WO2018119633A1 - 一种涡旋固液分离器 - Google Patents

一种涡旋固液分离器 Download PDF

Info

Publication number
WO2018119633A1
WO2018119633A1 PCT/CN2016/112307 CN2016112307W WO2018119633A1 WO 2018119633 A1 WO2018119633 A1 WO 2018119633A1 CN 2016112307 W CN2016112307 W CN 2016112307W WO 2018119633 A1 WO2018119633 A1 WO 2018119633A1
Authority
WO
WIPO (PCT)
Prior art keywords
vortex
solid
liquid separator
water inlet
inlet pipe
Prior art date
Application number
PCT/CN2016/112307
Other languages
English (en)
French (fr)
Inventor
苏浩达
Original Assignee
江门市蓬江区鑫浩源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江门市蓬江区鑫浩源科技有限公司 filed Critical 江门市蓬江区鑫浩源科技有限公司
Priority to PCT/CN2016/112307 priority Critical patent/WO2018119633A1/zh
Priority to CN201680044556.8A priority patent/CN108124430B/zh
Publication of WO2018119633A1 publication Critical patent/WO2018119633A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/02Settling tanks with single outlets for the separated liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/24Feed or discharge mechanisms for settling tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/24Feed or discharge mechanisms for settling tanks
    • B01D21/2405Feed mechanisms for settling tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/26Separation of sediment aided by centrifugal force or centripetal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/26Separation of sediment aided by centrifugal force or centripetal force
    • B01D21/265Separation of sediment aided by centrifugal force or centripetal force by using a vortex inducer or vortex guide, e.g. coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • B01D45/16Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces generated by the winding course of the gas stream, the centrifugal forces being generated solely or partly by mechanical means, e.g. fixed swirl vanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/02Construction of inlets by which the vortex flow is generated, e.g. tangential admission, the fluid flow being forced to follow a downward path by spirally wound bulkheads, or with slightly downwardly-directed tangential admission
    • B04C5/06Axial inlets

Definitions

  • the invention relates to the field of purification treatment of liquids or gases, in particular to a vortex solid-liquid separator.
  • barrier-type devices such as sand layer, filter element, membrane, etc.
  • Such separation devices have defects such as occupying a large area, using various materials, high cost, and high energy consumption.
  • the filtration principle of the solid-liquid separation device is intercepted, wherein the use of the retained material and the driving force of the fluid are inherently contradictory, and thus the above drawbacks cannot be overcome.
  • the present invention proposes a Utilizing the driving force of the fluid itself, a highly efficient filtered vortex solid-liquid separator can be realized without using any filter material.
  • a vortex solid-liquid separator comprising an inlet pipe; a bottom of the inlet pipe is provided with a fixed impeller; a vortex diffuser, wherein the vortex diffuser is provided with a horn-shaped vortex channel communicating with the water inlet pipe; and the horn-shaped vortex channel is connected below a sedimentation separation cylinder; a central portion of the sedimentation separation cylinder is provided with a clarified liquid outlet pipe, an inlet end of the clarified liquid outlet pipe extends into the bottom of the horn-shaped vortex passage, and the clarification liquid outlet pipe The outer end of the inlet end is provided with an impurity check plate; The outlet end of the clarified liquid outlet pipe protrudes from the settling separation cylinder; the bottom of the side wall of the sedimentation separation cylinder is provided with an impurity outlet.
  • the fixed impeller has a plurality of blades, and a gap between the adjacent two blades is larger than a volume of the impurities so that impurities can pass through the impeller and be centrifugally extracted.
  • the angle of inclination of the blade relative to the horizontal line is preferably 25 ⁇ 35 Degree, in order to increase the centrifugal speed of the impurities in the vortex, so that the impurities are effectively deflected toward the outer layer of the water stream.
  • the ratio of the diameter of the top and bottom of the flared vortex channel is 1: 3 ⁇ 1: 5 , thereby effectively increasing the purity of the clarified liquid.
  • the ratio of the height of the flared vortex channel to the diameter of the bottom opening is 8:1.
  • a flow rate regulator for controlling the flow velocity in the water inlet pipe is included, and the flow velocity regulated by the flow rate regulator is proportional to the concentration of impurities in the water. Therefore, when the impurity concentration is large, the water flow velocity is increased correspondingly, so that the centrifugal velocity of the impurities in the vortex is large, and the efficiency of being filtered is higher.
  • the interception and waterproofing in the existing solid-liquid separation is changed to the grooming, and the high-efficiency filtration is realized by using the driving force of the fluid itself without using any filter material, thereby greatly saving cost and energy.
  • FIG. 1 is a schematic view showing the external structure of a separator in a specific embodiment of the present invention
  • Figure 2 is a schematic cross-sectional structural view of the cross section of the separator A-A in Figure 1;
  • Figure 3 is a schematic diagram of the liquid flow direction of the separator in a specific embodiment of the present invention.
  • a vortex solid-liquid separator includes an inlet pipe 1 and a water inlet pipe.
  • a vortex diffuser 2 is disposed below the vortex diffuser 2, and the vortex diffuser 2 has a horn-shaped vortex passage 21 therein, and the horn-shaped vortex passage 21 communicates with the water inlet pipe 1.
  • the inlet end 41 of the clarified liquid outlet pipe 4 extends into the bottom of the horn-shaped vortex passage 21, and an impurity check plate 42 is disposed outside the inlet end 41 of the clarified liquid outlet pipe 4.
  • the outlet end 43 of the clarified liquid outlet pipe 4 extends out of the settling separation cylinder 3; and at the bottom of the side wall of the settling separation cylinder 3 is provided an impurity outlet 31.
  • the fixed impeller 11 preferably has a plurality of blades 111, wherein adjacent blades 111 The gap between them is larger than the volume of the impurities, so that impurities in the liquid can pass through the gap between the blades 111 and be centrifugally removed.
  • the inclination angle of the blade 111 relative to the horizontal line is preferably 25 ⁇ 35 The degree, thereby increasing the efficiency of the vortex generation and the centrifugal velocity of the impurity 5 in the vortex, so that the impurity 5 is effectively deflected toward the outer layer of the water stream.
  • the ratio of the diameter of the top and bottom of the flared vortex channel is preferably 1: 3 ⁇ 1: 5
  • the ratio of the height of the flared vortex passage 21 to the length of the bottom diameter thereof is preferably 8 : 1 to effectively increase the purity of the clarified liquid.
  • the vortex solid-liquid separator further includes a flow rate regulator (not labeled in the drawing) for controlling the water flow velocity of the water inlet pipe, and the flow velocity regulated by the flow rate regulator is proportional to the concentration of the impurity in the liquid. .
  • a flow rate regulator (not labeled in the drawing) for controlling the water flow velocity of the water inlet pipe, and the flow velocity regulated by the flow rate regulator is proportional to the concentration of the impurity in the liquid.
  • FIG. 3 is a schematic diagram of a liquid flow direction of the present invention, and the solid-liquid separator of the technical solution of the present invention works as follows: a fluid containing impurities 5 Flowing into the inlet pipe 1 at a certain speed and passing through the fixed impeller 11, fixing the impeller 11 causes the fluid to generate a vortex, and the vortex entrains the solid impurities 5 to perform centrifugal movement in the flared vortex passage 21 and make the impurities 5 Gathering to the outer layer of the water flow, when the impurity 5 is rotated to the impurity check plate 42, the impurity 5 is blocked by the impurity check plate 42 and enters the sedimentation separation cylinder 3, and the cylinder is separated by sedimentation.
  • the impurity outlet 31 of the side wall is discharged, and the liquid clarified in the center of the flow of the horn-shaped vortex passage 21 flows directly into the inlet end 41 of the clarified liquid outlet pipe 4 and finally passes through the outlet end 43 Flow out.
  • the driving force of the fluid itself can achieve high-efficiency filtration and reduce the manufacturing cost without using any filter material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Cyclones (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Abstract

一种涡旋固液分离器包括进水管道(1);进水管道(1)底部设置有固定叶轮(11);所述进水管道(1)下方设置有漩涡扩散器(2),涡旋扩散器(2)内设置有连通所述进水管道(1)的喇叭状涡流通道(21);所述喇叭状涡流通道(21)下方连通有沉降分离筒体(3);所述沉降分离筒体(3)的中央位置设置有澄清液出口管(4),所述澄清液出口管(4)的进口端(41)伸入至所述喇叭状涡流通道(21)的底部,且在所述澄清液出口管(4)的进口端(41)的外部设置有杂质止回板(42);所述澄清液出口管(4)的出口端(43)伸出所述沉降分离筒体(3);所述沉降分离筒体(3)侧壁的底部设置有杂质出口(31)。该涡旋固液分离器将现有固液分离中截留防水改为疏导,通过流体本身的推动力,在不使用任何滤材的情况下,实现高效过滤,从而大大节省成本和能源。

Description

一种涡旋固液分离器 一种涡旋固液分离器
技术领域
本发明涉及液体或气体的净化处理领域,特别涉及一种涡旋固液分离器。
背景技术
目前固液分离中,多采取阻隔式装置(比如:砂层,滤芯,膜…)等,此类分离装置存在占地多、使用材料多、成本高及能耗高等缺陷。且目前固液分离设备的过滤原理均是截留,其中,截留材料的使用和流体的推动力本身是一对矛盾,因而无法克服上述弊端。
发明内容
本发明为了解决目前固液分离器结构复杂、体积大且成本高等问题,提出了一种 利用流体本身的推动力,在不使用任何滤材的情况下可实现高效过滤的涡旋固液分离器。
本发明技术方案是这样实现的:
一种涡旋固液分离器,包括进水管道; 所述进水管道底部设置有固定叶轮; 所述进水管道下方设置有 漩涡扩散器,所述涡旋扩散器内设置有连通所述进水管道的喇叭状涡流通道;所述喇叭状涡流通道下方 连通有 沉降分离筒体;所述沉降分离筒体的中央位置设置有澄清液出口管,所述澄清液出口管的进口端伸入至所述喇叭状涡流通道的底部,且在所述澄清液出口管的进口端的外部设置有杂质止回板; 所述澄清液出口管的出口端伸出所述沉降分离筒体;所述沉降分离筒体侧壁的底部设置有杂质出口。
进一步,所述固定叶轮具有多个叶片,所述相邻的两个叶片之间的间隙大于杂质的体积,以便杂质可以穿过叶轮并被离心甩出。
进一步,所述叶片相对水平线的倾斜角度优选为 25~35 度,以便增大涡流内杂质的离心速度,使得杂质被有效甩向水流外层。
进一步,喇叭状涡流通道的顶口与底口的直径比例为 1 : 3~1 : 5 ,从而有效提高澄清液的纯度。
进一步,所述喇叭状涡流通道的高度与其底口直径的长度比例为 8 : 1 。
更进一步,还包括控制进水管道内水流速度的流速调节器,所述流速调节器所调节的水流流速与水中杂质的浓度呈正比 ,由此在杂质浓度大的时候,水流速度相应增大可以使得涡旋中的杂质离心速度大,被过滤掉的效率更高。
使用本发明技术方案,将现有固液分离中截留防水改为疏导,通过流体本身的推动力,在不使用任何滤材的情况下,实现高效过滤,从而大大节省成本和能源。
附图说明
图 1 为本发明具体实施例中分离器的外部结构示意图;
图 2 为图 1 中分离器 A-A 截面的剖面结构示意图;
图 3 为本发明具体实施例中分离器的液体流向原理图。
具体实施方式
见图 1 、图 2 及图 3 所示,本发明具体实施例中,一种涡旋固液分离器,包括进水管道 1 ,在进水管道 1 的下方设置有漩涡扩散器 2 ,漩涡扩散器 2 内部具有 喇叭状涡流通道 21 , 喇叭状涡流通道 21 连通进水管道 1 。在 喇叭状涡流通道 21 的下方 连通有 沉降分离筒体 3 ;其中,在进水管道 1 的底部设置有固定叶轮 11 ;在沉降分离筒体 3 的中央位置设置有澄清液出口管 4 。其中,澄清液出口管 4 的进口端 41 伸入至 喇叭状涡流通道 21 的底部,且在澄清液出口管 4 的进口端 41 的外部设置有杂质止回板 42 ;澄清液出口管 4 的出口端 43 伸出沉降分离筒体 3 ;在沉降分离筒体 3 的侧壁的底部设置有杂质出口 31 。
本发明具体实施例中,固定叶轮 11 优选具有多个叶片 111 ,其中,相邻叶片 111 之间的间隙大于杂质的体积,使得液体中的杂质可以穿过叶片 111 之间的间隙并被离心甩出。其中,叶片 111 相对水平线的倾斜角度优选为 25~35 度,由此增大 涡流产生的效率以及 涡流内杂质 5 的离心速度,使得杂质 5 被有效甩向水流外层。
本发明具体实施例中,喇叭状涡流通道的顶口与底口的直径比例优选为 1 : 3~1 : 5 ,并且喇叭状涡流通道 21 的高度与其底口直径的长度比例优选为 8 : 1 ,以有效提高澄清液的纯度。
本发明具体实施例中,涡旋固液分离器还包括控制进水管道水流速度的流速调节器(附图中未标记),流速调节器所调节的水流流速与液体中杂质的浓度呈正比 。当杂质浓度大的时候,水流速度相应增大,可以增强涡旋中的杂质离心的速度,杂质被过滤掉的效率更高。
见图 3 本发明 液体流向原理图,本发明技术方案的 固液分离器的工作方式为: 含杂质 5 的流体 6 以一定的速度流入进水管 1 并穿过固定叶轮 11 ,固定叶轮 11 使得流体产生漩涡,漩涡夹带固体杂质 5 在喇叭状涡流通道 21 内做离心运动,并使得杂质 5 聚集到水流的外层,当杂质 5 旋转到杂质止回板 42 处时,杂质 5 被杂质止回板 42 挡回并进入 沉降分离筒体 3 内,通过沉降分离筒体 3 侧壁的杂质出口 31 排出 ,而喇叭状涡流通道 21 的水流中央澄清的液体将直接流入澄清液出口管 4 的 进口端 41 ,并最终通过出口端 43 流出。
使用本发明技术方案,通过将现有固液分离中截留防水改为疏导,通过流体本身的推动力,在不使用任何滤材的情况下,实现高效过滤并降低了制造成本。
以上仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内 。

Claims (6)

  1. 一种涡旋固液分离器,包括进水管道;其特征在于:所述进水管道底部设置有固定叶轮;所述进水管道下方设置有漩涡扩散器,所述涡旋扩散器内设置有连通所述进水管道的喇叭状涡流通道;所述喇叭状涡流通道下方连通有沉降分离筒体;所述沉降分离筒体的中央位置设置有澄清液出口管,所述澄清液出口管的进口端伸入至所述喇叭状涡流通道的底部,且在所述澄清液出口管的进口端的外部设置有杂质止回板;所述澄清液出口管的出口端伸出所述沉降分离筒体;所述沉降分离筒体侧壁的底部设置有杂质出口。
  2. 根据权利要求1所述的涡旋固液分离器,其特征在于:所述固定叶轮具有多个叶片,所述相邻的两个叶片之间的间隙大于杂质的体积。
  3. 根据权利要求2所述的涡旋固液分离器,其特征在于:所述叶片相对水平线的倾斜角度为25~35度。
  4. 根据权利要求1所述的涡旋固液分离器,其特征在于:所述喇叭状涡流通道的顶口与底口的直径比例为1:3~1:5。
  5. 根据权利要求4所述的涡旋固液分离器,其特征在于:所述喇叭状涡流通道的高度与其底口直径的长度比例为8:1。
  6. 根据权利要求1~5任意一项所述的涡旋固液分离器,其特征在于:还包括控制进水管道内水流速度的流速调节器,所述流速调节器所调节的水流流速与水中杂质的浓度呈正比。
PCT/CN2016/112307 2016-12-26 2016-12-26 一种涡旋固液分离器 WO2018119633A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/112307 WO2018119633A1 (zh) 2016-12-26 2016-12-26 一种涡旋固液分离器
CN201680044556.8A CN108124430B (zh) 2016-12-26 2016-12-26 一种涡旋固液分离器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/112307 WO2018119633A1 (zh) 2016-12-26 2016-12-26 一种涡旋固液分离器

Publications (1)

Publication Number Publication Date
WO2018119633A1 true WO2018119633A1 (zh) 2018-07-05

Family

ID=62228646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112307 WO2018119633A1 (zh) 2016-12-26 2016-12-26 一种涡旋固液分离器

Country Status (2)

Country Link
CN (1) CN108124430B (zh)
WO (1) WO2018119633A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114229956A (zh) * 2021-12-13 2022-03-25 秦皇岛同力达环保能源股份有限公司 一种旋流混合式固液分离器以及旋流混合式混凝澄清装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111141635A (zh) * 2020-01-20 2020-05-12 盘锦辽河油田博洋工控技术有限公司 获取原油含水量的方法、原油含水测量机构及系统
CN113856321B (zh) * 2021-10-26 2022-08-23 海南大学 离心沉降和自清洁滤管组合式低洁净度压载水处理单元
CN114534363B (zh) * 2022-02-15 2023-06-13 山东省地质矿产勘查开发局第一地质大队(山东省第一地质矿产勘查院) 一种地质矿产资源勘查用的金属离子提取装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3859063A (en) * 1973-08-09 1975-01-07 Du Pont Entrainment separator
CN86107054A (zh) * 1985-10-28 1987-04-22 国际壳牌研究有限公司 固-液分离设备及其方法
CN1605394A (zh) * 2003-10-10 2005-04-13 多摩-技术转让机关株式会社 旋风型离心分离装置
EP1600215A1 (en) * 2004-05-26 2005-11-30 Flash Technologies N.V. In-line cyclone separator
CN101676037A (zh) * 2008-09-16 2010-03-24 株式会社东芝 固液分离器
US20130152525A1 (en) * 2011-12-16 2013-06-20 Uop Llc Gas-solids separation units and methods for the manufacture thereof
US8945283B1 (en) * 2014-03-28 2015-02-03 Uop Llc Apparatuses and methods for gas-solid separations using cyclones

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006092006A1 (en) * 2005-03-02 2006-09-08 Alcoa Of Australia Limited Separator apparatus
NL1029747C2 (nl) * 2005-08-16 2007-02-19 Fmc Technologies Cv Hydrocycloon.
CN200954467Y (zh) * 2006-09-11 2007-10-03 北京建筑工程学院 立式旋流净化器
CN203777804U (zh) * 2014-04-25 2014-08-20 山东久泰环保科技有限公司 带有旋流装置的自动过滤器
CN104624403A (zh) * 2015-01-04 2015-05-20 中国石油天然气股份有限公司 水力旋流器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3859063A (en) * 1973-08-09 1975-01-07 Du Pont Entrainment separator
CN86107054A (zh) * 1985-10-28 1987-04-22 国际壳牌研究有限公司 固-液分离设备及其方法
CN1605394A (zh) * 2003-10-10 2005-04-13 多摩-技术转让机关株式会社 旋风型离心分离装置
EP1600215A1 (en) * 2004-05-26 2005-11-30 Flash Technologies N.V. In-line cyclone separator
CN101676037A (zh) * 2008-09-16 2010-03-24 株式会社东芝 固液分离器
US20130152525A1 (en) * 2011-12-16 2013-06-20 Uop Llc Gas-solids separation units and methods for the manufacture thereof
US8945283B1 (en) * 2014-03-28 2015-02-03 Uop Llc Apparatuses and methods for gas-solid separations using cyclones

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114229956A (zh) * 2021-12-13 2022-03-25 秦皇岛同力达环保能源股份有限公司 一种旋流混合式固液分离器以及旋流混合式混凝澄清装置

Also Published As

Publication number Publication date
CN108124430B (zh) 2020-08-28
CN108124430A (zh) 2018-06-05

Similar Documents

Publication Publication Date Title
WO2018119633A1 (zh) 一种涡旋固液分离器
US9446342B2 (en) Cyclone induced sweeping flow separator
JP2008229617A (ja) 粒子を分離または濃縮するシステム
CN105664538A (zh) 一种多级变径螺旋油水分离器
CN109290075A (zh) 基于粒径选择的水力旋流分离装置
CN106512484A (zh) 一种基于三相分离器的可拆卸式多筒离心进口内件
CN105688449A (zh) 一种内锥式变截面螺旋油水分离器
CN110420747A (zh) 对石墨和金刚石混合粉末进行分级的系统和方法
CN207615036U (zh) 旋向相反的两级旋风分离器
CN209302989U (zh) 一种具备过滤功能的旋流器
CN207951756U (zh) 停车旋风分离器
CN110813564A (zh) 一种消除旋风分离器灰斗中粉尘返混的装置与方法
CN207857151U (zh) 一种高效低压降旋风分离器
CN204220315U (zh) 一种旋风分离器
CN103585845B (zh) 一种多相流过滤分离器
CN103567087A (zh) 一种y型旋流过滤器
CN210356128U (zh) 一种新型膜-油水分离设备
CN208229618U (zh) 新型火炬气高效旋风分离装置
JPH0299106A (ja) 固液分離装置
CN214261037U (zh) 尾气旋风分离器
CN106334354A (zh) 节能导流式旋流分离器
CN105293733A (zh) 一种多级污水处理装置
CN204699457U (zh) 旋流式斜管澄清反应器
CN105396337B (zh) 一种新型旋流沉淀器
CN203999193U (zh) 一种多级污水处理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31/10/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16925407

Country of ref document: EP

Kind code of ref document: A1