WO2018120647A1 - 显示面板及显示装置的制造方法 - Google Patents

显示面板及显示装置的制造方法 Download PDF

Info

Publication number
WO2018120647A1
WO2018120647A1 PCT/CN2017/086638 CN2017086638W WO2018120647A1 WO 2018120647 A1 WO2018120647 A1 WO 2018120647A1 CN 2017086638 W CN2017086638 W CN 2017086638W WO 2018120647 A1 WO2018120647 A1 WO 2018120647A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
protective layer
patterned
thickness
transparent electrode
Prior art date
Application number
PCT/CN2017/086638
Other languages
English (en)
French (fr)
Inventor
陈猷仁
Original Assignee
惠科股份有限公司
重庆惠科金渝光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司, 重庆惠科金渝光电科技有限公司 filed Critical 惠科股份有限公司
Priority to US15/556,088 priority Critical patent/US10365518B2/en
Publication of WO2018120647A1 publication Critical patent/WO2018120647A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133371Cells with varying thickness of the liquid crystal layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/30Gray scale

Definitions

  • the present application relates to a display panel, and more particularly to a display panel and a method of manufacturing a display device that can form different protective layer thicknesses.
  • a liquid crystal display is mostly a backlight type liquid crystal display, which is composed of a liquid crystal display panel and a backlight module.
  • the liquid crystal display panel is composed of two transparent substrates and a liquid crystal sealed between the substrates.
  • the liquid crystal display panel usually comprises a color filter substrate (CF), a thin film transistor array substrate (Thin Film Transistor Array Substrate, TFT Array Substrate), and a liquid crystal layer (Liquid Crystal Layer, LC Layer) disposed between the two substrates.
  • CF color filter substrate
  • TFT Array Substrate thin film transistor array substrate
  • LC Layer liquid crystal layer
  • the vertical alignment type (VA) mode liquid crystal display such as a Pattern Vertical Alignment (PVA) liquid crystal display or a Multi-domain Vertical Alignment (MVA) liquid crystal display device, wherein
  • PVA Pattern Vertical Alignment
  • MVA Multi-domain Vertical Alignment
  • the MVA type divides a single pixel into a plurality of regions, and uses a protrusion or a specific pattern structure to tilt liquid crystal molecules located in different regions toward different directions to achieve a wide viewing angle and improve the transmittance.
  • the current mainstream is to distinguish the pixels into bright and dark areas. Therefore, the optical performance can be mixed by two VT characteristics. In addition, the proportion of bright and dark areas can be appropriately adjusted, and the medium gray can be effectively suppressed at a large viewing angle. The problem of whitening.
  • an object of the present application is to provide a manufacturing method of a display panel capable of forming different protective layer thicknesses, to solve the color shift problem of the display panel, and to effectively improve the aperture ratio of the pixel design.
  • One of the objectives of the present application is to provide a method of manufacturing a display panel, including:
  • the first substrate has a plurality of pixel units
  • a transparent electrode layer is formed on the patterned protective layer.
  • the protective layer has a first thickness and a second thickness, and a thickness difference between the first thickness and the second thickness is equal to or greater than 1 um.
  • each of the pixel units has a plurality of regions of different transmittance.
  • the protective layer when the protective layer is patterned, the protective layer is patterned using a multi-tone mask such that the patterned protective layers have different thicknesses.
  • the multi-tone mask can be, for example, a Gray Tone Mask (GTM), a Stacked Layer Mask (SLM), or a Half Tone Mask (HTM).
  • the transparent electrode layer is patterned such that the patterned transparent electrode layer has a slit design.
  • the patterned protective layer has an exposed area that exposes the first substrate, and a portion of the transparent electrode layer is formed on the exposed area.
  • One of the objectives of the present application is to provide a method of manufacturing a display panel, including:
  • the first substrate has a plurality of pixel units
  • the protective layer has a first thickness and a second thickness, and a thickness difference between the first thickness and the second thickness is equal to or greater than 1 um;
  • the plurality of different transmittance regions are divided into at least three different gradient topographic depths, and the transparent electrode layer is covered thereon and the slit design is retained;
  • the patterned protective layer has an exposed area that exposes the first substrate, and a portion of the transparent electrode layer is formed on the exposed area.
  • each of the pixel units includes a first light transmissive region composed of four main light transmissive regions, and a second light transmissive region composed of four sub-transmissive regions and a third light transmissive region.
  • the zone is composed of four secondary light transmissive regions.
  • the plurality of different transmittance regions are divided into at least three different gradient topographic depths, and the pixel structure is divided into an inner layer into a diamond shape and a middle layer as a diamond shape according to the at least three different gradient topographic depths. And the outer layer is triangular, and the transparent electrode layer is covered thereon and the slit design is retained.
  • the plurality of different transmittance regions are divided into at least three different gradient topographic depths, and the pixel structure is divided into an inner layer, a middle layer, and an outer layer according to the at least three different gradient topographic depths. Rectangular and covered with a transparent electrode layer Leave the slit design.
  • Still another object of the present application is to provide a display device including a backlight module, further comprising the liquid crystal display panel.
  • an active switch such as a thin film transistor, is further included to drive the entire pixel unit.
  • One of the objects of the present application is to provide a method of manufacturing a display device, including:
  • the step of providing the display panel includes:
  • the first substrate has a plurality of pixel units
  • a transparent electrode layer is formed on the patterned protective layer.
  • the application can effectively solve the color shift problem of the liquid crystal display panel and improve the whitening problem of the large viewing angle.
  • 1a is a transmittance-grayscale value curve corresponding to a color shift angle of a vertical alignment type liquid crystal display device according to an embodiment of the present invention in a case of a 0 degree angle of view, a 45 degree angle of view, and a 60 degree angle of view.
  • FIG. 1b is a brightness-gray scale curve corresponding to two improved color shift angles according to an embodiment of the present application.
  • 2 is a hybrid low color shift region model of an embodiment of the present application.
  • FIG 3 is a schematic view of a liquid crystal display panel according to an embodiment of the present application.
  • FIG. 3a is a schematic diagram of a 12 pixel region of a pixel structure of a liquid crystal display panel according to an embodiment of the present application.
  • FIG. 3b is an optical path difference of three liquid crystal layers of a pixel structure of a liquid crystal display panel according to an embodiment of the present application.
  • 4a is a diagram illustrating three GAMMA curves using a transmittance-voltage curve in accordance with an embodiment of the present application.
  • FIG. 4b is an embodiment of the present application for explaining three kinds of GAMMA curves by using the transmittance-gray scale value.
  • FIG. 5 is a schematic diagram of a pixel structure having a gradient topography fabricated by a Half Tone process according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a 12-region formed by three optical path differences according to an embodiment of the present application.
  • FIG. 7 is a schematic view of a photomask and a protective layer according to an embodiment of the present application.
  • the word “comprising” is to be understood to include the component, but does not exclude any other component.
  • “on” means located above or below the target component, and does not mean that it must be on the top based on the direction of gravity.
  • a method of manufacturing a display panel of the present application comprising: providing a first substrate, wherein the first substrate has a plurality of pixel units; forming a protective layer on the first substrate; patterning the protective layer to The protective layers have different thicknesses, and thus a plurality of light transmissive regions can be formed in each of the pixel units to improve the color shifting condition.
  • the display panel of the present application may include: a first substrate; a plurality of pixel units formed on the first substrate; and a protective layer formed on the first substrate, the protection being in each of the pixel units
  • the layers have different thicknesses to form at least two different thicknesses of the light transmissive layer in each of the pixel units; and a transparent electrode layer is formed on the different thickness of the light transmissive layer of the protective layer.
  • the liquid crystal display device of the display panel application of the present application may include a backlight module and a liquid crystal display panel.
  • the liquid crystal display panel may include a thin film transistor (TFT) substrate, a color filter (CF) substrate, and a liquid crystal layer formed between the two substrates.
  • TFT thin film transistor
  • CF color filter
  • the liquid crystal display panel of the present application may be a curved display panel, and the liquid crystal display device of the present application may also be a curved display device.
  • the thin film transistor (TFT) and the color filter (CF) of the present application may be formed on the same substrate.
  • 1a is a transmittance-grayscale value curve corresponding to a color shift angle of a vertical alignment type liquid crystal display device in a case of a 0 degree angle of view, a 45 degree angle of view, and a 60 degree angle of view.
  • the transmittance-gray scale value curve 110 corresponding to the 0 degree color shift angle of view
  • the transmittance-gray scale value curve 120 corresponding to the 45 degree color shift angle of view
  • the 60 degree color shift angle view Corresponding penetration-grayscale value curve 130. Therefore, as the angle of view of the color shift is higher, the brightness transmittance is higher in the same gray scale value.
  • Figure 1b shows the brightness-grayscale curve corresponding to the two improved color shift angles.
  • the pixels in the MVA mode, the pixels can be divided into a bright area and a dark area, so that the optical performance can be mixed by two VT characteristics, and the ratio of the area of the light and dark areas can be appropriately adjusted, so that the angle can be large. Effectively suppress the problem of grayscale whitening.
  • the bright region gray scale 140 and the dark region pixel 150 they are mixed and adjusted into the pixels 160 in the luminance-gray scale pattern.
  • Figure 2 shows a mixed low color shift region model.
  • the main principle of the common Low Color Shift technology is to cut the conventional 4 regions into 8 regions by using partial pressure or extra driving. Therefore, there will be multi-domain compensation effects under a large viewing angle.
  • the sub-low color shift region 210 and the main low color shift region 220 are mixed into a low color shift region 200.
  • FIG. 3 is a schematic diagram of a 12-pixel region of a pixel structure of a liquid crystal display panel according to an embodiment of the present application.
  • the liquid crystal display panel 30 includes: a first substrate 301 (eg, a thin film transistor substrate); a second substrate 302 (eg, a color filter substrate), and The first substrate 301 is disposed opposite to each other; the liquid crystal layer 303 is disposed between the first substrate 301 and the second substrate 302; and further includes the pixel structure for improving color shift, and is disposed on the first substrate Between the second substrate (for example, the surface of the first substrate), and including: a plurality of pixel units 300, the pixel unit 300 is composed of a first light transmissive area 310, a second light transmissive area 320, and The three transparent regions 330 are composed of three regions, which are separated according to different optical path differences and are separated according to a specific area ratio, and are disposed between the first substrate.
  • a first substrate 301 eg, a thin film transistor substrate
  • first polarizer 306 disposed on an outer surface of the first substrate 301; and a second polarizer 307 disposed on an outer surface of the second substrate 302, wherein the first polarizer 306
  • the polarization directions with the second polarizer 307 are parallel to each other.
  • the display device of the present application includes a backlight module, and further includes a liquid crystal display panel 30 including: a first substrate 301 (eg, a thin film transistor substrate); and a second substrate 302 (eg, a color filter) a substrate) disposed opposite to the first substrate 301; a liquid crystal layer 303 disposed between the first substrate 301 and the second substrate 302; and a pixel structure of the liquid crystal display panel Above the first substrate and the second substrate (for example, on the surface of the first substrate), and comprising: a plurality of pixel units 300, the pixel unit 300 is formed by the first light transmissive area 310, and the second light transmission
  • the region 320 and the third light-transmissive region 330 are composed of three regions, which are separated according to different optical path differences and are separated according to a specific area ratio, and are disposed on the first substrate 301 and the second substrate 302.
  • first polarizer 306 disposed on an outer surface of the first substrate 301; and a second polarizer 307 disposed on an outer surface of the second substrate 302, wherein the first polarizer 306
  • the polarization directions with the second polarizer 307 are parallel to each other.
  • each of the pixel units 300 may have a plurality of regions of different transmittances.
  • the pixel structure includes the pixel unit 300, and the pixel unit 300 is formed by a first light transmissive area 310 (by four main light transmissive areas 312, 314, 316). And 318, the second light transmissive region 320 (consisting of four sub-transmissive regions 322, 324, 326 and 328) and the third light transmissive region 330 (by four sub-transparent regions 332, 334, 336 And 338 is composed of), and the three regions are composed according to different depths and the effect of distinguishing the light-transmitting regions according to the specific area ratio.
  • FIG. 3b is an optical path difference of three liquid crystal layers of a pixel structure of a liquid crystal display panel according to an embodiment of the present application.
  • the first pixel transparent area unit 300 can use the optical path difference ⁇ nd (three 340, 350, 360 optical path differences) different gradient topographical factors to distinguish the pixels. It is 12 areas.
  • FIG. 4a illustrates three GAMMA curves using a transmittance-voltage curve in accordance with an embodiment of the present application.
  • the transmittance-voltage value curve 410 corresponding to the 3.6 liquid crystal layer gap (Cell Gap)
  • the transmittance-voltage value curve 420 corresponding to the liquid crystal layer gap (Cell Gap)
  • the liquid crystal at 4.2 the transmittance-voltage value curve 430 corresponding to the layer gap (Cell Gap).
  • Figure 4b illustrates three GAMMA curves using the transmittance-grayscale values for an embodiment of the present application.
  • the transmittance-gray value curve 410 corresponding to the 3.6 liquid crystal layer gap (Cell Gap)
  • the transmittance-gray scale value curve 420 corresponding to the 3.9 liquid crystal layer gap (Cell Gap)
  • 4.2 Liquid crystal layer gap (Cell Gap) corresponding to the transmittance - gray scale value curve 430.
  • FIG. 5 is a schematic diagram of a pixel structure having a gradient topography produced by a Half Tone process in the present application.
  • the protective layer etching process is changed by a half-tone process.
  • the use of different gradient topography in the liquid crystal cell causes the pixel to distinguish effects, thus replacing the traditional method of using voltage division.
  • the first substrate has a four-layer structure including a transparent substrate (SB) layer 510, a passivation layer 520, a photoresist material (PR) layer 530, and a transparent electrode layer 550 (eg, indium tin oxide, ITO).
  • SB transparent substrate
  • PR photoresist material
  • ITO indium tin oxide
  • the film forming step is to deposit a film of the desired material (protective layer 520, photoresist layer 530, transparent electrode layer 550) on the glass substrate 510; the exposure step is to use the mask 540 in the photoresist 530, developing a desired photoresist 530 pattern; the developing step is to leave a photoresist 530 of the pattern portion of the upper stage photoresist 530; the etching step is performed on the substrate 510 having the photoresist 530 pattern The desired pattern is removed; the stripping step removes the photoresist 530 overlying the pattern from the substrate 510 that has been etched to the desired pattern for subsequent processing. Therefore, the protective layer 520 may have different thicknesses to form at least two different thicknesses of light transmissive layers (or light transmissive regions) in each of the pixel units.
  • the manufacturing method of the display panel of the present application may include the following steps:
  • a transparent electrode layer 550 is formed on the patterned protective layer.
  • the transparent electrode layer 550 can be patterned such that the patterned transparent electrode layer 550 has a slit design.
  • the protective layer 520 has a first thickness and a second thickness, and a thickness difference between the first thickness and the second thickness is equal to or greater than 1 um.
  • the protective layer 520 patterned may have an exposed region exposing the first substrate 510, and a portion of the transparent electrode layer 550 is formed in the exposed region. on.
  • FIG. 6 is a schematic diagram of a 12-region formed by three optical path differences according to an embodiment of the present application.
  • the 12 pixel region is divided into three different gradient topographic depths
  • the pixel structure is divided into inner layers by diamonds 310 according to the three different gradient topographic depths
  • the middle layer is The diamond 320 and the outer layer are triangular 330, and the transparent electrode layer is overlaid thereon and the slit design is retained.
  • the 12 pixel region is divided into three different gradient topographic depths, and the pixel structure is divided into inner layers according to the three different gradient topographic depths, and the middle layer and the outer layer are all rectangular (370). , 380, 390), and the transparent electrode layer is overlaid thereon and the slit design is retained.
  • each pixel unit 300 can use only one active switch (for example, a thin film transistor) to drive the entire pixel and increase the pixel design aperture ratio by designing different thicknesses of the protective layer.
  • active switch for example, a thin film transistor
  • the protective layer 620 when the protective layer 620 is patterned, the protective layer may be patterned using a multi-tone mask 640 such that the patterned protective layer 620 has a different thickness of.
  • the multi-tone mask can be, for example, a Gray Tone Mask (GTM), a Stacked Layer Mask (SLM), or a Half Tone Mask (HTM).
  • GTM Gray Tone Mask
  • SLM Stacked Layer Mask
  • HTM Half Tone Mask
  • the multi-tone mask 640 can have, for example, five different light transmissive regions.
  • the beneficial effects of the present application are that the color shift problem of the liquid crystal display panel can be effectively solved and the problem of whitening of a large viewing angle can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

一种显示面板(30)及显示装置的制造方法,显示面板(30)的制造方法包括:提供第一基板(301),其中第一基板(301)具有多个画素单元(300);形成保护层(520)于第一基板(301)上;图案化保护层(520),以使保护层(520)具有不同的厚度,因而可形成多个透光区(310,320,330)于每一画素单元(300)中;形成透明电极层(550)于图案化后的保护层(520)上。显示装置的制造方法还包括提供背光模块。

Description

显示面板及显示装置的制造方法 技术领域
本申请涉及一种显示面板,特别是涉及一种可形成不同保护层厚度的显示面板及显示装置的的制造方法。
背景技术
近年来,随着科技的进步,许多不同的显示设备,例如液晶显示器(Liquid Crystal Display,LCD)或电激发光(Electro Luminenscence,EL)显示设备已广泛地应用于平面显示器。以液晶显示器为例,液晶显示器大部分为背光型液晶显示器,其是由液晶显示面板及背光模块(backlight module)所组成。液晶显示面板是由两片透明基板以及被封于基板之间的液晶所构成。
液晶显示面板通常是由一彩膜基板(Color Filter,CF)、一薄膜晶体管阵列基板(Thin Film Transistor Array Substrate,TFT Array Substrate)以及一配置于两基板间的液晶层(Liquid Crystal Layer,LC Layer)所构成,其工作原理是通过在两片玻璃基板上施加驱动电压来控制液晶层的液晶分子的旋转,将背光模组的光线折射出来产生画面。
所述垂直配向型(Vertical Alignment,VA)模式的液晶显示,例如图形垂直配向型(Patterned Vertical Alignment,PVA)液晶显示器或多区域垂直配向型(Multi-domain Vertical Alignment,MVA)液晶显示设备,其中PVA型利用边缘场效应与补偿板达到广视角的效果。MVA型将一个画素分成多个区域,并使用突起物(Protrusion)或特定图案结构,使位于不同区域的液晶分子朝向不同方向倾倒,以达到广视角且提升穿透率的目的。
在MVA模式目前主流是多是采用将画素区分为亮区与暗区,因此光学表现上可以由两种V-T特性混合,另外在适当调整亮暗区面积比例,在大视角时可有效压制中灰阶泛白的问题。
发明内容
为了解决上述技术问题,本申请的目的在于,提供一种可形成不同保护层厚度的显示面板的制造方法,以解决显示面板的色偏问题,同时可有效提升画素设计开口率。
本申请的目的之一是提供一种显示面板的制造方法,包括:
提供第一基板,其中所述第一基板具有多个画素单元;
形成保护层于所述第一基板上;
图案化所述保护层,以使所述保护层具有不同的厚度,以形成至少二个不同厚度的透光区于每一所述画素单元中;
形成透明电极层于图案化后的所述保护层上。
在一些实施例中,所述保护层具有第一厚度及第二厚度,所述第一厚度及所述第二厚度之间的厚度差异是等于或大于1um。
在一些实施例中,每一所述画素单元具有多个不同穿透率的区域。
在一些实施例中,当图案化所述保护层时,利用多色调光罩来图案化所述保护层,使得图案化后的所述保护层具有不同的厚度。多色调光罩可例如是灰阶色调光掩膜(Gray Tone Mask,GTM)、堆栈图层光掩膜(Stacked Layer Mask,SLM)或半色调光掩膜(Half Tone Mask,HTM)。
在一些实施例中,在形成所述透明电极层之后,图案化所述透明电极层,使得图案化的所述透明电极层具有狭缝设计。
在一些实施例中,图案化后的所述保护层具有暴露区域,其暴露出所述第一基板,部分所述透明电极层是形成于所述暴露区域上。
本申请的目的之一是提供一种显示面板的制造方法,包括:
提供第一基板,其中所述第一基板具有多个画素单元;
形成保护层于所述第一基板上;
利用多色调光罩来图案化所述保护层,以使所述保护层具有不同的厚度,以形成至少二个不同厚度的透光区于每一所述画素单元中,每一所述画素单元具有多个不同穿透率的区域;
形成透明电极层于图案化后的所述保护层上;
其中,所述保护层具有第一厚度及第二厚度,所述第一厚度及所述第二厚度之间的厚度差异是等于或大于1um;
其中,所述多个不同穿透率的区域分为至少3种不同梯度地形深度,并将透明电极层覆盖其上且保留狭缝设计;
其中,图案化后的所述保护层具有暴露区域,其暴露出所述第一基板,部分所述透明电极层是形成于所述暴露区域上。
在一些实施例中,每一所述画素单元包括一第一透光区由四个主透光区域所组成,一第二透光区由四个次透光区域所组成及一第三透光区由四个次二透光区域所组成。
在一些实施例中,所述多个不同穿透率的区域分为至少3种不同梯度地形深度,其依所述至少3种不同梯度地形深度将画素结构分为内层为菱形,中层为菱形及外层为三角形,并将透明电极层覆盖其上且保留狭缝设计。
在一些实施例中,所述多个不同穿透率的区域分为至少3种不同梯度地形深度,其依所述至少3种不同梯度地形深度将画素结构分为内层,中层及外层都为矩形,并将透明电极层覆盖其上且保 留狭缝设计。
本申请的再一目的为提供一种显示装置,包括背光模块,其特征在于:还包括所述的液晶显示面板。
在本申请的一实施例中,更包括一主动开关,例如薄膜晶体管,用以驱动整个画素单元。
本申请的目的之一为提供一种显示装置的制造方法,包括:
提供一背光模块;及
提供一显示面板,所述提供所述显示面板的步骤包括:
提供第一基板,其中所述第一基板具有多个画素单元;
形成保护层于所述第一基板上;
图案化所述保护层,以使所述保护层具有不同的厚度,而形成至少二个不同厚度的透光区于每一所述画素单元中;及
形成透明电极层于图案化后的所述保护层上。
有益效果
本申请可有效解决液晶显示面板色偏问题及改善大视角泛白问题。
附图说明
图1a是本申请一实施例的垂直配向型液晶显示设备在0度视角、45度视角及60度视角的情形下,色偏角度所对应的穿透率-灰阶值曲线。
图1b是本申请一实施例的混合两种改善色偏角度所对应的亮度-灰阶曲线。
图2是本申请一实施例的混合低色偏区域模型。
图3是本申请一实施例的液晶显示面板示意图。
图3a是本申请一实施例的液晶显示面板的画素结构的12画素区域示意图。
图3b是本申请一实施例的液晶显示面板的画素结构的3种液晶层的光程差。
图4a是本申请一实施例利用穿透率-电压曲线解释3种GAMMA曲线。
图4b是本申请一实施例利用穿透率-灰阶值解释3种GAMMA曲线。
图5是本申请一实施例通过半调式(Half Tone)工艺过程制造具有梯度形貌的画素结构示意图。
图6是本申请一实施例的由3种光程差所形成的12区域示意图。
图7是本申请一实施例的光罩及保护层的示意图。
具体实施方式
以下各实施例的说明是参考附加的图式,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是参 考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。
附图和说明被认为在本质上是示出性的,而不是限制性的。在图中,结构相似的单元是以相同标号表示。另外,为了理解和便于描述,附图中示出的每个组件的尺寸和厚度是任意示出的,但是本申请不限于此。
在附图中,为了清晰起见,夸大了层、膜、面板、区域等的厚度。在附图中,为了理解和便于描述,夸大了一些层和区域的厚度。将理解的是,当例如层、膜、区域或基底的组件被称作“在”另一组件“上”时,所述组件可以直接在所述另一组件上,或者也可以存在中间组件。
另外,在说明书中,除非明确地描述为相反的,否则词语“包括”将被理解为意指包括所述组件,但是不排除任何其它组件。此外,在说明书中,“在......上”意指位于目标组件上方或者下方,而不意指必须位于基于重力方向的顶部上。
为更进一步阐述本申请为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本申请提出的一种显示面板及其应用的液晶显示面板其具体实施方式、结构、特征及其功效,详细说明如后。
本申请的显示面板的制造方法,包括:提供第一基板,其中所述第一基板具有多个画素单元;形成保护层于所述第一基板上;图案化所述保护层,以使所述保护层具有不同的厚度,因而可形成多个透光区于每一所述画素单元中,以改善色偏情形。
本申请的显示面板可包括:第一基板;多个画素单元,形成于所述第一基板上;保护层,形成于所述第一基板上,在每一所述画素单元中,所述保护层具有不同的厚度,以形成至少二个不同厚度的透光层于每一所述画素单元中;以及透明电极层,形成于所述保护层的所述不同厚度的透光层上。
本申请的显示面板应用的液晶显示装置可包括背光模块及液晶显示面板。液晶显示面板可包括薄膜晶体管(Thin Film Transistor,TFT)基板、彩色滤光片(Color Filter,CF)基板与形成于两基板之间的液晶层。
在一实施例中,本申请的液晶显示面板可为曲面型显示面板,且本申请的液晶显示设备也可为曲面型显示装置。
在一实施例中,本申请的薄膜晶体管(TFT)及彩色滤光片(CF)可形成于同一基板上。
图1a为垂直配向型液晶显示设备在0度视角、45度视角及60度视角的情形下,色偏角度所对应的穿透率-灰阶值曲线。请参照图1a,在0度色偏视角所对应的穿透率-灰阶值曲线110、在45度色偏视角所对应的穿透率-灰阶值曲线120及在60度色偏视角所对应的穿透率-灰阶值曲线130。因此随着色偏视角角度越高,在同一个灰阶值中,亮度穿透率就越高。
图1b为混合两种改善色偏角度所对应的亮度-灰阶曲线。请参照图1b,在MVA模式中,可采用将画素区分为亮区与暗区,因此光学表现上可以由两种V-T特性混合,另外在适当调整亮暗区面积比例,所以在大视角时可有效压制中灰阶泛白的问题。而在亮区画素140与暗区画素150,彼此在亮度-灰阶图式中混合调整成画素160。
图2为混合低色偏区域模型。请参照图2,常见的低色偏(Low Color Shift)技术主要原理是将传统4区域利用分压或额外驱动方式再切割为8区域。因此在大视角观看下会有多范畴补偿的效果。如子低色偏区域210及主低色偏区域220相混合成低色偏区域200。
图3为本申请一实施例的液晶显示面板30示意图及图3a为本申请一实施例的液晶显示面板的画素结构的12画素区域示意图。请参照图3及图3a,在本申请的一实施例中,所述液晶显示面板30包括:第一基板301(例如薄膜晶体管基板);第二基板302(例如彩色滤光片基板),与所述第一基板301相对设置;液晶层303,设置于所述第一基板301与所述第二基板302之间;且还包括所述改善色偏的画素结构,设置于所述第一基板与所述第二基板之间(例如位于所述第一基板的表面),并包括:多个画素单元300,所述画素单元300由第一透光区310,第二透光区320及第三透光区330,三个区域所组成,其依据不同光程差并依特定面积比例区分画素透光区效果,并设置于所述第一基板301与所述第二基板302之间。且更包括第一偏光片306设置于所述第一基板301的一外表面上;以及第二偏光片307设置于所述第二基板302的一外表面上,其中所述第一偏光片306与所述第二偏光片307的偏振方向为互相平行。
在本申请一实施例中,本申请的显示装置,包括背光模块,还包括一种液晶显示面板30,包括:第一基板301(例如薄膜晶体管基板);第二基板302(例如彩色滤光片基板),与所述第一基板301相对设置;液晶层303,设置于所述第一基板301与所述第二基板302的间;且还包括所述液晶显示面板的画素结构,设置于所述第一基板与所述第二基板之上(例如位于所述第一基板的表面),并包括:多个画素单元300,所述画素单元300由第一透光区310,第二透光区320及第三透光区330,三个区域所组成,其依据不同光程差并依特定面积比例区分画素透光区效果,并设置于所述第一基板301与所述第二基板302之间。且更包括第一偏光片306设置于所述第一基板301的一外表面上;以及第二偏光片307设置于所述第二基板302的一外表面上,其中所述第一偏光片306与所述第二偏光片307的偏振方向为互相平行。
在本申请的实施例中,每一所述画素单元300可具有多个不同穿透率的区域。
请参照图3a,在本申请的一实施例中,所述画素结构包括所述画素单元300,所述画素单元300由第一透光区310(由四个主透光区域312,314,316及318所组成),第二透光区320(由四个次透光区域322,324,326及328所组成)及第三透光区330(由四个次二透光区域332,334,336 及338所组成),而所述三个区域所组成依据,是根据不同深度并依特定面积比例区分画素透光区效果。
图3b为本申请一实施例的液晶显示面板的画素结构的3种液晶层的光程差。在本申请的一实施例中,所述第一画素透光区单元300,利用光程差△nd(由三个340,350,360光程差)不同梯度地形因素,可将画素等效区分为12区域。
图4a为本申请一实施例利用穿透率-电压曲线解释3种GAMMA曲线。请参照图4a,在3.6液晶层间隙(Cell Gap)所对应的穿透率-电压值曲线410,在3.9液晶层间隙(Cell Gap)所对应的穿透率-电压值曲线420及在4.2液晶层间隙(Cell Gap)所对应的穿透率-电压值曲线430。
图4b为本申请一实施例利用穿透率-灰阶值解释3种GAMMA曲线。请参照图4a,在3.6液晶层间隙(Cell Gap)所对应的穿透率-灰阶值曲线410,在3.9液晶层间隙(Cell Gap)所对应的穿透率-灰阶值曲线420及在4.2液晶层间隙(Cell Gap)所对应的穿透率-灰阶值曲线430。
图5为本申请通过半调式(Half Tone)工艺过程制造具有梯度形貌的画素结构示意图。请参照图5,在本申请的一实施例中,通过一半调式工艺过程改变所述保护层蚀刻工艺。且利用液晶盒内不同梯度地形造成画素区分效果,因而取代传统使用电压分压的方式。例如第一基板具有四层结构,包括:透明基板(SB)层510、保护(Passivation)层520、光阻材料(PR)层530及透明电极层550(例如氧化铟锡,ITO)所组成。且需经过成膜步骤、曝光步骤、显影步骤、蚀刻步骤及剥膜步骤,此流程需重复5次,才能完成基板。所述成膜步骤是在玻璃基板510上,铺上一层所需求材质的薄膜(保护层520、光阻材料层530、透明电极层550);所述曝光步骤是使用光罩540在光阻530上,显影出所需的光阻530图形;所述显影步骤是留下上阶段光阻530图形部分的光阻530;所述蚀刻步骤是在已经有光阻530图形的基板510上,蚀刻出所需的图;所述剥膜步骤用已经蚀刻出所需图形的基板510,将覆盖于图形上的光阻530去除以便进行后续工程。因此,所述保护层520可具有不同的厚度,以形成至少二个不同厚度的透光层(或透光区)于每一所述画素单元中。
如图5所示,本申请的显示面板的制造方法可包括以下步骤:
提供第一基板510,其中所述第一基板具有多个画素单元300;
形成保护层520于所述第一基板510上;
图案化所述保护层520,以使所述保护层520具有不同的厚度,以形成至少二个不同厚度的透光区于每一所述画素单元300中;
形成透明电极层550于图案化后的所述保护层上。
在一些实施例中,在形成所述透明电极层550之后,可图案化所述透明电极层550,使得图案化的所述透明电极层550具有狭缝设计。
在一些实施例中,如图5所示,所述保护层520具有第一厚度及第二厚度,所述第一厚度及所述第二厚度之间的厚度差异是等于或大于1um。
在一些实施例中,如图5所示,图案化这的所述保护层520可具有暴露区域,其暴露出所述第一基板510,部分所述透明电极层550是形成于所述暴露区域上。
图6为本申请一实施例的由3种光程差所形成的12区域示意图。请参照图6,在本申请的一实施例中,所述12画素区域分为3种不同梯度地形深度,其依所述3种不同梯度地形深度将画素结构分为内层为菱形310,中层为菱形320及外层为三角形330,并将透明电极层覆盖其上且保留狭缝设计。
在本申请的一实施例中,所述12画素区域分为3种不同梯度地形深度,其依所述3种不同梯度地形深度将画素结构分为内层,中层及外层都为矩形(370,380,390),并将透明电极层覆盖其上且保留狭缝设计。
在本申请的实施例中,通过不同保护层厚度的设计,每一画素单元300可仅仅使用一主动开关(例如薄膜晶体管),用以驱动整个画素,并提升画素设计开口率。
在一些实施例中,如图7所示,当图案化形成所述保护层620时,可利用多色调光罩640来图案化所述保护层,使得图案化后的所述保护层620具有不同的厚度。多色调光罩可例如是灰阶色调光掩膜(Gray Tone Mask,GTM)、堆栈图层光掩膜(Stacked Layer Mask,SLM)或半色调光掩膜(Half Tone Mask,HTM)。如图7所示,多色调光罩640例如可具有5种不同的透光区域。
本申请的有益效果是可有效解决液晶显示面板色偏问题及改善大视角泛白问题。
“在一些实施例中”及“在各种实施例中”等用语被重复地使用。所述用语通常不是指相同的实施例;但它也可以是指相同的实施例。“包含”、“具有”及“包括”等用词是同义词,除非其前后文意显示出其它意思。
以上所述,仅是本申请的较佳实施例而已,并非对本申请作任何形式上的限制,虽然本申请已以较佳实施例揭露如上,然而并非用以限定本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本申请技术方案的内容,依据本申请的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本申请技术方案的范围内。

Claims (13)

  1. 一种显示面板的制造方法,包括:
    提供第一基板,其中所述第一基板具有多个画素单元;
    形成保护层于所述第一基板上;
    图案化所述保护层,以使所述保护层具有不同的厚度,而形成至少二个不同厚度的透光区于每一所述画素单元中;及
    形成透明电极层于图案化后的所述保护层上。
  2. 如权利要求1所述的显示面板的制造方法,其中所述保护层具有第一厚度及第二厚度,所述第一厚度及所述第二厚度之间的厚度差异是等于或大于1um。
  3. 如权利要求1所述的显示面板的制造方法,其中每一所述画素单元具有多个不同穿透率的区域。
  4. 如权利要求1所述的显示面板的制造方法,其中当图案化所述保护层时,利用多色调光罩来图案化所述保护层,使得图案化后的所述保护层具有不同的厚度。
  5. 如权利要求1所述的显示面板的制造方法,其中在形成所述透明电极层之后,图案化所述透明电极层,使得图案化的所述透明电极层具有狭缝设计。
  6. 如权利要求1所述的显示面板的制造方法,其中图案化后的所述保护层具有暴露区域,其暴露出所述第一基板,部分所述透明电极层是形成于所述暴露区域上。
  7. 一种显示面板的制造方法,包括:
    提供第一基板,其中所述第一基板具有多个画素单元;
    形成保护层于所述第一基板上;
    利用多色调光罩来图案化所述保护层,以使所述保护层具有不同的厚度,而形成至少二个不同厚度的透光区于每一所述画素单元中,每一所述画素单元具有多个不同穿透率的区域;及
    形成透明电极层于图案化后的所述保护层上;
    其中,所述保护层具有第一厚度及第二厚度,所述第一厚度及所述第二厚度之间的厚度差异是等于或大于1um;
    其中,所述多个不同穿透率的区域分为3种不同梯度地形深度,并将透明电极层覆盖其上且保留狭缝设计;
    其中,图案化后的所述保护层具有暴露区域,其暴露出所述第一基板,部分所述透明电极层是形成于所述暴露区域上。
  8. 一种显示装置的制造方法,包括:
    提供一背光模块;及
    提供一显示面板,所述提供所述显示面板的步骤包括:
    提供第一基板,其中所述第一基板具有多个画素单元;
    形成保护层于所述第一基板上;
    图案化所述保护层,以使所述保护层具有不同的厚度,而形成至少二个不同厚度的透光区于每一所述画素单元中;及
    形成透明电极层于图案化后的所述保护层上。
  9. 如权利要求8所述的显示装置的制造方法,其中所述保护层具有第一厚度及第二厚度,所述第一厚度及所述第二厚度之间的厚度差异是等于或大于1um。
  10. 如权利要求8所述的显示装置的制造方法,其中每一所述画素单元具有多个不同穿透率的区域。
  11. 如权利要求8所述的显示装置的制造方法,其中当图案化所述保护层时,利用多色调光罩来图案化所述保护层,使得图案化后的所述保护层具有不同的厚度。
  12. 如权利要求8所述的显示装置的制造方法,其中在形成所述透明电极层之后,图案化所述透明电极层,使得图案化的所述透明电极层具有狭缝设计。
  13. 如权利要求8所述的显示装置的制造方法,其中图案化后的所述保护层具有暴露区域,其暴露出所述第一基板,部分所述透明电极层是形成于所述暴露区域上。
PCT/CN2017/086638 2016-12-30 2017-05-31 显示面板及显示装置的制造方法 WO2018120647A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/556,088 US10365518B2 (en) 2016-12-30 2017-05-31 Methods for manufacturing display panel and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611261213.5 2016-12-30
CN201611261213.5A CN106873217A (zh) 2016-12-30 2016-12-30 显示面板的制造方法

Publications (1)

Publication Number Publication Date
WO2018120647A1 true WO2018120647A1 (zh) 2018-07-05

Family

ID=59165466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/086638 WO2018120647A1 (zh) 2016-12-30 2017-05-31 显示面板及显示装置的制造方法

Country Status (3)

Country Link
US (1) US10365518B2 (zh)
CN (1) CN106873217A (zh)
WO (1) WO2018120647A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106873261A (zh) 2016-12-30 2017-06-20 惠科股份有限公司 液晶显示面板的画素结构及其应用的显示设备
CN106873216A (zh) 2016-12-30 2017-06-20 惠科股份有限公司 显示面板及其应用的液晶显示面板
CN111796440B (zh) * 2020-07-07 2023-07-25 Tcl华星光电技术有限公司 显示面板的调节方法及其装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5467216A (en) * 1993-01-29 1995-11-14 Victor Company Of Japan, Ltd. Spatial light modulation device
CN101089692A (zh) * 2007-07-05 2007-12-19 上海广电光电子有限公司 多畴垂直取向模式的液晶显示装置及其基板制造方法
CN101256323A (zh) * 2007-03-02 2008-09-03 胜华科技股份有限公司 半穿透半反射式像素结构
CN101409263A (zh) * 2008-12-02 2009-04-15 友达光电股份有限公司 像素结构、显示面板以及光电装置的制造方法
CN101551544A (zh) * 2008-04-03 2009-10-07 胜华科技股份有限公司 具触控功能的彩色滤光片及液晶显示装置
CN102540596A (zh) * 2011-01-03 2012-07-04 三星电子株式会社 液晶显示器及其制造方法
CN102832226A (zh) * 2011-10-06 2012-12-19 友达光电股份有限公司 主动元件阵列基板及其制造方法
CN106873216A (zh) * 2016-12-30 2017-06-20 惠科股份有限公司 显示面板及其应用的液晶显示面板
CN106980200A (zh) * 2017-03-30 2017-07-25 惠科股份有限公司 显示面板及其制造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101251666A (zh) * 2008-03-27 2008-08-27 友达光电股份有限公司 具有整合触摸板的显示装置
CN101813850B (zh) * 2009-02-19 2011-08-10 北京京东方光电科技有限公司 液晶盒
KR101621027B1 (ko) * 2009-12-30 2016-05-16 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
CN102402042A (zh) * 2011-11-02 2012-04-04 深圳市华星光电技术有限公司 液晶显示装置及其制造方法
CN203259680U (zh) * 2013-05-15 2013-10-30 京东方科技集团股份有限公司 彩色滤光片及显示装置
CN103646966B (zh) * 2013-12-02 2016-08-31 京东方科技集团股份有限公司 一种薄膜晶体管、阵列基板及其制备方法、显示装置
TWI569076B (zh) * 2014-05-19 2017-02-01 友達光電股份有限公司 顯示面板

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5467216A (en) * 1993-01-29 1995-11-14 Victor Company Of Japan, Ltd. Spatial light modulation device
CN101256323A (zh) * 2007-03-02 2008-09-03 胜华科技股份有限公司 半穿透半反射式像素结构
CN101089692A (zh) * 2007-07-05 2007-12-19 上海广电光电子有限公司 多畴垂直取向模式的液晶显示装置及其基板制造方法
CN101551544A (zh) * 2008-04-03 2009-10-07 胜华科技股份有限公司 具触控功能的彩色滤光片及液晶显示装置
CN101409263A (zh) * 2008-12-02 2009-04-15 友达光电股份有限公司 像素结构、显示面板以及光电装置的制造方法
CN102540596A (zh) * 2011-01-03 2012-07-04 三星电子株式会社 液晶显示器及其制造方法
CN102832226A (zh) * 2011-10-06 2012-12-19 友达光电股份有限公司 主动元件阵列基板及其制造方法
CN106873216A (zh) * 2016-12-30 2017-06-20 惠科股份有限公司 显示面板及其应用的液晶显示面板
CN106980200A (zh) * 2017-03-30 2017-07-25 惠科股份有限公司 显示面板及其制造方法

Also Published As

Publication number Publication date
US20180275467A1 (en) 2018-09-27
CN106873217A (zh) 2017-06-20
US10365518B2 (en) 2019-07-30

Similar Documents

Publication Publication Date Title
WO2018176629A1 (zh) 显示面板及其制造方法
US7212262B2 (en) Liquid crystal display device and method of fabricating the same
WO2018120646A1 (zh) 显示面板及其应用的液晶显示面板及液晶显示装置
WO2017008369A1 (zh) Coa型液晶显示面板及其制作方法
CN107505760B (zh) 阵列基板的像素结构以及液晶显示面板
WO2018120509A1 (zh) 画素结构及其应用的显示面板
WO2017128576A1 (zh) Ltps显示面板及其制作方法
US20150253473A1 (en) Color filter array substrate, method for fabricating the same and display device
WO2016078229A1 (zh) 液晶显示像素结构及其制作方法
US20170299773A1 (en) Substrate and Manufacturing Method Therefor, Display Panel and Display Device
KR102103501B1 (ko) 액정 표시 장치
WO2018120393A1 (zh) 液晶显示面板的画素结构及其应用的显示设备
WO2018120647A1 (zh) 显示面板及显示装置的制造方法
CN107463023A (zh) 液晶显示面板以及液晶显示设备
US11262632B2 (en) Active switch array substrate, manufacturing method thereof and liquid crystal display panel applying the same
CN107505761A (zh) 彩色滤光器以及液晶显示面板的制作方法
KR102299630B1 (ko) Tft 기판의 제조 방법 및 그 구조
WO2018201545A1 (zh) 光罩及其应用于主动开关阵列基板的制造方法
KR101082906B1 (ko) 표시패널 및 이의 제조방법
WO2019085291A1 (zh) 主动开关阵列基板及其制造方法与显示装置
KR20070072275A (ko) 수직배향모드 액정표시소자 및 그 제조방법
WO2020047899A1 (zh) 像素结构及其应用的显示面板与制造方法
US10591786B2 (en) Mask structure and manufacturing method for array substrate
WO2020047998A1 (zh) 画素结构及显示面板的制造方法
JP2021002033A (ja) カラーフィルタ基板、液晶表示装置、及び、カラーフィルタ基板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15556088

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17889456

Country of ref document: EP

Kind code of ref document: A1