WO2018121583A1 - 列车的移动授权的生成方法及装置、车载atp及zc - Google Patents

列车的移动授权的生成方法及装置、车载atp及zc Download PDF

Info

Publication number
WO2018121583A1
WO2018121583A1 PCT/CN2017/118909 CN2017118909W WO2018121583A1 WO 2018121583 A1 WO2018121583 A1 WO 2018121583A1 CN 2017118909 W CN2017118909 W CN 2017118909W WO 2018121583 A1 WO2018121583 A1 WO 2018121583A1
Authority
WO
WIPO (PCT)
Prior art keywords
train
distance
generating
authorization
movement authorization
Prior art date
Application number
PCT/CN2017/118909
Other languages
English (en)
French (fr)
Inventor
卓开阔
王琼芳
王发平
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to US16/474,248 priority Critical patent/US11267497B2/en
Publication of WO2018121583A1 publication Critical patent/WO2018121583A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/026Relative localisation, e.g. using odometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning or like safety means along the route or between vehicles or trains
    • B61L23/34Control, warning or like safety means along the route or between vehicles or trains for indicating the distance between vehicles or trains by the transmission of signals therebetween
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning or like safety means along the route or between vehicles or trains
    • B61L23/08Control, warning or like safety means along the route or between vehicles or trains for controlling traffic in one direction only
    • B61L23/14Control, warning or like safety means along the route or between vehicles or trains for controlling traffic in one direction only automatically operated
    • B61L23/18Control, warning or like safety means along the route or between vehicles or trains for controlling traffic in one direction only automatically operated specially adapted for changing lengths of track sections in dependence upon speed and traffic density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/021Measuring and recording of train speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/025Absolute localisation, e.g. providing geodetic coordinates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/04Automatic systems, e.g. controlled by train; Change-over to manual control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/20Trackside control of safe travel of vehicle or train, e.g. braking curve calculation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/40Handling position reports or trackside vehicle data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L21/00Station blocking between signal boxes in one yard
    • B61L21/10Arrangements for trains which are closely following one another
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L2201/00Control methods

Definitions

  • the present invention relates to the field of vehicle technology, and in particular, to a method and a device for generating a mobile authorization of a train, and an onboard ATP and a ZC.
  • the ZC can calculate the mobile authorization for tracking the train and the following vehicle based on the location information reported by the preceding vehicle.
  • the ZC calculates the mobile authorization of the vehicle, it is calculated based on the absolute position of the train.
  • the ZC assumes that the preceding vehicle is a stationary obstacle.
  • the position of the front vehicle becomes a fixed position, and the position is an absolute position with respect to the position of the rear vehicle, so that the absolute distance between the two can be utilized to reduce the safety. The remaining amount, get the mobile authorization of the rear car.
  • the front car is also running at high speed, only when it stops in the stop.
  • the automatic train protection (ATP) curve is calculated by using the mobile authorization obtained according to the prior art, the minimum tracking interval obtained is larger than the allowable tracking interval when the front and rear vehicles are actually running.
  • the minimum tracking interval of the front and rear vehicles cannot exceed the emergency braking distance of the rear vehicle, otherwise the emergency braking will be triggered, which makes it impossible to operate according to the actual operation during the peak period of train operation.
  • the tracking interval between the abbreviations of the trains makes the operation of the lines less efficient.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent.
  • an object of the present invention is to provide a method for generating a movement authorization of a train, which can consider the actual movement state of the preceding vehicle when calculating the movement authorization of the rear vehicle, and no longer sets the preceding vehicle to be stationary. Obstacle can make the mobile authorization longer, which can reduce the tracking distance and improve the operational efficiency of the line.
  • Another object of the present invention is to provide a device for generating a mobile authorization for a train.
  • Another object of the present invention is to propose an in-vehicle ATP.
  • Another object of the invention is to propose a ZC.
  • a method for generating a mobile authorization of a train according to the first aspect of the present invention includes:
  • first train is a train that is in front of the second train and is closest to the second train;
  • the method for generating a movement authorization of a train proposed by the first aspect of the present invention can make the preceding vehicle not be a stationary obstacle by considering the actual movement state of the preceding vehicle when calculating the movement authorization of the vehicle.
  • the mobile authorization becomes longer, which can reduce the tracking distance and improve the operational efficiency of the line.
  • the mobile authorization obtaining device of the train according to the second aspect of the present invention includes:
  • a first acquiring module configured to acquire a first distance between the first train and the second train; wherein the first train is a train that is in front of the second train and is closest to the second train;
  • a second acquiring module configured to obtain, according to the speed information of the second train, a reaction time required for the second train to run the first distance
  • a third acquiring module configured to acquire, according to the speed information of the first train, a second distance that the first train runs during the reaction time;
  • a generating module configured to generate a mobility authorization of the second train according to the first distance, the second distance, and a preset safety margin.
  • the device for generating the movement authorization of the train proposed by the embodiment of the second aspect of the present invention can make the preceding vehicle not be a stationary obstacle by considering the actual movement state of the preceding vehicle when calculating the movement authorization of the vehicle.
  • the mobile authorization becomes longer, which can reduce the tracking distance and improve the operational efficiency of the line.
  • the in-vehicle ATP proposed by the embodiment of the third aspect of the present invention includes:
  • a device for generating a movement authorization of a train according to an embodiment of the second aspect of the present invention.
  • the ZC proposed by the embodiment of the fourth aspect of the present invention includes:
  • a device for generating a movement authorization of a train according to an embodiment of the second aspect of the present invention.
  • FIG. 1 is a schematic flowchart of a method for generating a mobile authorization according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of application of a method for generating a mobile authorization according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart diagram of another method for generating a mobile authorization according to an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart of acquiring a second distance that a first train runs during a reaction time according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a device for generating a mobile authorization according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a second acquiring module according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a third acquiring module according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a first acquiring module according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of an in-vehicle ATP according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a ZC according to an embodiment of the present invention.
  • FIG. 1 is a schematic flowchart diagram of a method for generating a mobile authorization of a train according to an embodiment of the present invention.
  • the execution body of the method for generating the mobile authorization of the train is the onboard ATP of the second train.
  • the method for generating the mobile authorization of the train includes the following steps:
  • the first train is a train that is in front of the second train and is closest to the second train.
  • the onboard ATP may acquire the first distance between the first train and the second train according to the location information of the first train and the location information of the second train.
  • the in-vehicle ATP can receive messages from the ZC, and the ZC can receive location information reported by all registered trains.
  • the vehicle ATP can receive the location information of all registered trains sent by the area controller.
  • the onboard ATP can sort the positions of all registered trains according to the position information received from the ZC. After the car ATP is sorted, the first train corresponding to the second train can be determined according to the sorting result.
  • the ZC may sort the reported location information after receiving the registered location information of all the registered trains, and send the sorted result to the onboard ATP after the sorting is completed.
  • the in-vehicle ATP receives the sorting result, from which the first train corresponding to the second train is determined.
  • the first distance between the former second trains may be acquired according to the position information of the previous second train.
  • the vehicle ATP after acquiring the first distance, can acquire the speed information of the second train from the sensors installed on the second train, and then obtain the second train operation according to the speed information of the second train.
  • the required reaction time for a distance ie the reaction time required for the second train to travel from the current position to the current position of the first train.
  • the speed information of the second train includes at least the running speed of the second train.
  • the first train and the second train can communicate with each other, and the first train can transmit the speed information of the first train to the onboard ATP of the second train.
  • the speed information of the first train includes at least the running speed of the first train.
  • the second distance that the first train runs during the reaction time can be calculated.
  • S104 Generate a mobility authorization of the second train according to the first distance, the second distance, and a preset safety margin.
  • the onboard ATP adds the first distance to the second distance, and subtracts the preset safety margin from the added result to obtain the mobile authorization of the second train.
  • the first train since the second train can directly communicate with the first train, the first train sends its own speed information and safety envelope to the second train directly, and no longer transits through the ZC, which can improve the second and second trains. The accuracy of the position of the train.
  • the second train performs the calculation of the mobile authorization by the vehicle ATP itself, which saves the communication time required by the ZC to obtain the mobile authorization and then issued to the second train.
  • the safety margin is set in advance.
  • the safety margin can be appropriately reduced.
  • FIG. 2 is a schematic diagram of application of a method for generating a mobile authorization according to an embodiment of the present invention.
  • a C 1 and C denoted 2 labeled in FIG two trains, respectively a C 1 and C denoted 2, wherein a first train C 1, C 2 is the second train. 2 is marked with three positions P 1 , P 2 and P 3 , where P 1 is the current position of the second train C 2 , P 2 is the current position of the first train C 1 , and P 3 is the second train.
  • C 2 The position at which the first train C 1 arrives when running from P 1 to P 2 .
  • the distance between P 1 and P 2 is the first distance between the first train and the second train, denoted as S 1 ; the distance between P 2 and P 3 is the distance from the second train C 2 from P 1 When running to P 2 , the second distance traveled by the first train C 1 during this time is marked as S 2 .
  • the mobile authorization MA 1 S 1 -D 1
  • the mobile authorization MA 2 S 1 +S 2 -D 2
  • D 1 is a safety margin preset in the prior art
  • D 2 is a safety margin preset in the embodiment.
  • the method for generating a movement authorization of a train obtained by the embodiment obtains a first distance between the first train and the second train, and acquires a reaction time required for the second distance of the second train to run according to the speed information of the second train. And acquiring, according to the speed information of the first train, a second distance that the first train runs during the reaction time, and generating a movement authorization of the second train according to the first distance, the second distance, and a preset safety margin.
  • the first train is no longer set as a stationary obstacle, and the movement authorization can be made longer, thereby reducing the tracking distance.
  • Improve the operational efficiency of the line increase the departure density during the peak operation period, and reduce the operational pressure during peak hours.
  • FIG. 3 is a schematic flowchart diagram of another method for generating a mobile authorization of a train according to an embodiment of the present invention.
  • the execution body of the method for generating the mobile authorization of the train is the onboard ATP of the second train.
  • the method for generating the mobile authorization of the train includes the following steps:
  • the vehicle ATP After receiving the message of the ZC feedback, the vehicle ATP can obtain the first train corresponding to the second train.
  • the specific process refer to the description of related content in the foregoing embodiment, and details are not described herein again.
  • the vehicle ATP can detect whether there are obstacles on the road ahead through the radar device.
  • the onboard ATP can determine whether there is an obstacle between the first train and the second train. If there is no obstacle, S202 is performed; if there is an obstacle, S209 is performed.
  • the onboard ATP may acquire the first distance between the first train and the second train according to the location information of the first train and the location information of the second train.
  • the specific process can participate in the description of related content in the foregoing embodiments, and details are not described herein again.
  • the tracking distance between the former second train is greater than the emergency braking distance of the second train, so as to ensure that the second train does not have the second train in the process of tracking the first train.
  • Traffic accident the specific process of acquiring the emergency braking distance of the second train by the vehicle ATP is as follows:
  • the initial speed is assumed to be the train construction speed V m1 , the uncontrolled acceleration and inert phase is still V m1 , the braking establishment phase is uniform deceleration, and the deceleration is a e1 /2.
  • V 31 V m1 +(a e1 /2)*t 31
  • the braking process is simplified to a uniform motion, and the braking process running distance is established as follows:
  • the ATP can calculate the emergency braking distance of the second train according to the train construction speed of the second train.
  • the vehicle ATP can compare the first distance with the emergency braking distance to determine whether the first distance is smaller than the emergency braking distance. If the result of the determination is that the first distance is less than the emergency braking distance, then S205 is performed; if the result of the determination is that the first distance is greater than or equal to the emergency braking distance, then S208 is performed.
  • the mobile authorization is calculated.
  • the ATP curve it is often determined that an emergency braking of the second train is required to avoid the danger of colliding with the first train.
  • the first train is also moving at a high speed. In this case, even if the second train does not perform emergency braking, there is no risk that the second train will catch up with the first train.
  • the vehicle ATP determines that the first distance is less than the emergency system.
  • the reaction time required for the second train to run the first distance is further acquired according to the speed information of the second train.
  • the reaction time t S 1 /V mr ; if there are multiple different sections
  • FIG. 4 is a schematic flowchart of obtaining a second distance that a first train runs during a reaction time according to an embodiment of the present invention.
  • the vehicle ATP can also identify the motion state of the first train before determining the second distance, that is, to identify whether the first train is in an accelerated driving state, a constant driving state, or a deceleration driving state. The specific process is shown in Figure 4.
  • S301 Determine, according to the speed information of the first train, whether the first train is in a deceleration state.
  • the in-vehicle ATP may compare the currently received speed information of the first train with the speed information of the first train received last time, and acquire the acceleration of the first train. Whether the first train is in a deceleration state is determined based on the acceleration. If the acceleration is negative, the first train is in a deceleration state, if the acceleration is positive, the first train is in an acceleration state, and if the acceleration is 0, the first train is in a constant speed state.
  • S302 is performed; if it is determined that the first train is in the acceleration or uniform state, then S305 is performed.
  • a threshold value is set in advance, and the threshold value may be determined according to specific parameters of the first train and actual measured data.
  • the acceleration of the first train acquired in S301 is the deceleration of the first train.
  • the vehicle ATP needs to compare the deceleration of the first train with a preset threshold to determine whether the deceleration of the first train is greater than a preset threshold. If the deceleration of the first train is greater than or equal to a preset threshold, the first train is rapidly decelerating, and in order to ensure that the second train does not chase the first train, then S303 is performed. If the deceleration of the first train is less than a preset threshold, indicating that the first train is decelerating normally, then S304 is performed.
  • the second distance of the first train is obtained according to the actual running state of the first train. Since the first train is in an accelerated state, it is a safe operating state for the second train, and there is generally no accident between the former second train. At this time, according to the actual running speed, acceleration and reaction of the first train. Time to get the second distance of the first train. When the first train is in a constant speed state, the second distance of the first train may be acquired according to the actual running speed of the first train and the reaction time.
  • the mobile authorization is extended, and accordingly, the second train continues to reduce the two vehicles.
  • the tracking distance between the two trains will cause the second train to continue to track the first train, and the first train has stopped, and a collision will occur.
  • the second distance is set to zero to reduce the risk of collision between the two vehicles.
  • the motion state of the first train is further referred to, the accuracy of the mobile authorization is improved, and driving safety is improved.
  • the in-vehicle ATP adds the first distance to the second distance, and subtracts the preset safety margin from the added result to obtain a mobile authorization.
  • the communication delay time is reduced, so that when calculating the mobile authorization of the second train, in this embodiment,
  • the safety margin is set in advance, the above contents can be considered and the safety margin can be appropriately reduced.
  • the vehicle ATP can use the first distance minus the preset safety margin to obtain the mobile authorization of the second train.
  • the onboard ATP subtracts the preset safety margin from the third distance to obtain the mobile authorization of the second train.
  • a first train to a second train from the entire first speed S 1 is the most stringent also 2000cm / s;
  • the current speed of the second train has exceeded the emergency brake trigger speed. Therefore, the second train has applied emergency braking.
  • the tracking distance of the second train must be greater than 200m.
  • the front second barrier-free point first calculates the emergency braking distance S e1 of the second train at the highest allowable speed, and the specific process is as follows:
  • the emergency braking trigger speed can be 2775cm/s.
  • the second train can also accelerate the reduction. Tracking distance.
  • the emergency brake trigger speed of the second train will be close to the second train speed of 2000cm/s, so when the vehicle speed is 2000cm/s.
  • the method for generating a movement authorization of a train obtained by the embodiment obtains a first distance between the first train and the second train, and acquires a reaction time required for the second distance of the second train to run according to the speed information of the second train. And acquiring, according to the speed information of the first train, a second distance that the first train runs during the reaction time, and acquiring a movement authorization of the second train according to the first distance, the second distance, and a preset safety margin.
  • the first train is no longer set as a stationary obstacle, and the movement authorization can be made longer, thereby reducing the tracking distance.
  • Improve the operational efficiency of the line increase the departure density during the peak operation period, and reduce the operational pressure during peak hours.
  • the second distance of the first train is acquired, the operating state of the first train is further considered, and different mobile authorizations may be acquired according to different motion states, especially for the state of rapid deceleration, and the second distance is set to zero. Reduce the probability of the second train colliding.
  • the execution body of the mobile authorization obtaining method of the train provided in the above embodiment may also be the area manager ZC.
  • the mobile authorization obtaining method of the above train is executed by the ZC, the former second train is no longer needed. Vehicle and vehicle communication is carried out, and the preset safety margin needs to consider the communication delay existing in the process of issuing the calculated mobile authorization to the second train.
  • FIG. 5 is a schematic structural diagram of a device for generating a mobile authorization of a train according to an embodiment of the present invention.
  • the mobile authorization generating apparatus 1 of the train includes a first obtaining module 11, a second acquiring module 12, a third obtaining module 13, and a generating module 14.
  • the first obtaining module 11 is configured to acquire a first distance between the first train and the second train, where the first train is a train that is in front of the second train and is closest to the second train. .
  • the second obtaining module 12 is configured to acquire, according to the speed information of the second train, a reaction time required for the second train to run the first distance.
  • the third obtaining module 13 is configured to acquire, according to the speed information of the first train, a second distance that the first train runs during the reaction time.
  • the generating module 14 is configured to generate a mobility authorization of the second train according to the first distance, the second distance, and a preset safety margin.
  • the generating module 14 is specifically configured to add the first distance and the second distance, and subtract the security margin from the added result to obtain the mobile authorization.
  • the first obtaining module 11 is further configured to acquire location information of all the trains in front of the second train, and determine the first train corresponding to the second train according to the location information.
  • FIG. 6 is a schematic structural diagram of a device for generating a mobile authorization of a train according to an embodiment of the present invention. As shown in FIG. 6, the apparatus further includes: a fourth acquisition module 15 and a determination module 16.
  • the fourth obtaining module 15 is configured to acquire an emergency braking distance of the second train.
  • the determining module 16 is configured to determine whether the first distance is less than the emergency braking distance.
  • the second obtaining module 12 is configured to acquire the reaction time according to the speed information of the second train when the determining module 16 determines that the first distance is less than the emergency braking distance.
  • the acquiring module 14 is further configured to: when the determining module 16 determines that the first distance is greater than or equal to the emergency braking distance, generate the second according to the first distance and the safety margin Mobile authorization for the train.
  • FIG. 7 is a schematic structural diagram of a third acquiring module according to an embodiment of the present invention.
  • the third obtaining module 13 includes: a first determining unit 131 and a first acquiring unit 132.
  • the first determining unit 131 is configured to determine, according to the speed information of the first train, whether the first train is in a deceleration state, and if it is determined that the first train is in a deceleration state, determine the first Whether the deceleration of the train is greater than a preset threshold;
  • the first obtaining unit 132 is configured to set the second distance to zero when it is determined that the deceleration is greater than or equal to the threshold.
  • the first obtaining unit 132 is further configured to acquire the second distance according to the speed information of the first train and the deceleration when the deceleration is less than the threshold.
  • FIG. 8 is a schematic structural diagram of a first acquiring module according to an embodiment of the present invention.
  • the first obtaining module 11 includes: a second determining unit 111 and a second acquiring unit 112.
  • the second determining unit 111 is configured to determine whether there is an obstacle between the first train and the second train.
  • the second obtaining unit 112 is configured to calculate, between the first train and the second train, according to the location information of the first train and the location information of the second train when it is determined that there is no obstacle The first distance.
  • the second acquiring unit 112 is further configured to: when the obstacle is determined to be present, calculate the obstacle and the second train according to the location information of the obstacle and the location information of the second train The third distance between.
  • the generating module 14 further generates a mobility authorization of the second train according to the third distance and the safety margin.
  • the device for generating the movement authorization of the train obtains the first distance between the first train and the second train, and acquires the reaction time required for the second distance of the second train to run according to the speed information of the second train. And acquiring, according to the speed information of the first train, a second distance that the first train runs during the reaction time, and acquiring a movement authorization of the second train according to the first distance, the second distance, and a preset safety margin.
  • the first train is no longer set as a stationary obstacle, and the movement authorization can be made longer, thereby reducing the tracking distance.
  • Improve the operational efficiency of the line increase the departure density during the peak operation period, and reduce the operational pressure during peak hours.
  • the second distance of the first train is acquired, the operating state of the first train is further considered, and different mobile authorizations may be acquired according to different motion states, especially for the state of rapid deceleration, and the second distance is set to zero. Reduce the probability of the second train colliding.
  • FIG. 9 is a schematic structural diagram of an in-vehicle ATP according to an embodiment of the present invention.
  • the in-vehicle ATP 2 includes the generation authority 1 for the movement authorization of the train provided in the above embodiment.
  • the vehicle-mounted ATP obtained by the embodiment obtains the first distance between the first train and the second train, and acquires the reaction time required for the second train to run the first distance according to the speed information of the second train, according to the first train.
  • the speed information obtains a second distance that the first train runs during the reaction time, and acquires a movement authorization of the second train according to the first distance, the second distance, and a preset safety margin.
  • the first train is no longer set as a stationary obstacle, and the movement authorization can be made longer, thereby reducing the tracking distance.
  • Improve the operational efficiency of the line increase the departure density during the peak operation period, and reduce the operational pressure during peak hours.
  • FIG. 10 is a schematic structural diagram of a ZC according to an embodiment of the present invention.
  • the ZC 3 includes the apparatus 1 for generating the movement authorization of the train provided by the above embodiment.
  • the ZC provided by the embodiment obtains the first distance between the first train and the second train, and obtains the reaction time required for the second train to run the first distance according to the speed information of the second train, according to the first train
  • the speed information acquires a second distance that the first train runs during the reaction time, and acquires a movement authorization of the second train according to the first distance, the second distance, and a preset safety margin.
  • the first train is no longer set as a stationary obstacle, and the movement authorization can be made longer, thereby reducing the tracking distance.
  • Improve the operational efficiency of the line increase the departure density during the peak operation period, and reduce the operational pressure during peak hours.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.
  • the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Abstract

一种列车的移动授权的生成方法及装置、ATP及ZC。获取第一列车与第二列车之间的第一距离(101),根据第二列车的速度信息,获取第二列车运行第一距离所需的反应时间(102),根据第一列车的速度信息,获取第一列车在反应时间内所运行的第二距离(103),根据第一距离、第二距离和预设的安全余量,生成第二列车的移动授权(104)。在计算第二列车的移动授权时,考虑第一列车的实际运动状态,不再将第一列车设定为静止的障碍物,能够使得移动授权变长,从而可以缩小追踪距离,提高了线路的运营效率,可以在运营高峰期提高发车密度,降低高峰期的运营压力。

Description

列车的移动授权的生成方法及装置、车载ATP及ZC
相关申请的交叉引用
本申请要求比亚迪股份有限公司于2016年12月27日提交的中国专利申请号No.201611224871.7的优先权。
技术领域
本发明涉及车辆技术领域,尤其涉及一种列车的移动授权的生成方法及装置、车载ATP及ZC。
背景技术
目前,所有注册到区域控制器(Zone Controller,简称ZC)的列车,可以向ZC报告各自的实时位置信息。ZC可以根据前车报告的位置信息,计算追踪列车即后车的移动授权。当前ZC计算后车的移动授权时,是基于列车的绝对位置进行计算。ZC在计算移动授权的过程中,假设前车是静止不动的障碍物。当假设前车是静止不动的障碍物时,前车的位置就成为固定的位置,该位置相对于后车的位置就是绝对位置,这样就可以利用两者之间的绝对距离,减去安全余量,得到后车的移动授权。
而事实上大多数情况下前车也是在高速运行的,只有在进站停车时才是静止的。而利用根据现有技术得到的移动授权,计算列车自动防护(Automatic Train Protection,简称ATP)曲线时,得到的最小追踪间隔比前后车实际运行时所能允许的追踪间隔要大。而为了保证列车的安全运行,前后车的最小追踪间隔不能超过后车的紧急制动距离,否者就会触发紧急制动,这就使得在列车运行的高峰时期,不能够根据实际运行情况来缩写列车之间的追踪间隔,使得线路的运营效率较低。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明的一个目的在于提出一种列车的移动授权的生成方法,该方法可以在计算后车的移动授权时,考虑前车的实际运动状态,不再将前车设定为静止的障碍物,能够使得移动授权变长,从而可以缩小追踪距离,提高线路的运营效率。
本发明的另一个目的在于提出一种列车的移动授权的生成装置。
本发明的另一个目的在于提出一种车载ATP。
本发明的另一个目的在于提出一种ZC。
为达到上述目的,本发明第一方面实施例提出的列车的移动授权的生成方法,包括:
获取第一列车与第二列车之间的第一距离;其中,所述第一列车为在所述第二列车前方且距离所述第二列车最近的列车;
根据所述第二列车的速度信息,得到所述第二列车运行第一距离所需的反应时间;
根据所述第一列车的速度信息,获取所述第一列车在所述反应时间内所运行的第二距离;
根据所述第一距离、所述第二距离和预设的安全余量,生成所述第二列车的移动授权。
本发明第一方面实施例提出的列车的移动授权的生成方法,通过在计算后车的移动授权时,考虑前车的实际运动状态,不再将前车设定为静止的障碍物,能够使得移动授权变长,从而可以缩小追踪距离,提高线路的运营效率。
为达到上述目的,本发明第二方面实施例提出的列车的移动授权获取装置,包括:
第一获取模块,用于获取第一列车与第二列车之间的第一距离;其中,所述第一列车为在所述第二列车前方且距离所述第二列车最近的列车;
第二获取模块,用于根据所述第二列车的速度信息,得到所述第二列车运行第一距离所需的反应时间;
第三获取模块,用于根据所述第一列车的速度信息,获取所述第一列车在所述反应时间内所运行的第二距离;
生成模块,用于根据所述第一距离、所述第二距离和预设的安全余量,生成所述第二列车的移动授权。
本发明第二方面实施例提出的列车的移动授权的生成装置,通过在计算后车的移动授权时,考虑前车的实际运动状态,不再将前车设定为静止的障碍物,能够使得移动授权变长,从而可以缩小追踪距离,提高线路的运营效率。
为达到上述目的,本发明第三方面实施例提出的车载ATP,包括:
本发明第二方面实施例提供的列车的移动授权的生成装置。
为达到上述目的,本发明第四方面实施例提出的ZC,包括:
本发明第二方面实施例提供的列车的移动授权的生成装置。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明 显和容易理解,其中:
图1为本发明实施例提供的一种移动授权的生成方法的流程示意图;
图2为本发明实施例提供的一种移动授权的生成方法的应用示意图;
图3为本发明实施例提供的另一种移动授权的生成方法的流程示意图;
图4为本发明实施例提供的一种获取第一列车在反应时间内所运行的第二距离的流程示意图;
图5为本发明实施例提供的一种移动授权的生成装置的结构示意图;
图6为本发明实施例提供的一种第二获取模块的结构示意图;
图7为本发明实施例提供的一种第三获取模块的结构示意图;
图8为本发明实施例提供的一种第一获取模块的结构示意图;
图9为本发明实施例提供的一种车载ATP的结构示意图;
图10为本发明实施例提供的一种ZC的结构示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的模块或具有相同或类似功能的模块。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。相反,本发明的实施例包括落入所附加权利要求书的精神和内涵范围内的所有变化、修改和等同物。
图1为本发明实施例提供的一种列车的移动授权的生成方法的流程示意图。本实施例中,该列车的移动授权的生成方法的执行主体为第二列车上车载ATP。如图1所示,该列车的移动授权的生成方法包括以下步骤:
S101、获取第一列车与第二列车之间的第一距离。
其中,第一列车为在第二列车前方且距离第二列车最近的列车。
具体地,车载ATP可以根据第一列车的位置信息和第二列车的位置信息,获取第一列车与第二列车之间的第一距离。优选地,车载ATP可以从ZC中接收消息,ZC可以接收到所有注册过的列车上报的位置信息。车载ATP可以接收区域控制器发送的所有注册过的列车的位置信息。为了确定出列车之间的位置关系,车载ATP可以按照从ZC中接收到的位置信息,进行对所有注册的列车进行位置排序。车载ATP在排序完成后,就可以根据排序结果确定出第二列车对应的第一列车。
具体地,为了减少车载ATP的运算负载,ZC可以在接收到所有注册过的列车上报的位置信息后,可以按照上报的位置信息进行排序,在排序完成后将排序结果发送给车 载ATP。车载ATP接收该排序结果,从中确定出第二列车对应的第一列车。
在确定出第二列车对应的第一列车后,则可以根据前第二列车的位置信息,获取出前第二列车之间的第一距离。
S102、根据第二列车的速度信息,得到第二列车运行第一距离所需的反应时间。
本实施例中,车载ATP在获取到第一距离后,可以从第二列车上安装的传感器中获取到第二列车的速度信息,然后根据第二列车的速度信息可以获取到第二列车运行第一距离所需的反应时间,即第二列车从当前位置运行到第一列车的当前位置所需的反应时间。其中,第二列车的速度信息至少包括第二列车的运行速度。
S103、根据第一列车的速度信息,获取第一列车在反应时间内所运行的第二距离。
具体地,在追踪过程中,第一列车与第二列车之间可以相互通信,第一列车可以向第二列车的车载ATP发送第一列车的速度信息。其中,第一列车的速度信息至少包括第一列车的运行速度。进一步地,根据第一列车的速度信息,可以计算出第一列车在该反应时间内所运行的第二距离。
S104、根据第一距离、第二距离和预设的安全余量,生成第二列车的移动授权。
具体地,车载ATP将第一距离与第二距离相加,将相加后的结果减去预设的安全余量,得到第二列车的移动授权。本实施例中,由于第二列车可以与第一列车直接通信,第一列车将自身的速度信息和安全包络等,直接发送给第二列车,不再通过ZC进行中转,可以提高前第二列车的位置的准确性。而且本实施例中,第二列车通过车载ATP自己进行移动授权的计算,节省了现有技术中通过ZC计算得到移动授权后再下发给第二列车所需要的通信时间。由于前第二列车可以直接通信,而且避免了由ZC下发移动授权这一过程,使得通信延迟时间减少,从而在计算第二列车的移动授权时,本实施例中,在预先设置安全余量时,可以将上述内容考虑进入,可以适当的减少安全余量。
图2为本发明实施例提供的一种移动授权的生成方法的应用示意图。如图2所示,在图中标有两辆列车,分别标注为C 1和C 2,其中C 1为第一列车,C 2为第二列车。图2中标记有P 1、P 2和P 3三个位置点,其中,P 1为第二列车C 2当前的位置,P 2为第一列车C 1当前的位置,P 3为第二列车C 2从P 1运行到P 2时第一列车C 1所到达的位置。P 1与P 2之间的距离即为第一列车与第二列车之间的第一距离,标记为S 1;P 2与P 3之间的距离即为在第二列车C 2从P 1运行到P 2时,这段时间内第一列车C 1所行驶的第二距离,标记为S 2
现有的移动授权生成方法中,移动授权MA 1=S 1-D 1,而本实施例提供的移动授权的生成方法中,移动授权MA 2=S 1+S 2-D 2,其中,D 1为现有技术中预设的安全余量,而D 2为本实施例中预设的安全余量。本实施例中,由于通信延迟时间减少,从而在计算第 二列车的移动授权时,在预先设置安全余量时,可以将上述内容考虑进入,可以适当的减少安全余量,即预先设置的安全余量D 2可以小于D 1。由图2可以看出,本实施例中计算得到的移动授权延长了。
本实施例提供的列车的移动授权的生成方法,通过获取第一列车与第二列车之间的第一距离,根据第二列车的速度信息,获取第二列车运行第一距离所需的反应时间,根据第一列车的速度信息,获取第一列车在反应时间内所运行的第二距离,根据第一距离、第二距离和预设的安全余量,生成第二列车的移动授权。本实施例中在计算第二列车的移动授权时,考虑第一列车的实际运动状态,不再将第一列车设定为静止的障碍物,能够使得移动授权变长,从而可以缩小追踪距离,提高了线路的运营效率,可以在运营高峰期提高发车密度,降低高峰期的运营压力。
图3为本发明实施例提供的另一种列车的移动授权的生成方法的流程示意图。本实施例中,该列车的移动授权的生成方法的执行主体为第二列车上车载ATP。如图3所示,该列车的移动授权的生成方法包括以下步骤:
S201、判断第一列车与第二列车之间是否存在障碍物。
车载ATP在接收到ZC反馈的消息后,可以从中获取到第二列车对应的第一列车,具体过程,可参见上述实施例中相关内容的记载,此处不再赘述。
为了保证行车安全,车载ATP可以通过雷达装置对前方道路上是否存在障碍物进行检测。本实施例中,车载ATP可以判断第一列车与第二列车之间是否存在障碍物。如果不存在障碍物,则执行S202;如果存在障碍物,则执行S209。
S202、根据第一列车的位置信息与第二列车的位置信息,计算第一列车与第二列车之间的第一距离。
具体地,车载ATP可以根据第一列车的位置信息和第二列车的位置信息,获取第一列车与第二列车之间的第一距离。具体过程可参加上述实施例中相关内容的记载,此处不再赘述。
S203、获取第二列车的紧急制动距离。
实际应用中,前第二列车之间的追踪距离要大于第二列车的紧急制动距离,才能保证在第二列车对第一列车进行追踪的过程中,不会出现第二列车追尾第一列车的交通意外。本实施例中,车载ATP获取第二列车的紧急制动距离具体过程如下:
V m1为第二列车的列车构造速度;a e1为紧急制动时的最大减速度;t 11,t 21和t 31分别为安全制动模型中失控加速、惰行和建立制动的三个时间段;S e1为第二列车在最高允许的速度时考虑最不利情况下的紧急制动距离。初始速度假设为列车构造速度V m1,失控加速和惰性阶段仍然是V m1,制动建立阶段为匀减速,减速度为a e1/2。
S e1的简化计算公式如下:
建立制动完成后速度为:
V 31=V m1+(a e1/2)*t 31
将建立制动过程简化为匀速运动,则建立制动过程运行距离为:
S 31=((V m1+V 31))/2*t 31
则第二列车的紧急制动距离为:
S e1=V m1*(t 11+t 21)+S 31+(0-V 31 2)/2*a e1
根据上述公式,本实施例中,ATP根据第二列车的列车构造速度,可以计算中第二列车的紧急制动距离。
S204、判断第一距离是否小于紧急制动距离。
在获取到第二列车的紧急制动距离后,车载ATP可以将第一距离和紧急制动距离进行比较,判断第一距离是否小于紧急制动距离。如果判断结果为第一距离小于紧急制动距离,则执行S205;如果判断结果为第一距离大于等于紧急制动距离,则执行S208。
S205、根据第二列车的速度信息获取反应时间。
在第一距离小于紧急制动距离时,可以确定出前第二列车之间的距离较近,如果按照现有的列车的移动授权生成方法,将第一列车设定为静止状态来计算移动授权,根据该移动授权在计算ATP曲线时,往往会判定出需要对第二列车进行紧急制动才能避免与第一列车相撞的危险。而实际情况中,第一列车也是在高速运动的,这种情况下第二列车即使不进行紧急制动,也不会出现第二列车对第一列车的追尾的风险。本实施例中,为了避免现有技术中由于移动授权计算时,将第一列车设定为静止状态,而容易引发第二列车紧急制动的问题,车载ATP在判断出第一距离小于紧急制动距离时,进一步地根据第二列车的速度信息,获取到第二列车运行完第一距离所需要的反应时间。
具体地,获取第二列车到第一列车的车尾这段距离S 1内,第二列车的最严格限速值为V mr,则反应时间t=S 1/V mr;若存在多段不同的严格限速值,则需要分段计算时间再累加,即t=S a/V mra+S b/V mrb+…Sn/V mrn;其中,S 1=S a+S b+…S n
S206、根据第一列车的速度信息,获取第一列车在所述反应时间内所运行的第二距离。
图4为本发明实施例提供的一种获取第一列车在反应时间内所运行的第二距离的流程示意图。为了保证行车安全,在确定第二距离之前,车载ATP还可以对第一列车的运动状态进行识别,即识别第一列车处于加速行驶状态、匀速行驶状态还是减速行驶状态。具体的过程如图4所示。
S301、根据第一列车的速度信息,判断第一列车是否处于减速状态。
具体地,车载ATP可以将当前接收到的第一列车的速度信息,与上一次接收到的第一列车的速度信息进行比较,获取到第一列车的加速度。根据该加速度判断第一列车是否处于减速状态。如果加速度为负,则第一列车处于减速状态,如果加速度为正,则第一列车处于加速状态,如果加速为0,则第一列车处于匀速状态。
如果判断出第一列车处于减速状态,则执行S302;如果判断出第一列车处于加速或者匀速状态,则执行S305。
S302、判断第一列车的减速度是否大于预设的阈值。
本实施例中,预先设置有一个阈值,该阈值可以根据第一列车的具体参数,以及实测数据来确定。在判断出第一列车处于减速状态,则在S301中获取到的第一列车的加速度即为第一列车的减速度。为了保证行车安全,车载ATP需要对第一列车的减速度与预设的阈值进行比较,以判断第一列车的减速度是否大于预设的阈值。如果第一列车的减速度大于等于预设的阈值,说明第一列车正在急速减速,为了保证第二列车不追尾第一列车,则执行S303。如果第一列车的减速度小于预设的阈值,说明第一列车正在正常减速,则执行S304。
S303、将第一列车的第二距离设置为零。
S304、根据第一列车的速度信息和减速度,获取第一列车的第二距离。
S305、根据第一列车的速度信息,获取第一列车的第二距离。
本实施例中,在获取第一列车在反应时间内所运行的第二距离时,会依据第一列车实际的运行状态,获取第一列车的第二距离。由于第一列车处于加速状态,对第二列车来说是一种安全的运行状态,前第二列车之间一般不会出现意外事故,此时可以根据第一列车的实际运行速度、加速度以及反应时间,来获取第一列车的第二距离。当第一列车处于匀速状态时,则可以根据第一列车的实际运行速度以及反应时间,来获取第一列车的第二距离。本实施例中,在判断出车辆处于加速状态或者匀速状态时,则简化为S 2=V 2*t,其中,S 2为第二距离,V 2为第一列车的运行速度,t为反应时间。当第一列车处于正常减速状态时,可以根据第一列车的实际运行速度、减速度和反应时间,来获取第一列车的第二距离。当减速度a 2比较小时即第一列车处于正常减速时,则S 2=V 2*t+a 2*t 2/2,其中,a2为第一列车的当前减速度。而当第一列车处于急减速状态时,如果在计算过程继续考虑第一列车在该反应时间内所运行的距离,则就会延长移动授权,相应地,第二列车则会继续缩小两车之间的追踪距离,即会造成第二列车继续对第一列车进行追踪,而第一列车已经停止,此时就会出现相撞的情况。为了避免此时情况的出现,本实施例中,在第一列车处于急减速时,将第二距离设置为零,以降低两车相撞的风险。本实施例中,在获取第一列车的第二距离时进一步地参考了第一列车的运动 状态,提高了移动授权的准确性,提高了行车安全。
S207、根据第一距离、第二距离和预设的安全余量,获取第二列车的移动授权。
具体地,车载ATP将第一距离与第二距离相加,将相加后的结果减去预设的安全余量,得到移动授权。本实施例中,由于前第二列车可以直接通信,而且避免了由ZC下发移动授权这一过程,使得通信延迟时间减少,从而在计算第二列车的移动授权时,本实施例中,在预先设置安全余量时,可以将上述内容考虑进入,可以适当的减少安全余量。
S208、根据第一距离和预设的安全余量,生成第二列车的移动授权。
在第一距离大于紧急制动距离时,可以确定出前第二列车之间的距离较远,一般情况下,在第二列车紧急制动时,也不会造成第二列车对第一列车的追尾等事故。车载ATP就可以利用第一距离减去预设的安全余量,得到第二列车的移动授权。
S209、根据障碍物的位置信息与第二列车的位置信息,计算障碍物与第二列车之间的第三距离。
S210、根据第三距离和预设的安全余量,生成第二列车的移动授权。
具体地,车载ATP将第三距离减去预设的安全余量,得到第二列车的移动授权。
为了更好地理解本发明实施例提供的列车的移动授权获取方法,相对于现有的移动授权获取方法的优势,下面进行举例说明:
设定前第二列车之间的第一距离S 1=200m,前第二列车之间无障碍点,车载雷达没有感应到障碍物,前第二列车各个参数均一致,具体如下:
列车最高允许速度即构造速度V m1=3000cm/s;
前第二列车都处于匀速运动状态,当前速度为V 1=V 2=2000cm/s;
第二列车到第一列车整个第一距离S 1的最严格限速也为2000cm/s;
最大紧急制动减速度a e=-100cm/s2;
最大加速度为a m=100cm/s2;
预设的安全余量为d=5m;
安全制动模型的参数t 1=t 2=t 3=1s;
根据现有的列车的移动授权获取方法中,第二列车的移动授权为S 1-d=195m;按照移动授权长度195m计算ATP曲线,可以得到紧急制动触发速度约为1940cm/s,此时第二列车当前速度已经超过紧急制动触发速度,因此第二列车已经施加紧急制动,车速为2000cm/s时,第二列车的追踪距离一定是大于200m。
根据本实施例提供的列车的移动授权获取方法,前第二列车无障碍点先计算第二列车在最高允许速度时考虑最不利情况下的紧急制动距离S e1,具体过程如下:
V 31=V m1+(a e1/2)*t 31=3000+(-100/2)*1=2950cm/s;
S 31=((V m1+V 31))/2*t 31=(3000+2950)/2*1=2975cm;
S e1=V m1*(t 11+t 21)+S 31+(0-V 31 2)/2*a e1=3000*2+2975+(0-2950*2950)/2*(-100)=52487.5cm≈525m;
由上可知前第二列车之间的第一距离S 1小于紧急制动距离<S e1,即200m<525m时,估算第二列车运行到第一列车当第一列车尾位置的时间t=200/2000=0.1s。此时第一列车在0.1s内运行的距离S 2=2000*0.1=200m,第二列车的移动授权为S1+S 2-d=395m。
当按照移动授权为395m计算ATP曲线时,可以紧急制动触发速度为2775cm/s,此时由于第二列车当前速度为2000cm/s,小于紧急制动触发速度,第二列车还可以加速进行缩小追踪距离。根据测试可知当前第二列车之间的第一距离约为105m时,第二列车的紧急制动触发速度才会接近第二列车的当第一列车速2000cm/s,因此当车速为2000cm/s时,本实施例中得到的移动授权比现有技术中获取到的移动授权要长,能够明显缩小前第二列车之间的追踪距离,从而提高了线路的运营效率。
本实施例提供的列车的移动授权的生成方法,通过获取第一列车与第二列车之间的第一距离,根据第二列车的速度信息,获取第二列车运行第一距离所需的反应时间,根据第一列车的速度信息,获取第一列车在反应时间内所运行的第二距离,根据第一距离、第二距离和预设的安全余量,获取第二列车的移动授权。本实施例中在计算第二列车的移动授权时,考虑第一列车的实际运动状态,不再将第一列车设定为静止的障碍物,能够使得移动授权变长,从而可以缩小追踪距离,提高了线路的运营效率,可以在运营高峰期提高发车密度,降低高峰期的运营压力。
进一步地,为了保证行车安全,可以判断前第二列车之间是否存在其他障碍物,在存在障碍物时以障碍物与第二列车之间的第三距离来计算移动授权。而且在获取第一列车的第二距离时,进一步地考虑第一列车的运行状态,可以根据不同的运动状态,获取不同的移动授权,尤其针对急减速的状态,将第二距离设置为零,降低前第二列车相撞的概率。
此处需要说明,上述实施例中提供的列车的移动授权获取方法的执行主体也可以为区域管理器ZC,当由ZC执行上述列车的移动授权获取方法时,前第二列车之间不再需要进行车车通信,而且预设的安全余量需要考虑向第二列车下发计算出来的移动授权这一过程存在的通信延时。
图5为本发明实施例提供的列车的移动授权的生成装置的结构示意图。如图5所示,该列车的移动授权的生成装置1包括:第一获取模块11、第二获取模块12、第三获取模块13和生成模块14。
其中,第一获取模块11,用于获取第一列车与第二列车之间的第一距离;其中,所述第一列车为在所述第二列车前方且距离所述第二列车最近的列车。
第二获取模块12,用于根据所述第二列车的速度信息,获取所述第二列车运行第一距离所需的反应时间。
第三获取模块13,用于根据所述第一列车的速度信息,获取所述第一列车在所述反应时间内所运行的第二距离。
生成模块14,用于根据所述第一距离、所述第二距离和预设的安全余量,生成所述第二列车的移动授权。
进一步地,生成模块14,具体用于将所述第一距离与所述第二距离相加,将相加后的结果减去所述安全余量,得到所述移动授权。
进一步地,第一获取模块11,还用于获取处于所述第二列车前面的所有列车的位置信息,根据所述位置信息确定出所述第二列车对应的所述第一列车。
图6为本发明实施例提供的一种列车的移动授权的生成装置的结构示意图。如图6所示,该装置还包括:第四获取模块15和确定模块16。
其中,第四获取模块15,用于获取所述第二列车的紧急制动距离。
确定模块16,用于判断所述第一距离是否小于所述紧急制动距离。
第二获取模块12,用于在确定模块16判断出所述第一距离小于所述紧急制动距离时,根据所述第二列车的速度信息,获取所述反应时间。
进一步地,生成获取模块14,还用于在确定模块16判断出所述第一距离大于等于所述紧急制动距离时,根据所述第一距离和所述安全余量,生成所述第二列车的移动授权。
图7为本发明实施例提供的第三获取模块的结构示意图。如图7所示,该第三获取模块13包括:第一判断单元131和第一获取单元132。
其中,第一判断单元131,用于根据所述第一列车的速度信息,判断所述第一列车是否处于减速状态,以及如果判断出所述第一列车处于减速状态,则判断所述第一列车的减速度是否大于预设的阈值;
第一获取单元132,用于在判断出所述减速度大于等于所述阈值,则将所述第二距离设置为零。
进一步地,第一获取单元132,还用于在所述减速度小于所述阈值,则根据所述第一列车的速度信息和所述减速度,获取所述第二距离。
图8本发明实施例提供的第一获取模块的结构示意图。如图8所示,该第一获取模块11包括:第二判断单元111和第二获取单元112。
其中,第二判断单元111,用于判断所述第一列车与所述第二列车之间是否存在障碍物。
第二获取单元112,用于在判断出不存在障碍物时,根据所述第一列车的位置信息与所述第二列车的位置信息,计算所述第一列车与所述第二列车之间的第一距离。
进一步地,第二获取单元112,还用于在判断出存在障碍物时,根据所述障碍物的位置信息与所述第二列车的位置信息,计算所述障碍物与所述第二列车之间的第三距离。
生成模块14,还根据所述第三距离和所述安全余量,生成所述第二列车的移动授权。
本实施例提供的列车的移动授权的生成装置,通过获取第一列车与第二列车之间的第一距离,根据第二列车的速度信息,获取第二列车运行第一距离所需的反应时间,根据第一列车的速度信息,获取第一列车在反应时间内所运行的第二距离,根据第一距离、第二距离和预设的安全余量,获取第二列车的移动授权。本实施例中在计算第二列车的移动授权时,考虑第一列车的实际运动状态,不再将第一列车设定为静止的障碍物,能够使得移动授权变长,从而可以缩小追踪距离,提高了线路的运营效率,可以在运营高峰期提高发车密度,降低高峰期的运营压力。
进一步地,为了保证行车安全,可以判断前第二列车之间是否存在其他障碍物,在存在障碍物时以障碍物与第二列车之间的第三距离来计算移动授权。而且在获取第一列车的第二距离时,进一步地考虑第一列车的运行状态,可以根据不同的运动状态,获取不同的移动授权,尤其针对急减速的状态,将第二距离设置为零,降低前第二列车相撞的概率。
图9为本发明实施例提供的一种车载ATP的结构示意图。如图9所示,该车载ATP2包括上述实施例提供的列车的移动授权的生成装置1。
本实施例提供的车载ATP,通过获取第一列车与第二列车之间的第一距离,根据第二列车的速度信息,获取第二列车运行第一距离所需的反应时间,根据第一列车的速度信息,获取第一列车在反应时间内所运行的第二距离,根据第一距离、第二距离和预设的安全余量,获取第二列车的移动授权。本实施例中在计算第二列车的移动授权时,考虑第一列车的实际运动状态,不再将第一列车设定为静止的障碍物,能够使得移动授权变长,从而可以缩小追踪距离,提高了线路的运营效率,可以在运营高峰期提高发车密度,降低高峰期的运营压力。
图10为本发明实施例提供的一种ZC的结构示意图。如图10所示,该ZC 3包括上述实施例提供的列车的移动授权的生成装置1。
本实施例提供的ZC,通过获取第一列车与第二列车之间的第一距离,根据第二列 车的速度信息,获取第二列车运行第一距离所需的反应时间,根据第一列车的速度信息,获取第一列车在反应时间内所运行的第二距离,根据第一距离、第二距离和预设的安全余量,获取第二列车的移动授权。本实施例中在计算第二列车的移动授权时,考虑第一列车的实际运动状态,不再将第一列车设定为静止的障碍物,能够使得移动授权变长,从而可以缩小追踪距离,提高了线路的运营效率,可以在运营高峰期提高发车密度,降低高峰期的运营压力。
需要说明的是,在本发明的描述中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
应当理解,本发明的各部分模块或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不 一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (20)

  1. 一种列车的移动授权的生成方法,其特征在于,包括:
    获取第一列车与第二列车之间的第一距离;其中,所述第一列车为在所述第二列车前方且距离所述第二列车最近的列车;
    根据所述第二列车的速度信息,得到所述第二列车运行第一距离所需的反应时间;
    根据所述第一列车的速度信息,获取所述第一列车在所述反应时间内所运行的第二距离;
    根据所述第一距离、所述第二距离和预设的安全余量,生成所述第二列车的移动授权。
  2. 根据权利要求1所述的列车的移动授权的生成方法,其特征在于,所述根据所述第一距离、所述第二距离和预设的安全余量,生成所述第二列车的移动授权,包括:
    将所述第一距离与所述第二距离相加得到相加的距离结果;
    将所述相加的距离结果减去所述安全余量,得到所述移动授权。
  3. 根据权利要求1或2所述的列车的移动授权的生成方法,其特征在于,所述获取第一列车与第二列车之间的第一距离的步骤之前,还包括:
    获取处于所述第二列车前面的所有列车的位置信息;
    根据所述位置信息确定出所述第二列车对应的所述第一列车。
  4. 根据权利要求1-3任一项所述的列车的移动授权的生成方法,其特征在于,所述列车的移动授权的生成方法中根据所述第二列车的速度信息,获取所述第二列车运行第一距离所需的反应时间的步骤之前,还包括:
    获取所述第二列车的紧急制动距离;
    判断所述第一距离是否小于所述紧急制动距离;
    如果所述第一距离小于所述紧急制动距离,则根据所述第二列车的速度信息,获取所述反应时间。
  5. 根据权利要求4所述的列车的移动授权的生成方法,其特征在于,还包括:
    如果所述第一距离大于等于所述紧急制动距离,则根据所述第一距离和所述安全余量,生成所述第二列车的所述移动授权。
  6. 根据权利要求1-5任一项所述的列车的移动授权的生成方法,其特征在于,所述根据所述第一列车的速度信息,获取所述第一列车在所述反应时间内所运行的第二距离,包括:
    根据所述第一列车的速度信息,判断所述第一列车是否处于减速状态;
    如果所述第一列车处于减速状态,则判断所述第一列车的减速度是否大于预设的阈值;
    如果所述减速度大于等于所述阈值,则将所述第二距离设置为零。
  7. 根据权利要求6所述的列车的移动授权的生成方法,其特征在于,还包括:
    如果所述减速度小于所述阈值,则根据所述第一列车的速度信息和所述减速度,获取所述第二距离。
  8. 根据权利要求1-7任一项所述的列车的移动授权的生成方法,其特征在于,所述获取第一列车与第二列车之间的第一距离,包括:
    判断所述第一列车与所述第二列车之间是否存在障碍物;
    如果不存在障碍物,则根据所述第一列车的位置信息与所述第二列车的位置信息,计算所述第一列车与所述第二列车之间的第一距离。
  9. 根据权利要求8所述的列车的移动授权的生成方法,其特征在于,还包括:
    如果存在障碍物,则根据所述障碍物的位置信息与所述第二列车的位置信息,计算所述障碍物与所述第二列车之间的第三距离;
    根据所述第三距离和所述安全余量,生成所述第二列车的所述移动授权。
  10. 一种列车的移动授权生成装置,其特征在于,包括:
    第一获取模块,用于获取第一列车与第二列车之间的第一距离;其中,所述第一列车为在所述第二列车前方且距离所述第二列车最近的列车;
    第二获取模块,用于根据所述第二列车的速度信息,得到所述第二列车运行第一距离所需的反应时间;
    第三获取模块,用于根据所述第一列车的速度信息,获取所述第一列车在所述反应时间内所运行的第二距离;
    生成模块,用于根据所述第一距离、所述第二距离和预设的安全余量,生成所述第二列车的移动授权。
  11. 根据权利要求10所述的列车的移动授权的生成装置,其特征在于,所述生成模块,具体用于将所述第一距离与所述第二距离相加得到相加的距离结果,将所述相加的距离结果减去所述安全余量,得到所述移动授权。
  12. 根据权利要求10或11所述的列车的移动授权的生成装置,其特征在于,
    所述第一获取模块,还用于获取处于所述第二列车前面的所有列车的位置信息,根据所述位置信息确定出所述第二列车对应的所述第一列车。
  13. 根据权利要求10-12任一项所述的列车的移动授权的生成装置,其特征在于,还包括:
    第四获取模块,用于获取所述第二列车的紧急制动距离;
    确定模块,用于判断所述第一距离是否小于所述紧急制动距离;
    所述第二获取模块用于在所述确定模块判断所述第一距离小于所述紧急制动距离时,根据所述第二列车的速度信息,获取所述反应时间。
  14. 根据权利要求13所述的列车的移动授权的生成装置,其特征在于,所述生成模块,还用于在所述确定模块判断所述第一距离大于等于所述紧急制动距离时,根据所述第一距离和所述安全余量,生成所述第二列车的所述移动授权。
  15. 根据权利要求10-14任一项所述的列车的移动授权的生成装置,其特征在于,所述第三获取模块,包括:
    第一判断单元,用于根据所述第一列车的速度信息,判断所述第一列车是否处于减速状态,以及如果判断出所述第一列车处于减速状态,则判断所述第一列车的减速度是否大于预设的阈值;
    第一获取单元,用于在判断出所述减速度大于等于所述阈值,则将所述第二距离设置为零。
  16. 根据权利要求15所述的列车的移动授权的生成装置,其特征在于,所述第一获取单元,还用于在所述减速度小于所述阈值,则根据所述第一列车的速度信息和所述减速度,获取所述第二距离。
  17. 根据权利要求10-16任一项所述的列车的移动授权的生成装置,其特征在于,所述第一获取模块,包括:
    第二判断单元,用于判断所述第一列车与所述第二列车之间是否存在障碍物;
    第二获取单元,用于在判断出不存在障碍物时,根据所述第一列车的位置信息与所述第二列车的位置信息,计算所述第一列车与所述第二列车之间的第一距离。
  18. 根据权利要求17所述的列车的移动授权的生成装置,其特征在于,
    所述第二获取单元,还用于在判断出存在障碍物时,根据所述障碍物的位置信息与所述第二列车的位置信息,计算所述障碍物与所述第二列车之间的第三距离;
    所述生成模块,还根据所述第三距离和所述安全余量,生成所述第二列车的所述移动授权。
  19. 一种车载列车自动防护系统,其特征在于,包括:权利要求10~18任一项所述的列车的移动授权的生成装置。
  20. 一种区域控制器,其特征在于,包括:权利要求10~19任一项所述的列车的移动授权的生成装置。
PCT/CN2017/118909 2016-12-27 2017-12-27 列车的移动授权的生成方法及装置、车载atp及zc WO2018121583A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/474,248 US11267497B2 (en) 2016-12-27 2017-12-27 Method and apparatus for generating movement authority for train, train-mounted ATP and ZC

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611224871.7 2016-12-27
CN201611224871.7A CN108238069B (zh) 2016-12-27 2016-12-27 列车的移动授权的生成方法及装置、车载atp及zc

Publications (1)

Publication Number Publication Date
WO2018121583A1 true WO2018121583A1 (zh) 2018-07-05

Family

ID=62701646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118909 WO2018121583A1 (zh) 2016-12-27 2017-12-27 列车的移动授权的生成方法及装置、车载atp及zc

Country Status (3)

Country Link
US (1) US11267497B2 (zh)
CN (1) CN108238069B (zh)
WO (1) WO2018121583A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112124366A (zh) * 2020-09-07 2020-12-25 交控科技股份有限公司 行车控制方法、区域控制器、联锁及控制系统
US11267497B2 (en) * 2016-12-27 2022-03-08 Byd Company Limited Method and apparatus for generating movement authority for train, train-mounted ATP and ZC

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109101689B (zh) * 2018-07-06 2023-01-31 同济大学 一种基于车辆行为调整模型的用于最佳跟驰车距计算的曲线拟合建模方法
CN111376952B (zh) * 2018-12-29 2022-06-07 交控科技股份有限公司 一种基于全自动运行无cg的双列位库入库方法
US20210086807A1 (en) * 2019-09-24 2021-03-25 International Business Machines Corporation Modular train system
CN110733532B (zh) * 2019-09-25 2021-09-10 交控科技股份有限公司 一种基于移动闭塞的列车控制方法和装置
CN111845862B (zh) * 2020-07-14 2021-08-31 北京交通大学 一种基于相对速度的列车安全追踪防护方法和装置
CN111994133B (zh) * 2020-09-04 2022-03-22 中国国家铁路集团有限公司 一种高速铁路列车到达追踪间隔时间压缩方法
US11718254B2 (en) * 2020-11-03 2023-08-08 Rod Partow-Navid Impact prevention and warning system
CN112590864B (zh) * 2020-12-24 2023-10-31 交控科技股份有限公司 装载atp防护的工程车ebi曲线计算方法及装置
CN112829797B (zh) * 2021-01-05 2023-01-06 北京全路通信信号研究设计院集团有限公司 一种线路点的参数获取方法、装置、设备及存储介质
CN114132367B (zh) * 2021-12-03 2024-04-26 交控科技股份有限公司 一种列车控制方法、装置和设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101934807A (zh) * 2010-08-24 2011-01-05 北京交通大学 基于列车控制系统的移动授权计算方法
CN102167066A (zh) * 2011-03-31 2011-08-31 华为技术有限公司 列车控制方法和自动列车防护设备
CN103029723A (zh) * 2012-12-24 2013-04-10 北京交控科技有限公司 一种区域切换时移动授权的混合方法
CN103350709A (zh) * 2013-07-23 2013-10-16 兰州交通大学 缩短列车安全距离的方法
KR101449742B1 (ko) * 2013-07-29 2014-10-15 한국철도기술연구원 열차 간격 제어 장치
CN104260758A (zh) * 2014-09-23 2015-01-07 南车青岛四方机车车辆股份有限公司 一种列车控制方法及装置
CA2936760A1 (en) * 2014-02-18 2015-08-27 Nabil N. Ghaly Method & apparatus for a train control system
CN105329264A (zh) * 2015-11-24 2016-02-17 北京交控科技有限公司 一种列车超速防护方法和列车
CN105501220A (zh) * 2015-11-24 2016-04-20 东软集团股份有限公司 车辆碰撞预警的方法、装置以及车辆

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA293670A (en) 1929-10-08 Taylor Henry Piston
US9828011B2 (en) * 2013-12-18 2017-11-28 Thales Canada Inc Communication system for guideway mounted vehicle and method of using the same
US10299158B2 (en) * 2016-12-02 2019-05-21 Qualcomm Incorporated Vehicle-to-vehicle (V2V) sensor sharing
CN107878508B (zh) * 2016-12-21 2018-12-21 比亚迪股份有限公司 列车超速防护方法和装置
CN108238069B (zh) * 2016-12-27 2019-09-13 比亚迪股份有限公司 列车的移动授权的生成方法及装置、车载atp及zc
CN107884747B (zh) * 2016-12-27 2018-11-09 比亚迪股份有限公司 单轨列车的定位系统和方法
WO2018175441A1 (en) * 2017-03-20 2018-09-27 Mobileye Vision Technologies Ltd. Navigation by augmented path prediction

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101934807A (zh) * 2010-08-24 2011-01-05 北京交通大学 基于列车控制系统的移动授权计算方法
CN102167066A (zh) * 2011-03-31 2011-08-31 华为技术有限公司 列车控制方法和自动列车防护设备
CN103029723A (zh) * 2012-12-24 2013-04-10 北京交控科技有限公司 一种区域切换时移动授权的混合方法
CN103350709A (zh) * 2013-07-23 2013-10-16 兰州交通大学 缩短列车安全距离的方法
KR101449742B1 (ko) * 2013-07-29 2014-10-15 한국철도기술연구원 열차 간격 제어 장치
CA2936760A1 (en) * 2014-02-18 2015-08-27 Nabil N. Ghaly Method & apparatus for a train control system
CN104260758A (zh) * 2014-09-23 2015-01-07 南车青岛四方机车车辆股份有限公司 一种列车控制方法及装置
CN105329264A (zh) * 2015-11-24 2016-02-17 北京交控科技有限公司 一种列车超速防护方法和列车
CN105501220A (zh) * 2015-11-24 2016-04-20 东软集团股份有限公司 车辆碰撞预警的方法、装置以及车辆

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11267497B2 (en) * 2016-12-27 2022-03-08 Byd Company Limited Method and apparatus for generating movement authority for train, train-mounted ATP and ZC
CN112124366A (zh) * 2020-09-07 2020-12-25 交控科技股份有限公司 行车控制方法、区域控制器、联锁及控制系统

Also Published As

Publication number Publication date
US11267497B2 (en) 2022-03-08
US20200122759A1 (en) 2020-04-23
CN108238069B (zh) 2019-09-13
CN108238069A (zh) 2018-07-03

Similar Documents

Publication Publication Date Title
WO2018121583A1 (zh) 列车的移动授权的生成方法及装置、车载atp及zc
CN111845862B (zh) 一种基于相对速度的列车安全追踪防护方法和装置
CN110588723B (zh) 一种列车动态追踪安全防护模型
CN102666240B (zh) 碰撞防止装置
RU2624974C2 (ru) Способ определения ситуации аварийного торможения транспортного средства
KR101811470B1 (ko) 차량 간 교차로 충돌 방지방법
US10308264B2 (en) System for controlling speed of railway vehicles by considering braking characteristic
CN109664882A (zh) 一种避免道路车辆二次碰撞的方法、系统及电子设备
CN111422226B (zh) 一种闭塞分区设置方法、装置及存储介质
KR101866610B1 (ko) 철도 차량에서의 제한속도 초과 경고 장치
US11753013B2 (en) Method for operating a driving assistance system, and driving assistance system
JP2019162893A (ja) 制御装置
WO2019024716A1 (zh) 列车移动授权的确定方法、装置和列车
CN105894858A (zh) 一种车辆紧急刹车预警系统
JP2020082850A (ja) 車両走行制御方法及び車両走行制御システム
JP7348881B2 (ja) 障害物検知システム、障害物検知方法および自己位置推定システム
KR20160133731A (ko) 속도 감응형 열차 충돌 방지 시스템 및 방법
CN111114594B (zh) 轨道列车辅助驾驶控制方法、装置和列车
WO2022083113A1 (zh) 一种车辆制动方法、装置及列车
JP2018034610A (ja) 走行制御システム、及び走行制御装置
JP2019122131A (ja) 運転支援システム
WO2022105865A1 (zh) 车辆编组的方法、装置、系统、车辆及存储介质
Dong et al. Coupling safety distance model for vehicle active collision avoidance system
JP2019140810A (ja) 軌道輸送システム
CN110667649A (zh) 一种列车aeb系统控制决策方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017885673

Country of ref document: EP

Effective date: 20190729

122 Ep: pct application non-entry in european phase

Ref document number: 17885673

Country of ref document: EP

Kind code of ref document: A1