WO2018121005A1 - 寡聚磷腈化合物及其制备方法和用途 - Google Patents

寡聚磷腈化合物及其制备方法和用途 Download PDF

Info

Publication number
WO2018121005A1
WO2018121005A1 PCT/CN2017/106571 CN2017106571W WO2018121005A1 WO 2018121005 A1 WO2018121005 A1 WO 2018121005A1 CN 2017106571 W CN2017106571 W CN 2017106571W WO 2018121005 A1 WO2018121005 A1 WO 2018121005A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
mmol
added
catalyst
formula
Prior art date
Application number
PCT/CN2017/106571
Other languages
English (en)
French (fr)
Inventor
李志波
赵娜
任传利
付小会
刘绍峰
Original Assignee
青岛科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201611218507.XA external-priority patent/CN108239117B/zh
Priority claimed from CN201611219031.1A external-priority patent/CN108239118B/zh
Application filed by 青岛科技大学 filed Critical 青岛科技大学
Priority to JP2019555531A priority Critical patent/JP7092381B2/ja
Publication of WO2018121005A1 publication Critical patent/WO2018121005A1/zh
Priority to US16/446,466 priority patent/US11242362B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6581Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms
    • C07F9/65812Cyclic phosphazenes [P=N-]n, n>=3
    • C07F9/65817Cyclic phosphazenes [P=N-]n, n>=3 n = 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6581Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms
    • C07F9/65812Cyclic phosphazenes [P=N-]n, n>=3
    • C07F9/65815Cyclic phosphazenes [P=N-]n, n>=3 n = 3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/664Polyesters containing oxygen in the form of ether groups derived from hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/87Non-metals or inter-compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0255Phosphorus containing compounds
    • B01J31/0264Phosphorus acid amides
    • B01J31/0265Phosphazenes, oligomers thereof or the corresponding phosphazenium salts

Definitions

  • the present invention relates to the field of organic chemistry, and in particular, to a cyclic oligophosphazene compound, a process for its preparation and use.
  • phosphazene compounds are also a class of highly active anionic polymerization catalysts, which are widely used in the polymerization of monomers such as epoxy compounds, cyclosiloxanes, lactams, cyclic esters, cyclic carbonates, acrylates, acrylamides and the like.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent. To this end, it is an object of the present invention to provide a cyclic oligophosphazene compound, a process for its preparation and use.
  • the cyclic oligophosphazene compound of the invention has novel structure, good stability, is easy to store and transport, and does not contain heavy metal elements, and belongs to a green environmental protection product.
  • the invention proposes a compound.
  • the compound is a solvate of a compound of formula (I) or a compound of formula (I),
  • A is a six-membered or eight-membered ring formed
  • B is at least one optionally substituted C 1-6 alkylamino group, an optionally substituted C 1-6 cycloalkylamino group, an optionally substituted arylamino group, Or halogen, and B is connected to the P atom in A,
  • R is an optionally substituted C 1-6 alkyl group, an optionally substituted C 1-6 cycloalkyl group, an optionally substituted aryl group, an optionally substituted benzyl group, or R forms an C 1 with an adjacent N atom. -6 heterocycloalkyl.
  • the compound has high molecular symmetry, good stability, easy storage and transportation, and does not contain heavy metal elements, and is a green product.
  • B is at least one Or Cl
  • R is methyl, ethyl, isopropyl, n-butyl, cyclohexyl, phenyl, benzyl, or R forms an associated N atom
  • the compound is a solvate of a compound shown by at least one of the following or a compound of at least one of the following:
  • the invention provides a process for the preparation of the compounds of the above-described embodiments of the invention.
  • the method comprises:
  • the method for preparing the compound of the above embodiment of the present invention is easy to obtain, low in cost, and simple in preparation.
  • step (a) the contacting is carried out in a first anhydrous solvent.
  • the first anhydrous solvent comprises at least one selected from the group consisting of benzene, toluene, xylene, dichloromethane, and tetrahydrofuran, preferably dichloromethane.
  • step (a) the contacting is performed at -80 to 0 degrees Celsius for 1 to 6 hours.
  • step (a) the phosphorus pentachloride and the compound of formula X are contacted in a molar ratio of 1: (3 to 10).
  • the base is sodium hydroxide.
  • the base in step (b), is an aqueous sodium hydroxide solution having a concentration of 20 to 70% by weight, preferably 50% by weight aqueous sodium hydroxide solution.
  • step (c) the contacting is carried out in a second anhydrous solvent in the presence of an acid binding agent.
  • the second anhydrous solvent comprises at least one selected from the group consisting of benzene, toluene, xylene, chlorobenzene, and tetrahydrofuran, preferably toluene.
  • step (c) in step (c), the molar ratio of the hexachlorocyclotriphosphazene or the octachlorocyclotetraphosphazene, the compound of the formula 2, the acid binding agent It is 1: (1 to 8): (1 to 8).
  • the acid binding agent comprises at least one selected from the group consisting of triethylamine, sodium carbonate, sodium hydrogencarbonate, sodium hydroxide, and potassium hydroxide, preferably three. amine.
  • step (c) the contacting is performed at 40 to 150 degrees Celsius for 3 to 18 hours.
  • the invention provides a process for the preparation of the compounds of the above-described embodiments of the invention. According to in an embodiment of the invention, the method comprises:
  • the phosphorus pentachloride is placed in anhydrous dichloromethane, and the compound of the formula X is added to anhydrous dichloromethane at -80 to 0 ° C for 1 to 6 hours to obtain an intermediate. body;
  • the ammonia gas is continuously introduced into the intermediate for 1 to 6 hours and subjected to filtration treatment to obtain a first filtrate, and the first filtrate is distilled to remove the solvent to obtain the formula 1 Compound
  • the compound of the formula 1 is mixed with a 50 wt% aqueous sodium hydroxide solution and reacted for 1 to 5 hours, and then subjected to a filtration treatment to obtain a second filtrate, and the second filtrate is distilled to remove the solvent to obtain the formula 2
  • a filtration treatment to obtain a second filtrate
  • the second filtrate is distilled to remove the solvent to obtain the formula 2
  • the hexachlorocyclotriphosphazene or octachlorocyclotetraphosphonitrile is mixed with the compound of the formula X or the compound of the formula 2 and triethylamine under a nitrogen atmosphere, and refluxed in anhydrous toluene. After 18 hours, a filtration treatment is carried out to obtain a third filtrate, and the third filtrate is distilled to remove the solvent to obtain the compound according to any one of claims 1 to 3.
  • the method for preparing the compound of the above embodiment of the present invention is easy to obtain, low in cost, and simple in preparation.
  • the invention provides the use of a compound of the above-described embodiments of the invention as a catalyst in a polymerization reaction.
  • the compound of the above embodiment of the present invention can be used as a catalyst for preparing an ester copolymer, an ether copolymer, and a polyester, a polyether, and a polycarbonate copolymer, and the prepared polymer product has an easy structure. It is regulated and rich in variety. At the same time, the product does not contain heavy metal elements, low catalyst residue, good biocompatibility, wide application range and high added value.
  • the invention provides a method of preparing a polymer. This method employs the compound of the above embodiment of the present invention as a catalyst.
  • the method comprises contacting the catalyst with at least one monomer to obtain the polymer.
  • the structure of the polymer product prepared by the method is easy to control, rich in variety, and the product does not contain heavy metal elements, has low catalyst residue, good biocompatibility, wide application range and high added value.
  • the monomer comprises ethylene oxide, propylene oxide, epichlorohydrin, 1,2-butylene oxide, glycolide, lactide, ⁇ -butyrolactone. , ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -lactam, methyl substituted ⁇ -lactam, butyrolactam, caprolactam, trimethylene ring carbonate, 2,2-dimethyltrimethylene ring Carbonate, 1,3-dioxan-2-one, trioxane, five-membered cyclic phosphate, six-membered cyclic phosphate, octamethylcyclotetrasiloxane, hexamethylcyclohexane Silicone, acrylamide, methyl substituted acrylamide, methyl acrylate, methyl methacrylate or N-carboxy- ⁇ -amino anhydride.
  • the contacting is carried out in an anhydrous solvent in the presence of an initiator.
  • the initiator comprises a solvent selected from the group consisting of methanol, ethanol, isopropanol, n-butanol, tert-butanol, ethylene glycol, glycerol, cholesterol, phenol, benzyl alcohol, n-butyric acid , n-valeric acid, n-hexanoic acid, n-heptanoic acid, n-octanoic acid, n-decanoic acid, dodecanoic acid, tetradecanoic acid, palmitic acid, triethylamine, tri-n-butylamine, trihexylamine, benzamide, polyethyl b At least one of a diol, a polyoxypropylene diol, and a polytetrahydrofuran diol. Thereby, the efficiency of preparing the polymer can be remarkably improved.
  • the anhydrous solvent comprises at least one selected from the group consisting of benzene, toluene, n-hexane, tetrahydrofuran, and dichloromethane, preferably toluene.
  • the molar ratio of the catalyst, the initiator, and the monomer is 1: (0 to 200): (50 to 100,000), preferably 1: (1 to 10): ( 100 ⁇ 2000).
  • the yield of the prepared compound can be further improved.
  • the contacting is carried out at -40 to 150 degrees Celsius for 0.1 to 72 hours, preferably at 20 to 100 degrees Celsius for 0.5 to 48 hours. Thereby, the yield of the prepared compound can be further improved.
  • 3 is a nuclear magnetic resonance phosphorus spectrum of tris(dimethylamine)phosphazene according to an embodiment of the present invention
  • 5 is a nuclear magnetic resonance carbon spectrum of hexa[tris(dimethylamine)phosphazene]tripolyphosphazene according to an embodiment of the present invention
  • 6 is a nuclear magnetic resonance phosphorus spectrum of hexa[tris(dimethylamine)phosphazene]tripolyphosphazene according to an embodiment of the present invention
  • Figure 7 is a high resolution mass spectrum of tris(dimethylamine)phosphazene according to one embodiment of the present invention.
  • Figure 8 is a high resolution mass spectrum of hexa[tris(dimethylamine)phosphazene]tripolyphosphazene according to one embodiment of the present invention
  • Figure 9 is a gel permeation chromatogram of the polypropylene oxide prepared in Example 20.
  • Figure 10 is a gel permeation chromatogram of the polycaprolactone prepared in Example 26;
  • Figure 11 is a gel permeation chromatogram of the polydimethylsiloxane prepared in Example 28;
  • Figure 12 is a gel permeation chromatogram of the propylene oxide and caprolactone copolymer prepared in Example 30;
  • Figure 13 is a gel permeation chromatogram of the poly-gamma-ester-L-glutamic acid prepared in Example 62;
  • Figure 14 is a gel permeation chromatogram of poly ⁇ -benzyloxycarbonyl-lysine prepared in Example 66;
  • Figure 15 is a gel permeation chromatogram of the poly-gamma-ester-L-glutamic acid prepared in Example 68;
  • Figure 16 is a gel permeation chromatogram of the glutamic acid and sarcosine copolymers prepared in Example 73.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the compounds of the present invention may be optionally substituted with one or more substituents, such as the compounds of the above formula, or specific examples, subclasses, and inclusions of the present invention.
  • substituents such as the compounds of the above formula, or specific examples, subclasses, and inclusions of the present invention.
  • a class of compounds such as the compounds of the above formula, or specific examples, subclasses, and inclusions of the present invention.
  • substituted means that one or more hydrogen atoms in a given structure are replaced by a particular substituent.
  • a substituted group may have a substituent substituted at each substitutable position of the group.
  • the substituents may be substituted at the respective substitutable positions, either identically or differently.
  • C 1-6 alkyl refers particularly to the disclosure independently methyl, ethyl, C 3 alkyl, C 4 alkyl, C 5 alkyl, and C 6 alkyl.
  • linking substituents are described.
  • the Markush variable recited for that group is understood to be a linking group.
  • the definition of the Markush group for the variable is "alkyl” or "aryl”
  • the “alkyl” or “aryl” respectively represent the attached An alkylene group or an arylene group.
  • alkyl or "alkyl group” as used herein, denotes a saturated straight or branched chain monovalent hydrocarbon group, wherein the alkyl group may be optionally one or more of the present invention. Substituted by the described substituents. Unless otherwise specified, an alkyl group contains from 1 to 20 carbon atoms. In one embodiment, the alkyl group contains from 1 to 12 carbon atoms; in another embodiment, the alkyl group contains from 3 to 12 carbon atoms; in another embodiment, the alkyl group contains 1 -6 carbon atoms; in yet another embodiment, the alkyl group contains 1-4 carbon atoms.
  • alkyl groups include, but are not limited to, methyl (Me, -CH 3 ), ethyl (Et, -CH 2 CH 3 ), n-propyl (n-Pr, -CH 2 CH 2 CH 3 ), isopropyl (i-Pr, -CH(CH 3 ) 2 ), n-butyl (n-Bu, -CH 2 CH 2 CH 2 CH 3 ), isobutyl (i-Bu, -CH 2 CH) (CH 3 ) 2 ), sec-butyl (s-Bu, -CH(CH 3 )CH 2 CH 3 ), tert-butyl (t-Bu, -C(CH 3 ) 3 ), n-pentyl (-CH) 2 CH 2 CH 2 CH 2 CH 3 ), 2-pentyl (-CH(CH 3 )CH 2 CH 2 CH 3 ), 3-pentyl (-CH(CH 2 CH 3 ) 2 ), 2-methyl -2-butyl (-C(CHCH
  • halogen means fluorine (F), chlorine (Cl), bromine (Br) or iodine (I).
  • aryl denotes a monocyclic, bicyclic or tricyclic carbocyclic ring system containing from 6 to 14 ring atoms, or from 6 to 12 ring atoms, or from 6 to 10 ring atoms, wherein at least one ring is aromatic And one or more attachment points are attached to the rest of the molecule.
  • the term “aryl” can be used interchangeably with the term “aromatic ring”.
  • the aryl group is a carbocyclic ring system composed of 6-10 ring atoms and having at least one aromatic ring therein. Examples of the aryl group may include a phenyl group, a naphthyl group, and an anthracenyl group. Wherein the aryl group may be independently and optionally substituted by one or more substituents described herein.
  • alkylamino includes “N-alkylamino” and "N,N-dialkylamino” wherein the amino groups are each independently substituted with one or two alkyl groups; The meaning of the invention is described.
  • the alkylamino group is a lower alkylamino group formed by one or two C 1-6 alkyl groups attached to a nitrogen atom.
  • the alkylamino group is an arylamino group formed by one or two lower alkyl groups of C 1-4 attached to a nitrogen atom.
  • Suitable alkylamino groups may be monoalkylamino or dialkylamino, examples of which include, but are not limited to, N-methylamino, N-ethylamino, N,N-dimethylamino, N,N - Diethylamino and the like.
  • arylamino includes “N-arylamino” and “N,N-diarylamino", wherein the amino groups are each independently substituted with one or two aryl groups; the aryl group has The meaning of the invention is described.
  • the arylamino group is a lower arylamino group formed by the attachment of one or two C1-6 aryl groups to a nitrogen atom.
  • Suitable arylamino groups may be monoarylamino or diarylamino, examples of which include, but are not limited to, N-phenylamino, N,N-diphenylamino, N,N-dinaphthyl Amino group and so on.
  • Solvent-forming solvents include, but are not limited to, water, isopropanol, ethanol, methanol, dimethyl sulfoxide, ethyl acetate, acetic acid, and aminoethanol.
  • hydrate means that the solvent molecule is an association formed by water.
  • hydrate can be used.
  • a molecule of the compound of the invention may be combined with a water molecule, such as a monohydrate; in other embodiments, a molecule of the invention may be combined with more than one water molecule, such as dihydrate. In still other embodiments, a molecule of the compound of the invention may be combined with less than one water molecule, such as a hemihydrate. It should be noted that the hydrates of the present invention retain the bioavailability of the compounds in a non-hydrated form.
  • the invention proposes a compound.
  • the compound is a solvate of a compound of formula (I) or a compound of formula (I),
  • A is a six-membered or eight-membered ring formed
  • B is at least one optionally substituted C 1-6 alkylamino group, an optionally substituted C 1-6 cycloalkylamino group, an optionally substituted arylamino group, Or halogen, and B is connected to the P atom in A,
  • R is an optionally substituted C 1-6 alkyl group, an optionally substituted C 1-6 cycloalkyl group, an optionally substituted aryl group, an optionally substituted benzyl group, or R forms an C 1 with an adjacent N atom. -6 heterocycloalkyl.
  • B is at least one Or Cl
  • R is methyl, ethyl, isopropyl, n-butyl, cyclohexyl, phenyl, benzyl, or R forms an associated N atom
  • the compound is a solvate of a compound shown by at least one of the following or a compound of at least one of the following:
  • the compound has high molecular symmetry, good stability, easy storage and transportation, and does not contain heavy metal elements, and is a green product.
  • the invention provides a process for the preparation of the compounds of the above-described embodiments of the invention.
  • the method comprises:
  • phosphorus pentachloride was suspended in a first anhydrous solvent under a nitrogen atmosphere and placed in a low temperature bath to maintain vigorous stirring.
  • the compound of the formula X is continuously introduced into the reaction system, and after the completion of the aeration, the temperature of the system is naturally raised to room temperature, and the reaction is continued for 1 to 6 hours.
  • the system was again placed in a low temperature bath, ammonia gas was introduced to saturation, and slowly warmed to room temperature, and ammonia gas was continuously passed for 1 to 6 hours.
  • the insoluble matter was filtered off, and the solvent was evaporated under reduced pressure to give a compound of formula.
  • the type of the first anhydrous solvent is not particularly limited, and those skilled in the art may select according to actual needs.
  • the first anhydrous solvent may include a selected one from the group consisting of benzene. At least one of toluene, xylene, dichloromethane and tetrahydrofuran is preferably dichloromethane. The inventors found in the experiment that the phosphorus pentachloride and the compound of the formula X have good solubility in anhydrous dichloromethane, and the anhydrous dichloromethane can effectively dissolve the reactants sufficiently, thereby improving the reaction. effectiveness.
  • the phosphorus pentachloride and the compound of formula X are grafted at a molar ratio of 1: (3 to 10). Touched.
  • the temperature of the cryogenic bath may range from -80 to 0 degrees Celsius.
  • the inventors have found that if the temperature of the reaction system is too high, the reaction will be too severe, and the temperature of the low temperature bath can be controlled to be -80 to 0 degrees Celsius, thereby ensuring that the reaction proceeds smoothly under low temperature conditions.
  • the compound of the formula 1 is added to an alkali solution and reacted at room temperature for 1 to 5 hours. After completion of the reaction, the insoluble matter was filtered off, the filtrate was separated, and the organic phase was evaporated under reduced pressure to give a compound of formula 2.
  • the base can be sodium hydroxide.
  • the base may be an aqueous sodium hydroxide solution having a concentration of from 20 to 70% by weight, preferably 50% by weight aqueous sodium hydroxide solution.
  • the chloride ion in the compound of the formula 1 can be effectively removed by a 50 wt% aqueous sodium hydroxide solution, and the elimination reaction with the compound of the formula 1 can be carried out to obtain the compound of the formula 2.
  • the compound of the formula 2 is dissolved in a second anhydrous solvent with hexachlorocyclotriphosphazene or octachlorocyclotetraphosphonitrile and an acid binding agent under a nitrogen atmosphere, and refluxed for 3 to 18 hours.
  • the hydrochloride formed by the chlorine atom in the phosphorus pentachloride and the acid binding agent was filtered off, and the obtained filtrate was concentrated to obtain the compound of the above-mentioned examples of the present invention.
  • the kind of the second anhydrous solvent is not particularly limited, and those skilled in the art may select according to actual needs.
  • the second anhydrous solvent may be selected from benzene. At least one of toluene, xylene, chlorobenzene and tetrahydrofuran is preferably toluene.
  • the molar ratio of the compound of the hexachlorocyclotriphosphazene or the octachlorocyclotetraphosphazene, the compound of the formula X or the compound of the formula 2 and the acid binding agent may be 1: (1 to 8): (1 ⁇ 8).
  • the number of chlorine atoms in the hexachlorocyclotriphosphazene or octachlorocyclotetraphosphazene can be controlled to obtain a target compound substituted with a different number of phosphazenes.
  • the kind of the acid binding agent is not particularly limited, and those skilled in the art may select according to actual needs.
  • the acid binding agent may include a selected from the group consisting of triethylamine and sodium carbonate. At least one of sodium hydrogencarbonate, sodium hydroxide and potassium hydroxide, preferably triethylamine.
  • the inventors have found that the reaction of the compound of the formula 2 with hexachlorocyclotriphosphazene or octachlorocyclotetraphosphonitrile produces a small molecule of HCl, so that it is necessary to react the HCl with HCl by adding an acid binding agent to obtain a hydrochloride.
  • the inventors have found that triethylamine is preferred as an acid binding agent, and the triethylamine hydrochloride formed by the reaction of triethylamine with HCl has a small solubility in an organic solvent and is easily removed by filtration. .
  • the compound of the formula X or the compound of the formula 2 is reacted with hexachlorocyclotriphosphazene or octachlorocyclotetraphosphazene at 40 to 150 degrees Celsius, whereby the composition can be remarkably improved The efficiency of the reaction.
  • the compound of the above embodiment of the present invention can be efficiently prepared by the method, and the raw materials used are easy to obtain, the cost is low, and the preparation method is simple.
  • the invention provides a process for the preparation of the compounds of the above-described embodiments of the invention.
  • the method comprises:
  • the phosphorus pentachloride is placed in anhydrous dichloromethane, and the compound of the formula X is added to anhydrous dichloromethane at -80 to 0 ° C for 1 to 6 hours to obtain an intermediate. body;
  • the ammonia gas is continuously introduced into the intermediate for 1 to 6 hours and subjected to filtration treatment to obtain a first filtrate, and the first filtrate is distilled to remove the solvent to obtain a compound of the formula 1;
  • the compound of the formula 1 is mixed with a 50 wt% aqueous sodium hydroxide solution and reacted for 1 to 5 hours, followed by filtration to obtain a second filtrate, and the second filtrate is distilled off to obtain a compound of the formula 2;
  • the hexachlorocyclotriphosphazene or octachlorocyclotetraphosphonitrile is mixed with the compound of the formula X or the compound of the formula 2 and triethylamine under a nitrogen atmosphere, and refluxed in anhydrous toluene for 3 to 18 hours, and then Filtration treatment is carried out to obtain a third filtrate, and the third filtrate is distilled to remove the solvent to obtain the above-mentioned compound of the present invention.
  • the compound of the above embodiment of the present invention can be efficiently prepared by the method, and the raw materials used are easy to obtain, the cost is low, and the preparation method is simple.
  • the invention provides the use of a compound of the above-described embodiments of the invention as a catalyst in a polymerization reaction.
  • the compound of the above embodiment of the present invention can be used as a catalyst for preparing an ester copolymer, an ether copolymer, and a polyester, a polyether, and a polycarbonate copolymer, and the prepared polymer product has an easy structure. It is regulated and rich in variety. At the same time, the product does not contain heavy metal elements, low catalyst residue, good biocompatibility, wide application range and high added value.
  • the invention provides a method of preparing a polymer.
  • the method comprises contacting a catalyst with at least one monomer to obtain a polymer, wherein the catalyst is a compound proposed by the invention.
  • the monomer may include ethylene oxide, propylene oxide, epichlorohydrin, 1,2-butylene oxide, glycolide, lactide, ⁇ -butyrolactone, ⁇ - Valerolactone, ⁇ -caprolactone, ⁇ -lactam, methyl substituted ⁇ -lactam, butyrolactam, caprolactam, trimethylene carbonate, 2,2-dimethyltrimethylene carbonate, 1,3-dioxan-2-one, trioxane, five-membered cyclic phosphate, six-membered cyclic phosphate, octamethylcyclotetrasiloxane, hexamethylcyclotrisiloxane , acrylamide, methyl substituted acrylamide, methyl acrylate, methyl methacrylate or N-carboxy- ⁇ -amino acid anhydride.
  • the contacting can be carried out in an anhydrous solvent in the presence of an initiator.
  • the yield of the produced polymer can be remarkably improved.
  • the initiator may include a solvent selected from the group consisting of methanol, ethanol, isopropanol, n-butanol, tert-butanol, ethylene glycol, glycerol, cholesterol, phenol, benzyl alcohol, n-butyric acid, and n-pentane Acid, n-hexanoic acid, n-heptanoic acid, n-octanoic acid, n-decanoic acid, dodecanoic acid, tetradecanoic acid, palmitic acid, triethylamine, tri-n-butylamine, trihexylamine, benzamide, polyethylene glycol, At least one of a polyoxypropylene diol and a polytetrahydrofuran diol. Thereby, the efficiency of preparing the polymer can be remarkably improved.
  • the anhydrous solvent may include at least one selected from the group consisting of benzene, toluene, n-hexane, tetrahydrofuran, and dichloromethane, preferably toluene.
  • the yield of the prepared compound can be further improved.
  • the molar ratio of the catalyst, the initiator and the monomer may be 1: (0 to 200): (50 to 100,000), preferably 1: (1 to 10): (100 to 2,000).
  • the yield of the prepared compound can be further improved.
  • the contact may be carried out at -40 to 150 degrees Celsius for 0.1 to 72 hours, preferably at 20 to 100 degrees Celsius for 0.5 to 48 hours. Thereby, the yield of the prepared compound can be further improved.
  • the polymer when the monomer is ethylene oxide, propylene oxide, epichlorohydrin, 1,2-butylene oxide, ⁇ -lactam, methyl substituted ⁇ -lactam, butyrolactam Or caprolactam, the polymer can be prepared according to the following preparation method: under the protection of nitrogen, the compound of the invention is dissolved in anhydrous toluene, added to the reaction vessel, the toluene is removed under reduced pressure, the initiator and the monomer are added, the system is closed, and the reaction is 0.5 ⁇ 48 hours in order to obtain a polymer.
  • the polymer when the monomer is glycolide, lactide, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, trimethylene carbonate, 2,2-dimethyl Trimethylene ring carbonate, 1,3-dioxan-2-one, trioxane, five-membered cyclic phosphate, six-membered cyclic phosphate, octamethylcyclotetrasiloxane, When hexamethylcyclotrisiloxane, acrylamide, methyl-substituted acrylamide, methyl acrylate, methyl methacrylate or N-carboxy- ⁇ -amino acid anhydride, the polymer can be prepared according to the following preparation method: under nitrogen protection The compound of the present invention is dissolved in an anhydrous solvent, added to a reaction tube, and an initiator and a monomer are successively added, and the system is blocked and reacted for 0.5 to 48 hours to obtain a poly
  • the compound of the above embodiment of the present invention can also be used as a catalyst for catalyzing N-carboxy anhydride (abbreviated as NCA, structure is represented by Formula D-1, wherein R X represents a substituent), N-substituted glycine -N-carboxylic anhydride (abbreviated as N R X -NCA, structure is represented by formula D-2, wherein R X represents a substituent), N-substituted glycine-N-thiocarboxylic anhydride ( N R X -NTA for short, structure As shown in the formula D-3, wherein R X represents a cyclic monomer such as a substituent, ring-opening polymerization is carried out, and a polymer product is obtained.
  • NCA N-carboxy anhydride
  • N R X -NCA N-substituted glycine -N-carboxylic anhydride
  • N R X -NTA
  • R X in D-1 may be a side group of amino acids with or without a protecting group, which may be glycine, alanine, leucine, valine. , isoleucine, phenylalanine, ⁇ -benzyl-glutamate, ⁇ -benzyl-aspartate, ⁇ -benzyloxycarbonyl-lysine or other side chain modified amino acids.
  • R X may be a substituted or unsubstituted alkyl group, a phenyl group, an alkenyl group, an alkynyl group or an oligoethylene glycol group, and the alkyl group may be further a vinyl group or a benzene group.
  • the oligoethylene glycol has a repeating unit number of less than 9.
  • the anhydrous solvent used may be tetrahydrofuran, N, N-di At least one of methyl formamide, N,N-dimethylacetamide, dimethyl sulfoxide, acetonitrile, benzonitrile, N-methylpyrrolidone, toluene, dichloromethane, and chloroform;
  • the initiator may be an amine compound such as an alkylamine, a benzylamine, a terminal amino-modified polyethylene glycol or a hexamethylsilylamine (HMDS) in addition to the above initiator.
  • the compound proposed by the present invention can be used for catalyzing the preparation of a block copolymer using the same or different kinds of monomers by preparing the compound of the present invention in an anhydrous solvent under the protection of nitrogen.
  • the initiator and a monomer (monomer 1) are added successively, and the system is closed. After the monomer 1 is completely converted, the addition of another monomer is continued.
  • monomer 2 after the monomer 2 is completely converted, another monomer (monomer 3) is added to obtain a block copolymer; wherein, monomer 1, monomer 2 and monomer 3 are as The monomers described above, and the monomers 1, the monomers 2, and the monomers 3 may be the same or different.
  • the compound proposed by the present invention can be used for catalyzing the preparation of a random copolymer by using the same or different kinds of monomers by preparing the compound of the present invention in an anhydrous solvent under the protection of nitrogen, and adding the reaction.
  • an initiator is further added, and the two monomers (monomer a and monomer b) are uniformly dissolved in an anhydrous solvent, added to the reaction vessel or the reaction tube, and the system is closed, and the reaction is carried out for 0.5 to 48 hours.
  • monomer a and monomer b are monomers as described above, and monomer a and monomer b may be the same or different.
  • the method uses the compound of the above embodiment of the present invention as a catalyst to prepare a polymer which does not contain heavy metal elements, has good stability, high catalytic activity and low catalyst residue; and the polymer prepared by the method
  • the product structure is easy to control, rich in variety, and the product does not contain heavy metal elements, has good biocompatibility, wide application range and high added value; at the same time, the method has mild conditions and good universality, and is suitable for large-scale production.
  • the ammonia gas was continuously passed for 3 hours until the formation of the precipitate was stopped.
  • the insoluble material was filtered off, the solvent was evaporated under reduced pressure, and the obtained solid was taken to 400 ml of aqueous sodium hydroxide (50 wt%) and allowed to react at room temperature for 1 hour. After completion of the reaction, the insoluble material was filtered off, and the organic phase was evaporated to remove solvent to afford 52.0 g of a colorless liquid.
  • octachlorocyclotetraphosphonitrile (2.32g, 5.0mmol, 1.0equiv.) was dissolved in 10mL of toluene, and evenly stirred in a -78 ° C low temperature bath, tris(dimethylamine)phosphazene (7.13) g, 40.0 mmol, 8 equiv.) was dissolved in 10 mL of toluene, and slowly added dropwise to the reaction system, followed by the addition of the acid-binding agent triethylamine (4.05 g, 40.0 mmol, 8.0 equiv.). Heat to reflux and react for 12 hours. After completion of the reaction, it was naturally cooled to room temperature, and the insoluble material was filtered out and concentrated to yield 5.75 g of white solid.
  • hexachlorocyclotriphosphazene (0.7 g, 2.0 mmol, 1.0 equiv.) was dissolved in 4 mL of toluene, and stirred in a -78 ° C low temperature bath, tris(dicyclohexylamine)phosphazene (7.04). g, 12.0 mmol, 6 equiv.) was dissolved in 4 mL of toluene, and slowly added dropwise to the reaction system, followed by the addition of the acid-binding agent triethylamine (1.21 g, 12.0 mmol, 6.0 equiv.). Heat to reflux and react for 12 hours. After completion of the reaction, the mixture was cooled to room temperature, and the insoluble material was filtered out and concentrated to yield 4.97 g of white solid.
  • hexachlorocyclotriphosphazene (0.7 g, 2.0 mmol, 1.0 equiv.) was dissolved in 4 mL of toluene, and stirred at -78 ° C in a low temperature bath.
  • Tripyrrolidine phosphazene (3.08 g, 12.0 mmol) 6equiv.) was dissolved in 4 mL of toluene, slowly added dropwise to the reaction system, and then the acid bonding agent triethylamine (1.21 g, 12.0 mmol, 6.0 equiv.) was added. Heat to reflux and react for 12 hours. After completion of the reaction, the mixture was cooled to room temperature, and the insoluble material was filtered out and concentrated to give a white solid.
  • hexachlorocyclotriphosphazene (0.7 g, 2.0 mmol, 1.0 equiv.) was dissolved in 4 mL of toluene, and stirred in a -78 ° C low temperature bath, tris(dimethylamine)phosphazene (1.43). g, 8.0 mmol, 4.0 equiv.) was dissolved in 4 mL of toluene, and slowly added dropwise to the reaction system, followed by the addition of the acid-binding agent triethylamine (0.81 g, 8.0 mmol, 4.0 equiv.). Heat to reflux and react for 12 hours. After completion of the reaction, the mixture was cooled to room temperature, and the insoluble material was filtered.
  • hexachlorocyclotriphosphazene (0.7 g, 2.0 mmol, 1.0 equiv.) was dissolved in 4 mL of toluene, and stirred in a -78 ° C low temperature bath, tris(dimethylamine)phosphazene (1.07).
  • g, 6.0 mmol, 3.0 equiv. was dissolved in 4 mL of toluene, and slowly added dropwise to the reaction system, followed by the addition of the acid-binding agent triethylamine (0.61 g, 6.0 mmol, 3.0 equiv.), and reacted at room temperature for 12 hours. After completion of the reaction, the insoluble material was filtered and concentrated to give a white solid (1.
  • hexachlorocyclotriphosphazene (3.5 g, 10.0 mmol, 1.0 equiv.) was dissolved in 30 mL of chloroform, heated to reflux, and excess dimethylamine was passed and the reaction was continued for 30 minutes. The mixture was cooled to room temperature, and the solvent was evaporated under reduced pressure. The product was obtained by adding 50 mL of light petroleum ether, and then cooled to -10 ° C to afford crystals of white crystals (yield: 80%).
  • hexachlorocyclotriphosphazene (3.5 g, 10.0 mmol, 1.0 equiv.) was dissolved in 60 mL of toluene, and 30 mL of triethylamine and diphenylamine (20.3 g, 120.0 mmol, 12.0 equiv.) were added and heated to reflux. . After completion of the reaction, the mixture was cooled, and the insoluble material was filtered out. The solvent was evaporated under reduced pressure, and the obtained solid was recrystallized from n-hexane to yield 6.4 g of the final product, yield 53%.
  • hexachlorocyclotriphosphazene (3.5 g, 10.0 mmol, 1.0 equiv.) was dissolved in 60 mL of toluene, and 30 mL of triethylamine and pyrrolidine (9.9 mL, 120.0 mmol, 12.0 equiv.) were added and heated to reflux. . After completion of the reaction, the mixture was cooled, and the insoluble material was filtered out. The solvent was evaporated under reduced pressure, and the obtained solid was recrystallized from n-hexane to give a final product (4.2 g, yield: 75%).
  • a catalyst solution (0.1 mol/L toluene solution containing 0.50 mmol of catalyst) was added to a 100 mL pressure-resistant reaction vessel, the solvent was removed under high vacuum, and benzyl alcohol (52 ⁇ L, 0.50 mmol) and propylene oxide were added. 3.5 mL, 50.0 mmol), the reaction kettle was closed, placed in a preheated 100 ° C oil bath, and reacted until the pressure drop was zero.
  • a catalyst solution (0.1 mol/L toluene solution, 0.01 mmol of catalyst) was added to a 100 mL pressure-resistant reaction vessel, the solvent was removed under high vacuum, and benzyl alcohol (52 ⁇ L, 0.50 mmol) and propylene oxide were added. 7.0 mL, 100.0 mmol), the reaction kettle was closed, placed in a preheated 100 ° C oil bath, and reacted until the pressure drop was zero.
  • a catalyst solution (0.1 mol/L toluene solution containing 0.50 mmol of catalyst) was added to a 100 mL pressure-resistant reaction vessel, the solvent was removed under high vacuum, and benzyl alcohol (52 ⁇ L, 0.50 mmol) and propylene oxide were added. 3.5 mL, 50.0 mmol), the reaction kettle was closed, placed in a preheated 100 ° C oil bath, reacted to a pressure drop of 0, then ethylene oxide (2.2 g, 50.0 mmol) was added and the reaction was continued until the pressure drop was zero.
  • a catalyst solution (0.1 mol/L toluene solution, 0.05 mmol of catalyst) was added to a 50 mL Schlenk reaction tube, the solvent was removed under reduced pressure, and then 0.5 mL of tetrahydrofuran was added to dissolve the catalyst, followed by the addition of benzyl alcohol (5.2). ⁇ L, 0.05 mmol), reacted at room temperature for 10 minutes, then added ⁇ -caprolactone (1.11 mL, 10.0 mmol), and allowed to react at room temperature for 12 hours under nitrogen atmosphere.
  • benzyl alcohol 5.2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyethers (AREA)
  • Polymerization Catalysts (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Silicon Polymers (AREA)
  • Polyamides (AREA)

Abstract

公开了环状寡聚磷腈化合物及其制备方法和用途。其中,环状寡聚磷腈化合物为式(I)所示的化合物或式(I)所示化合物的溶剂化物,其中,A为由形成的六元环或八元环,B为至少一个任选取代的C1-6烷基氨基、任选取代的C1-6环烷基氨基、任选取代的芳基氨基、或卤素,并且B与A中的P原子相连,R为任选取代的C1-6烷基、任选取代的C1-6环烷基、任选取代的芳基、任选取代的苄基,或者R与相连的N原子形成C1-6杂环烷基。

Description

寡聚磷腈化合物及其制备方法和用途 技术领域
本发明涉及有机化学领域,具体而言,本发明涉及环状寡聚磷腈化合物及其制备方法和用途。
背景技术
磷腈又称磷氮烯,是一类含有磷氮(P=N)双键的非极性强碱性化合物,广泛用于有机催化反应。此外,磷腈化合物还是一类高活性的阴离子聚合催化剂,广泛应用于环氧化合物,环硅氧烷,内酰胺,环酯,环碳酸酯,丙烯酸酯、丙烯酰胺等单体的聚合反应。
上世纪90年代,Schwesinger等报道了一系列磷腈化合物的合成,包括tBuP4([(NMe2)3P=N]3P=NtBu,超强碱,在乙腈溶剂中的pKa值为42.6)和tBuP2([(NMe2)3P=N](NMe2)2P=NtBu,在乙腈溶剂中的pKa值为33.5)等。此外,日本三井化学公司开发了磷腈盐类催化剂PZN({[(NR2)3P=N]4P}+Z-),并成功地应用于环氧化合物的开环聚合,催化活性是氢氧化钾的450倍,产物聚醚的产率较传统催化剂可提高30%-40%,产物中杂质含量仅为传统聚醚的1/4。
虽然磷腈类化合物的研究已有多年,但目前常见的磷腈化合物催化剂种类有限,合成方法复杂,成本高,不利于大规模生产方面的应用。因此尽快深入细致地研究开发出一种廉价易得的新型磷腈催化剂并推广应用,必将产生巨大的经济效益和社会效益。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的一个目的在于提出一种环状寡聚磷腈化合物及其制备方法和用途。本发明的环状寡聚磷腈化合物结构新颖、稳定性好,易于存储和运输,且不含重金属元素,属于绿色环保产品。
在本发明的第一方面,本发明提出了一种化合物。根据本发明的实施例,所述化合物为式(I)所示的化合物或式(I)所示化合物的溶剂化物,
Figure PCTCN2017106571-appb-000001
其中,
A为由
Figure PCTCN2017106571-appb-000002
形成的六元环或八元环,
B为至少一个任选取代的C1-6烷基氨基、任选取代的C1-6环烷基氨基、任选取代的芳基氨基、
Figure PCTCN2017106571-appb-000003
或卤素,并且B与A中的P原子相连,
R为任选取代的C1-6烷基、任选取代的C1-6环烷基、任选取代的芳基、任选取代的苄基,或者R与相邻的N原子形成C1-6杂环烷基。
根据本发明的实施例,该化合物分子对称性高,稳定性好,易于存储和运输,且不含重金属元素,属于绿色环保产品。
在本发明的一些实施例中,B为至少一个
Figure PCTCN2017106571-appb-000004
或Cl,
R为甲基、乙基、异丙基、正丁基、环己基、苯基、苄基,或者R与相连的N原子形成
Figure PCTCN2017106571-appb-000005
在本发明的一些实施例中,所述化合物为下列至少之一所示的化合物或下列至少之一所示化合物的溶剂化物:
Figure PCTCN2017106571-appb-000006
Figure PCTCN2017106571-appb-000007
在本发明的第二方面,本发明提出了一种制备本发明上述实施例的化合物的方法。根据本发明的实施例,该方法包括:
(a)使五氯化磷与式X所示化合物和氨气进行接触,以便获得式1所示化合物;
(b)使所述式1所示化合物与碱进行接触,以便获得式2所示化合物;
(c)使所述式X所示化合物或者式2所示化合物与六氯环三磷腈或八氯环四磷腈进行接触,以便获得上述实施例的化合物,
Figure PCTCN2017106571-appb-000008
Figure PCTCN2017106571-appb-000009
其中,R为如前所述的。
根据本发明的实施例,制备本发明上述实施例的化合物的方法所采用的原料易得,成本低,且制备方法简单。
在本发明的一些实施例中,在步骤(a)中,所述接触是在第一无水溶剂中进行的。
在本发明的一些实施例中,在步骤(a)中,所述第一无水溶剂包括选自苯、甲苯、二甲苯、二氯甲烷和四氢呋喃中的至少之一,优选二氯甲烷。
在本发明的一些实施例中,在步骤(a)中,所述接触是在-80~0摄氏度下进行1~6小时完成的。
在本发明的一些实施例中,在步骤(a)中,所述五氯化磷与所述式X所示化合物是以1:(3~10)的摩尔比进行所述接触的。
在本发明的一些实施例中,在步骤(b)中,所述碱为氢氧化钠。
在本发明的一些实施例中,在步骤(b)中,所述碱为浓度为20~70wt%的氢氧化钠水溶液,优选50wt%的氢氧化钠水溶液。
在本发明的一些实施例中,在步骤(c)中,所述接触是在存在缚酸剂的条件下在第二无水溶剂中进行的。
在本发明的一些实施例中,在步骤(c)中,所述第二无水溶剂包括选自苯、甲苯、二甲苯、氯苯和四氢呋喃中的至少之一,优选甲苯。
在本发明的一些实施例中,在步骤(c)中,所述六氯环三磷腈或所述八氯环四磷腈、所述式2所示化合物、所述缚酸剂的摩尔比为1:(1~8):(1~8)。
在本发明的一些实施例中,在步骤(c)中,所述缚酸剂包括选自三乙胺、碳酸钠、碳酸氢钠、氢氧化钠和氢氧化钾的至少之一,优选三乙胺。
在本发明的一些实施例中,在步骤(c)中,所述接触是在40~150摄氏度下进行3~18小时完成的。
在本发明的第三方面,本发明提出了一种制备本发明上述实施例的化合物的方法。根据 本发明的实施例,该方法包括:
在氮气氛围下,将五氯化磷置于无水二氯甲烷中,在-80~0摄氏度下,向无水二氯甲烷中加入式X所示化合物,反应1~6小时,以便得到中间体;
在-80~0摄氏度下,向所述中间体中持续通入氨气1~6小时并进行过滤处理,以便得到第一滤液,将所述第一滤液蒸馏除去溶剂,以便得到式1所示化合物;
将所述式1所示化合物与50wt%氢氧化钠水溶液混合并反应1~5小时,然后进行过滤处理,以便得到第二滤液,将所述第二滤液蒸馏除去溶剂,以便得到式2所示化合物;
在氮气氛围下,将六氯环三磷腈或八氯环四磷腈与所述式X所示化合物或者所述式2所示化合物和三乙胺混合,在无水甲苯中回流反应3~18小时,然后进行过滤处理,以便得到第三滤液,将所述第三滤液蒸馏除去溶剂,以便得到权利要求1~3任一项所述的化合物,
Figure PCTCN2017106571-appb-000010
其中,R为如前所述的。
根据本发明的实施例,制备本发明上述实施例的化合物的方法所采用的原料易得,成本低,且制备方法简单。
在本发明的第四方面,本发明提出了本发明上述实施例的化合物作为催化剂在聚合反应中的用途。根据本发明的实施例,本发明上述实施例的化合物可以作为催化剂用于制备酯类共聚物、醚类共聚物以及聚酯、聚醚、聚碳酸酯共聚物,制备得到的聚合物产品结构易于调控,种类丰富,同时产品不含重金属元素,催化剂残留低,生物相容性好,应用范围广,附加值高。
在本发明的第五方面,本发明提出了一种制备聚合物的方法。该方法采用本发明上述实施例的化合物作为催化剂。
根据本发明的实施例,该方法包括:将所述催化剂与至少一种单体接触,以便获得所述聚合物。
根据本发明的实施例,采用该方法制备得到的聚合物产品结构易于调控,种类丰富,同时产品不含重金属元素,催化剂残留低,生物相容性好,应用范围广,附加值高。
在本发明的一些实施例中,所述单体包括环氧乙烷、环氧丙烷、环氧氯丙烷、1,2-环氧丁烷、乙交酯、丙交酯、γ-丁内酯、δ-戊内酯、ε-己内酯、β-内酰胺、甲基取代β-内酰胺、丁内酰胺、己内酰胺、三亚甲基环碳酸酯、2,2-二甲基三亚甲基环碳酸酯、1,3-二氧杂环己烷-2-酮、三聚甲醛、五元环环磷酸酯、六元环环磷酸酯、八甲基环四硅氧烷、六甲基环三硅氧烷、丙烯酰胺、甲基取代丙烯酰胺、丙烯酸甲酯、甲基丙烯酸甲酯或N-羧基-α-氨基酸酐。
在本发明的一些实施例中,所述接触是在存在引发剂的条件下在无水溶剂中进行的。由此,可以显著提高制备聚合物的产率。
在本发明的一些实施例中,所述引发剂包括选自甲醇、乙醇、异丙醇、正丁醇、叔丁醇、乙二醇、丙三醇、胆固醇、苯酚、苄醇、正丁酸、正戊酸、正己酸、正庚酸、正辛酸、正癸酸、十二酸、十四酸、十六酸、三乙胺、三正丁胺、三己胺、苯甲酰胺、聚乙二醇、聚氧化丙烯二醇和聚四氢呋喃二醇中的至少之一。由此,可以显著提高制备聚合物的效率。
在本发明的一些实施例中,所述无水溶剂包括选自苯、甲苯、正己烷、四氢呋喃和二氯甲烷中的至少之一,优选甲苯。由此,可以进一步提高制备化合物的产率。
在本发明的一些实施例中,所述催化剂、所述引发剂和所述单体的摩尔比为1:(0~200):(50~100000),优选1:(1~10):(100~2000)。由此,可以进一步提高制备化合物的产率。
在本发明的一些实施例中,所述接触是在-40~150摄氏度下进行0.1~72小时完成的,优选在20~100摄氏度下进行0.5~48小时。由此,可以进一步提高制备化合物的产率。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1是根据本发明一个实施例的三(二甲基胺)磷氮烯的核磁共振氢谱图;
图2是根据本发明一个实施例的三(二甲基胺)磷氮烯的核磁共振碳谱图;
图3是根据本发明一个实施例的三(二甲基胺)磷氮烯的核磁共振磷谱图;
图4是根据本发明一个实施例的六[三(二甲基胺)磷氮烯]三聚磷腈的核磁共振氢谱图;
图5是根据本发明一个实施例的六[三(二甲基胺)磷氮烯]三聚磷腈的核磁共振碳谱图;
图6是根据本发明一个实施例的六[三(二甲基胺)磷氮烯]三聚磷腈的核磁共振磷谱图;
图7是根据本发明一个实施例的三(二甲基胺)磷氮烯的高分辨质谱图;
图8是根据本发明一个实施例的六[三(二甲基胺)磷氮烯]三聚磷腈的高分辨质谱图;
图9是实施例20中制备得到的聚环氧丙烷的凝胶渗透色谱图;
图10是实施例26中制备得到的聚己内酯的凝胶渗透色谱图;
图11是实施例28中制备得到的聚二甲基硅氧烷的凝胶渗透色谱图;
图12是实施例30中制备得到的环氧丙烷、己内酯共聚物的凝胶渗透色谱图;
图13是实施例62中制备得到的聚γ-苄酯-L-谷氨酸的凝胶渗透色谱图;
图14是实施例66中制备得到的聚ε-苄氧羰基-赖氨酸的凝胶渗透色谱图;
图15是实施例68中制备得到的聚γ-苄酯-L-谷氨酸的凝胶渗透色谱图;
图16是实施例73中制备得到的谷氨酸和肌氨酸共聚物的凝胶渗透色谱图。
具体实施方式
下面详细描述本发明的实施例。下面描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。
定义和一般术语
现在详细描述本发明的某些实施方案,其实例由随附的结构式和化学式说明。本发明意图涵盖所有的替代、修改和等同技术方案,它们均包括在如权利要求定义的本发明范围内。本领域技术人员应认识到,许多与本文所述类似或等同的方法和材料能够用于实践本发明。本发明绝不限于本文所述的方法和材料。在所结合的文献、专利和类似材料的一篇或多篇与本申请不同或相矛盾的情况下(包括但不限于所定义的术语、术语应用、所描述的技术,等等),以本申请为准。
应进一步认识到,本发明的某些特征,为清楚可见,在多个独立的实施方案中进行了描述,但也可以在单个实施例中以组合形式提供。反之,本发明的各种特征,为简洁起见,在单个实施方案中进行了描述,但也可以单独或以任意适合的子组合提供。
除非另有说明或者上下文中有明显的冲突,本文所使用的冠词“一”、“一个(种)”和“所述”旨在包括“至少一个”或“一个或多个”。因此,本文所使用的这些冠词是指一个或多于一个(即至少一个)宾语的冠词。例如,“一组分”指一个或多个组分,即可能有多于一个的组 分被考虑在所述实施方案的实施方式中采用或使用。
术语“包括”为开放式表达,即包括本发明所指明的内容,但并不排除其他方面的内容。
像本发明所描述的,本发明的化合物可以任选地被一个或多个取代基所取代,如上面的通式化合物,或者像实施例里面特殊的例子,子类,和本发明所包含的一类化合物。
一般而言,术语“取代的”表示所给结构中的一个或多个氢原子被具体取代基所取代。除非其他方面表明,一个被取代的基团可以有一个取代基在基团各个可取代的位置进行取代。当所给出的结构式中不止一个位置能被选自具体基团的一个或多个取代基所取代时,那么取代基可以相同或不同地在各个可取代的位置取代。
在本说明书的各部分,本发明公开化合物的取代基按照基团种类或范围公开。特别指出,本发明包括这些基团种类和范围的各个成员的每一个独立的次级组合。例如,术语“C1-6烷基”特别指独立公开的甲基、乙基、C3烷基、C4烷基、C5烷基和C6烷基。
在本发明的各部分,描述了连接取代基。当该结构清楚地需要连接基团时,针对该基团所列举的马库什变量应理解为连接基团。例如,如果该结构需要连接基团并且针对该变量的马库什基团定义列举了“烷基”或“芳基”,则应该理解,该“烷基”或“芳基”分别代表连接的亚烷基基团或亚芳基基团。
本发明使用的术语“烷基”或“烷基基团”,表示饱和的直链或支链一价烃基基团,其中,所述烷基基团可以任选地被一个或多个本发明描述的取代基所取代。除非另外详细说明,烷基基团含有1-20个碳原子。在一实施方案中,烷基基团含有1-12个碳原子;在另一实施方案中,烷基基团含有3-12个碳原子;在另一实施方案中,烷基基团含有1-6个碳原子;在又一实施方案中,烷基基团含有1-4个碳原子。
烷基基团的实例包含,但并不限于,甲基(Me、-CH3),乙基(Et、-CH2CH3),正丙基(n-Pr、-CH2CH2CH3),异丙基(i-Pr、-CH(CH3)2),正丁基(n-Bu、-CH2CH2CH2CH3),异丁基(i-Bu、-CH2CH(CH3)2),仲丁基(s-Bu、-CH(CH3)CH2CH3),叔丁基(t-Bu、-C(CH3)3),正戊基(-CH2CH2CH2CH2CH3),2-戊基(-CH(CH3)CH2CH2CH3),3-戊基(-CH(CH2CH3)2),2-甲基-2-丁基(-C(CH3)2CH2CH3),3-甲基-2-丁基(-CH(CH3)CH(CH3)2),3-甲基-1-丁基(-CH2CH2CH(CH3)2),2-甲基-1-丁基(-CH2CH(CH3)CH2CH3),正己基(-CH2CH2CH2CH2CH2CH3),2-己基(-CH(CH3)CH2CH2CH2CH3),3-己基(-CH(CH2CH3)(CH2CH2CH3)),2-甲基-2-戊基(-C(CH3)2CH2CH2CH3),3-甲基-2-戊基(-CH(CH3)CH(CH3)CH2CH3),4-甲基-2-戊基(-CH(CH3)CH2CH(CH3)2),3-甲基-3-戊基(-C(CH3)(CH2CH3)2),2-甲基-3-戊基(-CH(CH2CH3)CH(CH3)2),2,3-二甲基-2-丁基(-C(CH3)2CH(CH3)2),3,3-二甲基-2-丁基(-CH(CH3)C(CH3)3),正庚基,正辛基,等等。
术语“卤素”是指氟(F)、氯(Cl)、溴(Br)或碘(I)。
术语“芳基”表示含有6-14个环原子,或6-12个环原子,或6-10个环原子的单环、双环或三环的碳环体系,其中,至少一个环是芳香族的,且有一个或多个附着点与分子的其余部分相连。术语“芳基”可以和术语“芳香环”交换使用。在一实施方案中,芳基为由6-10个环原子组成的,且其中至少含有一个芳香环的碳环体系。芳基基团的实例可以包括苯基、萘基和蒽基。其中,所述芳基基团可以独立任选地被一个或多个本发明所描述的取代基所取代。
术语“烷基氨基”包括“N-烷基氨基”和“N,N-二烷基氨基”,其中氨基基团分别独立地被一个或两个烷基基团所取代;所述烷基具有本发明所描述的含义。其中一些实施例是,烷基氨基是一个或两个C1-6烷基连接到氮原子上形成的较低级的烷基氨基基团。另外一些实施例是,烷基氨基是一个或两个C1-4的较低级的烷基连接到氮原子上形成的芳基氨基基团。合适的烷基氨基基团可以是单烷基氨基或二烷基氨基,这样的实例包括,但并不限于,N-甲氨基、N-乙氨基、N,N-二甲氨基、N,N-二乙氨基等等。
术语“芳基氨基”包括“N-芳基氨基”和“N,N-二芳基氨基”,其中氨基基团分别独立地被一个或两个芳基基团所取代;所述芳基具有本发明所描述的含义。其中一些实施例是,芳基氨基是一个或两个C1-6芳基连接到氮原子上形成的较低级的芳基氨基基团。合适的芳基氨基基团可以是单芳基氨基或二芳基氨基,这样的实例包括,但并不限于,N-苯基氨基、N,N-二苯基氨基、N,N-二萘基氨基等等。
本发明的“溶剂化物”是指一个或多个溶剂分子与本发明的化合物所形成的缔合物。形成溶剂化物的溶剂包括,但并不限于,水,异丙醇,乙醇,甲醇,二甲亚砜,乙酸乙酯,乙酸和氨基乙醇。术语“水合物”是指溶剂分子是水所形成的缔合物。
当所述溶剂为水时,可以使用术语“水合物”。在一些实施例中,一个本发明化合物分子可以与一个水分子相结合,比如一水合物;在另外一些实施例中,一个本发明化合物分子可以与多于一个的水分子相结合,比如二水合物,还有一些实施例中,一个本发明化合物分子可以与少于一个的水分子相结合,比如半水合物。应注意,本发明所述的水合物保留有非水合形式的所述化合物的生物有效性。
在本发明的第一方面,本发明提出了一种化合物。根据本发明的实施例,所述化合物为式(I)所示的化合物或式(I)所示化合物的溶剂化物,
Figure PCTCN2017106571-appb-000011
其中,
A为由
Figure PCTCN2017106571-appb-000012
形成的六元环或八元环,
B为至少一个任选取代的C1-6烷基氨基、任选取代的C1-6环烷基氨基、任选取代的芳基氨基、
Figure PCTCN2017106571-appb-000013
或卤素,并且B与A中的P原子相连,
R为任选取代的C1-6烷基、任选取代的C1-6环烷基、任选取代的芳基、任选取代的苄基,或者R与相邻的N原子形成C1-6杂环烷基。
在本发明的一些实施例中,B为至少一个
Figure PCTCN2017106571-appb-000014
或Cl,
R为甲基、乙基、异丙基、正丁基、环己基、苯基、苄基,或者R与相连的N原子形成
Figure PCTCN2017106571-appb-000015
在本发明的一些实施例中,所述化合物为下列至少之一所示的化合物或下列至少之一所示化合物的溶剂化物:
Figure PCTCN2017106571-appb-000016
Figure PCTCN2017106571-appb-000017
根据本发明的实施例,该化合物分子对称性高,稳定性好,易于存储和运输,且不含重金属元素,属于绿色环保产品。
在本发明的第二方面,本发明提出了一种制备本发明上述实施例的化合物的方法。根据本发明的实施例,该方法包括:
(a)使五氯化磷与式X所示化合物和氨气进行接触,以便获得式1所示化合物;
具体地,在氮气氛围下,将五氯化磷悬浮于第一无水溶剂中,并置于低温浴中,保持剧烈搅拌。持续向反应体系中通入式X所式化合物,通气完毕后使体系温度自然升至室温,继续反应1~6小时。再次将体系置于低温浴中,通入氨气至饱和,缓慢升至室温,继续通氨气1~6小时。滤除不溶物,减压蒸馏除去溶剂,以便获得式1所示化合物。
根据本发明的实施例,第一无水溶剂的种类并不受特别限制,本领域技术人员可以根据实际需要进行选择,根据本发明的具体实施例,第一无水溶剂可以包括选自苯、甲苯、二甲苯、二氯甲烷和四氢呋喃中的至少之一,优选二氯甲烷。发明人在实验中发现,五氯化磷和式X所示化合物在无水二氯甲烷中溶解性较好,采用无水二氯甲烷可以有效地将反应物充分溶解,由此提高反应进行的效率。
根据本发明的具体实施例,五氯化磷与式X所示化合物是以1:(3~10)的摩尔比进行接 触的。发明人在实验中发现,如果式X所示化合物的配入比过低,则无法有效地将五氯化磷中的氯原子充分取代,无法获得式1所示化合物。
Figure PCTCN2017106571-appb-000018
其中,R为如前所述的。
根据本发明的具体实施例,低温浴的温度可以为-80~0摄氏度。发明人发现,如果反应体系的温度过高,将会使反应过于剧烈,可以控制低温浴的温度为-80~0摄氏度,从而保证反应在低温条件下平稳进行。
(b)使式1所示化合物与碱进行接触,以便获得式2所示化合物;
具体地,将式1所示化合物加入到碱液中,室温反应1~5小时。反应结束,滤除不溶物,将滤液进行分液,将有机相减压除去溶剂,以便获得式2所示化合物。
根据本发明的具体实施例,碱可以为氢氧化钠。
根据本发明的具体实施例,碱可以为浓度为20~70wt%的氢氧化钠水溶液,优选50wt%的氢氧化钠水溶液。由此,可以利用50wt%的氢氧化钠水溶液有效地将式1所示化合物中的氯离子脱除,并与式1所示化合物发生消除反应,以便得到式2所示化合物。
Figure PCTCN2017106571-appb-000019
其中,R为如前所述的。
(c)使式X所示化合物或者式2所示化合物与六氯环三磷腈或八氯环四磷腈进行接触,以便获得上述实施例的化合物。
具体地,在氮气氛围下,将式2所示化合物与六氯环三磷腈或八氯环四磷腈和缚酸剂溶于第二无水溶剂中,回流反应3~18小时。反应后滤除五氯化磷中氯原子与缚酸剂形成的盐酸盐,将得到的滤液浓缩,以便得到本发明上述实施例的化合物。
根据本发明的实施例,第二无水溶剂的种类并不受特别限制,本领域技术人员可以根据实际需要进行选择,根据本发明的具体实施例,第二无水溶剂可以为选自苯、甲苯、二甲苯、氯苯和四氢呋喃中的至少之一,优选甲苯。发明人在实验中发现,五氯化磷和式X所示化合物在无水氯苯中溶解性较好,采用无水氯苯可以有效地将反应物充分溶解,由此提高反应进行的效率。
根据本发明的具体实施例,六氯环三磷腈或八氯环四磷腈、式X所示化合物或者式2所示化合物、缚酸剂的摩尔比可以为1:(1~8):(1~8)。发明人在实验中发现,通过改变六氯环三磷腈或八氯环四磷腈与式X所示化合物或者式2所示化合物的投料比(同时相应地改变缚酸剂的投料比),可以控制六氯环三磷腈或八氯环四磷腈中氯原子被取代的个数,从而获得不同个数磷氮烯取代的目标化合物。
根据本发明的实施例,缚酸剂的种类并不受特别限制,本领域技术人员可以根据实际需要进行选择,根据本发明的具体实施例,缚酸剂可以包括选自三乙胺、碳酸钠、碳酸氢钠、氢氧化钠和氢氧化钾的至少之一,优选三乙胺。发明人发现,式2所示化合物与六氯环三磷腈或八氯环四磷腈反应会生成小分子HCl,所以需要通过加入缚酸剂,使缚酸剂与HCl反应得到盐酸盐,从而除去反应体系中的HCl。根据本发明的实施例,发明人发现,采用三乙胺作为缚酸剂的效果较好,三乙胺与HCl反应生成的三乙胺盐酸盐在有机溶剂中的溶解度很小,易于过滤除去。
根据本发明的具体实施例,式X所示化合物或者式2所示化合物与六氯环三磷腈或八氯环四磷腈是在40~150摄氏度下进行反应的,由此,可以显著提高反应的效率。
由此,根据本发明的实施例,采用该方法可以有效地制备得到本发明上述实施例的化合物,所采用的原料易得,成本低,制备方法简单。
在本发明的第三方面,本发明提出了一种制备本发明上述实施例的化合物的方法。根据本发明的实施例,该方法包括:
在氮气氛围下,将五氯化磷置于无水二氯甲烷中,在-80~0摄氏度下,向无水二氯甲烷中加入式X所示化合物,反应1~6小时,以便得到中间体;
在-80~0摄氏度下,向中间体中持续通入氨气1~6小时并进行过滤处理,以便得到第一滤液,将第一滤液蒸馏除去溶剂,以便得到式1所示化合物;
将式1所示化合物与50wt%氢氧化钠水溶液混合并反应1~5小时,然后进行过滤处理,以便得到第二滤液,将第二滤液蒸馏除去溶剂,以便得到式2所示化合物;
在氮气氛围下,将六氯环三磷腈或八氯环四磷腈与式X所示化合物或者式2所示化合物和三乙胺混合,在无水甲苯中回流反应3~18小时,然后进行过滤处理,以便得到第三滤液,将第三滤液蒸馏除去溶剂,以便得到本发明上述的化合物,
Figure PCTCN2017106571-appb-000020
Figure PCTCN2017106571-appb-000021
其中,R为如前所述的。
由此,根据本发明的实施例,采用该方法可以有效地制备得到本发明上述实施例的化合物,所采用的原料易得,成本低,制备方法简单。
在本发明的第四方面,本发明提出了本发明上述实施例的化合物作为催化剂在聚合反应中的用途。根据本发明的实施例,本发明上述实施例的化合物可以作为催化剂用于制备酯类共聚物、醚类共聚物以及聚酯、聚醚、聚碳酸酯共聚物,制备得到的聚合物产品结构易于调控,种类丰富,同时产品不含重金属元素,催化剂残留低,生物相容性好,应用范围广,附加值高。
在本发明的第五方面,本发明提出了一种制备聚合物的方法。根据本发明的实施例,该方法包括:将催化剂与至少一种单体接触,以便获得聚合物,其中,催化剂为本发明提出的化合物。
根据本发明的实施例,单体可以包括环氧乙烷、环氧丙烷、环氧氯丙烷、1,2-环氧丁烷、乙交酯、丙交酯、γ-丁内酯、δ-戊内酯、ε-己内酯、β-内酰胺、甲基取代β-内酰胺、丁内酰胺、己内酰胺、三亚甲基环碳酸酯、2,2-二甲基三亚甲基环碳酸酯、1,3-二氧杂环己烷-2-酮、三聚甲醛、五元环环磷酸酯、六元环环磷酸酯、八甲基环四硅氧烷、六甲基环三硅氧烷、丙烯酰胺、甲基取代丙烯酰胺、丙烯酸甲酯、甲基丙烯酸甲酯或N-羧基-α-氨基酸酐。
根据本发明的实施例,接触可以在存在引发剂的条件下在无水溶剂中进行的。由此,可以显著提高制备聚合物的产率。
根据本发明的实施例,引发剂可以包括选自甲醇、乙醇、异丙醇、正丁醇、叔丁醇、乙二醇、丙三醇、胆固醇、苯酚、苄醇、正丁酸、正戊酸、正己酸、正庚酸、正辛酸、正癸酸、十二酸、十四酸、十六酸、三乙胺、三正丁胺、三己胺、苯甲酰胺、聚乙二醇、聚氧化丙烯二醇和聚四氢呋喃二醇中的至少之一。由此,可以显著提高制备聚合物的效率。
根据本发明的实施例,无水溶剂可以包括选自苯、甲苯、正己烷、四氢呋喃和二氯甲烷中的至少之一,优选甲苯。由此,可以进一步提高制备化合物的产率。
根据本发明的实施例,催化剂、引发剂和单体的摩尔比可以为1:(0~200):(50~100000),优选1:(1~10):(100~2000)。由此,可以进一步提高制备化合物的产率。
根据本发明的实施例,接触可以在-40~150摄氏度下进行0.1~72小时完成的,优选在20~100摄氏度下进行0.5~48小时。由此,可以进一步提高制备化合物的产率。
根据本发明的实施例,当单体为环氧乙烷、环氧丙烷、环氧氯丙烷、1,2-环氧丁烷、β-内酰胺、甲基取代β-内酰胺、丁内酰胺或己内酰胺时,可以按照下列制备方法制备聚合物:氮气保护下,将本发明的化合物溶于无水甲苯,加入反应釜,减压除去甲苯,加入引发剂和单体,封闭体系,反应0.5~48小时,以便得到聚合物。
根据本发明的实施例,当单体为乙交酯、丙交酯、γ-丁内酯、δ-戊内酯、ε-己内酯、三亚甲基环碳酸酯、2,2-二甲基三亚甲基环碳酸酯、1,3-二氧杂环己烷-2-酮、三聚甲醛、五元环环磷酸酯、六元环环磷酸酯、八甲基环四硅氧烷、六甲基环三硅氧烷、丙烯酰胺、甲基取代丙烯酰胺、丙烯酸甲酯、甲基丙烯酸甲酯或N-羧基-α-氨基酸酐时,可以按照下列制备方法制备聚合物:氮气保护下,将本发明的化合物溶于无水溶剂,加入反应管,先后加入引发剂和单体,封闭体系,反应0.5~48小时,以便得到聚合物。
根据本发明的实施例,本发明上述实施例的化合物还可以作为催化剂用于催化N-羧酸酐(简称NCA,结构如式D-1所示,其中RX表示取代基)、N-取代甘氨酸-N-羧酸酐(简称NRX-NCA,结构如式D-2所示,其中RX表示取代基)、N-取代甘氨酸-N-硫代羧酸酐(简称NRX-NTA,结构如式D-3所示,其中RX表示取代基)等环状单体发生开环聚合反应,并得到聚合物产物,
Figure PCTCN2017106571-appb-000022
根据本发明的具体实施例,D-1中的RX可以为带保护基团或不带保护基团的氨基酸侧基,所述氨基酸可以为甘氨酸、丙氨酸、亮氨酸、缬氨酸、异亮氨酸、苯丙氨酸、γ-苄基-谷氨酸酯、β-苄基-天冬氨酸酯、ε-苄氧羰基-赖氨酸或其他侧链修饰的氨基酸。D-2和D-3中,RX可以为取代或未取代的烷基、苯基、烯基、炔基或寡聚乙二醇基,且所述烷基可以进一步地被乙烯基、苯基或者卤素取代,所述寡聚乙二醇的重复单元数小于9。
根据本发明的具体实施例,当本发明上述实施例的化合物催化NCA、NRX-NCA、NRX-NTA进行聚合反应时,所采用的无水溶剂可以为四氢呋喃、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜、乙腈、苯甲腈、N-甲基吡咯烷酮、甲苯、二氯甲烷和三氯甲烷中的至少之一;所采用的引发剂除上述引发剂外,还可以为胺类化合物,例如烷基胺、苄胺、末端氨基修饰的聚乙二醇或六甲基硅胺(HMDS)。
根据本发明的实施例,本发明提出的化合物可以用于催化采用同种或异种单体制备嵌段共聚物,制备方法为:氮气保护下,将本发明的化合物溶于无水溶剂,加入反应釜或反应管中,先后加入引发剂和一种单体(单体1),封闭体系,单体1转化完全后,继续加入另 一种单体(单体2),单体2转化完全后加入再一种单体(单体3),以便得到嵌段共聚物;其中,单体1、单体2和单体3为如前所述的单体,且单体1、单体2和单体3可以相同也可以不同。
根据本发明的实施例,本发明提出的化合物可以用于催化采用同种或异种单体制备无规共聚物,制备方法为:氮气保护下,将本发明的化合物溶于无水溶剂,加入反应釜或反应管中,再加入引发剂,将两种单体(单体a和单体b)混合均匀溶于无水溶剂,加入反应釜或反应管中,封闭体系,反应0.5~48小时,以便得到无规共聚物;其中,单体a、单体b为如前所述的单体,且单体a和单体b可以相同也可以不同。
根据本发明的实施例,该方法采用本发明上述实施例的化合物作为催化剂制备聚合物,该催化剂不含重金属元素,稳定性好,催化活性高且催化剂残留低;采用该方法制备得到的聚合物产品结构易于调控,种类丰富,同时产品不含重金属元素,生物相容性好,应用范围广,附加值高;同时,该方法条件温和,普适性好,适用于大规模生产。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
下面参考具体实施例,对本发明进行描述,需要说明的是,这些实施例仅仅是描述性的,而不以任何方式限制本发明。
实施例1
三(二甲基胺)磷氮烯的制备
Figure PCTCN2017106571-appb-000023
装有机械搅拌的1L三颈烧瓶中加入五氯化磷(41.7g,0.2mol,1.0equiv.),氮气保护下加入150mL无水二氯甲烷,置于-40℃低温浴中,保持剧烈搅拌。持续向反应体系中通入二甲胺气体(54g,1.2mol,6.0equiv.),维持溶液温度低于-30℃。通入完毕,使体系温度自然升至20℃,继续反应1小时。再次将体系温度降至-20℃,通入氨气至饱和,升至20℃,继续通氨气3小时,直至停止搅拌表面无沉淀生成。滤除不溶物,减压蒸馏除去溶剂,所得固体加入到400mL氢氧化钠水溶液(50wt%)中,室温反应1小时。反应结束,滤除不溶物,有机相减压蒸馏除去溶剂,得无色液体33g,收率为93%。
1H NMR(500MHz,CDCl3)δ:2.52(d,18H)。13C NMR(125MHz,CDCl3)δ:81.68。31P NMR(500MHz,CDCl3)δ:43.75。HRMS(ESI)calcd for C6H19N4P[M+H]+,179.1426,found179.1417。
实施例2
三(二乙基胺)磷氮烯的制备
Figure PCTCN2017106571-appb-000024
装有机械搅拌的1L三颈烧瓶中加入五氯化磷(41.7g,0.2mol,1.0equiv.),氮气保护下加入150mL无水二氯甲烷,置于-40℃低温浴中,保持剧烈搅拌。持续向反应体系中滴加二乙胺(124mL,1.2mol,6.0equiv.),维持溶液温度低于-30℃。通入完毕,使体系温度自然升至20℃,继续反应2小时。再次将体系温度降至0℃,通入氨气至饱和,升至20℃,继续通氨气3小时,直至停止搅拌表面无沉淀生成。滤除不溶物,减压蒸馏除去溶剂,所得固体加入到400mL氢氧化钠水溶液(50wt%)中,室温反应1小时。反应结束,滤除不溶物,有机相减压蒸馏除去溶剂,得无色液体52.0g,收率为99%。
1H NMR(500MHz,CDCl3)δ:2.58(t,12H),1.08(q,18H)。HRMS(ESI)calcd for C12H31N4P[M+H]+,263.2365,found 263.2359。
实施例3
三(二环己胺)磷氮烯的制备
Figure PCTCN2017106571-appb-000025
装有机械搅拌的1L三颈烧瓶中加入五氯化磷(41.7g,0.2mol,1.0equiv.),氮气保护下加入150mL无水二氯甲烷,置于-40℃低温浴中,保持剧烈搅拌。持续向反应体系中滴加二环己胺(239mL,1.2mol,6.0equiv.),维持溶液温度低于-30℃。通入完毕,使体系温度自然升至20℃,继续反应1小时。再次将体系温度降至0℃,通入氨气至饱和,升至20℃,继续通氨气3小时,直至停止搅拌表面无沉淀生成。滤除不溶物,减压蒸馏除去溶剂,所得固体加入到400mL氢氧化钠水溶液(50wt%)中,室温反应1小时。反应结束,滤除不溶物,有机相减压蒸馏除去溶剂,得无色液体88g,收率为75%。
1H NMR(500MHz,CDCl3)δ:2.57(m,6H),1.68-1.07(m,60H)。HRMS(ESI)calcd for C36H67N4P[M+H]+,587.5182,found 587.5173。
实施例4
三(二苯胺)磷氮烯的制备
Figure PCTCN2017106571-appb-000026
装有机械搅拌的1L三颈烧瓶中加入五氯化磷(41.7g,0.2mol,1.0equiv.),氮气保护下加入150mL无水二氯甲烷,置于-40℃低温浴中,保持剧烈搅拌。持续向反应体系中滴加二苯胺的二氯甲烷溶液(含二苯胺203g,1.2mol,6equiv.),维持溶液温度低于-30℃。通入完毕,使体系温度自然升至20℃,继续反应1小时。再次将体系温度降至-20℃,通入氨气至饱和,升至20℃,继续通氨气3小时,直至停止搅拌表面无沉淀生成。滤除不溶物,减压蒸馏除去溶剂,所得固体加入到400mL氢氧化钠水溶液(50wt%)中,室温反应1小时。反应结束,滤除不溶物,有机相减压蒸馏除去溶剂,得白色固体79g,收率为72%。
1H NMR(500MHz,CDCl3)δ:7.45(m,12H),6.98(m,6H),6.77(m,12H)。HRMS(ESI)calcd for C36H31N4P[M+H]+,551.2365,found 551.2352。
实施例5
三吡咯烷磷氮烯的制备
Figure PCTCN2017106571-appb-000027
装有机械搅拌的1L三颈烧瓶中加入五氯化磷(41.7g,0.2mol,1.0equiv.),氮气保护下加入150mL无水二氯甲烷,置于-40℃低温浴中,保持剧烈搅拌。持续向反应体系中滴加吡咯烷(99mL,1.2mol,6.0equiv.),维持溶液温度低于-30℃。通入完毕,使体系温度自然升至20℃,继续反应2小时。再次将体系温度降至-20℃,通入氨气至饱和,升至20℃,继续通氨气3小时,直至停止搅拌表面无沉淀生成。滤除不溶物,减压蒸馏除去溶剂,所得固体加入到400mL氢氧化钠水溶液(50wt%)中,室温反应1小时。反应结束,滤除不溶物,有机相减压蒸馏除去溶剂,得无色液体44g,收率为85%。
1H NMR(500MHz,CDCl3)δ:3.17(m,12H),1.68(m,12H)。HRMS(ESI)calcd for C12H25N4P[M+H]+,257.1895,found 257.1888。
实施例6
六[三(二甲基胺)磷氮烯]三聚磷腈的制备
Figure PCTCN2017106571-appb-000028
氮气保护下,六氯环三磷腈(0.7g,2.0mmol,1.0equiv.)溶于4mL甲苯中,置于-78℃低温浴中搅拌均匀,三(二甲基胺)磷氮烯(2.14g,12.0mmol,6equiv.)溶于4mL甲苯中, 缓慢滴加入反应体系中,然后加入缚酸剂三乙胺(1.21g,12.0mmol,6.0equiv.)。加热至回流,反应12小时。反应结束后,自然冷却至室温,滤除不溶物,浓缩得到白色固体1.63g,收率为68%。
1H NMR(500MHz,CDCl3)δ:2.63(d,108H)。13C NMR(125MHz,CDCl3)δ:37.53。31P NMR(500MHz,CDCl3)δ:47.02,34.87。HRMS(ESI)calcd for C36H108N27P9[M+H]+,1198.6998,found 1198.6949。
实施例7
六[三(二乙基胺)磷氮烯]三聚磷腈的制备
Figure PCTCN2017106571-appb-000029
氮气保护下,六氯环三磷腈(0.7g,2.0mmol,1.0equiv.)溶于4mL甲苯中,置于-78℃低温浴中搅拌均匀,三(二乙基胺)磷氮烯(3.15g,12.0mmol,6equiv.)溶于4mL甲苯中,缓慢滴加入反应体系中,然后加入缚酸剂三乙胺(1.21g,12.0mmol,6.0equiv.)。加热至回流,反应12小时。反应结束后,自然冷却至室温,滤除不溶物,浓缩得到白色固体1.74g,收率为51%。
1H NMR(500MHz,CDCl3)δ:2.65(t,72H),1.11(q,108H)。HRMS(ESI)calcd for C72H180N27P9[M+H]+,1703.2632,found 1703.2609。
实施例8
八[三(二甲基胺)磷氮烯]四聚磷腈的制备
Figure PCTCN2017106571-appb-000030
氮气保护下,八氯环四磷腈(2.32g,5.0mmol,1.0equiv.)溶于10mL甲苯中,置于-78℃低温浴中搅拌均匀,三(二甲基胺)磷氮烯(7.13g,40.0mmol,8equiv.)溶于10mL甲苯中,缓慢滴加入反应体系中,然后加入缚酸剂三乙胺(4.05g,40.0mmol,8.0equiv.)。加热至回流,反应12小时。反应结束后,自然冷却至室温,滤除不溶物,浓缩得到白色固体5.75g,收率为72%。
1H NMR(500MHz,CDCl3)δ:2.68(m,144H)。HRMS(ESI-TOF)calcd for C48H145N36P12 [M+H]+,1597.9304,found 1597.9275。
实施例9
六[三(二环己胺)磷氮烯]三聚磷腈的制备
Figure PCTCN2017106571-appb-000031
氮气保护下,六氯环三磷腈(0.7g,2.0mmol,1.0equiv.)溶于4mL甲苯中,置于-78℃低温浴中搅拌均匀,三(二环己胺)磷氮烯(7.04g,12.0mmol,6equiv.)溶于4mL甲苯中,缓慢滴加入反应体系中,然后加入缚酸剂三乙胺(1.21g,12.0mmol,6.0equiv.)。加热至回流,反应12小时。反应结束后,自然冷却至室温,滤除不溶物,浓缩得到白色固体4.97g,收率为68%。
1H NMR(500MHz,CDCl3)δ:2.62(m,36H),1.62-1.09(m,360H)。HRMS(ESI-TOF)calcd for C216H396N27P9[M+H]+,3650.9601,found 3650.9575。
实施例10
六[三(二苯胺)磷氮烯]三聚磷腈的制备
Figure PCTCN2017106571-appb-000032
氮气保护下,六氯环三磷腈(0.7g,2.0mmol,1.0equiv.)溶于4mL甲苯中,置于-78℃低温浴中搅拌均匀,三(二苯胺)磷氮烯(6.61g,12.0mmol,6equiv.)溶于4mL甲苯中,缓慢滴加入反应体系中,然后加入缚酸剂三乙胺(1.21g,12.0mmol,6.0equiv.)。加热至回流,反应12小时。反应结束后,自然冷却至室温,滤除不溶物,浓缩得到白色固体3.64g,收率为53%。
1H NMR(500MHz,CDCl3)δ:7.39(m,72H),6.88(m,36H),6.72(m,72H)。HRMS(ESI-TOF)calcd for C216H180N27P9[M+H]+,3433.2699,found 3433.2646。
实施例11
六[三吡咯烷磷氮烯]三聚磷腈的制备
Figure PCTCN2017106571-appb-000033
氮气保护下,六氯环三磷腈(0.7g,2.0mmol,1.0equiv.)溶于4mL甲苯中,置于-78℃低温浴中搅拌均匀,三吡咯烷磷氮烯(3.08g,12.0mmol,6equiv.)溶于4mL甲苯中,缓慢滴加入反应体系中,然后加入缚酸剂三乙胺(1.21g,12.0mmol,6.0equiv.)。加热至回流,反应12小时。反应结束后,自然冷却至室温,滤除不溶物,浓缩得到白色固体1.93g,收率为58%。
1H NMR(500MHz,CDCl3)δ:3.27(m,72H),1.72(m,72H)。HRMS(ESI)calcd for C72H144N27P9[M+H]+,1666.9815,found 1666.9798。
实施例12
五[三(二甲基胺)磷氮烯]一氯三聚磷腈的制备
Figure PCTCN2017106571-appb-000034
氮气保护下,六氯环三磷腈(0.7g,2.0mmol,1.0equiv.)溶于4mL甲苯中,置于-78℃低温浴中搅拌均匀,三(二甲基胺)磷氮烯(1.78g,10.0mmol,5.0equiv.)溶于4mL甲苯中,缓慢滴加入反应体系中,然后加入缚酸剂三乙胺(1.01g,10.0mmol,5.0equiv.)。加热至回流,反应12小时。反应结束后,自然冷却至室温,滤除不溶物,浓缩得到白色固体1.52g,收率为72%。
1H NMR(500MHz,CDCl3)δ:2.67(d,90H)。HRMS(ESI)calcd for C30H90ClN23P8[M+H]+,1056.5417,found 1056.5399。
实施例13
四[三(二甲基胺)磷氮烯]二氯三聚磷腈的制备
Figure PCTCN2017106571-appb-000035
氮气保护下,六氯环三磷腈(0.7g,2.0mmol,1.0equiv.)溶于4mL甲苯中,置于-78℃低温浴中搅拌均匀,三(二甲基胺)磷氮烯(1.43g,8.0mmol,4.0equiv.)溶于4mL甲苯中,缓慢滴加入反应体系中,然后加入缚酸剂三乙胺(0.81g,8.0mmol,4.0equiv.)。加热至回流,反应12小时。反应结束后,自然冷却至室温,滤除不溶物,浓缩得到白色固体1.24g,收率为68%。
1H NMR(500MHz,CDCl3)δ:2.68(d,72H)。HRMS(ESI)calcd for C24H72Cl2N19P7[M+H]+,914.3837,found 914.3819。
实施例14
三[三(二甲基胺)磷氮烯]三氯三聚磷腈的制备
Figure PCTCN2017106571-appb-000036
氮气保护下,六氯环三磷腈(0.7g,2.0mmol,1.0equiv.)溶于4mL甲苯中,置于-78℃低温浴中搅拌均匀,三(二甲基胺)磷氮烯(1.07g,6.0mmol,3.0equiv.)溶于4mL甲苯中,缓慢滴加入反应体系中,然后加入缚酸剂三乙胺(0.61g,6.0mmol,3.0equiv.),室温反应12小时。反应结束后,滤除不溶物,浓缩得到白色固体1.20g,收率为78%。
1H NMR(500MHz,CDCl3)δ:2.67(d,54H)。HRMS(ESI)calcd for C18H54Cl3N15P6[M+H]+,772.2256,found 772.2247。
实施例15
二[三(二甲基胺)磷氮烯]四氯三聚磷腈的制备
Figure PCTCN2017106571-appb-000037
氮气保护下,六氯环三磷腈(0.7g,2.0mmol,1.0equiv.)溶于4mL甲苯中,置于-78℃低温浴中搅拌均匀,三(二甲基胺)磷氮烯(0.71g,4.0mmol,2.0equiv.)溶于4mL甲苯中, 缓慢滴加入反应体系中,然后加入缚酸剂三乙胺(0.41g,4.0mmol,2.0equiv.),室温反应12小时。反应结束后,滤除不溶物,浓缩得到白色固体0.98g,收率为78%。
1H NMR(500MHz,CDCl3)δ:2.67(d,36H)。HRMS(ESI)calcd for C12H36Cl4N11P5[M+H]+,632.0646,found 632.0633。
实施例16
[三(二甲基胺)磷氮烯]五氯三聚磷腈的制备
Figure PCTCN2017106571-appb-000038
氮气保护下,六氯环三磷腈(0.7g,2.0mmol,1.0equiv.)溶于4mL甲苯中,置于-78℃低温浴中搅拌均匀,三(二甲基胺)磷氮烯(0.36g,2.0mmol,1.0equiv.)溶于4mL甲苯中,缓慢滴加入反应体系中,然后加入缚酸剂三乙胺(0.20g,2.0mmol,1.0equiv.),室温反应12小时。反应结束后,滤除不溶物,浓缩得到白色固体0.67g,收率为68%。
1H NMR(500MHz,CDCl3)δ:2.68(d,18H)。HRMS(ESI)calcd for C6H18Cl5N7P4[M+H]+,489.9066,found 489.9051。
实施例17
Figure PCTCN2017106571-appb-000039
氮气保护下,六氯环三磷腈(3.5g,10.0mmol,1.0equiv.)溶于30mL氯仿中,加热至回流,通入过量二甲胺,继续反应30分钟。冷却至室温,减压蒸馏除去溶剂,加入50mL轻石油醚提取产物,冷却至-10℃结晶,得白色晶体3.2g,收率80%。
1H NMR(500MHz,CDCl3)δ:2.62(s,36H)。HRMS(ESI)calcd for C12H36N9P3[M+H]+,400.2385,found 400.2346。
实施例18
Figure PCTCN2017106571-appb-000040
氮气保护下,六氯环三磷腈(3.5g,10.0mmol,1.0equiv.)溶于60mL甲苯中,加入30mL三乙胺和二苯胺(20.3g,120.0mmol,12.0equiv.),加热至回流。反应结束后,冷却,滤除不溶物,滤液减压蒸馏除去溶剂,得到的固体在正己烷中重结晶,得最终产物6.4g,收率53%。
1H NMR(500MHz,CDCl3)δ:7.16(m,60H)。HRMS(ESI)calcd for C72H60N9P3[M+H]+,1144.4263,found 1144.4236。
实施例19
Figure PCTCN2017106571-appb-000041
氮气保护下,六氯环三磷腈(3.5g,10.0mmol,1.0equiv.)溶于60mL甲苯中,加入30mL三乙胺和吡咯烷(9.9mL,120.0mmol,12.0equiv.),加热至回流。反应结束后,冷却,滤除不溶物,滤液减压蒸馏除去溶剂,得到的固体在正己烷中重结晶,得最终产物4.2g,收率75%。
1H NMR(500MHz,CDCl3)δ:3.16(m,24H),1.78(m,24H)。HRMS(ESI)calcd for C24H48N9P3[M+H]+,556.3324,found 556.3301。
实施例20
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备聚环氧丙烷
Figure PCTCN2017106571-appb-000042
氮气保护下,取5.0mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.50mmol)加入到100mL耐压反应釜中,高真空除去溶剂,加入苄醇(52μL,0.50mmol)和环氧丙烷(3.5mL,50.0mmol),封闭反应釜,置于预热100℃油浴中,反应至压力降为0。反应结束后,降至室温,加入四氢呋喃和少许醋酸,滤除不溶物,减压蒸馏除去溶剂,得最终聚合物聚环氧丙烷2.85g,转化率98%。Mn,GPC=3 500g mol-1,Mw/Mn=1.25。
实施例21
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备聚环氧丙烷
Figure PCTCN2017106571-appb-000043
氮气保护下,取2.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.25mmol)加入 到100mL耐压反应釜中,高真空除去溶剂,加入苄醇(26μL,0.25mmol)和环氧丙烷(3.5mL,50.0mmol),封闭反应釜,置于预热100℃油浴中,反应至压力降为0。反应结束后,降至室温,加入四氢呋喃和少许醋酸,滤除不溶物,减压蒸馏除去溶剂,得最终聚合物聚环氧丙烷2.85g,转化率98%。Mn,GPC=4800g mol-1,Mw/Mn=1.22。
实施例22
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备聚环氧丙烷
Figure PCTCN2017106571-appb-000044
氮气保护下,取0.1mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.01mmol)加入到100mL耐压反应釜中,高真空除去溶剂,加入苄醇(52μL,0.50mmol)和环氧丙烷(7.0mL,100.0mmol),封闭反应釜,置于预热100℃油浴中,反应至压力降为0。反应结束后,降至室温,加入四氢呋喃和少许醋酸,滤除不溶物,减压蒸馏除去溶剂,得最终聚合物聚环氧丙烷5.72g,转化率98%。Mn,GPC=9 300g mol-1,Mw/Mn=1.15。
实施例23
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备聚环氧乙烷
Figure PCTCN2017106571-appb-000045
氮气保护下,取5.0mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.50mmol)加入到100mL耐压反应釜中,高真空除去溶剂,加入苄醇(52μL,0.50mmol)和环氧乙烷(2.2g,50.0mmol),封闭反应釜,置于预热100℃油浴中,反应至压力降为0。反应结束后,降至室温,加入四氢呋喃和少许醋酸,滤除不溶物,减压蒸馏除去溶剂,得最终聚环氧乙烷2.15g,转化率98%。Mn,GPC=3800g mol-1,Mw/Mn=1.06。
实施例24
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备环氧丙烷环氧乙烷共聚物
Figure PCTCN2017106571-appb-000046
氮气保护下,取5.0mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.50mmol)加入到100mL耐压反应釜中,高真空除去溶剂,加入苄醇(52μL,0.50mmol)和环氧丙烷(3.5mL,50.0mmol),封闭反应釜,置于预热100℃油浴中,反应至压力降为0,然后加入环氧乙烷(2.2g,50.0mmol),继续反应至压力降为0。反应结束后,降至室温,加入四氢呋喃和少许醋酸,滤除不溶物,减压蒸馏除去溶剂,得最终环氧丙烷环氧乙烷共聚物5.01g,转化率 98%。Mn,GPC=7500g mol-1,Mw/Mn=1.11。
实施例25
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备环氧乙烷环氧丙烷共聚物
Figure PCTCN2017106571-appb-000047
氮气保护下,取5.0mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.50mmol)加入到100mL耐压反应釜中,高真空除去溶剂,加入苄醇(52μL,0.50mmol)和环氧乙烷(2.2g,50.0mmol),封闭反应釜,置于预热100℃油浴中,反应至压力降为0,然后加入环氧丙烷(3.5mL,50.0mmol),继续反应至压力降为0。反应结束后,降至室温,加入四氢呋喃和少许醋酸,滤除不溶物,减压蒸馏除去溶剂,得最终环氧乙烷环氧丙烷共聚物4.96g,转化率97%。Mn,GPC=7800g mol-1,Mw/Mn=1.13。
实施例26
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备聚己内酯
Figure PCTCN2017106571-appb-000048
氮气保护下,取0.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.05mmol)加入到50mL的Schlenk反应管中,加入苄醇(5.2μL,0.05mmol),室温反应10分钟,然后加入ε-己内酯(1.11mL,10.0mmol),氮气保护下室温反应12小时。反应结束后,加入四氢呋喃和少许醋酸,在100mL冷甲醇中沉淀2次,得最终聚合物聚己内酯1.05g,转化率92%。Mn,GPC=16 000g mol-1,Mw/Mn=1.21。
实施例27
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备聚丙交酯
Figure PCTCN2017106571-appb-000049
氮气保护下,取0.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.05mmol)加入到50mL的Schlenk反应管中,加入苄醇(5.2μL,0.05mmol),室温反应10分钟,然后加入丙交酯(1.44g,10.0mmol),氮气保护下室温反应12小时。反应结束后,加入四氢呋喃和少许醋酸,在100mL冷甲醇中沉淀2次,得最终聚合物聚丙交酯1.35g,转化率94%。Mn,GPC=16 800g mol-1,Mw/Mn=1.22。
实施例28
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备聚二甲基硅氧烷
Figure PCTCN2017106571-appb-000050
氮气保护下,取0.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.05mmol)加入到50mL的Schlenk反应管中,加入苄醇(5.2μL,0.05mmol),室温反应10分钟,然后加入八甲基环四硅氧烷(3.10mL,10.0mmol),置于预热80℃油浴中反应20分钟。反应结束后,加入四氢呋喃和少许三乙胺,在100mL冷甲醇中沉淀2次,得最终聚合物聚二甲基硅氧烷2.97g,转化率99%。Mn,GPC=83 900g mol-1,Mw/Mn=1.06。
实施例29
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备己内酯、丙交酯共聚物
Figure PCTCN2017106571-appb-000051
氮气保护下,取0.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.05mmol)加入到50mL的Schlenk反应管中,加入苄醇(5.2μL,0.05mmol),室温反应10分钟,然后加入ε-己内酯(1.11mL,10.0mmol),氮气保护下室温反应12小时。反应结束后,加入丙交酯(1.44g,10.0mmol),室温反应30分钟。反应结束后,加入四氢呋喃和少许醋酸,在100mL冷甲醇中沉淀2次,得最终己内酯、丙交酯共聚物2.09g,转化率81%。Mn,GPC=17 000 g mol-1,Mw/Mn=1.31。
实施例30
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备环氧丙烷、己内酯共聚物
Figure PCTCN2017106571-appb-000052
氮气保护下,取2.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.25mmol)加入到100mL耐压反应釜中,高真空除去溶剂,加入苄醇(26μL,0.25mmol)和环氧丙烷(3.5mL,50.0mmol),封闭反应釜,置于预热100℃油浴中,反应至压力降为0。反应结束后,降至 室温,加入2.5mL甲苯,搅拌均匀,然后加入ε-己内酯(1.11mL,10.0mmol),氮气保护下室温反应12小时。反应结束后,加入四氢呋喃和少许醋酸,在100mL冷甲醇中沉淀2次,得最终环氧丙烷、己内酯共聚物3.68g,转化率91%。Mn,GPC=8 700g mol-1,Mw/Mn=1.22。
实施例31
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备聚环氧丙烷
Figure PCTCN2017106571-appb-000053
氮气保护下,取2.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.25mmol)加入到100mL耐压反应釜中,高真空除去溶剂,加入乙二醇(13μL,0.25mmol)和环氧丙烷(3.5mL,50.0mmol),封闭反应釜,置于预热100℃油浴中,反应至压力降为0。反应结束后,降至室温,加入四氢呋喃和少许醋酸,滤除不溶物,减压蒸馏除去溶剂,得最终聚合物聚环氧丙烷2.87g,转化率99%。Mn,GPC=5 200g mol-1,Mw/Mn=1.22。
实施例32
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备聚环氧丙烷
Figure PCTCN2017106571-appb-000054
氮气保护下,取2.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.25mmol)加入到100mL耐压反应釜中,高真空除去溶剂,加入丙三醇(18μL,0.25mmol)和环氧丙烷(3.5mL,50.0mmol),封闭反应釜,置于预热100℃油浴中,反应至压力降为0。反应结束后,降至室温,加入四氢呋喃和少许醋酸,滤除不溶物,减压蒸馏除去溶剂,得最终聚合物聚环氧丙烷2.76g,转化率95%。Mn,GPC=5 100g mol-1,Mw/Mn=1.32。
实施例33
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备聚环氧丙烷
Figure PCTCN2017106571-appb-000055
氮气保护下,取2.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.25mmol)加入到100mL耐压反应釜中,高真空除去溶剂,加入环氧丙烷(3.5mL,50.0mmol),不加引发剂,封闭反应釜,置于预热100℃油浴中,反应至压力降为0。反应结束后,降至室温,加 入四氢呋喃和少许醋酸,滤除不溶物,减压蒸馏除去溶剂,得最终聚合物聚环氧丙烷2.76g,转化率95%。Mn,GPC=4 500g mol-1,Mw/Mn=1.56。
实施例34
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备聚环氧丙烷
Figure PCTCN2017106571-appb-000056
氮气保护下,取2.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.25mmol)加入到100mL耐压反应釜中,高真空除去溶剂,加入苄醇(26μL,0.25mmol)和环氧丙烷(17.5mL,250.0mmol),封闭反应釜,置于预热100℃油浴中,反应至压力降为0。反应结束后,降至室温,加入四氢呋喃和少许醋酸,滤除不溶物,减压蒸馏除去溶剂,得最终聚合物聚环氧丙烷11.91g,转化率82%。Mn,GPC=21 800g mol-1,Mw/Mn=1.25。
实施例35
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备聚环氧丙烷
Figure PCTCN2017106571-appb-000057
氮气保护下,取2.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.25mmol)加入到500mL耐压反应釜中,高真空除去溶剂,加入苄醇(26μL,0.25mmol)和环氧丙烷(175mL,2.5mol),封闭反应釜,置于预热100℃油浴中,反应至压力降为0。反应结束后,降至室温,加入四氢呋喃和少许醋酸,滤除不溶物,减压蒸馏除去溶剂,得最终聚合物聚环氧丙烷76.96g,转化率53%。Mn,GPC=25 500g mol-1,Mw/Mn=1.21。
实施例36
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备聚环氧丙烷
Figure PCTCN2017106571-appb-000058
氮气保护下,取2.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.25mmol)加入到500mL耐压反应釜中,高真空除去溶剂,加入苄醇(260μL,2.5mmol)和环氧丙烷(175mL,2.5mol),封闭反应釜,置于预热100℃油浴中,反应至压力降为0。反应结束后,降至室温,加入四氢呋喃和少许醋酸,滤除不溶物,减压蒸馏除去溶剂,得最终聚合物聚环氧丙烷108.91g,转化率75%。Mn,GPC=23 400g mol-1,Mw/Mn=1.27。
实施例37
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备聚环氧丙烷
Figure PCTCN2017106571-appb-000059
氮气保护下,取2.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.25mmol)加入到500mL耐压反应釜中,高真空除去溶剂,加入苄醇(2.6mL,25mmol)和环氧丙烷(175mL,2.5mol),封闭反应釜,置于预热100℃油浴中,反应至压力降为0。反应结束后,降至室温,加入四氢呋喃和少许醋酸,滤除不溶物,减压蒸馏除去溶剂,得最终聚合物聚环氧丙烷113.26g,转化率78%。Mn,GPC=3 700g mol-1,Mw/Mn=1.27。
实施例38
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备聚环氧丙烷
Figure PCTCN2017106571-appb-000060
氮气保护下,取2.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.25mmol)加入到100mL耐压反应釜中,高真空除去溶剂,加入苄醇(26μL,0.25mmol)和环氧丙烷(3.5mL,50.0mmol),封闭反应釜,置于预热50℃油浴中,反应至压力降为0。反应结束后,降至室温,加入四氢呋喃和少许醋酸,滤除不溶物,减压蒸馏除去溶剂,得最终聚合物聚环氧丙烷2.70g,转化率93%。Mn,GPC=5 300g mol-1,Mw/Mn=1.32。
实施例39
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备聚环氧丙烷
Figure PCTCN2017106571-appb-000061
氮气保护下,取2.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.25mmol)加入到100mL耐压反应釜中,高真空除去溶剂,加入苄醇(26μL,0.25mmol)和环氧丙烷(3.5mL,50.0mmol),封闭反应釜,置于预热120℃油浴中,反应至压力降为0。反应结束后,降至室温,加入四氢呋喃和少许醋酸,滤除不溶物,减压蒸馏除去溶剂,得最终聚合物聚环氧丙烷2.76g,转化率95%。Mn,GPC=5 300g mol-1,Mw/Mn=1.52。
实施例40
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备聚己内酯
Figure PCTCN2017106571-appb-000062
氮气保护下,取0.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.05mmol)加入 到50mL的Schlenk反应管中,加入乙二醇(2.6μL,0.05mmol),室温反应10分钟,然后加入ε-己内酯(1.11mL,10.0mmol),氮气保护下室温反应12小时。反应结束后,加入四氢呋喃和少许醋酸,在100mL冷甲醇中沉淀2次,得最终聚合物聚己内酯1.02g,转化率90%。Mn,GPC=16 600g mol-1,Mw/Mn=1.24。
实施例41
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备聚己内酯
Figure PCTCN2017106571-appb-000063
氮气保护下,取0.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.05mmol)加入到50mL的Schlenk反应管中,加入苄醇(5.2μL,0.05mmol),室温反应10分钟,然后加入ε-己内酯(0.55mL,5.0mmol),氮气保护下室温反应12小时。反应结束后,加入四氢呋喃和少许醋酸,在100mL冷甲醇中沉淀2次,得最终聚合物聚己内酯0.54g,转化率95%。Mn,GPC=8 700g mol-1,Mw/Mn=1.25。
实施例42
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备聚己内酯
Figure PCTCN2017106571-appb-000064
氮气保护下,取0.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.05mmol)加入到50mL的Schlenk反应管中,加入苄醇(5.2μL,0.05mmol),室温反应10分钟,然后加入ε-己内酯(5.5mL,50.0mmol),氮气保护下室温反应24小时。反应结束后,加入四氢呋喃和少许醋酸,在100mL冷甲醇中沉淀2次,得最终聚合物聚己内酯3.13g,转化率55%。Mn,GPC=28 700g mol-1,Mw/Mn=1.21。
实施例43
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备聚己内酯
Figure PCTCN2017106571-appb-000065
氮气保护下,取0.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.05mmol)加入到50mL的Schlenk反应管中,不加引发剂,加入ε-己内酯(1.11mL,10.0mmol),氮气保护下室温反应12小时。反应结束后,加入四氢呋喃和少许醋酸,在100mL冷甲醇中沉淀2次,得最终聚合物聚己内酯0.93g,转化率82%。Mn,GPC=16 300g mol-1,Mw/Mn=1.45。
实施例44
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备聚己内酯
Figure PCTCN2017106571-appb-000066
氮气保护下,取0.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.05mmol)加入到50mL的Schlenk反应管中,加入苄醇(52μL,0.5mmol),室温反应10分钟,然后加入ε-己内酯(27.5mL,250.0mmol),氮气保护下室温反应24小时。反应结束后,加入四氢呋喃和少许醋酸,在200mL冷甲醇中沉淀2次,得最终聚合物聚己内酯7.13g,转化率25%。Mn,GPC=31 700g mol-1,Mw/Mn=1.18。
实施例45
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备聚己内酯
Figure PCTCN2017106571-appb-000067
氮气保护下,取0.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.05mmol)加入到50mL的Schlenk反应管中,加入苄醇(5.2μL,0.05mmol),室温反应10分钟,放入冰水浴中,10分钟后加入ε-己内酯(1.11mL,10.0mmol),氮气保护下0℃反应12小时。反应结束后,加入四氢呋喃和少许醋酸,在100mL冷甲醇中沉淀2次,得最终聚合物聚己内酯0.97g,转化率85%。Mn,GPC=17 500g mol-1,Mw/Mn=1.16。
实施例46
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备聚己内酯
Figure PCTCN2017106571-appb-000068
氮气保护下,取0.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.05mmol)加入到50mL的Schlenk反应管中,加入苄醇(5.2μL,0.05mmol),室温反应10分钟,放入预热50℃油浴中,10分钟后加入ε-己内酯(1.11mL,10.0mmol),氮气保护下50℃反应12小时。反应结束后,加入四氢呋喃和少许醋酸,在100mL冷甲醇中沉淀2次,得最终聚合物聚己内酯1.08g,转化率95%。Mn,GPC=16 300g mol-1,Mw/Mn=1.31。
实施例47
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备聚己内酯
Figure PCTCN2017106571-appb-000069
氮气保护下,取0.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.05mmol)加入到50mL的Schlenk反应管中,加入苄醇(5.2μL,0.05mmol),室温反应10分钟,放入预热100℃油浴中,10分钟后加入ε-己内酯(1.11mL,10.0mmol),氮气保护下100℃反应12小时。反应结束后,加入四氢呋喃和少许醋酸,在100mL冷甲醇中沉淀2次,得最终聚合物聚己内酯1.12g,转化率99%。Mn,GPC=15 600g mol-1,Mw/Mn=1.36。
实施例48
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备聚己内酯
Figure PCTCN2017106571-appb-000070
氮气保护下,取0.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.05mmol)加入到50mL的Schlenk反应管中,减压除去溶剂,然后加入0.5mL四氢呋喃,溶解催化剂后加入苄醇(5.2μL,0.05mmol),室温反应10分钟,然后加入ε-己内酯(1.11mL,10.0mmol),氮气保护下室温反应12小时。反应结束后,加入四氢呋喃和少许醋酸,在100mL冷甲醇中沉淀2次,得最终聚合物聚己内酯1.12g,转化率98%。Mn,GPC=16 800g mol-1,Mw/Mn=1.25。
实施例49
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备聚己内酯
Figure PCTCN2017106571-appb-000071
氮气保护下,取0.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.05mmol)加入到50mL的Schlenk反应管中,减压除去溶剂,然后加入0.5mL二氯甲烷,溶解催化剂后加入苄醇(5.2μL,0.05mmol),室温反应10分钟,然后加入ε-己内酯(1.11mL,10.0mmol),氮气保护下室温反应12小时。反应结束后,加入四氢呋喃和少许醋酸,在100mL冷甲醇中沉淀2次,得最终聚合物聚己内酯0.97g,转化率85%。Mn,GPC=15 300g mol-1,Mw/Mn=1.28。
实施例50
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备环氧丙烷、己内酯共聚物
Figure PCTCN2017106571-appb-000072
氮气保护下,取2.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.25mmol)加入到100mL耐压反应釜中,高真空除去溶剂,加入乙二醇(13μL,0.25mmol)和环氧丙烷(3.5mL,50.0mmol),封闭反应釜,置于预热100℃油浴中,反应至压力降为0。反应结束后,降至室温,加入2.5mL甲苯,搅拌均匀,然后加入ε-己内酯(1.11mL,10.0mmol),氮气保护下室温反应12小时。反应结束后,加入四氢呋喃和少许醋酸,在100mL冷甲醇中沉淀2次,得最终环氧丙烷、己内酯共聚物3.55g,转化率88%。Mn,GPC=9 300g mol-1,Mw/Mn=1.25。
实施例51
以实施例12中制备得到的五[三(二甲基胺)磷氮烯]一氯三聚磷腈为催化剂制备聚环氧丙烷
Figure PCTCN2017106571-appb-000073
氮气保护下,取2.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.25mmol)加入到100mL耐压反应釜中,高真空除去溶剂,加入苄醇(26μL,0.25mmol)和环氧丙烷(3.5mL,50.0mmol),封闭反应釜,置于预热100℃油浴中,反应至压力降为0。反应结束后,降至室温,加入四氢呋喃和少许醋酸,滤除不溶物,减压蒸馏除去溶剂,得最终聚合物聚环氧丙烷2.70g,转化率93%。Mn,GPC=4 500g mol-1,Mw/Mn=1.42。
实施例52
以实施例13中制备得到的四[三(二甲基胺)磷氮烯]二氯三聚磷腈为催化剂制备聚环氧丙烷
Figure PCTCN2017106571-appb-000074
氮气保护下,取2.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.25mmol)加入到100mL耐压反应釜中,高真空除去溶剂,加入苄醇(26μL,0.25mmol)和环氧丙烷(3.5mL,50.0mmol),封闭反应釜,置于预热100℃油浴中,反应至压力降为0。反应结束后,降至室温,加入四氢呋喃和少许醋酸,滤除不溶物,减压蒸馏除去溶剂,得最终聚合物聚环氧丙烷2.75g,转化率95%。Mn,GPC=4 300g mol-1,Mw/Mn=1.45。
实施例53
以实施例14中制备得到的三[三(二甲基胺)磷氮烯]三氯三聚磷腈为催化剂制备聚环氧丙烷
Figure PCTCN2017106571-appb-000075
氮气保护下,取2.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.25mmol)加入到100mL耐压反应釜中,高真空除去溶剂,加入苄醇(26μL,0.25mmol)和环氧丙烷(3.5mL,50.0mmol),封闭反应釜,置于预热100℃油浴中,反应至压力降为0。反应结束后,降至室温,加入四氢呋喃和少许醋酸,滤除不溶物,减压蒸馏除去溶剂,得最终聚合物聚环氧丙烷2.76g,转化率95%。Mn,GPC=4 600g mol-1,Mw/Mn=1.40。
实施例54
以实施例15中制备得到的二[三(二甲基胺)磷氮烯]四氯三聚磷腈为催化剂制备聚环氧丙烷
Figure PCTCN2017106571-appb-000076
氮气保护下,取2.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.25mmol)加入到100mL耐压反应釜中,高真空除去溶剂,加入苄醇(26μL,0.25mmol)和环氧丙烷(3.5mL,50.0mmol),封闭反应釜,置于预热100℃油浴中,反应至压力降为0。反应结束后,降至室温,加入四氢呋喃和少许醋酸,滤除不溶物,减压蒸馏除去溶剂,得最终聚合物聚环氧丙烷2.55g,转化率87%。Mn,GPC=4 200g mol-1,Mw/Mn=1.36。
实施例55
以实施例16中制备得到的[三(二甲基胺)磷氮烯]五氯三聚磷腈为催化剂制备聚环氧丙烷
Figure PCTCN2017106571-appb-000077
氮气保护下,取2.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.25mmol)加入到100mL耐压反应釜中,高真空除去溶剂,加入苄醇(26μL,0.25mmol)和环氧丙烷(3.5mL,50.0mmol),封闭反应釜,置于预热100℃油浴中,反应12小时。反应结束后,降至室温,加入四氢呋喃和少许醋酸,滤除不溶物,减压蒸馏除去溶剂,得最终聚合物聚环氧丙烷2.15g,转化率74%。Mn,GPC=3 400g mol-1,Mw/Mn=1.32。
实施例56
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备聚己内酯、丙交酯无规共聚物
Figure PCTCN2017106571-appb-000078
氮气保护下,取0.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.05mmol)加入到50mL的Schlenk反应管中,加入苄醇(5.2μL,0.05mmol),室温反应10分钟,然后加入ε-己内酯(1.11mL,10.0mmol)和丙交酯(1.44g,10.0mmol),氮气保护下室温反应12小时。反应结束后,加入四氢呋喃和少许醋酸,在100mL冷甲醇中沉淀2次,得最终己内酯、丙交酯无规共聚物2.21g,转化率86%。Mn,GPC=19200g mol-1,Mw/Mn=1.27。
实施例57
以实施例17中制备得到的六(二甲基胺)三聚磷腈为催化剂制备聚环氧丙烷
Figure PCTCN2017106571-appb-000079
氮气保护下,取2.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.25mmol)加入到100mL耐压反应釜中,高真空除去溶剂,加入苄醇(26μL,0.25mmol)和环氧丙烷(3.5mL,50.0mmol),封闭反应釜,置于预热100℃油浴中,反应至压力降为0。反应结束后,降至室温,加入四氢呋喃和少许醋酸,滤除不溶物,减压蒸馏除去溶剂,得最终聚合物聚环氧丙烷2.72g,转化率94%。Mn,GPC=4 400g mol-1,Mw/Mn=1.35。
实施例58
以实施例17中制备得到的六(二甲基胺)三聚磷腈为催化剂制备聚己内酯
Figure PCTCN2017106571-appb-000080
氮气保护下,取0.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.05mmol)加入到50mL的Schlenk反应管中,加入苄醇(5.2μL,0.05mmol),室温反应10分钟,然后加入ε-己内酯(1.11mL,10.0mmol),氮气保护下室温反应24小时。反应结束后,加入四氢呋喃和少许醋酸,在100mL冷甲醇中沉淀2次,得最终聚合物聚己内酯1.00g,转化率88%。Mn,GPC=17 100g mol-1,Mw/Mn=1.25。
实施例59
以实施例17中制备得到的六(二甲基胺)三聚磷腈为催化剂制备环氧丙烷、己内酯共聚物
Figure PCTCN2017106571-appb-000081
氮气保护下,取2.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.25mmol)加入到100mL耐压反应釜中,高真空除去溶剂,加入苄醇(26μL,0.25mmol)和环氧丙烷(3.5mL,50.0mmol),封闭反应釜,置于预热100℃油浴中,反应至压力降为0。反应结束后,降至室温,加入2.5mL甲苯,搅拌均匀,然后加入ε-己内酯(1.11mL,10.0mmol),氮气保护下室温反应12小时。反应结束后,加入四氢呋喃和少许醋酸,在100mL冷甲醇中沉淀2次,得最终环氧丙烷、己内酯共聚物3.15g,转化率78%。Mn,GPC=8 700g mol-1,Mw/Mn=1.29。
实施例60
以实施例18中制备得到的六(二苯胺)三聚磷腈为催化剂制备聚己内酯
Figure PCTCN2017106571-appb-000082
氮气保护下,取0.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.05mmol)加入到50mL的Schlenk反应管中,加入苄醇(5.2μL,0.05mmol),室温反应10分钟,然后加入ε-己内酯(1.11mL,10.0mmol),氮气保护下室温反应24小时。反应结束后,加入四氢呋喃和少许醋酸,在100mL冷甲醇中沉淀2次,得最终聚合物聚己内酯0.74g,转化率65%。Mn,GPC=13 200g mol-1,Mw/Mn=1.32。
实施例61
以实施例19中制备得到的六吡咯烷三聚磷腈为催化剂制备聚己内酯
Figure PCTCN2017106571-appb-000083
氮气保护下,取0.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.05mmol)加入到50mL的Schlenk反应管中,加入苄醇(5.2μL,0.05mmol),室温反应10分钟,然后加入ε-己内酯(1.11mL,10.0mmol),氮气保护下室温反应24小时。反应结束后,加入四氢呋喃和少许醋酸,在100mL冷甲醇中沉淀2次,得最终聚合物聚己内酯1.02g,转化率90%。Mn,GPC=16 500g mol-1,Mw/Mn=1.23。
实施例62
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备聚γ-苄酯-L-谷氨酸
Figure PCTCN2017106571-appb-000084
氮气保护下,取0.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.05mmol)加入到50mL的Schlenk反应瓶中,加入苄醇(5.2μL,0.05mmol)和13.1mLγ-苄基-谷氨酸-N-羧酸酐(BLG-NCA)溶液(100mg/mL的DMF溶液,含BLG-NCA 5.0mmol),置于0℃低温恒温槽中。反应结束后,升至室温,加入乙醚沉淀、离心,真空干燥除去溶剂,得最终聚合物聚γ-苄酯-L-谷氨酸(PBLG)1.05g,转化率96%。Mn,GPC=17 300g mol-1,Mw/Mn=1.41。
实施例63
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备聚γ-苄酯-L-谷氨酸
Figure PCTCN2017106571-appb-000085
氮气保护下,取0.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.05mmol)加入到50mL的Schlenk反应瓶中,加入苄醇(5.2μL,0.05mmol)和6.55mLγ-苄基-谷氨酸-N-羧酸酐(BLG-NCA)溶液(100mg/mL的DMF溶液,含BLG-NCA 2.5mmol),置于0℃低温恒温槽中。反应结束后,升至室温,加入乙醚沉淀、离心,真空干燥除去溶剂,得最终聚合物聚γ-苄酯-L-谷氨酸(PBLG)0.52g,转化率95%。Mn,GPC=9 500g mol-1,Mw/Mn=1.49。
实施例64
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备聚γ-苄酯-L-谷氨酸
Figure PCTCN2017106571-appb-000086
氮气保护下,取50μL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.005mmol)加入到50mL的Schlenk反应瓶中,加入苄醇(5.2μL,0.05mmol)和13.1mLγ-苄基-谷氨酸-N-羧酸酐(BLG-NCA)溶液(100mg/mL的DMF溶液,含BLG-NCA 5.0mmol),置于0℃低温恒温槽中。反应结束后,升至室温,加入乙醚沉淀、离心,真空干燥除去溶剂,得最终聚合物聚γ-苄酯-L-谷氨酸(PBLG)1.02g,转化率93%。Mn,GPC=18 600g mol-1,Mw/Mn=1.35。
实施例65
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备聚ε-苄氧羰基-赖氨酸
Figure PCTCN2017106571-appb-000087
氮气保护下,取0.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.05mmol)加入到50mL的Schlenk反应瓶中,加入苄醇(5.2μL,0.05mmol)和15.3mLε-苄氧羰基-赖氨酸-N-羧酸酐(ZLL-NCA)溶液(100mg/mL的DMF溶液,含ZLL-NCA 5.0mmol),置于0℃低温恒温槽中。反应结束后,升至室温,加入乙醚沉淀、离心,真空干燥除去溶剂,得最终聚合物聚ε-苄氧羰基-赖氨酸(PZLL)1.24g,转化率95%。Mn,GPC=16 900g mol-1,Mw/Mn=1.36。
实施例66
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备聚ε-苄氧羰基-赖氨酸
Figure PCTCN2017106571-appb-000088
氮气保护下,取0.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.05mmol)加入到50mL的Schlenk反应瓶中,加入苄醇(5.2μL,0.05mmol)和7.65mLε-苄氧羰基-赖氨酸-N-羧酸酐(ZLL-NCA)溶液(100mg/mL的DMF溶液,含ZLL-NCA 2.5mmol),置于0℃低温恒温槽中。反应结束后,升至室温,加入乙醚沉淀、离心,真空干燥除去溶剂,得最终聚合物聚ε-苄氧羰基-赖氨酸(PZLL)0.61g,转化率94%。Mn,GPC=9 800g mol-1,Mw/Mn=1.45。
实施例67
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备聚ε-苄氧羰基-赖氨酸
Figure PCTCN2017106571-appb-000089
氮气保护下,取50μL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.005mmol)加入到50mL的Schlenk反应瓶中,加入苄醇(5.2μL,0.05mmol)和15.3mLε-苄氧羰基-赖氨酸-N-羧酸酐(ZLL-NCA)溶液(100mg/mL的DMF溶液,含ZLL-NCA 5.0mmol),置于0℃低温恒温槽中。反应结束后,升至室温,加入乙醚沉淀、离心,真空干燥除去溶剂,得最终聚合物聚ε-苄氧羰基-赖氨酸(PZLL)1.22g,转化率94%。Mn,GPC=18 500g mol-1,Mw/Mn=1.24。
实施例68
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备聚γ-苄酯-L-谷氨酸
Figure PCTCN2017106571-appb-000090
氮气保护下,取0.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.05mmol)加入到50mL的Schlenk反应瓶中,加入0.5mL六甲基硅胺(HMDS)溶液(0.1mol/L的DMF溶液,0.05mmol)和6.55mLγ-苄基-谷氨酸-N-羧酸酐(BLG-NCA)溶液(100mg/mL的DMF溶液,含BLG-NCA 2.5mmol),置于0℃低温恒温槽中。反应结束后,升至室温,加入乙醚沉淀、离心,真空干燥除去溶剂,得最终聚合物聚γ-苄酯-L-谷氨酸(PBLG)1.07g,转化率97%。Mn,GPC=8 900g mol-1,Mw/Mn=1.32。
实施例69
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备聚ε-苄氧羰基-赖氨酸
Figure PCTCN2017106571-appb-000091
氮气保护下,取0.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.05mmol)加入到50mL的Schlenk反应瓶中,加入0.5mL六甲基硅胺(HMDS)溶液(0.1mol/L的DMF溶液,0.05mmol)和15.3mLε-苄氧羰基-赖氨酸-N-羧酸酐(ZLL-NCA)溶液(100mg/mL的DMF溶液,含ZLL-NCA 5.0mmol),置于0℃低温恒温槽中。反应结束后,升至室温,加入乙醚沉淀、离心,真空干燥除去溶剂,得最终聚合物聚ε-苄氧羰基-赖氨酸(PZLL)1.24g,转化率95%。Mn,GPC=18 200g mol-1,Mw/Mn=1.31。
实施例70
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备聚肌氨酸
Figure PCTCN2017106571-appb-000092
氮气保护下,取0.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.05mmol)加入到50mL的Schlenk反应瓶中,加入苄醇(5.2μL,0.05mmol)和5.75mL NMethyl-NCA溶液(100mg/mL的DMF溶液,含NMethyl-NCA 5.0mmol),置于0℃低温恒温槽中。反应结束后,升至室温,加入乙醚沉淀、离心,真空干燥除去溶剂,得最终聚合物聚肌氨酸0.32g,转化率91%。Mn,GPC=17 300g mol-1,Mw/Mn=1.41。
实施例71
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备聚肌氨酸
Figure PCTCN2017106571-appb-000093
氮气保护下,取0.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.05mmol)加入到50mL的Schlenk反应瓶中,加入0.5mL六甲基硅胺(HMDS)溶液(0.1mol/L的DMF溶液,0.05mmol)和5.75mL NMethyl-NCA溶液(100mg/mL的DMF溶液,含NMethyl-NCA5.0mmol),置于0℃低温恒温槽中。反应结束后,升至室温,加入乙醚沉淀、离心,真空干燥除去溶剂,得最终聚合物聚肌氨酸0.32g,转化率91%。Mn,GPC=6 700g mol-1,Mw/Mn=1.36。
实施例72
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备聚肌氨酸
Figure PCTCN2017106571-appb-000094
氮气保护下,取0.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.05mmol)加入到50mL的Schlenk反应瓶中,加入苄醇(5.2μL,0.05mmol)和6.55mL NMethyl-NCA溶液(100mg/mL的DMF溶液,含NMethyl-NTA 5.0mmol),40℃下反应。反应结束后,降至室温,加入乙醚沉淀、离心,真空干燥除去溶剂,得最终聚合物聚肌氨酸0.33g,转化率93%。Mn,GPC=6 300g mol-1,Mw/Mn=1.32。
实施例73
以实施例6中制备得到的六[三(二甲基胺)磷氮烯]三聚磷腈为催化剂制备聚谷氨酸和肌氨酸的共聚物
Figure PCTCN2017106571-appb-000095
氮气保护下,取0.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.05mmol)加入到50mL的Schlenk反应瓶中,加入苄醇(5.2μL,0.05mmol)和6.55mLγ-苄基-谷氨酸-N-羧酸酐(BLG-NCA)溶液(100mg/mL的DMF溶液,含BLG-NCA 2.5mmol),NCA反应完全后,加入3.28mL NMethyl-NCA溶液(100mg/mL的DMF溶液,含NMethyl-NCA2.5mmol),40℃下反应。反应结束后,升至室温,加入乙醚沉淀、离心,真空干燥除去溶剂,得最终聚谷氨酸和肌氨酸的共聚物0.66g,转化率92%。Mn,GPC=10 300g mol-1,Mw/Mn=1.72。
实施例74
以实施例12中制备得到的五[三(二甲基胺)磷氮烯]一氯三聚磷腈为催化剂制备聚ε-苄氧羰基-赖氨酸
Figure PCTCN2017106571-appb-000096
氮气保护下,取0.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.05mmol)加入到50mL的Schlenk反应瓶中,加入0.5mL六甲基硅胺(HMDS)溶液(0.1mol/L的DMF溶液,0.05mmol)和15.3mLε-苄氧羰基-赖氨酸-N-羧酸酐(ZLL-NCA)溶液(100mg/mL的DMF溶液,含ZLL-NCA 5.0mmol),置于0℃低温恒温槽中。反应结束后,升至室温,加入乙醚沉淀、离心,真空干燥除去溶剂,得最终聚合物聚ε-苄氧羰基-赖氨酸(PZLL)1.21g,转化率92%。Mn,GPC=17 700g mol-1,Mw/Mn=1.33。
实施例75
以实施例13中制备得到的四[三(二甲基胺)磷氮烯]二氯三聚磷腈为催化剂制备聚ε-苄氧羰基-赖氨酸
Figure PCTCN2017106571-appb-000097
氮气保护下,取0.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.05mmol)加入到50mL的Schlenk反应瓶中,加入0.5mL六甲基硅胺(HMDS)溶液(0.1mol/L的DMF溶液,0.05mmol)和15.3mLε-苄氧羰基-赖氨酸-N-羧酸酐(ZLL-NCA)溶液(100mg/mL的DMF溶液,含ZLL-NCA 5.0mmol),置于0℃低温恒温槽中。反应结束后,升至室温,加入乙醚沉淀、离心,真空干燥除去溶剂,得最终聚合物聚ε-苄氧羰基-赖氨酸(PZLL)1.23g,转化率94%。Mn,GPC=17 900g mol-1,Mw/Mn=1.31。
实施例76
以实施例14中制备得到的三[三(二甲基胺)磷氮烯]三氯三聚磷腈为催化剂制备聚ε-苄氧羰基-赖氨酸
Figure PCTCN2017106571-appb-000098
氮气保护下,取0.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.05mmol)加入到50mL的Schlenk反应瓶中,加入0.5mL六甲基硅胺(HMDS)溶液(0.1mol/L的DMF溶液,0.05mmol)和15.3mLε-苄氧羰基-赖氨酸-N-羧酸酐(ZLL-NCA)溶液(100mg/mL的DMF溶液,含ZLL-NCA 5.0mmol),置于0℃低温恒温槽中。反应结束后,升至室温,加入乙醚沉淀、离心,真空干燥除去溶剂,得最终聚合物聚ε-苄氧羰基-赖氨酸(PZLL)1.19g,转化率91%。Mn,GPC=17 400g mol-1,Mw/Mn=1.35。
实施例77
以实施例15中制备得到的二[三(二甲基胺)磷氮烯]四氯三聚磷腈为催化剂制备聚ε-苄氧羰基-赖氨酸
Figure PCTCN2017106571-appb-000099
氮气保护下,取0.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.05mmol)加入到50mL的Schlenk反应瓶中,加入0.5mL六甲基硅胺(HMDS)溶液(0.1mol/L的DMF溶液,0.05mmol)和15.3mLε-苄氧羰基-赖氨酸-N-羧酸酐(ZLL-NCA)溶液(100mg/mL的DMF溶液,含ZLL-NCA 5.0mmol),置于0℃低温恒温槽中。反应结束后,升至室温,加入乙醚沉淀、离心,真空干燥除去溶剂,得最终聚合物聚ε-苄氧羰基-赖氨酸(PZLL)1.23g,转化率94%。Mn,GPC=17 900g mol-1,Mw/Mn=1.31。
实施例78
以实施例16中制备得到的[三(二甲基胺)磷氮烯]五氯三聚磷腈为催化剂制备聚ε-苄氧羰基-赖氨酸
Figure PCTCN2017106571-appb-000100
氮气保护下,取0.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.05mmol)加入到50mL的Schlenk反应瓶中,加入0.5mL六甲基硅胺(HMDS)溶液(0.1mol/L的DMF溶液,0.05mmol)和15.3mLε-苄氧羰基-赖氨酸-N-羧酸酐(ZLL-NCA)溶液(100mg/mL的DMF溶液,含ZLL-NCA 5.0mmol),置于0℃低温恒温槽中。反应结束后,升至室温,加入乙醚沉淀、离心,真空干燥除去溶剂,得最终聚合物聚ε-苄氧羰基-赖氨酸(PZLL)1.20g,转化率92%。Mn,GPC=17 300g mol-1,Mw/Mn=1.32。
实施例79
以六氯环三磷腈为催化剂制备聚ε-苄氧羰基-赖氨酸
Figure PCTCN2017106571-appb-000101
氮气保护下,取0.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.05mmol)加入到50mL的Schlenk反应瓶中,加入0.5mL六甲基硅胺(HMDS)溶液(0.1mol/L的DMF溶液,0.05mmol)和15.3mLε-苄氧羰基-赖氨酸-N-羧酸酐(ZLL-NCA)溶液(100mg/mL的DMF溶液,含ZLL-NCA 5.0mmol),置于0℃低温恒温槽中。反应结束后,升至室温,加入乙醚沉淀、离心,真空干燥除去溶剂,得最终聚合物聚ε-苄氧羰基-赖氨酸(PZLL)1.24g,转化率95%。Mn,GPC=16 900g mol-1,Mw/Mn=1.36。
实施例90
以六(二甲基胺)三聚膦腈为催化剂制备聚ε-苄氧羰基-赖氨酸
Figure PCTCN2017106571-appb-000102
氮气保护下,取0.5mL催化剂溶液(0.1mol/L甲苯溶液,含催化剂0.05mmol)加入到50mL的Schlenk反应瓶中,加入0.5mL六甲基硅胺(HMDS)溶液(0.1mol/L的DMF溶液,0.05mmol)和15.3mLε-苄氧羰基-赖氨酸-N-羧酸酐(ZLL-NCA)溶液(100mg/mL的DMF溶液,含ZLL-NCA 5.0mmol),置于0℃低温恒温槽中。反应结束后,升至室温,加入乙醚沉淀、离心,真空干燥除去溶剂,得最终聚合物聚ε-苄氧羰基-赖氨酸(PZLL)1.17g,转化率89%。Mn,GPC=16 500g mol-1,Mw/Mn=1.28。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和 组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (25)

  1. 一种化合物,其特征在于,所述化合物为式(I)所示的化合物或式(I)所示化合物的溶剂化物,
    Figure PCTCN2017106571-appb-100001
    其中,
    A为由
    Figure PCTCN2017106571-appb-100002
    形成的六元环或八元环,
    B为至少一个任选取代的C1-6烷基氨基、任选取代的C1-6环烷基氨基、任选取代的芳基氨基、
    Figure PCTCN2017106571-appb-100003
    或卤素,并且B与A中的P原子相连,
    R为任选取代的C1-6烷基、任选取代的C1-6环烷基、任选取代的芳基、任选取代的苄基,或者R与相连的N原子形成C1-6杂环烷基。
  2. 根据权利要求1所述的化合物,其特征在于,
    B为至少一个
    Figure PCTCN2017106571-appb-100004
    或Cl,
    R为甲基、乙基、异丙基、正丁基、环己基、苯基、苄基,或者R与相连的N原子形成
    Figure PCTCN2017106571-appb-100005
  3. 根据权利要求1所述的化合物,其特征在于,所述化合物为下列至少之一所示的化合物或下列至少之一所示化合物的溶剂化物:
    Figure PCTCN2017106571-appb-100006
    Figure PCTCN2017106571-appb-100007
  4. 一种制备权利要求1~3任一项所述的化合物的方法,其特征在于,包括:
    (a)使五氯化磷与式X所示化合物和氨气进行接触,以便获得式1所示化合物;
    (b)使所述式1所示化合物与碱进行接触,以便获得式2所示化合物;
    (c)使所述式X所示化合物或者式2所示化合物与六氯环三磷腈或八氯环四磷腈进行接触,以便获得权利要求1~3任一项所述的化合物,
    NHR2
    X
    Figure PCTCN2017106571-appb-100008
    其中,R为权利要求1~3中任一项所限定的。
  5. 根据权利要求4所述的方法,其特征在于,在步骤(a)中,所述接触是在第一无水溶剂中进行的。
  6. 根据权利要求5所述的方法,其特征在于,在步骤(a)中,所述第一无水溶剂包括选自苯、甲苯、二甲苯、二氯甲烷和四氢呋喃中的至少之一,优选二氯甲烷。
  7. 根据权利要求4所述的方法,其特征在于,在步骤(a)中,所述接触是在-80~0摄氏度下进行1~6小时完成的。
  8. 根据权利要求4所述的方法,其特征在于,在步骤(a)中,所述五氯化磷与所述式X所示化合物是以1:(3~10)的摩尔比进行所述接触的。
  9. 根据权利要求4所述的方法,其特征在于,在步骤(b)中,所述碱为氢氧化钠。
  10. 根据权利要求9所述的方法,其特征在于,在步骤(b)中,所述碱为浓度为20~70wt%的氢氧化钠水溶液,优选50wt%的氢氧化钠水溶液。
  11. 根据权利要求4所述的方法,其特征在于,在步骤(c)中,所述接触是在存在缚酸剂的条件下在第二无水溶剂中进行的。
  12. 根据权利要求11所述的方法,其特征在于,在步骤(c)中,所述第二无水溶剂包括选自苯、甲苯、二甲苯、氯苯和四氢呋喃中的至少之一,优选甲苯。
  13. 根据权利要求11所述的方法,其特征在于,在步骤(c)中,所述六氯环三磷腈或所述八氯环四磷腈、所述式2所示化合物、所述缚酸剂的摩尔比为1:(1~8):(1~8)。
  14. 根据权利要求4所述的方法,其特征在于,在步骤(c)中,所述缚酸剂包括选自三乙胺、碳酸钠、碳酸氢钠、氢氧化钠和氢氧化钾的至少之一,优选三乙胺。
  15. 根据权利要求4所述的方法,其特征在于,在步骤(c)中,所述接触是在40~150摄氏度下进行3~18小时完成的。
  16. 一种制备权利要求1~3任一项所述的化合物的方法,其特征在于,包括:
    在氮气氛围下,将五氯化磷置于无水二氯甲烷中,在-80~0摄氏度下,向无水二氯甲烷中加入式X所示化合物,反应1~6小时,以便得到中间体;
    在-80~0摄氏度下,向所述中间体中持续通入氨气1~6小时并进行过滤处理,以便得到第一滤液,将所述第一滤液蒸馏除去溶剂,以便得到式1所示化合物;
    将所述式1所示化合物与50wt%氢氧化钠水溶液混合并反应1~5小时,然后进行过滤处理,以便得到第二滤液,将所述第二滤液蒸馏除去溶剂,以便得到式2所示化合物;
    在氮气氛围下,将六氯环三磷腈或八氯环四磷腈与所述式X所示化合物或者所述式2所示化合物和三乙胺混合,在无水甲苯中回流反应3~18小时,然后进行过滤处理,以便得到第三滤液,将所述第三滤液蒸馏除去溶剂,以便得到权利要求1~3任一项所述的化合物,
    Figure PCTCN2017106571-appb-100009
    其中,R为权利要求1~3中任一项所限定的。
  17. 权利要求1~3任一项所述化合物作为催化剂在聚合反应中的用途。
  18. 一种制备聚合物的方法,其特征在于,采用权利要求1~3任一项所述化合物作为催化剂。
  19. 根据权利要求18所述的方法,其特征在于,包括:
    将所述催化剂与至少一种单体接触,以便获得所述聚合物。
  20. 根据权利要求19所述的方法,其特征在于,所述单体包括环氧乙烷、环氧丙烷、环氧氯丙烷、1,2-环氧丁烷、乙交酯、丙交酯、γ-丁内酯、δ-戊内酯、ε-己内酯、β-内酰胺、甲基取代β-内酰胺、丁内酰胺、己内酰胺、三亚甲基环碳酸酯、2,2-二甲基三亚甲基环碳酸酯、1,3-二氧杂环己烷-2-酮、三聚甲醛、五元环环磷酸酯、六元环环磷酸酯、八甲基环四硅氧烷、六甲基环三硅氧烷、丙烯酰胺、甲基取代丙烯酰胺、丙烯酸甲酯、甲基丙烯酸甲酯或N-羧基-α-氨基酸酐。
  21. 根据权利要求19所述的方法,所述接触是在存在引发剂的条件下在无水溶剂中进行的。
  22. 根据权利要求21所述的方法,其特征在于,所述引发剂包括选自甲醇、乙醇、异丙醇、正丁醇、叔丁醇、乙二醇、丙三醇、胆固醇、苯酚、苄醇、正丁酸、正戊酸、正己 酸、正庚酸、正辛酸、正癸酸、十二酸、十四酸、十六酸、三乙胺、三正丁胺、三己胺、苯甲酰胺、聚乙二醇、聚氧化丙烯二醇和聚四氢呋喃二醇中的至少之一。
  23. 根据权利要求21所述的方法,其特征在于,所述无水溶剂包括选自苯、甲苯、正己烷、四氢呋喃和二氯甲烷中的至少之一,优选甲苯。
  24. 根据权利要求21~23中任一项所述的方法,其特征在于,所述催化剂、所述引发剂和所述单体的摩尔比为1:(0~200):(50~100000),优选1:(1~10):(100~2000)。
  25. 根据权利要求19所述的方法,其特征在于,所述接触是在-40~150摄氏度下进行0.1~72小时完成的,优选在20~100摄氏度下进行0.5~48小时。
PCT/CN2017/106571 2016-12-26 2017-10-17 寡聚磷腈化合物及其制备方法和用途 WO2018121005A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019555531A JP7092381B2 (ja) 2016-12-26 2017-10-17 オリゴホスファゼン化合物及びその調製方法と使用
US16/446,466 US11242362B2 (en) 2016-12-26 2019-06-19 Phosphazene compound, preparation method and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201611218507.X 2016-12-26
CN201611218507.XA CN108239117B (zh) 2016-12-26 2016-12-26 环状寡聚磷腈化合物及其制备方法和用途
CN201611219031.1A CN108239118B (zh) 2016-12-26 2016-12-26 环状寡聚磷腈化合物及其制备方法和用途
CN201611219031.1 2016-12-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/446,466 Continuation US11242362B2 (en) 2016-12-26 2019-06-19 Phosphazene compound, preparation method and use thereof

Publications (1)

Publication Number Publication Date
WO2018121005A1 true WO2018121005A1 (zh) 2018-07-05

Family

ID=62706859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106571 WO2018121005A1 (zh) 2016-12-26 2017-10-17 寡聚磷腈化合物及其制备方法和用途

Country Status (3)

Country Link
US (1) US11242362B2 (zh)
JP (1) JP7092381B2 (zh)
WO (1) WO2018121005A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114276524B (zh) * 2021-12-27 2023-04-21 青岛科技大学 一种含双键侧基的高分子量可降解可循环聚酯的制备方法
CN114316277B (zh) * 2022-01-06 2023-01-06 齐鲁工业大学 一种固体磷腈类化合物、制备方法及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3475394A (en) * 1964-10-21 1969-10-28 Toray Industries Process for polymerizing alpha-olefins and polymerization catalyst therefor containing an organoaluminum sulfate
US3711542A (en) * 1969-12-18 1973-01-16 Moleculon Res Corp N-methylol phosphazene compounds
WO1984003284A1 (en) * 1983-02-15 1984-08-30 Univ Groningen Aziridino derivative of a cyclophosphazene compound
JP2002265614A (ja) * 2001-03-09 2002-09-18 Sumitomo Bakelite Co Ltd アニオン潜伏性触媒、およびそれを用いた熱硬化性樹脂組成物
CN104650147A (zh) * 2014-07-30 2015-05-27 青岛科技大学 一种简便高效的六苯胺基环三磷腈的合成方法
CN105027314A (zh) * 2013-03-05 2015-11-04 国立大学法人九州大学 电荷传输材料、主体材料、薄膜及有机发光元件
WO2016116202A1 (de) * 2015-01-19 2016-07-28 Siemens Aktiengesellschaft Aminophosphazen-basen als n-dotierstoffe in der organischen elektronik

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL130568C (zh) * 1965-08-27
CN105237759B (zh) 2015-11-09 2017-07-07 淄博德信联邦化学工业有限公司 高拉伸弹性体用聚醚多元醇及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3475394A (en) * 1964-10-21 1969-10-28 Toray Industries Process for polymerizing alpha-olefins and polymerization catalyst therefor containing an organoaluminum sulfate
US3711542A (en) * 1969-12-18 1973-01-16 Moleculon Res Corp N-methylol phosphazene compounds
WO1984003284A1 (en) * 1983-02-15 1984-08-30 Univ Groningen Aziridino derivative of a cyclophosphazene compound
JP2002265614A (ja) * 2001-03-09 2002-09-18 Sumitomo Bakelite Co Ltd アニオン潜伏性触媒、およびそれを用いた熱硬化性樹脂組成物
CN105027314A (zh) * 2013-03-05 2015-11-04 国立大学法人九州大学 电荷传输材料、主体材料、薄膜及有机发光元件
CN104650147A (zh) * 2014-07-30 2015-05-27 青岛科技大学 一种简便高效的六苯胺基环三磷腈的合成方法
WO2016116202A1 (de) * 2015-01-19 2016-07-28 Siemens Aktiengesellschaft Aminophosphazen-basen als n-dotierstoffe in der organischen elektronik

Also Published As

Publication number Publication date
JP2020514401A (ja) 2020-05-21
JP7092381B2 (ja) 2022-06-28
US20190315786A1 (en) 2019-10-17
US11242362B2 (en) 2022-02-08

Similar Documents

Publication Publication Date Title
CN108239117B (zh) 环状寡聚磷腈化合物及其制备方法和用途
US6319984B1 (en) Biodegradable and thermosensitive polyphosphazenes and their preparation method
CN109467707B (zh) 线性聚磷腈化合物及其制备方法和用途
WO2018210106A1 (zh) 一种开环制备聚内酯的方法
WO2018121005A1 (zh) 寡聚磷腈化合物及其制备方法和用途
US20050080224A1 (en) Oil soluble hyperbranched polyesteramides
US7598318B2 (en) Thermosensitive and biocompatible amphiphilic poly(organophosphazenes) and preparation method thereof
WO2018196730A1 (zh) 一种聚酯的制备方法
Peng et al. Synthesis and characterization of biodegradable polylactides and polylactide-block-poly (Z-lysine) copolymers
Mohamed et al. Random and quasi-alternating polyesteramides deriving from ε-caprolactone and β-alanine
JP2013501086A (ja) 酸性イオン性液状媒体中でポリエステルを合成する方法
Atkins et al. A versatile approach for the syntheses of poly (ester amide) s with pendant functional groups
CN109467689B (zh) 负载于聚苯乙烯微球的环状寡聚磷腈碱催化剂及其制备方法和用途
Akiyama et al. Synthesis of novel polyesteramine dendrimers by divergent and convergent methods
WO2008017247A1 (fr) Polyester biodégradable contenant des groupes phosphatidylcholines et préparation dudit polyester
CN104059223B (zh) 稀土催化剂催化的聚类肽的合成方法及合成的聚类肽
CN108239118B (zh) 环状寡聚磷腈化合物及其制备方法和用途
CN105452335B (zh) 生产含二酰胺链段的热塑性聚合物的方法
KR101512759B1 (ko) 이온성 작용기가 곁사슬 또는 말단에 도입된 온도감응성 폴리에틸렌글리콜/폴리에스터 블록 공중합체 및 이의 제조방법
KR20160075525A (ko) 폴리아미드 화합물
CN103254412B (zh) 一种聚醚酯嵌段聚合物的制备方法
KRICHELDORF* et al. New polymer syntheses 98. Hyperbranched poly (ester-amide) s derived from naturally occurring monomers
US8344173B2 (en) Dendritic oligopeptide-grafteded cyclotriphosphazene, a process for the preparation thereof and a drug delivery system containing the same
CN103030797B (zh) 一种具有亲水功能侧基的可降解脂肪族聚酯及其制备方法
Qiao et al. Synthesis and shape memory behavior study of hyperbranched poly (urethane-tetrazole)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887261

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019555531

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17887261

Country of ref document: EP

Kind code of ref document: A1