WO2018123621A1 - 消耗判定方法及びプラズマ処理装置 - Google Patents

消耗判定方法及びプラズマ処理装置 Download PDF

Info

Publication number
WO2018123621A1
WO2018123621A1 PCT/JP2017/044933 JP2017044933W WO2018123621A1 WO 2018123621 A1 WO2018123621 A1 WO 2018123621A1 JP 2017044933 W JP2017044933 W JP 2017044933W WO 2018123621 A1 WO2018123621 A1 WO 2018123621A1
Authority
WO
WIPO (PCT)
Prior art keywords
consumption
gas
plasma
emission intensity
calculated
Prior art date
Application number
PCT/JP2017/044933
Other languages
English (en)
French (fr)
Inventor
周 草野
祐介 平山
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to KR1020197017207A priority Critical patent/KR102424651B1/ko
Priority to KR1020227025105A priority patent/KR102541742B1/ko
Priority to US16/472,339 priority patent/US10763089B2/en
Publication of WO2018123621A1 publication Critical patent/WO2018123621A1/ja
Priority to US16/935,418 priority patent/US11183374B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • H01J37/32972Spectral analysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32889Connection or combination with other apparatus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0035Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/075Investigating concentration of particle suspensions by optical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/335Cleaning

Definitions

  • the present invention relates to a wear determination method and a plasma processing apparatus.
  • members in the processing chamber are damaged by the plasma.
  • consumption of members (plasma contact surface and gaps) used in the processing chamber is one of the damages caused by plasma.
  • Reaction products deposited in the processing chamber during the plasma processing of the wafer are cleaned and removed by dry cleaning (Dry Cleaning), waferless dry cleaning (WLDC: Wafer Less Dry Cleaning), or the like.
  • Waferless dry cleaning is a process that removes deposits with plasma rich in oxygen (O) radicals and fluorine (F) radicals without placing the wafer on the stage, and is repeatedly performed during wafer processing. Is called. At this time, not only the surface of the stage but also the adhesive used for the components of the stage are consumed. When the consumption of the adhesive used for the stage increases, the thermal resistance of the consumable part increases, and a local temperature rise of the wafer located near the consumable part occurs.
  • O oxygen
  • F fluorine
  • the present invention has an object of determining the degree of consumption of a specific consumable member in a processing chamber.
  • the plasma is generated by a step of processing a substrate using plasma generated by a plurality of gases including fluorine gas, and measuring means of OES (Optical Emission Spectroscopy).
  • OES Optical Emission Spectroscopy
  • the degree of consumption of a specific consumable member in the processing chamber can be determined.
  • the plasma processing apparatus 1 is not particularly limited, but an atomic layer etching (ALE) process or reactive ion etching (RIE) is performed on a semiconductor wafer W (hereinafter also referred to as “wafer W”). Reactive (Ion) Etching), plasma processing such as ashing.
  • ALE atomic layer etching
  • RIE reactive ion etching
  • the plasma processing apparatus 1 includes a processing container (chamber) 10 made of a conductive material such as aluminum and a gas supply source 15 that supplies gas into the processing container 10. Inside the processing container 10 is a processing chamber for performing a predetermined plasma processing on the wafer W.
  • the gas supply source 15 supplies an etching gas when performing etching, and supplies a cleaning gas when performing cleaning.
  • the processing container 10 is electrically grounded, and a lower electrode 20 and an upper electrode 25 arranged in parallel to face the lower electrode 20 are provided in the processing container 10.
  • the lower electrode 20 also functions as a stage on which the wafer W is placed.
  • the lower electrode 20 is supplied with a first high-frequency power source 32 that supplies high-frequency power HF for plasma generation at a first frequency, and a second high-frequency power LF that supplies high-frequency power LF for ion attraction at a second frequency lower than the first frequency.
  • a power supply 34 is connected.
  • the first high frequency power supply 32 may supply the high frequency power HF to at least one of the lower electrode 20 and the upper electrode 25.
  • the first high frequency power supply 32 is connected to the lower electrode 20 via the first matching unit 33.
  • the second high frequency power supply 34 is connected to the lower electrode 20 via the second matching unit 35.
  • the first matching unit 33 and the second matching unit 35 are for matching the load impedance to the internal (or output) impedance of the first high frequency power source 32 and the second high frequency power source 34, respectively.
  • the first high frequency power supply 32 and the second high frequency power supply 34 function so that the internal impedance and the load impedance seem to coincide with each other.
  • the upper electrode 25 is attached to the ceiling portion of the processing container 10 through a shield ring 40 that covers the peripheral edge portion thereof.
  • the upper electrode 25 is provided with a diffusion chamber 50 for diffusing the gas introduced from the gas supply source 15.
  • a gas introduction port 45 is formed in the diffusion chamber 50, and various gases can be introduced into the diffusion chamber 50 from the gas supply source 15 through the gas introduction port 45.
  • the upper electrode 25 is formed with a number of gas flow paths 55 for supplying the gas from the diffusion chamber 50 into the processing container 10.
  • the gas output from the gas supply source 15 is first distributed and supplied to the diffusion chamber 50 via the gas inlet 45 shown in FIG.
  • the gas supplied to the diffusion chamber 50 is supplied into the processing container 10 through the gas flow path 55.
  • the upper electrode 25 having such a configuration also functions as a gas shower head that supplies gas.
  • An exhaust port 60 is formed on the bottom surface of the processing container 10, and the inside of the processing container 10 is exhausted by an exhaust device 65 connected to the exhaust port 60. Thereby, the inside of the processing container 10 can be maintained at a predetermined degree of vacuum.
  • a gate valve G is provided on the side wall of the processing vessel 10.
  • the gate valve G opens and closes the loading / unloading port when loading and unloading the wafer W from the processing container 10.
  • the plasma processing apparatus 1 is provided with a control unit 100 that controls the operation of the entire apparatus.
  • the control unit 100 includes a CPU (Central Processing Unit) 105, a ROM (Read Only Memory) 110, a RAM (Random Access Memory) 115, a HDD (Hard Drive Disk) 120, and a media I / F (interface) 125.
  • a recipe 116 is stored in the RAM 115.
  • control information of the plasma processing apparatus 1 corresponding to the process conditions is set.
  • the control information includes process time, switching time, pressure (gas exhaust), high frequency power and voltage, various gas flow rates, chamber temperature (for example, upper electrode temperature, chamber side wall temperature, ESC temperature) and the like.
  • the recipe 116 may be stored in a hard disk or a semiconductor memory. Further, the recipe 116 may be stored in a memory such as the RAM 115 via the media I / F 125 while being stored in a portable computer-readable storage medium 126 such as a CD-ROM or DVD. .
  • the CPU 105 controls the plasma processing according to the procedure of the recipe 116 stored in the RAM 115.
  • the CPU 105 determines the degree of consumption of a specific consumption member based on the consumption rate stored in the consumption state table 121 of the HDD 120.
  • the consumption state table 121 is an example of a storage unit that stores the emission intensity of a plurality of gases including fluorine gas and the consumption rate of a specific consumption member in association with each other.
  • the emission intensity of fluorine radicals and the emission intensity of oxygen radicals in the processing chamber can be acquired by the measuring means of OES (Optical Emission Spectroscopy) 130.
  • the consumption rate stored in the consumption state table 121 is calculated by substituting the obtained emission intensity of fluorine radicals and emission intensity of oxygen radicals into equation (1).
  • the plasma processing apparatus 1 is provided with an OES 130 capable of measuring the emission intensity of various radicals in the processing container 10 through the quartz window 109. Light emitted from various radicals in the plasma generated in the processing container 10 is received by the OES 130 through the quartz window 109.
  • the exhaustion rate is calculated by substituting the detected value of the emission intensity of the fluorine radical and the emission intensity of the oxygen radical in the plasma received by the OES 130 into the equation (1).
  • V A * Io + B * If + C * Io * If (1)
  • V is the consumption rate of a specific consumable member
  • Io is the emission intensity of oxygen radicals
  • If is the emission intensity of fluorine radicals
  • A, B, and C are coefficients.
  • A, B, and C are learned in advance from the emission intensity Io of the oxygen radical obtained from the OES 130, the emission intensity If of the fluorine radical, and the actually consumed consumption rate V.
  • the consumption state table 121 that stores the oxygen radical emission intensity Io, the fluorine radical emission intensity If, and the consumption rate V of a specific consumption member in association with each other is determined from the equation (1). And stored in a storage unit such as the RAM 115.
  • the control unit 100 calculates the consumption rate of the specific consumable member based on the consumable state table 121 stored in the RAM 115 and the obtained emission intensity of the fluorine radical and the emission intensity of the oxygen radical, and exhausts the specific consumable member. Used to determine the degree.
  • an adhesive used in the processing chamber of the plasma processing apparatus 1 will be described as an example of the specific consumable member.
  • an electrostatic chuck ceramic material 21 that electrostatically attracts the wafer W is disposed on the metal base material 23 of the stage 20, and the base material 23 and the ceramic material of the electrostatic chuck are arranged.
  • the space 21 is bonded with an adhesive 22.
  • the adhesive 22 is an example of a specific consumable member used inside the plasma processing apparatus 1.
  • the adhesive 22 may be an acrylic material, an epoxy resin material, or a silicon material, and the material is selected mainly based on thermal conductivity and plasma durability.
  • FIG. 2 shows an example of the state of the adhesive 22 before being eroded by the action of plasma.
  • plasma processing such as etching and film formation
  • waferless dry cleaning is performed during wafer processing in order to remove reaction products and other deposits generated during various processes.
  • the adhesive 22 is eroded and consumed. No problem arises when tens to hundreds of wafers are processed, but if plasma processing is repeated for a longer time, an adhesive between the ceramic material 21 and the base material 23 of the electrostatic chuck is used. 22 is consumed, and a gap as shown on the right side of FIG. 2 is generated. As a result, the thermal resistance increases at the gap, and troubles such as a local temperature rise of the wafer W occur.
  • the wear rate of a specific wear member is calculated in the processing chamber in which plasma processing is performed without destroying the member, and the wear level of the wear member is calculated using the calculated wear rate. Determine.
  • the consumption rate calculated from the equation (1) how the reactive gas erodes with respect to which adhesive and how the adhesive is consumed.
  • the consumption amount of the adhesive 22 can be visualized from the consumption rate without destroying the ceramic material 21 of the electrostatic chuck and examining the cross section of the adhesive 22.
  • the degree of consumption of the adhesive 22 can be determined.
  • the adhesive 22 for fixing the ceramic material 21 is taken as an example of the specific consumable member, but the specific consumable member is not limited to this, and the adhesive used in the processing chamber of the plasma processing apparatus. If it is.
  • an adhesive used as a slave for protecting the through holes for heat transfer gas provided in the ceramic material 21 and the side walls of the through holes for pins for lifting the wafer can be cited.
  • the specific consumable member may be a member other than an adhesive and may be a member that is consumed by plasma.
  • the thermal resistance increases in the gap formed by the disappearance of the adhesive 22 on the outer peripheral side surface of the stage 20, and a local temperature rise of the wafer W occurs during the plasma processing.
  • FIG. 3 showing an example of the experimental result of the relationship between wear and temperature rise.
  • FIG. 3 indicates the distance from the center of the wafer W with the center point of the wafer W having a diameter of 300 mm as 0, and the vertical axis indicates the temperature of the wafer at each position of the wafer W indicated by the horizontal axis. That is, FIG. 3 is a result of plotting the temperature distribution of the edge portion of the wafer (position of 100 mm to 150 mm from the center point of the wafer W) for each consumption state of the adhesive 22 by plasma processing of the wafer W under the same process conditions. An example is shown.
  • the behavior of the local temperature rise phenomenon at the edge portion of the wafer W due to the consumption of the adhesive is determined mainly by the gas type used in the waferless dry cleaning. Specifically, in the oxygen plasma, the phenomenon of local temperature rise hardly occurs. On the other hand, an empirical rule has shown that when a fluorine-based gas is added to a gas used in waferless dry cleaning, the consumption rate is dramatically accelerated and a local temperature rise phenomenon occurs.
  • FIG. 4 shows CF 4 (methane tetrafluoride) gas, NF 3 (nitrogen trifluoride) gas, and SF 6 (sulfur hexafluoride) gas, which are acrylic adhesives generally used for bonding in the plasma processing apparatus 1.
  • CF 4 methane tetrafluoride
  • NF 3 nitrogen trifluoride
  • SF 6 sulfur hexafluoride
  • the horizontal axis of FIG. 4 shows the mixing ratio of CF 4 gas, NF 3 gas, SF 6 gas and O 2 (oxygen) gas.
  • O 2 gas is 100% (that is, a state of a single gas containing only O 2 gas)
  • each of CF 4 gas, NF 3 gas, and SF 6 gas is 100% (ie, CF 4 gas, NF 3 gas, and SF 6 gas are each in a single gas state).
  • the O 2 gas is 75%, and the CF 4 gas, NF 3 gas, and SF 6 gas each have a gas mixing ratio of 25%.
  • the gas mixing ratio is 50% for O 2 gas, 50% for CF 4 gas, NF 3 gas, and SF 6 gas.
  • the vertical axis in FIG. 4 is the consumption rate of the acrylic adhesive. According to this, when the gas mixture ratio is 100%, that is, when each of the CF 4 gas, the NF 3 gas, and the SF 6 gas is a single gas, the consumption rate is almost zero. That is, it can be seen that the acrylic adhesive is hardly consumed when each of the CF 4 gas, NF 3 gas, and SF 6 gas is a single gas.
  • the acrylic adhesive is consumed.
  • the consumption rate of the acrylic adhesive is high when the gas mixture ratio is 25% or less.
  • the consumption rate of the acrylic adhesive is high when the gas mixing ratio is 50% or less.
  • FIG. 5 is a graph of the adhesive calculated by substituting the emission intensity Io of the oxygen radical and the emission intensity If of the fluorine radical obtained from the OES 130 into the expression (1). It is a graph which shows an example of a consumption rate. According to this, the graph of FIG. 5 in which the adhesive wear rate calculated from the equation (1) is plotted is similar to the graph of FIG. 4 in which the actually measured adhesive wear rate is plotted.
  • the consumption amount is calculated based on the emission intensity detected by the OES 130 and the consumption rate of the specific consumption member calculated from Equation (1), and the degree of consumption of the specific consumption member is calculated from the calculated consumption amount. judge.
  • the OES 130 is configured to emit fluorine radical emission intensity If and oxygen radical emission intensity. Monitor with Io.
  • the control unit 100 calculates the wear rate of the adhesive using the emission intensity If of the fluorine radicals acquired from the OES 130 and the emission intensity Io of the oxygen radicals.
  • the consumption rates of the respective sizes are calculated in the waferless dry cleaning WLDC1, WLDC2,... WLDCn performed during the process.
  • the lower part of FIG. 6 shows an example of the consumption amount calculated from the consumption rate shown in the upper part.
  • the consumption amount is a total value of the consumption amounts obtained by multiplying the consumption rate calculated from the detection result of the OES 130 for each waferless dry cleaning by the time of the waferless dry cleaning.
  • the amount of consumption of the specific consumable member is the amount of consumption corresponding to the processing time of the waferless dry cleaning, but is not limited thereto.
  • the amount of consumption is obtained by multiplying the calculated consumption rate by the processing time of processing including oxygen gas and fluorine gas (for example, dry cleaning processing, etching, film forming processing, etc.) other than waferless dry cleaning. It may be the sum of the values.
  • an alarm may be output to prompt the operator to replace or maintain the part.
  • An alarm may be output and the operator may be prompted not to insert the next lot of the lot when the alarm is output.
  • the first threshold value Qth is an example of a wear limit, and may be set in advance for each wear member to be monitored. An alarm may be output when the calculated consumption amount approaches the first threshold value Qth.
  • control unit 100 executes a waferless dry cleaning process (step S10).
  • control unit 100 acquires the emission intensity Io of the oxygen radical (O * ) and the emission intensity If of the fluorine radical (F * ) from the OES 130 (step S12).
  • the controller 100 calculates the consumption rate by substituting the acquired emission intensity Io of the oxygen radical and the emission intensity If of the fluorine radical into the equation (1) (step S14).
  • the control unit 100 calculates the consumption amount by multiplying the calculated consumption rate by the processing time of the waferless dry cleaning, and adds it to the accumulated consumption amount so far (step S16).
  • control unit 100 determines whether or not the integrated value of the consumption amount is greater than or equal to the first threshold value Qth (step S18). When it is determined that the integrated value of the consumption amount is equal to or greater than the first threshold value Qth, the control unit 100 outputs a maintenance alarm (step S20) and ends this process. On the other hand, when determining that the integrated value of the consumption amount is less than the first threshold value Qth, the control unit 100 ends the process as it is.
  • the consumption level of a specific consumption member in the processing chamber is calculated by calculating the consumption amount in real time based on the emission intensity measured by the OES 130 without inhibiting the product wafer process. Can be determined.
  • an alarm such as maintenance before a defective product comes out
  • replacement of the electrostatic chuck, maintenance, etc. can be promoted, generation of defective products can be suppressed, and the yield of products can be increased.
  • the comparison result between the integrated value of the consumption amount and the first threshold value Qth, the consumption rate, and the second threshold value Rth.
  • a maintenance alarm is output using both of the comparison result and.
  • the second threshold Rth is an example of a wear limit as shown in the upper part of FIG. 6 and may be set in advance for each wear member to be monitored. An alarm may be output when the calculated consumption rate is equal to or higher than the second threshold value Rth or close to the second threshold value Rth.
  • control unit 100 executes a waferless dry cleaning process (step S10).
  • control unit 100 acquires the emission intensity Io of oxygen radicals and the emission intensity If of fluorine radicals from the OES 130 (step S12).
  • step S14 the controller 100 calculates the consumption rate by substituting the acquired emission intensity Io of the oxygen radical and the emission intensity If of the fluorine radical into the equation (1) (step S14).
  • the control unit 100 determines whether or not the calculated consumption rate is equal to or greater than the second threshold Rth (step S30). If the controller 100 determines that the calculated consumption rate is greater than or equal to the second threshold Rth, the controller 100 outputs an alarm for the consumption rate (step S32), and proceeds to step S16. However, step S32 may be omitted.
  • step S16 the control unit 100 calculates the consumption amount by multiplying the calculated consumption rate by the processing time of the waferless dry cleaning, and adds it to the accumulated consumption amount so far (step S16).
  • the control unit 100 determines whether or not the integrated value of the consumption amount is greater than or equal to the first threshold value Qth (step S18).
  • the control unit 100 determines whether the damage intensity is high (step S34).
  • the damage intensity is high when the consumption rate is equal to or higher than the second threshold value Rth and the integrated value of the consumption amount is equal to or higher than the first threshold value Qth. It is determined.
  • step S20 When the control unit 100 determines that the damage intensity is high, the control unit 100 outputs a maintenance alarm (step S20) and ends the process. When determining that the damage intensity is not high, the control unit 100 outputs a consumption amount alarm (step S36) and ends the process. However, step S36 may be omitted.
  • the wear of a specific wear member is determined based on the comparison result between the calculated wear amount and the first threshold value Qth, and the comparison result between the calculated wear rate and the second threshold value Rth.
  • the degree can be determined.
  • the waferless dry cleaning time and the like often change depending on the sample structure and the like.
  • the consumption state can be accurately grasped by calculating the consumption amount in real time based on the emission intensity measured by the OES 130 without inhibiting the process. Can do. Accordingly, by outputting an alarm before a defective product comes out, the yield of the product can be increased by performing replacement or maintenance of the electrostatic chuck.
  • wear determination method and the plasma processing apparatus have been described in the above embodiment.
  • the wear determination method and the plasma processing apparatus according to the present invention are not limited to the above embodiment, and various modifications are possible within the scope of the present invention. And improvements are possible.
  • the matters described in the above embodiments can be combined within a consistent range.
  • the control unit 100 calculated all of the consumption rate during cleaning, the consumption rate during etching, and the consumption rate during film formation using the equation (1).
  • the consumption rate V may be calculated separately from the consumption rate V1 during cleaning, the consumption rate V2 during etching, and the consumption rate V3 during film formation.
  • the coefficients A, B, and C in Equation (1) for calculating the cleaning consumption rate V1 are learned so as to reflect the degree of consumption of the member during cleaning.
  • the coefficients A, B, and C in the equation (1) for calculating the etching consumption rate V2 are learned so as to reflect the degree of consumption of the member during etching.
  • the coefficients A, B, and C in the equation (1) for calculating the film consumption rate V3 are learned so as to reflect the degree of wear of the members during film formation.
  • plasma processing apparatuses include a capacitively coupled plasma (CCP) apparatus, an inductively coupled plasma (ICP) apparatus, a plasma processing apparatus using a radial line slot antenna, and a helicon wave excitation type. It may be a plasma (HWP) device, an electron cyclotron resonance plasma (ECR) device, a surface wave plasma processing device, or the like.
  • CCP capacitively coupled plasma
  • ICP inductively coupled plasma
  • HWP plasma
  • ECR electron cyclotron resonance plasma
  • surface wave plasma processing device or the like.
  • the semiconductor wafer W has been described as the substrate to be etched.
  • the present invention is not limited to this, and various substrates used for LCD (Liquid Crystal Display), FPD (Flat Panel Display), photomasks, CDs, etc.
  • LCD Liquid Crystal Display
  • FPD Fluorescence Deposition
  • photomasks CDs, etc.
  • substrate, a printed circuit board, etc. may be sufficient.
  • Plasma processing apparatus 10 Processing container 15: Gas supply source 20: Lower electrode (stage) 21: Electrostatic chuck 22: Adhesive 23: Base material 25: Upper electrode (shower head) 32: First high frequency power supply 34: Second high frequency power supply 45: Gas inlet 45 50: Diffusion chamber 55: Gas flow path 100: Control unit 105: CPU 110: ROM 115: RAM 120: HDD 121: Wear state table 125: Media I / F 126: Storage medium 130: OES

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)

Abstract

フッ素ガスを含む複数のガスにより生成されたプラズマを用いて基板を処理する工程と、OES(Optical Emission Spectroscopy)の測定手段により、前記プラズマからフッ素ガスを含む複数のガスの発光強度を取得する工程と、フッ素ガスを含む複数のガスの発光強度と特定の消耗部材の消耗レートとを関連付けて記憶した記憶部を参照して、取得した前記フッ素ガスを含む複数のガスの発光強度から特定の消耗部材の消耗レートを算出する工程と、を有する消耗判定方法が提供される。

Description

消耗判定方法及びプラズマ処理装置
 本発明は、消耗判定方法及びプラズマ処理装置に関する。
 プラズマ処理装置では、処理室内の部材がプラズマによりダメージを受ける。例えば、プラズマによるダメージの一つに処理室内に使用される部材(プラズマ接面および隙間)などの消耗が挙げられる。ウェハのプラズマ処理時に処理室内に堆積した反応生成物は、ドライクリーニング(Dry Cleaning)や、ウェハレスドライクリーニング(WLDC:Wafer Less Dry Cleaning)等によりクリーニングされ、除去される。
 ウェハレスドライクリーニングは、ウェハをステージの上に載置させない状態で、酸素(O)ラジカルやフッ素(F)ラジカルがリッチなプラズマによって堆積物を除去する処理であり、ウェハ処理の間に繰り返し行われる。このときステージの表面のみならず、ステージの構成部品に使用される接着剤なども消耗する。ステージに使用される接着剤の消耗量が多くなると消耗部分の熱抵抗が増大し、消耗部分の近傍に位置するウェハの局所的な温度上昇が発生する。
 接着剤の消耗を防ぐ方法として、接着面が見えないようにラビリンス加工等を施すことが提案されている(例えば、特許文献1を参照)。また、プラズマ耐性のより強い材料でプラズマに曝される部分をカバーすることが提案されている(例えば、特許文献2を参照)。
特開2011-108816号公報 特開2016-28448号公報
 しかしながら、ラビリンス加工を施したり、プラズマに曝される部分をカバーしたりしても、プラズマ中のラジカルやイオンが、わずかな隙間から侵入し、接着剤を消耗させる。また、接着剤の消耗度合いは、印加する高周波電力の出力や、接着剤の種類等によって変わる。よって、従来の技術では、特定の消耗部材の消耗度合いを判定することは困難である。
 上記課題に対して、一側面では、本発明は、処理室内の特定の消耗部材の消耗度合いを判定することを目的とする。
 上記課題を解決するために、一の態様によれば、フッ素ガスを含む複数のガスにより生成されたプラズマを用いて基板を処理する工程と、OES(Optical Emission Spectroscopy)の測定手段により、前記プラズマからフッ素ガスを含む複数のガスの発光強度を取得する工程と、フッ素ガスを含む複数のガスの発光強度と特定の消耗部材の消耗レートとを関連付けて記憶した記憶部を参照して、取得した前記フッ素ガスを含む複数のガスの発光強度から特定の消耗部材の消耗レートを算出する工程と、を有する消耗判定方法が提供される。
 一の側面によれば、処理室内の特定の消耗部材の消耗度合いを判定することができる。
一実施形態に係るプラズマ処理装置の一例を示す図。 一実施形態に係る接着剤の消耗の一例を説明するための図。 一実施形態に係る接着剤の消耗によるウェハエッジ部の温度上昇例を示す図。 一実施形態に係る接着剤の消耗レートの一例を示す図。 一実施形態に係るOESを用いて算出した消耗レートのテーブル例を示す図。 一実施形態に係る算出した消耗レートと積算消耗量の一例を示す図。 第1実施形態に係る消耗判定処理の一例を示すフローチャート。 第2実施形態に係る消耗判定処理の一例を示すフローチャート。
 以下、本発明を実施するための形態について図面を参照して説明する。なお、本明細書及び図面において、実質的に同一の構成については、同一の符号を付することにより重複した説明を省く。
 [プラズマ処理装置の全体構成]
 まず、本発明の一実施形態に係るプラズマ処理装置1の全体構成について、図1のプラズマ処理装置の縦断面の一例を参照しながら説明する。本実施形態では、プラズマ処理装置1の一例として容量結合型プラズマエッチング装置を挙げる。
 本実施形態にかかるプラズマ処理装置1は、特に限定されないが、半導体ウェハW(以下、「ウェハW」とも呼ぶ。)に原子層エッチング(ALE:Atomic Layer Etching)処理、反応性イオンエッチング(RIE:Reactive Ion Etching)処理、アッシング処理等のプラズマ処理を施す装置である。
 プラズマ処理装置1は、例えばアルミニウム等の導電性材料からなる処理容器(チャンバ)10と、処理容器10内にガスを供給するガス供給源15とを有する。処理容器10の内部は、ウェハWに所定のプラズマ処理を施す処理室となっている。ガス供給源15は、エッチングを行う場合にはエッチングガスを供給し、クリーニングを行う場合にはクリーニングガスを供給する。
 処理容器10は電気的に接地されており、処理容器10内には下部電極20と、これに対向して平行に配置された上部電極25とが設けられている。下部電極20は、ウェハWを載置するステージとしても機能する。下部電極20には、第1周波数のプラズマ生成用の高周波電力HFを供給する第1高周波電源32と、第1周波数よりも低い第2周波数のイオン引き込み用の高周波電力LFを供給する第2高周波電源34とが接続されている。ただし、第1高周波電源32は、下部電極20及び上部電極25の少なくとも一方に高周波電力HFを供給すればよい。
 第1高周波電源32は、第1整合器33を介して下部電極20に接続されている。第2高周波電源34は、第2整合器35を介して下部電極20に接続される。第1整合器33及び第2整合器35は、各々、第1高周波電源32及び第2高周波電源34の内部(または出力)インピーダンスに負荷インピーダンスを整合させるためのものである。処理容器10内にプラズマが生成されているときには、第1高周波電源32及び第2高周波電源34の各々について、内部インピーダンスと負荷インピーダンスとが見かけ上一致するように機能する。
 上部電極25は、その周縁部を被覆するシールドリング40を介して処理容器10の天井部に取り付けられている。上部電極25には、ガス供給源15から導入されたガスを拡散する拡散室50が設けられている。拡散室50には、ガス導入口45が形成され、このガス導入口45を介して、ガス供給源15から各種ガスを拡散室50と導入することができる。上部電極25には、拡散室50からのガスを処理容器10内に供給するための、多数のガス流路55が形成されている。
 ガス供給源15から出力されたガスは、先ず、図1に示すガス導入口45を介して拡散室50に分配して供給される。そして、拡散室50に供給されたガスは、ガス流路55を経て、処理容器10内に供給される。かかる構成の上部電極25は、ガスを供給するガスシャワーヘッドとしても機能する。
 処理容器10の底面には排気口60が形成されており、排気口60に接続された排気装置65によって処理容器10内が排気される。これによって、処理容器10内を所定の真空度に維持することができる。
 処理容器10の側壁には、ゲートバルブGが設けられている。ゲートバルブGは、処理容器10からウェハWの搬入及び搬出を行う際に搬出入口を開閉する。
 プラズマ処理装置1には、装置全体の動作を制御する制御部100が設けられている。制御部100は、CPU(Central Processing Unit)105、ROM(Read Only Memory)110、RAM(Random Access Memory)115、HDD(Hard Drive Disk)120及びメディアI/F(インターフェース)125を有している。RAM115には、レシピ116が格納されている。レシピ116にはプロセス条件に対応するプラズマ処理装置1の制御情報が設定されている。制御情報には、プロセス時間、スイッチング時間、圧力(ガスの排気)、高周波電力や電圧、各種ガス流量、チャンバ内温度(例えば、上部電極温度、チャンバの側壁温度、ESC温度)等が含まれる。なお、レシピ116は、ハードディスクや半導体メモリに記憶されていてもよい。また、レシピ116は、CD-ROM、DVD等の可搬性のコンピュータにより読み取り可能な記憶媒体126に収容された状態で、メディアI/F125を介してRAM115等のメモリに記憶するようにしてもよい。
 CPU105は、RAM115に格納されたレシピ116の手順に従いプラズマ処理を制御する。CPU105は、HDD120の消耗状態テーブル121に記憶されている消耗レートに基づき、特定の消耗部材の消耗度合いを判定する。消耗状態テーブル121は、フッ素ガスを含む複数のガスの発光強度と特定の消耗部材の消耗レートとを関連付けて記憶した記憶部の一例である。
 本実施形態では、OES(Optical Emission Spectroscopy)130の測定手段により、処理室内のフッ素ラジカルの発光強度と酸素ラジカルの発光強度が取得可能である。消耗状態テーブル121に記憶されている消耗レートは、取得したフッ素ラジカルの発光強度と酸素ラジカルの発光強度を(1)式に代入することにより算出される。
 プラズマ処理装置1には、石英窓109を通して処理容器10内の各種ラジカルの発光強度を測定可能なOES130が取り付けられている。処理容器10内で生成されたプラズマ中の各種ラジカルが発する光は、石英窓109を通ってOES130により受光される。
 OES130により受光されたプラズマ中のフッ素ラジカルの発光強度や酸素ラジカルの発光強度の検出値を、(1)式に代入し、消耗レートを算出する。
 V=A×Io+B×If+C×Io×If (1)
ここで、Vは特定の消耗部材の消耗レートであり、Ioは酸素ラジカルの発光強度であり、Ifはフッ素ラジカルの発光強度であり、A,B,Cは係数である。
 A,B,Cは、OES130から取得した酸素ラジカルの発光強度Ioとフッ素ラジカルの発光強度Ifと、実際に観測した消耗レートVとから予め学習されている。このようにして、(1)式から定められる、酸素ラジカルの発光強度Ioとフッ素ラジカルの発光強度Ifと特定の消耗部材の消耗レートVとを関連付けて記憶した消耗状態テーブル121が、消耗部材毎に予め設定され、RAM115等の記憶部に蓄積される。
 制御部100は、RAM115に蓄積された消耗状態テーブル121と、取得したフッ素ラジカルの発光強度と酸素ラジカルの発光強度とに基づき、特定の消耗部材の消耗レートを算出し、特定の消耗部材の消耗度合いの判定に用いる。
 [消耗部材:接着剤]
 本実施形態では、特定の消耗部材として、プラズマ処理装置1の処理室内に使用される接着剤を例に挙げて説明する。例えば、図2に示すように、ステージ20の金属の母材23の上には、ウェハWを静電吸着する静電チャックのセラミック材21が配置され、母材23と静電チャックのセラミック材21の間は、接着剤22で接着されている。接着剤22は、プラズマ処理装置1の内部にて使用される特定の消耗部材の一例である。接着剤22は、アクリル系材料、エポキシ樹脂系材料又はシリコン系材料のいずれかでもよく、主に熱伝導性やプラズマ耐久性で材料が選定される。
 図2の左側は、プラズマの作用により侵食される前の接着剤22の状態の一例を示す。エッチングや成膜等のプラズマ処理では、各種プロセス時に生成された反応生成物やその他の堆積物を除去するために、ウェハの処理の間にウェハレスドライクリーニングが実行される。
 このとき、プラズマがステージ20側面のわずかな隙間から侵入することで、接着剤22は、侵食され、消耗する。数十枚~数百枚のウェハを処理した程度では問題は生じないが、それ以上の長時間、プラズマ処理を重ねていくと、静電チャックのセラミック材21と母材23の間の接着剤22が消耗し、図2の右側に示すような隙間が発生する。その結果、隙間の部分で熱抵抗が増大し、ウェハWの局所的な温度上昇等のトラブルが発生する。
 一方、プラズマ処理装置1の内部に使用される接着剤の消耗度合いは、例えば静電チャックのセラミック材21等の部材を破壊して断面を調査する等しないとわからない。そこで、本実施形態に係る消耗判定方法では、部材を破壊することなく、プラズマ処理を行う処理室内の、特定の消耗部材の消耗レートを算出し、算出した消耗レートを用いて消耗部材の消耗度合いを判定する。
 特に、本実施形態では、どのような接着剤に対してどの反応性ガスで侵食が行われ、接着剤がどのように消耗するのかを(1)式から算出した消耗レートから推定できる。これにより、静電チャックのセラミック材21を破壊して接着剤22の断面を調査することなく、消耗レートから接着剤22の消耗量を見える化することができる。これにより、接着剤22の消耗度合いを判定することができる。
 本実施形態では、特定の消耗部材としてセラミック材21を固定するための接着剤22を例に挙げるが、特定の消耗部材はこれに限らず、プラズマ処理装置の処理室内にて使用される接着剤であればよい。他の例としては、セラミック材21に設けられた伝熱ガス用の貫通孔及びウェハを持ち上げるピン用の貫通孔の側壁を保護するためのスレーブに使用される接着剤が挙げられる。特定の消耗部材は、接着剤以外の部材であって、プラズマにより消耗される部材であればよい。
 図2の右側に示すように、ステージ20の外周側面の接着剤22が消失したことにより形成された隙間では熱抵抗が増大し、プラズマ処理時にウェハWの局所的な温度上昇が発生する。これについて、消耗と温度上昇の関係の実験結果の一例を示す図3を参照しながら説明する。
 図3の横軸は直径が300mmのウェハWの中心点を0としてウェハWの中心からの距離を示し、縦軸は横軸で示したウェハWの各位置におけるウェハの温度を示す。つまり、図3は、同一のプロセス条件でウェハWをプラズマ処理し、接着剤22の消耗状況毎にウェハのエッジ部(ウェハWの中心点から100mm~150mmの位置)の温度分布をプロットした結果の一例を示す。
 図3の結果では、接着剤22の消耗が1.0mmの場合、ウェハのエッジ部においてウェハWの局所的な温度上昇は発生していない。ところが、接着剤22の消耗が1.5mmになると、ウェハのエッジ部の温度が上がり、接着剤22の消耗が2.0mmになると、消耗がないときと比較して5℃以上の温度上昇が生じる。このように温度が大きく変わり、ウェハWのエッジ部にて温度分布が不均一になると、例えばエッチングレート等の制御性が悪くなり、ウェハWの加工精度が悪化して、製品の歩留まりが低下する。以上の結果から、接着剤22の消耗量が1.5mmであることを目安に、静電チャックを交換することが好ましい。
 上記の接着剤の消耗によるウェハWのエッジ部における局所的な温度上昇の現象は、主にウェハレスドライクリーニングで使用されるガス種により挙動が決定されている。具体的には、酸素プラズマでは、局所的な温度上昇の現象はほとんど生じない。これに対して、フッ素系のガスをウェハレスドライクリーニングで使用するガスに添加すると、飛躍的に消耗レートが加速し、局所的な温度上昇の現象が生じることが経験則によりわかっている。
 そのため、各種のガスと接着剤の消耗の関係を評価し、消耗状態テーブル121に蓄積した。図4は、プラズマ処理装置1で一般的に接着に用いられるアクリル接着剤の、CF(四フッ化メタン)ガス、NF(三フッ化窒素)ガス、SF(六フッ化硫黄)ガスによる消耗レートの一例を示す。
 [消耗レート]
 図4の横軸はCFガス、NFガス、SFガスとO(酸素)ガスとの混合比を示しす。0%では、Oガスが100%(つまり、Oガスのみの単ガスの状態)であり、100%では、CFガス、NFガス、SFガスのそれぞれが100%(つまり、CFガス、NFガス、SFガスのそれぞれが単ガスの状態)である。
 25%では、Oガスが75%、CFガス、NFガス、SFガスのそれぞれが25%のガス混合比である。50%では、Oガスが50%、CFガス、NFガス、SFガスのそれぞれが50%のガス混合比である。
 図4の縦軸はアクリル接着剤の消耗レートである。これによれば、ガス混合比が100%の場合、つまり、CFガス、NFガス、SFガスのそれぞれが単ガスの状態では、消耗レートはほぼ0に近い。つまり、CFガス、NFガス、SFガスのそれぞれが単ガスの状態では、アクリル接着剤はほとんど消耗しないことがわかる。
 一方、ガス混合比が0%よりも大きく、75%よりも小さい場合、アクリル接着剤が消耗していることが分かる。特に、NFガス、SFガスではガス混合比が25%以下においてアクリル接着剤の消耗レートが高い。また、CFガスではガス混合比が50%以下においてアクリル接着剤の消耗レートが高い。
 以上の結果から、CFガス、NFガス、SFガスのいずれのガスをクリーニングガスに添加しても、接着剤の消耗レートは上昇することがわかった。なお、これらの消耗量の傾向は、各種条件でのフォトレジストや酸化膜のエッチングレート等では説明できないことが判明している。
 そこで、本実施形態に係る消耗判定方法では、ウェハレスドライクリーニングで使用されるガス種であるフッ素ラジカル(F)及び酸素ラジカル(O)に着目し、各ラジカルの発光強度を測定して、その測定結果から消耗レートを算出する。消耗レートの算出式は、前述した(1)式である
 図5は、OES130から取得した酸素ラジカルの発光強度Ioとフッ素ラジカルの発光強度Ifを(1)式に代入して算出した接着剤の消耗レートの一例を示すグラフである。これによれば、(1)式から算出した接着剤の消耗レートをプロットした図5のグラフと、実際に測定した接着剤の消耗レートをプロットした図4のグラフとは近似している。つまり、OES130により検出された酸素ラジカルの発光強度Ioとフッ素ラジカルの発光強度Ifを(1)式に代入して算出した消耗レートに基づき、フッ素ガスを含む複数のガスを用いた処理(ウェハレスドライクリーニング等)において接着剤22の消耗量を予測できることがわかる。
 そこで、本実施形態では、OES130が検出した発光強度と(1)式とから算出した特定の消耗部材の消耗レートに基づき消耗量を算出し、算出した消耗量から特定の消耗部材の消耗度合いを判定する。
 [消耗量]
 判定手法として、まず、ウェハWのプラズマ処理(以下、「プロセス(Process)」ともいう。)の間に行われるウェハレスドライクリーニングにおいて、OES130は、フッ素ラジカルの発光強度Ifと酸素ラジカルの発光強度Ioとのモニタリングを行う。制御部100は、OES130から取得したフッ素ラジカルの発光強度Ifと酸素ラジカルの発光強度Ioとを使用して接着剤の消耗レートを算出する。
 算出した消耗レートの一例を図6の上段に示す。図6の例では、プロセスの間に行われるウェハレスドライクリーニングWLDC1、WLDC2、・・・WLDCnにおいて、それぞれの大きさの消耗レートが算出されている。
 図6の下段は、上段に示す消耗レートから算出した消耗量の一例を示す。消耗量は、ウェハレスドライクリーニング毎にOES130の検出結果から算出された消耗レートに当該ウェハレスドライクリーニングの時間を乗算して得られた消耗量の合計値である。なお、本実施形態では、特定の消耗部材の消耗量は、ウェハレスドライクリーニングの処理時間に応じた消耗量であるが、これに限らない。すなわち、消耗量には、ウェハレスドライクリーニング以外の酸素ガスとフッ素ガスを含む処理(例えば、ドライクリーニング処理、エッチング、成膜処理等)の処理時間を、算出した消耗レートに乗算して得られた値の合計値であってもよい。
 図6の下段に示すように、算出した消耗量が、第1の閾値Qth以上になったとき、アラームを出力し、パーツの交換、メンテナンス等をオペレータに促すようにしてもよい。アラームを出力し、アラームが出力されたときのロットの次ロットの投入をできないようにオペレータに促してもよい。
 ただし、第1の閾値Qthは消耗リミットの一例であり、モニター対象の消耗部材毎に予め設定されていてもよい。算出した消耗量が、第1の閾値Qthに近くなったときにアラームを出力してもよい。
 これによれば、消耗部材の消耗が進んで不良品が出る前に、アラームを出力することで、静電チャックの交換やメンテナンス等を行うことにより、製品の歩留まりを上げることができる。
<第1実施形態>
 [消耗判定処理]
 次に、第1実施形態に係る消耗判定処理の一例について、図7のフローチャートを参照して説明する。本処理は、制御部100により実行される。また、ここでは、ウェハWを搬出した後のウェハレスドライクリーニング時に実行される。
 本処理が開始されると、制御部100は、ウェハレスドライクリーニング処理を実行する(ステップS10)。次に、制御部100は、OES130から酸素ラジカル(O)の発光強度Io及びフッ素ラジカル(F)の発光強度Ifを取得する(ステップS12)。
 次に、制御部100は、取得した酸素ラジカルの発光強度Io及びフッ素ラジカルの発光強度Ifを(1)式に代入して、消耗レートを算出する(ステップS14)。次に、制御部100は、算出した消耗レートにウェハレスドライクリーニングの処理時間を乗算することで消耗量を算出し、これまで積算した消耗量に加算する(ステップS16)。
 次に、制御部100は、消耗量の積算値が第1の閾値Qth以上であるか否かを判定する(ステップS18)。制御部100は、消耗量の積算値が第1の閾値Qth以上であると判定した場合、メンテナンスアラームを出力し(ステップS20)、本処理を終了する。一方、制御部100は、消耗量の積算値が第1の閾値Qth未満であると判定した場合、そのまま処理を終了する。
 本実施形態の消耗判定方法によれば、製品用ウェハのプロセスを阻害せず、OES130が測定した発光強度に基づき、リアルタイムに消耗量を算出することで、処理室内の特定の消耗部材の消耗度合いを判定することができる。これにより、不良品が出る前にメンテナンス等のアラームを出力することで、静電チャックの交換やメンテナンス等を促し、不良品の発生を抑制し、製品の歩留まりを上げることができる。
<第2実施形態>
 [消耗判定処理]
 次に、第2実施形態に係る消耗判定処理の一例について、図8のフローチャートを参照して説明する。本処理は、制御部100により実行される。また、ここでは、ウェハWを搬出した後のウェハレスドライクリーニング時に実行される。
 第2実施形態に係る消耗判定処理では、第1実施形態に係る消耗判定処理と比較して、消耗量の積算値と第1の閾値Qthとの比較結果と、消耗レートと第2の閾値Rthとの比較結果との両方を用いて、メンテナンスアラームを出力する。第2の閾値Rthは、図6の上段に示すように、消耗リミットの一例であり、モニター対象の消耗部材毎に予め設定されていてもよい。算出した消耗レートが、第2の閾値Rth以上になったとき、又は第2の閾値Rthに近くなったときにアラームを出力してもよい。
 本処理が開始されると、制御部100は、ウェハレスドライクリーニング処理を実行する(ステップS10)。次に、制御部100は、OES130から酸素ラジカルの発光強度Io及びフッ素ラジカルの発光強度Ifを取得する(ステップS12)。
 次に、制御部100は、取得した酸素ラジカルの発光強度Io及びフッ素ラジカルの発光強度Ifを(1)式に代入して、消耗レートを算出する(ステップS14)。次に、制御部100は、算出した消耗レートが第2の閾値Rth以上であるか否かを判定する(ステップS30)。制御部100は、算出した消耗レートが第2の閾値Rth以上であると判定した場合、消耗レートのアラームを出力し(ステップS32)、ステップS16に進む。ただし、ステップS32は省略してもよい。
 一方、制御部100は、算出した消耗レートが第2の閾値Rth未満であると判定した場合、そのままステップS16に進む。ステップS16において、制御部100は、算出した消耗レートにウェハレスドライクリーニングの処理時間を乗算することで消耗量を算出し、これまで積算した消耗量に加算する(ステップS16)。
 次に、制御部100は、消耗量の積算値が第1の閾値Qth以上であるか否かを判定する(ステップS18)。制御部100は、消耗量の積算値が第1の閾値Qth以上であると判定した場合、ダメージ強度が高いかを判定する(ステップS34)。ダメージ強度が高いか否かの判定の一例としては、例えば、消耗レートが第2の閾値Rth以上であり、かつ、消耗量の積算値が第1の閾値Qth以上であるときにダメージ強度が高いと判定される。
 制御部100は、ダメージ強度が高いと判定した場合、メンテナンスアラームを出力し(ステップS20)、本処理を終了する。制御部100は、ダメージ強度が高くないと判定した場合、消耗量のアラームを出力し(ステップS36)、本処理を終了する。ただし、ステップS36は省略してもよい。
 本実施形態の消耗判定方法によれば、算出した消耗量と第1の閾値Qthとの比較結果、及び、算出した消耗レートと第2の閾値Rthとの比較結果とから特定の消耗部材の消耗度合いを判定することができる。
 これによっても、OES130が測定した発光強度に基づき、リアルタイムに消耗量を算出することで、処理室内の特定の消耗部材の消耗度合いを判定することができる。これにより、不良品が出る前にメンテナンス等のアラームを出力することで、静電チャックの交換やメンテナンス等を促し、不良品の発生を低下させ、製品の歩留まりを上げることができる。
 プラズマ処理の終点検出手段では、サンプル構造等により、ウェハレスドライクリーニングの時間等が往々にして変わることがある。これに対して、本実施形態の消耗判定方法によれば、そのプロセスを阻害せず、OES130が測定した発光強度に基づき、リアルタイムに消耗量を算出することで、消耗状態を正確に把握することができる。これにより、不良品が出る前に、アラームを出力することで、静電チャックの交換やメンテナンス等を行うことで、製品の歩留まりを上げることができる。
 以上、消耗判定方法及びプラズマ処理装置を上記実施形態により説明したが、本発明にかかる消耗判定方法及びプラズマ処理装置は上記実施形態に限定されるものではなく、本発明の範囲内で種々の変形及び改良が可能である。上記複数の実施形態に記載された事項は、矛盾しない範囲で組み合わせることができる。
 例えば、制御部100は、クリーニング時の消耗レート、エッチング時の消耗レート、成膜時の消耗レートのすべてを(1)式を用いて算出した。しかしながら、消耗レートVは、クリーニング時の消耗レートV1、エッチング時の消耗レートV2、成膜時の消耗レートV3と別々に算出してもよい。この場合、クリーニング用の消耗レートV1を算出する(1)式の係数A,B,Cは、クリーニング時の部材の消耗の程度を反映するように学習される。同様に、エッチング用の消耗レートV2を算出する(1)式の係数A,B,Cは、エッチング時の部材の消耗の程度を反映するように学習される。さらに、成膜用の消耗レートV3を算出する(1)式の係数A,B,Cは、成膜時の部材の消耗の程度を反映するように学習される。
 なお、本発明は、図1の平行平板型2周波印加装置だけでなく、その他のプラズマ処理装置に適用可能である。その他のプラズマ処理装置としては、容量結合型プラズマ(CCP:Capacitively Coupled Plasma)装置、誘導結合型プラズマ(ICP:Inductively Coupled Plasma)処理装置、ラジアルラインスロットアンテナを用いたプラズマ処理装置、ヘリコン波励起型プラズマ(HWP:Helicon Wave Plasma)装置、電子サイクロトロン共鳴プラズマ(ECR:Electron Cyclotron Resonance Plasma)装置、表面波プラズマ処理装置等であってもよい。
 また、本明細書では、エッチング対象の基板として半導体ウェハWについて説明したが、これに限らず、LCD(Liquid Crystal Display)、FPD(Flat Panel Display)等に用いられる各種基板や、フォトマスク、CD基板、プリント基板等であっても良い。
 本国際出願は、2016年12月26日に出願された日本国特許出願2016-251571号に基づく優先権を主張するものであり、その全内容を本国際出願に援用する。
 1:プラズマ処理装置
 10:処理容器
 15:ガス供給源
 20:下部電極(ステージ)
 21:静電チャック
 22:接着剤
 23:母材
 25:上部電極(シャワーヘッド)
 32:第1高周波電源
 34:第2高周波電源
 45:ガス導入口45
 50:拡散室
 55:ガス流路
 100:制御部
 105:CPU
 110:ROM
 115:RAM
 120:HDD
 121:消耗状態テーブル
 125:メディアI/F
 126:記憶媒体
 130:OES

Claims (10)

  1.  フッ素ガスを含む複数のガスにより生成されたプラズマを用いて基板を処理する工程と、
     OES(Optical Emission Spectroscopy)の測定手段により、前記プラズマからフッ素ガスを含む複数のガスの発光強度を取得する工程と、
     フッ素ガスを含む複数のガスの発光強度と特定の消耗部材の消耗レートとを関連付けて記憶した記憶部を参照して、取得した前記フッ素ガスを含む複数のガスの発光強度から特定の消耗部材の消耗レートを算出する工程と、
     を有する消耗判定方法。
  2.  前記記憶部に記憶した特定の消耗部材の消耗レートは、(1)式により算出される、
    V=A×Io+B×If+C×Io×If (1)
     ただし、Vは特定の消耗部材の消耗レート、IoはOESにより取得した酸素ラジカルの発光強度、IfはOESにより取得したフッ素ラジカルの発光強度、A,B,Cは係数である、
     請求項1に記載の消耗判定方法。
  3.  算出した前記消耗レートから消耗量を算出し、算出した前記消耗量と第1の閾値との比較結果から特定の消耗部材の消耗度合いを判定する工程を有する、
     請求項1に記載の消耗判定方法。
  4.  前記消耗量は、基板の搬出後のフッ素ガスと酸素ガスを含むガスによるプラズマ処理の時間を、算出した前記消耗レートに乗算して得られた値の合計値である、
     請求項3に記載の消耗判定方法。
  5.  前記特定の消耗部材は、前記プラズマを用いて基板を処理する処理室内にて使用される接着剤である、
     請求項1に記載の消耗判定方法。
  6.  前記接着剤は、アクリル系材料、エポキシ樹脂系材料又はシリコン系材料のいずれかである、
     請求項5に記載の消耗判定方法。
  7.  前記フッ素ガスを含む複数のガスは、CF、NF又はSFのいずれかを含む、
     請求項1に記載の消耗判定方法。
  8.  前記消耗判定方法は、基板の搬出後の酸素ガスとフッ素ガスを含む処理時に行う、
     請求項1に記載の消耗判定方法。
  9.  算出した前記消耗レートから消耗量を算出し、算出した前記消耗量と第1の閾値との比較結果、及び、算出した前記消耗レートと第2の閾値との比較結果から特定の消耗部材の消耗度合いを判定する、
     請求項1に記載の消耗判定方法。
  10.  フッ素ガスを含む複数のガスにより生成されたプラズマを用いて基板に処理を行うプラズマ処理装置であって、
     前記プラズマ処理装置は、前記基板の処理を制御する制御部を有し、
     前記制御部は、
     OES(Optical Emission Spectroscopy)の測定手段により、前記プラズマからフッ素ガスを含む複数のガスの発光強度を取得し、
     フッ素ガスを含む複数のガスの発光強度と特定の消耗部材の消耗レートとを関連付けて記憶した記憶部を参照して、取得した前記フッ素ガスを含む複数のガスの発光強度から特定の消耗部材の消耗レートを算出する、
     プラズマ処理装置。
PCT/JP2017/044933 2016-12-26 2017-12-14 消耗判定方法及びプラズマ処理装置 WO2018123621A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197017207A KR102424651B1 (ko) 2016-12-26 2017-12-14 소모 판정 방법 및 플라즈마 처리 장치
KR1020227025105A KR102541742B1 (ko) 2016-12-26 2017-12-14 소모 판정 방법 및 플라즈마 처리 장치
US16/472,339 US10763089B2 (en) 2016-12-26 2017-12-14 Wastage determination method and plasma processing apparatus
US16/935,418 US11183374B2 (en) 2016-12-26 2020-07-22 Wastage determination method and plasma processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-251571 2016-12-26
JP2016251571A JP2018107264A (ja) 2016-12-26 2016-12-26 消耗判定方法及びプラズマ処理装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/472,339 A-371-Of-International US10763089B2 (en) 2016-12-26 2017-12-14 Wastage determination method and plasma processing apparatus
US16/935,418 Continuation US11183374B2 (en) 2016-12-26 2020-07-22 Wastage determination method and plasma processing apparatus

Publications (1)

Publication Number Publication Date
WO2018123621A1 true WO2018123621A1 (ja) 2018-07-05

Family

ID=62707351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044933 WO2018123621A1 (ja) 2016-12-26 2017-12-14 消耗判定方法及びプラズマ処理装置

Country Status (5)

Country Link
US (2) US10763089B2 (ja)
JP (1) JP2018107264A (ja)
KR (2) KR102541742B1 (ja)
TW (1) TWI756326B (ja)
WO (1) WO2018123621A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210289612A1 (en) * 2020-03-11 2021-09-16 Tokyo Electron Limited Plasma measuring apparatus and plasma measuring method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7365878B2 (ja) 2019-12-06 2023-10-20 東京エレクトロン株式会社 計測装置及び計測方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025982A (ja) * 2000-07-04 2002-01-25 Tokyo Electron Ltd 消耗品の消耗度予測方法及び堆積膜厚の予測方法
JP2004237321A (ja) * 2003-02-06 2004-08-26 Komatsu Sanki Kk プラズマ加工装置
WO2006098081A1 (ja) * 2005-03-14 2006-09-21 Tokyo Electron Limited 処理装置,処理装置の消耗部品管理方法,処理システム,処理システムの消耗部品管理方法
JP2006324316A (ja) * 2005-05-17 2006-11-30 Hitachi High-Technologies Corp プラズマ処理装置
JP2011060977A (ja) * 2009-09-09 2011-03-24 Toshiba Corp 半導体デバイスの製造装置、製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW411527B (en) * 1996-11-14 2000-11-11 Tokyo Electron Ltd Cleaning method for plasma processing system and plasma processing method
US6791692B2 (en) * 2000-11-29 2004-09-14 Lightwind Corporation Method and device utilizing plasma source for real-time gas sampling
CN100410421C (zh) * 2001-05-04 2008-08-13 拉姆研究公司 处理室残留物的两步式等离子清洗
JP4033730B2 (ja) * 2002-07-10 2008-01-16 東京エレクトロン株式会社 プラズマ処理装置用基板載置台及びプラズマ処理装置及びプラズマ処理装置用の基台部
US7959970B2 (en) * 2004-03-31 2011-06-14 Tokyo Electron Limited System and method of removing chamber residues from a plasma processing system in a dry cleaning process
JP5395633B2 (ja) 2009-11-17 2014-01-22 東京エレクトロン株式会社 基板処理装置の基板載置台
JP2011210853A (ja) * 2010-03-29 2011-10-20 Tokyo Electron Ltd 消耗量測定方法
KR101877862B1 (ko) * 2014-12-19 2018-07-12 가부시키가이샤 히다치 하이테크놀로지즈 플라즈마 처리 장치 및 플라즈마 처리 장치의 운전 방법
US10041868B2 (en) * 2015-01-28 2018-08-07 Lam Research Corporation Estimation of lifetime remaining for a consumable-part in a semiconductor manufacturing chamber
JP6026620B2 (ja) 2015-10-22 2016-11-16 東京エレクトロン株式会社 載置台、プラズマ処理装置及び載置台の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025982A (ja) * 2000-07-04 2002-01-25 Tokyo Electron Ltd 消耗品の消耗度予測方法及び堆積膜厚の予測方法
JP2004237321A (ja) * 2003-02-06 2004-08-26 Komatsu Sanki Kk プラズマ加工装置
WO2006098081A1 (ja) * 2005-03-14 2006-09-21 Tokyo Electron Limited 処理装置,処理装置の消耗部品管理方法,処理システム,処理システムの消耗部品管理方法
JP2006324316A (ja) * 2005-05-17 2006-11-30 Hitachi High-Technologies Corp プラズマ処理装置
JP2011060977A (ja) * 2009-09-09 2011-03-24 Toshiba Corp 半導体デバイスの製造装置、製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210289612A1 (en) * 2020-03-11 2021-09-16 Tokyo Electron Limited Plasma measuring apparatus and plasma measuring method

Also Published As

Publication number Publication date
US10763089B2 (en) 2020-09-01
KR102424651B1 (ko) 2022-07-25
US11183374B2 (en) 2021-11-23
US20200350148A1 (en) 2020-11-05
KR20190098143A (ko) 2019-08-21
KR102541742B1 (ko) 2023-06-13
JP2018107264A (ja) 2018-07-05
TWI756326B (zh) 2022-03-01
US20190378698A1 (en) 2019-12-12
KR20220106859A (ko) 2022-07-29
TW201831052A (zh) 2018-08-16

Similar Documents

Publication Publication Date Title
JP4884047B2 (ja) プラズマ処理方法
JP4801045B2 (ja) ドライクリーニングプロセスのプラズマ処理システムからチャンバ残渣を除去する方法
KR101720670B1 (ko) 기판 처리 장치 및 그 클리닝 방법 및 프로그램을 기록한 기록매체
US8999068B2 (en) Chamber cleaning method
JP5839689B2 (ja) プラズマエッチング方法及び半導体装置の製造方法並びにコンピュータ記憶媒体
US20150024603A1 (en) Plasma etching method and plasma etching apparatus
JP4828456B2 (ja) プラズマ処理方法及びプラズマ処理装置
JP5461759B2 (ja) プラズマ処理装置、プラズマ処理方法及び記憶媒体
KR20190030587A (ko) 플라스마 처리 장치 및 대기 개방 방법
US11183374B2 (en) Wastage determination method and plasma processing apparatus
US9147556B2 (en) Plasma processing method and plasma processing apparatus
US9925571B2 (en) Method of cleaning substrate processing apparatus
JP2016225567A (ja) クリーニング方法
JP2007324154A (ja) プラズマ処理装置
JP2011233713A (ja) プラズマ処理方法及びプラズマ処理装置
US11594399B2 (en) Cleaning method and plasma processing apparatus
JP2016143803A (ja) プラズマ処理方法及びプラズマ処理装置
KR102557053B1 (ko) 에칭 방법
JP2019040853A (ja) 測定装置、測定方法及びプラズマ処理装置
KR20230119605A (ko) 기판 처리 방법 및 기판 처리 장치
JP2002164328A (ja) ドライエッチング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885898

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197017207

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17885898

Country of ref document: EP

Kind code of ref document: A1