the second train-mounted device. May be calculated. In this case, it is assumed that the processing time in the second train mounting apparatus is notified in advance.
  • the configuration of a train collision prevention system 6 as a sixth embodiment of the present invention is shown in FIG.
  • the train collision prevention system 6 includes a first train mounting apparatus 160 instead of the first train mounting apparatus 140 with respect to the train collision prevention system 4 as the fourth embodiment of the present invention.
  • the point is different.
  • the train collision prevention system 6 is different in that it includes a second train mounting device 260 instead of the second train mounting device 200.
  • the first train mounting device 160 is different from the first train mounting device 140 in that it includes a distance measuring unit 165 instead of the distance measuring unit 145. Further, the second train mounting apparatus 260 is different from the second train mounting apparatus 200 in that a distance measurement response unit 265 is provided instead of the distance measurement response unit 205.
  • the train collision prevention system 6 can be configured by the same hardware elements as the train collision prevention system 4 according to the fourth embodiment of the present invention described with reference to FIGS.
  • the hardware configuration of the train collision prevention system 6 and each functional block thereof is not limited to the above-described configuration.
  • the distance measurement unit 165 of the first train mounting device 160 is configured in substantially the same manner as the distance measurement unit 145 in the fourth embodiment of the present invention, but differs in the following points. That is, the distance measuring unit 165 measures the distance between trains by transmitting and receiving measurement signals and measurement response signals based on the start-stop synchronization method.
  • the distance measurement response unit 265 of the second train mounting apparatus 260 is configured in substantially the same manner as the distance measurement response unit 205 in the fourth embodiment of the present invention, except for the following points. That is, when the distance measurement response unit 265 receives the measurement signal based on the start-stop synchronization method, the distance measurement response unit 265 transmits the measurement response signal based on the start-stop synchronization method to the first train mounting device 160 that is the transmission source of the measurement signal.
  • FIG. 22 shows a timegram of mutual communication by the distance measurement unit 165 of the first train mounting apparatus 160 and the distance measurement response unit 265 of the second train mounting apparatus 260.
  • the distance measuring unit 165 adds a fixed bit pattern to the head of the measurement signal, and transmits it to the second train mounting apparatus 260.
  • the fixed bit pattern is “1001”.
  • the distance measuring unit 165 always sends out stop bits when there is no data to be transmitted. In the example of FIG. 22, the stop bit is “0”.
  • the distance measurement response unit 265 receives the measurement signal transmitted from the first train mounting device 160, adds a fixed pattern to the head of the measurement response signal, and transmits the measurement response signal to the first train mounting device 160. To do.
  • the distance measurement part 165 of the 1st train mounting apparatus 160 detects the fixed bit pattern of the head of the measurement response signal transmitted from the 2nd train mounting apparatus 260.
  • the timing after sending the fixed bit pattern added to the head of the measurement signal is set to t1.
  • the timing after detecting the fixed bit pattern added to the head of the measurement response signal is t2.
  • the time from timing t1 to t2 is the sum of the round-trip communication time of the measurement signal and the measurement response signal and the processing time from the reception of the measurement signal to the transmission of the measurement response signal in the second train mounting apparatus 260. It is assumed that the distance measuring unit 165 stores the processing time in the second train mounting apparatus 260 in advance.
  • the distance measurement unit 165 of the first train mounting device 160 subtracts the processing time in the second train mounting device 260 from the difference between the timings t1 and t2, thereby reciprocating the measurement signal and the measurement response signal. Communication time can be obtained. Then, the distance measuring unit 165 may calculate the distance between trains based on the calculated round-trip communication time.
  • the minimum resolution of the round trip time that can be acquired depends on the bit unit, that is, the clock frequency of the CPU 1001.
  • the clock frequency is GHz (10 9 Hz) units. This is in nanosecond (10 ⁇ 9 seconds) units when converted to time. Further, when converted into distance using the above-mentioned light velocity, the minimum resolution is about 30 cm. That is, when performing train stop control using the distance between trains calculated using the present embodiment, the above-described ministerial ordinance and stop performance are sufficiently satisfied.
  • the operation of the first train mounting apparatus 160 is substantially the same as that of the first train mounting apparatus 150 in the fifth embodiment of the present invention described with reference to FIG. However, the details of the operation for measuring the distance in step A56 are different. Details of the operation of step A56 in the present embodiment are shown in FIG.
  • step A5612 is executed instead of step A5602
  • step A5615 is executed instead of step A5605
  • step A5618 is executed instead of step A5608.
  • the distance measuring unit 165 transmits a measurement signal based on the start-stop synchronization method to the second train mounting apparatus 260. Specifically, the distance measurement unit 165 may transmit a measurement signal with a fixed bit pattern added to the head.
  • the distance measuring unit 165 calculates the round-trip communication time Xi of the measurement signal and the measurement response signal. For example, as described above, the distance measurement unit 165 calculates the round-trip communication time from the next time. This time is the timing t1 after sending the first fixed bit pattern of the measurement signal, the timing t2 after detecting the first fixed bit pattern of the measurement response signal, and the processing time in the second train mounting device 260. It is.
  • step A5618 the distance measuring unit 165 calculates the distance between trains based on one or more round-trip communication times Xi.
  • the operation of the second train mounting apparatus 260 is substantially the same as that of the second train mounting apparatus 250 in the fifth embodiment of the present invention described with reference to FIG. However, the details of the operation in response to the measurement signal in step B54 are different. Details of the operation of step B54 in the present embodiment are shown in FIG.
  • step B5412 is executed instead of steps B5402 and B5403.
  • the distance measurement response unit 265 transmits a measurement response signal based on the asynchronous process to the first train mounting apparatus 160. Specifically, the distance measurement response unit 265 may transmit a measurement response signal with a fixed bit pattern added to the head.
  • the train collision prevention system calculates the distance between trains more accurately while suppressing installation costs and maintenance costs even when train traveling is assumed on a plurality of tracks. can do.
  • the distance measurement unit of the first train mounting device and the distance measurement response unit of the second train mounting device are asynchronous.
  • a measurement signal and a measurement response signal are transmitted and received.
  • the distance measurement part of the 1st train mounting apparatus calculates
  • the present embodiment using the start-stop synchronization method can reduce the distance resolution and improve the accuracy of the calculated distance, as compared with the fifth embodiment of the present invention.
  • the present embodiment using the asynchronous method eliminates the need for a timing detection device and an antenna for acquiring a predetermined timing, and further reduces the installation cost, as compared with the fifth embodiment of the present invention.
  • the present embodiment using the start-stop synchronization method can further reduce the maintenance cost as compared with the fifth embodiment of the present invention by eliminating the need for a synchronization unit that synchronizes with a predetermined timing during standby.
  • the train collision prevention system 7 includes a first train mounting apparatus 170 instead of the first train mounting apparatus 140 with respect to the train collision prevention system 4 as the fourth embodiment of the present invention.
  • the point is different.
  • the train collision prevention system 7 is different in that it includes a second train mounting device 270 instead of the second train mounting device 200.
  • the first train mounting device 170 is different from the first train mounting device 140 in that the train information acquiring unit 172 replaces the train information acquiring unit 102 and the collision possibility determining unit 174 instead of the collision possibility determining unit 144. Is different.
  • the point which has the route information acquisition part 177 and the position information acquisition part 178 differs.
  • the 2nd train mounting apparatus 270 has the train information acquisition part 272 instead of the train information acquisition part 202 with respect to the 2nd train mounting apparatus 200 in the 4th Embodiment of this invention, Furthermore, The difference is that a route information acquisition unit 277 and a position information acquisition unit 278 are provided.
  • the first train mounting apparatus 170 includes a position detection apparatus 1707, an antenna 1708, and wireless communication in addition to the same hardware elements as those of the first train mounting apparatus 100 described with reference to FIG.
  • An interface 1709 and an antenna 1710 are included.
  • the second train mounting device 270 includes a position detection device 2707, an antenna 2708, and a wireless communication interface 2709 in addition to the same hardware elements as the second train mounting device 200 described with reference to FIG. And an antenna 2710.
  • Antennas 1708 and 2708 receive radio waves for position detection, convert them into signals, and output them.
  • the position detection devices 1707 and 2707 detect the position of the own device based on the signal output from the antenna 1708 or 2708.
  • the position detection devices 1707 and 2707 may be GPS (Global Positioning System) receivers.
  • antennas 2708 and 1708 are constituted by GPS antennas.
  • Wireless communication interfaces 1709 and 2709 are interfaces that perform wireless communication with the ground control facility. Further, the wireless communication interfaces 1709 and 2709 output data to be transmitted to the antenna 1710 or 2710. The wireless communication interfaces 1709 and 2709 receive data output from the antenna 1710 or 2710. The antennas 1710 and 2710 radiate data output from the wireless communication interface 1709 or 2709 as a radio wave to the space. Antennas 1710 and 2710 receive radio waves in the space, convert them into signals, and output the signals to wireless communication interface 1709 or 2709.
  • the route information acquisition unit 177 includes the wireless communication interface 1709, the antenna 1710, and the CPU 1001 that executes a program stored in the memory 1002.
  • the route information acquisition unit 277 includes a wireless communication interface 2709, an antenna 2710, and a CPU 2001 that executes a program stored in the memory 2002.
  • the position information acquisition unit 178 includes a position detection device 1707, an antenna 1708, and a CPU 1001 that executes a program stored in the memory 1002.
  • the position information acquisition unit 278 includes a position detection device 2707, an antenna 2708, and a CPU 2001 that executes a program stored in the memory 2002.
  • the hardware configuration of the train collision prevention system 4 and each functional block thereof is not limited to the above-described configuration.
  • the route information acquisition unit 177 of the first train mounting apparatus 170 acquires route information representing a route that the own train is scheduled to travel in the future.
  • the route information may be a list of combinations of a track ID that identifies a track and a section ID that identifies a section.
  • the combination of the track ID and the section ID may be associated with position information where the track in the section is located.
  • the route information acquisition unit 177 may acquire route information from the ground control facility by communicating with the ground control facility. Moreover, as timing which acquires route information, the timing which the train carrying the 1st train mounting apparatus 170 is located in the first station, the last station, or a garage etc. may be sufficient, for example.
  • the position information acquisition unit 178 of the first train mounting apparatus 170 acquires the current position information of the own train.
  • the train information acquisition unit 172 of the first train mounting apparatus 170 acquires train information including information indicating a track and a section on the line as train information. Specifically, the train information acquisition unit 172 identifies the track and the section including the position indicated by the current position information of the own train among the routes indicated by the route information of the own train as the track and the section in the current line. That's fine.
  • the collision possibility determination unit 174 determines the possibility of collision based on the track and section indicated by the train information of the own train and the track and section indicated by the train information of the other train.
  • the track and section indicated by the train information of the own train are information acquired by the train information acquisition unit 172.
  • line and area which the train information of another train shows are contained in the response signal.
  • the collision possibility determination unit 174 specifies a route scheduled to travel after the track and section indicated by the train information of the own train in the route information. And collision possibility judgment part 174 should just judge that there is a possibility of a collision, when a track and a section which train information on other trains shows are included in a course scheduled to run after that.
  • the route information acquisition unit 277 of the second train mounting device 270 is configured in the same manner as the route information acquisition unit 177 of the first train mounting device 170.
  • the position information acquisition unit 278 of the second train mounting apparatus 270 is configured in the same manner as the position information acquisition unit 178 of the first train mounting apparatus 170.
  • the train information acquisition unit 272 of the second train mounting device 270 is configured similarly to the train information acquisition unit 172 of the first train mounting device 170.
  • the operation of the first train mounting apparatus 170 is shown in FIG. It is assumed that the first train mounting apparatus 170 has already acquired route information by the route information acquisition unit 177 and stored in the memory 1002 before starting the following operation.
  • the search signal transmission unit 103 executes Steps A1 and A2 as in the fourth embodiment of the present invention. Thereby, it is determined whether a search signal is transmitted and a response signal to the search signal is received. The operation when the response signal is not received before the predetermined period elapses (No in step A2) is the same as in the fourth embodiment of the present invention.
  • the train information acquisition part 172 acquires the information which shows the track
  • the train information acquisition unit 172 acquires the current position information of the own train using the position information acquisition unit 178 (step A74).
  • the train information acquisition unit 172 specifies the track and section in which the own train is on the basis of the route information in the memory 1002 and the current position information of the own train acquired in Step A74 (Step A75). ).
  • the collision possibility determination unit 174 can collide between the own train and the other train based on the route information, the track and the section in which the other train is in the line, and the line and the section in which the own train is in the line. It is determined whether or not there is a property (step A76).
  • Step A76 the first train mounting apparatus 170 executes steps A6 to A7 as in the fourth embodiment of the present invention. Thereby, the distance between the own train and other trains is measured and output.
  • the 1st train mounting apparatus 170 repeats the operation
  • the operation of the second train mounting apparatus 270 is shown in FIG. It is assumed that the second train mounting apparatus 270 has already acquired route information by the route information acquisition unit 277 and stored in the memory 2002 before starting the following operation.
  • step B1 when a search signal is received from the first train mounting device 170 (Yes in step B1), the train information acquisition unit 272 uses the position information acquisition unit 278 to present the current position information of the own train. Is acquired (step B72).
  • the train information acquisition unit 272 specifies a track and a section in which the own train is on the basis of the route information in the memory 2002 and the current position information of the own train acquired in Step B72 (Step B73). ).
  • the search signal response unit 203 includes, in the response signal, the train information indicating the track and section in the current line identified in step B73, and transmits the response signal to the first train mounting apparatus 170 that is the transmission source of the search signal. (Step B74).
  • the second train mounting apparatus 270 executes Steps B4 to B5 as in the fourth embodiment of the present invention. Thereby, a measurement response signal is transmitted in response to reception of the measurement signal.
  • the second train mounting apparatus 270 ends the operation.
  • the seventh embodiment of the present invention will be described with a specific example.
  • the train is already in a garage or a passing station or the like when entering a retreat line.
  • the configuration of the track is as shown in FIG. That is, the line 1 exists in the section a. In the section b, the line 1 and the line 2 exist in parallel. The line 1 in the section a is connected to the line 1 and the line 2 in the section b by a branch point. In addition, it is assumed that the train A is stopped on the track 1 in the section b. In this case, two specific examples will be described.
  • the route information acquisition unit 177 of the first train mounting device 170 mounted on the train B already has information representing “..., Section a: track 1, section b: track 2” as the route information.
  • the path information is expressed as “section x1: line y1, section x2: line y2,..., Section xn: line yn”, from the line y1 in the section x1 to the line yn in the section xn. Represents that the vehicle is scheduled to travel in this order.
  • the search signal transmission unit 103 of the first train mounting apparatus 170 mounted on the train B transmits a search signal.
  • the search signal response part 203 of the 2nd train mounting apparatus 270 mounted in the train A in a communicable range receives a search signal (it is Yes at step A1, B1).
  • the train information acquisition unit 272 of the second train mounting apparatus 270 determines that the train A is present from the already acquired route information of the train A and the current position information (x2, y2). , “Section b: track 1” is specified (steps B72 and B73). Therefore, the search signal response unit 203 includes the train information A indicating “section b: track 1” in the response signal and transmits the response signal to the first train mounting apparatus 170 of the train B (step B74).
  • the train information acquisition unit 172 specifies from the route information of the train B and the current position information (x1, y1) that the train B is on the “section a: track 1” (step 1). A74, A75).
  • the collision possibility determination unit 174 specifies that the route scheduled to travel in the future is “section a: track 1 and section b: track 2” in the route information.
  • the collision possibility determination unit 174 does not include “section b: track 1” (acquired at step A73) indicated by the train information A included in the response signal in the route scheduled to travel in the future. The distance is not calculated (No in step A76).
  • the route information acquisition unit 177 of the first train mounting device 170 mounted on the train B already has information representing “..., Section a: rail 1, section b: rail 1” as the path information. Suppose that it is acquired and stored.
  • the search signal is transmitted from the search signal transmission unit 103 of the first train mounting device 170 of the train B and is received by the second train mounting device 270 of the train A (step A1). , B1 Yes).
  • the search signal response part 203 of the train information acquisition part 272 of the 2nd train mounting apparatus 270 of the train A includes the train information A showing the "section b: line 1" in which the train A is in the response line in the response signal. And transmitted to the first train mounting device 170 of the train B (steps B72 to B74).
  • the 1st train mounting apparatus 170 of the train B specifies that the train B is in the "section a: track 1" (step A74, A75).
  • the collision possibility determination unit 174 specifies that the route scheduled to be traveled in the route information is “section a: track 1 and section b: track 1”. Then, the collision possibility determination unit 174 includes “Section b: Track 1” (acquired at step A73) indicated by the train information A included in the response signal in the route scheduled to travel in the future. (Yes at step A76). Therefore, the distance measuring unit 145 calculates and outputs the distance between the train A and the train B (steps A6 and A7).
  • the train collision prevention system also considers branching and merging of tracks while suppressing installation costs and maintenance costs even when train traveling is assumed on a plurality of tracks. More appropriate information for preventing a collision between trains can be presented.
  • the route information acquisition unit represents a route on which the own train is scheduled to travel. Get information.
  • the position information acquisition unit acquires the current position information of the own train.
  • a train information acquisition part acquires the information showing the track
  • the collision possibility judgment part of the 1st train loading device is possible of a collision based on route information, the track and section which the train information of the own train shows, and the track and section which the train information of other trains show This is because the presence or absence of sex is judged.
  • this embodiment is a collision between trains even near the point where the tracks are branched or merged, such as a garage where a train is already on the line or entering a save line in a passing station. It is possible to accurately determine the possibility.
  • the position information acquisition unit uses a GPS receiver and a GPS antenna.
  • the position information acquisition unit is not limited to GPS, and may employ other known techniques for acquiring position information.
  • each train may be mounted with the first train mounting device in the front and the second train mounting device in the rear.
  • the train information in each embodiment includes a train ID for identifying the train
  • the collision possibility determination unit of the first train-mounted device has the train information of the same train ID as the train ID acquired by the own device.
  • the search signal transmission unit of the first train mounting device transmits the search signal including the train ID of the own train
  • the search signal response unit of the second train mounting device is the same as the train ID of the own train.
  • each train may be equipped with a first train mounting device and a second train mounting device configured as an integrated device.
  • the hardware elements constituting the first and second train mounting apparatuses are between the first and second train mounting apparatuses, except for the antenna installed in front of the train and the antenna installed in the rear. Can be shared.
  • the functional block of the same name in each of the first and second train mounting apparatuses can be shared between the first and second train mounting apparatuses.
  • the wireless communication units of the first train mounting device and the second train mounting device can communicate within a radius of about 1 to 2 kilometers. This is because the above-mentioned case “the range within which the radio waves from the train protection radio apparatus can reach, the accuracy within a radius of about 1 to 2 kilometers from the reporting point” is satisfied.
  • the communicable range can be adjusted according to the size of the transmission output of the wireless communication unit, the reception sensitivity performance, the efficiency of the antenna to be employed, and the like.
  • FM Frequency Modulation
  • QPSK Quadratture Phase Shift Shift Keying
  • each functional block of the first and second train mounting apparatuses is realized by a CPU that executes a computer program stored in a memory.
  • the present invention is not limited to this, and some, all, or a combination of each functional block may be realized by dedicated hardware.
  • the operations of the first and second train mounting apparatuses described with reference to the respective flowcharts are stored as a computer program of the present invention. Store it in. Then, the computer program may be read and executed by the CPU. In such a case, the present invention is constituted by the code of the computer program or a storage medium.
  • Train information acquisition means for acquiring train information including information representing a track on which the own train is on line,
  • Search signal transmission means for transmitting a search signal for searching for other trains in the vicinity of the own train from the wireless communication means,
  • the possibility of collision determining whether or not there is a collision between the own train and the other train based on the train information included in the response signal and the train information acquired by the train information acquisition means Judgment means, When it is determined by the collision possibility determination means that there is a possibility of the collision, the distance between the other train and the own train is measured with the measurement signal and the response with the second train mounting apparatus.
  • the 1st train loading device provided with.
  • the train information acquisition means acquires the train information further including information representing a section of the track in the line in addition to the information representing the track in the track.
  • the collision possibility determination means is based on the track and the section indicated by the train information of the own train and the track and the section indicated by the train information of the other train.
  • (Appendix 3) Route information acquisition means for acquiring route information representing a route on which the train is scheduled to travel; Further comprising position information acquisition means for acquiring current position information of the own train, The train information acquisition means acquires the train information based on the route information and the current position information, The first train mounting apparatus according to Supplementary Note 1 or Supplementary Note 2, wherein the collision possibility determination unit determines whether or not there is a possibility of the collision based further on the route information.
  • the distance measuring means transmits the measurement signal at a timing indicated by the timing signal, and measures the distance based on a delay time of the measurement signal included in the measurement response signal.
  • the first train mounting device according to any one of appendix 3 to.
  • the distance measuring means measures the distance based on the measurement signal and the measurement response signal using an asynchronous method, and the distance measurement unit includes the first distance according to any one of the additional notes 1 to 3 Train-mounted device.
  • the collision possibility determination means determines the possibility of the collision by giving priority to the response signal received earlier.
  • the distance measuring means measures the distance between the response signal, which is received earlier and is determined to have the possibility of the collision, with the other train on which the second train mounting device of the transmission source is mounted.
  • the first train mounting apparatus according to any one of Supplementary Note 1 to Supplementary Note 5, wherein: (Appendix 7) Wireless communication means for performing wireless communication via an antenna installed behind the own train carrying the own device; Train information acquisition means for acquiring train information representing a track on which the own train is on line, When the search signal is received via the wireless communication means from the first train mounting device described in any one of the supplementary notes 1 to 6, the train information obtained by the train information obtaining means is the response signal.
  • search signal response means for transmitting to the first train mounting device via the wireless communication means, When the measurement signal is received from the first train mounting device via the wireless communication means, the measurement response signal in response to the measurement signal is transmitted to the first train mounting device via the wireless communication means.
  • a distance measurement response means The 2nd train loading apparatus provided with.
  • the train information acquisition means acquires the train information further including information indicating a section of the track in the line in addition to the information indicating the track in the track, the second train mounting according to appendix 7 apparatus.
  • Route information acquisition means for acquiring route information representing a route the host train is scheduled to travel; And further comprising position information acquisition means for acquiring current position information of the own train, The second train mounting apparatus according to appendix 7 or appendix 8, wherein the train information acquisition means acquires the train information based on the route information and the current position information.
  • the distance measuring means calculates a delay time of the measurement signal based on the timing signal and the reception timing of the measurement signal, and includes the calculated delay time in the measurement response signal and transmits the delay time to the first train mounting device.
  • the second train mounting apparatus according to any one of Supplementary Note 7 to Supplementary Note 9, wherein: (Appendix 11) When the distance measurement response means receives the measurement signal based on the start-stop synchronization method from the first train-mount apparatus described in Appendix 5, the distance measurement response means transmits the measurement response signal based on the start-stop synchronization method to the first train mount apparatus.
  • the second train mounting apparatus according to any one of Supplementary Note 7 to Supplementary Note 9, wherein: (Appendix 12) The first train mounting device according to any one of appendix 1 to appendix 6, A second train mounting device according to any one of appendix 7 to appendix 11, Including train collision prevention system.
  • the first train mounting device A search signal for searching for other trains in the vicinity of the own train equipped with the own device is transmitted by wireless communication via an antenna installed in front of the own train, A response signal including train information including information representing a line on which the other train is on line, transmitted in response to reception of the search signal by the second train mounting apparatus mounted on the other train, is the wireless communication.
  • train information including information representing the track on which the own train is on line is acquired, Based on the acquired train information and the train information included in the response signal, it is determined whether there is a possibility of a collision between the own train and the other train, When it is determined that there is a possibility of the collision, the distance between the other train and the own train, the measurement signal between the second train mounting device and the measurement response signal representing the response thereof are transmitted to the wireless communication.
  • a process of transmitting the measurement response signal in response to the measurement signal to the first train mounting device by the wireless communication A computer-readable recording medium for recording a program for causing a computer device to execute the program.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

複数の線路において列車の走行が想定される場合にも、設置コストや保守コストを抑えながら、列車間の衝突を防止するためのより適切な情報を提示するため、本発明の列車搭載装置は、自列車の前方に設置されたアンテナを介して無線通信を行う無線通信手段と、自列車が在線中の線路を表す情報を含む列車情報を取得する列車情報取得手段と、近隣の他列車を探索する探索信号を無線通信手段から送信する探索信号送信手段と、他列車に搭載された第2の列車搭載装置によって送信された応答信号を無線通信手段から受信すると、応答信号に含まれる列車情報および列車情報取得手段を用いて取得された列車情報に基づいて自列車および他列車間の衝突の可能性の有無を判断する衝突可能性判断手段と、衝突の可能性があると判断された場合に、他列車および自列車間の距離を測定する距離測定手段とを備える。

Description

第1の列車搭載装置、第2の列車搭載装置、列車衝突防止システム、方法および記録媒体
 本発明は、列車間の衝突を防止する技術に関する。
 一般に、列車を安全に運行するため、FMS(Fleet Management System)では、地上管制施設の中継により列車間の制御が行われる。走行列車の前方に別の列車が予期せず在線しているなどの緊急時には、運転士が、状況を目視などで確認するとともに列車の停止を判断する。そして、運転士は、地上管制施設の司令員に連絡をとることにより、現場の状況を報告したり走行の再開を判断したりする。また、運転士の睡眠時無呼吸症候群などによるヒューマンエラーへの対策として、自動列車停止装置(ATS:Automatic Train Stop)や、自動列車制御装置(ATC:Automatic Train Control)等が知られている。
 しかしながら、運転士の判断にゆだねる場合、運転士による判断ストレスや対応の違いが発生する可能性がある。また、ATSやATCは、設置コストや保守コストが問題となる。
 このような問題に関連して、列車の追突を防止する技術の一例が、特許文献1に記載されている。この関連技術は、同一の線路を走行する2つの列車のうち、後続列車の前部に質問装置を搭載する。また、先行列車の後部に応答装置を搭載する。そして、質問装置は、質問信号を送信し、応答装置は、質問信号に同期した信号を送信する。そして、質問装置は、応答装置から受信した信号に基づいて往復伝播時間を測定し、列車間の距離を算出する。
 また、このような問題に関連して、移動する物体との通信を行う技術の一例が、特許文献2および特許文献3に記載されている。特許文献2に記載された関連技術は、路上に設置された装置が、各移動体に搭載された装置とそれぞれ通信を行う。このとき、路上装置は、複数の移動体からデータを略同時に受信した場合には、各移動体にポーリングデータを送信する。各移動体は、ポーリングデータを受信すると、自装置の優先順位に準じた時間を経過させた後、データを送信する。また、特許文献3に記載された関連技術は、車載ユニットから携帯ユニットにポーリングデータを送信し、携帯ユニットからの応答の有無に応じて処理を分岐する。なお、車載ユニットおよび携帯ユニット間の通信には、ブルートゥース(登録商標)等の近距離無線通信が用いられることが想定されている。
特開平8-268284号公報 特開昭61-230532号公報 特開2004-220180号公報
 しかしながら、特許文献1に記載された関連技術では、質問装置および応答装置がそれぞれ搭載される列車は、同一の線路を走行していることが前提である。ところが、実際には、質問装置から送信される信号が、近隣の線路を走行する他の列車に搭載された応答装置によって受信される可能性がある。そのような場合、質問装置は、他の線路を走行する列車との距離を、追突する可能性がないにも関わらず算出してしまう。このように、複数の線路における列車の走行が想定される場合には、この関連技術は、他の線路を走行している列車との距離を算出してしまう場合があり、列車の安全な運行において適切な情報を提供することができない。
 また、このような問題に対して、特許文献1に記載された関連技術に、特許文献2に記載された関連技術を適用することを考える。この場合、質問装置は、複数の応答装置から信号を受信した場合、それぞれの応答装置に定められた優先順位にしたがって、順次データを受信することになる。しかしながら、質問装置が搭載された列車の近隣を走行する列車のうち、同一の線路において前方を走行する列車を特定するために、各列車にあらかじめ優先順位を設定しておくことは難しい。したがって、特許文献2に記載された関連技術を組み合わせても、複数の線路における列車の走行が想定される場合の上述の問題を解決することはできない。
 また、このような問題に対して、特許文献1に記載された関連技術に、特許文献3に記載された関連技術を適用することを考える。この場合、前後を走行することになる各列車に搭載される質問装置および応答装置は、あらかじめペアリングされることになる。しかしながら、列車は、必ずしも決められた1つの線路を走行するわけではない。そのため、同一の線路を走行することが想定される全ての組合せの質問装置および応答装置が、あらかじめペアリングされることになる。その場合、質問装置は、自装置が搭載された列車と同一の線路を走行する予定があるもののその時点では他の線路に在線中の列車に搭載された応答装置からの信号を受信する可能性がある。したがって、特許文献3に記載された関連技術を組み合わせても、複数の線路における列車の走行が想定される場合の上述の問題を解決することは難しい。
 本発明は、上述の課題を解決するためになされたものである。すなわち、本発明は、複数の線路において列車の走行が想定される場合にも、設置コストや保守コストを抑えながら、列車間の衝突を防止するためのより適切な情報を提示することができる技術を提供することを目的とする。
 本発明の一形態における第1の列車搭載装置は、自装置を搭載する自列車の前方に設置されたアンテナを介して無線通信を行う無線通信手段と、前記自列車が在線中の線路を表す情報を含む列車情報を取得する列車情報取得手段と、前記自列車の近隣の他列車を探索する探索信号を前記無線通信手段から送信する探索信号送信手段と、前記他列車に搭載された第2の列車搭載装置によって前記探索信号の受信に応じて送信された、前記他列車が在線中の線路を表す情報を含む列車情報が含まれる応答信号を前記無線通信手段から受信すると、前記応答信号に含まれる列車情報および前記列車情報取得手段によって取得された列車情報に基づいて、前記自列車および前記他列車間の衝突の可能性の有無を判断する衝突可能性判断手段と、前記衝突可能性判断手段によって前記衝突の可能性があると判断された場合に、前記他列車および前記自列車間の距離を、前記第2の列車搭載装置との間で測定信号およびその応答を表す測定応答信号を前記無線通信手段を介して送受信することにより測定する距離測定手段と、を備える。
 また、本発明の一形態における第2の列車搭載装置は、自装置を搭載する自列車の後方に設置されたアンテナを介して無線通信を行う無線通信手段と、前記自列車が在線中の線路を表す列車情報を取得する列車情報取得手段と、上述の第1の列車搭載装置から前記探索信号を前記無線通信手段を介して受信すると、前記列車情報取得手段によって取得された列車情報を前記応答信号に含めて、前記第1の列車搭載装置に前記無線通信手段を介して送信する探索信号応答手段と、前記第1の列車搭載装置から前記測定信号を前記無線通信手段を介して受信すると、前記測定信号に応答する前記測定応答信号を前記第1の列車搭載装置に前記無線通信手段を介して送信する距離測定応答手段と、を備える。
 また、本発明の一形態における列車衝突防止システムは、上述の第1の列車搭載装置と、上述の第2の列車搭載装置と、を含む。
 また、本発明の一形態における方法は、第1の列車搭載装置が、自装置を搭載する自列車の近隣の他列車を探索する探索信号を、自列車の前方に設置されたアンテナを介した無線通信により送信し、前記他列車に搭載された第2の列車搭載装置によって前記探索信号の受信に応じて送信された、前記他列車が在線中の線路を表す情報を含む列車情報が含まれる応答信号を前記無線通信により受信すると、前記自列車が在線中の線路を表す情報を含む列車情報を取得し、取得した列車情報、および、前記応答信号に含まれる列車情報に基づいて、前記自列車および前記他列車間の衝突の可能性の有無を判断し、前記衝突の可能性があると判断した場合に、前記他列車および前記自列車間の距離を、前記第2の列車搭載装置との間で測定信号およびその応答を表す測定応答信号を前記無線通信によって送受信することにより測定する。
 また、本発明の一形態における記録媒体は、自装置を搭載する自列車の近隣の他列車を探索する探索信号を、自列車の前方に設置されたアンテナを介した無線通信により送信する処理と、前記他列車に搭載された第2の列車搭載装置によって前記探索信号の受信に応じて送信された、前記他列車が在線中の線路を表す情報を含む列車情報が含まれる応答信号を前記無線通信により受信すると、前記自列車が在線中の線路を表す情報を含む列車情報を取得する処理と、取得した列車情報、および、前記応答信号に含まれる列車情報に基づいて、前記自列車および前記他列車間の衝突の可能性の有無を判断する処理と、前記衝突の可能性があると判断した場合に、前記他列車および前記自列車間の距離を、前記第2の列車搭載装置との間で測定信号およびその応答を表す測定応答信号を前記無線通信によって送受信することにより測定する処理と、をコンピュータ装置に実行させるプログラムを記録する。
 本発明は、複数の線路において列車の走行が想定される場合にも、設置コストや保守コストを抑えながら、列車間の衝突を防止するためのより適切な情報を提示することができる技術を提供することができる。
本発明の第1の実施の形態としての第1の列車搭載装置の構成を示すブロック図である。 本発明の第1の実施の形態としての第1の列車搭載装置のハードウェア構成の一例を示す図である。 本発明の第1の実施の形態としての第1の列車搭載装置の動作を説明するフローチャートである。 本発明の第2の実施の形態としての第2の列車搭載装置の構成を示すブロック図である。 本発明の第2の実施の形態としての第2の列車搭載装置のハードウェア構成の一例を示す図である。 本発明の第2の実施の形態としての第2の列車搭載装置の動作を説明するフローチャートである。 本発明の第3の実施の形態としての列車衝突防止システムの構成を説明するブロック図である。 本発明の第3の実施の形態としての列車衝突防止システムの動作を説明するシーケンス図である。 本発明の第3の実施の形態としての列車衝突防止システムの他の動作を説明するシーケンス図である。 本発明の第3の実施の形態としての列車衝突防止システムの具体例を示す模式図である。 本発明の第4の実施の形態としての列車衝突防止システムの構成を説明するブロック図である。 本発明の第4の実施の形態における第1の列車搭載装置の動作を説明するフローチャートである。 本発明の第4の実施の形態としての列車衝突防止システムの動作を説明するシーケンス図である。 本発明の第5の実施の形態としての列車衝突防止システムの構成を説明するブロック図である。 本発明の第5の実施の形態としての列車衝突防止システムのハードウェア構成の一例を示す図である。 本発明の第5の実施の形態における距離の測定について説明する模式図である。 本発明の第5の実施の形態における第1の列車搭載装置の動作を説明するフローチャートである。 本発明の第5の実施の形態における第1の列車搭載装置が距離を測定する動作の詳細を説明するフローチャートである。 本発明の第5の実施の形態における第2の列車搭載装置の動作を説明するフローチャートである。 本発明の第5の実施の形態における第2の列車搭載装置が測定信号に応答する動作の詳細を説明するフローチャートである。 本発明の第6の実施の形態としての列車衝突防止システムの構成を説明するブロック図である。 本発明の第6の実施の形態における距離の測定について説明する模式図である。 本発明の第6の実施の形態における第1の列車搭載装置が距離を測定する動作の詳細を説明するフローチャートである。 本発明の第6の実施の形態における第2の列車搭載装置が測定信号に応答する動作の詳細を説明するフローチャートである。 本発明の第7の実施の形態としての列車衝突防止システムの構成を説明するブロック図である。 本発明の第7の実施の形態としての列車衝突防止システムのハードウェア構成の一例を示す図である。 本発明の第7の実施の形態における第1の列車搭載装置の動作を説明するフローチャートである。 本発明の第7の実施の形態における第2の列車搭載装置の動作を説明するフローチャートである。 本発明の第7の実施の形態の具体例における線路および区間の構成を説明する模式図である。 本発明の第7の実施の形態の具体例において衝突の可能性がないと判断される場合を説明する模式図である。 本発明の第7の実施の形態の具体例において衝突の可能性があると判断される場合を説明する模式図である。
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
 (第1の実施の形態)
 まず、本発明の第1の実施の形態としての第1の列車搭載装置100について、図面を参照して説明する。図1において、第1の列車搭載装置100は、無線通信部101と、列車情報取得部102と、探索信号送信部103と、衝突可能性判断部104と、距離測定部105とを含む。
 ここで、第1の列車搭載装置100は、図2に示すようなハードウェア要素によって構成可能である。図2において、第1の列車搭載装置100は、CPU(Central Processing Unit)1001と、メモリ1002と、出力装置1003と、入力装置1004と、無線通信インタフェース1005と、アンテナ1006とを含む。メモリ1002は、RAM(Random Access Memory)、ROM(Read Only Memory)、補助記憶装置(ハードディスク等)等によって構成される。出力装置1003は、ディスプレイ装置やプリンタ等のように、情報を出力する装置によって構成される。入力装置1004は、キーボードやマウス等のように、ユーザ操作の入力を受け付ける装置によって構成される。無線通信インタフェース1005は、第2の列車搭載装置との間で無線通信を行うインタフェースである。また、無線通信インタフェース1005は、送信するデータをアンテナ1006に出力する。また、無線通信インタフェース1005は、アンテナ1006から出力されるデータを受信する。アンテナ1006は、第1の列車搭載装置100を搭載する列車の前方に設置される。また、アンテナ1006は、無線通信インタフェース1005から出力されるデータを電波として空間に放射する。また、アンテナ1006は、空間の電波をデータに変換して無線通信インタフェース1005に出力する。この場合、無線通信部101は、無線通信インタフェース1005およびアンテナ1006によって構成される。また、第1の列車搭載装置100のその他の各機能ブロックは、メモリ1002に格納されるコンピュータ・プログラムを読み込んで実行するとともに各部を制御するCPU1001によって構成される。なお、第1の列車搭載装置100およびその各機能ブロックのハードウェア構成は、上述の構成に限定されない。
 次に、各機能ブロックの詳細について説明する。
 無線通信部101は、自装置を搭載する自列車の前方に設置されたアンテナ1006を介して無線通信を行う。
 列車情報取得部102は、自列車が在線する線路を表す情報を含む列車情報を取得する。また、列車情報は、自列車を識別する列車IDを含んでいてもよい。例えば、列車情報取得部102は、メモリ1002から列車情報を取得してもよい。この場合、メモリ1002には、自列車が在線する線路を表す情報を含む列車情報があらかじめ記憶されているものとする。具体的には、例えば、列車情報は、あらかじめ既設の地上管制施設のシステムとの通信により取得されてメモリ1002に記憶されていてもよい。
 探索信号送信部103は、自列車の近隣の他列車を探索する探索信号を、無線通信部101から送信する。探索信号は、無線通信部101からの通信可能な範囲に存在する各他列車にそれぞれ搭載される第2の列車搭載装置を対象として送信される。以降、探索信号送信部103が、無線通信部101から情報を送信することを、単に、探索信号送信部103が送信する、とも記載する。
 衝突可能性判断部104は、無線通信部101から応答信号を受信する。以降、衝突可能性判断部104が、無線通信部101から情報を受信することを、単に、衝突可能性判断部104が受信する、とも記載する。応答信号は、他列車に搭載された第2の列車搭載装置によって探索信号の受信に応じて送信される。また、応答信号は、他列車が在線中の線路に関する列車情報を含む。そして、衝突可能性判断部104は、応答信号に含まれる他列車の列車情報と、列車情報取得部102によって取得された自列車の列車情報とに基づいて、自列車および他列車間に衝突の可能性があるか否かを判断する。例えば、衝突可能性判断部104は、自列車の列車情報が示す線路と、他列車の列車情報が示す線路とが同一であれば、衝突の可能性があると判断してもよい。これは、他列車が、自列車と同一の線路に在線中であり、かつ、自列車からの探索信号が受信可能なほどに自列車の近隣にあると考えられるからである。
 距離測定部105は、衝突可能性判断部104によって衝突の可能性があると判断された場合に、応答信号の送信元の第2の列車搭載装置を搭載した他列車と自列車との間の距離を測定する。具体的には、距離測定部105は、そのような他列車に搭載された第2の列車搭載装置との間で、測定信号およびその応答を表す測定応答信号を無線通信部101を介して送受信することにより、他列車および自列車間の距離を測定する。測定信号は、指定された宛先の第2の列車搭載装置を対象として送信される。以降、距離測定部105が無線通信部101を介して情報を送受信することを、単に、距離測定部105が送受信する、とも記載する。
 以上のように構成された第1の列車搭載装置100の動作について、図3を参照して説明する。
 図3では、まず、探索信号送信部103は、探索信号を送信する(ステップA1)。
 次に、衝突可能性判断部104は、ステップA1で送信された探索信号に応答する応答信号を、探索信号の送信後所定期間が経過するまでに受信したか否かを判断する(ステップA2)。
 ここで、所定期間が経過するまでに応答信号が受信されていない場合(ステップA2でNo)、第1の列車搭載装置100は、ステップA1からの動作を繰り返す。
 一方、所定期間が経過するまでに応答信号が受信された場合(ステップA2でYes)、衝突可能性判断部104は、応答信号に含まれる他列車の列車情報を取得する(ステップA3)。
 また、衝突可能性判断部104は、列車情報取得部102を用いて、自列車の列車情報を取得する(ステップA4)。
 次に、衝突可能性判断部104は、他列車の列車情報および自列車の列車情報に基づいて、自列車および他列車間に衝突の可能性があるか否かを判断する(ステップA5)。
 ここで、衝突の可能性がないと判断された場合(ステップA5でNo)、第1の列車搭載装置100は、ステップA1からの動作を繰り返す。
 一方、衝突の可能性があると判断された場合(ステップA5でYes)、距離測定部105は、次のように動作する。すなわち、距離測定部105は、他列車に搭載された第2の列車搭載装置との間で測定信号およびその測定応答信号を送受信することにより、自列車および他列車間の距離を測定する(ステップA6)。
 なお、ステップA6において、距離測定部105は、測定信号および測定応答信号を複数回送受信することにより、距離の算出を行ってもよい。
 そして、距離測定部105は、測定した距離を出力する(ステップA7)。出力先は、例えば、出力装置1003であってもよい。そして、第1の列車搭載装置100は、ステップA1からの動作を繰り返す。
 次に、本発明の第1の実施の形態の効果について述べる。
 本発明の第1の実施の形態としての第1の列車搭載装置は、複数の線路において列車の走行が想定される場合にも、設置コストや保守コストを抑えながら、列車間の衝突を防止するためのより適切な情報を提示することができる。
 その理由について説明する。本実施の形態では、無線通信部が、自装置を搭載する自列車の前方に設置されたアンテナを介して無線通信を行う。また、列車情報取得部が、自列車が在線中の線路を表す情報を含む列車情報を取得する。そして、探索信号送信部が、自列車の近隣の他列車を探索する探索信号を無線通信部から送信する。そして、衝突可能性判断部が、他列車に搭載された第2の列車搭載装置によって探索信号の受信に応じて送信された応答信号を無線通信部から受信する。応答信号には、他列車が在線中の線路を表す情報を含む列車情報が含まれる。そして、衝突可能性判断部が、応答信号に含まれる列車情報および列車情報取得手段によって取得された列車情報に基づいて、自列車および他列車間の衝突の可能性の有無を判断する。そして、衝突の可能性があると判断された場合に、距離測定部が、他列車と自列車との間の距離を測定する。具体的には、距離測定部が、そのような他列車に搭載された第2の列車搭載装置との間で測定信号およびその測定応答信号を無線通信部を介して送受信することにより、他列車と自列車との間の距離を測定するからである。
 このように、本実施の形態は、探索信号に応じた応答信号の送信元の第2の列車搭載装置を搭載した他列車を、近隣の他列車として探索する。探索された他列車は、自列車の前方のアンテナから通信可能な範囲に存在する。そして、本実施の形態は、探索された他列車の列車情報と自列車の列車情報とに基づいて、衝突の可能性があると判断した場合に、列車間の距離を測定する。一方で、本実施の形態は、探索された他列車との間に衝突の可能性がないと判断した場合には、列車間の距離を測定しない。このため、本実施の形態は、列車間の衝突を防止するための適切な情報として、衝突の可能性がある他列車を適切に判断してそのような他列車との距離を提示することができる。
 さらに、本実施の形態のこのような構成は、主に列車に搭載するハードウェアおよびソフトウェアによって実現される。このため、本実施の形態は、列車以外に敷設が必要な設備(例えば線路毎に敷設が必要な設備)が不要であり、設置コストを削減する。また、本実施の形態では、車庫等において複数の列車に対して一括してソフトウェアの更新を行うことが可能である。また、本実施の形態では、インフラレスであるため、ハードウェア故障時の交換が容易である。そのため、本実施の形態のこのような構成は、保守コストを削減する。
 (第2の実施の形態)
 次に、本発明の第2の実施の形態について図面を参照して詳細に説明する。なお、本実施の形態の説明において参照する各図面において、本発明の第1の実施の形態と同一の構成および同様に動作するステップには同一の符号を付して本実施の形態における詳細な説明を省略する。
 まず、本発明の第2の実施の形態としての第2の列車搭載装置200の構成を、図4に示す。図4において、第2の列車搭載装置200は、無線通信部201と、列車情報取得部202と、探索信号応答部203と、距離測定応答部205とを含む。
 ここで、第2の列車搭載装置200は、図5に示すようなハードウェア要素によって構成可能である。図5において、第2の列車搭載装置200は、CPU2001と、メモリ2002と、出力装置2003と、入力装置2004と、無線通信インタフェース2005と、アンテナ2006とを含む。メモリ2002は、RAMやROM、補助記憶装置等によって構成される。出力装置2003は、ディスプレイ装置やプリンタ等のように、情報を出力する装置によって構成される。入力装置2004は、キーボードやマウス等のように、ユーザ操作の入力を受け付ける装置によって構成される。無線通信インタフェース2005は、第1の列車搭載装置との間で無線通信を行うインタフェースである。また、無線通信インタフェース2005は、送信するデータをアンテナ2006に出力する。また、無線通信インタフェース2005は、アンテナ2006から出力されるデータを受信する。アンテナ2006は、第2の列車搭載装置200を搭載する列車の後方に設置される。アンテナ2006は、無線通信インタフェース2005から出力されるデータを電波として空間に放射する。また、アンテナ2006は、空間の電波をデータに変換して無線通信インタフェース2005に出力する。この場合、無線通信部201は、無線通信インタフェース2005およびアンテナ2006によって構成される。また、第2の列車搭載装置200のその他の各機能ブロックは、メモリ2002に格納されるコンピュータ・プログラムを読み込んで実行するとともに各部を制御するCPU2001によって構成される。なお、第2の列車搭載装置200およびその各機能ブロックのハードウェア構成は、上述の構成に限定されない。
 次に、各機能ブロックの詳細について説明する。
 無線通信部201は、自装置を搭載する自列車の後方に設置されたアンテナ2006を介して無線通信を行う。
 列車情報取得部202は、本発明の第1の実施の形態としての第1の列車搭載装置100における列車情報取得部102と同様に構成される。
 探索信号応答部203は、第1の列車搭載装置100から無線通信部201を介して探索信号を受信する。そして、探索信号応答部203は、列車情報取得部202によって取得された列車情報を応答信号に含めて、第1の列車搭載装置100に対して無線通信部201を介して送信する。以降、探索信号応答部203が無線通信部201を介して情報を送受信することを、単に、探索信号応答部203が送受信する、とも記載する。
 距離測定応答部205は、第1の列車搭載装置100から無線通信部201を介して測定信号を受信する。また、距離測定応答部205は、受信した測定信号に応答する測定応答信号を、無線通信部201を介して第1の列車搭載装置100に送信する。以降、距離測定応答部205が無線通信部201を介して情報を送受信することを、単に、距離測定応答部205が送受信する、とも記載する。
 以上のように構成された第2の列車搭載装置200の動作について、図6を参照して説明する。
 図6では、まず、探索信号応答部203は、探索信号が受信されたか否かを判断する(ステップB1)。探索信号が受信されていない場合(ステップB1でNo)、探索信号応答部203は、ステップB1を繰り返す。
 探索信号が受信された場合(ステップB1でYes)、探索信号応答部203は、列車情報取得部202を用いて、自列車の列車情報を取得する(ステップB2)。
 次に、探索信号応答部203は、取得した列車情報を応答信号に含めて、第1の列車搭載装置100に対して送信する(ステップB3)。
 次に、距離測定応答部205は、応答信号の送信後所定期間が経過するまでに、測定信号が受信されたか否かを判断する(ステップB4)。
 ここで、所定期間が経過するまでに測定信号が受信されていない場合(ステップB4でNo)、第2の列車搭載装置200は、ステップB1からの動作を繰り返す。
 一方、測定信号が受信されている場合(ステップB4でYes)、距離測定応答部205は、第1の列車搭載装置100に対して、測定応答信号を送信する(ステップB5)。なお、第2の列車搭載装置200は、第1の列車搭載装置100から複数回測定信号を受信する場合がある。この場合、距離測定部105は、測定信号を受信するたびに測定応答信号を送信すればよい。そして、第2の列車搭載装置200は、ステップB1からの動作を繰り返す。
 次に、本発明の第2の実施の形態の効果について述べる。
 本発明の第2の実施の形態としての第2の列車搭載装置は、複数の線路において列車の走行が想定される場合にも、次のことができる。すなわち、第2の実施の形態としての第2の列車搭載装置は、設置コストや保守コストを抑えながら、列車間の衝突の可能性を判断するために必要な情報を、第1の列車搭載装置に対して提供することができる。
 その理由について説明する。本実施の形態では、無線通信部が、自装置を搭載する自列車の後方に設置されたアンテナを介して無線通信を行う。そして、列車情報取得部が、自列車が在線中の線路を表す列車情報を取得する。そして、探索信号応答部が、第1の列車搭載装置から無線通信部を介して探索信号を受信すると、列車情報取得部によって取得された列車情報を応答信号に含めて、第1の列車搭載装置に対して無線通信部を介して送信する。そして、距離測定応答部が、第1の列車搭載装置から無線通信部を介して測定信号を受信すると、受信した測定信号に応答する測定応答信号を、第1の列車搭載装置に対して無線通信部を介して送信するからである。
 このように、本実施の形態は、探索信号の受信に応じて、探索信号の送信元の第1の列車搭載装置に対して、自列車の列車情報を含む応答信号を送信する。このとき、探索信号の送信元の第1の列車搭載装置を搭載した他列車は、自列車の後方のアンテナから通信可能な範囲に存在する。本実施の形態は、そのような近隣に存在する他列車に搭載された第1の列車搭載装置に対して、自列車との衝突の可能性の有無の判断材料として、自列車の列車情報を提供することができる。
 さらに、このような本実施の形態の構成が、設置コストや保守コストを抑えることについては、本発明の第1の実施の形態の効果として説明した通りである。
 (第3の実施の形態)
 次に、本発明の第3の実施の形態について図面を参照して詳細に説明する。なお、本実施の形態の説明において参照する各図面において、本発明の第1~第2の実施の形態と同一の構成および同様に動作するステップには同一の符号を付して本実施の形態における詳細な説明を省略する。
 まず、本発明の第3の実施の形態としての列車衝突防止システム3の構成を図7に示す。図7において、列車衝突防止システム3は、本発明の第1の実施の形態としての第1の列車搭載装置100と、本発明の第2の実施の形態としての第2の列車搭載装置200とを含む。
 第1の列車搭載装置100および第2の列車搭載装置200の構成および動作は、本発明の第1および第2の実施の形態で説明した通りである。
 ここでは、列車衝突防止システム3の動作を図8~図9のシーケンス図で説明する。
 図8では、第1の列車搭載装置100を搭載した列車Aと、第2の列車搭載装置200を搭載した列車Bとが、互いに通信可能な範囲において、同一の線路に在線しているとする。また、列車Aおよび列車Bの進行方向が同一であり、列車Aが後方を走行し、列車Bが前方を走行しているものとする。
 図8では、まず、列車Aに搭載された第1の列車搭載装置100において、探索信号送信部103は、探索信号を送信する(ステップA1)。そして、列車Bに搭載された第2の列車搭載装置200において、探索信号応答部203は、探索信号を受信する(ステップB1でYes)。
 次に、第2の列車搭載装置200において、探索信号応答部203は、列車情報取得部202を用いて、自列車である列車Bの列車情報を取得する(ステップB2)。以降、列車Bの列車情報を列車情報Bとも記載する。
 次に、第2の列車搭載装置200において、探索信号応答部203は、取得した列車情報Bを応答信号に含めて、第1の列車搭載装置100に対して送信する(ステップB3)。
 次に、第1の列車搭載装置100において、衝突可能性判断部104は、探索信号の送信後所定期間が経過するまでに、応答信号を受信したと判断する(ステップA2でYes)。
 次に、衝突可能性判断部104は、応答信号に含まれる列車情報Bを取得する(ステップA3)。
 また、衝突可能性判断部104は、列車情報取得部102を用いて、自列車である列車Aの列車情報を取得する(ステップA4)。以降、列車Aの列車情報を列車情報Aとも記載する。
 次に、衝突可能性判断部104は、列車情報Aおよび列車情報Bに基づいて、列車Aおよび列車B間に衝突の可能性があるか否かを判断する。ここでは、列車情報Aと列車情報Bとが同一の線路を示すため、衝突の可能性があると判断される(ステップA5でYes)。
 そこで、距離測定部105は、列車Bに搭載された第2の列車搭載装置200との間で測定信号および測定応答信号を送受信することにより、列車Aおよび列車B間の距離を測定する(ステップA6)。
 また、第2の列車搭載装置200において、距離測定応答部205は、第1の列車搭載装置100に対して、測定信号の受信に応じて測定応答信号を送信する(ステップB4、B5)。
 そして、第1の列車搭載装置100において、距離測定部105は、測定信号および測定応答信号に基づいて、列車Aおよび列車B間の距離を算出し、出力する(ステップA6、A7)。
 また、図9では、第1の列車搭載装置100を搭載した列車Aと、第2の列車搭載装置200を搭載した列車Cとが、互いに通信可能な範囲に存在するものの、異なる線路に在線しているとする。
 図9では、まず、列車Aに搭載された第1の列車搭載装置100において、探索信号送信部103は、探索信号を送信する(ステップA1)。そして、列車Cに搭載された第2の列車搭載装置200において、探索信号応答部203は、探索信号を受信する(ステップB1でYes)。
 次に、第2の列車搭載装置200において、探索信号応答部203は、列車情報取得部202を用いて、自列車である列車Cの列車情報を取得する(ステップB2)。以降、列車Cの列車情報を列車情報Cとも記載する。
 次に、第2の列車搭載装置200において、探索信号応答部203は、取得した列車情報Cを応答信号に含めて、第1の列車搭載装置100に対して送信する(ステップB3)。
 次に、第1の列車搭載装置100において、衝突可能性判断部104は、探索信号の送信後所定期間が経過するまでに応答信号を受信したと判断する(ステップA2でYes)。
 次に、衝突可能性判断部104は、応答信号に含まれる列車情報Cを取得する(ステップA3)。
 また、衝突可能性判断部104は、列車情報取得部102を用いて、自列車の列車情報Aを取得する(ステップA4)。
 次に、衝突可能性判断部104は、列車情報Aおよび列車情報Cに基づいて、列車Aおよび列車C間に衝突の可能性があるか否かを判断する。ここでは、列車情報Aと列車情報Cとが、異なる線路を示すため、衝突の可能性はないと判断される(ステップA5でNo)。
 そこで、列車Aの第1の列車搭載装置100は、ステップA2で受信した応答信号に基づく処理を終了する。
 また、第2の列車搭載装置200において、距離測定応答部205は、応答信号の送信後所定期間が経過するまでに、測定信号を受信しなかったので(ステップB4でNo)、送信した応答信号に基づく処理を終了する。
 以上で、列車衝突防止システム3の動作の説明を終了する。
 次に、本実施の形態の具体例を、図10に模式的に示す。図10において、列車A、列車Bおよび列車Dは、線路1に在線する。また、列車A、列車Bおよび列車Dは、それぞれ白抜きの矢印で示す方向に向かって走行中である。また、列車Bは、列車Aの前方にある。また、列車Dは、列車Bの前方にある。また、列車Cは、線路2に在線し、白抜きの矢印で示す方向に向かって走行中である。
 このとき、列車Aに搭載された第1の列車搭載装置100の探索信号送信部103は、探索信号を送信する。探索信号は、列車B、列車Cに搭載された第2の列車搭載装置200によって受信される。列車Dに搭載された第2の列車搭載装置200は、列車Aの第1の列車搭載装置100から通信可能な範囲にないため、探索信号を受信しない。搭載された列車搭載装置間が通信可能な範囲にない距離の列車間は、衝突の可能性がないとみなされる。
 ここでは、列車Bの第2の列車搭載装置200の探索信号応答部203は、列車Aの第1の列車搭載装置100に対して、「線路1」を示す列車情報Bを含む応答信号を送信する。また、列車Cの第2の列車搭載装置200の探索信号応答部203は、列車Aの第1の列車搭載装置100に対して、「線路2」を示す列車情報Cを含む応答信号を送信する。
 そこで、列車Aの第1の列車搭載装置100の衝突可能性判断部104は、自列車の列車情報Aが示す「線路1」と同一の線路を示す列車情報Bを含む応答信号について、衝突の可能性があると判断する。そして、距離測定部105は、列車Aおよび列車B間の距離を算出する。一方、列車Aの第1の列車搭載装置100の衝突可能性判断部104は、自列車の列車情報Aが示す「線路1」と異なる線路を示す列車情報Cを含む応答信号について、衝突の可能性はないと判断する。したがって、距離測定部105は、列車Aおよび列車C間については距離を算出しない。
 以上で、具体例の説明を終了する。
 次に、本発明の第3の実施の形態の効果について述べる。
 本発明の第3の実施の形態としての列車衝突防止システムは、複数の線路において列車の走行が想定される場合にも、設置コストや保守コストを抑えながら、列車間の衝突を防止するためのより適切な情報を提示することができる。
 その理由について説明する。本実施の形態では、列車1に搭載された第1の列車搭載装置が、自列車の前方のアンテナから送出された探索信号に応じた応答信号の送信元の第2の列車搭載装置を搭載した列車2を探索する。探索された列車2の後方に搭載されたアンテナは、列車1の前方のアンテナから通信可能な範囲に存在する。そして、探索された列車2に搭載された第2の列車搭載装置が、自列車の列車情報を応答信号に含めて列車1の第1の列車搭載装置に送信する。そして、列車1の第1の列車搭載装置が、受信した応答信号に含まれる列車2の列車情報と、自列車である列車1の列車情報とに基づいて、列車1と列車2との間に衝突の可能性があるか否かを判断する。そして、衝突の可能性があると判断した場合には、列車1の第1の列車搭載装置が、列車1および列車2間の距離を測定するからである。一方で、衝突の可能性がないと判断した場合には、列車1の第1の列車搭載装置が、列車1および列車2間の距離を測定する処理を行わないからである。
 このように、本実施の形態は、異なる列車にそれぞれ搭載された第1および第2の列車搭載装置が互いに通信可能な範囲に存在するときに、互いの列車情報に基づいて、衝突の可能性の有無を判断する。これにより、本実施の形態は、2つの列車が同一の線路に在線しており互いに通信可能なほどに近接しているといったように、衝突の可能性がある場合には、当該2つの列車間の距離を提示する。一方で、本実施の形態は、2つの列車が互いに通信可能なほどに近接しているものの異なる線路に在線しているといったように、衝突の可能性がない場合には、当該2つの列車間については距離を測定しない。その結果、本実施の形態は、列車間の衝突を防止するための適切な情報として、衝突の可能性がある列車間の距離を出力することができる。
 さらに、このような本実施の形態の構成が、設置コストや保守コストを抑えることについては、本発明の第1の実施の形態の効果として説明した通りである。
 (第4の実施の形態)
 次に、本発明の第4の実施の形態について図面を参照して詳細に説明する。なお、本実施の形態の説明において参照する各図面において、本発明の第1~第3の実施の形態と同一の構成および同様に動作するステップには同一の符号を付して本実施の形態における詳細な説明を省略する。
 まず、本発明の第4の実施の形態としての列車衝突防止システム4の構成を図11に示す。図11において、列車衝突防止システム4は、本発明の第3の実施の形態としての列車衝突防止システム3に対して、第1の列車搭載装置100に替えて第1の列車搭載装置140を備える点が異なる。
 第1の列車搭載装置140は、第1の列車搭載装置100に対して、衝突可能性判断部104に替えて衝突可能性判断部144と、距離測定部105に替えて距離測定部145とを有する点が異なる。
 ここで、列車衝突防止システム4は、図2および図5を参照して説明した本発明の第3の実施の形態としての列車衝突防止システム3と同様のハードウェア要素によって構成可能である。なお、列車衝突防止システム4およびその各機能ブロックのハードウェア構成は、上述の構成に限定されない。
 次に、列車衝突防止システム4の各機能ブロックのうち、本発明の第1~3の実施の形態と相違する機能ブロックついて詳細に説明する。
 衝突可能性判断部144は、本発明の第1の実施の形態における衝突可能性判断部104と略同様に構成されるが、次の点が異なる。すなわち、衝突可能性判断部144は、無線通信部101を介して同一の探索信号に応答する複数の応答信号が受信された場合、より早く受信された応答信号を優先して衝突の可能性を判断する。具体的には、衝突可能性判断部144は、応答信号が受信された順に衝突の可能性を判断する。そして、衝突可能性判断部144は、最初に衝突の可能性があると判断した応答信号について、処理を行うよう距離測定部145に通知する。衝突可能性判断部144は、当該応答信号より後に受信された応答信号については、衝突の可能性を判断しなくてよい。
 距離測定部145は、本発明の第1の実施の形態における距離測定部105と略同様に構成されるが、次の点が異なる。すなわち、距離測定部145は、より早く受信されて衝突の可能性があると判断された応答信号について、その送信元を搭載した列車との間の距離を測定する。距離測定部145は、当該応答信号より後に受信された応答信号については、距離を測定する処理を実行しないことになる。
 以上のように構成された列車衝突防止システム4の動作について、図面を参照して説明する。
 まず、第1の列車搭載装置140の動作を、図12に示す。
 図12において、第1の列車搭載装置140は、図3を参照して説明した本発明の第1の実施の形態としての第1の列車搭載装置100と略同様に動作する。ただし、次の点が異なる。
 ステップA5において衝突の可能性がないと判断した場合、衝突可能性判断部144は、ステップA1で送信された探索信号に対して次に受信された応答信号があるか否かを判断する(ステップA11)。
 そして、次に受信された応答信号がある場合(ステップA11でYes)、衝突可能性判断部144は、その応答信号に含まれる他列車の列車情報を取得する(ステップA3)。そして、第1の列車搭載装置140は、ステップA4からの動作を実行する。
 一方、次に受信された応答信号がない場合(ステップA11でNo)、第1の列車搭載装置140は、ステップA1からの動作を繰り返す。
 また、ステップA5において衝突の可能性があると判断した場合、距離測定部145は、本発明の第1の実施の形態と同様にステップA6~A7を実行し、自列車および他列車間の距離を測定して出力する。
 このように、第1の列車搭載装置140は、同一の探索信号に応答する複数の応答信号を受信した場合、そのうち最初に衝突の可能性があると判断された応答信号の送信元を搭載した列車との距離を測定する。そして、第1の列車搭載装置140は、それ以降に受信された応答信号に基づく処理は行わない。
 以上で、第1の列車搭載装置140の動作の説明を終了する。
 次に、列車衝突防止システム4の動作を図13のシーケンス図で説明する。
 図13では、第1の列車搭載装置140を搭載した列車Aと、第2の列車搭載装置200をそれぞれ搭載した列車B、列車Cおよび列車Dが、互いに通信可能な範囲にあるとする。また、列車Aおよび列車Cは、同一の線路を走行しているとする。また、列車Aが後方を走行し、列車Cが前方を走行しているものとする。また、列車Bおよび列車Dは、それぞれ、列車Aとは異なる線路に在線しているものとする。
 図13では、まず、列車Aの第1の列車搭載装置140において、探索信号送信部103は、探索信号を送信する(ステップA1)。そして、列車B、列車Cおよび列車Dの各第2の列車搭載装置200において、探索信号応答部203は、探索信号を受信する(ステップB1でYes)。
 次に、列車B、列車Cおよび列車Dの各第2の列車搭載装置200において、探索信号応答部203は、列車情報取得部202を用いて、自列車の列車情報B、列車情報Cまたは列車情報Dを取得する(ステップB2)。
 次に、列車B、列車Cおよび列車Dの各第2の列車搭載装置200において、探索信号応答部203は、取得した列車情報B、列車情報Cまたは列車情報Dを応答信号に含めて、列車Aの第1の列車搭載装置140に対して送信する(ステップB3)。
 次に、列車Aの第1の列車搭載装置140において、衝突可能性判断部144は、列車B、列車C、列車Dの各第2の列車搭載装置200からの応答信号を、この順に受信したと判断する(ステップA2でYes)。
 次に、列車Aの第1の列車搭載装置140において、衝突可能性判断部144は、最初に受信された応答信号に含まれる列車情報Bを取得する(ステップA3)。
 また、衝突可能性判断部144は、列車情報取得部102を用いて、自列車の列車情報Aを取得する(ステップA4)。
 ここでは、列車情報Aと列車情報Bとは、異なる線路を示す。したがって、衝突可能性判断部144は、列車Aおよび列車B間に衝突の可能性がないと判断する(ステップA5でNo)。
 そして、次に受信された応答信号があるため(ステップA11でYes)、衝突可能性判断部144は、次に受信された応答信号に含まれる列車情報Cを取得する(ステップA3)。
 また、衝突可能性判断部144は、列車情報取得部102を用いて、自列車の列車情報Aを取得する(ステップA4)。
 ここでは、列車情報Aと列車情報Cとは、同一の線路を示す。したがって、衝突可能性判断部144は、列車Aおよび列車C間に衝突の可能性があると判断する(ステップA5でYes)。
 そこで、距離測定部145は、列車Cの第2の列車搭載装置200との間で、測定信号およびその測定応答信号を送受信することにより、列車Aおよび列車C間の距離を測定し出力する(ステップA6、A7)。
 そして、距離測定部145は、以降に受信された列車Dの第2の列車搭載装置200からの応答信号については、処理を行わない。
 また、列車Bおよび列車Dの各第2の列車搭載装置200は、応答信号の送信後、所定期間が経過するまでに測定信号が受信されないため(ステップB4でNo)、次の探索信号の受信待ちとなる。
 このように、列車衝突防止システム4は、同一の探索信号に対して受信された複数の応答信号のうち、衝突の可能性があると最初に判断された応答信号に基づく列車との間の距離を測定し、以降に受信された応答信号については処理を行わない。
 次に、本発明の第4の実施の形態の効果について述べる。
 本発明の第4の実施の形態としての列車衝突防止システムは、複数の線路において列車の走行が想定される場合にも、設置コストや保守コストを抑えながら、列車間の衝突を防止するためのより適切な情報を取得する処理を、効率的に実行することができる。
 その理由について説明する。本実施の形態では、第1の列車搭載装置において、無線通信部を介して同一の探索信号に応答する複数の応答信号が受信された場合、衝突可能性判断部が、より早く受信された応答信号を優先して衝突の可能性を判断する。そして、距離測定部が、より早く受信されて衝突の可能性があると判断された応答信号について、その送信元である第2の列車搭載装置を搭載した列車との間の距離を測定するからである。
 ここで、列車の衝突は、同一線路上の前後で発生するものである。したがって、ある列車に対して、前方に、衝突の可能性がある複数の列車が存在することはない。したがって、第1の列車搭載装置は、通信可能な範囲に存在する複数の第2の列車搭載装置からそれぞれ応答信号を受信した場合も、より早く衝突の可能性があると判断された応答信号について処理を行えば、残りの応答信号についての処理は不要となる。このように、本実施の形態は、不要な処理を省略することにより、処理を効率化する。
 (第5の実施の形態)
 次に、本発明の第5の実施の形態について図面を参照して詳細に説明する。なお、本実施の形態の説明において参照する各図面において、本発明の第1~第4の実施の形態と同一の構成および同様に動作するステップには同一の符号を付して本実施の形態における詳細な説明を省略する。
 まず、本発明の第5の実施の形態としての列車衝突防止システム5の構成を図14に示す。図14において、列車衝突防止システム5は、本発明の第4の実施の形態としての列車衝突防止システム4に対して、第1の列車搭載装置140に替えて第1の列車搭載装置150を含む点が異なる。さらに、列車衝突防止システム5は、第2の列車搭載装置200に替えて第2の列車搭載装置250を含む点が異なる。また、第1の列車搭載装置150は、第1の列車搭載装置140に対して、距離測定部145に替えて距離測定部155を有し、さらに、同期部156を有する点が異なる。また、第2の列車搭載装置250は、第2の列車搭載装置200に対して、距離測定応答部205に替えて距離測定応答部255を有し、さらに、同期部256を有する点が異なる。
 ここで、列車衝突防止システム5のハードウェア構成の一例を図15に示す。図15において、第1の列車搭載装置150は、図2を参照して説明した第1の列車搭載装置100と同様のハードウェア要素に加えて、タイミング検出装置1007と、アンテナ1008とを含んで構成される。また、第2の列車搭載装置250は、図5を参照して説明した第2の列車搭載装置200と同様のハードウェア要素に加えて、タイミング検出装置2007と、アンテナ2008とを含んで構成される。アンテナ1008および2008は、タイミングを示す電波を受信し信号に変換して出力する。タイミング検出装置1007および2007は、タイミング信号として、アンテナ1008および2008からそれぞれ出力される信号を受信する。ここで、アンテナ1008および2008は、例えば、GPS(Global Positioning System)アンテナであってもよい。その場合、タイミングを表す信号としては、PPS(Pulse per Second)信号が適用可能である。この場合、同期部156は、タイミング検出装置1007と、アンテナ1008と、メモリ1002に格納されるコンピュータ・プログラムを読み込んで実行するCPU1001とによって構成される。また、同期部256は、タイミング検出装置2007と、アンテナ2008と、メモリ2002に格納されるコンピュータ・プログラムを読み込んで実行するCPU2001とによって構成される。なお、列車衝突防止システム5およびその各機能ブロックのハードウェア構成は、上述の構成に限定されない。
 次に、列車衝突防止システム5の各機能ブロックのうち、本発明の第4の実施の形態と相違する機能ブロックについて詳細に説明する。
 第1の列車搭載装置150の同期部156は、自装置において用いるタイミング信号を、第2の列車搭載装置250で用いられるタイミング信号が同期する所定のタイミング信号に同期させる。所定のタイミングは、例えば、アンテナ1008を介して受信される信号に基づくタイミングであってもよい。例えば、アンテナ1008がGPSアンテナである場合、同期部156は、アンテナ1008によってGPSのPPS信号を受信し、PPS信号を基準とするタイミングに自装置のタイミング信号を同期させてもよい。
 第2の列車搭載装置250の同期部256は、自装置において用いるタイミング信号を、第1の列車搭載装置150で用いられるタイミング信号が同期する所定のタイミング信号に同期させる。所定のタイミングは、例えば、アンテナ2008を介して受信される信号に基づくタイミングであってもよい。例えば、アンテナ2008がGPSアンテナである場合、同期部156は、アンテナ2008によってGPSのPPS信号を受信し、PPS信号を基準とするタイミングに自装置のタイミング信号を同期させてもよい。
 このように、同期部156および同期部256がそれぞれ同期処理を行った結果、第1の列車搭載装置150および第2の列車搭載装置250でそれぞれ用いられるタイミング信号は、互いに同期することになる。
 なお、同期部156および同期部256は、タイミング信号を所定のタイミングに同期させる処理を、列車の走行中に行わなくてもよい。例えば、同期部156および同期部256は、列車が車庫などにおいて待機中など、アンテナ1008またはアンテナ2008による電波の受信状況が良好な環境において、タイミング信号を所定のタイミングに同期させる処理を実行しておけばよい。
 第1の列車搭載装置150の距離測定部155は、自装置のタイミング信号が示すタイミングで、第2の列車搭載装置250に対して測定信号を送信する。また、第1の列車搭載装置150は、第2の列車搭載装置250から受信した測定応答信号に含まれる遅延時間に基づいて、自列車および他列車間の距離を測定する。なお、遅延時間は、測定信号が送信されてから受信されるまでの時間を表し、列車間における片道の通信時間とみなすことができる。
 第2の列車搭載装置250の距離測定応答部255は、第1の列車搭載装置150から測定信号を受信すると、測定信号を受信したタイミングおよび自装置のタイミング信号に基づいて遅延時間を算出する。なお、第2の列車搭載装置250は、受信した測定信号が送信されたタイミングを、自装置のタイミング信号に基づき取得可能である。これは、自装置のタイミング信号と第1の列車搭載装置150のタイミング信号とが同期しているからである。そして、距離測定応答部255は、算出した遅延時間を測定応答信号に含めて、測定信号の送信元である第1の列車搭載装置150に対して送信する。また、距離測定応答部255は、遅延時間に加えて、列車IDを測定応答信号に含めてもよい。
 このような距離測定部155および距離測定応答部255による距離の測定手法の詳細について、図16を用いて説明する。図16は、第1の列車搭載装置150の距離測定部155および第2の列車搭載装置250の距離測定応答部255による相互通信のタイムグラムを示す。
 図16において、距離測定部155から距離測定応答部255に測定信号が送出されると、列車間の距離によって、測定信号の送受信のタイミングに時間差が生じる。この遅延時間をTと表す。ここで、第1の列車搭載装置150および第2の列車搭載装置250でそれぞれ用いられるタイミング信号には、補整可能な最小分解能が存在する。この最小分解能の値をTsymbolと表す。図16ではT=2×Tsymbolとなった例を表している。距離測定応答部255は、測定信号を受信すると、この遅延時間Tを算出する。具体的には、距離測定部155によって測定信号が送信されたタイミングは、第1の列車搭載装置150のタイミング信号に基づいている。したがって、距離測定応答部255は、第1の列車搭載装置150のタイミング信号に同期している自装置のタイミング信号と、測定信号を受信したタイミングとから、遅延時間Tを算出可能である。そして、距離測定応答部255は、測定信号の送信元である第1の列車搭載装置150に対して、遅延時間Tおよび列車IDを含めた測定応答信号を返信する。距離測定部155は、測定応答信号に含まれる遅延時間Tに基づいて、列車IDが示す列車と自列車との間の距離を算出すればよい。
 なお、距離測定部155は、あらかじめ定められた回数n(nは正の整数)だけ測定信号を送信してもよい。この場合、距離測定部155は、n個の測定応答信号に含まれるn個の遅延時間Tに基づいて、列車間の距離を算出してもよい。
 なお、距離測定部155による測定信号の送信回数がn回に達する前に、第1の列車搭載装置150および第2の列車搭載装置250をそれぞれ搭載した列車の走行により、互いに通信が不可能になることも考えられる。その場合、距離測定部155は、送信した測定信号に対応する測定応答信号を、測定信号の送信後所定期間経過するまでに受信できなければ、距離を測定する処理を中止してもよい。あるいは、その場合、距離測定部155は、それまでに送受信した測定信号および測定応答信号に基づいて、列車間の距離を算出してもよい。
 ここで、一般的な送受信回路の性能を考慮すると、上述した最小分解能Tsymbolは、マイクロ秒(10-6秒)単位である。また、第1の列車搭載装置150および第2の列車搭載装置250におけるタイミング信号の間隔をTflameと表し、Tflameが、ミリ秒(10-3秒)単位であるとする。仮に、Tsymbol=1マイクロ秒とした場合、その時間を、光速度である299,792,458メートル毎秒を用いて距離に換算すると、約300メートルとなる。つまり、この仮定においては、距離測定部155が算出する列車間の距離の分解能は、約300メートルとなる。これは、鉄道に関する技術上の基準を定める省令の600メートル条項や、列車防護無線装置による電波が届く範囲として定められた発報地点から半径約1~2キロメートル圏内の精度を満足する性能である。
 すなわち、本実施の形態で算出した列車間の距離に基づいて、600メートル前方で自列車を停止させる停止制御を行うことを考える。また、上述したように、本実施の形態において、算出可能な距離の分解能が300メートルであり、かつ、電波が届く範囲が1キロメートル圏内であるとする。この場合、まず、本実施の形態は、前方の列車との距離として最初に1キロメートルを検出する。この時点で、自列車に対する停止制御が可能である。さらに、本実施の形態は、同一の前方の列車との距離として、次に700メートルを検出する。この時点でも、自列車に対して2回目の停止制御が可能である。このように、電波が届く範囲が1キロメートル圏内であり算出される距離の分解能が300メートルであれば、停止制御を冗長化することができる。
 なお、最小分解能に上述の値を想定した場合、第1の列車搭載装置150および第2の列車搭載装置250でそれぞれ用いられるタイミング信号は、次のような誤差で同期することが望ましい。第1の列車搭載装置150および第2の列車搭載装置250でそれぞれ用いられるタイミング信号は、最小分解能に基づく距離の計算への影響を考慮して、例えば数ナノ秒(10-9秒)の誤差で同期することが望ましい。
 以上のように構成された列車衝突防止システム5の動作について、図面を参照して説明する。
 まず、第1の列車搭載装置150の動作を図17に示す。図17に示す動作は、図12を参照して説明した本発明の第4の実施の形態における第1の列車搭載装置140と略同様である。ただし、距離を測定する動作として、ステップA6の代わりにステップA56を実行する点が異なる。ステップA56の動作の詳細を、図18に示す。
 図18では、まず、距離測定部155は、送受信回数iを0に設定する(ステップA5601)。
 次に、距離測定部155は、応答信号の送信元の第2の列車搭載装置250に対して、タイミング信号に基づくタイミングで、測定信号を送信する(ステップA5602)。測定信号には、送受信回数iを表す情報を含める。
 次に、距離測定部155は、直近の測定信号を送信後、所定期間が経過するまでに、測定応答信号を受信したか否かを判断する(ステップA5603)。
 ここで、所定期間が経過するまでに測定応答信号が受信されていない場合(ステップA5603でNo)、第1の列車搭載装置150の動作は、後述のステップA5604に進む。
 一方、所定期間が経過するまでに測定応答信号が受信された場合(ステップA5603でYes)、距離測定部155は、受信された測定応答信号から、遅延時間Tを取得して一時的に記憶しておく(ステップA5605)。
 次に、距離測定部155は、送受信回数iに1を加算する(ステップA5606)。
 そして、iがn未満であれば(ステップA5607でYes)、距離測定部155は、ステップA5602からの処理を繰り返す。
 一方、iがnに達していれば(ステップA5607でNo)、距離測定部155は、一時的に記憶したn個の遅延時間Tに基づいて、列車間の距離を算出する(ステップA5608)。
 なお、送受信回数iがnに達する前に測定応答信号が受信されなくなった場合でも、1つ以上の測定応答信号が既に受信されている場合がある(ステップA5604でYes)。この場合、距離測定部155は、それまでに記憶された1つ以上n個未満の遅延時間Tを用いて、列車間の距離を算出する(ステップA5608)。
 以上で、距離測定部155は、ステップA56において距離を測定する動作を終了する。
 次に、第2の列車搭載装置250の動作を図19に示す。図19に示す動作は、図6を参照して説明した本発明の第2の実施の形態における第2の列車搭載装置200と略同様である。ただし、測定信号に応答する動作として、ステップB4~B5の代わりにステップB54を実行する点が異なる。ステップB54の動作の詳細を図20に示す。
 図20では、まず、距離測定応答部255は、直近に応答信号または測定応答信号を送信してから所定期間が経過する前に、測定信号が受信されたか否かを判断する(ステップB5401)。
 ここで、所定期間が経過する前に測定信号が受信されなかった場合(ステップB5401でNo)、距離測定応答部255は、測定信号に応答する動作を終了する。
 一方、所定期間が経過する前に測定信号が受信された場合(ステップB5401でYes)、距離測定応答部255は、自装置のタイミング信号と、測定信号が受信されたタイミングとに基づいて、遅延時間Tを算出する(ステップB5402)。
 次に、距離測定応答部255は、遅延時間Tを測定応答信号に含めて、測定信号の送信元の第1の列車搭載装置150に対して送信する(ステップB5403)。
 次に、距離測定応答部255は、受信された測定信号に含まれていたiがn-1未満であれば(ステップB5404でYes)、ステップB5401からの処理を繰り返す。
 一方、iがn-1に達していれば(ステップB5404でNo)、距離測定応答部255は、距離の測定に応答する動作を終了する。
 以上で、距離測定応答部255は、測定信号に応答する動作を終了する。
 次に、本発明の第5の実施の形態の効果について述べる。
 本発明の第5の実施の形態としての列車衝突防止システムは、複数の線路において列車の走行が想定される場合にも、設置コストや保守コストを抑えながら、列車間の距離をより精度よく算出することができる。
 その理由について説明する。本実施の形態では、本発明の第4の実施の形態と同一の構成に加えて、第1および第2の列車搭載装置において、それぞれの同期部が、自装置のタイミング信号を所定のタイミング信号に同期させる。また、第1の列車搭載装置において、距離測定部が、自装置のタイミング信号が示すタイミングで測定信号を送信する。また、第2の列車搭載装置において、距離測定応答部が、自装置のタイミング信号および測定信号の受信タイミングに基づいて、測定信号の遅延時間を算出する。そして、距離測定応答部が、算出した遅延時間を測定応答時間に含めて、第1の列車搭載装置に送信する。そして、第1の列車搭載装置において、距離測定部が、受信した測定応答信号に含まれる遅延時間に基づいて、列車間の距離を算出するからである。
 このように、本実施の形態は、第1および第2の列車搭載装置において、それぞれの同期部が、車庫にいる間等の待機時にあらかじめタイミング信号を所定のタイミング信号に同期させておくことで、それぞれのタイミング信号を互いに同期させる。これにより、本実施の形態は、測定信号の送受信の遅延時間を精度よく算出することができ、遅延時間に基づき算出する距離の精度を向上させる。さらに、本実施の形態は、測定信号および測定応答信号を複数回送受信する場合には、複数回算出された遅延時間に基づいて距離を算出するので、さらに距離の精度を向上させることができる。
 なお、本実施の形態において、第1および第2の列車搭載装置にそれぞれ搭載された同期部が、GPSのPPS信号に基づくタイミングに同期する例について説明した。これに限らず、同期部は、第1および第2の列車搭載装置のいずれもが外部から受信可能な他の信号に基づくタイミングに同期してもよい。
 また、本実施の形態において、第1の列車搭載装置の距離測定部が、測定応答信号に含まれる遅延時間を、信号の片道の通信時間とみなして列車間の距離を算出する例について説明した。さらに、第1の列車搭載装置の距離測定部は、測定応答信号の遅延時間を算出し、信号の往復の通信時間に基づいて、列車間の距離を算出してもよい。このとき、第1の列車搭載装置の距離測定部は、自装置のタイミング信号と、測定応答信号の受信タイミングと、第2の列車搭載装置における処理時間とに基づいて、測定応答信号の遅延時間を算出すればよい。この場合、第2の列車搭載装置における処理時間は、あらかじめ通知されているものとする。
 (第6の実施の形態)
 次に、本発明の第6の実施の形態について図面を参照して詳細に説明する。なお、本実施の形態の説明において参照する各図面において、本発明の第1~第3の実施の形態と同一の構成および同様に動作するステップには同一の符号を付して本実施の形態における詳細な説明を省略する。
 まず、本発明の第6の実施の形態としての列車衝突防止システム6の構成を図21に示す。図21において、列車衝突防止システム6は、本発明の第4の実施の形態としての列車衝突防止システム4に対して、第1の列車搭載装置140に替えて第1の列車搭載装置160を含む点が異なる。さらに、列車衝突防止システム6は、第2の列車搭載装置200に替えて第2の列車搭載装置260を含む点が異なる。
 第1の列車搭載装置160は、第1の列車搭載装置140に対して、距離測定部145に替えて距離測定部165を有する点が異なる。また、第2の列車搭載装置260は、第2の列車搭載装置200に対して、距離測定応答部205に替えて距離測定応答部265を有する点が異なる。
 ここで、列車衝突防止システム6は、図2および図5を参照して説明した本発明の第4の実施の形態としての列車衝突防止システム4と同様のハードウェア要素によって構成可能である。なお、列車衝突防止システム6およびその各機能ブロックのハードウェア構成は、上述の構成に限定されない。
 次に、列車衝突防止システム6の各機能ブロックのうち、本発明の第4の実施の形態と相違する機能ブロックについて詳細に説明する。
 第1の列車搭載装置160の距離測定部165は、本発明の第4の実施の形態における距離測定部145と略同様に構成されるが、次の点が異なる。すなわち、距離測定部165は、調歩同期方式に基づく測定信号および測定応答信号を送受信することにより、列車間の距離を測定する。
 第2の列車搭載装置260の距離測定応答部265は、本発明の第4の実施の形態における距離測定応答部205と略同様に構成されるが、次の点が異なる。すなわち、距離測定応答部265は、調歩同期方式に基づく測定信号を受信すると、調歩同期方式に基づく測定応答信号を、測定信号の送信元の第1の列車搭載装置160に対して送信する。
 このような距離測定部165および距離測定応答部265による距離の測定手法の詳細について、図22を用いて説明する。図22は、第1の列車搭載装置160の距離測定部165および第2の列車搭載装置260の距離測定応答部265による相互通信のタイムグラムを示す。
 ここでは、距離測定部165は、測定信号の先頭に固定ビットパターンを付加して、第2の列車搭載装置260に対して送信する。図22の例では、固定ビットパターンは、「1001」である。また、距離測定部165は、送信するデータがないときは、常にストップビットを送出し続ける。図22の例では、ストップビットは「0」である。また、距離測定応答部265は、第1の列車搭載装置160から送信された測定信号を受信後、測定応答信号の先頭に固定パターンを付加して、第1の列車搭載装置160に対して送信する。そして、第1の列車搭載装置160の距離測定部165は、第2の列車搭載装置260から送信された測定応答信号の先頭の固定ビットパターンを検出する。
 このとき、第1の列車搭載装置160において、測定信号の先頭に付加した固定ビットパターンを送出後のタイミングをt1とする。また、測定応答信号の先頭に付加された固定ビットパターンを検出後のタイミングをt2とする。タイミングt1からt2までの時間は、測定信号および測定応答信号の往復の通信時間と、第2の列車搭載装置260における測定信号の受信から測定応答信号の送信までの処理時間との合計である。なお、距離測定部165は、このような第2の列車搭載装置260における処理時間をあらかじめ記憶しているとする。この場合、第1の列車搭載装置160の距離測定部165は、タイミングt1およびt2の差分から第2の列車搭載装置260での処理時間を減算することにより、測定信号および測定応答信号の往復の通信時間を求めることができる。そして、距離測定部165は、求めた往復の通信時間に基づいて、列車間の距離を算出すればよい。
 この場合、取得可能な往復時間の最小分解能はビット単位、すなわち、CPU1001のクロック周波数に依存することになる。例えば、一般的なCPUでは、クロック周波数はギガヘルツ(10ヘルツ)単位である。これは、時間に換算すると、ナノ秒(10-9秒)単位となる。さらに、上述した光速度を用いて距離に換算すると、最小分解能は、約30センチとなる。つまり、本実施の形態を用いて算出した列車間の距離を用いて列車の停止制御を行う場合、上述した省令や停止性能は、十分に満たされる。
 以上のように構成された列車衝突防止システム6の動作について、図面を参照して説明する。
 まず、第1の列車搭載装置160の動作について説明する。第1の列車搭載装置160の動作は、図17を参照して説明した本発明の第5の実施の形態における第1の列車搭載装置150と略同様である。ただし、ステップA56において距離を測定する動作の詳細が異なる。本実施の形態におけるステップA56の動作の詳細を図23に示す。
 図23の動作は、図18に示した本発明の第5の実施の形態におけるステップA56の動作と略同様である。ただし、ステップA5602の代わりにステップA5612と、ステップA5605の代わりにステップA5615と、ステップA5608の代わりにステップA5618とが実行される点が異なる。
 ステップA5612では、距離測定部165は、調歩同期式に基づく測定信号を、第2の列車搭載装置260に対して送信する。具体的には、距離測定部165は、先頭に固定ビットパターンを付加した測定信号を送信すればよい。
 ステップA5615では、距離測定部165は、測定信号および測定応答信号の往復通信時間Xiを算出する。例えば、前述のように、距離測定部165は、次の時間から、往復の通信時間を算出する。この時間とは、測定信号の先頭の固定ビットパターンを送出後のタイミングt1と、測定応答信号の先頭の固定ビットパターンを検出後のタイミングt2と、第2の列車搭載装置260での処理時間とである。
 また、ステップA5618では、距離測定部165は、1つ以上の往復通信時間Xiに基づいて、列車間の距離を算出する。
 以上で、第1の列車搭載装置160の動作の説明を終了する。
 次に、第2の列車搭載装置260の動作について説明する。第2の列車搭載装置260の動作は、図19を参照して説明した本発明の第5の実施の形態における第2の列車搭載装置250と略同様である。ただし、ステップB54において測定信号に応答する動作の詳細が異なる。本実施の形態におけるステップB54の動作の詳細を図24に示す。
 図24の動作は、図20に示した本発明の第5の実施の形態におけるステップB54の動作と略同様である。ただし、ステップB5402およびB5403の代わりにステップB5412が実行される点が異なる。
 ステップB5412では、距離測定応答部265は、調歩同期式に基づく測定応答信号を、第1の列車搭載装置160に対して送信する。具体的には、距離測定応答部265は、先頭に固定ビットパターンを付加した測定応答信号を送信すればよい。
 以上で、第2の列車搭載装置260の動作の説明を終了する。
 次に、本発明の第6の実施の形態の効果について述べる。
 本発明の第6の実施の形態としての列車衝突防止システムは、複数の線路において列車の走行が想定される場合にも、設置コストや保守コストを抑えながら、列車間の距離をさらに精度よく算出することができる。
 その理由について説明する。本実施の形態では、本発明の第4の実施の形態と同一の構成に加えて、第1の列車搭載装置の距離測定部および第2の列車搭載装置の距離測定応答部が、調歩同期方式に基づく測定信号および測定応答信号を送受信する。そして、第1の列車搭載装置の距離測定部が、測定信号および測定応答信号の送受信のタイミングに基づいて往復の通信時間を求め、往復の通信時間に基づいて、列車間の距離を算出するからである。
 このように、調歩同期式を用いる本実施の形態は、本発明の第5の実施の形態と比較して、前述したように距離の分解能を小さくすることができ、算出する距離の精度を向上させる。また、調歩同期式を用いる本実施の形態は、本発明の第5の実施の形態と比較して、所定のタイミングを取得するためのタイミング検出装置やアンテナを不要として、設置コストをさらに抑える。また、調歩同期式を用いる本実施の形態は、本発明の第5の実施の形態と比較して、待機時に所定のタイミングに同期する同期部を不要として、保守コストをさらに抑えることができる。
 (第7の実施の形態)
 次に、本発明の第7の実施の形態について図面を参照して詳細に説明する。なお、本実施の形態の説明において参照する各図面において、本発明の第1~第6の実施の形態と同一の構成および同様に動作するステップには同一の符号を付して本実施の形態における詳細な説明を省略する。
 まず、本発明の第7の実施の形態としての列車衝突防止システム7の構成を図25に示す。図25において、列車衝突防止システム7は、本発明の第4の実施の形態としての列車衝突防止システム4に対して、第1の列車搭載装置140に替えて第1の列車搭載装置170を含む点が異なる。さらに、列車衝突防止システム7は、第2の列車搭載装置200に替えて第2の列車搭載装置270を含む点が異なる。第1の列車搭載装置170は、第1の列車搭載装置140に対して、列車情報取得部102に替えて列車情報取得部172と、衝突可能性判断部144に替えて衝突可能性判断部174を有する点が異なる。さらに、経路情報取得部177と、位置情報取得部178とを有する点が異なる。また、第2の列車搭載装置270は、本発明の第4の実施の形態における第2の列車搭載装置200に対して、列車情報取得部202に替えて列車情報取得部272を有し、さらに、経路情報取得部277と、位置情報取得部278とを有する点が異なる。
 ここで、列車衝突防止システム4のハードウェア構成の一例を図26に示す。図26において、第1の列車搭載装置170は、図2を参照して説明した第1の列車搭載装置100と同様のハードウェア要素に加えて、位置検出装置1707と、アンテナ1708と、無線通信インタフェース1709と、アンテナ1710とを含んで構成される。また、第2の列車搭載装置270は、図5を参照して説明した第2の列車搭載装置200と同様のハードウェア要素に加えて、位置検出装置2707と、アンテナ2708と、無線通信インタフェース2709と、アンテナ2710とを含んで構成される。
 アンテナ1708および2708は、位置検出用の電波を受信し信号に変換して出力する。位置検出装置1707および2707は、アンテナ1708または2708から出力される信号に基づいて自装置の位置を検出する。位置検出装置1707および2707は、GPS(Global Positioning System)受信機であってもよい。その場合、アンテナ2708および1708は、GPSアンテナによって構成される。
 無線通信インタフェース1709および2709は、地上管制施設との無線通信を行うインタフェースである。また、無線通信インタフェース1709および2709は、送信するデータをアンテナ1710または2710に出力する。また、無線通信インタフェース1709および2709は、アンテナ1710または2710から出力されるデータを受信する。アンテナ1710および2710は、無線通信インタフェース1709または2709から出力されるデータを電波として空間に放射する。また、アンテナ1710および2710は、空間の電波を受信し信号に変換して無線通信インタフェース1709または2709に出力する。
 この場合、経路情報取得部177は、無線通信インタフェース1709と、アンテナ1710と、メモリ1002に記憶されたプログラムを実行するCPU1001によって構成される。また、経路情報取得部277は、無線通信インタフェース2709と、アンテナ2710と、メモリ2002に記憶されたプログラムを実行するCPU2001によって構成される。また、位置情報取得部178は、位置検出装置1707と、アンテナ1708と、メモリ1002に記憶されたプログラムを実行するCPU1001によって構成される。また、位置情報取得部278は、位置検出装置2707と、アンテナ2708と、メモリ2002に記憶されたプログラムを実行するCPU2001によって構成される。なお、列車衝突防止システム4およびその各機能ブロックのハードウェア構成は、上述の構成に限定されない。
 次に、列車衝突防止システム7の各機能ブロックのうち、本発明の第4の実施の形態と相違する機能ブロックについて詳細に説明する。
 第1の列車搭載装置170の経路情報取得部177は、自列車が今後走行予定の経路を表す経路情報を取得する。例えば、経路情報は、線路を識別する線路IDおよび区間を識別する区間IDの組合せのリストであってもよい。また、経路情報において、線路IDおよび区間IDの組合せには、その区間の線路が位置する位置情報が関連付けられていてもよい。
 また、経路情報取得部177は、地上管制施設と通信することにより、地上管制施設から経路情報を取得してもよい。また、経路情報を取得するタイミングとしては、例えば、第1の列車搭載装置170を搭載した列車が、始発駅、終着駅または車庫などに位置するタイミングであってもよい。
 第1の列車搭載装置170の位置情報取得部178は、自列車の現在の位置情報を取得する。
 第1の列車搭載装置170の列車情報取得部172は、列車情報として、在線中の線路および区間を表す情報を含む列車情報を取得する。具体的には、列車情報取得部172は、自列車の経路情報が示す経路のうち、自列車の現在の位置情報が示す位置が含まれる線路および区間を、在線中の線路および区間として特定すればよい。
 衝突可能性判断部174は、自列車の列車情報が示す線路および区間と、他列車の列車情報が示す線路および区間とに基づいて、衝突の可能性の有無を判断する。自列車の列車情報が示す線路および区間は、列車情報取得部172によって取得された情報である。また、他列車の列車情報が示す線路および区間は、応答信号に含まれている。
 具体的には、衝突可能性判断部174は、経路情報のうち、自列車の列車情報が示す線路および区間以降に走行予定の経路を特定する。そして、衝突可能性判断部174は、以降走行予定の経路に、他列車の列車情報が示す線路および区間が含まれる場合には、衝突の可能性があると判断すればよい。
 第2の列車搭載装置270の経路情報取得部277は、第1の列車搭載装置170の経路情報取得部177と同様に構成される。
 第2の列車搭載装置270の位置情報取得部278は、第1の列車搭載装置170の位置情報取得部178と同様に構成される。
 第2の列車搭載装置270の列車情報取得部272は、第1の列車搭載装置170の列車情報取得部172と同様に構成される。
 以上のように構成された列車衝突防止システム7の動作について、図面を参照して説明する。
 まず、第1の列車搭載装置170の動作を図27に示す。なお、第1の列車搭載装置170は、以下の動作を開始する前に、経路情報取得部177により既に経路情報を取得し、メモリ1002に保存しているものとする。
 図27では、まず、探索信号送信部103は、本発明の第4の実施の形態と同様にステップA1~A2を実行する。これにより、探索信号が送信され、探索信号に対する応答信号が受信されたか否かが判断される。所定期間が経過するまでに応答信号が受信されなかった場合(ステップA2でNo)の動作は、本発明の第4の実施の形態と同様である。
 そして、応答信号が受信された場合(ステップA2でYes)、列車情報取得部172は、他列車が在線中の線路および区間を表す情報を、応答信号に含まれる他列車の列車情報から取得する(ステップA73)。
 次に、列車情報取得部172は、位置情報取得部178を用いて、自列車の現在の位置情報を取得する(ステップA74)。
 次に、列車情報取得部172は、メモリ1002の経路情報と、ステップA74で取得された現在の自列車の位置情報とに基づいて、自列車が在線中の線路および区間を特定する(ステップA75)。
 次に、衝突可能性判断部174は、経路情報と、他列車が在線中の線路および区間と、自列車が在線中の線路および区間とに基づいて、自列車および他列車間に衝突の可能性があるか否かを判断する(ステップA76)。
 ここで、衝突の可能性があると判断した場合(ステップA76でYes)について説明する。この場合、第1の列車搭載装置170は、本発明の第4の実施の形態と同様にステップA6~A7を実行する。これにより、自列車および他列車間の距離が測定され、出力される。
 そして、第1の列車搭載装置170は、ステップA1からの動作を繰り返す。なお、ステップA76で衝突の可能性がないと判断した場合、第1の列車搭載装置170は、本発明の第4の実施の形態と同様に、次に受信された応答信号について、ステップA73からの動作を繰り返す。また、次に受信された応答信号がなければ、第1の列車搭載装置170は、ステップA1からの動作を繰り返す。
 次に、第2の列車搭載装置270の動作を図28に示す。なお、第2の列車搭載装置270は、以下の動作を開始する前に、経路情報取得部277により既に経路情報を取得し、メモリ2002に保存しているものとする。
 図28では、まず、第1の列車搭載装置170からの探索信号を受信すると(ステップB1でYes)、列車情報取得部272は、位置情報取得部278を用いて、自列車の現在の位置情報を取得する(ステップB72)。
 次に、列車情報取得部272は、メモリ2002の経路情報と、ステップB72で取得された現在の自列車の位置情報とに基づいて、自列車が在線中の線路および区間を特定する(ステップB73)。
 次に、探索信号応答部203は、ステップB73で特定した在線中の線路および区間を示す列車情報を応答信号に含めて、探索信号の送信元の第1の列車搭載装置170に対して送信する(ステップB74)。
 以降、第2の列車搭載装置270は、本発明の第4の実施の形態と同様にステップB4~B5を実行する。これにより、測定信号の受信に応じて測定応答信号が送信される。
 そして、第2の列車搭載装置270は、ステップB1からの動作を繰り返す。
 以上で、第2の列車搭載装置270は、動作を終了する。
 次に、本発明の第7の実施の形態を具体例で説明する。この具体例は、列車が既に在線している車庫や通過駅などにおける待避線への入線時を想定する。
 この具体例では、線路の構成は、図29に示す通りとなっている。すなわち、区間aには、線路1が存在する。また、区間bには、線路1および線路2が並行して存在する。区間aの線路1は、分岐点によって区間bの線路1および線路2に接続している。また、区間bの線路1に列車Aが停車しているとする。この場合、2つの具体例について説明する。
 <具体例1>
 図30に示すように、区間aの線路1において、区間bに向かう方向に列車Bが走行しているとする。
 ここで、列車Bに搭載された第1の列車搭載装置170の経路情報取得部177は、経路情報として、「・・・、区間a:線路1、区間b:線路2」を表す情報を既に取得して記憶しているとする。なお、この具体例では、経路情報は、「区間x1:線路y1、区間x2:線路y2、・・・、区間xn:線路yn」と表され、区間x1の線路y1から区間xnの線路ynまでをこの順に走行予定であることを表すものとする。
 このとき、列車Bに搭載された第1の列車搭載装置170の探索信号送信部103は、探索信号を送信する。そして、通信可能範囲にある列車Aに搭載された第2の列車搭載装置270の探索信号応答部203は、探索信号を受信する(ステップA1、B1でYes)。
 すると、第2の列車搭載装置270の列車情報取得部272は、既に取得している列車Aの経路情報と、現在の位置情報(x2,y2)とから、列車Aが在線しているのは、「区間b:線路1」であると特定する(ステップB72、B73)。そこで、探索信号応答部203は、「区間b:線路1」を表す列車情報Aを応答信号に含めて、列車Bの第1の列車搭載装置170に対して送信する(ステップB74)。
 そして、列車Bの第1の列車搭載装置170では、応答信号を受信する(ステップA2でYes)。そこで、列車情報取得部172は、列車Bの経路情報および現在の位置情報(x1,y1)から、列車Bが在線しているのは、「区間a:線路1」であると特定する(ステップA74、A75)。
 また、衝突可能性判断部174は、経路情報のうち、今後走行予定の経路は、「区間a:線路1、区間b:線路2」であると特定する。そして、衝突可能性判断部174は、今後走行予定の経路の中に、応答信号に含まれる列車情報Aが示す「区間b:線路1」(ステップA73で取得)が含まれていないので、衝突の可能性がないと判断し、距離の算出を行わない(ステップA76でNo)。
 <具体例2>
 図31に示すように、区間aの線路1において、区間bに向かう方向に列車Bが走行しているとする。
 ここで、列車Bに搭載された第1の列車搭載装置170の経路情報取得部177は、経路情報として、「・・・、区間a:線路1、区間b:線路1」を表す情報を既に取得して記憶しているとする。
 この場合、具体例1と同様に、列車Bの第1の列車搭載装置170の探索信号送信部103から探索信号が送信され、列車Aの第2の列車搭載装置270によって受信される(ステップA1、B1でYes)。そして、列車Aの第2の列車搭載装置270の列車情報取得部272の探索信号応答部203は、列車Aが在線中の「区間b:線路1」を表す列車情報Aを応答信号に含めて、列車Bの第1の列車搭載装置170に対して送信する(ステップB72~B74)。
 そして、具体例1と同様に、列車Bの第1の列車搭載装置170は、列車Bが在線しているのは「区間a:線路1」であると特定する(ステップA74、A75)。
 次に、衝突可能性判断部174は、経路情報のうち、今後走行予定の経路は、「区間a:線路1、区間b:線路1」であると特定する。そして、衝突可能性判断部174は、今後走行予定の経路の中に、応答信号に含まれる列車情報Aが示す「区間b:線路1」(ステップA73で取得)が含まれているので、衝突の可能性があると判断する(ステップA76でYes)。そこで、距離測定部145は、列車Aおよび列車B間の距離を算出して出力する(ステップA6、A7)。
 以上で、具体例の説明を終了する。
 次に、本発明の第7の実施の形態の効果について述べる。
 本発明の第7の実施の形態としての列車衝突防止システムは、複数の線路において列車の走行が想定される場合にも、設置コストや保守コストを抑えながら、線路の分岐や合流も考慮して、列車間の衝突を防止するためのより適切な情報を提示することができる。
 その理由について説明する。本実施の形態では、本発明の第4の実施の形態と同一の構成に加えて、第1および第2の列車搭載装置において、経路情報取得部が、自列車が走行予定の経路を表す経路情報を取得する。また、位置情報取得部が、自列車の現在の位置情報を取得する。そして、列車情報取得部が、経路情報および現在の位置情報に基づいて、列車情報として、在線中の線路および区間を表す情報を取得する。そして、第1の列車搭載装置の衝突可能性判断部が、経路情報と、自列車の列車情報が示す線路および区間と、他列車の列車情報が示す線路および区間とに基づいて、衝突の可能性の有無を判断するからである。
 これにより、本実施の形態は、例えば、列車が既に在線している車庫や通過駅などにおける待避線への入線等のように、線路が分岐または合流している地点付近でも、列車間の衝突の可能性を的確に判断することができる。
 なお、本実施の形態において、位置情報取得部が、GPS受信機およびGPSアンテナを用いる例について説明した。ただし、位置情報取得部は、GPSに限らず、位置情報を取得するその他の公知の技術を採用してもよい。
 また、上述した本発明の各実施の形態において、各列車は、第1の列車搭載装置を前方に搭載し、第2の列車搭載装置を後方に搭載していてもよい。その場合、各実施の形態における列車情報は、列車を識別する列車IDを含み、第1の列車搭載装置の衝突可能性判断部は、自装置が取得する列車IDと同一の列車IDの列車情報を含む応答信号については、衝突の可能性がないと判断すればよい。あるいは、第1の列車搭載装置の探索信号送信部は、探索信号に自列車の列車IDを含めて送信し、第2の列車搭載装置の探索信号応答部は、自列車の列車IDと同一の列車IDを含む探索信号については、応答しないようにしてもよい。
 また、上述した本発明の各実施の形態において、各列車は、一体の装置として構成された第1の列車搭載装置および第2の列車搭載装置を搭載してもよい。この場合、第1および第2の列車搭載装置をそれぞれ構成するハードウェア要素は、列車の前方に設置されるアンテナおよび後方に設置されるアンテナ以外は、第1および第2の列車搭載装置間で共用可能である。また、第1および第2の列車搭載装置それぞれにおける同名の機能ブロックは、第1および第2の列車搭載装置間で共用可能である。
 また、上述した本発明の各実施の形態において、第1の列車搭載装置および第2の列車搭載装置の無線通信部は、半径約1~2キロメートル圏内程度を通信可能とすることが望ましい。これは、前述した症例における「列車防護無線装置による電波が届く範囲、発報地点から半径約1~2キロメートル圏内の精度」との規定を満足するためである。なお、通信可能な範囲は、無線通信部の送信出力の大きさ、受信感度性能、採用するアンテナの効率などに応じて調整することが可能である。なお、列車において一般的に用いられる無線では、アナログ通信にFM(Frequency Modulation)が利用され、デジタル通信にQPSK(Quadrature Phase Shift Keying)が利用されている。本発明の各実施の形態で送受信される信号の重要性を鑑みると、各無線通信部には、高精度で信頼性の高いデジタル通信が採用されることが望ましい。
 また、上述した本発明の各実施の形態において、第1および第2の列車搭載装置の各機能ブロックが、メモリに記憶されたコンピュータ・プログラムを実行するCPUによって実現される例を中心に説明した。これに限らず、各機能ブロックの一部、全部、または、それらの組合せが専用のハードウェアにより実現されていてもよい。
 また、上述した本発明の各実施の形態において、各フローチャートを参照して説明した第1および第2の列車搭載装置の動作を、本発明のコンピュータ・プログラムとしてコンピュータ装置の記憶装置(記憶媒体)に格納しておく。そして、係るコンピュータ・プログラムを当該CPUが読み出して実行するようにしてもよい。そして、このような場合において、本発明は、係るコンピュータ・プログラムのコードあるいは記憶媒体によって構成される。
 また、上述した各実施の形態は、適宜組み合わせて実施されることが可能である。
 また、本発明は、上述した各実施の形態に限定されず、様々な態様で実施されることが可能である。
 また、上述した各実施の形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
 自装置を搭載する自列車の前方に設置されたアンテナを介して無線通信を行う無線通信手段と、
 前記自列車が在線中の線路を表す情報を含む列車情報を取得する列車情報取得手段と、
 前記自列車の近隣の他列車を探索する探索信号を前記無線通信手段から送信する探索信号送信手段と、
 前記他列車に搭載された第2の列車搭載装置によって前記探索信号の受信に応じて送信された、前記他列車が在線中の線路を表す情報を含む列車情報が含まれる応答信号を前記無線通信手段から受信すると、前記応答信号に含まれる列車情報および前記列車情報取得手段によって取得された列車情報に基づいて、前記自列車および前記他列車間の衝突の可能性の有無を判断する衝突可能性判断手段と、
 前記衝突可能性判断手段によって前記衝突の可能性があると判断された場合に、前記他列車および前記自列車間の距離を、前記第2の列車搭載装置との間で測定信号およびその応答を表す測定応答信号を前記無線通信手段を介して送受信することにより測定する距離測定手段と、
 を備えた第1の列車搭載装置。
(付記2)
 前記列車情報取得手段は、在線中の線路を表す情報に加えて在線中の線路の区間を表す情報をさらに含む前記列車情報を取得し、
 前記衝突可能性判断手段は、前記自列車の前記列車情報が示す前記線路および前記区間と、前記他列車の前記列車情報が示す前記線路および前記区間とに基づいて、前記衝突の可能性の有無を判断することを特徴とする付記1に記載の第1の列車搭載装置。
(付記3)
 前記自列車が走行予定の経路を表す経路情報を取得する経路情報取得手段と、
 前記自列車の現在の位置情報を取得する位置情報取得手段とをさらに備え、
 前記列車情報取得手段は、前記経路情報および前記現在の位置情報に基づいて前記列車情報を取得し、
 前記衝突可能性判断手段は、前記経路情報にさらに基づいて、前記衝突の可能性の有無を判断することを特徴とする付記1または付記2に記載の第1の列車搭載装置。
(付記4)
 自装置で用いるタイミング信号を、前記第2の列車搭載装置で用いられるタイミング信号が同期する所定のタイミングに同期させる同期手段をさらに備え、
 前記距離測定手段は、前記タイミング信号が示すタイミングで前記測定信号を送信するとともに、前記測定応答信号に含まれる前記測定信号の遅延時間に基づいて、前記距離を測定することを特徴とする付記1から付記3のいずれか1つに記載の第1の列車搭載装置。
(付記5)
 前記距離測定手段は、調歩同期方式を用いて、前記測定信号および前記測定応答信号に基づいて前記距離を測定することを特徴とする付記1から付記3のいずれか1つに記載の第1の列車搭載装置。
(付記6)
 前記無線通信手段を介して同一の前記探索信号に応答する複数の前記応答信号が受信された場合、
 前記衝突可能性判断手段は、より早く受信された前記応答信号を優先して前記衝突の可能性を判断し、
 前記距離測定手段は、より早く受信されて前記衝突の可能性があると判断された前記応答信号について、その送信元の第2の列車搭載装置を搭載した前記他列車との間の距離を測定することを特徴とする付記1から付記5のいずれか1つに記載の第1の列車搭載装置。
(付記7)
 自装置を搭載する自列車の後方に設置されたアンテナを介して無線通信を行う無線通信手段と、
 前記自列車が在線中の線路を表す列車情報を取得する列車情報取得手段と、
 付記1から付記6のいずれか1つに記載された第1の列車搭載装置から前記探索信号を前記無線通信手段を介して受信すると、前記列車情報取得手段によって取得された列車情報を前記応答信号に含めて、前記第1の列車搭載装置に前記無線通信手段を介して送信する探索信号応答手段と、
 前記第1の列車搭載装置から前記測定信号を前記無線通信手段を介して受信すると、前記測定信号に応答する前記測定応答信号を前記第1の列車搭載装置に前記無線通信手段を介して送信する距離測定応答手段と、
 を備えた第2の列車搭載装置。
(付記8)
 前記列車情報取得手段は、在線中の線路を表す情報に加えて在線中の線路の区間を表す情報をさらに含む前記列車情報を取得することを特徴とする付記7に記載の第2の列車搭載装置。
(付記9)
 自列車が走行予定の経路を表す経路情報を取得する経路情報取得手段と、
 自列車の現在の位置情報を取得する位置情報取得手段とをさらに備え、
 前記列車情報取得手段は、前記経路情報および前記現在の位置情報に基づいて、前記列車情報を取得することを特徴とする付記7または付記8に記載の第2の列車搭載装置。
(付記10)
 前記測定信号が付記4に記載の第1の列車搭載装置から受信されるとき、
 自装置で用いるタイミング信号を、前記第1の列車搭載装置で用いられるタイミング信号が同期する前記所定のタイミングに同期させる同期手段をさらに備え、
 前記距離測定手段は、前記タイミング信号および前記測定信号の受信タイミングに基づいて前記測定信号の遅延時間を算出し、算出した遅延時間を前記測定応答信号に含めて前記第1の列車搭載装置に送信することを特徴とする付記7から付記9のいずれか1つに記載の第2の列車搭載装置。
(付記11)
 前記距離測定応答手段は、付記5に記載の第1の列車搭載装置から調歩同期方式に基づく前記測定信号を受信すると、調歩同期方式に基づく前記測定応答信号を前記第1の列車搭載装置に送信することを特徴とする付記7から付記9のいずれか1つに記載の第2の列車搭載装置。
(付記12)
 付記1から付記6のいずれか1つに記載の第1の列車搭載装置と、
 付記7から付記11のいずれか1つに記載の第2の列車搭載装置と、
 を含む列車衝突防止システム。
(付記13)
 第1の列車搭載装置が、
 自装置を搭載する自列車の近隣の他列車を探索する探索信号を、自列車の前方に設置されたアンテナを介した無線通信により送信し、
 前記他列車に搭載された第2の列車搭載装置によって前記探索信号の受信に応じて送信された、前記他列車が在線中の線路を表す情報を含む列車情報が含まれる応答信号を前記無線通信により受信すると、前記自列車が在線中の線路を表す情報を含む列車情報を取得し、
 取得した列車情報、および、前記応答信号に含まれる列車情報に基づいて、前記自列車および前記他列車間の衝突の可能性の有無を判断し、
 前記衝突の可能性があると判断した場合に、前記他列車および前記自列車間の距離を、前記第2の列車搭載装置との間で測定信号およびその応答を表す測定応答信号を前記無線通信によって送受信することにより測定する方法。
(付記14)
 自装置を搭載する自列車の近隣の他列車を探索する探索信号を、自列車の前方に設置されたアンテナを介した無線通信により送信する処理と、
 前記他列車に搭載された第2の列車搭載装置によって前記探索信号の受信に応じて送信された、前記他列車が在線中の線路を表す情報を含む列車情報が含まれる応答信号を前記無線通信により受信すると、前記自列車が在線中の線路を表す情報を含む列車情報を取得する処理と、
 取得した列車情報、および、前記応答信号に含まれる列車情報に基づいて、前記自列車および前記他列車間の衝突の可能性の有無を判断する処理と、
 前記衝突の可能性があると判断した場合に、前記他列車および前記自列車間の距離を、前記第2の列車搭載装置との間で測定信号およびその応答を表す測定応答信号を前記無線通信によって送受信することにより測定する処理と、
 をコンピュータ装置に実行させるプログラムをコンピュータ読み取り可能の記録する記録媒体。
(付記15)
 第2の列車搭載装置が、
 付記13に記載された方法を実行する第1の列車搭載装置から前記探索信号を、自装置を搭載する自列車の後方に設置されたアンテナを介した無線通信により受信すると、
 前記自列車が在線中の線路を表す列車情報を取得し、取得した列車情報を前記応答信号に含めて、前記第1の列車搭載装置に前記無線通信により送信し、
 前記第1の列車搭載装置から前記測定信号を前記無線通信により受信すると、前記測定信号に応答する前記測定応答信号を前記第1の列車搭載装置に前記無線通信により送信する方法。
(付記16)
 付記14に記載された記録媒体に記録されたプログラムを実行する第1の列車搭載装置から前記探索信号を、自装置を搭載する自列車の後方に設置されたアンテナを介した無線通信により受信する処理と、
 前記自列車が在線中の線路を表す列車情報を取得し、取得した列車情報を前記応答信号に含めて、前記第1の列車搭載装置に前記無線通信により送信する処理と、
 前記第1の列車搭載装置から前記測定信号を前記無線通信により受信すると、前記測定信号に応答する前記測定応答信号を前記第1の列車搭載装置に前記無線通信により送信する処理と、
 をコンピュータ装置に実行させるプログラムをコンピュータ読み取り可能に記録する記録媒体。
 以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。
 この出願は、2016年12月27日に出願された日本出願特願2016-252661を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 3、4、5、6、7  列車衝突防止システム
 100、140、150、160、170  第1の列車搭載装置
 101  無線通信部
 102、172  列車情報取得部
 103  探索信号送信部
 104、144、174  衝突可能性判断部
 105、145、155、165  距離測定部
 156  同期部
 177  経路情報取得部
 178  位置情報取得部
 200、250、260、270  第2の列車搭載装置
 201  無線通信部
 202、272  列車情報取得部
 203  探索信号応答部
 205、255、265  距離測定応答部
 256  同期部
 277  経路情報取得部
 278  位置情報取得部
 1001、2001  CPU
 1002、2002  メモリ
 1003、2003  出力装置
 1004、2004  入力装置
 1005、2005、1709、2709  無線通信インタフェース
 1006、1008、1708、1710、2006、2008、2708、2710  アンテナ
 1007、2007  タイミング検出装置
 1707、2707  位置検出装置

Claims (16)

  1.  自装置を搭載する自列車の前方に設置されたアンテナを介して無線通信を行う無線通信手段と、
     前記自列車が在線中の線路を表す情報を含む列車情報を取得する列車情報取得手段と、
     前記自列車の近隣の他列車を探索する探索信号を前記無線通信手段から送信する探索信号送信手段と、
     前記他列車に搭載された第2の列車搭載装置によって前記探索信号の受信に応じて送信された、前記他列車が在線中の線路を表す情報を含む列車情報が含まれる応答信号を前記無線通信手段から受信すると、前記応答信号に含まれる列車情報および前記列車情報取得手段によって取得された列車情報に基づいて、前記自列車および前記他列車間の衝突の可能性の有無を判断する衝突可能性判断手段と、
     前記衝突可能性判断手段によって前記衝突の可能性があると判断された場合に、前記他列車および前記自列車間の距離を、前記第2の列車搭載装置との間で測定信号およびその応答を表す測定応答信号を前記無線通信手段を介して送受信することにより測定する距離測定手段と、
     を備えた第1の列車搭載装置。
  2.  前記列車情報取得手段は、在線中の線路を表す情報に加えて在線中の線路の区間を表す情報をさらに含む前記列車情報を取得し、
     前記衝突可能性判断手段は、前記自列車の前記列車情報が示す前記線路および前記区間と、前記他列車の前記列車情報が示す前記線路および前記区間とに基づいて、前記衝突の可能性の有無を判断することを特徴とする請求項1に記載の第1の列車搭載装置。
  3.  前記自列車が走行予定の経路を表す経路情報を取得する経路情報取得手段と、
     前記自列車の現在の位置情報を取得する位置情報取得手段とをさらに備え、
     前記列車情報取得手段は、前記経路情報および前記現在の位置情報に基づいて前記列車情報を取得し、
     前記衝突可能性判断手段は、前記経路情報にさらに基づいて、前記衝突の可能性の有無を判断することを特徴とする請求項1または請求項2に記載の第1の列車搭載装置。
  4.  自装置で用いるタイミング信号を、前記第2の列車搭載装置で用いられるタイミング信号が同期する所定のタイミングに同期させる同期手段をさらに備え、
     前記距離測定手段は、前記タイミング信号が示すタイミングで前記測定信号を送信するとともに、前記測定応答信号に含まれる前記測定信号の遅延時間に基づいて、前記距離を測定することを特徴とする請求項1から請求項3のいずれか1項に記載の第1の列車搭載装置。
  5.  前記距離測定手段は、調歩同期方式を用いて、前記測定信号および前記測定応答信号に基づいて前記距離を測定することを特徴とする請求項1から請求項3のいずれか1項に記載の第1の列車搭載装置。
  6.  前記無線通信手段を介して同一の前記探索信号に応答する複数の前記応答信号が受信された場合、
     前記衝突可能性判断手段は、より早く受信された前記応答信号を優先して前記衝突の可能性を判断し、
     前記距離測定手段は、より早く受信されて前記衝突の可能性があると判断された前記応答信号について、その送信元の前記第2の列車搭載装置を搭載した前記他列車との間の前記距離を測定することを特徴とする請求項1から請求項5のいずれか1項に記載の第1の列車搭載装置。
  7.  自装置を搭載する前記自列車の後方に設置されたアンテナを介して無線通信を行う前記無線通信手段と、
     前記自列車が在線中の線路を表す列車情報を取得する列車情報取得手段と、
     請求項1から請求項6のいずれか1項に記載された第1の列車搭載装置から前記探索信号を前記無線通信手段を介して受信すると、前記列車情報取得手段によって取得された列車情報を前記応答信号に含めて、前記第1の列車搭載装置に前記無線通信手段を介して送信する探索信号応答手段と、
     前記第1の列車搭載装置から前記測定信号を前記無線通信手段を介して受信すると、前記測定信号に応答する前記測定応答信号を前記第1の列車搭載装置に前記無線通信手段を介して送信する距離測定応答手段と、
     を備えた第2の列車搭載装置。
  8.  前記列車情報取得手段は、在線中の線路を表す情報に加えて在線中の線路の区間を表す情報をさらに含む前記列車情報を取得することを特徴とする請求項7に記載の第2の列車搭載装置。
  9.  自列車が走行予定の経路を表す経路情報を取得する経路情報取得手段と、
     自列車の現在の位置情報を取得する位置情報取得手段とをさらに備え、
     前記列車情報取得手段は、前記経路情報および前記現在の位置情報に基づいて、前記列車情報を取得することを特徴とする請求項7または請求項8に記載の第2の列車搭載装置。
  10.  前記測定信号が請求項4に記載の第1の列車搭載装置から受信されるとき、
     自装置で用いるタイミング信号を、前記第1の列車搭載装置で用いられるタイミング信号が同期する前記所定のタイミングに同期させる同期手段をさらに備え、
     前記距離測定手段は、前記タイミング信号および前記測定信号の受信タイミングに基づいて前記測定信号の遅延時間を算出し、算出した遅延時間を前記測定応答信号に含めて前記第1の列車搭載装置に送信することを特徴とする請求項7から請求項9のいずれか1つに記載の第2の列車搭載装置。
  11.  前記距離測定応答手段は、請求項5に記載の第1の列車搭載装置から調歩同期方式に基づく前記測定信号を受信すると、調歩同期方式に基づく前記測定応答信号を前記第1の列車搭載装置に送信することを特徴とする請求項7から請求項9のいずれか1つに記載の第2の列車搭載装置。
  12.  請求項1から請求項6のいずれか1項に記載の第1の列車搭載装置と、
     請求項7から請求項11のいずれか1項に記載の第2の列車搭載装置と、
     を含む列車衝突防止システム。
  13.  第1の列車搭載装置が、
     自装置を搭載する自列車の近隣の他列車を探索する探索信号を、自列車の前方に設置されたアンテナを介した無線通信により送信し、
     前記他列車に搭載された第2の列車搭載装置によって前記探索信号の受信に応じて送信された、前記他列車が在線中の線路を表す情報を含む列車情報が含まれる応答信号を前記無線通信により受信すると、前記自列車が在線中の線路を表す情報を含む列車情報を取得し、
     取得した列車情報、および、前記応答信号に含まれる列車情報に基づいて、前記自列車および前記他列車間の衝突の可能性の有無を判断し、
     前記衝突の可能性があると判断した場合に、前記他列車および前記自列車間の距離を、前記第2の列車搭載装置との間で測定信号およびその応答を表す測定応答信号を前記無線通信によって送受信することにより測定する方法。
  14.  自装置を搭載する自列車の近隣の他列車を探索する探索信号を、自列車の前方に設置されたアンテナを介した無線通信により送信する処理と、
     前記他列車に搭載された第2の列車搭載装置によって前記探索信号の受信に応じて送信された、前記他列車が在線中の線路を表す情報を含む列車情報が含まれる応答信号を前記無線通信により受信すると、前記自列車が在線中の線路を表す情報を含む列車情報を取得する処理と、
     取得した列車情報、および、前記応答信号に含まれる列車情報に基づいて、前記自列車および前記他列車間の衝突の可能性の有無を判断する処理と、
     前記衝突の可能性があると判断した場合に、前記他列車および前記自列車間の距離を、前記第2の列車搭載装置との間で測定信号およびその応答を表す測定応答信号を前記無線通信によって送受信することにより測定する処理と、
     をコンピュータ装置に実行させるプログラムをコンピュータ読み取り可能に記録する記録媒体。
  15.  第2の列車搭載装置が、
     請求項13に記載された方法を実行する第1の列車搭載装置から前記探索信号を、自装置を搭載する自列車の後方に設置されたアンテナを介した無線通信により受信すると、
     前記自列車が在線中の線路を表す列車情報を取得し、取得した列車情報を前記応答信号に含めて、前記第1の列車搭載装置に前記無線通信により送信し、
     前記第1の列車搭載装置から前記測定信号を前記無線通信により受信すると、前記測定信号に応答する前記測定応答信号を前記第1の列車搭載装置に前記無線通信により送信する方法。
  16.  請求項14に記載された記録媒体に記録されたプログラムを実行する第1の列車搭載装置から前記探索信号を、自装置を搭載する自列車の後方に設置されたアンテナを介した無線通信により受信する処理と、
     前記自列車が在線中の線路を表す列車情報を取得し、取得した列車情報を前記応答信号に含めて、前記第1の列車搭載装置に前記無線通信により送信する処理と、
     前記第1の列車搭載装置から前記測定信号を前記無線通信により受信すると、前記測定信号に応答する前記測定応答信号を前記第1の列車搭載装置に前記無線通信により送信する処理と、
     をコンピュータ装置に実行させるプログラムをコンピュータ読み取り可能に記録する記録媒体。
PCT/JP2017/045265 2016-12-27 2017-12-18 第1の列車搭載装置、第2の列車搭載装置、列車衝突防止システム、方法および記録媒体 WO2018123679A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/470,292 US11318842B2 (en) 2016-12-27 2017-12-18 First train-installed device, method, and recording medium
JP2018559066A JP6756380B2 (ja) 2016-12-27 2017-12-18 第1の列車搭載装置、第2の列車搭載装置、列車衝突防止システム、方法およびプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-252661 2016-12-27
JP2016252661 2016-12-27

Publications (1)

Publication Number Publication Date
WO2018123679A1 true WO2018123679A1 (ja) 2018-07-05

Family

ID=62707499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045265 WO2018123679A1 (ja) 2016-12-27 2017-12-18 第1の列車搭載装置、第2の列車搭載装置、列車衝突防止システム、方法および記録媒体

Country Status (3)

Country Link
US (1) US11318842B2 (ja)
JP (1) JP6756380B2 (ja)
WO (1) WO2018123679A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121281A1 (en) * 2018-12-14 2020-06-18 Thales Canada Inc. Rail vehicle obstacle avoidance and vehicle localization
EP3696046A1 (en) * 2019-01-28 2020-08-19 ALSTOM Transport Technologies System and a method for managing traffic of a railway line
KR20210057282A (ko) * 2019-11-11 2021-05-21 한국철도기술연구원 철도 선로상 차량의 위치 검지 장치 및 방법

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123679A1 (ja) * 2016-12-27 2018-07-05 日本電気株式会社 第1の列車搭載装置、第2の列車搭載装置、列車衝突防止システム、方法および記録媒体
JP7067937B2 (ja) * 2018-01-24 2022-05-16 トヨタ自動車株式会社 管理システムおよび制御システム
CA3128759A1 (en) * 2020-08-24 2022-02-24 Siemens Mobility, Inc. Prevention of collision between trains
CN112455497A (zh) * 2020-11-08 2021-03-09 青岛融创信为技术有限公司 一种隧道内轨道交通车辆防追尾系统和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0865817A (ja) * 1994-08-12 1996-03-08 East Japan Railway Co 警報システム
JPH08268284A (ja) * 1995-02-02 1996-10-15 Japan Radio Co Ltd 質問装置、応答装置及び列車追突防止用監視システム
JP2016060339A (ja) * 2014-09-17 2016-04-25 株式会社東芝 列車接近検出装置
WO2016114088A1 (ja) * 2015-01-13 2016-07-21 株式会社東芝 列車制御装置、列車制御方法及びプログラム
WO2016156215A1 (de) * 2015-03-27 2016-10-06 Siemens Aktiengesellschaft Verfahren und vorrichtung für fahrzeuge, die das auffahren eines weiteren fahrzeuges detektieren

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4041878A (en) * 1975-04-11 1977-08-16 Patentes Talgo, S.A. Speed and track curvature suspension control system
JPS61230532A (ja) 1985-04-05 1986-10-14 Hitachi Ltd 路車間通信衝突回避方式
US5192903A (en) * 1990-07-10 1993-03-09 Daifuku Co., Ltd. Equipment for transporting a load
US5394137A (en) * 1993-05-10 1995-02-28 General Electric Company Vehicle parking brake detection and warning system
DE59407971D1 (de) * 1994-08-02 1999-04-22 Erhard Beule Rangierautomatik für schienengebundene Güterwagen
ATE171121T1 (de) * 1994-12-05 1998-10-15 Fiat Sig Schienenfahrzeuge Ag Führungssystem und verfahren zur steuerung der querneigung an einem schienenfahrzeug
US6008731A (en) * 1997-07-30 1999-12-28 Union Switch & Signal, Inc. Detector for sensing motion and direction of a railway vehicle
US7177732B2 (en) * 2002-03-19 2007-02-13 General Electric Company Automatic coupling of locomotive to railcars
US7206676B2 (en) * 2002-06-04 2007-04-17 Bombardier Transportation (Technology) Germany Gmbh Automated manipulation system and method in a transit system
ATE322417T1 (de) * 2002-08-12 2006-04-15 Cit Alcatel Elektronische deichsel
JP2004220180A (ja) 2003-01-10 2004-08-05 Funai Electric Co Ltd 車両検出システム
DE102005046045A1 (de) * 2005-09-27 2007-03-29 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung mindestens eines Objektdetektionssensors
GB2455976B (en) * 2007-12-21 2010-06-02 Nomad Digital Ltd Component vehicles
US8467920B2 (en) * 2008-07-11 2013-06-18 Mitsubishi Electric Corporation Train control system
WO2012158906A1 (en) * 2011-05-19 2012-11-22 Metrom Rail, Llc Collision avoidance system for rail line vehicles
US9381927B2 (en) * 2012-07-09 2016-07-05 Thales Canada Inc. Train detection system and method of detecting train movement and location
WO2015051833A1 (en) * 2013-10-09 2015-04-16 Siemens Aktiengesellschaft A system for providing infrastructure impacts on an urban area
WO2016054495A1 (en) * 2014-10-03 2016-04-07 Harsco Technologies LLC V-aware end of train device
WO2018123679A1 (ja) * 2016-12-27 2018-07-05 日本電気株式会社 第1の列車搭載装置、第2の列車搭載装置、列車衝突防止システム、方法および記録媒体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0865817A (ja) * 1994-08-12 1996-03-08 East Japan Railway Co 警報システム
JPH08268284A (ja) * 1995-02-02 1996-10-15 Japan Radio Co Ltd 質問装置、応答装置及び列車追突防止用監視システム
JP2016060339A (ja) * 2014-09-17 2016-04-25 株式会社東芝 列車接近検出装置
WO2016114088A1 (ja) * 2015-01-13 2016-07-21 株式会社東芝 列車制御装置、列車制御方法及びプログラム
WO2016156215A1 (de) * 2015-03-27 2016-10-06 Siemens Aktiengesellschaft Verfahren und vorrichtung für fahrzeuge, die das auffahren eines weiteren fahrzeuges detektieren

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121281A1 (en) * 2018-12-14 2020-06-18 Thales Canada Inc. Rail vehicle obstacle avoidance and vehicle localization
KR20210096216A (ko) * 2018-12-14 2021-08-04 탈레스 캐나다 아이엔씨 레일 차량 장애물 회피 및 차량 위치 식별
KR102543000B1 (ko) * 2018-12-14 2023-06-14 탈레스 캐나다 아이엔씨 레일 차량 장애물 회피 및 차량 위치 식별
US11753054B2 (en) 2018-12-14 2023-09-12 Thales Canada Inc Rail vehicle obstacle avoidance and vehicle localization
EP3696046A1 (en) * 2019-01-28 2020-08-19 ALSTOM Transport Technologies System and a method for managing traffic of a railway line
KR20210057282A (ko) * 2019-11-11 2021-05-21 한국철도기술연구원 철도 선로상 차량의 위치 검지 장치 및 방법
KR102316770B1 (ko) 2019-11-11 2021-10-27 한국철도기술연구원 철도 선로상 차량의 위치 검지 장치 및 방법

Also Published As

Publication number Publication date
US20200086901A1 (en) 2020-03-19
US11318842B2 (en) 2022-05-03
JP6756380B2 (ja) 2020-09-16
JPWO2018123679A1 (ja) 2019-10-31

Similar Documents

Publication Publication Date Title
JP6756380B2 (ja) 第1の列車搭載装置、第2の列車搭載装置、列車衝突防止システム、方法およびプログラム
CN102176289B (zh) 车队领航方法、车队领航装置及车队导航系统
KR101220794B1 (ko) 도착시간차를 이용한 실시간 위치추적 시스템
CN103383820B (zh) 用于不良行为检测的自主车辆定位系统
JP4945286B2 (ja) 列車位置検知装置
KR100734575B1 (ko) 기지국간 동기시스템과 방법 및 기지국
US7394400B2 (en) Vehicle communication apparatus and system for supporting vehicles passing through narrow road
US9465099B2 (en) Method for measuring position of vehicle using cloud computing
JP2007241726A (ja) 運転支援システム、送信装置及び受信装置
CN103826910A (zh) 列车控制系统
JP2006217228A (ja) アンテナ制御装置、無線基地局、および基地局ネットワーク制御システム
CN104614750A (zh) 车辆位置确定方法
US20210046961A1 (en) Systems and methods for worker safety
KR20180114729A (ko) V2v/v2i를 이용하는 차량의 위치 추정 방법
JP2011210250A (ja) 走行車両の安全運転支援システム
JP5225197B2 (ja) 車両位置検知装置
US11383725B2 (en) Detecting vehicle environment sensor errors
US8939412B2 (en) Train-position locating device and train-position locating method
JP2006240478A (ja) 路面電車位置検知装置
JP2011121455A (ja) 踏切保安装置
CN114729985A (zh) 通信系统、基站、计测方法以及程序
US7149624B2 (en) Method for determining the position of one vehicle with respect to another vehicle, in particular for motor vehicles
JP2004258898A (ja) 歩行者又は車両の位置を検出する車両搭載装置
JP3312901B2 (ja) 鉄道用時分割多重通信方式及びその送受信装置
KR100916316B1 (ko) 이동 수단 사이의 거리 측정 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888137

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018559066

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17888137

Country of ref document: EP

Kind code of ref document: A1