WO2018121161A1 - 一种矩阵并并联毛细管可变系统固有频率的减振器 - Google Patents

一种矩阵并并联毛细管可变系统固有频率的减振器 Download PDF

Info

Publication number
WO2018121161A1
WO2018121161A1 PCT/CN2017/113373 CN2017113373W WO2018121161A1 WO 2018121161 A1 WO2018121161 A1 WO 2018121161A1 CN 2017113373 W CN2017113373 W CN 2017113373W WO 2018121161 A1 WO2018121161 A1 WO 2018121161A1
Authority
WO
WIPO (PCT)
Prior art keywords
capillary
parallel
natural frequency
section
damper
Prior art date
Application number
PCT/CN2017/113373
Other languages
English (en)
French (fr)
Inventor
容强
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to US16/470,267 priority Critical patent/US11035433B2/en
Publication of WO2018121161A1 publication Critical patent/WO2018121161A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/005Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a wound spring and a damper, e.g. a friction damper
    • F16F13/007Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a wound spring and a damper, e.g. a friction damper the damper being a fluid damper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2228/00Functional characteristics, e.g. variability, frequency-dependence
    • F16F2228/04Frequency effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/18Control arrangements

Definitions

  • the present invention relates to the field of hydraulic vehicle dampers, and more particularly to a damper of a matrix (type) and a parallel capillary variable system natural frequency.
  • the vibration reduction methods of automobiles mainly include hydraulic type, pneumatic type and electromagnetic type. Hydraulic is the most widely used method of vibration reduction in automobiles.
  • the natural frequency of the hydraulic damper is an important performance indicator of the automobile damper. At present, one of the disadvantages of the performance of the hydraulic damper is that the natural frequency of the damper system is not adjustable or the adjustable range is small.
  • the quality of the natural frequency of the hydraulic vehicle damper system will directly affect the vibration amplitude, comfort and smoothness of the vehicle.
  • the natural frequency of the system is inversely proportional to the square root of the mass of the spring oscillator ball; that is, the natural frequency of the system changes when the mass of the ball is changed.
  • the smaller the mass of the ball the higher the natural frequency of the system.
  • the higher the mass of the ball the lower the natural frequency of the system.
  • the four capillary tubes are respectively capillary R8, R4, R2, R1; they are equal in length and are respectively controlled by series solenoid valves V R8 , V R4 , V R2 , V R1 .
  • the ratio of the cross-sectional areas of the four capillary tubes is 8:4:2:1; that is, their cross-sectional areas are arranged according to the binary encoding rule of 8421.
  • the damper will determine the configuration S rn of the solenoid valves V R8 , V R4 , V R2 , V R1 according to the damping requirement (the range of values of n: 0, 1, 2, ..., 15).
  • S R0 indicates that the solenoid valves V R8 , V R4 , V R2 , and V R1 are all turned off.
  • S R1 indicates that only V R1 is turned on in V R8 , V R4 , V R2 , and V R1 , and the rest is turned off.
  • S R2 indicates that only V R2 is turned on. The rest is turned off.
  • S R3 means that only V R2 , V R1 are turned on, and the rest are turned off.
  • the object of the present invention is to overcome the above-mentioned shortcomings and deficiencies of the prior art, and to provide a damper with a natural frequency of a matrix and parallel capillary variable system, which aims to improve the natural frequency characteristics of the system of a hydraulic automobile damper.
  • a damper of a natural frequency of a matrix and parallel capillary variable system comprising a frame 11, an axle 17 and a hydraulic cylinder 13; an upper end of the hydraulic cylinder 13 is connected to the frame 11 via a piston rod thereof, and a lower end cylinder of the hydraulic cylinder 13
  • the body is connected to the axle 17; the piston 15 in the hydraulic cylinder 13 divides the hydraulic cylinder 13 into an upper oil tank 14 and a lower oil tank 16;
  • the pipeline between the upper oil storage tank 14 and the oil delivery port of the lower oil storage tank 16 is connected with a capillary parallel damping correlation section and a capillary parallel system natural frequency correlation section from top to bottom; that is, capillary parallel damping correlation
  • the D port of the segment is connected to the A port of the oil tank 14
  • the C port of the capillary parallel damping related section is connected to the G port of the natural frequency associated section of the capillary parallel system
  • the H oil of the natural frequency associated section of the capillary parallel system Connect the B port of the oil tank 16 to the port.
  • the capillary parallel damping correlation section comprises four capillary tubes connected in parallel, wherein each capillary has a solenoid valve connected in series; the function of the electromagnetic valve is to control the on and off of the capillary;
  • the natural frequency correlation section of the capillary parallel system includes four capillary tubes connected in parallel; the four capillary tubes are each connected in series with a solenoid valve; the function of the electromagnetic valve is to control the on and off of the capillary tube.
  • the capillary parallel end of the natural frequency correlation section of the capillary parallel system is a G port, and the parallel end of the solenoid valve is an H port.
  • the four capillary lengths of the natural frequency correlation section of the capillary parallel system are equal.
  • the ratio of the cross-sectional areas of the four capillaries of the natural frequency correlation section of the capillary parallel system is 8:4:2:1; that is, their cross-sectional area is arranged according to the binary coding rules of 8421.
  • the diameter d m1 of the smallest capillary m1 is more than twice the diameter d R8 of the largest capillary R8 of the parallel damping associated section.
  • the capillaries in the capillary parallel damping correlation section and the capillary parallel system natural frequency correlation section are all formed into an "M” shape, an "S” shape or a spiral shape.
  • the solenoid parallel valve damping associated section and the solenoid valve in the natural frequency correlation section of the capillary parallel system are also connected to the capillary control system; the capillary control system is used to control the on and off of each solenoid valve.
  • a spring 12 is disposed between the frame 11 and the axle 17.
  • the method for operating a damper of the natural frequency of the matrix and parallel capillary variable system of the present invention comprises the following steps:
  • the capillary working in the capillary parallel damping section will dampen the flow of the oily liquid, thereby forming a resistance to the piston movement.
  • the magnitude of the resistance is controlled by the capillary control system through the configuration of the solenoid valve S Rn , thereby realizing the adjustment of the capillary parallel damping correlation section;
  • the system may be adjusted to the natural frequency of the damper, so as to realize the natural frequency associated with a capillary section parallel system FM.
  • the piston When the relative movement between the frame and the axle occurs, the piston will correspondingly move up or down. At this time, the oily liquid in the hydraulic cylinder 13 will pass through the capillary parallel damping relationship between the A port and the B port. Segment (hereinafter referred to as the regulation section) and the natural frequency correlation section of the capillary parallel system (hereinafter referred to as The frequency band is transferred from the upper oil tank 14 to the oil tank 16 or from the lower oil tank 16 to the oil tank 14.
  • the capillary of the regulating section will dampen the flow of the oily liquid, thereby forming a resistance to the movement of the piston; the magnitude of the resistance is controlled by the capillary
  • the system is controlled by the configuration of the solenoid valve S Rn to realize the adjustment of the regulation section.
  • the damper After the damper determines the configuration S Rn of the modulating section according to the damping requirement, the damper will determine the configuration of the solenoid valves V m8 , V m4 , V m2 , V m1 of the tuning band according to the requirements of the natural frequency. S mn .
  • n has a value range of 0, 1, 2, ..., 15; wherein S m0 indicates that the solenoid valves V m8 , V m4 , V m2 , and V m1 are all closed; S m1 represents V m8 , V m4 , In V m2 and V m1 , only V m1 is turned on, and the rest is turned off; S m2 means that only V m2 is turned on, and the rest is turned off; S m3 means that only V m2 and V m1 are turned on, and the rest are turned off. So Sm4 to S m15 .
  • the mass M mn of the fluid participating in the oscillation in the tuning band is also determined; thus the mass of the fluid damped in the damper for damping is M Rn +M mn (this M Rn is the mass of the fluid involved in the oscillation in the regulation section).
  • the combined mass of the masses M Rn and M mn is similar to the mass of the spring vibrator; we change the natural frequency of the damper system by changing the M mn to change the combined mass of M Rn and M mn .
  • the damping of the damper is mainly the damping of the damper section. Therefore, the capillary parallel damping section is also referred to as the damper section. Because the frequency modulation has little effect on the damping, and it can change the natural frequency of the system of the damper, the natural frequency correlation section of the capillary parallel system is simply referred to as the modulation frequency band. Because the adjustment section is adjusted by the parallel capillary, the frequency band is also adjusted by the parallel capillary. Therefore, the system is a parallel and capillary damper (the first "and” means that the operation mode of the regulation section is parallel, the first The two "and” means that the working mode of the frequency band is also parallel mode).
  • the adjustment section and the modulation frequency band of the damper work in series, and the state of the adjustment section is determined by the configuration S Rn , and the state of the modulation frequency band is determined by the configuration S mn ; therefore, the working state of the damper can be expressed by the following table.
  • the value of the above table can be regarded as a 16 ⁇ 16 matrix whose elements are (S Rn , S mn ). Therefore, the present invention clearly and clearly shows the theoretical operating state of the damper in a matrix manner, so the system of the present invention is referred to as a vehicle damper of a matrix and parallel capillary variable system natural frequency.
  • the range of the natural frequency of the damper system is also large; thus solving the problem that the natural frequency of the hydraulic damper system is not adjustable or the adjustable range is small.
  • the present invention has the following advantages and effects:
  • the invention solves the problem that the natural frequency of the hydraulic shock absorber system is not adjustable or the adjustable range is small by changing the configuration of the frequency modulation solenoid valve S mn .
  • the invention has the advantages of ingenious design, low cost and convenient technical means.
  • the invention constructs an actuator for digitally adjusting the natural frequency of the damper system with a simple mechanical structure, and simply and clearly expresses the theoretical working state of the damper in a matrix manner; greatly improves the hydraulic damper
  • the quality of the natural frequency of the system has positive and outstanding beneficial effects on the development of modern automobile vibration damping technology.
  • Figure 1 is a schematic view of a conventional spring oscillator.
  • FIG. 2 is a schematic structural view of a conventional automobile damper with parallel capillary variable damping.
  • FIG. 3 is a schematic view showing the structure of a damper of a natural frequency of a matrix and parallel capillary variable system according to the present invention.
  • the modulating section includes four capillaries R8, R4, R2, and R1; respectively; they are of equal length and are respectively controlled by series solenoid valves V R8 , V R4 , V R2 , and V R1 .
  • the ratio of the cross-sectional areas of the four capillaries is 8:4:2:1; their lengths are all L R .
  • the tuning frequency band includes four capillary tubes respectively m8, m4, m2, m1; they are equal in length and respectively connected to the solenoid valves V m8 , V m4 , V m2 , V m1 to control their operation; the ratio of the cross-sectional areas of the four capillary tubes is 8 : 4:2:1; their length is L m .
  • the length L m of the four capillaries is equal to the length L R of the damper segment capillary.
  • the diameter d m1 of the smallest capillary m1 of the four capillaries is equal to 4 times the diameter d R8 of the maximum capillary R8 of the regulating section.
  • the damper After the damper determines the configuration S Rn of the modulating section according to the damping requirement, the damper will determine the configuration of the solenoid valves V m8 , V m4 , V m2 , V m1 of the tuning band according to the requirements of the natural frequency. S mn ; When the configuration of the modulation band S mn is determined, the mass M mn of the fluid participating in the oscillation in the modulation band is also determined; thus the mass of the fluid participating in the oscillation damping in the damper is M Rn +M mn (where M Rn is the mass transfer resistance of the fluid segments involved in the oscillation).
  • the combined mass of the masses M Rn and M mn is similar to the mass of the spring vibrator; we change the natural frequency of the damper system by changing the M mn to change the combined mass of M Rn and M mn .
  • the head loss of the tuning band is much smaller than the head loss of the tuning section.
  • the present invention can be preferably implemented.

Abstract

一种矩阵并并联毛细管可变系统固有频率的减振器,在上油仓(14)和下油仓(16)输油口之间的管路上,自上而下依次连接有毛细管并联式阻尼关联段、毛细管并联式系统固有频率关联段;毛细管并联式阻尼关联段包括四根并联的毛细管,其每根毛细管均串联有电磁阀控制其工作;毛细管并联式系统固有频率关联段包括四根并联的毛细管,这四根毛细管均串联有电磁阀控制其工作;调频段最小毛细管的直径远大于调阻段毛细管的直径;在矩阵式的工作状态表中,依据情况选取调频段电磁阀的组态值S mn,通过改变质量的方式,即可解决汽车液压减振器系统固有频率不可调或者是可调范围很小的问题。还提供了一种矩阵并并联毛细管可变系统固有频率的减振器运行方法。

Description

一种矩阵并并联毛细管可变系统固有频率的减振器 技术领域
本发明涉及液压式汽车减振器领域,尤其涉及一种矩阵(式)并并联毛细管可变系统固有频率的减振器。
背景技术
汽车的减振方式主要有液压式、气压式、电磁式。液压式是目前用得最广泛的汽车减振方式。液压式减振器的系统固有频率是汽车减振器的重要性能指标,目前液压式减振器性能的一个缺点是减振器的系统固有频率不可调或者是可调范围很小。
液压式汽车减振器系统固有频率的品质将直接影响到行车的振动幅度、舒适性和平顺性。
众所周知,对于理想的弹簧振子,如图1所示,其系统的固有频率与弹簧振子小球质量的平方根成反比;也就是说,当改变小球的质量时,系统的固有频率会发生改变。小球的质量越小则系统的固有频率越高,小球的质量越大则系统的固有频率越低。
如图2所示,四路毛细管分别是毛细管R8、R4、R2、R1;它们长度相等且分别串联电磁阀VR8、VR4、VR2、VR1控制其工作。这4路毛细管的截面积之比是8:4:2:1;即它们的截面积是按照8421的二进制编码规则来排列的。
如图2中,减振器根据阻尼要求将确定电磁阀VR8、VR4、VR2、VR1的组态SRn(n的取值范围:0、1、2、….、15。其中SR0表示电磁阀VR8、VR4、VR2、VR1全部关闭。SR1表示VR8、VR4、VR2、VR1中仅VR1开通,其余关闭。SR2表示仅VR2开通,其余关闭。SR3表示仅VR2、VR1开通,其余关闭。以此类推SR4至SR15的意义)。当组态SRn确定,则减振器中参与振荡进行减振的 流体的质量MRn也确定了。与弹簧振子比较,质量MRn类似于弹簧振子的小球质量;所以,此时减振器系统的固有频率则是确定的,因此固有频率在确定的组态SRn下是不可调的。
发明内容
本发明的目的在于克服上述现有技术的缺点和不足,提供一种矩阵并并联毛细管可变系统固有频率的减振器,达到改善液压式汽车减振器的系统固有频率特性的目的。
本发明通过下述技术方案实现:
一种矩阵并并联毛细管可变系统固有频率的减振器,包括车架11、车轴17和液压缸13;所述液压缸13的上端通过其活塞杆连接车架11,液压缸13的下端缸体连接车轴17;液压缸13内的活塞15将液压缸13分为上油仓14和下油仓16;
所述上油仓14和下油仓16输油口之间的管路上,自上而下依次连接有毛细管并联式阻尼关联段、毛细管并联式系统固有频率关联段;即,毛细管并联式阻尼关联段的D油口连接上油仓14的A油口,毛细管并联式阻尼关联段的C油口连接毛细管并联式系统固有频率关联段的G油口,毛细管并联式系统固有频率关联段的H油口连接下油仓16的B油口。
所述毛细管并联式阻尼关联段包括四根依次并联的毛细管,其中,每根毛细管均串联有电磁阀;该电磁阀的作用是控制毛细管的通断;
所述毛细管并联式系统固有频率关联段包括并联的四根毛细管;这四根毛细管均串联有电磁阀;该电磁阀的作用是控制毛细管的通断。
所述毛细管并联式系统固有频率关联段的毛细管并联端为G油口,电磁阀的并联端为H油口。
所述毛细管并联式系统固有频率关联段的四根毛细管长度相等。
所述毛细管并联式系统固有频率关联段的四根毛细管的截面积之比是 8:4:2:1;即它们的截面积是按照8421的二进制编码规则来排列的。
所述毛细管并联式系统固有频率关联段的四根毛细管中,最小毛细管m1的直径dm1比并联式阻尼关联段的最大毛细管R8的直径dR8大一倍以上。
所述毛细管并联式阻尼关联段和毛细管并联式系统固有频率关联段中的毛细管,均盘成“M”字形状、“S”形状或者螺旋形状。
所述毛细管并联式阻尼关联段和毛细管并联式系统固有频率关联段中的电磁阀还与毛细管控制系统连接;毛细管控制系统用于控制各电磁阀的通断。
车架11与车轴17之间设有弹簧12。
本发明矩阵并并联毛细管可变系统固有频率的减振器运行方法,包括如下步骤:
当车架和车轴之间产生相对运动时,活塞会相应的产生或上或下的移动,此时液压缸13内的油性液体会经过A油口、B油口之间的毛细管并联式阻尼关联段和毛细管并联式系统固有频率关联段,进而从上油仓14流向下油仓16,或者从下油仓16流向上油仓14;
由于缸体内的油性液体的粘性作用,当油性液体流经毛细管并联式阻尼关联段时,毛细管并联式阻尼关联段中工作的毛细管会对油性液体的流动产生阻尼,从而形成对活塞移动的阻力;该阻力的大小由毛细管控制系统通过电磁阀的组态SRn控制,进而实现毛细管并联式阻尼关联段的调阻;
当油性液体流经毛细管并联式系统固有频率关联段时,通过毛细管控制系统改变电磁阀的组态Smn,则可调节减振器的系统固有频率,进而实现毛细管并联式系统固有频率关联段的调频。
下面对本发明的减振器运行方法作进一步说明:
当车架和车轴之间产生相对运动时,活塞会相应的产生或上或下的移动,此时液压缸13内的油性液体会经过A油口、B油口之间的毛细管并联式阻尼关联段(以下简称调阻段)和毛细管并联式系统固有频率关联段(以下简称 调频段),进而从上油仓14流向下油仓16,或者从下油仓16流向上油仓14。
由于缸体内的油性液体的粘性作用,当油性液体流经调阻段时,调阻段的毛细管会对油性液体的流动产生阻尼,从而形成对活塞移动的阻力;该阻力的大小由毛细管控制系统通过电磁阀的组态SRn控制,进而实现调阻段的调阻。
在减振器根据阻尼要求将调阻段的组态SRn确定下来后,减振器再根据固有频率的要求将确定调频段的电磁阀Vm8、Vm4、Vm2、Vm1的组态Smn。Smn中,n的取值范围为0、1、2、….、15;其中Sm0表示电磁阀Vm8、Vm4、Vm2、Vm1全部关闭;Sm1表示Vm8、Vm4、Vm2、Vm1中仅Vm1开通,其余关闭;Sm2表示仅Vm2开通,其余关闭;Sm3表示仅Vm2、Vm1开通,其余关闭。以此类推Sm4至Sm15
当调频段的组态Smn确定,则调频段中参与振荡的流体的质量Mmn也就确定了;从而减振器中参与振荡进行减振的流体的质量则为MRn+Mmn(此处MRn为调阻段中参与振荡的流体的质量)。与弹簧振子比较,质量MRn、Mmn的合成质量则类似于弹簧振子的小球质量;我们通过改变Mmn来改变MRn、Mmn的合成质量从而改变减振器系统的固有频率。
因为调频段的毛细管的直径都远大于调阻段的毛细管的直径,所以,调频段的压头损失就远小于调阻段的压头损失。这样,减振器的阻尼主要就是调阻段的阻尼,因此,将毛细管并联式阻尼关联段也简称为调阻段。又因为调频段对阻尼的影响很小,而它又能改变减振器的系统固有频率,所以,将毛细管并联式系统固有频率关联段简称为调频段。又因为调阻段用并联式毛细管调节、调频段也用并联式毛细管调节,所以,本系统就是并并联毛细管减振器(第一个“并”表示调阻段的工作方式是并联方式,第二个“并”表示调频段的工作方式也是并联方式)。
因为调频段的阻尼很小、调频段毛细管的直径比较大,所以我们可以很容易通过加长调频段毛细管的长度将Mmn做得远大于MRn,从而可以将减振器系统固有频率的调节范围做得很大。
减振器的调阻段、调频段串联工作,调阻段的状态由组态SRn确定,调频段的状态由组态Smn确定;所以,减振器的工作状态可以用下表表示。
减振器的理论工作状态表:
Figure PCTCN2017113373-appb-000001
可以将上面表格中的取值内容看成是16×16的矩阵,该矩阵的元素就是(SRn,Smn)。因此,本发明将减振器的理论工作状态用矩阵的方式简单清晰地表示了出来,所以本发明的系统称作一种矩阵并并联毛细管可变系统固有频率的汽车减振器。
调阻段和调频段中的各电磁阀的组态SRn、Smn均由减振器的毛细管控制系统控制。
在上面的矩阵中,实际运行时应该尽量减少SR0、Sm0的状态出现;因为这些状态对减振器的使用寿命影响比较大。
因为调频段的Mmn的调节范围很大,所以减振器系统固有频率改变的范围也很大;从而解决了液压减振器系统固有频率不可调或者是可调范围很小的问题。
本发明相对于现有技术,具有如下的优点及效果:
本发明通过改变调频段电磁阀的组态Smn解决了液压减振器系统固有频率不可调或者是可调范围很小的问题。
本发明构思巧妙、造价低廉、技术手段简便易行。本发明用简单的机械结构构造出了数字化调节减振器系统固有频率的执行机构,并将减振器的理论工作状态用矩阵的方式简单清晰地表示了出来;极大地提升了液压减振器的系统固有频率的品质,对现代汽车减振技术的发展,具有积极、突出的有益效果。
附图说明
图1为现有弹簧振子示意图。
图2为现有并联毛细管可变阻尼的汽车减振器的结构示意图。
图3为本发明矩阵并并联毛细管可变系统固有频率的减振器结构示意图。
具体实施方式
下面结合具体实施例对本发明作进一步具体详细描述。
实施例
图1、图2相关内容见背景技术部分。
如图3所示。调阻段包括四根毛细管分别是R8、R4、R2、R1;它们长度相等且分别串联电磁阀VR8、VR4、VR2、VR1控制其工作。这四根毛细管的截面积之比是8:4:2:1;它们的长度均为LR
调频段包括四根毛细管分别是m8、m4、m2、m1;它们长度相等且分别串联电磁阀Vm8、Vm4、Vm2、Vm1控制其工作;这四根毛细管的截面积之比是8:4:2:1;它们的长度均为Lm。在本实施例中,这四根毛细管的长度Lm等于调阻段毛细管的长度LR。这四根毛细管中最小毛细管m1的直径dm1等于4倍的调阻段最大毛细管R8的直径dR8
在减振器根据阻尼要求将调阻段的组态SRn确定下来后,减振器再根据固有频率的要求将确定调频段的电磁阀Vm8、Vm4、Vm2、Vm1的组态Smn;当调频段的组态Smn确定,则调频段中参与振荡的流体的质量Mmn也就确定了;从而减振器中参与振荡进行减振的流体的质量则为MRn+Mmn(此处MRn为调 阻段中参与振荡的流体的质量)。与弹簧振子比较,质量MRn、Mmn的合成质量则类似于弹簧振子的小球质量;我们通过改变Mmn来改变MRn、Mmn的合成质量从而改变减振器系统的固有频率。
在本实施例中,因为直径dm1=4dR8,Lm=LR;所以,调频段的压头损失就远小于调阻段的压头损失。又因为直径dm1=4dR8,Lm=LR;所以调频段的Mmn远大于调阻段的MRn,从而使得减振器系统固有频率的调节范围很大。
如上所述,便可较好地实现本发明。
本发明的实施方式并不受上述实施例的限制,其他任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种矩阵并并联毛细管可变系统固有频率的减振器,包括车架(11)、车轴(17)和液压缸(13);所述液压缸(13)的上端通过其活塞杆连接车架(11),液压缸(13)的下端缸体连接车轴(17);液压缸(13)内的活塞(15)将液压缸(13)分为上油仓(14)和下油仓(16);其特征在于:
    所述上油仓(14)和下油仓(16)输油口之间的管路上,自上而下依次连接有毛细管并联式阻尼关联段、毛细管并联式系统固有频率关联段;即,毛细管并联式阻尼关联段的D油口连接上油仓(14)的A油口,毛细管并联式阻尼关联段的C油口连接毛细管并联式系统固有频率关联段的G油口,毛细管并联式系统固有频率关联段的H油口连接下油仓(16)的B油口。
  2. 根据权利要求1所述矩阵并并联毛细管可变系统固有频率的减振器,其特征在于:所述毛细管并联式阻尼关联段包括四根依次并联的毛细管,其中,每根毛细管均串联有电磁阀;
    所述毛细管并联式系统固有频率关联段包括并联的四根毛细管;这四根毛细管均串联有电磁阀。
  3. 根据权利要求2所述矩阵并并联毛细管可变系统固有频率的减振器,其特征在于:所述毛细管并联式系统固有频率关联段的毛细管并联端为G油口,电磁阀的并联端为H油口。
  4. 根据权利要求2所述矩阵并并联毛细管可变系统固有频率的减振器,其特征在于:所述毛细管并联式系统固有频率关联段的四根毛细管长度相等。
  5. 根据权利要求2所述矩阵并并联毛细管可变系统固有频率的减振器,其特征在于:所述毛细管并联式系统固有频率关联段的四根毛细管的截面积 之比是8:4:2:1;即它们的截面积是按照8421的二进制编码规则来排列的。
  6. 根据权利要求5所述矩阵并并联毛细管可变系统固有频率的减振器,其特征在于:所述毛细管并联式系统固有频率关联段的四根毛细管中,最小毛细管m1的直径dm1比并联式阻尼关联段的最大毛细管R8的直径dR8大一倍以上。
  7. 根据权利要求1至6中任一项所述矩阵并并联毛细管可变系统固有频率的减振器,其特征在于:所述毛细管并联式阻尼关联段和毛细管并联式系统固有频率关联段中的毛细管,均盘成“M”字形状、“S”形状或者螺旋形状。
  8. 根据权利要求7所述矩阵并并联毛细管可变系统固有频率的减振器,其特征在于:所述毛细管并联式阻尼关联段和毛细管并联式系统固有频率关联段中的电磁阀还与毛细管控制系统连接;毛细管控制系统用于控制各电磁阀的通断。
  9. 根据权利要求7所述矩阵并并联毛细管可变系统固有频率的减振器,其特征在于:车架(11)与车轴(17)之间设有弹簧(12)。
  10. 权利要求1至9中任一项所述矩阵并并联毛细管可变系统固有频率的减振器运行方法,其特征在于包括如下步骤:
    当车架和车轴之间产生相对运动时,活塞会相应的产生或上或下的移动,此时液压缸(13)内的油性液体会经过A油口、B油口之间的毛细管并联式阻尼关联段和毛细管并联式系统固有频率关联段,进而从上油仓(14)流向下油仓(16),或者从下油仓(16)流向上油仓(14);
    由于缸体内的油性液体的粘性作用,当油性液体流经毛细管并联式阻尼关联段时,毛细管并联式阻尼关联段中工作的毛细管会对油性液体的流动产生阻尼,从而形成对活塞移动的阻力;该阻力的大小由毛细管控制系统通过电磁阀的组态SRn控制,进而实现毛细管并联式阻尼关联段的调阻;
    当油性液体流经毛细管并联式系统固有频率关联段时,通过毛细管控制系统改变电磁阀的组态Smn,则可调节减振器的系统固有频率,进而实现毛细管并联式系统固有频率关联段的调频。
PCT/CN2017/113373 2016-12-27 2017-11-28 一种矩阵并并联毛细管可变系统固有频率的减振器 WO2018121161A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/470,267 US11035433B2 (en) 2016-12-27 2017-11-28 Matrix type double parallel capillary tube shock absorber with a variable system natural frequency

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611223458.9A CN106763451B (zh) 2016-12-27 2016-12-27 一种矩阵并并联毛细管可变系统固有频率的减振器
CN201611223458.9 2016-12-27

Publications (1)

Publication Number Publication Date
WO2018121161A1 true WO2018121161A1 (zh) 2018-07-05

Family

ID=58926548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113373 WO2018121161A1 (zh) 2016-12-27 2017-11-28 一种矩阵并并联毛细管可变系统固有频率的减振器

Country Status (3)

Country Link
US (1) US11035433B2 (zh)
CN (1) CN106763451B (zh)
WO (1) WO2018121161A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106763451B (zh) * 2016-12-27 2019-05-14 华南理工大学 一种矩阵并并联毛细管可变系统固有频率的减振器
CN106763437B (zh) * 2016-12-27 2019-05-14 华南理工大学 一种并并联毛细管可变系统固有频率汽车减振器运行方法
CN109139780A (zh) * 2018-08-29 2019-01-04 华南理工大学 一种并并联r式汽车减振器的压力损失计算方法
CN110360263B (zh) * 2019-06-20 2021-08-27 中车青岛四方机车车辆股份有限公司 半主动抗蛇行减振器及减振系统、车辆
EP4067127A1 (en) * 2021-03-31 2022-10-05 BeijingWest Industries Co. Ltd. Suspension hydraulic lift actuator for axle trim height control

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11230233A (ja) * 1998-02-12 1999-08-27 Kayaba Ind Co Ltd 車高調整式ショックアブソーバ
CN102518733A (zh) * 2011-12-27 2012-06-27 华南理工大学 一种并联毛细管可变阻尼的汽车减振器
CN103711827A (zh) * 2014-01-06 2014-04-09 江苏大学 一种惯容器与阻尼器并联的油气弹簧装置
CN106763451A (zh) * 2016-12-27 2017-05-31 华南理工大学 一种矩阵并并联毛细管可变系统固有频率的减振器
CN106763437A (zh) * 2016-12-27 2017-05-31 华南理工大学 一种并并联毛细管可变系统固有频率汽车减振器运行方法
CN206419416U (zh) * 2016-12-27 2017-08-18 华南理工大学 一种矩阵并并联毛细管可变系统固有频率的减振器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3524862A1 (de) * 1985-04-12 1986-10-30 Robert Bosch Gmbh, 7000 Stuttgart Vorrichtung zur daempfung von bewegungsablaeufen
US4811919A (en) * 1987-08-06 1989-03-14 Lord Corporation Volume compensated fluid mount
US5682980A (en) * 1996-02-06 1997-11-04 Monroe Auto Equipment Company Active suspension system
TW445224B (en) * 1997-03-25 2001-07-11 Toyoda Automatic Loom Works Axle controller for industrial vehicles
AUPQ294899A0 (en) * 1999-09-20 1999-10-14 Kinetic Limited Pressure compensation in hydraulic vehicles suspension systems
DE10062999C5 (de) * 2000-12-16 2009-05-28 Thyssenkrupp Bilstein Suspension Gmbh Regelbarer Schwingungsdämpfer mit einer Dämpfungskraftsteuerung
CN1132746C (zh) * 2002-03-15 2003-12-31 浙江大学 车辆悬架阻尼主动可调的液压减振器
US6755113B2 (en) * 2002-07-30 2004-06-29 Ha Wse Company Limited Accumulated semi-active hydraulic damper
US20050173849A1 (en) * 2004-02-10 2005-08-11 Bart Vandewal Electronically controlled frequency dependent damping
CN100364792C (zh) * 2005-06-24 2008-01-30 浙江大学 车辆半主动悬挂用阻尼主动可调的液压减振器
CN103644248B (zh) * 2013-12-13 2016-01-20 江苏大学 可控惯容和阻尼磁流变惯容器装置及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11230233A (ja) * 1998-02-12 1999-08-27 Kayaba Ind Co Ltd 車高調整式ショックアブソーバ
CN102518733A (zh) * 2011-12-27 2012-06-27 华南理工大学 一种并联毛细管可变阻尼的汽车减振器
CN103711827A (zh) * 2014-01-06 2014-04-09 江苏大学 一种惯容器与阻尼器并联的油气弹簧装置
CN106763451A (zh) * 2016-12-27 2017-05-31 华南理工大学 一种矩阵并并联毛细管可变系统固有频率的减振器
CN106763437A (zh) * 2016-12-27 2017-05-31 华南理工大学 一种并并联毛细管可变系统固有频率汽车减振器运行方法
CN206419416U (zh) * 2016-12-27 2017-08-18 华南理工大学 一种矩阵并并联毛细管可变系统固有频率的减振器

Also Published As

Publication number Publication date
US20200088263A1 (en) 2020-03-19
US11035433B2 (en) 2021-06-15
CN106763451A (zh) 2017-05-31
CN106763451B (zh) 2019-05-14

Similar Documents

Publication Publication Date Title
WO2018121161A1 (zh) 一种矩阵并并联毛细管可变系统固有频率的减振器
DE602006000580T2 (de) Stossdämpfer
CN106678250B (zh) 一种并串联毛细管可变系统固有频率汽车减振器运行方法
US20070144845A1 (en) Wheel suspension for vehicle
CN110319142A (zh) 一种自适应阻尼减振器的活塞阀
CN106763437B (zh) 一种并并联毛细管可变系统固有频率汽车减振器运行方法
CN106678252B (zh) 一种串并联毛细管可变系统固有频率汽车减振器运行方法
CN208057799U (zh) 一种阻尼无级可调减振器
JPH07501130A (ja) 振動ダンパ
CN106763450B (zh) 一种矩阵并串联毛细管可变系统固有频率的减振器
CN106678253B (zh) 一种矩阵串串联毛细管可变系统固有频率的减振器
US11960801B2 (en) Method for calculating pressure loss of parallel R-type automobile vibration damper
CN206419416U (zh) 一种矩阵并并联毛细管可变系统固有频率的减振器
CN206419417U (zh) 一种矩阵并串联毛细管可变系统固有频率的减振器
CN106763440B (zh) 一种矩阵串并联毛细管可变系统固有频率的减振器
CN206419413U (zh) 一种矩阵串并联毛细管可变系统固有频率的减振器
CN106594155B (zh) 一种串串联毛细管可变系统固有频率汽车减振器运行方法
CN109139771A (zh) 一种阻尼无级可调减振器
CN103775554A (zh) 双气囊式刚度无级可调油气弹簧
CN105546016B (zh) 一种类半主动控制的被动减振器
CN209100543U (zh) 一种具有轴向紧凑、双向阻尼特征的减振器活塞阀系
CN208900612U (zh) 一种阻尼无级可调减振器
CN107152482B (zh) 一种节能式磁流变减震器
JPH1182602A (ja) 減衰力調整式油圧緩衝器
CN208010840U (zh) 一种单涡轮回收能量的并并联r式汽车减振器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/09/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17888688

Country of ref document: EP

Kind code of ref document: A1