WO2018120167A1 - 机器人、机器人底座稳定性的监测控制方法及系统 - Google Patents

机器人、机器人底座稳定性的监测控制方法及系统 Download PDF

Info

Publication number
WO2018120167A1
WO2018120167A1 PCT/CN2016/113839 CN2016113839W WO2018120167A1 WO 2018120167 A1 WO2018120167 A1 WO 2018120167A1 CN 2016113839 W CN2016113839 W CN 2016113839W WO 2018120167 A1 WO2018120167 A1 WO 2018120167A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
preset
displacement
robot
condition
Prior art date
Application number
PCT/CN2016/113839
Other languages
English (en)
French (fr)
Inventor
蒋华
Original Assignee
深圳配天智能技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳配天智能技术研究院有限公司 filed Critical 深圳配天智能技术研究院有限公司
Priority to PCT/CN2016/113839 priority Critical patent/WO2018120167A1/zh
Priority to CN201680039127.1A priority patent/CN108367440A/zh
Publication of WO2018120167A1 publication Critical patent/WO2018120167A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0095Means or methods for testing manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/06Safety devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/048Monitoring; Safety
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms

Definitions

  • the first object of the present invention is to provide a method for monitoring and controlling the stability of a robot base, which can effectively solve the problem of the decrease in the working accuracy of the robot and the damage of the human machine caused by the positional deviation of the base of the robot.
  • a second object is to provide a robot
  • a third object of the present invention is to provide a monitoring and control system for the stability of a robot base.
  • the real-time monitoring pressure of the preset position of the robot base includes:
  • the method specifically includes:
  • the detecting the respective pressures of the different positions around the base of the robot respectively:
  • the monitoring and control method for the stability of the robot base provided by the present invention can monitor the pressure received by the preset position of the robot base or the displacement generated by the robot base in real time, or simultaneously monitor the pressure received by the preset position of the robot base and the displacement generated by the robot base.
  • the pressure or displacement of the feedback when the pressure meets the first preset pressure condition or the displacement meets the first preset displacement condition, an alarm prompt is given, or when the pressure meets the first preset pressure condition and the displacement satisfies the first Alarm prompt when preset displacement conditions.
  • the second preset pressure condition includes:
  • the pressure reaches a second preset pressure value, and the duration reaches a second preset time; or the pressure is zero, and the second preset pressure value is greater than the first preset pressure value;
  • the second preset displacement condition includes: the displacement reaches a second preset displacement amount, and the second preset displacement amount is greater than the first preset displacement amount.
  • the processing module is specifically configured to:
  • Figure 5 is a schematic view showing the installation of the pressure sensor
  • FIG. 6 is a schematic diagram of a corresponding structure of a robot action
  • FIG. 8 is a schematic diagram of a three-way structure of a robot action
  • Figure 9 is a schematic diagram of the corresponding structure of the robot action four;
  • FIG. 10 is a schematic structural view of a specific embodiment of a monitoring and control system for stability of a robot base provided by the present invention.
  • Pressure detecting device 101 control system 102, alarm device 103, displacement detecting device 104; Connecting bolt 1, first bolt 11, second bolt 12, third bolt 13, third bolt 14, screw 15, nut 16, spacer 2; steel plate 3; floor 4; groove 5; pressure detecting module 201, processing Module 202.
  • the embodiment of the invention discloses a monitoring and controlling method for the stability of the robot base, so as to avoid the decrease of the working precision of the robot and the human-machine damage caused by the positional deviation of the robot base.
  • FIG. 1 is a schematic flow chart of a specific implementation manner of a method for monitoring and controlling stability of a robot base according to the present invention.
  • the method for monitoring and controlling the stability of a robot base includes the following steps:
  • the pressure of the preset position of the robot base can be monitored in real time by a pressure sensor, such as a strain gauge pressure sensor.
  • the pressure is directly monitored by the pressure sensor and the results are more accurate.
  • the preset position can be set as needed, such as around the base of the robot, and the preset position can be a position as needed, that is, a position of the monitoring robot base is a monitoring point.
  • the preset position may preferably include a plurality of positions, that is, a plurality of monitoring points are provided to comprehensively reflect the stability of the robot base.
  • the setting method of the specific preset position may be set according to actual conditions, and may not be specifically limited herein.
  • an alarm prompt is output.
  • an alarm device such as an audible and visual alarm, a voice broadcaster, and the like can be used to alert the operator that the stability of the robot base is abnormal.
  • the alarm prompt when the pressure meets the first preset pressure condition, the alarm prompts and the robot works normally. That is, when the pressure meets the first preset pressure condition, the alarm prompt does not affect the normal operation of the robot. That is to say, in this case, the first preset pressure condition is an early warning condition, and the robot can still work, and the operator can know that the stability of the robot base has decreased according to the alarm prompt, and thus can take relevant measures.
  • the first preset pressure condition can also be adjusted according to needs, for example, it is set as a critical condition for the normal operation of the robot, that is, when the pressure meets the first preset pressure condition, the robot is directly controlled to stop working, and an alarm prompt can also be given to remind Attention to relevant personnel.
  • the monitoring and control method for the stability of the robot base provided by the invention is used to monitor the pressure received by the preset position of the robot base in real time and send it to the control system, and the control system controls the pressure according to the feedback when it meets the first preset pressure condition.
  • the alarm device issues an alarm prompt. That is, by monitoring the pressure of the preset position of the robot base to reflect the position of the base, when the pressure is abnormal, it indicates that the base of the robot is offset, so that the alarm device performs an alarm to prompt the relevant personnel to take corresponding measures, such as manually stopping the robot. Wait. Therefore, the monitoring and control method provided by the invention can accurately detect the stability of the robot base and perform alarm processing according to the real-time feedback data, thereby effectively preventing the problem of the accuracy degradation and the human-machine injury caused by the offset of the robot base.
  • the foregoing embodiment may further include:
  • step S4 determining whether the pressure meets the second preset pressure condition, and if so, executing step S5;
  • the specific step S4 may be performed after the step S2, that is, it is first determined whether the pressure meets the first preset pressure condition, and then it is determined whether the pressure satisfies the second preset pressure condition. Preferably, it may be first determined whether the pressure determines that the second preset pressure condition is met, and if so, the control robot stops. Work, otherwise continue to determine whether the pressure meets the first preset pressure condition, and if so, an alarm is given. Of course, it is also possible to simultaneously determine whether the first preset pressure condition or the second preset pressure condition is satisfied according to the pressure of the real-time monitoring, and adopt corresponding control according to the condition that it satisfies. The specific control robot stops working and can control the robot to stop working by powering off.
  • the alarm prompts and the control robot operates normally; when the pressure meets the second preset pressure condition, the control robot stops working. That is, according to the real-time monitoring of the pressure of the preset position of the robot base, the sub-level control is performed.
  • the alarm prompt is first performed, and the robot does not stop working, and when the pressure meets the second preset pressure condition At the time, the robot is directly controlled to stop.
  • the operator can be effectively reminded of the abnormal stability of the robot base, and the operator can have more sufficient time to take corresponding measures, and at the same time avoid the problem of production efficiency degradation caused by false or frequent shutdown.
  • step S2 it is determined in step S2 whether the pressure meets the first preset pressure condition, specifically:
  • the pressure reaches the first preset pressure value, and the duration reaches the first preset time. That is, when the pressure monitored in real time reaches the first preset pressure value and the duration reaches the first preset time, the pressure satisfies the first preset pressure condition.
  • the specific first preset pressure value and the first preset time may be set as needed, and may preferably be obtained by trial or simulation.
  • the first preset pressure value is 1.1 times of the maximum pressure value corresponding to the preset position in the normal state of the robot base, that is, the pressure exceeds 10% of the maximum pressure corresponding to the preset position in the normal state of the robot base.
  • the corresponding first preset time may be 1 second, that is, the pressure monitored in real time exceeds 10% of the maximum pressure corresponding to the preset position in the normal state of the robot base for 1 second, and the control system controls the alarm device to give an alarm prompt.
  • the first preset pressure value is set to be 1.1 times of the maximum pressure value corresponding to the preset position in the normal state of the robot base, and the worker can be promptly reminded to take measures while ensuring that the robot can still operate.
  • the size of the first preset pressure value may be specifically determined according to factors such as performance parameters of the structure at the preset position.
  • the maximum pressure of the corresponding position of the robot base under normal conditions may be the pressure that the preset position is subjected to when the center of gravity of the robot obtained by the pre-test or simulation is biased to the corresponding position in the loaded state.
  • determining whether the pressure meets the second preset pressure condition may specifically be: determining Whether the pressure reaches the second preset pressure value and the duration reaches the second preset time or the pressure drops to zero. That is, when the pressure monitored in real time reaches the second preset pressure value and the duration reaches the second preset time, or the pressure drops to zero, the pressure satisfies the second preset pressure condition.
  • the specific second preset pressure value and the second preset time may be set as needed, and may preferably be obtained by trial or simulation.
  • the second preset pressure value is generally set to be greater than the first preset pressure value.
  • the second preset pressure value is 1.2 times of the maximum pressure value corresponding to the preset position in the normal state of the robot base, that is, the pressure exceeds 20% of the maximum pressure corresponding to the preset position in the normal state of the robot base.
  • the corresponding second preset time may be 1 second, that is, the pressure monitored in real time exceeds 20% of the maximum pressure and lasts for 1 second in the normal state of the robot base, and the control system controls the robot to stop working.
  • the second preset pressure value is set to 1.2 times the maximum pressure value corresponding to the preset position in the normal state of the robot base, and the robot can be stopped before the stability of the robot base reaches the limit.
  • the pressure monitored in real time does not satisfy the first preset pressure condition and the second preset pressure condition. If the pressure is less than the first preset pressure value, the robot base is stable and the robot works normally; when the pressure meets the first When a preset pressure condition is reached, if the pressure reaches the first preset pressure value and continues for the first preset time, an alarm is given, the pressure value is abnormal, and the alarm does not affect the normal operation of the robot; when the pressure meets the second preset pressure condition When the pressure reaches the second preset pressure value and continues for the second preset time, the control robot stops working.
  • step S1 may specifically be:
  • the preset position includes a plurality of, and by separately monitoring the pressures of the different positions and transmitting them to the control system, the control system judges according to the monitoring pressure of each position.
  • the pressures respectively received by the upper left corner, the lower left corner, the upper right corner, and the lower right corner of the robot base are respectively monitored.
  • the method specifically includes: when the pressure of the at least one of the different positions is subjected to the first preset pressure condition.
  • the stability of the robot base characterized by at least one position is abnormal
  • the alarm prompt is used to minimize the problem of the robot's working accuracy and man-machine damage caused by the offset of the robot base.
  • it may be set as needed to perform an alarm prompt when at least two or more of the different positions satisfy the first preset pressure condition, but the reliability of the corresponding monitoring control is relatively low.
  • the preset position includes a plurality of, when the alarm prompt is performed, the corresponding preset position of the first preset pressure condition may be correspondingly prompted, so that the operator or the base of the robot is offset.
  • respectively detecting the pressures respectively received by the different positions of the robot base may specifically include: respectively detecting the pressures respectively received by the plurality of connecting bolts of the robot base; and further, the pressure received by the at least one of the different positions is satisfied.
  • the first preset pressure condition specifically includes: when the pressure of the at least one of the plurality of connecting bolts is subjected to the first preset pressure condition.
  • the robot base is fixed to the ground by connecting bolts or fixed to the ground by connecting bolts on the steel plate. Therefore, it is possible to monitor the pressures of the plurality of connecting bolts, such as monitoring the pressure of the four connecting bolts at the four corners of the robot base. Judge the data.
  • the method specifically includes: when at least one of the plurality of connecting bolts is subjected to the connecting bolt The pressure satisfies the second preset pressure condition.
  • FIG. 2 is a schematic flow chart of another embodiment of a method for monitoring and controlling stability of a robot base according to the present invention.
  • the method for monitoring and controlling the stability of a robot base includes the following steps:
  • step S21 determining whether the displacement meets the first preset displacement condition, and if so, executing step S31;
  • the specific first preset displacement condition may be set according to the requirement of the stability of the robot, and generally the displacement may reach the first preset displacement amount, or the displacement reaches the first preset displacement amount and the duration reaches the first specific time.
  • step S41 determining whether the displacement meets the second preset displacement condition, and if so, executing step S51;
  • the specific second preset condition may be that the displacement reaches a second preset displacement amount, and the second preset displacement amount is greater than the first preset displacement amount.
  • the displacement reaches the second predetermined displacement amount and the duration reaches the second specific time or the like.
  • the specific values of the first preset displacement amount and the second preset displacement amount may be obtained by trial or simulation in advance.
  • the specific step S41 may be performed after the step S21, that is, it is first determined whether the displacement satisfies the first preset displacement condition, and then it is determined whether the displacement satisfies the second preset displacement condition.
  • it may be first determined whether the displacement satisfies the second preset displacement condition, and if so, the control robot stops working, otherwise it continues to determine whether the displacement satisfies the first preset displacement condition, and if so, an alarm prompt is issued.
  • the specific control robot stops working and can control the robot to stop working by powering off.
  • the alarm prompts and the control robot operates normally; when the displacement satisfies the second preset displacement condition, the control robot stops working. That is, according to the real-time monitoring of the displacement of the robot base, the sub-level control is performed.
  • the alarm prompt is first performed, and the robot does not stop working, and when the displacement satisfies the second preset displacement condition, Directly control the robot to stop.
  • the operator can be effectively reminded of the abnormal stability of the robot base, and the operator can have more sufficient time to take corresponding measures, and at the same time avoid the problem of production efficiency degradation caused by false or frequent shutdown.
  • FIG. 3 is a flow chart of still another embodiment of a method for monitoring and controlling the stability of a robot base provided by the present invention.
  • the method for monitoring and controlling the stability of a robot base includes the following steps:
  • S12 real-time monitoring of the pressure received by the preset position of the robot base and the displacement of the robot base;
  • step S22 determining whether the pressure meets the first preset pressure condition, and / or whether the displacement meets the first preset displacement condition, and if so, executing step S32;
  • the alarm prompts when the displacement meets the first preset displacement condition, or the pressure meets the first preset pressure condition.
  • the first preset displacement condition and the first preset pressure condition For details about the first preset displacement condition and the first preset pressure condition, refer to the foregoing embodiment, and details are not described herein again.
  • step S42 determining whether the pressure meets the second preset pressure condition, and/or whether the displacement meets the second preset displacement condition, and if so, executing step S52;
  • the hierarchical control is performed, and an alarm is issued when at least one of the displacement or the pressure satisfies the corresponding alarm condition, and the control robot stops working when at least one of the displacement or the pressure satisfies the condition that the corresponding robot stops working.
  • the step S42 may be performed to determine whether the pressure meets the second preset pressure condition and whether the displacement satisfies the second preset displacement condition, and if yes, execute step S52. That is, the control robot stops working when the displacement satisfies the second preset displacement condition and the pressure satisfies the second preset pressure condition. Therefore, the robot is prevented from being stopped by the false detection and the like.
  • FIG. 4 is a schematic structural diagram of a specific embodiment of a robot provided by the present invention.
  • the robot described below and the monitoring control method of the robot base stability described above may be referred to each other.
  • the present invention provides a robot, including control system 102 and alarm device 103, and a pressure sensing device 101 or displacement detecting device 104 that is electrically coupled to control system 102.
  • the alarm device 103 is electrically connected to the control system 102.
  • the pressure detecting device 101 is configured to detect the pressure received by the preset position of the robot base, and the displacement detecting device 104 is configured to detect the displacement generated by the robot base.
  • the control system 102 is configured to control the alarm device 103 to make an alarm prompt when the pressure fed back by the pressure detecting device 101 satisfies the first preset pressure condition, or the displacement feedback from the displacement detecting device 104 satisfies the first preset displacement condition.
  • the robot provided by the present invention monitors the pressure received by the preset position of the robot base in real time through the pressure detecting device 101 and sends it to the control system 102.
  • the control system 102 controls the alarm when it meets the first preset pressure condition according to the feedback pressure.
  • Device 103 issues an alert.
  • the displacement of the robot base is monitored by the displacement detecting device 104 in real time and sent to the control system 102.
  • the control system 102 controls the alarm device 103 to issue an alarm prompt when it meets the first preset displacement condition according to the feedback displacement.
  • the robot provided by the invention can accurately detect the stability of the robot base and perform alarm processing according to the real-time feedback data, thereby effectively preventing the problem of the accuracy degradation and the human-machine damage caused by the offset of the robot base.
  • control system 102 may be configured to control the alarm device 103 to perform an alarm prompt when the pressure fed back by the pressure detecting device 101 satisfies the first preset pressure condition, or the displacement feedback from the displacement detecting device 104 satisfies the first preset displacement condition.
  • the first preset pressure condition is an early warning condition, and the robot can still work, and the operator can know that the stability of the robot base has decreased according to the alarm prompt, and thus can take relevant measures.
  • the control robot stops working.
  • the pressure of the preset position of the robot base is monitored in real time according to the pressure detecting device 101, or the displacement of the preset position of the robot base is monitored in real time according to the displacement detecting device 104, and the level control is performed when the pressure is applied.
  • the first preset pressure condition is met, or the displacement meets the first preset displacement condition
  • an alarm prompt is first performed, and the robot does not stop working, and when the pressure satisfies the second preset pressure condition, or the displacement satisfies the second preset displacement Conditions directly control the robot to stop.
  • the operator can be effectively reminded of the abnormal stability of the robot base, and the operator can have more sufficient time to take corresponding measures, and at the same time avoid the problem of production efficiency degradation caused by false or frequent shutdown.
  • the first preset pressure condition may be that the pressure reaches the first preset pressure value and continues for the first preset time
  • the second preset pressure condition may be that the pressure reaches the second preset pressure value and continues for the second preset time Or the pressure drops to zero, and the second preset pressure value is greater than the first preset pressure value
  • the first preset displacement condition may be that the displacement reaches a first preset displacement amount
  • the second preset displacement condition may be that the displacement reaches a second preset displacement amount
  • the second preset displacement amount is greater than the first preset displacement amount
  • the present invention provides a robot including a control system 102, an alarm device 103, and a pressure detecting device 101 and a displacement detecting device 104 that are electrically connected to the control system 102, respectively.
  • the pressure detecting device 101 is configured to detect the pressure received by the preset position of the robot base
  • the displacement detecting device 104 is configured to detect the displacement generated by the robot base.
  • the alarm device 103 is electrically connected to the control system 102.
  • the control system 102 is configured to control the alarm device when the pressure fed back by the pressure detecting device 101 satisfies the first preset pressure condition, or the displacement feedback from the displacement detecting device 104 satisfies the first preset displacement condition. 103 to give an alarm prompt.
  • control system 102 is configured to control the alarm device 103 to make an alarm prompt when the pressure fed back by the pressure detecting device 101 satisfies the first preset pressure condition, and the displacement fed back by the displacement detecting device 104 satisfies the first preset displacement condition. This effectively prevents false alarms caused by false detections and the like.
  • control system 102 can also be used to control the robot to stop working when the pressure fed back by the pressure detecting device 101 satisfies the second preset pressure condition, or the displacement feedback from the displacement detecting device 104 satisfies the second preset displacement condition.
  • the control system 102 can also be used to satisfy the second preset pressure condition at the pressure fed back by the pressure detecting device 101, and the displacement detecting device 104 feedbacks The control robot stops working when the displacement satisfies the second preset displacement condition. This effectively prevents false alarms caused by false detections and the like.
  • the pressure detecting device 101 may be a pressure sensor, such as a strain gauge pressure sensor.
  • the connecting bolt 1 of the robot base may be sleeved with a spacer 2, and specifically may be provided on the screw 15 of the connecting bolt 1.
  • the spacer 2 has two ends abutting against a support surface for supporting the base of the robot and a nut 16 for connecting the bolt 1, and the pressure sensor is mounted on the spacer 2.
  • the pressure received by the connecting bolt 1 is monitored by a pressure sensor.
  • a groove 5 may be formed in the spacer 2 to mount the pressure sensor in the recess 5.
  • the support surface may specifically be a steel plate 3 that connects the robot base to the floor 4.
  • connection bolts 1 at the four corners of the robot base are respectively mounted with pressure sensors. That is, the pressures of the connecting bolts 1 at the four corners of the robot base are separately monitored as a basis for judging, thereby improving the accuracy of the monitoring control.
  • the monitoring control system 102 and the monitoring and control method for the stability of the robot base provided by the present invention are described below in one specific embodiment.
  • the spacer 2 is disposed in front of the nut 16 of the connection bolt 1, and both ends of the spacer 2 abut against the support surface for supporting the robot base and the nut 16 of the connection bolt 1.
  • a groove 5 is formed in the block 2, and a strain gauge pressure sensor can be mounted, as shown in FIG. 5.
  • the strain gauge pressure sensor can be a sensor with temperature compensation, which can offset the effect of temperature changes on the pressure value.
  • the strain gauge pressure sensors may be distributed on both sides or around the base of the robot. In this embodiment, pressure sensors are respectively disposed at four corners of the base of the robot, and are connected to the robot control system 102 through electrical connections. After the robot is installed, the robot is caused to perform a corresponding action under load (the following actions 1 to 4), the extreme range of each pressure sensor is tested, and the extreme value range is input to the control system 102 of the robot as a preset value. .
  • Action 1 As shown in FIG. 6 , the operating robot (with load) has its center of gravity biased toward the first bolt 11 .
  • the pressure received by the first bolt 11 is the maximum value, that is, the first strain gauge pressure corresponding to the first bolt 11 .
  • the pressure value measured by the sensor is the maximum value of the robot during normal operation; at the same time, the pressure value of the third bolt 13 is the minimum value, that is, the pressure value measured by the third strain gauge pressure sensor is normal operation of the robot. The minimum value in the process;
  • Action 2 As shown in FIG. 7 , the operating robot (with load) biases its center of gravity toward the second bolt 12 .
  • the pressure received by the second bolt 12 is the maximum value, that is, the second strain gauge pressure corresponding to the second bolt 12 .
  • the pressure value measured by the sensor is the maximum value of the robot during normal operation; at the same time, the pressure value of the fourth bolt 14 is the minimum value, that is, the pressure value measured by the fourth strain gauge pressure sensor is normal operation of the robot. The minimum value in the process;
  • Action 3 As shown in FIG. 8 , the robot (with load) is operated so that its center of gravity is biased toward the third bolt 13 .
  • the pressure applied to the third bolt 13 is the maximum value, that is, the third strain gauge pressure corresponding to the third bolt 13 .
  • the pressure value measured by the sensor is the maximum value of the robot during normal operation; at the same time, the pressure value of the first bolt 11 is the minimum value, that is, the pressure value measured by the first strain gauge pressure sensor is normal operation of the robot. The minimum value in the process;
  • Action 4 As shown in FIG. 9, the robot (with load) is operated so that its center of gravity is biased toward the fourth bolt 14. At this time, the pressure applied to the fourth bolt 14 is the maximum value, that is, the fourth strain pressure corresponding to the fourth bolt 14.
  • the pressure value measured by the sensor is the maximum value of the robot during normal operation; at the same time, the pressure value of the second bolt 12 is the minimum value, that is, the pressure value measured by the second strain gauge pressure sensor is normal operation of the robot. The minimum value in the process;
  • the maximum and minimum values of the four strain gauge pressure sensors are obtained by the above four actions, and the voltage values corresponding to the maximum and minimum values are written into the control system 102.
  • the control system 102 compares the real-time feedback data of each strain gauge pressure sensor with the respective extreme values in real time, and performs hierarchical processing according to the comparison result. First, the data fed back by each strain gauge pressure sensor is in the extreme range, indicating that the robot base is stable. At this time, the control system 102 does not perform alarm processing; the second type, at least one of the four strain gauge pressure sensors has feedback.
  • the control system 102 When the pressure value exceeds 10% and exceeds the extreme value, and the duration is greater than 1 s, the control system 102 gives an alarm prompt, and prompts the corresponding strain gauge pressure sensor to detect the abnormal pressure value, and the alarm does not affect the normal operation of the robot; When at least one of the four strain gauge pressure sensors exceeds the extreme value and the duration is greater than 1 s, the excess value is greater than 20%, or when a certain value pressure value is detected to instantaneously become zero, the control system 102 gives a power failure to stop. Processing of work.
  • FIG. 10 is a schematic structural view of a specific embodiment of a monitoring and control system for stability of a robot base provided by the present invention.
  • the monitoring control system for the stability of the robot base described below and the monitoring control method for the stability of the robot base described above can be referred to each other.
  • the monitoring and control system for the stability of the robot base provided by the present invention includes:
  • the pressure detecting module 201 is configured to monitor the pressure received by the preset position of the robot base in real time; and/or the displacement detecting module, configured to monitor the displacement generated by the robot base in real time;
  • the processing module 202 is configured to output an alarm prompt when the pressure meets the first preset pressure condition, and/or the displacement meets the first preset displacement condition.
  • processing module 202 is further configured to:
  • the control robot stops working.
  • the first preset pressure condition includes: the pressure reaches the first preset pressure value, and the duration reaches the first preset time; and the first preset displacement condition includes: the displacement reaches the first preset displacement amount.
  • the second preset pressure condition includes:
  • the pressure reaches a second preset pressure value, and the duration reaches a second preset time; or the pressure is zero, and the second preset pressure value is greater than the first preset pressure value;
  • the second preset displacement condition includes: the displacement reaches a second preset displacement amount, and the second preset displacement amount is greater than the first preset displacement amount.
  • the pressure detecting module 201 is specifically configured to respectively detect pressures respectively received by different positions around the base of the robot;
  • the processing module 202 is specifically configured to:
  • an alarm prompt is output.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Manipulator (AREA)

Abstract

一种机器人底座稳定性的监测控制方法、一种机器人底座稳定性的监测控制系统及机器人,监测控制方法包括:实时监测机器人底座预设位置承受的压力,和/或机器人底座产生的位移(S1,S11,S12);当压力满足第一预设压力条件,和/或位移满足第一预设位移条件时,报警提示(S3,S31,S32)。应用提供的监测控制方法及系统,通过监测机器人底座预设位置的压力或机器人底座的位移以反映底座的位置情况,当其压力或位移异常时,则表明机器人底座偏移,进行报警,以提示相关人员采取对应措施,如手动将机器人停机等。通过精确的检测机器人底座的稳定性情况,并根据实时反馈数据进行报警处理,有效预防了因机器人底座偏移导致的精度下降及人机伤害的问题。

Description

机器人、机器人底座稳定性的监测控制方法及系统 技术领域
本发明涉及机器人技术领域,更具体地说,涉及一种机器人及机器人底座稳定性的监测控制方法及系统。
背景技术
工业机器人是面向工业领域的多关节机械手或多自由度的机器装置,它能自动执行工作,靠自身动力和控制能力来实现各种功能。目前,越来越多的工业机器人在现在化工厂中代替人类从事重复且复杂的工作,如弧焊、点焊、码垛、装配、搬运、注塑、冲压、喷漆等。由于工业机器人工作的轨迹是预先设定的,且所有轨迹的准确性均是基于假设工业机器人底座不动。然而工业机器人在连续超载工作或者长期动作导致固定螺栓松动或者混凝土松动,进而导致工业机器人底座发生位置偏移,因而影响工业机器人工作精度,导致其工作误差增大,严重者甚至可能导致人、机、工件事故。综上所述,如何有效地解决机器人底座位置偏移导致的机器人工作精度下降及人机伤害等问题,是目前本领域技术人员急需解决的问题。
发明内容
有鉴于此,本发明的第一个目的在于提供一种机器人底座稳定性的监测控制方法,该方法可以有效地解决机器人底座位置偏移导致的机器人工作精度下降及人机伤害的问题,本发明的第二个目的是提供一种机器人,本发明的第三个个目的是提供一种机器人底座稳定性的监测控制系统。
为了达到上述第一个目的,本发明提供如下技术方案:
机器人底座稳定性的监测控制方法,包括:
实时监测机器人底座预设位置承受的压力,和/或所述机器人底座产生的位移;
当所述压力满足第一预设压力条件,和/或所述位移满足第一预设位移条件时,输出报警提示。
优选地,上述机器人底座稳定性的监测控制方法中,还包括:
当所述压力满足第二预设压力条件,和/或所述位移满足第二预设位移条件时,所述机器人停止工作。
优选地,上述机器人底座稳定性的监测控制方法中,所述第一预设压力条件,包括:所述压力达到第一预设压力值,且持续时间达到第一预设时间;所述第一预设位移条件,包括:所述位移达到第一预设位移量。
优选地,上述机器人底座稳定性的监测控制方法中,所述第二预设压力条件,包括:
所述压力达到第二预设压力值,且持续时间到达第二预设时间;或者所述压力为零,所述第二预设压力值大于所述第一预设压力值;
所述第二预设位移条件,包括:所述位移达到第二预设位移量,所述第二预设位移量大于所述第一预设位移量。
优选地,上述机器人底座稳定性的监测控制方法中,所述实时监测机器人底座预设位置承受的压力,包括:
分别检测机器人底座的四周不同位置各自承受的压力;
所述当所述压力满足第一预设压力条件时,具体包括:
当不同位置中的至少一个位置承受的压力满足第一预设压力条件。
优选地,上述机器人底座稳定性的监测控制方法中,所述分别检测机器人底座的四周不同位置各自承受的压力,包括:
分别检测机器人底座的多个连接螺栓各自承受的压力;
所述当不同位置中的至少一个位置承受的压力满足第一预设压力条件,具体包括:
当多个所述连接螺栓中的至少一个连接螺栓承受的压力满足第一预设压力条件。
应用本发明提供的机器人底座稳定性的监测控制方法,通过实时监测机器人底座预设位置承受的压力或机器人底座产生的位移,或者同时监测机器人底座预设位置承受的压力及机器人底座产生的位移,根据反馈的压力或者位移,当压力满足第一预设压力条件或者位移满足第一预设位移条件时即进行报警提示,或者当压力满足第一预设压力条件且位移满足第一 预设位移条件时报警提示。也就是通过监测机器人底座预设位置的压力或机器人底座产生的位移以反映底座的位置情况,当其压力或位移异常时,则表明机器人底座偏移,从而进行报警,以提示相关人员采取对应措施,如手动将机器人停机等。因此,通过本发明提供的监测控制方法,能够精确的检测机器人底座的稳定性情况,并根据实时反馈数据进行报警处理,有效预防了因机器人底座偏移导致的精度下降及人机伤害的问题。
在一种优选的实施方式中,当压力满足第一预设压力条件、和/或位移满足第一预设位移条件时,报警提示;当压力满足第二预设压力条件,和/或位移满足第二预设位移条件时,机器人停止工作。也就是根据实时监测机器人底座预设位置的压力或机器人底座的位移,进行分级别控制,当压力满足第一预设压力条件,和/或位移满足第一预设位移条件时,先进行报警提示,同时机器人不停机,而当压力满足第二预设压力条件、和/或位移满足第二预设位移条件时,则直接控制机器人停机。通过分级控制,既可以有效提醒操作人员注意机器人底座的稳定性异常情况,且操作人员能够有较为充足的时间采取对应措施,同时,又避免了误停机或频繁停机造成的生产效率下降的问题。
为了达到上述第二个目的,本发明还提供了一种机器人,包括控制系统、报警装置、压力检测装置和/或位移检测装置;其中,
所述控制装置分别与所述报警装置、所述压力检测装置和/或所述位移检测装置电连接,所述压力检测装置用于检测机器人底座的预设位置承受的压力,所述位移检测装置用于检测所述机器人底座产生的位移,所述控制装置用于在所述压力检测装置反馈的压力满足第一预设压力条件、和/或所述位移检测装置反馈的位移满足第一预设位移条件时控制所述报警装置进行报警提示。
优选地,上述机器人中,所述控制装置用于在所述压力检测装置反馈的压力满足第二预设压力条件、和/或所述位移检测装置反馈的位移满足第二预设位移条件时控制机器人停止工作。
优选地,上述机器中,所述机器人底座的连接螺栓外套设有垫块,所述垫块的两端分别抵接于用于支撑所述机器人底座的支撑面和所述连接螺 栓的螺母,所述压力检测装置为压力传感器并安装于所述垫块上。
优选地,上述机器人中,所述机器人底座四角的所述连接螺栓分别安装有所述压力传感器。
应用本发明提供的机器人,能够精确的检测机器人底座的稳定性情况,并根据实时反馈数据进行报警处理,有效预防了因机器人底座偏移导致的精度下降及人机伤害的问题。
为了达到上述第三个目的,本发明还提供了一种机器人底座稳定性的监测控制系统,包括:
压力检测模块,用于实时监测机器人底座预设位置承受的压力;和/或位移检测模块,用于实时监测机器人底座产生的位移;
处理模块,用于在所述压力满足第一预设压力条件,和/或所述位移满足第一预设位移条件时,输出报警提示。
优选地,上述机器人底座稳定性的监测控制系统中,所述处理模块还用于:
当所述压力满足第二预设压力条件,和/或所述位移满足第二预设位移条件时,控制所述机器人停止工作。
优选地,上述机器人底座稳定性的监测控制系统中,所述第一预设压力条件,包括:所述压力达到第一预设压力值,且持续时间达到第一预设时间;所述第一预设位移条件,包括:所述位移达到第一预设位移量。
优选地,上述机器人底座稳定性的监测控制系统中,所述第二预设压力条件,包括:
所述压力达到第二预设压力值,且持续时间到达第二预设时间;或者所述压力为零,所述第二预设压力值大于所述第一预设压力值;
所述第二预设位移条件,包括:所述位移达到第二预设位移量,所述第二预设位移量大于所述第一预设位移量。
优选地,上述机器人底座稳定性的监测控制系统中,压力检测模块具体用于分别检测机器人底座的四周不同位置各自承受的压力;
所述处理模块,具体用于:
当不同位置中的至少一个位置承受的压力满足第一预设压力条件,输 出报警提示。
应用本发明提供的机器人底座稳定性的监测控制系统,能够精确的检测机器人底座的稳定性情况,并根据实时反馈数据进行报警处理,有效预防了因机器人底座偏移导致的精度下降及人机伤害的问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的机器人底座稳定性的监测控制方法一个实施例的流程示意图;
图2为本发明提供的机器人底座稳定性的监测控制方法另一个实施例的流程示意图;
图3为本发明提供的机器人底座稳定性的监测控制方法又一个实施例的流程示意图;
图4为本发明提供的机器人一种具体实施方式的结构示意图;
图5为压力传感器的安装示意图;
图6为机器人动作一对应结构示意图;
图7为机器人动作二对应结构示意图;
图8为机器人动作三对应结构示意图;
图9为机器人动作四对应结构示意图;
图10为本发明提供的机器人底座稳定性的监测控制系统一种具体实施方式的结构示意图。
附图中标记如下:
压力检测装置101,控制系统102,报警装置103,位移检测装置104; 连接螺栓1,第一螺栓11,第二螺栓12,第三螺栓13,第三螺栓14,螺杆15,螺母16;垫块2;钢板3;地面4;凹槽5;压力检测模块201,处理模块202。
具体实施方式
本发明实施例公开了一种机器人底座稳定性的监测控制方法,以避免机器人底座位置偏移导致的机器人工作精度下降及人机伤害。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,图1为本发明提供的机器人底座稳定性的监测控制方法一种具体实施方式的流程示意图。
在一种具体实施方式中,本发明提供的机器人底座稳定性的监测控制方法包括以下步骤:
S1:实时监测机器人底座预设位置承受的压力;
具体可以通过压力传感器实时监测机器人底座预设位置的压力,如采用应变式压力传感器。通过压力传感器直接监测压力,结果更为精确。预设位置可以根据需要进行设置,如机器人底座的四周等,根据需要预设位置可以为一个位置,也就是监测机器人底座的一个位置为监测点。为提高控制精度,预设位置优选地可以包括多个位置,也就是设置多个监测点,以综合反映机器人底座的稳定性。具体预设位置的设置方法可根据实际情况进行设置,此处可以不作具体限定。
S2:判断压力是否满足第一预设压力条件,若是,则执行步骤S3;
根据实时监测到的压力,判断该压力是否满足第一预设压力条件。具体第一预设压力条件可根据对机器人稳定性的要求进行设置,一般可以为压力达到预设的压力值,或者压力以高于预设的速度下降,又或者压力达 到预设的压力值且持续预设时间等。其中,压力以高于预设的速度下降具体可以通过计算对应特定时间段内压力下降值计算获得压力下降速度。第一预设压力条件一般为通过前期试验或模拟获得的临界条件。具体可根据实际情况进行设置,此处可以不作具体限定。
S3:输出报警提示。
当压力满足第一预设压力条件时,输出报警提示。具体可通过声光报警器、语音播报器等报警装置进行报警,从而提醒操作人员机器人底座稳定性异常。优选地,当压力满足第一预设压力条件时,报警提示且机器人正常工作。也就是当压力满足第一预设压力条件时,报警提示,并不影响机器人正常工作。即在此情况下,第一预设压力条件为预警条件,机器人仍可工作,操作人员可根据报警提示知晓机器人底座稳定性已下降,进而可以采取相关措施。根据需要也可调整第一预设压力条件,如将其设置为机器人正常工作的临界条件,即当压力满足第一预设压力条件时直接控制机器人停止工作,同时也可以进行报警提示,以提醒相关人员注意。
应用本发明提供的机器人底座稳定性的监测控制方法,通过实时监测机器人底座预设位置承受的压力并发送至控制系统,控制系统根据反馈的压力,当其满足第一预设压力条件时即控制报警装置发出报警提示。也就是通过监测机器人底座预设位置的压力以反映底座的位置情况,当其压力异常时,则表明机器人底座偏移,从而报警装置进行报警,以提示相关人员采取对应措施,如手动将机器人停机等。因此,通过本发明提供的监测控制方法,能够精确的检测机器人底座的稳定性情况,并根据实时反馈数据进行报警处理,有效预防了因机器人底座偏移导致的精度下降及人机伤害的问题。
进一步地,上述实施例中还可以包括:
S4:判断压力是否满足第二预设压力条件,若是,则执行步骤S5;
S5:控制机器人停止工作。
具体步骤S4可以在步骤S2之后执行,也就是先判断压力是否满足第一预设压力条件,而后判断压力是否满足第二预设压力条件。优选的,可以先判断判断压力是否满足第二预设压力条件,若是,则控制机器人停止 工作,否则继续判断压力是否满足第一预设压力条件,若是,则进行报警提示。当然,也可以根据实时监测的压力同时判断其是否满足第一预设压力条件或第二预设压力条件,并根据其满足的条件采用对应的控制。具体控制机器人停止工作可以通过断电以控制机器人停止工作。
综上,当压力满足第一预设压力条件时,报警提示,且控制机器人正常工作;当压力满足第二预设压力条件时,控制机器人停止工作。也就是根据实时监测机器人底座预设位置的压力,进行分级别控制,当压力满足第一预设压力条件时,先进行报警提示,同时机器人不停止工作,而当压力满足第二预设压力条件时,则直接控制机器人停机。通过分级控制,既可以有效提醒操作人员注意机器人底座的稳定性异常情况,且操作人员能够有较为充足的时间采取对应措施,同时,又避免了误停机或频繁停机造成的生产效率下降的问题。
在上述实施例中,步骤S2中判断压力是否满足第一预设压力条件,具体可以为:
判断压力是否达到第一预设压力值,且持续时间达到第一预设时间。也就是当实时监测的压力达到第一预设压力值且持续时间达到第一预设时间时则压力满足第一预设压力条件。具体第一预设压力值及第一预设时间的大小可根据需要进行设置,优选的可以通过预先试验或模拟获得。如第一预设压力值为机器人底座正常状态下对应预设位置承受最大压力值的1.1倍,也就是压力超出机器人底座正常状态下对应预设位置承受最大压力的10%。相应的第一预设时间可以为1秒,也就是实时监测的压力超出机器人底座正常状态下对应预设位置承受最大压力的10%且持续1秒,则控制系统控制报警装置进行报警提示。第一预设压力值设置为机器人底座正常状态下对应预设位置承受最大压力值的1.1倍,能够及时提醒工作人员采取措施的同时,可以保证机器人仍能够运行。第一预设压力值的大小具体可以根据预设位置处结构的性能参数等因素确定。具体的,机器人底座正常状态下对应预设位置承受最大压力可以为通过预先试验或模拟获得的机器人在带负载状态下重心偏向对应位置时该预设位置承受的压力。
进一步地,判断压力是否满足第二预设压力条件,具体可以为:判断 压力是否达到第二预设压力值且持续时间达到第二预设时间或者压力下降为零。也就是当实时监测的压力达到第二预设压力值且持续时间达到第二预设时间,或者压力下降为零时则压力满足第二预设压力条件。具体第二预设压力值及第二预设时间的大小可根据需要进行设置,优选的可以通过预先试验或模拟获得。第二预设压力值一般设置为大于第一预设压力值。如第二预设压力值为机器人底座正常状态下对应预设位置承受最大压力值的1.2倍,也就是压力超出机器人底座正常状态下对应预设位置承受最大压力的20%。相应的第二预设时间可以为1秒,也就是实时监测的压力超出机器人底座正常状态下对应预设为承受最大压力的20%且持续1秒,则控制系统控制机器人停止工作。第二预设压力值设置为机器人底座正常状态下对应预设位置承受最大压力值的1.2倍,能够在机器人底座的稳定性达到极限之前控制机器人停止工作。第二预设压力值的大小具体也可以根据预设位置处结构的性能参数等因素确定。当然,第一预设压力条件与第二预设压力条件也并不局限于上述压力值及持续时间,也可以设置为压力值或压力值下降速率等。
通过上述第一预设压力条件及第二预设压力条件的设置,机器人工作过程中至少包括三种工况。第一种,实时监测的压力并未满足第一预设压力条件及第二预设压力条件,如压力小于第一预设压力值时,则表明机器人底座稳固,机器人正常工作;当压力满足第一预设压力条件时,如压力达到第一预设压力值且持续第一预设时间,则给予报警提示,压力值异常,同时报警不影响机器人正常工作;当压力满足第二预设压力条件时,如压力达到第二预设压力值且持续第二预设时间,则控制机器人停止工作。
在上述各实施例的基础上,步骤S1具体可以为:
分别监测机器人底座的四周不同位置各自承受的压力。也就是预设位置包括多个,通过分别监测不同位置的压力并发送至控制系统,控制系统根据各个位置的监测压力进行判断。优选的,分别监测机器人底座的左上角、左下角、右上角、右下角处各自承受的压力。则当压力满足第一预设压力条件具体包括:当不同位置中的至少一个位置承受的压力满足第一预设压力条件。如此设置,在至少一个位置表征的机器人底座稳定性异常即 进行报警提示,最大程度的避免了机器人底座位置偏移导致的机器人工作精度下降及人机伤害的问题。当然,根据需要也可以设置为当不同位置中的至少两个或多个满足第一预设压力条件时再进行报警提示,但相应的监测控制的可靠性相对较低。在预设位置包括多个的情况下,进行报警提示的同时,优选地可以相应提示压力满足第一预设压力条件的对应预设位置,从而便于操作人员或者机器人底座的偏移情况。
进一步地,在设置有第二预设压力条件情况下,则当压力满足第二预设压力条件具体包括:当不同位置中的至少一个位置承受的压力满足第二预设压力条件。如此设置,在至少一个位置表征的机器人底座稳定性不足以继续工作时即控制机器人停机,最大程度的避免了机器人底座位置偏移导致的机器人工作精度下降及人机伤害的问题。当然,根据需要也可以设置为当不同位置中的至少两个或多个满足第二预设压力条件时再控制机器人停机,但相应的监测控制的可靠性相对较低。
上述实施例中,分别检测机器人底座的四周不同位置各自承受的压力,具体可以包括:分别检测机器人底座的多个连接螺栓各自承受的压力;进而上述当不同位置中的至少一个位置承受的压力满足第一预设压力条件,具体包括:当多个连接螺栓中的至少一个连接螺栓承受的压力满足第一预设压力条件。机器人底座通过连接螺栓将机器人固定于地面上或经钢板由连接螺栓固定于地面上,因而可以通过监测多个连接螺栓各自承受的压力,如监测机器人底座四角处的四个连接螺栓承受的压力作为判断数据。在设置有第二预设压力条件的实施例中,则当不同位置中的至少一个位置承受的压力满足第二预设压力条件,具体包括:当多个连接螺栓中的至少一个连接螺栓承受的压力满足第二预设压力条件。
请参阅图2,图2为本发明提供的机器人底座稳定性的监测控制方法另一个实施例的流程示意图。
在另一个实施例中,本发明提供的机器人底座稳定性的监测控制方法包括以下步骤:
S11:实时监测机器人底座发生的位移;
S21:判断位移是否满足第一预设位移条件,若是,则执行步骤S31;
S31:输出报警提示。
也就是通过监测位移,当其满足第一预设位移条件时报警提示。具体第一预设位移条件可根据对机器人稳定性的要求进行设置,一般可以为位移达到第一预设位移量,或者位移达到第一预设位移量且持续时间达到第一特定时间等。
进一步地,上述另一个实施例中还可以包括:
S41:判断位移是否满足第二预设位移条件,若是,则执行步骤S51;
S51:控制机器人停止工作。
具体第二预设条件可以为位移达到第二预设位移量,第二预设位移量大于第一预设位移量。或者也可以为位移达到第二预设位移量且持续时间达到第二特定时间等。上述第一预设位移量及第二预设位移量的具体数值可以通过预先试验或模拟获得。
具体步骤S41可以在步骤S21之后执行,也就是先判断位移是否满足第一预设位移条件,而后判断位移是否满足第二预设位移条件。优选的,可以先判断位移是否满足第二预设位移条件,若是,则控制机器人停止工作,否则继续判断位移是否满足第一预设位移条件,若是,则进行报警提示。当然,也可以根据实时监测的位移同时判断其是否满足第一预设位移条件或第二预设位移条件,并根据其满足的条件采用对应的控制。具体控制机器人停止工作可以通过断电以控制机器人停止工作。
综上,当位移满足第一预设位移条件时,报警提示,且控制机器人正常工作;当位移满足第二预设位移条件时,控制机器人停止工作。也就是根据实时监测机器人底座的位移,进行分级别控制,当位移满足第一预设位移条件时,先进行报警提示,同时机器人不停止工作,而当位移满足第二预设位移条件时,则直接控制机器人停机。通过分级控制,既可以有效提醒操作人员注意机器人底座的稳定性异常情况,且操作人员能够有较为充足的时间采取对应措施,同时,又避免了误停机或频繁停机造成的生产效率下降的问题。
请参阅图3,图为本发明提供的机器人底座稳定性的监测控制方法又一个实施例的流程示意图。
在又一个实施例中,本发明提供的机器人底座稳定性的监测控制方法包括以下步骤:
S12:实时监测机器人底座预设位置承受的压力及机器人底座发生的位移;
S22:判断压力是否满足第一预设压力条件,和/或位移是否满足第一预设位移条件,若是,则执行步骤S32;
S32:输出报警提示。
也就是通过监测位移和压力,当位移满足第一预设位移条件,或者压力满足第一预设压力条件时报警提示。具体第一预设位移条件及第一预设压力条件的设置请参考上述实施例,此处不再赘述。根据需要,也可以为,判断压力是否满足第一预设压力条件,且位移是否满足第一预设位移条件,若是,则执行步骤S32。也就是在位移满足第一预设位移条件,且压力满足第一预设压力条件时报警提示,从而有利于避免误检测等造成的误报警。
进一步地,上述又一个实施例中还可以包括:
S42:判断压力是否满足第二预设压力条件,和/或位移是否满足第二预设位移条件,若是,则执行步骤S52;
S52:控制机器人停止工作。
也就是进行分级控制,当位移或者压力中的至少一个满足对应的报警条件时进行报警,当位移或者压力中的至少一个满足对应机器人停止工作的条件时则控制机器人停止工作。具体第二预设位移条件及第二预设压力条件的设置请参考上述实施例,此处不再赘述。根据需要,上述步骤S42也可以为,判断压力是否满足第二预设压力条件,且位移是否满足第二预设位移条件,若是,则执行步骤S52。也就是在位移满足第二预设位移条件,且压力满足第二预设压力条件时控制机器人停止工作。从而有效避免了误检测等而控制机器人误停止工作。
本发明还提供了一种机器人。请参阅图4,图4为本发明提供的机器人一种具体实施方式的结构示意图。下文描述的机器人与上文描述的机器人底座稳定性的监测控制方法可相互对应参照。
在一种具体实施方式中,本发明提供的机器人,包括控制系统102和报警装置103,还包括与控制系统102电连接的压力检测装置101或者位移检测装置104。其中,报警装置103与控制系统102电连接,压力检测装置101用于检测机器人底座的预设位置承受的压力,位移检测装置104用于检测机器人底座产生的位移。控制系统102用于在压力检测装置101反馈的压力满足第一预设压力条件,或者位移检测装置104反馈的位移满足第一预设位移条件时控制报警装置103进行报警提示。具体第一预设压力条件、第一预设位移条件、预设位置等的设置请参考上述监测控制方法中的相关表述,此处不再赘述。
应用本发明提供的机器人,通过压力检测装置101实时监测机器人底座预设位置承受的压力并发送至控制系统102,控制系统102根据反馈的压力,当其满足第一预设压力条件时即控制报警装置103发出报警提示。或者通过位移检测装置104实时监测机器人底座发生的位移并发送至控制系统102,控制系统102根据反馈的位移,当其满足第一预设位移条件时即控制报警装置103发出报警提示。也就是通过监测机器人底座预设位置的压力或位移以反映底座的位置情况,当其压力异常或位移异常时,则表明机器人底座偏移,从而报警装置103进行报警,以提示相关人员采取对应措施,如手动将机器人停机等。因此,通过本发明提供的机器人,能够精确的检测机器人底座的稳定性情况,并根据实时反馈数据进行报警处理,有效预防了因机器人底座偏移导致的精度下降及人机伤害的问题。
具体的,控制系统102可以为用于在压力检测装置101反馈的压力满足第一预设压力条件,或者位移检测装置104反馈的位移满足第一预设位移条件时控制报警装置103进行报警提示并控制机器人正常工作。即在此情况下,第一预设压力条件为预警条件,机器人仍可工作,操作人员可根据报警提示知晓机器人底座稳定性已下降,进而可以采取相关措施。而在压力检测装置101反馈的压力满足第二预设压力条件,位移检测装置104反馈的位移满足第二预设位移条件时控制机器人停止工作。也就是根据压力检测装置101实时监测机器人底座预设位置的压力,或者根据位移检测装置104实时监测机器人底座预设位置的位移,进行分级别控制,当压力 满足第一预设压力条件,或者位移满足第一预设位移条件时,先进行报警提示,同时机器人不停止工作,而当压力满足第二预设压力条件时,或者位移满足第二预设位移条件,则直接控制机器人停机。通过分级控制,既可以有效提醒操作人员注意机器人底座的稳定性异常情况,且操作人员能够有较为充足的时间采取对应措施,同时,又避免了误停机或频繁停机造成的生产效率下降的问题。
进一步地,第一预设压力条件可以为压力达到第一预设压力值且持续第一预设时间,第二预设压力条件可以为压力达到第二预设压力值且持续第二预设时间或者压力下降为零,第二预设压力值大于第一预设压力值。具体数值等可参考上述监测控制方法中的相关表述,此处不再赘述。第一预设位移条件可以为位移达到第一预设位移量,第二预设位移条件可以为位移达到第二预设位移量,第二预设位移量大于第一预设位移量,具体数值等可参考上述监测控制方法中的相关表述,此处不再赘述。
在另一个实施例中,本发明提供的机器人,包括控制系统102、报警装置103,分别与控制系统102电连接的压力检测装置101和位移检测装置104。其中,压力检测装置101用于检测机器人底座的预设位置承受的压力,位移检测装置104用于检测机器人底座产生的位移。报警装置103与控制系统102电连接,控制系统102用于在压力检测装置101反馈的压力满足第一预设压力条件,或者位移检测装置104反馈的位移满足第一预设位移条件时控制报警装置103进行报警提示。以最大限度的保证机器人的安全性及检测精度。或者,控制系统102用于在压力检测装置101反馈的压力满足第一预设压力条件,且位移检测装置104反馈的位移满足第一预设位移条件时控制报警装置103进行报警提示。从而有效防止误检测等导致的误报警。
进一步地,控制系统102还可以用于在压力检测装置101反馈的压力满足第二预设压力条件,或者位移检测装置104反馈的位移满足第二预设位移条件时控制机器人停止工作。以进行分级控制,且最大限度的保证机器人的安全性及检测精度。根据需要,控制系统102还可以用于在压力检测装置101反馈的压力满足第二预设压力条件,且位移检测装置104反馈 的位移满足第二预设位移条件时控制机器人停止工作。从而有效防止误检测等导致的误报警。
在上述各实施例的基础上,压力检测装置101可以为压力传感器,具体如应变式压力传感器,机器人底座的连接螺栓1外可以套设垫块2,具体可以在连接螺栓1的螺杆15外套设垫块2,垫块2的两端分别抵接于用于支撑机器人底座的支撑面和连接螺栓1的螺母16,压力传感器安装于垫块2上。进而通过压力传感器监测连接螺栓1承受的压力。具体的可以在垫块2上开设凹槽5,将压力传感器安装于凹槽5内。支撑面具体可以为将机器人底座与地面4连接的钢板3。
进一步地,机器人底座四角的连接螺栓1分别安装有压力传感器。也就是分别监测机器人底座四角的连接螺栓1承受的压力以作为判断依据,从而提高监测控制的精度。
以下以一个具体实施例说明本发明提供的机器人底座稳定性的监测控制系统102及监测控制方法。
在连接螺栓1的螺母16前设置垫块2,垫块2的两端分别抵接于用于支撑机器人底座的支撑面和连接螺栓1的螺母16。在垫块2上开设凹槽5,能够安装应变式压力传感器,具体如图5所示。应变式压力传感器可以为含有温度补偿功能的传感器,进而能够抵消温度变化对压力值的影响。应变式压力传感器可以分布在机器人底座的两侧或四周,本实施例中在机器人底座四角处分别设置压力传感器,并通过电连接与机器人控制系统102相连接。在安装完机器人后,使机器人带负载下做出相应动作(以下动作一至动作四),测试各压力传感器的极值范围,并将此极值范围输入到机器人的控制系统102中作为预设值。
动作一:如图6所示,操作机器人(带负载)使其重心偏向第一螺栓11,此时,第一螺栓11受到的压力为最大值,即对应第一螺栓11的第一应变式压力传感器测得的压力值为机器人在工作正常过程中的最大值;与此同时,第三螺栓13受到的压力值为最小值,即第三应变式压力传感器测得的压力值为机器人在正常工作过程中的最小值;
动作二:如图7所示,操作机器人(带负载)使其重心偏向第二螺栓12,此时,第二螺栓12受到的压力为最大值,即对应第二螺栓12的第二应变式压力传感器测得的压力值为机器人在正常工作过程中的最大值;与此同时,第四螺栓14受到的压力值为最小值,即第四应变式压力传感器测得的压力值为机器人在正常工作过程中的最小值;
动作三:如图8所示,操作机器人(带负载)使其重心偏向第三螺栓13,此时,第三螺栓13受到的压力为最大值,即对应第三螺栓13的第三应变式压力传感器测得的压力值为机器人在正常工作过程中的最大值;与此同时,第一螺栓11受到的压力值为最小值,即第一应变式压力传感器测得的压力值为机器人在正常工作过程中的最小值;
动作四:如图9所示,操作机器人(带负载)使其重心偏向第四螺栓14,此时,第四螺栓14受到的压力为最大值,即对应第四螺栓14的第四应变式压力传感器测得的压力值为机器人在正常工作过程中的最大值;与此同时,第二螺栓12受到的压力值为最小值,即第二应变式压力传感器测得的压力值为机器人在正常工作过程中的最小值;
通过以上四种动作得到了四个应变式压力传感器的最大值和最小值,并将最大值和最小值对应的电压值写入控制系统102。
机器人在工作过程中,控制系统102实时对各个应变式压力传感器的实时反馈数据与各自极值进行比较,根据比较结果,分层处理。第一种,各应变式压力传感器反馈的数据均在极值范围内,表明机器人底座稳固,此时,控制系统102不做报警处理;第二种,四个应变式压力传感器中有至少一个反馈压力值超出值大于10%超出极值,且持续时间大于1s时,控制系统102给予报警提示,并提示对应的应变式压力传感器监测到压力值异常,此报警不影响机器人正常工作;第三种,四个应变式压力传感器中有至少一个反馈压力值超出极值,且持续时间大于1s,超出值大于20%时或者监测到某值压力值瞬间变为零时,控制系统102给予断电停止工作的处理。
本发明还提供了一种机器人底座稳定性的监测控制系统。请参阅图 10,图10为本发明提供的机器人底座稳定性的监测控制系统一种具体实施方式的结构示意图。下文描述的机器人底座稳定性的监测控制系统与上文描述的机器人底座稳定性的监测控制方法可相互对应参照。
在一种具体实施方式中,本发明提供的机器人底座稳定性的监测控制系统包括:
压力检测模块201,用于实时监测机器人底座预设位置承受的压力;和/或位移检测模块,用于实时监测机器人底座产生的位移;
处理模块202,用于在压力满足第一预设压力条件,和/或位移满足第一预设位移条件时,输出报警提示。
进一步地,处理模块202还用于:
当压力满足第二预设压力条件,和/或位移满足第二预设位移条件时,控制机器人停止工作。
更进一步地,第一预设压力条件,包括:压力达到第一预设压力值,且持续时间达到第一预设时间;第一预设位移条件,包括:位移达到第一预设位移量。
上述实施例中,第二预设压力条件,包括:
压力达到第二预设压力值,且持续时间到达第二预设时间;或者压力为零,第二预设压力值大于第一预设压力值;
第二预设位移条件,包括:位移达到第二预设位移量,第二预设位移量大于第一预设位移量。
在上述各实施例的基础上,压力检测模块201具体用于分别检测机器人底座的四周不同位置各自承受的压力;
处理模块202,具体用于:
当不同位置中的至少一个位置承受的压力满足第一预设压力条件,输出报警提示。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使 用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (15)

  1. 一种机器人底座稳定性的监测控制方法,其特征在于,包括:
    实时监测机器人底座预设位置承受的压力,和/或所述机器人底座产生的位移;
    当所述压力满足第一预设压力条件,和/或所述位移满足第一预设位移条件时,输出报警提示。
  2. 根据权利要求1所述的机器人底座稳定性的监测控制方法,其特征在于,还包括:
    当所述压力满足第二预设压力条件,和/或所述位移满足第二预设位移条件时,所述机器人停止工作。
  3. 根据权利要求2所述的机器人底座稳定性的监测控制方法,其特征在于,所述第一预设压力条件,包括:所述压力达到第一预设压力值,且持续时间达到第一预设时间;所述第一预设位移条件,包括:所述位移达到第一预设位移量。
  4. 根据权利要求3所述的机器人底座稳定性的监测控制方法,其特征在于,所述第二预设压力条件,包括:
    所述压力达到第二预设压力值,且持续时间到达第二预设时间,所述第二预设压力值大于所述第一预设压力值;或者所述压力为零;
    所述第二预设位移条件,包括:所述位移达到第二预设位移量,所述第二预设位移量大于所述第一预设位移量。
  5. 根据权利要求1-4任一项所述的机器人底座稳定性的监测控制方法,其特征在于,所述实时监测机器人底座预设位置承受的压力,包括:
    分别检测机器人底座的四周不同位置各自承受的压力;
    所述当所述压力满足第一预设压力条件时,具体包括:
    当不同位置中的至少一个位置承受的压力满足第一预设压力条件。
  6. 根据权利要求5所述的机器人底座稳定性的监测控制方法,其特征在于,所述分别检测机器人底座的四周不同位置各自承受的压力,包括:
    分别检测机器人底座的多个连接螺栓各自承受的压力;
    所述当不同位置中的至少一个位置承受的压力满足第一预设压力条 件,具体包括:
    当多个所述连接螺栓中的至少一个连接螺栓承受的压力满足第一预设压力条件。
  7. 一种机器人,其特征在于,包括控制装置、报警装置、压力检测装置和/或位移检测装置;其中,
    所述控制装置分别与所述报警装置、所述压力检测装置和/或所述位移检测装置电连接,所述压力检测装置用于检测机器人底座的预设位置承受的压力,所述位移检测装置用于检测所述机器人底座产生的位移,所述控制装置用于在所述压力检测装置反馈的压力满足第一预设压力条件、和/或所述位移检测装置反馈的位移满足第一预设位移条件时控制所述报警装置进行报警提示。
  8. 根据权利要求7所述的机器人,其特征在于,所述控制装置用于在所述压力检测装置反馈的压力满足第二预设压力条件、和/或所述位移检测装置反馈的位移满足第二预设位移条件时控制机器人停止工作。
  9. 根据权利要求7或8所述的机器人,其特征在于,所述机器人底座的连接螺栓外套设有垫块,所述垫块的两端分别抵接于用于支撑所述机器人底座的支撑面和所述连接螺栓的螺母,所述压力检测装置为压力传感器并安装于所述垫块上。
  10. 根据权利要求9所述的机器人,其特征在于,所述机器人底座四角的所述连接螺栓分别安装有所述压力传感器。
  11. 一种机器人底座稳定性的监测控制系统,其特征在于,包括:
    压力检测模块,用于实时监测机器人底座预设位置承受的压力;和/或位移检测模块,用于实时监测机器人底座产生的位移;
    处理模块,用于在所述压力满足第一预设压力条件,和/或所述位移满足第一预设位移条件时,输出报警提示。
  12. 根据权利要求11所述的机器人底座稳定性的监测控制系统,其特征在于,所述处理模块还用于:
    当所述压力满足第二预设压力条件,和/或所述位移满足第二预设位移条件时,控制所述机器人停止工作。
  13. 根据权利要求12所述的机器人底座稳定性的监测控制系统,其特征在于,所述第一预设压力条件,包括:所述压力达到第一预设压力值,且持续时间达到第一预设时间;所述第一预设位移条件,包括:所述位移达到第一预设位移量。
  14. 根据权利要求13所述的机器人底座稳定性的监测控制系统,其特征在于,所述第二预设压力条件,包括:
    所述压力达到第二预设压力值,且持续时间到达第二预设时间;或者所述压力为零,所述第二预设压力值大于所述第一预设压力值;
    所述第二预设位移条件,包括:所述位移达到第二预设位移量,所述第二预设位移量大于所述第一预设位移量。
  15. 根据权利要求1-14任一项所述的机器人底座稳定性的监测控制系统,其特征在于,所述压力检测模块具体用于分别检测机器人底座的四周不同位置各自承受的压力;
    所述处理模块,具体用于:
    当不同位置中的至少一个位置承受的压力满足第一预设压力条件时,输出报警提示。
PCT/CN2016/113839 2016-12-30 2016-12-30 机器人、机器人底座稳定性的监测控制方法及系统 WO2018120167A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/113839 WO2018120167A1 (zh) 2016-12-30 2016-12-30 机器人、机器人底座稳定性的监测控制方法及系统
CN201680039127.1A CN108367440A (zh) 2016-12-30 2016-12-30 机器人、机器人底座稳定性的监测控制方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/113839 WO2018120167A1 (zh) 2016-12-30 2016-12-30 机器人、机器人底座稳定性的监测控制方法及系统

Publications (1)

Publication Number Publication Date
WO2018120167A1 true WO2018120167A1 (zh) 2018-07-05

Family

ID=62707730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113839 WO2018120167A1 (zh) 2016-12-30 2016-12-30 机器人、机器人底座稳定性的监测控制方法及系统

Country Status (2)

Country Link
CN (1) CN108367440A (zh)
WO (1) WO2018120167A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109746927B (zh) * 2019-01-29 2022-07-22 合肥中控智科机器人有限公司 一种机器人零点位置标定装置及标定方法
CN111854792B (zh) * 2019-04-29 2022-06-28 深圳市优必选科技有限公司 一种双足机器人的偏移预警方法、装置及双足机器人
CN114541733B (zh) * 2022-02-28 2023-07-14 重庆建工集团股份有限公司 一种预拼装式操作平台

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101192062A (zh) * 2006-11-30 2008-06-04 Abb研究有限公司 用于监测工业机器人的状况的方法和装置
JP2010208003A (ja) * 2009-03-12 2010-09-24 Ihi Corp ロボット装置の制御装置及びロボット装置の制御方法
KR101082422B1 (ko) * 2011-03-16 2011-11-10 강원규 자동화로봇의 작동상태 모니터링장치, 이상동작 검출시스템 및 그 제어방법
CN202562699U (zh) * 2012-05-15 2012-11-28 中国葛洲坝集团股份有限公司 预埋锚锥承载力监测报警装置
CN203266675U (zh) * 2013-04-26 2013-11-06 毛桂女 自保护型工业机器人
CN104972473A (zh) * 2014-04-09 2015-10-14 发那科株式会社 具有引入功能的人协调型工业用机器人
CN205179247U (zh) * 2015-11-18 2016-04-20 北京长缨视通科技有限公司 一种智能高清全景跟踪夜视巡航一体机
US20160263752A1 (en) * 2014-12-03 2016-09-15 Google Inc. Methods and Systems to Provide Feedback Based on a Motion Per Path Metric Indicative of an Effect of Motion Associated with Components of a Robotic Device
CN205835346U (zh) * 2016-05-31 2016-12-28 许昌学院 一种板簧搬运机械手

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4508263B2 (ja) * 2008-04-24 2010-07-21 トヨタ自動車株式会社 パワーアシスト装置およびその制御方法
JP2012068029A (ja) * 2010-09-21 2012-04-05 Seiko Epson Corp 検出装置、電子機器及びロボット
KR101428325B1 (ko) * 2012-12-27 2014-08-07 현대자동차주식회사 로봇발장치
CN103359194B (zh) * 2013-06-28 2016-09-28 北京市三一重机有限公司 履带式行走机械的防倾翻系统和方法
CN104074548B (zh) * 2014-07-08 2015-06-03 西安科技大学 一种激光指向仪偏移实时监测装置及监测方法
CN104972086B (zh) * 2015-06-25 2017-03-29 中冶连铸技术工程有限责任公司 拉矫机检测方法及装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101192062A (zh) * 2006-11-30 2008-06-04 Abb研究有限公司 用于监测工业机器人的状况的方法和装置
JP2010208003A (ja) * 2009-03-12 2010-09-24 Ihi Corp ロボット装置の制御装置及びロボット装置の制御方法
KR101082422B1 (ko) * 2011-03-16 2011-11-10 강원규 자동화로봇의 작동상태 모니터링장치, 이상동작 검출시스템 및 그 제어방법
CN202562699U (zh) * 2012-05-15 2012-11-28 中国葛洲坝集团股份有限公司 预埋锚锥承载力监测报警装置
CN203266675U (zh) * 2013-04-26 2013-11-06 毛桂女 自保护型工业机器人
CN104972473A (zh) * 2014-04-09 2015-10-14 发那科株式会社 具有引入功能的人协调型工业用机器人
US20160263752A1 (en) * 2014-12-03 2016-09-15 Google Inc. Methods and Systems to Provide Feedback Based on a Motion Per Path Metric Indicative of an Effect of Motion Associated with Components of a Robotic Device
CN205179247U (zh) * 2015-11-18 2016-04-20 北京长缨视通科技有限公司 一种智能高清全景跟踪夜视巡航一体机
CN205835346U (zh) * 2016-05-31 2016-12-28 许昌学院 一种板簧搬运机械手

Also Published As

Publication number Publication date
CN108367440A (zh) 2018-08-03

Similar Documents

Publication Publication Date Title
KR101343403B1 (ko) 공작기계 운전시의 이상 검출방법
WO2018120167A1 (zh) 机器人、机器人底座稳定性的监测控制方法及系统
US6892110B2 (en) Numerical control unit
JP6297499B2 (ja) 風力タービン用ボルト締めロボット
CN106181997B (zh) 监视机器人与人的接触力的机器人系统
JP2005522018A5 (zh)
US20170057095A1 (en) Safety system for industrial robot
US20160121484A1 (en) Control device with function to check load information settings
CN112276371B (zh) 一种切割头随动控制系统及方法
CN101376249A (zh) 具有停止监视功能的机器人控制装置
US10699929B2 (en) Controller of transfer device
KR101487169B1 (ko) 로봇 작업 품질 모니터링 시스템
JP4391381B2 (ja) 多関節ロボットの減速機の異常判定装置及び多関節ロボットの減速機の異常判定方法
GB2535508A (en) Control method for crane system including a spreader beam
WO2016174934A1 (ja) プレスシステムおよびプレスシステムの制御方法
TW201942507A (zh) 密封施工管理方法、密封施工管理裝置、密封施工管理程式、密封施工管理系統
US7030334B1 (en) Method of diagnosing degradation of a welding system
CN110794237A (zh) 一种提升机的故障辅助定位方法、装置及设备
CN105333844A (zh) 铆点尺寸检测用在线快速测量装置及铆点测量方法
KR101743431B1 (ko) 정확한 데이터 산출이 가능한 통합 모니터링 시스템이 구성된 저항 용접기
CN116251860A (zh) 一种折弯机运行状态检测系统及可靠性评估方法
CN112173972B (zh) 一种塔机监控系统倍率设定异常的检测方法及系统
KR102287889B1 (ko) 작업 발판의 응력 검출 방법 및 이를 이용한 작업 발판 안전 관리 시스템
JPH0455100A (ja) モータプレス装置
KR20120094296A (ko) 임베디드 시스템 및 그 고장 검출 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16925598

Country of ref document: EP

Kind code of ref document: A1