WO2018120862A1 - 一种用于信道编码的ue、基站中的方法和设备 - Google Patents

一种用于信道编码的ue、基站中的方法和设备 Download PDF

Info

Publication number
WO2018120862A1
WO2018120862A1 PCT/CN2017/098454 CN2017098454W WO2018120862A1 WO 2018120862 A1 WO2018120862 A1 WO 2018120862A1 CN 2017098454 W CN2017098454 W CN 2017098454W WO 2018120862 A1 WO2018120862 A1 WO 2018120862A1
Authority
WO
WIPO (PCT)
Prior art keywords
bits
bit
block
type
bit block
Prior art date
Application number
PCT/CN2017/098454
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020197022164A priority Critical patent/KR102205781B1/ko
Priority to EP17888656.0A priority patent/EP3565125B1/en
Priority to EP22216903.9A priority patent/EP4178116B1/en
Priority to EP24153589.7A priority patent/EP4340230A1/en
Priority to KR1020217001231A priority patent/KR102328864B1/ko
Priority to JP2019556398A priority patent/JP6959621B2/ja
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2018120862A1 publication Critical patent/WO2018120862A1/zh
Priority to US16/449,483 priority patent/US10931306B2/en
Priority to US17/105,659 priority patent/US11245417B2/en
Priority to US17/558,625 priority patent/US11575388B2/en
Priority to US18/091,459 priority patent/US11750215B2/en
Priority to US18/225,689 priority patent/US11990919B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/006Control or measuring arrangements
    • A01D34/008Control or measuring arrangements for automated or remotely controlled operation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0219Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0225Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving docking at a fixed facility, e.g. base station or loading bay
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/617Safety or protection, e.g. defining protection zones around obstacles or avoiding hazards
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/648Performing a task within a working area or space, e.g. cleaning
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/656Interaction with payloads or external entities
    • G05D1/661Docking at a base station
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0014Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the source coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0052Realisations of complexity reduction techniques, e.g. pipelining or use of look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/007Unequal error protection
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D2101/00Lawn-mowers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/09Error detection only, e.g. using cyclic redundancy check [CRC] codes or single parity bit

Definitions

  • the present application relates to transmission schemes for wireless signals in wireless communication systems, and more particularly to methods and apparatus for transmissions used for channel coding.
  • Polar Codes is a coding scheme first proposed by Professor Erdal Arikan of the University of Birken in Turkey in 2008. It can realize the Binary input Discrete Memoryless Channel (B-DMC). Code construction method for capacity.
  • B-DMC Binary input Discrete Memoryless Channel
  • 3GPP 3rd Generation Partner Project
  • 3GPP determined a control channel coding scheme using a Polar code scheme as a 5G eMBB (Enhanced Mobile Broadband) scenario.
  • R1-164356 The simulation of 3GPP paper R1-164356 proves that when the number of information bits is low, the CRC (Cyclic Redundancy Check) bit of the polarization code will result in a decrease in transmission efficiency - lower than TBCC (Tail-Biting) Convolutional Codes, bite-tailed convolutional codes). R1-164356 further proposes a scheme in which the polarization code does not adopt CRC.
  • CRC Cyclic Redundancy Check
  • the CRC plays a specific function such as error check and target receiver identification. Therefore, simply canceling the CRC in the polarization code will make the above specific functions impossible.
  • the present application provides a solution. It should be noted that, in the case of no conflict, the features in the embodiments and the embodiments of the present application may be combined with each other arbitrarily. For example, features in embodiments and embodiments in the first node of the present application may be applied to a second node, and vice versa.
  • the present application discloses a method in a first node used for wireless communication, including:
  • a third bit block includes bits in the second bit block and bits in the first bit block, the third bit block being used to generate the first wireless signal;
  • the first bit block and The second bit block includes P1 second type bits and P2 first type bits, respectively,
  • the third bit block includes P3 binary bits, ⁇ P1 second type bits, and the P2 first type bits
  • Any one of the bits is a binary bit, the P1, the P2 and the P3 are positive integers, respectively; reference to a position of the first type of bits in the third bit block and the first bit block
  • the reference first type of bits is one of the P2 first type of bits; or reference to the second type of bits in the third bit block a location and a location of the second bit block associated with the reference second type of bit in the third bit block, the reference second type of bit being the P1 second class of bits one of.
  • the above method is advantageous in that the position of the first type of bits in the third bit block can be adjusted according to the number of bits associated with the first type of bits in the first bit block,
  • the first type of bits of the number of different associated bits are mapped onto subchannels having different reliabilities, and unequal error protection is implemented for the first type of bits having different importance.
  • the above method is advantageous in that the second type of bits can be adjusted in the third according to the position of the second type of bits in the third bit block in the third bit block. Position in the bit block, in the decoding process of the third bit block, using the correlation between the second type of bits and some bits in the second bit block to improve decoding accuracy and simplify decoding .
  • the first bit block is generated on a physical layer of the first node.
  • the first node is a base station, and in the step A, the first node generates the first bit block according to a scheduling result.
  • the first node is a User Equipment (UE), and in the step A, the first node generates the first bit block according to a scheduling of the base station.
  • UE User Equipment
  • the arbitrary bit is equal to the sum of the positive integer bits in the first block of bits modulo 2 .
  • the arbitrary bit is modulo the sum of the positive integer bits in the first bit block, and then in the scrambling sequence The corresponding bits are obtained after the XOR operation.
  • the arbitrary bit is used to determine at least one bit in the second block of bits.
  • the first bit block is independent of bits outside the second bit block.
  • the P3 is equal to a sum of the P1 and the P2, and the third bit block is composed of all bits in the second bit block and all bits in the first bit block. .
  • the P3 is equal to the P1 plus the P2 plus P4, the P4 is the number of bits included in the fourth bit block, and the P4 is a positive integer.
  • the third bit block is composed of ⁇ all bits in the second bit block, all bits in the first bit block, all bits in the fourth bit block ⁇ . The values of all the bits in the fourth bit block are preset.
  • all bits in the fourth bit block are 0.
  • the bits in the second block of bits are contiguous in the third block of bits.
  • At least two bits in the second bit block are discontinuous in the third bit block, and at least two bits in the first bit block are in the third bit block. It is not continuous.
  • the first wireless signal is transmitted on a physical layer control channel (ie, a physical layer channel that cannot be used to transmit physical layer data).
  • a physical layer control channel ie, a physical layer channel that cannot be used to transmit physical layer data.
  • the first wireless signal is transmitted on a physical layer data channel (ie, a physical layer channel that can be used to carry physical layer data).
  • a physical layer data channel ie, a physical layer channel that can be used to carry physical layer data.
  • the first node is a UE.
  • the first wireless signal is transmitted on a PUCCH (Physical Uplink Control Channel).
  • PUCCH Physical Uplink Control Channel
  • the first wireless signal is transmitted on a PUSCH (Physical Uplink Shared CHannel).
  • PUSCH Physical Uplink Shared CHannel
  • the first node is a base station.
  • the first wireless signal is Transmission on the PDSCH (Physical Downlink Shared CHannel).
  • PDSCH Physical Downlink Shared CHannel
  • the first wireless signal is transmitted on a PDCCH (Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel
  • the first wireless signal is the third bit block sequentially subjected to channel coding (Scrambling), scrambling, modulation mapper, layer mapper, precoding. (Precoding), Resource Element Mapper, output after wideband symbol generation.
  • the first wireless signal is a third bit block sequentially subjected to channel coding, a scrambling code, a modulation mapper, a layer mapper, and a transform precoder (for generating a complex value signal).
  • the bits in the second bit block are sequentially arranged in the third bit block according to the number of bits associated in the first bit block.
  • the position of the third bit in the third bit block is before the position of the fourth bit in the third bit block
  • the third bit and the fourth bit are the second bit Any two bits in the block of bits, the number of bits associated with the third bit in the first block of bits being less than the number of bits associated with the fourth bit in the first block of bits.
  • an index of the third bit in the third bit block is smaller than an index of the fourth bit in the third bit block.
  • all of the second type of bits associated with a given first type of bit are placed in the third block of bits prior to the given first type of bits,
  • the given first type of bits is one of the P2 first class bits.
  • all of the second type of bits associated with the given first type of bits have an index in the third block that is smaller than the given first type of bits in the third block. index.
  • the first bit in a first type of bits associated with a first target bit and independent of a second target bit, the first bit is ranked first in the third bit block Associated with the second target bit and independent of the first target bit Among the first type of bits, the second bit is ranked first in the third bit block; the first bit is before the second bit, and the first target bit is in the third bit block Positioning before the position of the second target bit in the third bit block; the first target bit and the second target bit being any two of the P1 second class bits Bit.
  • the index of the first bit in the third bit block is the smallest of the first class index
  • the first class index is associated with the first target bit
  • An index of the second target bit that is independent of the two target bits in the third bit block.
  • an index of the second bit in the third bit block is the smallest of the second type of index
  • the second type index is associated with the second target bit
  • an index of the first target bit in the third bit block is smaller than an index of the second target bit in the third bit block.
  • an index of the first bit in the third bit block is smaller than an index of the second bit in the third bit block.
  • the method comprises:
  • the third bit block is used for input of the channel coding, the output of the channel coding is used to generate the first wireless signal, the channel coding is based on a polarization code; Any two bits in the third bit block are respectively mapped onto two different subchannels; the channel capacity of the subchannel mapped by any one of the first bit sets is larger than any one of the second bit sets The channel capacity of the mapped subchannel.
  • the P2 first type bits belong to the first bit set
  • the P1 second type bits belong to the second bit set
  • the P2 first type bits belong to the second bit set, and the P1 second type bits belong to the first bit set.
  • a part of the P2 first class bits belongs to the first bit set, and another part of the P2 first class bits belongs to the second bit set.
  • the above method has the advantage that unequal error protection for the first bit set and the second bit set can be implemented, so that important bits are transmitted on the subchannel with high reliability, Improving the transmission quality of the first wireless signal.
  • the first bit set and the second bit set do not exist. Common bit.
  • the bits in any one of the third bit blocks belong to one of ⁇ the first set of bits, the second set of bits ⁇ .
  • a part of the P2 first class bits belongs to the first bit set, and another part of the P2 first class bits and the P1 second class bit belong to The second set of bits.
  • a part of the P2 first type bits and the P1 second type of bits belong to the first bit set, and another part of the P2 first type bits belongs to The second set of bits.
  • the bits in the third bit block are sequentially mapped according to the channel capacity of the subchannel.
  • the bits in the third bit block are sequentially mapped according to the index of the subchannel.
  • the fifth bit is any one of the third bit blocks, the index of the fifth bit in the third bit block is p, and the p is greater than or equal to 0, an integer less than P3.
  • the fifth bit is mapped to a fifth subchannel, and the index of the fifth subchannel on all of the subchannels is the p.
  • a part of the P2 first class bits is consecutive in the third bit block, and another part of the P2 first class bits is in the third bit
  • the blocks are discrete.
  • a part of the P2 first class bits is discrete in the third bit block, and another part of the P2 first class bits is in the third bit
  • the blocks are continuous.
  • a part of the P2 first class bits and another part of the P2 first class bits constitute the second bit block.
  • a part of the P2 first class bits includes P2/2 bits in the second bit block, and another part of the P2 first class bits includes the P2/2 bits in the second bit block.
  • the channel capacity of any two different said subchannels is different.
  • the first wireless signal is an output of the channel coding, which is sequentially subjected to scrambling, a modulation mapper, and a layer mapping. Layer Mapper, Precoding, Resource Element Mapper, and Wideband Symbol Generation.
  • the first wireless signal is an output of the channel coding, which is subjected to a scrambling code, a modulation mapper, a layer mapper, and a transform precoder (for generating a complex-valued signal). Encoding, resource particle mapper, obtained after the occurrence of wideband symbols.
  • the CRC bit block of the first bit block is used to generate the second bit block.
  • the second block of bits is a CRC block of bits of the first block of bits.
  • the second bit block is a bit block after the CRC bit block of the first bit block is scrambled.
  • the scrambling code sequence adopted by the scrambling code is related to the identifier of the first node.
  • the first node is a UE, and the identifier of the first node is an RNTI (Radio Network Temporary Identifier).
  • RNTI Radio Network Temporary Identifier
  • the first node is a base station, and the identifier of the first node is a PCI (Physical Cell Identifier).
  • PCI Physical Cell Identifier
  • the scrambling code sequence employed by the scrambling code is related to the identity of the target recipient of the first wireless signal.
  • the first node is a base station
  • the identifier of the target receiver of the first wireless signal is an RNTI
  • the CRC bit block of the first bit block is an output of a cyclic generator polynomial generated by the first bit block.
  • a polynomial formed by the first bit block and the CRC bit block of the first bit block can be divisible by the CRC cyclic generation polynomial on GF(2), ie, the first bit block and the The remainder of the polynomial of the CRC bit block of the first bit block divided by the CRC cycle generator polynomial is zero.
  • the P2 is one of ⁇ 24, 16, 8 ⁇ .
  • the first node is a base station
  • the first bit block includes downlink control information
  • the first node is a UE
  • the first bit block includes an uplink. Control information.
  • the downlink control information indicates the corresponding data ⁇ the occupied time domain resource, the occupied frequency domain resource, the MCS (Modulation and Coding Scheme), the RV (Redundancy Version), At least one of NDI (New Data Indicator), HARQ (Hybrid Automatic Repeat reQuest) process number ⁇ .
  • the uplink control information indicates at least one of ⁇ HARQ-ACK (Acknowledgement), CSI (Channel State Information), SR (Scheduling Request), CRI ⁇ .
  • the present application discloses a method for use in a second node for wireless communication, including:
  • the bits in the first block of bits are used to generate bits in a second block of bits, the third block of bits comprising bits in the second block of bits and bits in the first block of bits, a third bit block is used to generate the first wireless signal;
  • the first bit block and the second bit block respectively include P1 second type bits and P2 first type bits, the third bit block Included in P3 binary bits, ⁇ the P1 second type of bits, the P2 first type of bits ⁇ are binary bits, and the P1, the P2 and the P3 are positive integers, respectively;
  • the position of the first type of bit in the third bit block is related to the number of bits in the first bit block associated with the reference first type of bit, the reference first type of bit being the P2 One of the first type of bits; or the position of the second type of bit in the third bit block and the bit of the second bit block associated with the reference second type of bit in the third bit Position related in the block, the reference second type of bits is the P1 second One of the class bits.
  • the second node is a base station
  • the first node is a UE
  • the second node is a UE, and the first node is a base station.
  • the bits in the second bit block are sequentially arranged in the third bit block according to the number of bits associated in the first bit block.
  • all of the second type of bits associated with a given first type of bit are ranked in the third bit block in the given said Before a class of bits.
  • the first bit in a first type of bits associated with a first target bit and independent of a second target bit, the first bit is ranked first in the third bit block Of the first type of bits associated with the second target bit and independent of the first target bit, the second bit is ranked first in the third bit block; the first bit is in the Before the second bit, the position of the first target bit in the third bit block is before the position of the second target bit in the third bit block; the first target bit and the first bit
  • the two target bits are any two of the P1 second type of bits.
  • the method comprises:
  • the first wireless signal is used to generate an input of the channel coding
  • the channel coding corresponding to the channel decoding is based on a polarization code
  • the third bit block is used for input of the channel coding Any two bits in the third bit block are respectively mapped onto two different subchannels; the channel capacity of the subchannel mapped by any one of the first bit sets is greater than any of the second bit sets The channel capacity of a subchannel to which one bit is mapped.
  • the P2 first type bits belong to the first bit set
  • the P1 second type bits belong to the second bit set
  • the P2 first type bits belong to the second bit set, and the P1 second type bits belong to the first bit set.
  • a part of the P2 first class bits belongs to the first bit set, and another part of the P2 first class bits belongs to the second bit set.
  • the output of the channel decoding is used to recover the first block of bits.
  • the channel decoding is used to determine P3 reference values, and the P3 reference values are in one-to-one correspondence with P3 bits in the third bit block.
  • a reference value corresponding to at least one of the P2 first class bits is used for pruning in the channel decoding.
  • a reference value corresponding to at least one of the P2 first class bits is used to determine whether the first bit block is correctly received.
  • the above method has the advantage that a part of the P2 first type bits can be used to improve decoding accuracy and reduce decoding complexity in the channel decoding; another part of the P2 first class Bits can be used to implement the functionality of a conventional CRC, ie to determine the first block of bits Whether it is correctly received, and is used to transmit the identity of the first node or the identity of the target recipient for transmitting the first wireless signal.
  • the P3 reference values are respectively (received) bits for the corresponding (transmitted) bits.
  • the P3 reference values are respectively (received) soft bits for corresponding (transmit) bits.
  • the P3 reference values are respectively LLR (Log Likelihood Ratio) estimated for corresponding (transmitted) bits.
  • the pruning is used to reduce a surviving search path in the channel coding based on Viterbi criteria.
  • the position of the bit corresponding to the pruned search path in the third bit block is at the third bit of the given first class bit Before the position in the block.
  • the given reference value is a reference value used for pruning of the P3 reference values, the given first class of bits corresponding to the given reference value.
  • the reference values corresponding to the P2 first class bits are used for the pruning.
  • the reference values corresponding to the P2 first class bits are used to determine whether the first bit block is correctly received.
  • a reference value corresponding to all bits in a part of the P2 first class bits is used for the pruning, and the other part of the P2 first class bits The reference values corresponding to all the bits are used to determine whether the first bit block is correctly received.
  • a reference value corresponding to all bits in another part of the P2 first type of bits is used for the pruning, in a part of the P2 first type of bits
  • the reference values corresponding to all the bits are used to determine whether the first bit block is correctly recovered.
  • the first type of bits in the P2 first type of bits used to determine whether the first bit block is correctly recovered is further used to indicate an identifier of a target receiver of the first wireless signal.
  • the first type of bits used in the P2 first type of bits to determine whether the first bit block is correctly recovered is also used to indicate the identifier of the first node.
  • the P2 first type of bits are used to determine whether the reference value corresponding to the first type of bits of the first bit block is correctly recovered, and the reference value corresponding to the first bit block is commonly passed. CRC check, if the check result is correct, it is judged that the first bit block is correctly restored; otherwise, it is judged that the first bit block is not correctly restored.
  • the CRC bit block of the first bit block is used to generate the second bit block.
  • the second node is a base station
  • the first bit block includes uplink control information
  • the second node is a UE
  • the first bit block includes a downlink. Control information.
  • the present application discloses a device in a first node that is used for wireless communication, including:
  • a first processing module generating a first bit block
  • a first transmitter module transmitting the first wireless signal
  • the bits in the first block of bits are used to generate bits in a second block of bits, the third block of bits comprising bits in the second block of bits and bits in the first block of bits, a third bit block is used to generate the first wireless signal;
  • the first bit block and the second bit block respectively include P1 second type bits and P2 first type bits, the third bit block Included in P3 binary bits, ⁇ the P1 second type of bits, the P2 first type of bits ⁇ are binary bits, and the P1, the P2 and the P3 are positive integers, respectively;
  • the position of the first type of bit in the third bit block is related to the number of bits in the first bit block associated with the reference first type of bit, the reference first type of bit being the P2 One of the first type of bits; or the position of the second type of bit in the third bit block and the bit of the second bit block associated with the reference second type of bit in the third bit Position related in the block, the reference second type of bits is the P1 second One of the class bits.
  • the apparatus in the first node used for wireless communication is characterized in that, according to the number of bits associated in the first bit block, bits in the second bit block are in the The third bit block is arranged in order.
  • the apparatus in the first node used for wireless communication is characterized in that all of the second type of bits associated with a given first type of bit are ranked in the third bit block. Prior to the first type of bits, the given first type of bits is one of the P2 first type of bits.
  • the device in the first node used for wireless communication is characterized in that, in the first type of bits associated with the first target bit and independent of the second target bit, the first bit is in the first a first of the three bit blocks; among the first type of bits associated with the second target bit and independent of the first target bit, the second bit is ranked first in the third bit block; The first bit is before the second bit, the position of the first target bit in the third bit block is before the position of the second target bit in the third bit block; The first target bit and the second target bit are any two of the P1 second type of bits.
  • the device in the first node used for wireless communication is characterized in that the CRC bit block of the first bit block is used to generate the second bit block.
  • the device in the first node used for wireless communication is characterized in that: the device in the first node is a base station device, the first bit block includes downlink control information; or the first The device in the node is a user equipment, and the first bit block includes uplink control information.
  • the first processing module further performs channel coding.
  • the third bit block is used for input of the channel coding, the output of the channel coding is used to generate the first wireless signal, the channel coding is based on a polarization code; the third bit block Any two bits in the first bit are mapped to two different subchannels; the channel capacity of the subchannel mapped by any one of the first bit sets is greater than the subchannel mapped by any one of the second bit sets Channel capacity.
  • the P2 first type bits belong to the first bit set
  • the P1 second type bits belong to the second bit set
  • the P2 first type bits belong to the second bit set, and the P1 second type bits belong to the first bit set.
  • a part of the P2 first class bits belongs to the first bit set, and another part of the P2 first class bits belongs to the second bit set.
  • the present application discloses a device in a second node that is used for wireless communication, including:
  • a first receiver module receiving the first wireless signal
  • the bits in the first bit block are used to generate bits in a second bit block, and the third bit block includes bits in the second bit block and bits in the first bit block,
  • the third bit block is used to generate the first wireless signal;
  • the first bit block and the second bit block respectively include P1 second type bits and P2 first type bits,
  • the third The bit block includes P3 binary bits, and any one of the P1 second type bits, the P2 first type bits ⁇ is a binary bit, and the P1, the P2 and the P3 are positive integers, respectively Relating to a position of the first type of bit in the third bit block and a number of bits in the first bit block associated with the reference first type of bit, the reference first type of bit being One of P2 first type bits; or reference to a position of the second type of bit in the third bit block and a bit associated with the reference second type of bit in the second bit block at the The position in the three-bit block is related, and the reference second-class bit is one of the P1 second-class bits.
  • the device in the second node used for wireless communication is characterized in that, according to the number of bits associated in the first bit block, bits in the second bit block are in the The third bit block is arranged in order.
  • the apparatus in the second node used for wireless communication is characterized in that all of the second type of bits associated with a given first type of bit are ranked in the third bit block. Prior to the first type of bits, the given first type of bits is one of the P2 first type of bits.
  • the device in the second node used for wireless communication is characterized in that, in the first type of bits associated with the first target bit and independent of the second target bit, the first bit is in the first a first of the three bit blocks; among the first type of bits associated with the second target bit and independent of the first target bit, the second bit is ranked first in the third bit block; The first bit is before the second bit, the position of the first target bit in the third bit block is before the position of the second target bit in the third bit block; The first target bit and the second target bit are any two of the P1 second type of bits.
  • the device in the second node used for wireless communication is characterized in that the CRC bit block of the first bit block is used to generate the second bit block.
  • the device in the second node used for wireless communication is characterized in that: the device in the second node is a base station device, the first bit block includes uplink control information; or the second The device in the node is a user equipment, and the first bit block includes downlink control information.
  • the second processing module further performs channel decoding.
  • the first wireless signal is used to generate an input of the channel coding
  • the channel coding corresponding to the channel decoding is based on a polarization code
  • the third bit block is used for input of the channel coding Any two bits in the third bit block are respectively mapped onto two different subchannels; the channel capacity of the subchannel mapped by any one of the first bit sets is greater than any of the second bit sets The channel capacity of a subchannel to which one bit is mapped.
  • the P2 first type bits belong to the first bit set
  • the P1 second type bits belong to the second bit set
  • the P2 first type bits belong to the second bit set, and the P1 second type bits belong to the first bit set.
  • a part of the P2 first class bits belongs to the first bit set, and another part of the P2 first class bits belongs to the second bit set.
  • the apparatus in the second node used for wireless communication is characterized in that the channel decoding is used to determine P3 reference values, the P3 reference values and the third bit block The P3 bits correspond one by one.
  • a reference value corresponding to at least one of the P2 first class bits is used for pruning in the channel decoding.
  • a reference value corresponding to at least one of the P2 first class bits is used to determine whether the first bit block is correctly received.
  • a part of the CRC bits can be used to implement pruning in the polar decoding process, thereby reducing the decoding complexity.
  • CRC Another part of the CRC is used to implement the functions of the traditional CRC, namely error checking and target receiver identification.
  • FIG. 1 shows a flow chart of a first block of bits and a first wireless signal in accordance with an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture in accordance with one embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane in accordance with one embodiment of the present application
  • FIG. 4 shows a schematic diagram of an evolved node and a UE in accordance with one embodiment of the present application
  • FIG. 5 shows a flow diagram of wireless transmission in accordance with one embodiment of the present application
  • FIG. 6 shows a flow chart of wireless transmission in accordance with another embodiment of the present application.
  • FIG. 7 is a schematic diagram showing a mapping relationship between bits in a first bit block, a second bit block, and a third bit block according to an embodiment of the present application.
  • FIG. 8 shows a schematic diagram of mapping of bits in a third bit block on a subchannel in accordance with an embodiment of the present application
  • FIG. 9 is a diagram showing a relationship between ⁇ a first bit block, a second bit block, a third bit block ⁇ and a first wireless signal according to an embodiment of the present application.
  • FIG. 10 is a block diagram showing the structure of a processing device in a first node for wireless communication according to an embodiment of the present application
  • FIG. 11 is a block diagram showing the structure of a processing device in a second node for wireless communication according to an embodiment of the present application
  • FIG. 12 is a schematic diagram showing a mapping relationship between bits in a first bit block, a second bit block, and a third bit block according to still another embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of a first bit block and a first wireless signal, as shown in FIG.
  • the first node in the present application first determines a first block of bits; and then transmits a first wireless signal.
  • the bits in the first bit block are used to generate bits in a second bit block
  • the third bit block includes bits in the second bit block and the first ratio a bit in a special block, the third bit block being used to generate the first wireless signal
  • the first bit block and the second bit block respectively comprising P1 second class bits and P2 first class a bit
  • the third bit block includes P3 binary bits, ⁇ any one of the P1 second class bits, the P2 first class bits ⁇ is a binary bit, the P1, the P2 and The P3 is a positive integer, respectively; reference to a position of the first type of bit in the third bit block and a number of bits in the first bit block associated with the reference first type of bit, the reference One type of bit is one of the P2 first type of bits; or is associated with the reference second type of bit in a position in the third bit block with reference to the second type of bit
  • the bits are related
  • the first block of bits is generated on a physical layer of the first node.
  • the first node is a base station, and the first node generates the first bit block according to a scheduling result.
  • the first node is a User Equipment (UE), and the first node generates the first bit block according to a scheduling of the base station.
  • UE User Equipment
  • the arbitrary bit is equal to the sum of the positive integer bits in the first block of bits modulo 2 .
  • the arbitrary bit is modulo the sum of the positive integer bits in the first bit block, and the corresponding bit in the scrambling code sequence Obtained after the XOR operation.
  • the arbitrary bit is used to determine at least one bit in the second block of bits.
  • the second block of bits is independent of bits outside the first block of bits.
  • the P3 is equal to a sum of the P1 and the P2, and the third bit block is composed of all bits in the second bit block and all bits in the first bit block. .
  • the P3 is equal to the P1 plus the P2 plus P4, the P4 is the number of bits included in the fourth bit block, and the P4 is a positive integer.
  • the third bit block is composed of ⁇ all bits in the second bit block, all bits in the first bit block, All bits in the fourth bit block are composed. The values of all the bits in the fourth bit block are preset.
  • all bits in the fourth bit block are 0.
  • At least two bits in the second bit block are discontinuous in the third bit block, and at least two bits in the first bit block are in the third bit block. It is not continuous.
  • the first wireless signal is transmitted on a physical layer control channel (ie, a physical layer channel that cannot be used to transmit physical layer data).
  • a physical layer control channel ie, a physical layer channel that cannot be used to transmit physical layer data.
  • the first wireless signal is transmitted on a physical layer data channel (ie, a physical layer channel that can be used to carry physical layer data).
  • a physical layer data channel ie, a physical layer channel that can be used to carry physical layer data.
  • the first node is a UE.
  • the first wireless signal is transmitted on the PUCCH.
  • the first wireless signal is transmitted on the PUSCH.
  • the first node is a base station.
  • the first wireless signal is transmitted on the PDSCH.
  • the first wireless signal is transmitted on a PDCCH.
  • the first wireless signal is the third bit block sequentially subjected to channel coding (Scrambling), scrambling, modulation mapper, layer mapper, precoding. (Precoding), Resource Element Mapper, output after wideband symbol generation.
  • the first wireless signal is a third bit block sequentially subjected to channel coding, a scrambling code, a modulation mapper, a layer mapper, and a transform precoder (for generating a complex value signal).
  • Embodiment 2 illustrates a schematic diagram of a network architecture, as shown in FIG.
  • the LTE network architecture 200 may be referred to as an EPS (Evolved Packet System) 200.
  • the EPS 200 may include one or more UEs (User Equipment) 201, E-UTRAN-NR (Evolved UMTS Terrestrial Radio Access Network - New Wireless) 202, 5G-CN (5G-CoreNetwork, 5G core network)/ EPC (Evolved Packet Core) 210, HSS (Home Subscriber Server) 220 and Internet service 230.
  • UMTS corresponds to the Universal Mobile Telecommunications System.
  • EPS can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown in FIG. 2, EPS provides packet switching services, although those skilled in the art will readily appreciate that the various concepts presented throughout this application can be extended to networks that provide circuit switched services.
  • the E-UTRAN-NR includes an NR Node B (gNB) 203 and other gNBs 204.
  • the gNB 203 provides user and control plane protocol termination towards the UE 201.
  • the gNB 203 can be connected to other gNBs 204 via an X2 interface (eg, a backhaul).
  • the gNB 203 may also be referred to as a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmission and reception point), or some other suitable terminology.
  • the gNB 203 provides the UE 201 with an access point to the 5G-CN/EPC 210.
  • Examples of UEs 201 include cellular telephones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players ( For example, an MP3 player), a camera, a game console, a drone, an aircraft, a narrowband physical network device, a machine type communication device, a land vehicle, a car, a wearable device, or any other similar functional device.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • UE 201 may also refer to UE 201 as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB 203 is connected to the 5G-CN/EPC 210 through the S1 interface.
  • the 5G-CN/EPC 210 includes an MME 211, other MMEs 214, an S-GW (Service Gateway) 212, and a P-GW (Packet Date Network Gateway). 213.
  • MME 211 is processing UE 201 and 5G-CN/EPC 210 The control node between the signaling.
  • the MME 211 provides bearer and connection management. All User IP (Internet Protocol) packets are transmitted through the S-GW 212, and the S-GW 212 itself is connected to the P-GW 213.
  • the P-GW 213 provides UE IP address allocation as well as other functions.
  • the P-GW 213 is connected to the Internet service 230.
  • the Internet service 230 includes an operator-compatible Internet Protocol service, and may specifically include the Internet, an intranet, an IMS (IP Multimedia Subsystem), and a PS Streaming Service (PSS).
  • IMS IP Multimedia Subsystem
  • PSS PS Streaming Service
  • the UE 201 corresponds to the first node in the application
  • the gNB 203 corresponds to the second node in this application.
  • the UE 201 corresponds to the second node in the application
  • the gNB 203 corresponds to the first node in this application.
  • Embodiment 3 illustrates a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane, as shown in FIG.
  • FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane and a control plane, and FIG. 3 shows the radio protocol architecture for UE and gNB in three layers: Layer 1, Layer 2, and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301.
  • Layer 2 (L2 layer) 305 is above PHY 301 and is responsible for the link between the UE and the gNB through PHY 301.
  • the L2 layer 305 includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) sublayer 303, and a PDCP (Packet Data Convergence Protocol).
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • Convergence Protocol Sublayer 304 which terminates at the gNB on the network side.
  • the UE may have several protocol layers above the L2 layer 305, including a network layer (eg, an IP layer) terminated at the P-GW 213 on the network side and terminated at the other end of the connection (eg, Application layer at the remote UE, server, etc.).
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handoff support for UEs between gNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between the logical and transport channels. The MAC sublayer 302 is also responsible for allocating a small between UEs. Various radio resources (eg, resource blocks) in the zone. The MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and gNB is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control) sublayer 306 in Layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and configuring the lower layer using RRC signaling between the gNB and the UE.
  • the wireless protocol architecture of Figure 3 is applicable to the first node in the present application.
  • the wireless protocol architecture of Figure 3 is applicable to the second node in this application.
  • the first bit block in the present application is generated in the RRC sublayer 306.
  • the first bit block in the present application is generated in the MAC sublayer 302.
  • the second bit block in the present application is generated by the PHY 301.
  • the third bit block in the present application is generated by the PHY 301.
  • the first wireless signal in the present application is generated by the PHY 301.
  • Embodiment 4 illustrates a schematic diagram of an evolved node and a UE, as shown in FIG.
  • the gNB 410 includes a controller/processor 475, a memory 476, a receive processor 470, a transmit processor 416, a channel encoder 477, a channel decoder 478, a transmitter/receiver 418, and an antenna 420.
  • the UE 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a channel encoder 457, a channel decoder 458, a transmitter/receiver 454, and an antenna 452.
  • DL Downlink
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and allocation of radio resources of the UE 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for HARQ operations, retransmission of lost packets, And signaling to the UE 450.
  • Transmit processor 416 and channel encoder 477 implement various signal processing functions for the L1 layer (ie, the physical layer).
  • Channel encoder 477 implements encoding and interleaving to facilitate forward error correction (FEC) at UE 450.
  • Transmit processor 416 is implemented based on various modulation schemes (eg, Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK), M Phase Shift Keying (M-PSK), M Quadrature Amplitude Modulation ( M-QAM)) mapping of signal clusters and spatial precoding/beamforming processing of the encoded and modulated symbols to generate one or more spatial streams.
  • Transmit processor 416 maps each spatial stream to subcarriers, multiplexes with reference signals (e.g., pilots) in the time and/or frequency domain, and then generates the payload using inverse fast Fourier transform (IFFT). The physical channel of the time domain multicarrier symbol stream.
  • Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the transmit processor 416 into a radio frequency stream, which is then provided to a different antenna 420.
  • each receiver 454 receives a signal through its respective antenna 452. Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream for providing to the receive processor 456.
  • Receive processor 456 and channel decoder 458 implement various signal processing functions of the L1 layer.
  • Receive processor 456 converts the baseband multicarrier symbol stream from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receive processor 456, wherein the reference signal is to be used for channel estimation, and the physical layer data is recovered in the receive processor 456 by multi-antenna detection for the purpose of the UE 450.
  • the symbols on each spatial stream are demodulated and recovered in receive processor 456 and a soft decision is generated.
  • Channel decoder 458 then decodes and deinterleaves the soft decision to recover the upper layer data and control signals transmitted by gNB 410 on the physical channel.
  • the upper layer data and control signals are then provided to controller/processor 459.
  • the controller/processor 459 implements the functions of the L2 layer.
  • the controller/processor can be associated with a memory 460 that stores program codes and data. Memory 460 can be referred to as a computer readable medium.
  • the controller/processor 459 provides demultiplexing, packet reassembly, decryption, header decompression, and control signal processing between the transport and logical channels to recover upper layer packets from the core network. The upper layer packet is then provided to all protocol layers above the L2 layer. Various control signals can also be provided to L3 for L3 processing.
  • the controller/processor 459 is also responsible for error detection using an acknowledgement (ACK) and/or negative acknowledgement (NACK) protocol to support HARQ operations.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • data source 467 is used to provide upper layer data packets to controller/processor 459.
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 is based on The radio resource allocation of gNB 410 implements header compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implementing L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the gNB 410.
  • the channel encoder 457 performs channel coding, and the encoded data is modulated into a multi-carrier/single-carrier symbol stream by modulation performed by the transmit processor 468 and multi-antenna spatial pre-coding/beamforming processing, and then provided to the transmitter 454 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the transmit processor 468 into a stream of radio frequency symbols and provides it to the antenna 452.
  • the function at gNB 410 is similar to the receiving function at UE 450 described in the DL.
  • Each receiver 418 receives a radio frequency signal through its respective antenna 420, converts the received radio frequency signal into a baseband signal, and provides the baseband signal to a receive processor 470.
  • the receiving processor 470 and the channel decoder 478 collectively implement the functions of the L1 layer.
  • the controller/processor 475 implements the L2 layer function. Controller/processor 475 can be associated with memory 476 that stores program codes and data. Memory 476 can be referred to as a computer readable medium.
  • the controller/processor 475 provides demultiplexing, packet reassembly, decryption, header decompression, control signal processing between the transport and logical channels to recover upper layer data packets from the UE 450.
  • Upper layer packets from controller/processor 475 can be provided to the core network.
  • the controller/processor 475 is also responsible for error detection using ACK and/or NACK protocols to support HARQ operations.
  • the UE 450 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be coupled to the at least one processor use together.
  • the UE 450 includes: a memory storing a computer readable instruction program that, when executed by at least one processor, generates an action, the action comprising: determining a location in the present application Said first bit block, transmitting said first wireless signal in the present application, performing said channel coding in the present application.
  • the UE 450 includes: a memory storing a computer readable instruction program, the computer readable instruction program generating an action when executed by at least one processor, the action comprising: restoring the application in the present application The first bit block is received, and the first wireless signal in the present application is received, and the channel decoding in the present application is performed.
  • the gNB 410 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be coupled to the at least one processor use together.
  • the gNB 410 includes: a memory storing a computer readable instruction program that, when executed by at least one processor, generates an action, the action comprising: restoring the application in the present application The first bit block is received, and the first wireless signal in the present application is received, and the channel decoding in the present application is performed.
  • the gNB 410 includes: a memory storing a computer readable instruction program that, when executed by at least one processor, generates an action, the action comprising: determining a location in the present application Said first bit block, transmitting said first wireless signal in the present application, performing said channel coding in the present application.
  • the UE 450 corresponds to the first node in the application
  • the gNB 410 corresponds to the second node in this application.
  • the UE 450 corresponds to the second node in the application
  • the gNB 410 corresponds to the first node in this application.
  • At least one of the controller/processor 459, memory 460, and data source 467 is used to determine the first block of bits
  • the transmit processor 468, the channel encoder 457, and the At least one of the controller/processor 459 is used to generate the second bit block in the present application and the third bit block in the present application
  • the receiving processor 470, the channel decoding At least one of the controller 478, the controller/processor 475, and the memory 476 is used to recover the first block of bits.
  • At least one of the transmit processor 468, the channel encoder 457, the controller/processor 459, the transmitter 454, and the antenna 452 is used to transmit the first wireless signal; At least one of the receive processor 470, the channel decoder 478, the controller/processor 475, the receiver 418, and the antenna 420 is configured to receive the first wireless signal.
  • the channel encoder 457 is used to perform the channel coding in this application; the channel decoder 478 is used to perform the channel coding in this application.
  • At least one of the controller/processor 475 and the memory 476 is used to determine the first block of bits
  • the transmit processor 416, the channel encoder 477, and the controller/ At least one of the processors 475 is used to generate the second bit block in the present application and the third bit block in the present application
  • the receiving processor 456, the channel decoder 458, the At least one of controller/processor 459, memory 460, and data source 467 is used to recover the first block of bits.
  • At least one of the transmit processor 416, the channel encoder 477, the controller/processor 475, the transmitter 418, and the antenna 420 is used to transmit the first wireless signal; At least one of the receive processor 456, the channel decoder 458, the controller/processor 459, the receiver 454, and the antenna 452 is configured to receive the first wireless signal.
  • the channel encoder 477 is used to perform the channel coding in this application; the channel decoder 458 is used to perform the channel coding in this application.
  • Embodiment 5 illustrates a flow chart of wireless transmission, as shown in FIG.
  • the base station N1 is a serving cell maintenance base station of the UE U2.
  • the first wireless signal is transmitted in step S11.
  • the first wireless signal is received in step S21.
  • a third bit block is used by the N1 to generate the first wireless signal, and the third bit block includes a bit in a second bit block and a bit in a first bit block, the The bits in a block of bits are used by the N1 to generate bits in the second block of bits.
  • the first bit block and the second bit block respectively include P1 second type bits and P2 first type bits, and the third bit block includes P3 binary bits. Any one of the P1 second type bits, the P2 first type bits ⁇ is a binary bit.
  • the P1, the P2 and the P3 are positive integers, respectively.
  • the reference first type of bit being the P2 One of the first type of bits; or reference to the position of the second type of bit in the third bit block and the bit in the second bit block associated with the reference second type of bit in the third
  • the position in the bit block is related, and the reference second type of bit is one of the P1 second type bits.
  • the first block of bits is generated on a physical layer of the N1.
  • the N1 generates the first bit block according to a scheduling result.
  • the first wireless signal is the third bit block sequentially subjected to channel coding (Scrambling), scrambling, modulation mapper, layer mapper, precoding. (Precoding), Resource Element Mapper, Wideband Symbol Generation (Generation) After the output.
  • the third bit block is used by the N1 for channel coding input, and the channel coded output is used to generate the first wireless signal, the channel coding is based on a polarization code (Polar code) ). Any two bits in the third bit block are mapped onto two different subchannels, respectively. The channel capacity of the subchannel mapped by any one of the first bit sets is greater than the channel capacity of the subchannel mapped by any one of the second bit sets.
  • polarization code Polar code
  • the P2 first type bits belong to the first bit set
  • the P1 second type bits belong to the second bit set.
  • the P2 first type bits belong to the second bit set, and the P1 second type bits belong to the first bit set.
  • a part of the P2 first type bits and the P1 second type bits belong to the first bit set, and another part of the P2 first type bits Belongs to the second set of bits.
  • a part of the P2 first type of bits belongs to the first bit set, another part of the P2 first type of bits, and the P1 second type of bits Belongs to the second set of bits.
  • the first wireless signal is used by the U2 to generate an input for channel coding, and the channel coding corresponding to the channel coding is based on a polarization code.
  • the channel decoding is used to determine P3 reference values, and the P3 reference values are in one-to-one correspondence with P3 bits in the third bit block.
  • a reference value corresponding to at least one of the P2 first-type bits is used by the U2 for pruning in the channel decoding.
  • a reference value corresponding to at least one of the P2 first-type bits is used by the U2 to determine whether the first bit block is correctly received.
  • the CRC bit block of the first bit block is used by the N1 to generate the second bit block.
  • the first bit block includes downlink control information.
  • the downlink control information indicates the corresponding data ⁇ the occupied time domain resource, the occupied frequency domain resource, MCS (Modulation and Coding) At least one of Scheme, modulation coding mode, RV (Redundancy Version), NDI (New Data Indicator), HARQ (Hybrid Automatic Repeat reQuest) process number ⁇ .
  • MCS Modulation and Coding
  • RV Redundancy Version
  • NDI New Data Indicator
  • HARQ Hybrid Automatic Repeat reQuest
  • Embodiment 6 illustrates a flow chart of wireless transmission, as shown in FIG.
  • the base station N3 is a serving cell maintenance base station of the UE U4.
  • the first wireless signal is received in step S31.
  • the first wireless signal is transmitted in step S41.
  • a third bit block is used by the U4 to generate the first wireless signal, and the third bit block includes a bit in a second bit block and a bit in a first bit block, the The bits in a block of bits are used by the U4 to generate bits in the second block of bits.
  • the first bit block and the second bit block respectively include P1 second type bits and P2 first type bits, and the third bit block includes P3 binary bits. Any one of the P1 second type bits, the P2 first type bits ⁇ is a binary bit.
  • the P1, the P2 and the P3 are positive integers, respectively.
  • the reference first type of bit being the P2 One of the first type of bits; or reference to the position of the second type of bit in the third bit block and the bit in the second bit block associated with the reference second type of bit in the third
  • the position in the bit block is related, and the reference second type of bit is one of the P1 second type bits.
  • the first block of bits is generated on a physical layer of the U4.
  • the U4 generates the first bit block according to the scheduling result of the N3.
  • the first wireless signal is a third bit block sequentially subjected to channel coding, a scrambling code, a modulation mapper, a layer mapper, and a transform precoder (for generating a complex value signal).
  • the first bit block includes uplink control information.
  • the uplink control information indication indicates ⁇ HARQ-ACK (Acknowledgement), CSI (ChannelStateInformation, At least one of channel state information), SR (Scheduling Request), CRI ⁇ .
  • Embodiment 7 exemplifies a mapping relationship of bits in a first bit block, a second bit block, and a third bit block, as shown in FIG.
  • the bits in the first bit block are used to generate bits in the second bit block
  • the third bit block includes bits in the second bit block and the first bit The bits in the bit block.
  • the first bit block and the second bit block include P1 second type bits and P2 first type bits
  • the third bit block includes P3 binary bits, ⁇ the P1 second type bits, Any one of the P2 first class bits ⁇ is a binary bit, and the P1, the P2 and the P3 are positive integers, respectively.
  • the reference first type of bit being the P2 One of the first type of bits; or reference to the position of the second type of bit in the third bit block and the bit in the second bit block associated with the reference second type of bit in the third
  • the position in the bit block is related, and the reference second type of bit is one of the P1 second type bits.
  • the P1 is equal to 6
  • the P2 is equal to 4
  • the bits in the first bit block are represented by d(i), and the i is an integer greater than or equal to 0 and less than P1
  • the bits in the second block of bits are represented by p(j), which is an integer greater than or equal to 0 and less than P2.
  • the first bit block and the associated bit in the second bit block are connected by a solid line.
  • the arbitrary bit is equal to the sum of the positive integer bits in the first block of bits modulo 2 .
  • p(0) in FIG. 7 is equal to the sum of d(0) and d(3) modulo 2 .
  • the arbitrary bit is modulo the sum of the positive integer bits in the first bit block, and the corresponding bit in the scrambling code sequence Obtained after the XOR operation.
  • p(0) in Fig. 7 is obtained by modulo 2 of the sum of d(0) and d(3) and then performing an exclusive OR operation with the corresponding bit in the scrambling code sequence.
  • the arbitrary bit is used to determine at least one bit in the second block of bits.
  • d(0) in Fig. 7 is used to determine p(0) and p(2).
  • the first bit block is independent of bits outside the second bit block.
  • the P3 is equal to the P1 plus the P2 plus P4, the P4 is a number of bits included in the fourth bit block, and the P4 is a non-negative integer.
  • the P4 is equal to 0, and the third bit block is composed of all bits in the second bit block and all bits in the first bit block.
  • the P4 is greater than 0, and the third bit block is composed of ⁇ all bits in the second bit block, all bits in the first bit block, the first All bits in a four-bit block are composed of ⁇ .
  • the values of all the bits in the fourth bit block are preset.
  • all bits in the fourth bit block are 0.
  • the bits in the second bit block are sequentially arranged in the third bit block according to the number of bits associated in the first bit block.
  • the position of the third bit in the third bit block is before the position of the fourth bit in the third bit block
  • the third bit and the fourth bit Is any two bits in the second bit block, the number of bits associated with the third bit in the first bit block being less than the fourth bit associated in the first bit block
  • the number of bits For example, in FIG. 7, p(0) associates two bits d(0) and d(3) in the first bit block, and p(2) is associated with three in the first bit block. Bits d(0), d(2) and d(5).
  • the position of p(0) in the third bit block is before the position of p(2) in the third bit block.
  • all of the second type of bits associated with a given first type of bit are placed in the third block of bits prior to the given first type of bits, the given first type of bits being One of the P2 first class bits is described. For example, in FIG. 7, p(1) and ⁇ d(2), d(4) ⁇ are associated, and ⁇ d(2), d(4) ⁇ is ranked in p in the third bit block. 1) Before.
  • the first bit is ranked first in the third bit block.
  • the second bit is in the The third bit block is ranked first.
  • the first bit is before the second bit
  • the position of the first target bit in the third bit block is before the position of the second target bit in the third bit block.
  • the first target bit and the second target bit are any two of the P1 second class bits. For example, in Figure 7, d(0) precedes d(4) in the third block of bits.
  • ⁇ p(0), p(2) ⁇ is associated with d(0) and is independent of d(4), ⁇ p(1), p(3) ⁇ is associated with d(4) and d(0) Irrelevant; p(0) precedes p(2) in the third bit block, p(1) precedes p(3) in the third bit block; p(0) is in the The three-bit block is ranked before p(1).
  • Embodiment 8 exemplifies a mapping of bits in a third bit block on a subchannel, as shown in FIG.
  • the third bit block is used for input of channel coding, which is based on a Polar code.
  • the third bit block includes P3 bits, and the P3 bits are mapped to P3 subchannels, and the channel capacity of the P3 subchannels is sequentially increased from left to right.
  • the channel capacity of the subchannel mapped by any one of the first bit sets is greater than the channel capacity of the subchannel mapped by any one of the second bit sets.
  • the third bit block is composed of ⁇ all bits in the second bit block, all bits in the first bit block, all bits in the fourth bit block ⁇ .
  • the first bit block and the second bit block respectively include P1 second type bits and P2 first type bits
  • the fourth bit block includes P4 binary bits
  • the P1 and the P2 are positive integers, respectively.
  • the P4 is a non-negative integer.
  • a cross-line filled square represents a bit in the first bit block; a dot-filled square represents a bit in the second bit block; a left-slash filled square represents the The bits in the fourth bit block.
  • the bits in any one of the third bit blocks belong to one of ⁇ the first set of bits, the second set of bits ⁇ .
  • the P2 first type bits belong to the first bit set
  • the P1 second type bits belong to the second bit set
  • the P2 first type bits belong to the second bit set, and the P1 second type bits belong to the first bit set.
  • a part of the P2 first class bits belongs to the first bit set, and another part of the P2 first class bits belongs to the second bit set.
  • a part of the P2 first class bits belongs to the first bit set, and another part of the P2 first class bits and the P1 second class bit belong to The second set of bits.
  • a part of the P2 first type bits belongs to the first bit set, ⁇ the other part of the P2 first type bits, and the P1 second type bits
  • the bit ⁇ in the fourth bit block belongs to the second bit set.
  • a part of the P2 first type bits and the P1 second type of bits belong to the first bit set, and another part of the P2 first type bits belongs to The second set of bits.
  • a part of the P2 first type bits and the P1 second type bits belong to the first bit set, and another part of the P2 first type bits and The bits in the fourth bit block belong to the second set of bits.
  • the bits in the fourth bit block belong to a third bit set, and a channel capacity of a subchannel mapped by any one of the third bit sets is smaller than any one of the second bit sets.
  • the channel capacity of the subchannel to which the bit is mapped is smaller.
  • a part of the P2 first class bits is consecutive in the third bit block, and another part of the P2 first class bits is in the third bit
  • the blocks are discrete.
  • a part of the P2 first class bits is discrete in the third bit block, and another part of the P2 first class bits is in the third bit
  • the blocks are continuous.
  • a part of the P2 first class bits and another part of the P2 first class bits constitute the second bit block.
  • a part of the P2 first class bits includes P2/2 bits in the second bit block, and another part of the P2 first class bits includes the P2/2 bits in the second bit block.
  • the channel capacity of any two different said subchannels is different.
  • the bits in the third bit block are sequentially mapped according to the channel capacity of the subchannel.
  • the bits in the third bit block are sequentially mapped according to the index of the subchannel.
  • Embodiment 9 exemplifies a relationship between ⁇ a first bit block, a second bit block, a third bit block ⁇ and a first wireless signal, as shown in FIG.
  • bits in the first bit block are used to generate bits in the second bit block
  • the third bit block includes in the second bit block a bit and a bit in the first block of bits, the third block of bits being used for input of channel coding, the output of the channel coding being used to generate the first wireless signal, the channel coding being based on polarization Polar code.
  • the second bit block and the first bit block respectively include P1 second type bits and P2 first type bits
  • the third bit block includes P3 binary bits.
  • the first wireless signal is used to generate an input for channel coding
  • the channel coding corresponding to the channel coding is based on a polarization code.
  • the channel decoding is used to determine P3 reference values, and the P3 reference values are in one-to-one correspondence with P3 bits in the third bit block.
  • a reference value corresponding to at least one of the P2 first class bits is used for pruning in the channel decoding.
  • the P1 is equal to 6, the P2 is equal to 4, and the P3 is equal to the sum of the P1 and the P2.
  • the bits in the first bit block are represented by d(i), which is an integer greater than or equal to 0 and less than P1; the bits in the second bit block are represented by p(j), the j Is an integer greater than or equal to 0 and less than P2.
  • the first bit block and the associated bit in the second bit block are connected by a solid line.
  • the tree diagram in the decoder represents a portion of the path associated with the bits ⁇ d(0), d(3), p(0) ⁇ in the channel decoding, bits ⁇ d(0), d(3) ), the position of p(0) ⁇ in the third bit block is continuous.
  • the reference values corresponding to the at least one first type of bits of the P2 first type bits are used to determine whether the first bit block is correctly received.
  • a reference value corresponding to the first type of bit used to determine whether the first bit block was correctly received cannot be used for pruning in the channel decoding.
  • the P3 reference values are respectively for corresponding (transmitting) bits And recovered (received) bits.
  • the P3 reference values are respectively (received) soft bits for corresponding (transmit) bits.
  • the P3 reference values are respectively LLR (Log Likelihood Ratio) estimated for corresponding (transmitted) bits.
  • the pruning is used to reduce a surviving search path in the channel coding based on Viterbi criteria.
  • the path indicated by the thick solid line is the surviving search path, and the other paths are the search paths that are deleted.
  • the position of the bit corresponding to the pruned search path in the third bit block is at the third bit of the given first class bit Before the position in the block.
  • the given reference value is a reference value used for pruning of the P3 reference values, the given first type of bits being a first type of bit corresponding to the given reference value.
  • the reference value corresponding to p(0) denoted by p'(0) in Figure 9 is used for pruning in the channel decoding.
  • the bits corresponding to the pruned search path are d(0) and d(3).
  • the positions of d(0) and d(3) in the third bit block are before p(0).
  • the reference values corresponding to the P2 first class bits are used for the pruning.
  • the reference values corresponding to ⁇ p(0), p(1), p(2), p(3) ⁇ are respectively ⁇ p'(0), p' in FIG. (1), p'(2), p'(3) ⁇ indicate that both are used for the pruning.
  • the reference values corresponding to the P2 first class bits are used to determine whether the first bit block is correctly received.
  • the reference values corresponding to ⁇ p(0), p(1), p(2), p(3) ⁇ are respectively ⁇ p'(0), p' in FIG. (1), p'(2), p'(3) ⁇ indicate that both are used to determine whether the first bit block is correctly received.
  • a reference value corresponding to a part of the P2 first type bits is used for the pruning, and a reference value corresponding to another part of the P2 first type bits is used to determine the Whether the first block of bits is received correctly.
  • the reference values corresponding to ⁇ p(0), p(1) ⁇ are denoted by ⁇ p'(0), p'(1) ⁇ in FIG. 9, respectively, and are used for
  • the reference value corresponding to ⁇ p(2), p(3) ⁇ is represented by ⁇ p'(2), p'(3) ⁇ in FIG. 9, and is used to judge the first Whether the bit block is received correctly.
  • the P2 first class bits are used in the The first type of bits of the pruning belong to the first set of bits, and the first type of bits used in the P2 first type of bits to determine whether the first block is correctly received belongs to the second set of bits.
  • the channel capacity of the subchannel mapped by any one of the first bit sets is greater than the channel capacity of the subchannel mapped by any one of the second bit sets.
  • the first type of bits used in the pruning of the P2 first type bits belong to the second bit set, and the P2 first type bits are used.
  • the first type of bits that determine whether the first block of bits is correctly received belong to the first set of bits.
  • the first type of bits in the P2 first type of bits used to determine whether the first bit block is correctly recovered is further used to indicate an identifier of a target receiver of the first wireless signal.
  • the P2 first type of bits are used to determine whether the reference value corresponding to the first type of bits of the first bit block is correctly recovered, and the reference value corresponding to the first bit block is commonly passed. CRC check, if the check result is correct, it is judged that the first bit block is correctly restored; otherwise, it is judged that the first bit block is not correctly restored.
  • Embodiment 10 exemplifies a structural block diagram of a processing device in a first node for wireless communication, as shown in FIG.
  • the first node device 1000 is mainly composed of a first processing module 1001 and a first transmitter module 1002.
  • the first processing module 1001 determines a first block of bits and generates a second block of bits; the first transmitter module 1002 generates a first wireless signal and transmits the first wireless signal.
  • bits in the first bit block are used to generate bits in a second bit block
  • the third bit block includes bits in the second bit block and in the first bit block a bit, the third block of bits being used to generate the first wireless signal.
  • the first bit block and the second bit block respectively include P1 second type bits and P2 first type bits
  • the third bit block includes P3 binary bits
  • ⁇ the P1 second type bits Any one of the P2 first class bits ⁇ is a binary bit.
  • the P1, the P2 and the P3 are positive integers, respectively.
  • the first processing module 1001 also performs channel coding.
  • the third bit block is used for input of the channel coding
  • the output of the channel coding is used to generate the first wireless signal
  • the channel coding is based on a polarization code. Any two bits in the third bit block are mapped onto two different subchannels, respectively.
  • the channel capacity of the subchannel mapped by any one of the first bit sets is greater than the channel capacity of the subchannel mapped by any one of the second bit sets.
  • the P2 first type bits belong to the first bit set
  • the P1 second type bits belong to the second bit set
  • the P2 first type bits belong to the second bit set, and the P1 second type bits belong to the first bit set.
  • a part of the P2 first class bits belongs to the first bit set, and another part of the P2 first class bits belongs to the second bit set.
  • the bits in the second bit block are sequentially arranged in the third bit block according to the number of bits associated in the first bit block.
  • all of the second type of bits associated with a given first type of bit are placed in the third block of bits prior to the given first type of bits, the given first type of bits being One of the P2 first class bits is described.
  • the first bit is ranked first in the third bit block.
  • the second bit is ranked first in the third bit block.
  • the first bit is before the second bit
  • the position of the first target bit in the third bit block is before the position of the second target bit in the third bit block.
  • the first target bit and the second target bit are any two of the P1 second class bits.
  • the CRC bit block of the first bit block is used by the first processing module 1001 to generate the second bit block.
  • the first node is a base station
  • the first bit block includes a downlink control. Information.
  • the first node is a UE
  • the first bit block includes uplink control information
  • the first processing module 1001 includes the channel encoder 477 in Embodiment 4.
  • the first processing module 1001 includes the channel encoder 457 in Embodiment 4.
  • the first processing module 1001 includes at least one of a transmit processor 416, a channel encoder 477, a controller/processor 475, and a memory 477 in Embodiment 4.
  • the first processing module 1001 includes at least one of a transmit processor 468, a channel encoder 457, a controller/processor 459, a memory 460, and a data source 467 in Embodiment 4.
  • the first transmitter module 1002 includes at least one of an antenna 420, a transmitter 418, a transmit processor 416, a channel encoder 477, a controller/processor 475, and a memory 477 in Embodiment 4. .
  • the first transmitter module 1002 includes an antenna 452, a transmitter 454, a transmit processor 468, a channel encoder 457, a controller/processor 459, a memory 460, and a data source 467 in Embodiment 4. At least one of them.
  • Embodiment 11 exemplifies a structural block diagram of a processing device in a second node for wireless communication, as shown in FIG.
  • the second node device 1100 is mainly composed of a first receiver module 1101 and a second processing module 1102.
  • the first receiver module 1101 receives the first wireless signal; the second processing module 1102 recovers the first block of bits.
  • the bits in the first bit block are used to generate bits in a second bit block
  • the third bit block includes bits in the second bit block and in the first bit block a bit, the third block of bits being used to generate the first wireless signal.
  • the first bit block and the second bit block respectively include P1 second type bits and P2 first type bits
  • the third bit block includes P3 binary bits, and any one of the P1 second type bits, the P2 first type bits ⁇ is a binary bit.
  • the P1, the P2 and the P3 are positive integers, respectively.
  • the reference first type of bit being the P2 One of the first type of bits; or reference to the position of the second type of bit in the third bit block and the bit in the second bit block associated with the reference second type of bit in the third
  • the position in the bit block is related, and the reference second type of bit is one of the P1 second type bits.
  • the second processing module 1102 also performs channel coding.
  • the first wireless signal is used to generate an input of the channel coding
  • the channel coding corresponding to the channel decoding is based on a polarization code
  • the third bit block is used for input of the channel coding . Any two bits in the third bit block are mapped onto two different subchannels, respectively.
  • the channel capacity of the subchannel mapped by any one of the first bit sets is greater than the channel capacity of the subchannel mapped by any one of the second bit sets.
  • the P2 first type bits belong to the first bit set
  • the P1 second type bits belong to the second bit set
  • the P2 first type bits belong to the second bit set, and the P1 second type bits belong to the first bit set.
  • a part of the P2 first class bits belongs to the first bit set, and another part of the P2 first class bits belongs to the second bit set.
  • the bits in the second bit block are sequentially arranged in the third bit block according to the number of bits associated in the first bit block.
  • all of the second type of bits associated with a given first type of bit are placed in the third block of bits prior to the given first type of bits, the given first type of bits being One of the P2 first class bits is described.
  • the first bit is ranked first in the third bit block.
  • the second bit is ranked first in the third bit block.
  • the first bit is before the second bit
  • the position of the first target bit in the third bit block is before the position of the second target bit in the third bit block.
  • the first target bit and the second target bit are the P1 second Any two second-class bits in the class bits.
  • the CRC bit block of the first bit block is used to generate the second bit block.
  • the second node is a base station
  • the first bit block includes uplink control information
  • the second node is a UE
  • the first bit block includes downlink control information
  • the second processing module 1102 determines P3 reference values, and the P3 reference values are in one-to-one correspondence with P3 bits in the third bit block.
  • a reference value corresponding to at least one of the P2 first class bits is used for pruning in the channel decoding.
  • a reference value corresponding to at least one of the P2 first class bits is used to determine whether the first bit block is correctly received.
  • the second processing module 1102 includes a channel decoder 478 in Embodiment 4.
  • the second processing module 1102 includes a channel decoder 458 in Embodiment 4.
  • the second processing module 1102 includes at least one of a receiving processor 470, a channel decoder 478, a controller/processor 475, and a memory 476 in Embodiment 4.
  • the second processing module 1102 includes at least one of a receiving processor 456, a channel decoder 458, a controller/processor 459, and a memory 460 in Embodiment 4.
  • the first receiver module 1101 includes at least one of an antenna 420, a receiver 418, a receiving processor 470, a channel decoder 478, a controller/processor 475, and a memory 476 in Embodiment 4.
  • an antenna 420 a receiver 418
  • a receiving processor 470 a receiving processor 470
  • a channel decoder 478 a controller/processor 475
  • a memory 476 a memory 476 in Embodiment 4.
  • the first receiver module 1101 includes at least one of an antenna 452, a receiver 454, a receiving processor 456, a channel decoder 458, a controller/processor 459, and a memory 460 in Embodiment 4.
  • an antenna 452 a receiver 454, a receiving processor 456, a channel decoder 458, a controller/processor 459, and a memory 460 in Embodiment 4.
  • Embodiment 12 exemplifies a mapping relationship of bits in a first bit block, a second bit block, and a third bit block, as shown in FIG.
  • bits in the first bit block are used to generate bits in the second bit block
  • the third bit block includes bits in the second bit block and the first bit The bits in the bit block.
  • the first bit block and the second bit block respectively include P1 second type bits and P2 first type bits
  • the third bit block includes P3 binary bits
  • ⁇ the P1 second type bits Any one of the P2 first type bits ⁇ is a binary bit
  • the P1, the P2 and the P3 are positive integers, respectively.
  • Referring to a position of the first type of bit in the third bit block and a number of bits in the first bit block associated with the reference first type of bit the reference first type of bit being the P2 One of the first class of bits.
  • the P3 is equal to the P1 plus the P2 plus P4, the P4 is the number of bits included in the fourth bit block, and the P4 is a positive integer.
  • the P1 is equal to 6
  • the P2 is equal to 4
  • the bits in the first bit block are represented by d(i), and the i is an integer greater than or equal to 0 and less than P1
  • the bits in the second block of bits are represented by p(j), which is an integer greater than or equal to 0 and less than P2.
  • the first bit block and the associated bit in the second bit block are connected by a solid line.
  • bits in the second bit block are sequentially arranged in the third bit block according to the number of bits associated in the first bit block. That is, the fewer bits associated in the first bit block, the higher the position of the bits in the corresponding second bit block in the third bit block.
  • the number of bits in the first bit block associated with bits p(0), p(1), p(2), and p(3) are 1, 4, 2, 3, respectively. Therefore, ⁇ p(0), p(2), p(3), p(1) ⁇ are arranged in order from the front to the back in the third bit block.
  • each module unit in the above embodiment may be implemented in hardware form or in the form of a software function module.
  • the application is not limited to any specific combination of software and hardware.
  • the UE or the terminal in the present application includes but is not limited to a wireless communication device such as a mobile phone, a tablet computer, a notebook, an internet card, an NB-IOT terminal, and an eMTC terminal.
  • the base station or system equipment in this application includes but It is not limited to a wireless communication device such as a macrocell base station, a microcell base station, a home base station, or a relay base station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Error Detection And Correction (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本发明公开了一种用于信道编码的UE、基站中的方法和设备。第一节点首先确定第一比特块,然后发送第一无线信号。其中所述第一比特块被用于生成第二比特块,第三比特块包括所述第二比特块和所述第一比特块的比特,所述第三比特块被用于生成第一无线信号。所述第一比特块和所述第二比特块分别包括P1个第二类比特和P2个第一类比特,所述第三比特块包括P3个比特。参考第一类比特在所述第三比特块中的位置和所述第一比特块中与所述参考第一类比特相关联的比特数有关;或者参考第二类比特在第三比特块中的位置和所述第二比特块中与所述参考第二类比特相关联的比特在第三比特块中的位置有关。上述方法利用polar码中的CRC比特同时实现了剪枝和传统CRC的功能。

Description

一种用于信道编码的UE、基站中的方法和设备 技术领域
本申请涉及无线通信系统中的无线信号的传输方案,特别是涉及被用于信道编码的传输的方法和装置。
背景技术
极化码(Polar Codes)是一种于2008年由土耳其毕尔肯大学Erdal Arikan教授首次提出的编码方案,其可以实现对称二进制输入离散无记忆信道(B-DMC,Binary input Discrete Memoryless Channel)的容量的代码构造方法。在3GPP(3rd GenerationPartner Project,第三代合作伙伴项目)RAN1#87会议上,3GPP确定了采用Polar码方案作为5G eMBB(增强移动宽带)场景的控制信道编码方案。
3GPP文稿R1-164356通过仿真证明:当信息比特位的数量较低时,极化码采用CRC(Cyclic Redundancy Check,循环冗余校验)比特会导致传输效率的降低–低于TBCC(Tail-Biting Convolutional Codes,咬尾卷积码)。R1-164356进而提出了极化码不采用CRC的方案。
传统的LTE(Long Term Evolution,长期演进)系统中,CRC扮演着差错校验和目标接收机身份识别等特定功能。因此,简单的取消极化码中的CRC会使得上述特定功能无法实现。
发明内容
针对上述问题,本申请提供了解决方案。需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。例如,本申请的第一节点中的实施例和实施例中的特征可以应用到第二节点中,反之亦然。
本申请公开了被用于无线通信的第一节点中的方法,其中,包括:
-确定第一比特块;
-发送第一无线信号。
其中,所述第一比特块中的比特被用于生成第二比特块中的比特, 第三比特块包括所述第二比特块中的比特和所述第一比特块中的比特,所述第三比特块被用于生成所述第一无线信号;所述第一比特块和所述第二比特块分别包括P1个第二类比特和P2个第一类比特,所述第三比特块包括P3个二进制比特,{所述P1个第二类比特,所述P2个第一类比特}中的任意一个比特是二进制比特,所述P1,所述P2和所述P3分别是正整数;参考第一类比特在所述第三比特块中的位置和所述第一比特块中与所述参考第一类比特相关联的比特的数量有关,所述参考第一类比特是所述P2个第一类比特中的一个;或者参考第二类比特在所述第三比特块中的位置和所述第二比特块中与所述参考第二类比特相关联的比特在所述第三比特块中的位置有关,所述参考第二类比特是所述P1个第二类比特中的一个。
作为一个实施例,上述方法的好处在于,可以根据第一类比特在所述第一比特块中相关联的比特的数量来调整第一类比特在所述第三比特块中的位置,把具有不同相关联的比特的数量的第一类比特映射到具有不同可靠性的子信道上,对具有不同重要性的第一类比特实现不等差错保护。
作为一个实施例,上述方法的好处在于,可以根据第二类比特在所述第二比特块中相关联的比特在所述第三比特块中的位置来调整第二类比特在所述第三比特块中的位置,便于在所述第三比特块的译码过程中,利用第二类比特和所述第二比特块中某些比特的相关性来提高译码准确性,同时简化译码。
作为一个实施例,所述步骤A中,所述第一比特块在所述第一节点的物理层上被生成。
作为一个实施例,所述第一节点是基站,所述步骤A中,所述第一节点根据调度结果生成所述第一比特块。
作为一个实施例,所述第一节点是UE(User Equipment,用户设备),所述步骤A中,所述第一节点根据基站的调度生成所述第一比特块。
作为一个实施例,对于所述第二比特块中的任意比特,所述任意比特等于所述第一比特块中的正整数个比特的和对2取模。
作为一个实施例,对于所述第二比特块中的任意比特,所述任意比特由所述第一比特块中的正整数个比特的和对2取模,再和扰码序列中 的相应比特进行异或操作之后得到。
作为一个实施例,对于所述第一比特块中的任意比特,所述任意比特被用于确定所述第二比特块中的至少一个比特。
作为一个实施例,所述第一比特块和所述第二比特块之外的比特无关。
作为一个实施例,所述P3等于所述P1与所述P2的和,所述第三比特块是由所述第二比特块中的所有比特和所述第一比特块中的所有比特组成的。
作为一个实施例,所述P3等于所述P1加所述P2再加P4,所述P4是第四比特块包括的比特是个数,所述P4是正整数。所述第三比特块是由{所述第二比特块中的所有比特,所述第一比特块中的所有比特,所述第四比特块中的所有比特}组成。所述第四比特块中的所有比特的值是预先设定的。
作为上述实施例的一个子实施例,所述第四比特块中的所有比特都是0。
作为一个实施例,所述第二比特块中的比特在所述第三比特块中是连续的。
作为一个实施例,所述第二比特块中至少有两个比特在所述第三比特块中是不连续的,所述第一比特块中至少有两个比特在所述第三比特块中是不连续的。
作为一个实施例,所述第一无线信号在物理层控制信道(即不能被用于传输物理层数据的物理层信道)上传输。
作为一个实施例,所述第一无线信号在物理层数据信道(即能被用于承载物理层数据的物理层信道)上传输。
作为一个实施例,所述第一节点是UE。
作为上述实施例的一个子实施例,所述第一无线信号在PUCCH(Physical UplinkControl Channel,物理上行控制信道)上传输。
作为上述实施例的一个子实施例,所述第一无线信号在PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)上传输。
作为一个实施例,所述第一节点是基站。
作为上述实施例的一个子实施例,所述第一无线信号在 PDSCH(Physical Downlink Shared CHannel,物理下行共享信道)上传输。
作为上述实施例的一个子实施例,所述第一无线信号在PDCCH(Physical DownlinkControl Channel,物理下行控制信道)上传输。
作为一个实施例,所述第一无线信号是所述第三比特块依次经过信道编码(ChannelCoding),扰码(Scrambling),调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),宽带符号发生(Generation)之后的输出。
作为一个实施例,所述第一无线信号是所述第三比特块依次经过信道编码,扰码,调制映射器,层映射器,转换预编码器(transform precoder,用于生成复数值信号),预编码,资源粒子映射器,宽带符号发生之后的输出。
具体的,根据本申请的一个方面,其特征在于,根据在所述第一比特块中相关联的比特的数量,所述第二比特块中的比特在所述第三比特块中依次排列。
作为一个实施例,第三比特在所述第三比特块中的位置在第四比特在所述第三比特块中的位置之前,所述第三比特和所述第四比特是所述第二比特块中的任意两个比特,所述第三比特在所述第一比特块中相关联的比特的数量小于所述第四比特在所述第一比特块中相关联的比特的数量。
作为上述实施例的一个子实施例,所述第三比特在所述第三比特块中的索引小于所述第四比特在所述第三比特块中的索引。
具体的,根据本申请的一个方面,其特征在于,所有和给定第一类比特相关联的第二类比特在所述第三比特块中排在所述给定第一类比特之前,所述给定第一类比特是所述P2个第一类比特中的一个。
作为一个实施例,所有和所述给定第一类比特相关联的第二类比特在所述第三比特块中的索引小于所述给定第一类比特在所述第三比特块中的索引。
具体的,根据本申请的一个方面,其特征在于,和第一目标比特相关联且和第二目标比特无关的第一类比特中,第一比特在所述第三比特块中排在最前面;和所述第二目标比特相关联且和所述第一目标比特无关的 第一类比特中,第二比特在所述第三比特块中排在最前面;所述第一比特在所述第二比特之前,所述第一目标比特在所述第三比特块中的位置在所述第二目标比特在所述第三比特块中的位置之前;所述第一目标比特和所述第二目标比特是所述P1个第二类比特中的任意两个第二类比特。
作为一个实施例,所述第一比特在所述第三比特块中的索引是第一类索引中最小的,所述第一类索引是和所述第一目标比特相关联且和所述第二目标比特无关的第一类比特在所述第三比特块中的索引。
作为一个实施例,所述第二比特在所述第三比特块中的索引是第二类索引中最小的,所述第二类索引是和所述第二目标比特相关联且和所述第一目标比特无关的第一类比特在所述第三比特块中的索引。
作为一个实施例,所述第一目标比特在所述第三比特块中的索引小于所述第二目标比特在所述第三比特块中的索引。
作为一个实施例,所述第一比特在所述第三比特块中的索引小于所述第二比特在所述第三比特块中的索引。
具体的,根据本申请的一个方面,其特征在于,包含:
-执行信道编码;
其中,所述第三比特块被用于所述信道编码的输入,所述信道编码的输出被用于生成所述第一无线信号,所述信道编码基于极化码(Polar code);所述第三比特块中的任意两个比特分别被映射到两个不同的子信道上;第一比特集合中的任意一个比特所映射的子信道的信道容量大于第二比特集合中的任意一个比特所映射的子信道的信道容量。
作为一个实施例,所述P2个第一类比特属于所述第一比特集合,所述P1个第二类比特属于所述第二比特集合。
作为一个实施例,所述P2个第一类比特属于所述第二比特集合,所述P1个第二类比特属于所述第一比特集合。
作为一个实施例,所述P2个第一类比特中的一部分属于所述第一比特集合,所述P2个第一类比特中的另一部分属于所述第二比特集合。
作为一个实施例,上述方法的好处在于,可以实现对所述第一比特集合和所述第二比特集合的不等差错保护,使重要的比特在具有高可靠性的所述子信道上传输,提高所述第一无线信号的传输质量。
作为一个实施例,所述第一比特集合和所述第二比特集合中不存在 公共比特。
作为一个实施例,任意一个所述第三比特块中的比特属于{所述第一比特集合,所述第二比特集合}中的一个。
作为一个实施例,所述所述P2个第一类比特中的一部分属于所述第一比特集合,所述所述P2个第一类比特中的另一部分和所述P1个第二类比特属于所述第二比特集合。
作为一个实施例,所述所述P2个第一类比特中的一部分和所述P1个第二类比特属于所述第一比特集合,所述所述P2个第一类比特中的另一部分属于所述第二比特集合。
作为一个实施例,所述第三比特块中的比特按照所述子信道的所述信道容量依次映射。
作为一个实施例,所述第三比特块中的比特按照所述子信道的索引依次映射。
作为上述实施例的一个子实施例,第五比特是所述第三比特块中的任意一个比特,所述第五比特在所述第三比特块中的索引是p,所述p是大于等于0,小于P3的整数。所述第五比特被映射到第五子信道,所述第五子信道在所有所述子信道上的索引是所述p。
作为一个实施例,所述所述P2个第一类比特中的一部分在所述第三比特块中是连续的,所述所述P2个第一类比特中的另一部分在所述第三比特块中是离散的。
作为一个实施例,所述所述P2个第一类比特中的一部分在所述第三比特块中是离散的,所述所述P2个第一类比特中的另一部分在所述第三比特块中是连续的。
作为一个实施例,所述所述P2个第一类比特中的一部分和所述所述P2个第一类比特中的另一部分组成所述第二比特块。
作为一个实施例,所述所述P2个第一类比特中的一部分包括所述第二比特块中的P2/2个比特,所述所述P2个第一类比特中的另一部分包括所述第二比特块中的P2/2个比特。
作为一个实施例,任意两个不同的所述子信道的信道容量是不同的。
作为一个实施例,所述第一无线信号是所述所述信道编码的输出依次经过扰码(Scrambling),调制映射器(Modulation Mapper),层映 射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),宽带符号发生(Generation)之后得到的。
作为一个实施例,所述第一无线信号是所述所述信道编码的输出依次经过扰码,调制映射器,层映射器,转换预编码器(transform precoder,用于生成复数值信号),预编码,资源粒子映射器,宽带符号发生之后得到的。
具体的,根据本申请的一个方面,其特征在于,所述第一比特块的CRC比特块被用于生成所述第二比特块。
作为一个实施例,所述第二比特块是所述第一比特块的CRC比特块。
作为一个实施例,所述第二比特块是所述第一比特块的CRC比特块经过扰码之后的比特块。
作为一个实施例,所述扰码采用的扰码序列和所述第一节点的标识有关。
作为一个实施例,所述第一节点是UE,所述第一节点的标识是RNTI(Radio Network Temporary Identifier,无线电网络临时标识)。
作为一个实施例,所述第一节点是基站,所述第一节点的标识是PCI(Physical Cell Identifier,物理小区标识)。
作为一个实施例,所述扰码采用的扰码序列和所述第一无线信号的目标接收者的标识有关。
作为一个实施例,所述第一节点是基站,所述第一无线信号的目标接收者的标识是RNTI。
作为一个实施例,所述所述第一比特块的CRC比特块是由所述第一比特块经过CRC循环生成多项式(cyclic generator polynomial)的输出。所述第一比特块和所述所述第一比特块的CRC比特块构成的多项式在GF(2)上能被所述CRC循环生成多项式整除,即所述所述第一比特块和所述所述第一比特块的CRC比特块构成的多项式除以所述CRC循环生成多项式得到的余数是零。
作为一个实施例,所述P2是{24,16,8}中之一。
具体的,根据本申请的一个方面,其特征在于,所述第一节点是基站,所述第一比特块包括下行控制信息;或者所述第一节点是UE,所述第一比特块包括上行控制信息。
作为一个实施例,所述下行控制信息指示相应数据{所占用的时域资源,所占用的频域资源,MCS(Modulation and Coding Scheme,调制编码方式),RV(Redundancy Version,冗余版本),NDI(New Data Indicator,新数据指示),HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号}中的至少之一。
作为一个实施例,所述上行控制信息指示{HARQ-ACK(Acknowledgement,确认),CSI(ChannelStateInformation,信道状态信息),SR(Scheduling Request,调度请求),CRI}中的至少之一。
本申请公开了被用于无线通信的第二节点中的方法,其中,包括:
-接收第一无线信号;
-恢复第一比特块;
其中,所述第一比特块中的比特被用于生成第二比特块中的比特,第三比特块包括所述第二比特块中的比特和所述第一比特块中的比特,所述第三比特块被用于生成所述第一无线信号;所述第一比特块和所述第二比特块分别包括P1个第二类比特和P2个第一类比特,所述第三比特块包括P3个二进制比特,{所述P1个第二类比特,所述P2个第一类比特}中的任意一个比特是二进制比特,所述P1,所述P2和所述P3分别是正整数;参考第一类比特在所述第三比特块中的位置和所述第一比特块中与所述参考第一类比特相关联的比特的数量有关,所述参考第一类比特是所述P2个第一类比特中的一个;或者参考第二类比特在所述第三比特块中的位置和所述第二比特块中与所述参考第二类比特相关联的比特在所述第三比特块中的位置有关,所述参考第二类比特是所述P1个第二类比特中的一个。
作为一个实施例,所述第二节点是基站,所述第一节点是UE。
作为一个实施例,所述第二节点是UE,所述第一节点是基站。
具体的,根据本申请的一个方面,其特征在于,根据在所述第一比特块中相关联的比特的数量,所述第二比特块中的比特在所述第三比特块中依次排列。
具体的,根据本申请的一个方面,其特征在于,所有和给定所述第一类比特相关联的所述第二类比特在所述第三比特块中排在所述给定所述第一类比特之前。
具体的,根据本申请的一个方面,其特征在于,和第一目标比特相关联且和第二目标比特无关的第一类比特中,第一比特在所述第三比特块中排在最前面;和所述第二目标比特相关联且和所述第一目标比特无关的第一类比特中,第二比特在所述第三比特块中排在最前面;所述第一比特在所述第二比特之前,所述第一目标比特在所述第三比特块中的位置在所述第二目标比特在所述第三比特块中的位置之前;所述第一目标比特和所述第二目标比特是所述P1个第二类比特中的任意两个第二类比特。
具体的,根据本申请的一个方面,其特征在于,包含:
-执行信道译码;
其中,所述第一无线信号被用于生成所述信道译码的输入,所述信道译码对应的信道编码是基于极化码,所述第三比特块被用于所述信道编码的输入;所述第三比特块中的任意两个比特分别被映射到两个不同的子信道上;第一比特集合中的任意一个比特所映射的子信道的信道容量大于第二比特集合中的任意一个比特所映射的子信道的信道容量。
作为一个实施例,所述P2个第一类比特属于所述第一比特集合,所述P1个第二类比特属于所述第二比特集合。
作为一个实施例,所述P2个第一类比特属于所述第二比特集合,所述P1个第二类比特属于所述第一比特集合。
作为一个实施例,所述P2个第一类比特中的一部分属于所述第一比特集合,所述P2个第一类比特中的另一部分属于所述第二比特集合。
作为一个实施例,所述信道译码的输出被用于恢复所述第一比特块。
具体的,根据本申请的一个方面,其特征在于,所述信道译码被用于确定P3个参考值,所述P3个参考值和所述第三比特块中的P3个比特一一对应。
作为一个实施例,所述P2个第一类比特中至少有一个第一类比特所对应的参考值在所述信道译码中被用于剪枝。
作为一个实施例,所述P2个第一类比特中至少有一个第一类比特所对应的参考值被用于确定所述第一比特块是否被正确接收。
作为一个实施例,上述方法的好处在于,一部分所述P2第一类比特可以用于在所述信道译码中提高译码准确性,并降低译码复杂度;另一部分所述P2第一类比特可以用于实现传统CRC的功能,即确定所述第一比特块 是否被正确接收,同时用于传递所述第一节点的标识,或者用于传递所述第一无线信号的目标接收者的标识。
作为一个实施例,所述P3个参考值分别是针对对应的(发送)比特而恢复的(接收)比特。
作为一个实施例,所述P3个参考值分别是针对对应的(发送)比特而恢复的(接收)软比特。
作为一个实施例,所述P3个参考值分别是针对对应的(发送)比特而估计的LLR(Log Likelihood Ratio,对数似然比)。
作为一个实施例,所述剪枝被用于在基于Viterbi准则的所述信道译码中减少幸存的搜索路径。
作为一个实施例,对于被用于剪枝的给定参考值,被剪枝的搜索路径所对应的比特在所述第三比特块中的位置在给定第一类比特在所述第三比特块中的位置之前。所述给定参考值是所述P3个参考值中被用于剪枝的参考值,所述给定第一类比特对应所述给定参考值。
作为一个实施例,所述P2个第一类比特(即所述第二比特块中的所有比特)对应的参考值都被用于所述剪枝。
作为一个实施例,所述P2个第一类比特(即所述第二比特块中的所有比特)对应的参考值都被用于确定所述第一比特块是否被正确接收。
作为一个实施例,所述所述P2个第一类比特中的一部分中的所有比特对应的参考值被用于所述剪枝,所述所述P2个第一类比特中的另一部分中的所有比特对应的参考值被用于判断所述第一比特块是否被正确接收。
作为一个实施例,所述所述P2个第一类比特中的另一部分中的所有比特对应的参考值被用于所述剪枝,所述所述P2个第一类比特中的一部分中的所有比特对应的参考值被用于判断是否正确恢复出所述第一比特块。
作为一个实施例,所述P2个第一类比特中被用于判断是否正确恢复出所述第一比特块的第一类比特还用于指示所述第一无线信号的目标接收者的标识。
作为一个实施例,所述P2个第一类比特中被用于判断是否正确恢复出所述第一比特块的第一类比特还用于指示所述第一节点的标识。
作为一个实施例,所述P2个第一类比特中被用于判断是否正确恢复出所述第一比特块的第一类比特对应的参考值和所述第一比特块对应的参考值共同通过CRC校验,如果校验结果正确则判断所述第一比特块被正确恢复;否则判断所述第一比特块没有被正确恢复。
具体的,根据本申请的一个方面,其特征在于,所述第一比特块的CRC比特块被用于生成所述第二比特块。
具体的,根据本申请的一个方面,其特征在于,所述第二节点是基站,所述第一比特块包括上行控制信息;或者所述第二节点是UE,所述第一比特块包括下行控制信息。
本申请公开了被用于无线通信的第一节点中的设备,其中,包括:
-第一处理模块,生成第一比特块;
-第一发送机模块,发送第一无线信号;
其中,所述第一比特块中的比特被用于生成第二比特块中的比特,第三比特块包括所述第二比特块中的比特和所述第一比特块中的比特,所述第三比特块被用于生成所述第一无线信号;所述第一比特块和所述第二比特块分别包括P1个第二类比特和P2个第一类比特,所述第三比特块包括P3个二进制比特,{所述P1个第二类比特,所述P2个第一类比特}中的任意一个比特是二进制比特,所述P1,所述P2和所述P3分别是正整数;参考第一类比特在所述第三比特块中的位置和所述第一比特块中与所述参考第一类比特相关联的比特的数量有关,所述参考第一类比特是所述P2个第一类比特中的一个;或者参考第二类比特在所述第三比特块中的位置和所述第二比特块中与所述参考第二类比特相关联的比特在所述第三比特块中的位置有关,所述参考第二类比特是所述P1个第二类比特中的一个。
作为一个实施例,上述被用于无线通信的第一节点中的设备的特征在于,根据在所述第一比特块中相关联的比特的数量,所述第二比特块中的比特在所述第三比特块中依次排列。
作为一个实施例,上述被用于无线通信的第一节点中的设备的特征在于,所有和给定第一类比特相关联的第二类比特在所述第三比特块中排在所述给定第一类比特之前,所述给定第一类比特是所述P2个第一类比特中的一个。
作为一个实施例,上述被用于无线通信的第一节点中的设备的特征在于,和第一目标比特相关联且和第二目标比特无关的第一类比特中,第一比特在所述第三比特块中排在最前面;和所述第二目标比特相关联且和所述第一目标比特无关的第一类比特中,第二比特在所述第三比特块中排在最前面;所述第一比特在所述第二比特之前,所述第一目标比特在所述第三比特块中的位置在所述第二目标比特在所述第三比特块中的位置之前;所述第一目标比特和所述第二目标比特是所述P1个第二类比特中的任意两个第二类比特。
作为一个实施例,上述被用于无线通信的第一节点中的设备的特征在于,所述第一比特块的CRC比特块被用于生成所述第二比特块。
作为一个实施例,上述被用于无线通信的第一节点中的设备的特征在于,所述第一节点中的设备是基站设备,所述第一比特块包括下行控制信息;或者所述第一节点中的设备是用户设备,所述第一比特块包括上行控制信息。
具体的,根据本申请的一个方面,其特征在于,所述第一处理模块还执行信道编码。其中,所述第三比特块被用于所述信道编码的输入,所述信道编码的输出被用于生成所述第一无线信号,所述信道编码基于极化码;所述第三比特块中的任意两个比特分别被映射到两个不同的子信道上;第一比特集合中的任意一个比特所映射的子信道的信道容量大于第二比特集合中的任意一个比特所映射的子信道的信道容量。
作为一个实施例,所述P2个第一类比特属于所述第一比特集合,所述P1个第二类比特属于所述第二比特集合。
作为一个实施例,所述P2个第一类比特属于所述第二比特集合,所述P1个第二类比特属于所述第一比特集合。
作为一个实施例,所述P2个第一类比特中的一部分属于所述第一比特集合,所述P2个第一类比特中的另一部分属于所述第二比特集合。
本申请公开了被用于无线通信的第二节点中的设备,其中,包括:
-第一接收机模块,接收第一无线信号;
-第二处理模块,恢复第一比特块,
其中,所述第一比特块中的比特被用于生成第二比特块中的比特,第三比特块包括所述第二比特块中的比特和所述第一比特块中的比特, 所述第三比特块被用于生成所述第一无线信号;所述第一比特块和所述第二比特块分别包括P1个第二类比特和P2个第一类比特,所述第三比特块包括P3个二进制比特,{所述P1个第二类比特,所述P2个第一类比特}中的任意一个比特是二进制比特,所述P1,所述P2和所述P3分别是正整数;参考第一类比特在所述第三比特块中的位置和所述第一比特块中与所述参考第一类比特相关联的比特的数量有关,所述参考第一类比特是所述P2个第一类比特中的一个;或者参考第二类比特在所述第三比特块中的位置和所述第二比特块中与所述参考第二类比特相关联的比特在所述第三比特块中的位置有关,所述参考第二类比特是所述P1个第二类比特中的一个。
作为一个实施例,上述被用于无线通信的第二节点中的设备的特征在于,根据在所述第一比特块中相关联的比特的数量,所述第二比特块中的比特在所述第三比特块中依次排列。
作为一个实施例,上述被用于无线通信的第二节点中的设备的特征在于,所有和给定第一类比特相关联的第二类比特在所述第三比特块中排在所述给定第一类比特之前,所述给定第一类比特是所述P2个第一类比特中的一个。
作为一个实施例,上述被用于无线通信的第二节点中的设备的特征在于,和第一目标比特相关联且和第二目标比特无关的第一类比特中,第一比特在所述第三比特块中排在最前面;和所述第二目标比特相关联且和所述第一目标比特无关的第一类比特中,第二比特在所述第三比特块中排在最前面;所述第一比特在所述第二比特之前,所述第一目标比特在所述第三比特块中的位置在所述第二目标比特在所述第三比特块中的位置之前;所述第一目标比特和所述第二目标比特是所述P1个第二类比特中的任意两个第二类比特。
作为一个实施例,上述被用于无线通信的第二节点中的设备的特征在于,所述第一比特块的CRC比特块被用于生成所述第二比特块。
作为一个实施例,上述被用于无线通信的第二节点中的设备的特征在于,所述第二节点中的设备是基站设备,所述第一比特块包括上行控制信息;或者所述第二节点中的设备是用户设备,所述第一比特块包括下行控制信息。
具体的,根据本申请的一个方面,其特征在于,所述第二处理模块还执行信道译码。其中,所述第一无线信号被用于生成所述信道译码的输入,所述信道译码对应的信道编码是基于极化码,所述第三比特块被用于所述信道编码的输入;所述第三比特块中的任意两个比特分别被映射到两个不同的子信道上;第一比特集合中的任意一个比特所映射的子信道的信道容量大于第二比特集合中的任意一个比特所映射的子信道的信道容量。
作为一个实施例,所述P2个第一类比特属于所述第一比特集合,所述P1个第二类比特属于所述第二比特集合。
作为一个实施例,所述P2个第一类比特属于所述第二比特集合,所述P1个第二类比特属于所述第一比特集合。
作为一个实施例,所述P2个第一类比特中的一部分属于所述第一比特集合,所述P2个第一类比特中的另一部分属于所述第二比特集合。
作为一个实施例,上述被用于无线通信的第二节点中的设备的特征在于,所述信道译码被用于确定P3个参考值,所述P3个参考值和所述第三比特块中的P3个比特一一对应。
作为一个实施例,所述P2个第一类比特中至少有一个第一类比特所对应的参考值在所述信道译码中被用于剪枝。
作为一个实施例,所述P2个第一类比特中至少有一个第一类比特所对应的参考值被用于确定所述第一比特块是否被正确接收。
和传统方案相比,本申请具备如下优势:
-.利用CRC作为polar码的外码,提高了polar码的译码准确性
-.通过合理设计一部分CRC比特和对应的信息比特在polar码输入序列上的位置关系,可以利用一部分CRC比特在polar的译码过程中实现剪枝,降低译码复杂度。
-.另一部分CRC被用于实现传统CRC的功能,即差错校验和目标接收机身份识别。
-.不同重要性的比特,包括和不同数目的信息比特相关联的CRC比特,用于剪枝的CRC比特,用于差错校验和目标接收机身份识别的CRC比特和信息比特,被映射到具有不同信道容量的子信道上,实现了不等 差错保护,提高了传输质量。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一比特块和第一无线信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的演进节点和UE的示意图;图5示出了根据本申请的一个实施例的无线传输的流程图;
图6示出了根据本申请的另一个实施例的无线传输的流程图;
图7示出了根据本申请的一个实施例的第一比特块,第二比特块和第三比特块中比特的映射关系的示意图;
图8示出了根据本申请的一个实施例的第三比特块中的比特在子信道上的映射的示意图;
图9示出了根据本申请的一个实施例的{第一比特块,第二比特块,第三比特块}和第一无线信号之间的关系的示意图;
图10示出了根据本申请的一个实施例的用于无线通信的第一节点中的处理装置的结构框图;
图11示出了根据本申请的一个实施例的用于无线通信的第二节点中的处理装置的结构框图;
图12示出了根据本申请的又一个实施例的第一比特块,第二比特块和第三比特块中比特的映射关系的示意图;
实施例1
实施例1示例了第一比特块和第一无线信号的流程图,如附图1所示。
在实施例1中,本申请中的所述第一节点首先确定第一比特块;然后发送第一无线信号。其中,所述第一比特块中的比特被用于生成第二比特块中的比特,第三比特块包括所述第二比特块中的比特和所述第一比 特块中的比特,所述第三比特块被用于生成所述第一无线信号;所述第一比特块和所述第二比特块分别包括P1个第二类比特和P2个第一类比特,所述第三比特块包括P3个二进制比特,{所述P1个第二类比特,所述P2个第一类比特}中的任意一个比特是二进制比特,所述P1,所述P2和所述P3分别是正整数;参考第一类比特在所述第三比特块中的位置和所述第一比特块中与所述参考第一类比特相关联的比特的数量有关,所述参考第一类比特是所述P2个第一类比特中的一个;或者参考第二类比特在所述第三比特块中的位置和所述第二比特块中与所述参考第二类比特相关联的比特在所述第三比特块中的位置有关,所述参考第二类比特是所述P1个第二类比特中的一个。
作为一个实施例,所述第一比特块在所述第一节点的物理层上被生成。
作为一个实施例,所述第一节点是基站,所述第一节点根据调度结果生成所述第一比特块。
作为一个实施例,所述第一节点是UE(User Equipment,用户设备),所述第一节点根据基站的调度生成所述第一比特块。
作为一个实施例,对于所述第二比特块中的任意比特,所述任意比特等于所述第一比特块中的正整数个比特的和对2取模。
作为一个实施例,对于所述第二比特块中的任意比特,所述任意比特由所述第一比特块中的正整数个比特的和对2取模,再和扰码序列中的相应比特进行异或操作之后得到。
作为一个实施例,对于所述第一比特块中的任意比特,所述任意比特被用于确定所述第二比特块中的至少一个比特。
作为一个实施例,所述第二比特块和所述第一比特块之外的比特无关。
作为一个实施例,所述P3等于所述P1与所述P2的和,所述第三比特块是由所述第二比特块中的所有比特和所述第一比特块中的所有比特组成的。
作为一个实施例,所述P3等于所述P1加所述P2再加P4,所述P4是第四比特块包括的比特是个数,所述P4是正整数。所述第三比特块是由{所述第二比特块中的所有比特,所述第一比特块中的所有比特, 所述第四比特块中的所有比特}组成。所述第四比特块中的所有比特的值是预先设定的。
作为上述实施例的一个子实施例,所述第四比特块中的所有比特都是0。
作为一个实施例,所述第二比特块中至少有两个比特在所述第三比特块中是不连续的,所述第一比特块中至少有两个比特在所述第三比特块中是不连续的。
作为一个实施例,所述第一无线信号在物理层控制信道(即不能被用于传输物理层数据的物理层信道)上传输。
作为一个实施例,所述第一无线信号在物理层数据信道(即能被用于承载物理层数据的物理层信道)上传输。
作为一个实施例,所述第一节点是UE。
作为上述实施例的一个子实施例,所述第一无线信号在PUCCH上传输。
作为上述实施例的一个子实施例,所述第一无线信号在PUSCH上传输。
作为一个实施例,所述第一节点是基站。
作为上述实施例的一个子实施例,所述第一无线信号在PDSCH上传输。
作为上述实施例的一个子实施例,所述第一无线信号在PDCCH上传输。
作为一个实施例,所述第一无线信号是所述第三比特块依次经过信道编码(ChannelCoding),扰码(Scrambling),调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),宽带符号发生(Generation)之后的输出。
作为一个实施例,所述第一无线信号是所述第三比特块依次经过信道编码,扰码,调制映射器,层映射器,转换预编码器(transform precoder,用于生成复数值信号),预编码,资源粒子映射器,宽带符号发生之后的输出。
实施例2
实施例2示例了网络架构的示意图,如附图2所示。
附图2说明了LTE(Long-Term Evolution,长期演进),LTE-A(Long-Term Evolution Advanced,增强长期演进)及未来5G系统的网络架构200。LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,E-UTRAN-NR(演进UMTS陆地无线电接入网络-新无线)202,5G-CN(5G-CoreNetwork,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。其中,UMTS对应通用移动通信业务(Universal Mobile Telecommunications System)。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如附图2所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络。E-UTRAN-NR包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由X2接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对5G-CN/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1接口连接到5G-CN/EPC210。5G-CN/EPC210包括MME 211、其它MME214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME211是处理UE201与5G-CN/EPC210 之间的信令的控制节点。大体上,MME211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和PS串流服务(PSS)。
作为一个实施例,所述UE201对应本申请中的所述第一节点,所述gNB203对应本申请中的所述第二节点。
作为一个实施例,所述UE201对应本申请中的所述第二节点,所述gNB203对应本申请中的所述第一节点。
实施例3
实施例3示例了用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
附图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,附图3用三个层展示用于UE和gNB的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在UE与gNB之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层 303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的gNB处。虽然未图示,但UE可具有在L2层305之上的若干协议层,包括终止于网络侧上的P-GW213处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供gNB之间的对UE的越区移交支持。RLC子层303提供上层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在UE之间分配一个小 区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于UE和gNB的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用gNB与UE之间的RRC信令来配置下部层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一比特块生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一比特块生成于所述MAC子层302。
作为一个实施例,本申请中的所述第二比特块生成于所述PHY301。
作为一个实施例,本申请中的所述第三比特块生成于所述PHY301。
作为一个实施例,本申请中的所述第一无线信号生成于所述PHY301。
实施例4
实施例4示例了演进节点和UE的示意图,如附图4所示。
gNB410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,信道编码器477,信道译码器478,发射器/接收器418和天线420。
UE450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,信道编码器457,信道译码器458,发射器/接收器454和天线452。
在DL(Downlink,下行)中,在gNB处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在DL中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对UE450的无线电资源进行分配。控制器/处理器475还负责HARQ操作、丢失包的重新发射, 和到UE450的信令。发射处理器416和信道编码器477实施用于L1层(即,物理层)的各种信号处理功能。信道编码器477实施编码和交错以促进UE450处的前向错误校正(FEC)。发射处理器416实施基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射,并对经编码和经调制后的符号进行空间预编码/波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)产生载运时域多载波符号流的物理信道。每一发射器418把发射处理器416提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在DL(Downlink,下行)中,在UE450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和信道译码器458实施L1层的各种信号处理功能。接收处理器456使用快速傅立叶变换(FFT)将基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,物理层数据在接收处理器456中经过多天线检测被恢复出以UE450为目的地的空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后信道译码器458解码和解交错所述软决策以恢复在物理信道上由gNB410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在DL中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。控制器/处理器459还负责使用确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
在UL(Uplink,上行)中,在UE450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在DL中所描述gNB410处的发送功能,控制器/处理器459基于 gNB410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责HARQ操作、丢失包的重新发射,和到gNB410的信令。信道编码器457实施信道编码,编码后的数据经过发射处理器468实施的调制以及多天线空间预编码/波束赋型处理,被调制成多载波/单载波符号流,再经由发射器454提供到不同天线452。每一发射器454首先把发射处理器468提供的基带符号流转化成射频符号流,再提供到天线452。
在UL(Uplink,上行)中,gNB410处的功能类似于在DL中所描述的UE450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到接收处理器470。接收处理器470和信道译码器478共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在UL中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可提供到核心网络。控制器/处理器475还负责使用ACK和/或NACK协议进行错误检测以支持HARQ操作。
作为一个实施例,所述UE450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。
作为一个实施例,所述UE450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:确定本申请中的所述第一比特块,发送本申请中的所述第一无线信号,执行本申请中的所述信道编码。
作为一个实施例,所述UE450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:恢复本申请中的所述第一比特块,接收本申请中的所述第一无线信号,执行本申请中的所述信道译码。
作为一个实施例,所述gNB410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。
作为一个实施例,所述gNB410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:恢复本申请中的所述第一比特块,接收本申请中的所述第一无线信号,执行本申请中的所述信道译码。
作为一个实施例,所述gNB410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:确定本申请中的所述第一比特块,发送本申请中的所述第一无线信号,执行本申请中的所述信道编码。
作为一个实施例,所述UE450对应本申请中的所述第一节点,所述gNB410对应本申请中的所述第二节点。
作为一个实施例,所述UE450对应本申请中的所述第二节点,所述gNB410对应本申请中的所述第一节点。
作为一个实施例,所述控制器/处理器459、存储器460和数据源467中至少之一被用于确定所述第一比特块,所述发射处理器468、所述信道编码器457和所述控制器/处理器459中的至少之一被用于生成本申请中的所述第二比特块和本申请中的所述第三比特块;所述接收处理器470、所述信道译码器478、所述控制器/处理器475和存储器476中的至少之一被用于恢复所述第一比特块。
作为一个实施例,所述发射处理器468、所述信道编码器457、所述控制器/处理器459、发射器454和天线452中的至少之一被用于发送所述第一无线信号;所述接收处理器470、所述信道译码器478、所述控制器/处理器475、接收器418和天线420中的至少之一被用于接收所述第一无线信号。
作为一个实施例,所述信道编码器457被用于执行本申请中的所述信道编码;所述信道译码器478被用于执行本申请中的所述信道译码。
作为一个实施例,所述控制器/处理器475和存储器476中至少之一被用于确定所述第一比特块,所述发射处理器416、所述信道编码器477和所述控制器/处理器475中的至少之一被用于生成本申请中的所述第二比特块和本申请中的所述第三比特块;所述接收处理器456、所述信道译码器458、所述控制器/处理器459、存储器460和数据源467中的至少之一被用于恢复所述第一比特块。
作为一个实施例,所述发射处理器416、所述信道编码器477、所述控制器/处理器475、发射器418和天线420中的至少之一被用于发送所述第一无线信号;所述接收处理器456、所述信道译码器458、所述控制器/处理器459、接收器454和天线452中的至少之一被用于接收所述第一无线信号。
作为一个实施例,所述信道编码器477被用于执行本申请中的所述信道编码;所述信道译码器458被用于执行本申请中的所述信道译码。
实施例5
实施例5示例了无线传输的流程图,如附图5所示。附图5中,基站N1是UE U2的服务小区维持基站。
对于N1,在步骤S11中发送第一无线信号。
对于U2,在步骤S21中接收第一无线信号。
在实施例5中,第三比特块被所述N1用于生成所述第一无线信号,所述第三比特块包括第二比特块中的比特和第一比特块中的比特,所述第一比特块中的比特被所述N1用于生成所述第二比特块中的比特。所述第一比特块和所述第二比特块分别包括P1个第二类比特和和P2个第一类比特,所述第三比特块包括P3个二进制比特。{所述P1个第二类比特,所述P2个第一类比特}中的任意一个比特是二进制比特。所述P1,所述P2和所述P3分别是正整数。参考第一类比特在所述第三比特块中的位置和所述第一比特块中与所述参考第一类比特相关联的比特的数量有关,所述参考第一类比特是所述P2个第一类比特中的一个;或者参考第二类比特在所述第三比特块中的位置和所述第二比特块中与所述参考第二类比特相关联的比特在所述第三比特块中的位置有关,所述参考第二类比特是所述P1个第二类比特中的一个。
作为一个实施例,所述第一比特块在所述N1的物理层上被生成。
作为一个实施例,所述N1根据调度结果生成所述第一比特块。
作为一个实施例,所述第一无线信号是所述第三比特块依次经过信道编码(ChannelCoding),扰码(Scrambling),调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),宽带符号发生(Generation)之 后的输出。
作为一个实施例,所述第三比特块被所述N1用于信道编码的输入,所述信道编码的输出被用于生成所述第一无线信号,所述信道编码基于极化码(Polar code)。所述第三比特块中的任意两个比特分别被映射到两个不同的子信道上。第一比特集合中的任意一个比特所映射的子信道的信道容量大于第二比特集合中的任意一个比特所映射的子信道的信道容量。
作为上述实施例的一个子实施例,所述P2个第一类比特属于所述第一比特集合,所述P1个第二类比特属于所述第二比特集合。
作为上述实施例的一个子实施例,所述P2个第一类比特属于所述第二比特集合,所述P1个第二类比特属于所述第一比特集合。
作为上述实施例的一个子实施例,所述P2个第一类比特中的一部分和所述P1个第二类比特属于所述第一比特集合,所述P2个第一类比特中的另一部分属于所述第二比特集合。
作为上述实施例的一个子实施例,所述P2个第一类比特中的一部分属于所述第一比特集合,所述P2个第一类比特中的另一部分和所述P1个第二类比特属于所述第二比特集合。
作为一个实施例,所述第一无线信号被所述U2用于生成信道译码的输入,所述信道译码对应的信道编码是基于极化码。所述信道译码被用于确定P3个参考值,所述P3个参考值和所述第三比特块中的P3个比特一一对应。
作为上述实施例的一个子实施例,所述P2个第一类比特中至少有一个第一类比特所对应的参考值在所述信道译码中被所述U2用于剪枝。
作为上述实施例的一个子实施例,所述P2个第一类比特中至少有一个第一类比特所对应的参考值被所述U2用于确定所述第一比特块是否被正确接收。
作为一个实施例,所述第一比特块的CRC比特块被所述N1用于生成所述第二比特块。
作为一个实施例,所述第一比特块包括下行控制信息。
作为上述实施例的一个子实施例,所述下行控制信息指示相应数据{所占用的时域资源,所占用的频域资源,MCS(Modulation and Coding  Scheme,调制编码方式),RV(Redundancy Version,冗余版本),NDI(New Data Indicator,新数据指示),HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号}中的至少之一。
实施例6
实施例6示例了无线传输的流程图,如附图6所示。附图6中,基站N3是UE U4的服务小区维持基站。
对于N3,在步骤S31中接收第一无线信号。
对于U4,在步骤S41中发送第一无线信号。
在实施例6中,第三比特块被所述U4用于生成所述第一无线信号,所述第三比特块包括第二比特块中的比特和第一比特块中的比特,所述第一比特块中的比特被所述U4用于生成所述第二比特块中的比特。所述第一比特块和所述第二比特块分别包括P1个第二类比特和P2个第一类比特,所述第三比特块包括P3个二进制比特。{所述P1个第二类比特,所述P2个第一类比特}中的任意一个比特是二进制比特。所述P1,所述P2和所述P3分别是正整数。参考第一类比特在所述第三比特块中的位置和所述第一比特块中与所述参考第一类比特相关联的比特的数量有关,所述参考第一类比特是所述P2个第一类比特中的一个;或者参考第二类比特在所述第三比特块中的位置和所述第二比特块中与所述参考第二类比特相关联的比特在所述第三比特块中的位置有关,所述参考第二类比特是所述P1个第二类比特中的一个。
作为一个实施例,所述第一比特块在所述U4的物理层上被生成。
作为一个实施例,所述U4根据所述N3的调度结果生成所述第一比特块。
作为一个实施例,所述第一无线信号是所述第三比特块依次经过信道编码,扰码,调制映射器,层映射器,转换预编码器(transform precoder,用于生成复数值信号),预编码,资源粒子映射器,宽带符号发生之后的输出。
作为一个实施例,所述第一比特块包括上行控制信息。
作为上述实施例的一个子实施例,所述上行控制信息指示指示{HARQ-ACK(Acknowledgement,确认),CSI(ChannelStateInformation, 信道状态信息),SR(Scheduling Request,调度请求),CRI}中的至少之一。
实施例7
实施例7示例了第一比特块,第二比特块和第三比特块中比特的映射关系,如附图7所示。
在实施例7中,所述第一比特块中的比特被用于生成所述第二比特块中的比特,所述第三比特块包括所述第二比特块中的比特和所述第一比特块中的比特。所述第一比特块和所述第二比特块包括P1个第二类比特和P2个第一类比特,所述第三比特块包括P3个二进制比特,{所述P1个第二类比特,所述P2个第一类比特}中的任意一个比特是二进制比特,所述P1,所述P2和所述P3分别是正整数。参考第一类比特在所述第三比特块中的位置和所述第一比特块中与所述参考第一类比特相关联的比特的数量有关,所述参考第一类比特是所述P2个第一类比特中的一个;或者参考第二类比特在所述第三比特块中的位置和所述第二比特块中与所述参考第二类比特相关联的比特在所述第三比特块中的位置有关,所述参考第二类比特是所述P1个第二类比特中的一个。
在附图7中,所述P1等于6,所述P2等于4,所述第一比特块中的比特用d(i)来表示,所述i是大于等于0,小于P1的整数;所述第二比特块中的比特用p(j)来表示,所述j是大于等于0,小于P2的整数。所述第一比特块和所述第二比特块中相关联的比特之间用实线连接。
作为一个实施例,对于所述第二比特块中的任意比特,所述任意比特等于所述第一比特块中的正整数个比特的和对2取模。例如,附图7中的p(0)等于d(0)和d(3)之和对2取模。
作为一个实施例,对于所述第二比特块中的任意比特,所述任意比特由所述第一比特块中的正整数个比特的和对2取模,再和扰码序列中的相应比特进行异或操作之后得到。例如,附图7中的p(0)由d(0)和d(3)之和对2取模,再和扰码序列中的相应比特进行异或操作之后得到。
作为一个实施例,对于所述第一比特块中的任意比特,所述任意比特被用于确定所述第二比特块中的至少一个比特。例如,附图7中的d(0)被用于确定p(0)和p(2)。
作为一个实施例,所述第一比特块和所述第二比特块之外的比特无关。
作为一个实施例,所述P3等于所述P1加所述P2再加P4,所述P4是第四比特块包括的比特是个数,所述P4是非负整数。
作为上述实施例的一个子实施例,所述P4等于0,所述第三比特块是由所述第二比特块中的所有比特和所述第一比特块中的所有比特组成的。
作为上述实施例的一个子实施例,所述P4大于0,所述第三比特块是由{所述第二比特块中的所有比特,所述第一比特块中的所有比特,所述第四比特块中的所有比特}组成的。
作为上述实施例的一个子实施例,所述第四比特块中的所有比特的值是预先设定的。
作为上述实施例的一个子实施例,所述第四比特块中的所有比特都是0。
作为一个实施例,根据在所述第一比特块中相关联的比特的数量,所述第二比特块中的比特在所述第三比特块中依次排列。
作为上述实施例的一个子实施例,第三比特在所述第三比特块中的位置在第四比特在所述第三比特块中的位置之前,所述第三比特和所述第四比特是所述第二比特块中的任意两个比特,所述第三比特在所述第一比特块中相关联的比特的数量小于所述第四比特在所述第一比特块中相关联的比特的数量。例如,在附图7中,p(0)在所述第一比特块中关联了两个比特d(0)和d(3),p(2)在所述第一比特块中关联了三个比特d(0),d(2)和d(5)。p(0)在所述第三比特块中的位置在p(2)在所述第三比特块中的位置之前。
作为一个实施例,所有和给定第一类比特相关联的第二类比特在所述第三比特块中排在所述给定第一类比特之前,所述给定第一类比特是所述P2个第一类比特中的一个。例如,在附图7中,p(1)和{d(2),d(4)}相关联,{d(2),d(4)}在所述第三比特块中排在p(1)之前。
作为一个实施例,和第一目标比特相关联且和第二目标比特无关的第一类比特中,第一比特在所述第三比特块中排在最前面。和所述第二目标比特相关联且和所述第一目标比特无关的第一类比特中,第二比特在所述 第三比特块中排在最前面。所述第一比特在所述第二比特之前,所述第一目标比特在所述第三比特块中的位置在所述第二目标比特在所述第三比特块中的位置之前。所述第一目标比特和所述第二目标比特是所述P1个第二类比特中的任意两个第二类比特。例如,在附图7中,d(0)在所述第三比特块中排在d(4)之前。{p(0),p(2)}和d(0)相关联且和d(4)无关,{p(1),p(3)}和d(4)相关联且和d(0)无关;p(0)在所述第三比特块中排在p(2)之前,p(1)在所述第三比特块中排在p(3)之前;p(0)在所述第三比特块中排在p(1)之前。
实施例8
实施例8示例了第三比特块中的比特在子信道上的映射的示意图,如附图8所示。
在实施例8中,所述第三比特块被用于信道编码的输入,所述信道编码基于极化码(Polar code)。所述第三比特块包括P3个比特,所述P3个比特被映射到P3个子信道上,所述P3个子信道的信道容量从左到右依次递增。第一比特集合中的任意一个比特所映射的子信道的信道容量大于第二比特集合中的任意一个比特所映射的子信道的信道容量。所述第三比特块是由{第二比特块中的所有比特,第一比特块中的所有比特,第四比特块中的所有比特}组成的。所述第一比特块和所述第二比特块分别包括P1个第二类比特和P2第一类比特,所述第四比特块包括P4个二进制比特,所述P1和所述P2分别是正整数,所述P4是非负整数。
在附图8中,交叉线填充的方格表示所述第一比特块中的比特;小点填充的方格表示所述第二比特块中的比特;左斜线填充的方格表示所述第四比特块中的比特。
作为一个实施例,所述第一比特集合和所述第二比特集合中不存在公共比特。
作为一个实施例,任意一个所述第三比特块中的比特属于{所述第一比特集合,所述第二比特集合}中的一个。
作为一个实施例,所述P2个第一类比特属于所述第一比特集合,所述P1个第二类比特属于所述第二比特集合。
作为一个实施例,所述P2个第一类比特属于所述第二比特集合,所述P1个第二类比特属于所述第一比特集合。
作为一个实施例,所述P2个第一类比特中的一部分属于所述第一比特集合,所述P2个第一类比特中的另一部分属于所述第二比特集合。
作为一个实施例,所述所述P2个第一类比特中的一部分属于所述第一比特集合,所述所述P2个第一类比特中的另一部分和所述P1个第二类比特属于所述第二比特集合。
作为一个实施例,所述所述P2个第一类比特中的一部分属于所述第一比特集合,{所述所述P2个第一类比特中的另一部分,所述P1个第二类比特,所述第四比特块中的比特}属于所述第二比特集合。
作为一个实施例,所述所述P2个第一类比特中的一部分和所述P1个第二类比特属于所述第一比特集合,所述所述P2个第一类比特中的另一部分属于所述第二比特集合。
作为一个实施例,所述所述P2个第一类比特中的一部分和所述P1个第二类比特属于所述第一比特集合,所述所述P2个第一类比特中的另一部分和所述第四比特块中的比特属于所述第二比特集合。
作为一个实施例,所述第四比特块中的比特属于第三比特集合,所述第三比特集合中的任意一个比特所映射的子信道的信道容量小于所述第二比特集合中的任意一个比特所映射的子信道的信道容量。
作为一个实施例,所述所述P2个第一类比特中的一部分在所述第三比特块中是连续的,所述所述P2个第一类比特中的另一部分在所述第三比特块中是离散的。
作为一个实施例,所述所述P2个第一类比特中的一部分在所述第三比特块中是离散的,所述所述P2个第一类比特中的另一部分在所述第三比特块中是连续的。
作为一个实施例,所述所述P2个第一类比特中的一部分和所述所述P2个第一类比特中的另一部分组成所述第二比特块。
作为一个实施例,所述所述P2个第一类比特中的一部分包括所述第二比特块中的P2/2个比特,所述所述P2个第一类比特中的另一部分包括所述第二比特块中的P2/2个比特。
作为一个实施例,任意两个不同的所述子信道的信道容量是不同的。
作为一个实施例,所述第三比特块中的比特按照所述子信道的所述信道容量依次映射。
作为一个实施例,所述第三比特块中的比特按照所述子信道的索引依次映射。
实施例9
实施例9示例了{第一比特块,第二比特块,第三比特块}和第一无线信号之间的关系的示意图,如附图9所示。
在实施例9中,在第一节点中,所述第一比特块中的比特被用于生成所述第二比特块中的比特,所述第三比特块包括所述第二比特块中的比特和所述第一比特块中的比特,所述第三比特块被用于信道编码的输入,所述信道编码的输出被用于生成所述第一无线信号,所述信道编码基于极化码(Polar code)。所述第二比特块和所述第一比特块分别包括P1个第二类比特和P2个第一类比特,所述第三比特块包括P3个二进制比特。在第二节点中,所述第一无线信号被用于生成信道译码的输入,所述信道译码对应的信道编码是基于极化码。所述信道译码被用于确定P3个参考值,所述P3个参考值和所述第三比特块中的P3个比特一一对应。所述P2个第一类比特中至少有一个第一类比特所对应的参考值在所述信道译码中被用于剪枝。
在附图9中,所述P1等于6,所述P2等于4,所述P3等于所述P1和所述P2的和。所述第一比特块中的比特用d(i)来表示,所述i是大于等于0,小于P1的整数;所述第二比特块中的比特用p(j)来表示,所述j是大于等于0,小于P2的整数。所述第一比特块和所述第二比特块中相关联的比特之间用实线连接。译码器中的树状图表示了所述信道译码中和比特{d(0),d(3),p(0)}相关联的一部分路径,比特{d(0),d(3),p(0)}在所述第三比特块中的位置是连续的。
作为一个实施例,所述P2个第一类比特至少有一个第一类比特所对应的参考值被用于确定所述第一比特块是否被正确接收。被用于确定所述第一比特块是否被正确接收的第一类比特对应的参考值不能在所述信道译码中被用于剪枝。
作为一个实施例,所述P3个参考值分别是针对对应的(发送)比特 而恢复的(接收)比特。
作为一个实施例,所述P3个参考值分别是针对对应的(发送)比特而恢复的(接收)软比特。
作为一个实施例,所述P3个参考值分别是针对对应的(发送)比特而估计的LLR(Log Likelihood Ratio,对数似然比)。
作为一个实施例,所述剪枝被用于在基于Viterbi准则的所述信道译码中减少幸存的搜索路径。例如,附图9的树状图中,粗实线表示的路径是幸存的搜索路径,其他路径是被删减的搜索路径。
作为一个实施例,对于被用于剪枝的给定参考值,被剪枝的搜索路径所对应的比特在所述第三比特块中的位置在给定第一类比特在所述第三比特块中的位置之前。所述给定参考值是所述P3个参考值中被用于剪枝的参考值,所述给定第一类比特是对应所述给定参考值的第一类比特。例如,在附图9中,p(0)对应的参考值,在附图9中用p′(0)表示,被用于在所述信道译码中剪枝。被剪枝的搜索路径所对应的比特是d(0)和d(3)。d(0)和d(3)在所述第三比特块中的位置在p(0)之前。
作为一个实施例,所述P2个第一类比特(即所述第二比特块中的所有比特)对应的参考值都被用于所述剪枝。例如,在附图9中,{p(0),p(1),p(2),p(3)}对应的参考值,在附图9中分别用{p′(0),p′(1),p′(2),p′(3)}表示,都被用于所述剪枝。
作为一个实施例,所述P2个第一类比特(即所述第二比特块中的所有比特)对应的参考值都被用于确定所述第一比特块是否被正确接收。例如,在附图9中,{p(0),p(1),p(2),p(3)}对应的参考值,在附图9中分别用{p′(0),p′(1),p′(2),p′(3)}表示,都被用于确定所述第一比特块是否被正确接收。
作为一个实施例,所述P2个第一类比特中的一部分对应的参考值被用于所述剪枝,所述P2个第一类比特中的另一部分对应的参考值被用于判断所述第一比特块是否被正确接收。例如,在附图9中,{p(0),p(1)}对应的参考值,在附图9中分别用{p′(0),p′(1)}表示,被用于所述剪枝;{p(2),p(3)}对应的参考值,在附图9中分别用{p′(2),p′(3)}表示,被用于判断所述第一比特块是否被正确接收。
作为上述实施例的一个子实施例,所述P2个第一类比特中被用于所 述剪枝的第一类比特属于第一比特集合,所述P2个第一类比特中被用于判断所述第一比特块是否被正确接收的第一类比特属于第二比特集合。所述第一比特集合中的任意一个比特所映射的子信道的信道容量大于所述第二比特集合中的任意一个比特所映射的子信道的信道容量。
作为上述实施例的一个子实施例,所述P2个第一类比特中被用于所述剪枝的第一类比特属于所述第二比特集合,所述P2个第一类比特中被用于判断所述第一比特块是否被正确接收的第一类比特属于所述第一比特集合。
作为一个实施例,所述P2个第一类比特中被用于判断是否正确恢复出所述第一比特块的第一类比特还用于指示所述第一无线信号的目标接收者的标识。
作为一个实施例,所述P2个第一类比特中被用于判断是否正确恢复出所述第一比特块的第一类比特对应的参考值和所述第一比特块对应的参考值共同通过CRC校验,如果校验结果正确则判断所述第一比特块被正确恢复;否则判断所述第一比特块没有被正确恢复。
实施例10
实施例10示例了用于无线通信的第一节点中的处理装置的结构框图,如附图10所示。
在附图10中,第一节点装置1000主要由第一处理模块1001和第一发送机模块1002组成。
第一处理模块1001确定第一比特块以及生成第二比特块;第一发送机模块1002生成第一无线信号并发送第一无线信号。
在实施例10中,所述第一比特块中的比特被用于生成第二比特块中的比特,第三比特块包括所述第二比特块中的比特和所述第一比特块中的比特,所述第三比特块被用于生成所述第一无线信号。所述第一比特块和所述第二比特块分别包括P1个第二类比特和P2个第一类比特,所述第三比特块包括P3个二进制比特,{所述P1个第二类比特,所述P2个第一类比特}中的任意一个比特是二进制比特。所述P1,所述P2和所述P3分别是正整数。参考第一类比特在所述第三比特块中的位置和所述第一比特块中与所述参考第一类比特相关联的比特的数量有关,所述 参考第一类比特是所述P2个第一类比特中的一个;或者参考第二类比特在所述第三比特块中的位置和所述第二比特块中与所述参考第二类比特相关联的比特在所述第三比特块中的位置有关,所述参考第二类比特是所述P1个第二类比特中的一个。
作为一个实施例,所述第一处理模块1001还执行信道编码。其中,所述第三比特块被用于所述信道编码的输入,所述信道编码的输出被用于生成所述第一无线信号,所述信道编码基于极化码。所述第三比特块中的任意两个比特分别被映射到两个不同的子信道上。第一比特集合中的任意一个比特所映射的子信道的信道容量大于第二比特集合中的任意一个比特所映射的子信道的信道容量。
作为一个实施例,所述P2个第一类比特属于所述第一比特集合,所述P1个第二类比特属于所述第二比特集合。
作为一个实施例,所述P2个第一类比特属于所述第二比特集合,所述P1个第二类比特属于所述第一比特集合。
作为一个实施例,所述P2个第一类比特中的一部分属于所述第一比特集合,所述P2个第一类比特中的另一部分属于所述第二比特集合。
作为一个实施例,根据在所述第一比特块中相关联的比特的数量,所述第二比特块中的比特在所述第三比特块中依次排列。
作为一个实施例,所有和给定第一类比特相关联的第二类比特在所述第三比特块中排在所述给定第一类比特之前,所述给定第一类比特是所述P2个第一类比特中的一个。
作为一个实施例,和第一目标比特相关联且和第二目标比特无关的第一类比特中,第一比特在所述第三比特块中排在最前面。和所述第二目标比特相关联且和所述第一目标比特无关的第一类比特中,第二比特在所述第三比特块中排在最前面。所述第一比特在所述第二比特之前,所述第一目标比特在所述第三比特块中的位置在所述第二目标比特在所述第三比特块中的位置之前。所述第一目标比特和所述第二目标比特是所述P1个第二类比特中的任意两个第二类比特。
作为一个实施例,所述第一比特块的CRC比特块被所述第一处理模块1001用于生成所述第二比特块。
作为一个实施例,所述第一节点是基站,所述第一比特块包括下行控 制信息。
作为一个实施例,所述第一节点是UE,所述第一比特块包括上行控制信息。
作为一个实施例,所述第一处理模块1001包括实施例4中的信道编码器477。
作为一个实施例,所述第一处理模块1001包括实施例4中的信道编码器457。
作为一个实施例,所述第一处理模块1001包括实施例4中的发射处理器416、信道编码器477、控制器/处理器475和存储器477中的至少之一。
作为一个实施例,所述第一处理模块1001包括实施例4中的发射处理器468、信道编码器457、控制器/处理器459、存储器460和数据源467中的至少之一。
作为一个实施例,所述第一发送机模块1002包括实施例4中的天线420、发射器418、发射处理器416、信道编码器477、控制器/处理器475和存储器477中的至少之一。
作为一个实施例,所述第一发送机模块1002包括实施例4中的天线452、发射器454、发射处理器468、信道编码器457、控制器/处理器459、存储器460和数据源467中的至少之一。
实施例11
实施例11示例了用于无线通信的第二节点中的处理装置的结构框图,如附图11所示。
在附图11中,第二节点装置1100主要由第一接收机模块1101和第二处理模块1102组成。
第一接收机模块1101接收第一无线信号;第二处理模块1102恢复第一比特块。
在实施例11中,所述第一比特块中的比特被用于生成第二比特块中的比特,第三比特块包括所述第二比特块中的比特和所述第一比特块中的比特,所述第三比特块被用于生成所述第一无线信号。所述第一比特块和所述第二比特块分别包括P1个第二类比特和P2个第一类比特, 所述第三比特块包括P3个二进制比特,{所述P1个第二类比特,所述P2个第一类比特}中的任意一个比特是二进制比特。所述P1,所述P2和所述P3分别是正整数。参考第一类比特在所述第三比特块中的位置和所述第一比特块中与所述参考第一类比特相关联的比特的数量有关,所述参考第一类比特是所述P2个第一类比特中的一个;或者参考第二类比特在所述第三比特块中的位置和所述第二比特块中与所述参考第二类比特相关联的比特在所述第三比特块中的位置有关,所述参考第二类比特是所述P1个第二类比特中的一个。
作为一个实施例,所述第二处理模块1102还执行信道译码。其中,所述第一无线信号被用于生成所述信道译码的输入,所述信道译码对应的信道编码是基于极化码,所述第三比特块被用于所述信道编码的输入。所述第三比特块中的任意两个比特分别被映射到两个不同的子信道上。第一比特集合中的任意一个比特所映射的子信道的信道容量大于第二比特集合中的任意一个比特所映射的子信道的信道容量。
作为一个实施例,所述P2个第一类比特属于所述第一比特集合,所述P1个第二类比特属于所述第二比特集合。
作为一个实施例,所述P2个第一类比特属于所述第二比特集合,所述P1个第二类比特属于所述第一比特集合。
作为一个实施例,所述P2个第一类比特中的一部分属于所述第一比特集合,所述P2个第一类比特中的另一部分属于所述第二比特集合。
作为一个实施例,根据在所述第一比特块中相关联的比特的数量,所述第二比特块中的比特在所述第三比特块中依次排列。
作为一个实施例,所有和给定第一类比特相关联的第二类比特在所述第三比特块中排在所述给定第一类比特之前,所述给定第一类比特是所述P2个第一类比特中的一个。
作为一个实施例,和第一目标比特相关联且和第二目标比特无关的第一类比特中,第一比特在所述第三比特块中排在最前面。和所述第二目标比特相关联且和所述第一目标比特无关的第一类比特中,第二比特在所述第三比特块中排在最前面。所述第一比特在所述第二比特之前,所述第一目标比特在所述第三比特块中的位置在所述第二目标比特在所述第三比特块中的位置之前。所述第一目标比特和所述第二目标比特是所述P1个第二 类比特中的任意两个第二类比特。
作为一个实施例,所述第一比特块的CRC比特块被用于生成所述第二比特块。
作为一个实施例,所述第二节点是基站,所述第一比特块包括上行控制信息。
作为一个实施例,所述第二节点是UE,所述第一比特块包括下行控制信息。
作为一个实施例,所述第二处理模块1102确定P3个参考值,所述P3个参考值和所述第三比特块中的P3个比特一一对应。
作为一个实施例,所述P2个第一类比特中至少有一个第一类比特所对应的参考值在所述信道译码中被用于剪枝。
作为一个实施例,所述P2个第一类比特中至少有一个第一类比特所对应的参考值被用于确定所述第一比特块是否被正确接收。
作为一个实施例,所述第二处理模块1102包括实施例4中的信道译码器478。
作为一个实施例,所述第二处理模块1102包括实施例4中的信道译码器458。
作为一个实施例,所述第二处理模块1102包括实施例4中的接收处理器470、信道译码器478、控制器/处理器475和存贮器476中的至少之一。
作为一个实施例,所述第二处理模块1102包括实施例4中的接收处理器456、信道译码器458、控制器/处理器459和存贮器460中的至少之一。
作为一个实施例,所述第一接收机模块1101包括实施例4中的天线420、接收器418、接收处理器470、信道译码器478、控制器/处理器475和存储器476中的至少之一。
作为一个实施例,所述第一接收机模块1101包括实施例4中的天线452、接收器454、接收处理器456、信道译码器458、控制器/处理器459和存储器460中的至少之一。
实施例12
实施例12示例了第一比特块,第二比特块和第三比特块中比特的映射关系,如附图12所示。
在实施例12中,所述第一比特块中的比特被用于生成所述第二比特块中的比特,所述第三比特块包括所述第二比特块中的比特和所述第一比特块中的比特。所述第一比特块和所述第二比特块分别包括P1个第二类比特和P2个第一类比特,所述第三比特块包括P3个二进制比特,{所述P1个第二类比特,所述P2个第一类比特}中的任意一个比特是二进制比特,所述P1,所述P2和所述P3分别是正整数。参考第一类比特在所述第三比特块中的位置和所述第一比特块中与所述参考第一类比特相关联的比特的数量有关,所述参考第一类比特是所述P2个第一类比特中的一个。所述P3等于所述P1加所述P2再加P4,所述P4是第四比特块包括的比特是个数,所述P4是正整数。
在附图12中,所述P1等于6,所述P2等于4,所述第一比特块中的比特用d(i)来表示,所述i是大于等于0,小于P1的整数;所述第二比特块中的比特用p(j)来表示,所述j是大于等于0,小于P2的整数。所述第一比特块和所述第二比特块中相关联的比特之间用实线连接。
在实施例12中,根据在所述第一比特块中相关联的比特的数量,所述第二比特块中的比特在所述第三比特块中依次排列。即在所述第一比特块中关联的比特越少,相应的所述第二比特块中的比特在所述第三比特块中的位置越靠前。如附图12所示,和比特p(0),p(1),p(2)和p(3)关联的第一比特块中的比特的数量分别为1,4,2,3。因此,{p(0),p(2),p(3),p(1)}在第三比特块中从前到后依次排列。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,NB-IOT终端,eMTC终端等无线通信设备。本申请中的基站或者系统设备包括但 不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (19)

  1. 被用于无线通信的第一节点中的方法,其中,包括:
    -确定第一比特块;
    -发送第一无线信号;
    其中,所述第一比特块中的比特被用于生成第二比特块中的比特,第三比特块包括所述第二比特块中的比特和所述第一比特块中的比特,所述第三比特块被用于生成所述第一无线信号;所述第一比特块和所述第二比特块分别包括P1个第二类比特和P2个第一类比特,所述第三比特块包括P3个二进制比特,{所述P1个第二类比特,所述P2个第一类比特}中的任意一个比特是二进制比特,所述P1,所述P2和所述P3分别是正整数;参考第一类比特在所述第三比特块中的位置和所述第一比特块中与所述参考第一类比特相关联的比特的数量有关,所述参考第一类比特是所述P2个第一类比特中的一个;或者参考第二类比特在所述第三比特块中的位置和所述第二比特块中与所述参考第二类比特相关联的比特在所述第三比特块中的位置有关,所述参考第二类比特是所述P1个第二类比特中的一个。
  2. 根据权利要求1所述的方法,其特征在于,根据在所述第一比特块中相关联的比特的数量,所述第二比特块中的比特在所述第三比特块中依次排列。
  3. 根据权利要求1或2所述的方法,其特征在于,所有和给定第一类比特相关联的第二类比特在所述第三比特块中排在所述给定第一类比特之前,所述给定第一类比特是所述P2个第一类比特中的一个。
  4. 根据权利要求1至3中任一权利要求所述的方法,其特征在于,和第一目标比特相关联且和第二目标比特无关的第一类比特中,第一比特在所述第三比特块中排在最前面;和所述第二目标比特相关联且和所述第一目标比特无关的第一类比特中,第二比特在所述第三比特块中排在最前面;所述第一比特在所述第二比特之前,所述第一目标比特在所述第三比特块中的位置在所述第二目标比特在所述第三比特块中的位置之前;所述第一目标比特和所述第二目标比特是所述P1个第二类比特中的任意两个第二类比特。
  5. 根据权利要求1至4中任一权利要求所述的方法,其特征在于,包含:
    -执行信道编码;
    其中,所述第三比特块被用于所述信道编码的输入,所述信道编码的输出被用于生成所述第一无线信号,所述信道编码基于极化码(Polar code);所述第三比特块中的任意两个比特分别被映射到两个不同的子信道上;第一比特集合中的任意一个比特所映射的子信道的信道容量大于第二比特集合中的任意一个比特所映射的子信道的信道容量;所述P2个第一类比特属于所述第一比特集合,所述P1个第二类比特属于所述第二比特集合;或者所述P2个第一类比特属于所述第二比特集合,所述P1个第二类比特属于所述第一比特集合;或者所述P2个第一类比特中的一部分属于所述第一比特集合,所述P2个第一类比特中的另一部分属于所述第二比特集合。
  6. 根据权利要求1至5中任一权利要求所述的方法,其特征在于,所述第一比特块的CRC比特块被用于生成所述第二比特块。
  7. 根据权利要求1至6中任一权利要求所述的方法,其特征在于,所述第一节点是基站,所述第一比特块包括下行控制信息;或者所述第一节点是UE,所述第一比特块包括上行控制信息。
  8. 被用于无线通信的第二节点中的方法,其中,包括:
    -接收第一无线信号;
    -恢复第一比特块;
    其中,所述第一比特块中的比特被用于生成第二比特块中的比特,第三比特块包括所述第二比特块中的比特和所述第一比特块中的比特,所述第三比特块被用于生成所述第一无线信号;所述第一比特块和所述第二比特块分别包括P1个第二类比特和P2个第一类比特,所述第三比特块包括P3个二进制比特,{所述P1个第二类比特,所述P2个第一类比特}中的任意一个比特是二进制比特,所述P1,所述P2和所述P3分别是正整数;参考第一类比特在所述第三比特块中的位置和所述第一比特块中与所述参考第一类比特相关联的比特的数量有关,所述参考第一类比特是所述P2个第一类比特中的一个;或者参考第二类比特在所述第三比特块中的位置和所述第二比特块中与所述参考第二类比特相关联的比特在所述第三比特块中的位置有关,所述参考第二类比特是所述P1个第二类比特中的一个。
  9. 根据权利要求8所述的方法,其特征在于,根据在所述第一比特块中相关联的比特的数量,所述第二比特块中的比特在所述第三比特块中依次排列。
  10. 根据权利要求8或9所述的方法,其特征在于,所有和给定第一类比特相关联的第二类比特在所述第三比特块中排在所述给定第一类比特之前,所述给定第一类比特是所述P2个第一类比特中的一个。
  11. 根据权利要求8至10中任一权利要求所述的方法,其特征在于,和第一目标比特相关联且和第二目标比特无关的第一类比特中,第一比特在所述第三比特块中排在最前面;和所述第二目标比特相关联且和所述第一目标比特无关的第一类比特中,第二比特在所述第三比特块中排在最前面;所述第一比特在所述第二比特之前,所述第一目标比特在所述第三比特块中的位置在所述第二目标比特在所述第三比特块中的位置之前;所述第一目标比特和所述第二目标比特是所述P1个第二类比特中的任意两个第二类比特。
  12. 根据权利要求8至11中任一权利要求所述的方法,其特征在于,包含:
    -执行信道译码;
    其中,所述第一无线信号被用于生成所述信道译码的输入,所述信道译码对应的信道编码是基于极化码,所述第三比特块被用于所述信道编码的输入;所述第三比特块中的任意两个比特分别被映射到两个不同的子信道上;第一比特集合中的任意一个比特所映射的子信道的信道容量大于第二比特集合中的任意一个比特所映射的子信道的信道容量;所述P2个第一类比特属于所述第一比特集合,所述P1个第二类比特属于所述第二比特集合;或者所述P2个第一类比特属于所述第二比特集合,所述P1个第二类比特属于所述第一比特集合;或者所述P2个第一类比特中的一部分属于所述第一比特集合,所述P2个第一类比特中的另一部分属于所述第二比特集合。
  13. 根据权利要求12所述的方法,其特征在于,所述信道译码被用于确定P3个参考值,所述P3个参考值和所述第三比特块中的P3个比特一一对应;所述P2个第一类比特中至少有一个第一类比特所对应的参考值在所述信道译码中被用于剪枝;或者所述P2个第一类比特中至少有一个第一类 比特所对应的参考值被用于确定所述第一比特块是否被正确接收。
  14. 根据权利要求8至13中任一权利要求所述的方法,其特征在于,所述第一比特块的CRC比特块被用于生成所述第二比特块。
  15. 根据权利要求8至14中任一权利要求所述的方法,其特征在于,所述第二节点是基站,所述第一比特块包括上行控制信息;或者所述第二节点是UE,所述第一比特块包括下行控制信息。
  16. 被用于无线通信的第一节点中的设备,其中,包括:
    -第一处理模块,生成第一比特块;
    -第一发送机模块,发送第一无线信号;
    其中,所述第一比特块中的比特被用于生成第二比特块中的比特,第三比特块包括所述第二比特块中的比特和所述第一比特块中的比特,所述第三比特块被用于生成所述第一无线信号;所述第一比特块和所述第二比特块分别包括P1个第二类比特和P2个第一类比特,所述第三比特块包括P3个二进制比特,{所述P1个第二类比特,所述P2个第一类比特}中的任意一个比特是二进制比特,所述P1,所述P2和所述P3分别是正整数;参考第一类比特在所述第三比特块中的位置和所述第一比特块中与所述参考第一类比特相关联的比特的数量有关,所述参考第一类比特是所述P2个第一类比特中的一个;或者参考第二类比特在所述第三比特块中的位置和所述第二比特块中与所述参考第二类比特相关联的比特在所述第三比特块中的位置有关,所述参考第二类比特是所述P1个第二类比特中的一个。
  17. 根据权利要求16所述的第一节点,其特征在于,所述第一处理模块还执行信道编码;其中,所述第三比特块被用于所述信道编码的输入,所述信道编码的输出被用于生成所述第一无线信号,所述信道编码基于极化码;所述第三比特块中的任意两个比特分别被映射到两个不同的子信道上;第一比特集合中的任意一个比特所映射的子信道的信道容量大于第二比特集合中的任意一个比特所映射的子信道的信道容量;所述P2个第一类比特属于所述第一比特集合,所述P1个第二类比特属于所述第二比特集合;或者所述P2个第一类比特属于所述第二比特集合,所述P1个第二类比特属于所述第一比特集合;或者所述P2个第一类比特中的一部分属于所述第一比特集合,所述P2个第一类比特中的另一部 分属于所述第二比特集合。
  18. 被用于无线通信的第二节点中的设备,其中,包括:
    -第一接收机模块,接收第一无线信号;
    -第二处理模块,恢复第一比特块;
    其中,所述第一比特块中的比特被用于生成第二比特块中的比特,第三比特块包括所述第二比特块中的比特和所述第一比特块中的比特,所述第三比特块被用于生成所述第一无线信号;所述第一比特块和所述第二比特块分别包括P1个第二类比特和P2个第一类比特,所述第三比特块包括P3个二进制比特,{所述P1个第二类比特,所述P2个第一类比特}中的任意一个比特是二进制比特,所述P1,所述P2和所述P3分别是正整数;参考第一类比特在所述第三比特块中的位置和所述第一比特块中与所述参考第一类比特相关联的比特的数量有关,所述参考第一类比特是所述P2个第一类比特中的一个;或者参考第二类比特在所述第三比特块中的位置和所述第二比特块中与所述参考第二类比特相关联的比特在所述第三比特块中的位置有关,所述参考第二类比特是所述P1个第二类比特中的一个。
  19. 根据权利要求18所述的第二节点,其特征在于,所述第二处理模块还执行信道译码;其中,所述第一无线信号被用于生成所述信道译码的输入,所述信道译码对应的信道编码是基于极化码,所述第三比特块被用于所述信道编码的输入;所述第三比特块中的任意两个比特分别被映射到两个不同的子信道上;第一比特集合中的任意一个比特所映射的子信道的信道容量大于第二比特集合中的任意一个比特所映射的子信道的信道容量;所述P2个第一类比特属于所述第一比特集合,所述P1个第二类比特属于所述第二比特集合;或者所述P2个第一类比特属于所述第二比特集合,所述P1个第二类比特属于所述第一比特集合;或者所述P2个第一类比特中的一部分属于所述第一比特集合,所述P2个第一类比特中的另一部分属于所述第二比特集合。
PCT/CN2017/098454 2016-12-28 2017-08-22 一种用于信道编码的ue、基站中的方法和设备 WO2018120862A1 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP17888656.0A EP3565125B1 (en) 2016-12-28 2017-08-22 Method and device for channel encoding in ue and base station
EP22216903.9A EP4178116B1 (en) 2016-12-28 2017-08-22 Method and device in ue and base station for channel coding
EP24153589.7A EP4340230A1 (en) 2016-12-28 2017-08-22 Method and device in ue and base station for channel coding
KR1020217001231A KR102328864B1 (ko) 2016-12-28 2017-08-22 Ue와 기지국에서 채널 암호화를 위한 방법 및 디바이스
JP2019556398A JP6959621B2 (ja) 2016-12-28 2017-08-22 チャネル符号化に用いるue、基地局における方法及び装置
KR1020197022164A KR102205781B1 (ko) 2016-12-28 2017-08-22 Ue와 기지국에서 채널 암호화를 위한 방법 및 디바이스
US16/449,483 US10931306B2 (en) 2016-12-28 2019-06-24 Method and device in UE and base station for channel coding
US17/105,659 US11245417B2 (en) 2016-12-28 2020-11-27 Method and device in UE and base station for channel coding
US17/558,625 US11575388B2 (en) 2016-12-28 2021-12-22 Method and device in UE and base station for channel coding
US18/091,459 US11750215B2 (en) 2016-12-28 2022-12-30 Method and device in UE and base station for channel coding
US18/225,689 US11990919B2 (en) 2016-12-28 2023-07-25 Method and device in UE and base station for channel coding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611235136.6 2016-12-28
CN201611235136.6A CN108259121B (zh) 2016-12-28 2016-12-28 一种用于信道编码的ue、基站中的方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/449,483 Continuation US10931306B2 (en) 2016-12-28 2019-06-24 Method and device in UE and base station for channel coding

Publications (1)

Publication Number Publication Date
WO2018120862A1 true WO2018120862A1 (zh) 2018-07-05

Family

ID=62707003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/098454 WO2018120862A1 (zh) 2016-12-28 2017-08-22 一种用于信道编码的ue、基站中的方法和设备

Country Status (6)

Country Link
US (5) US10931306B2 (zh)
EP (3) EP3565125B1 (zh)
JP (2) JP6959621B2 (zh)
KR (2) KR102328864B1 (zh)
CN (3) CN109039545B (zh)
WO (1) WO2018120862A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110519018B (zh) 2017-01-09 2022-03-01 上海朗帛通信技术有限公司 一种被用于信道编码的ue、基站中的方法和设备
CN111416639B (zh) * 2019-01-07 2021-06-25 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102164025A (zh) * 2011-04-15 2011-08-24 北京邮电大学 基于重复编码和信道极化的编码器及其编译码方法
EP2802080A1 (en) * 2012-01-20 2014-11-12 Huawei Technologies Co., Ltd. Decoding method and decoding apparatus for polar code concatenated with cyclic redundancy check
CN105227189A (zh) * 2015-09-24 2016-01-06 电子科技大学 分段crc辅助的极化码编译码方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8281022B1 (en) * 2000-06-30 2012-10-02 Emc Corporation Method and apparatus for implementing high-performance, scaleable data processing and storage systems
EP1452012A2 (en) * 2001-10-03 2004-09-01 The Trustees of Columbia University in the City of New York Method and apparatus for watermarking and authenticating data
US7260770B2 (en) * 2001-10-22 2007-08-21 Motorola, Inc. Block puncturing for turbo code based incremental redundancy
US7062703B1 (en) * 2003-07-28 2006-06-13 Cisco Technology, Inc Early detection of false start-of-packet triggers in a wireless network node
KR20080065654A (ko) * 2005-10-10 2008-07-14 엔디에스 리미티드 블록 암호문 암호화를 위한 방법 및 시스템
KR100734389B1 (ko) * 2005-12-08 2007-07-02 한국전자통신연구원 궤환 정보를 이용한 부호어 재전송/복호 방법 및 송수신장치
CN100499888C (zh) * 2006-09-08 2009-06-10 华为技术有限公司 一种前向信令信道消息传送方法及系统
US8555148B2 (en) * 2007-09-18 2013-10-08 Samsung Electronics Co., Ltd. Methods and apparatus to generate multiple CRCs
CN103312442B (zh) * 2012-03-15 2017-11-17 中兴通讯股份有限公司 基于有限长度循环缓存速率匹配的数据发送方法及装置
CN103281166B (zh) * 2013-05-15 2016-05-25 北京邮电大学 一种基于极化码的混合自动重传请求传输方法
CN109361402B (zh) * 2013-05-31 2019-09-20 华为技术有限公司 编码方法及编码设备
US9768915B2 (en) * 2013-08-20 2017-09-19 Lg Electronics Inc. Method for transmitting data by using polar coding in wireless access system
TW201733322A (zh) * 2015-12-14 2017-09-16 Idac控股公司 使用極化碼凍結位元之wtru識別
CN105680883B (zh) * 2015-12-23 2017-11-14 华中科技大学 一种极化码和多比特奇偶校验码级联的纠错编码方法
JP6998890B2 (ja) * 2016-06-06 2022-01-18 クアルコム,インコーポレイテッド セクション式冗長検査を有する制御シグナリングの符号化および復号
CN110519018B (zh) * 2017-01-09 2022-03-01 上海朗帛通信技术有限公司 一种被用于信道编码的ue、基站中的方法和设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102164025A (zh) * 2011-04-15 2011-08-24 北京邮电大学 基于重复编码和信道极化的编码器及其编译码方法
EP2802080A1 (en) * 2012-01-20 2014-11-12 Huawei Technologies Co., Ltd. Decoding method and decoding apparatus for polar code concatenated with cyclic redundancy check
CN105227189A (zh) * 2015-09-24 2016-01-06 电子科技大学 分段crc辅助的极化码编译码方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Details of the Polar code design", 3GPP TSG RAN WG1 MEETING #87, RL-1611254, 10 November 2016 (2016-11-10), XP051175235 *
HUAWEI, HISILICON: "Evaluation of polar codes for eMBB scenario", 3GPP TSG RAN WG1 MEETING #85, RL-164375, 23 May 2016 (2016-05-23) - 27 May 2016 (2016-05-27), XP051089994 *

Also Published As

Publication number Publication date
US10931306B2 (en) 2021-02-23
CN108259121B (zh) 2019-02-01
US11990919B2 (en) 2024-05-21
KR102328864B1 (ko) 2021-11-18
US11750215B2 (en) 2023-09-05
US20210080962A1 (en) 2021-03-18
JP6959621B2 (ja) 2021-11-02
KR102205781B1 (ko) 2021-01-20
JP7357859B2 (ja) 2023-10-10
EP4178116A1 (en) 2023-05-10
US20230143607A1 (en) 2023-05-11
US11575388B2 (en) 2023-02-07
EP3565125A1 (en) 2019-11-06
US20190312592A1 (en) 2019-10-10
KR20190096430A (ko) 2019-08-19
CN109039546A (zh) 2018-12-18
KR20210008175A (ko) 2021-01-20
CN108259121A (zh) 2018-07-06
JP2020506640A (ja) 2020-02-27
US20220116054A1 (en) 2022-04-14
EP4178116B1 (en) 2024-03-06
EP3565125B1 (en) 2023-06-07
EP3565125A4 (en) 2019-12-25
US20230370088A1 (en) 2023-11-16
JP2022002406A (ja) 2022-01-06
EP4340230A1 (en) 2024-03-20
US11245417B2 (en) 2022-02-08
CN109039545A (zh) 2018-12-18
CN109039545B (zh) 2021-01-01
CN109039546B (zh) 2020-12-29

Similar Documents

Publication Publication Date Title
WO2020181993A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2018072615A1 (zh) 一种用于可变的校验比特数的ue、基站中的方法和装置
JP7165954B2 (ja) チャネル符号化に用いるユーザー装置、基地局における方法及び装置
US11750215B2 (en) Method and device in UE and base station for channel coding
WO2018024158A1 (zh) 一种被用于无线通信的用户、基站中的方法和装置
WO2019134152A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2022111491A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021023037A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023000976A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022237707A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN109644066B (zh) 一种被用于无线通信的用户、基站中的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888656

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019556398

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197022164

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017888656

Country of ref document: EP

Effective date: 20190729