WO2018119534A1 - Combinación de anclaje a fundaciones y disipador de energía para estanques verticales de almacenamiento de líquidos, recipiente vertical de presión, silo o lo similar de pared delgada y apoyo contínuo - Google Patents

Combinación de anclaje a fundaciones y disipador de energía para estanques verticales de almacenamiento de líquidos, recipiente vertical de presión, silo o lo similar de pared delgada y apoyo contínuo Download PDF

Info

Publication number
WO2018119534A1
WO2018119534A1 PCT/CL2017/050082 CL2017050082W WO2018119534A1 WO 2018119534 A1 WO2018119534 A1 WO 2018119534A1 CL 2017050082 W CL2017050082 W CL 2017050082W WO 2018119534 A1 WO2018119534 A1 WO 2018119534A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
foundations
energy
anchoring
plates
Prior art date
Application number
PCT/CL2017/050082
Other languages
English (en)
French (fr)
Inventor
José Luis ALMAZÁN CAMPILLAY
Nathaly Karina VALDEBENITO TAPIA
Nicolás Felipe TAPIA FLORES
Original Assignee
Pontificia Universidad Católica De Chile
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pontificia Universidad Católica De Chile filed Critical Pontificia Universidad Católica De Chile
Priority to US16/474,808 priority Critical patent/US10851559B2/en
Publication of WO2018119534A1 publication Critical patent/WO2018119534A1/es

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/74Means for anchoring structural elements or bulkheads
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H7/00Construction or assembling of bulk storage containers employing civil engineering techniques in situ or off the site
    • E04H7/02Containers for fluids or gases; Supports therefor
    • E04H7/04Containers for fluids or gases; Supports therefor mainly of metal
    • E04H7/06Containers for fluids or gases; Supports therefor mainly of metal with vertical axis

Definitions

  • the present invention is inserted in the field of storage ponds, pressure vessels or the like, vertical thin-walled and continuous support, and anchoring systems to foundations and energy dissipation that allow them to resist local lifting and buckling in case of earthquakes of great magnitude.
  • the continuous thin-walled vertical thin-walled cylindrical ponds are very efficient structures to resist hydrostatic pressure, which is why they are used extensively for the storage of water, oil, liquefied gas, wine, olive oil, among others.
  • the walls of these structures have little stiffness and resistance outside their own plane. Faced with seismic loads, they are very vulnerable, with local buckling being the predominant failure mode.
  • these ponds are simply supported on foundation slabs (non-anchored ponds), or they have anchor bolts (anchored ponds), which are designed to flow in traction against a severe earthquake. However, once the anchors flow by raising the bottom, the pond behaves as simply supported.
  • metal energy dissipators which act by dissipating energy through the flow of ductile metals.
  • Two examples of these metallic heatsinks applied to ponds are described in the documents "Seismic strengthening of liquid-storage tanks with energy-dissipating anchors, Malhotra 1997" and CN102852165, the first being applied to a vertical thin-walled continuous storage pond. , while the second is applied to a vertical pond supported in columns. In both cases the same principle of energy dissipation is used.
  • the device proposed by Malhotra consists of a series of sets of four vertical metal plates, two inner plates that are articulated by one of its ends connected to the pond wall at different points of its lower outer surface, and two outer plates that are connected articulated by one of its ends with a beam of perimeter foundation.
  • the free ends of the four vertical plates are connected to each other by means of a horizontal metal dissipative plate. This plate dissipates energy by torsion, due to the relative rotation between the interior and exterior articulated plates.
  • the main advantage of this device is that it is easy to install and replace if necessary.
  • the device described in CN102852165 dissipates energy by means of four perforated vertical metal plates (honeycomb type) arranged radially to the column and connected to it by its inner side by means of flanges, while on the outer side the plates are attached at their end to a tangential metal plate anchored to the foundation.
  • the dissipating plates deform vertically by bending in their own plane when the columns are lifted, concentrating the plastic deformations in the vicinity of the perforations.
  • the main advantage of this device is that it is easy to install and replace if necessary.
  • TADAS Triangular Added Stiffness and Damping
  • TADAS Triangular Added Stiffness and Damping
  • They consist of one or more triangular metal plates, whose bases are rigidly connected to a recess plate, which in turn is linked to the gantry beam, while the other end (vertex of the triangle) is articulated to two struts directed to the base of the columns of the porch.
  • the plasticization is then produced by bending due to a relative displacement between the ends of the plates, perpendicular to its plane, produced by the seismic solicitation.
  • An example of this can be seen in US5533307 and its main advantage is that it is very simple in concept and design and is easy to install.
  • Its main disadvantage is that the connection between the base of the dissipating plates and the embedment plate must be realized by an expensive welding process, or by means of longitudinal tightening bolts.
  • the present invention provides a combination of anchoring to foundations and energy dissipator for vertical storage tanks of thin-walled liquids and continuous support that basically comprises four components: an anchoring component to the foundations; an energy dissipation component; a linker component and a load transmission component.
  • the anchor component to the foundations comprises means for anchoring the pond to the foundations, typically a conventional metal anchor bolt, which can be embedded in the foundation (case of new ponds), or a perforated anchor bolt and adhered to the Foundation by means of epoxy resin (case of new or existing ponds).
  • a conventional metal anchor bolt which can be embedded in the foundation (case of new ponds), or a perforated anchor bolt and adhered to the Foundation by means of epoxy resin (case of new or existing ponds).
  • the energy dissipation component comprises one or more overlapping and horizontally arranged energy dissipating plates that are centrally attached to the anchoring component to the foundation by the linker component.
  • the number of energy dissipation plates to be used depends on a series of variables including the desired power dissipation capacity, the size of the pond and the number of anchor and energy dissipation combinations to be installed.
  • the energy dissipating plates are shaped like a diamond truncated by their vertices, where the minor diagonal is normal to the wall of the pond and, where the lateral ends, that is, the vertices corresponding to the diagonal older, they have quadrangular extensions for the support of the plates in the load transmission component.
  • the linker component comprises two clamping plates, one on each side of the energy dissipation component, and respective struts, a nut and a locknut, in which the clamping plates and the energy dissipating plate (s) have a common central through hole. to receive through it a bolt of the anchor component to the foundations and fix the energy dissipation component to the anchorage component to the foundations by tightening the nut and locknut against the clamping plates and grommets.
  • the linker component comprises, in addition to the clamping plates, grommets and locknuts, a metal coupling bolted to the free end of the anchor bolt and a removable fixing bolt that passes through the common central through hole, is inserted into the opposite end of the metal coupling and joins the energy dissipation component with the anchor component to the foundations.
  • this last linker component allows the energy dissipation plates to be removed and replaced or adjusted after an earthquake, eliminating the effects of residual deformations.
  • the locknut must be loosened until the dissipating plate and the removable bolt are unloaded. Subsequently, the removable bolt must be re-tightened until full contact between the dissipating plates and the tightening plates is achieved.
  • the linker component incorporates separator plates between the energy dissipation plates so that they deform without interfering with each other in a large earthquake.
  • the fixing bolt and the locknut make it possible to tighten the energy dissipating plates through the tightening plates.
  • the load transmission component is adhered to the wall of the pond and comprises support means of the energy dissipation component.
  • the support means are formed by a set of stiffener plates and a reinforcement plate of the pond wall to which the set of stiffener plates is attached, the support means can also comprise any other arrangement or mechanism that allows transmission and distribute the forces developed by the energy dissipating plate (s) on the pond wall.
  • the stiffener plates can be joined to each other and to the reinforcement plate by welding, or form a single piece obtained by folding and cutting.
  • the energy dissipation plates can be as narrow as possible.
  • the energy dissipating plates can be trapezoidal in shape with the parallel side greater tangent to the pond wall. In this way, the force generated by the energy dissipating plate moves towards its inner edge, substantially reducing the eccentricity on the pond wall.
  • the lateral ends of the plates like the rhombic one, the lateral ends of the plates, that is to say, the vertices of the greater parallel side with the non-parallel sides, have quadrangular extensions of support in the transmission component of load.
  • the metal of the energy dissipating plates can be carbon steel type A36, stainless steel type AISI 304L, or any other ductile metal.
  • they can be of the same material as the dissipating plates, although the ductility requirement could be less demanding.
  • the ends of the dissipating plates are slidably supported against horizontal stiffener plates by means of two horizontal cylindrical bars, welded at the ends of the dissipating plate. This embodiment has the advantage that the contact pressure between the energy dissipation plate and the horizontal stiffener plates decreases.
  • the invention is also applicable to any civil or industrial work, in which it can dissipate energy by vertical relative movement between different components of the construction, especially as part of the foundation anchors, such as in vertical pressure vessels that have a skirt that serves as a continuous support of the container on the foundations or in storage silos or mixers , or the like.
  • Figure 1 represents a top plan view of a combination of anchor and energy dissipator for a vertical thin-walled pond and continuous support according to a preferred embodiment of the invention, having a single rhombic-shaped dissipative plate.
  • Figure 2 depicts an elevational sectional view of the anchor and energy dissipator combination of Figure 1 along the A-A plane.
  • Figure 3 is equivalent to Figure 1 but with the trapezoidal shape energy dissipating plate variant.
  • Figure 4 represents a top plan view of a combination of anchor and energy dissipator according to the invention with a single energy dissipation plate with cylindrical supports at the ends thereof.
  • Figure 5 depicts an elevational sectional view of the anchor and energy dissipator combination of Figure 4 along the B-B plane.
  • Figure 6 depicts an elevational sectional view of the anchor and energy dissipator combination of Figure 4 along the B-B cutting plane with 2 energy dissipating plates.
  • Figure 7 represents a top plan view of a typical installation of the anchor and energy dissipator combinations according to the invention with the energy dissipation plates of Figs. 1 and 2 in a thin-walled vertical cylindrical pond with continuous support with 8 combinations.
  • the energy dissipation plate (1) is provided with cylindrical bars (14) at its lateral ends, which are slidable by the horizontal stiffener plates (12) that is part of the load transmission component.
  • the combination of anchor and energy dissipator of the invention can have multiple energy dissipation plates, in this case two, and for this purpose the linker component has separator plates (10) to avoid that interfere when they deform plastically in an earthquake of great magnitude.
  • FIG 7 a typical distribution of the anchor and energy dissipator combinations according to the invention can be seen around the bottom of the wall of a vertical thin-walled cylindrical pond (3).
  • eight combinations of anchor and energy dissipation have been anchored to the foundations (2) and fixed to the pond (3), each with a rhombic type energy dissipating plate.

Abstract

Una combinación de anclaje a fundaciones y disipador de energía para estanques verticales para líquidos o recipiente similar de pared delgada y apoyo continuo comprende un componente de disipación de energía centralmente unido a un componente de anclaje a las fundaciones mediante un componente vinculador, el componente de disipación de energía comprendiendo una o más placas disipadoras de energía superpuestas y horizontalmente dispuestas que tienen forma de rombo truncado por sus vértices, en donde la diagonal menor es normal a la pared del estanque y los extremos laterales o vértices correspondientes a la diagonal mayor poseen unas prolongaciones cuadrangulares para apoyo en un componente de transmisión de carga que está unido a la pared del estanque de modo de transmitir y distribuir las fuerzas desarrolladas por la o las placas disipadoras de energía. Alternativamente, las placas disipadoras son trapezoidales con el lado paralelo mayor tangente a la pared del estanque.

Description

COMBINACION DE ANCLAJE A FUNDACIONES Y DISIPADOR DE ENERGIA PARA ESTANQUES VERTICALES DE ALMACENAMIENTO DE LIQUIDOS, RECIPIENTE VERTICAL DE PRESION, SILO O LO SIMILAR DE PARED DELGADA Y APOYO
CONTINUO
CAMPO DE LA INVENCION
La presente invención se inserta en el campo de los estanques de almacenamiento, recipientes de presión o lo similar, verticales de pared delgada y apoyo continuo, y los sistemas de anclaje a las fundaciones y disipación de energía que les permiten resistir levantamiento y pandeo local en caso de sismos de gran magnitud.
ANTECEDENTES Los estanques cilindricos verticales de pared delgada de apoyo continuo son estructuras muy eficientes para resistir presión hidrostática, por eso se usan extensivamente para almacenamiento de agua, petróleo, gas licuado, vino, aceite de oliva, entre otros. Sin embargo, las paredes de estas estructuras tienen poca rigidez y resistencia fuera de su propio plano. Frente a cargas sísmicas resultan muy vulnerables, siendo el pandeo local el modo de falla predominante. En general estos estanques están simplemente apoyados sobre losa de fundación (estanques no anclados), o bien poseen pernos de anclaje (estanques anclados), los que se diseñan para fluir en tracción ante un sismo severo. Sin embargo, una vez que los anclajes fluyen por levantamiento del fondo, el estanque se comporta como simplemente apoyado.
Una de las formas de mejorar el desempeño sísmico de este tipo de estanques es usando anclajes a las fundaciones combinados con dispositivos disipadores de energía. Sin embargo, para que resulten eficientes es necesario que tanto el disipador de energía como su conexión con el estaque estén diseñados para minimizar esfuerzos de flexión sobre las paredes del estanque, lo cual podría ocasionar fallas por pandeo local.
En el ámbito de la protección sísmica mediante disipadores de energía, un tipo de dispositivo que se usa para proteger las estructuras y componentes civiles contra daños por sismos son los disipadores de energía metálicos, que actúan disipando energía por medio de la fluencia de metales dúctiles. Dos ejemplos de estos disipadores metálicos aplicados a estanques se describen en los documentos "Seismic strengthening of liquid-storage tanks with energy-dissipating anchors, Malhotra 1997" y CN102852165, el primero estando aplicado a un estanque de almacenamiento vertical de pared delgada de apoyo continuo, mientras que el segundo está aplicado a un estanque vertical sostenido en columnas. En ambos casos se utiliza el mismo principio de disipación de energía.
El dispositivo propuesto por Malhotra consta de una serie de conjuntos de cuatro placas metálicas verticales, dos placas interiores que se conectan articuladamente por uno de sus extremos con la pared del estanque en distintos puntos de su superficie exterior inferior, y dos placas exteriores que se conectan articuladamente por uno de sus extremos con una viga de fundación perimetral. Los extremos libres de las cuatro placas verticales se conectan entre sí por medio de una placa metálica disipadora horizontal. Esta placa disipa energía por torsión, debido al giro relativo entre las placas articuladas interiores y exteriores. La principal ventaja de este dispositivo es que resulta fácil de instalar y reemplazar en caso que sea necesario. Sus principales desventajas son: (i) un elevado costo debido a la necesidad de construir una viga de fundación perimetral para anclar las placas articuladas exteriores; y (ii) las placas articuladas interiores transmiten fuerzas perpendiculares a la pared del estanque de igual o mayor magnitud que las fuerzas paralelas a la pared, lo cual puede producir fallas por pandeo local debido a la combinación de dichas fuerzas. Para evitar esta falla es necesario reforzar muy fuertemente la pared del estanque, aumentando el costo de la solución.
Por otro lado, el dispositivo descrito en CN102852165 disipa energía por medio de cuatro placas metálicas verticales perforadas (tipo panal de abejas) dispuestas en sentido radial a la columna y conectadas a ésta por su lado interior mediante bridas, mientras que por el lado exterior las placas están unidas en su extremo a una placa metálica tangencial anclada a la fundación. Las placas disipadoras se deforman verticalmente por flexión en su propio plano cuando se produce el levantamiento de las columnas, concentrando las deformaciones plásticas en las vecindades de las perforaciones. Nuevamente, la principal ventaja de este dispositivo es que resulta fácil de instalar y reemplazar en caso que sea necesario. Su principal desventaja es su complejidad debido a que: (i) las perforaciones de las placas disipadoras requieren mecanizado; (ii) las cuatro placas metálicas tangenciales van ancladas a la fundación por medio de seis pernos de anclaje, de los cuales al menos cuatro deben trabajar en tracción; y (iii) el dispositivo posee un cilindro interior que permite guiar el levantamiento de la columna y resistir esfuerzos de corte horizontal.
Un tipo particular de disipador metálico son los denominados TADAS, por las siglas en inglés "Triangular Added Stiffness and Damping" (Amortiguación y Rigidez Agregada), los cuales son ampliamente conocidos y utilizados en edificios estructurados en base a pórticos. Constan de una o más placas metálicas triangulares, cuyas bases se conectan en forma rígida a una placa de empotramiento, la que a su vez se vincula a la viga del pórtico, mientras que el otro extremo (vértice del triángulo) se conecta articuladamente a dos puntales dirigidos a la base de las columnas del pórtico. La plastificación se produce entonces por flexión debido a un desplazamiento relativo entre los extremos de las placas, de dirección perpendicular a su plano, producido por la solicitación sísmica. Un ejemplo de esto puede verse en la patente US5533307 y su principal ventaja es que es muy simple en su concepto y diseño y es de fácil instalación. Su principal desventaja es que la conexión entre la base de las placas disipadoras y la placa de empotramiento debe materializarse mediante un costoso proceso de soldadura, o bien mediante pernos de apriete longitudinales.
Por otra parte, en la publicación "Hysteretic behavior simulation of novel rhombic mild steel dampers" (Jia et al, 2015), propone un disipador metálico denominado RADAS, por las siglas en inglés "Rhombic Added Stiffness and Damping", que, como su nombre lo indica, tiene forma rómbica y funciona como dos disipadores TADAS unidos por su base. Su principal ventaja en relación al TADAS, es que los momentos flectores generados a uno y otro lado del eje de simetría del rombo se auto-equilibran, lo que permite eliminar la placa de empotramiento, evitando así el costoso proceso de soldadura o el uso de pernos de apriete longitudinales.
De acuerdo a lo anterior, sería deseable contar con una combinación de anclaje a fundaciones y disipador de energía producto de sismos de gran magnitud para estanques verticales de almacenamiento de líquidos de pared delgada y apoyo continuo, que reúna las ventajas de los dispositivos TADAS o RADAS y que a su vez tenga las siguientes características: (1) sea fácil de instalar y reemplazar tanto en estaques nuevos como en reparación o reforzamiento de estanques existentes; (2) minimice (o elimine) las componentes de fuerza perpendicular a la pared del estanque; (3) minimice la excentricidad de la fuerza paralela a la pared del estanque; y (4) minimice el espacio requerido y el costo del sistema de anclaje del estanque a la fundación.
RESUMEN DE LA INVENCION
La presente invención provee una combinación de anclaje a fundaciones y disipador de energía para estanques verticales de almacenamiento de líquidos de pared delgada y apoyo continuo que comprende básicamente cuatro componentes: un componente de anclaje a las fundaciones; un componente de disipación de energía; un componente vinculador y un componente de transmisión de carga.
El componente de anclaje a las fundaciones comprende medios para anclar el estanque a las fundaciones, típicamente un perno de anclaje metálico convencional, que puede ser embebido a la fundación (caso de estanques nuevos), o bien un perno de anclaje perforado y adherido a la fundación por medio de resina epóxica (caso de estanques nuevos o existentes).
El componente de disipación de energía comprende una o más placas disipadoras de energía superpuestas y horizontalmente dispuestas que están unidas centralmente al componente de anclaje a la fundación mediante el componente vinculador. El número de placas disipadoras de energía a usar depende de una serie de variables incluido la capacidad de disipación de energía que se desea, el tamaño del estanque y el número de combinaciones de anclaje y disipador de energía a instalar. En una realización preferida del invento, las placas disipadoras de energía tienen forma de rombo truncado por sus vértices, en donde la diagonal menor es normal a la pared del estanque y, en donde los extremos laterales, es decir, los vértices correspondientes a la diagonal mayor, poseen unas prolongaciones cuadrangulares para el apoyo de las placas en el componente de transmisión de carga.
El componente vinculador comprende dos placas de apriete, una a cada lado del componente de disipación de energía, y respectivas golillas, una tuerca y una contratuerca, en que las placas de apriete y la o las placas disipadoras de energía poseen un orificio pasante central común para recibir a través del mismo un perno del componente de anclaje a las fundaciones y fijar el componente de disipación de energía al componente de anclaje a las fundaciones por apriete de la tuerca y contratuerca contra las placas de apriete y golillas. Alternativamente, el componente vinculador comprende, además de las placas de apriete, golillas y contratuerca, una copla metálica atornillada en el extremo libre del perno de anclaje y un perno de fijación removible que atraviesa orificio pasante central común, se inserta en el extremo opuesto de la copla metálica y une el componente de disipación de energía con el componente de anclaje a las fundaciones.
Un aspecto importante es que este último componente vinculador permite remover y reemplazar las placas disipadoras de energía o bien ajusfar su posición después de un sismo, eliminando los efectos de las deformaciones residuales. Para ello se debe aflojar la contratuerca hasta que la placa disipadora y el perno removible queden descargados. Posteriormente se debe reapretar el perno removible hasta lograr contacto pleno entre las placas disipadoras y las placas de apriete.
En caso que se coloque más de una placa disipadora de energía el componente vinculador incorpora unas placas separadoras entre las placas disipadoras de energía para que éstas se deformen sin interferir entre ellas en un sismo de gran magnitud. El perno de fijación y la contratuerca permiten apretar las placas disipadoras de energía a través de las placas de apriete.
Por su parte, el componente de transmisión de carga está adherido a la pared del estanque y comprende medios de apoyo del componente de disipación de energía. Convenientemente, los medios de apoyo están formados por un conjunto de placas atiesadoras y una placa de refuerzo de la pared del estanque a la cual está unido el conjunto de placas atiesadoras, pudiendo también comprender los medios de apoyo cualquier otro arreglo o mecanismo que permita transmitir y distribuir en la pared del estanque las fuerzas desarrolladas por la o las placas disipadoras de energía. Las placas atiesadoras pueden unirse entre sí y a la placa de refuerzo por medio de soldadura, o bien conformar una pieza única obtenida por plegado y corte.
Para minimizar los esfuerzos de flexión sobre la pared del estanque es necesario reducir al mínimo posible la distancia, que llamaremos excentricidad, entre el punto de apoyo del componente de disipación de energía y la pared del estanque. Para ello es recomendable que las placas disipadoras de energía sean lo más angostas posible. Para reducir aún más la excentricidad, las placas disipadoras de energía pueden ser de forma trapezoidal con el lado paralelo mayor tangente a la pared del estanque. De esta forma la fuerza generada por la placa disipadora de energía se desplaza hacia su borde interior, disminuyendo sensiblemente la excentricidad sobre la pared del estanque. En esta otra realización de la invención, al igual que la con forma rómbica, los extremos laterales de las placas, es decir, los vértices del lado paralelo mayor con los lados no paralelos, tienen unas prolongaciones cuadrangulares de apoyo en el componente de transmisión de carga. Típicamente el metal de las placas disipadoras de energía puede ser acero al carbono tipo A36, acero inoxidable tipo AISI 304L, o cualquier otro metal dúctil. En cuanto al resto de los componentes pueden ser del mismo material que las placas disipadoras, aunque el requerimiento de ductilidad podría ser menos exigente. En una realización alternativa de la invención los extremos de las placas disipadoras se apoyan en forma deslizable contra placas atiesadoras horizontales por medio de dos barras cilindricas horizontales, soldadas en los extremos de la placa disipadora. Esta realización tiene la ventaja de que disminuye la presión de contacto entre la placa disipadora de energía y las placas atiesadoras horizontales.
Si bien la principal aplicación de la invención y la descripción ejemplar que aquí se hace se refiere a estanques verticales de almacenamiento de líquidos de pared delgada y apoyo continuo, la invención también es aplicable a cualquier obra civil o industrial, en la que se pueda disipar energía por movimiento relativo vertical entre distintos componentes de la construcción, especialmente como parte de los anclajes de fundación, como por ejemplo en recipientes verticales de presión que poseen un faldón que sirve de apoyo continuo del recipiente sobre las fundaciones o en silos de almacenaje o mezcladores, o lo similar. BREVE DESCRIPCION DE LOS DIBUJOS
Para facilitar la comprensión de la invención, se describe seguidamente la misma haciendo referencia a los dibujos ilustrativos que se acompañan, donde: La Figura 1 representa una vista en planta superior de una combinación de anclaje y disipador de energía para un estanque vertical de pared delgada y apoyo continuo según una realización preferida de la invención, teniendo una única placa disipadora con forma rómbica.
La Figura 2 representa una vista en corte de alzada de la combinación de anclaje y disipador de energía de la Figura 1 a lo largo del plano A - A.
La Figura 3 es equivalente a la Figura 1 pero con la variante de placa disipadora de energía con forma trapezoidal.
La Figura 4 representa una vista en planta superior de una combinación de anclaje y disipador de energía según la invención con una única placa disipadora de energía con apoyos cilindricos en los extremos de la misma.
La Figura 5 representa una vista en corte de alzada de la combinación de anclaje y disipador de energía de la Figura 4 a lo largo del plano de corte B - B.
La Figura 6 representa una vista en corte de alzada de la combinación de anclaje y disipador de energía de la Figura 4 a lo largo del plano de corte B - B con 2 placas disipadoras de energía.
Figura 7 representa una vista en planta superior de una típica instalación de las combinaciones de anclaje y disipador de energía según la invención con las placas disipadoras de energía de las Figs. 1 y 2 en un estanque cilindrico vertical de pared delgada y apoyo continuo con 8 combinaciones.
DESCRIPCION DETALLADA DE LA INVENCION Como se muestra en las Figuras 1 , 2 y 3, de un ejemplo de realización preferida de la combinación de anclaje y disipador de energía para un estanque vertical de pared delgada y apoyo continuo (3) soportado sobre fundaciones (2) objeto de la invención, la misma comprende los siguientes elementos: placa disipadora de energía (1) perno de anclaje a la fundación (4);
copla metálica (5);
perno de fijación removible (6);
contratuerca (7);
- placas de apriete (8);
- golillas (9);
placas atiesadoras verticales (1 1);
placas atiesadoras horizontales (12);
placa de refuerzo (13).
Por otro lado, en la la combinación de anclaje y disipador de energía de las Figuras 4 y 5 se observa que la placa disipadora de energía (1) están provista de barras cilindricas (14) en sus extremos laterales, las cuales son deslizables por las placas atiesadoras horizontales (12) que forma parte del componente de transmisión de carga.
Por último, como se ilustra en la Figura 6, la combinación de anclaje y disipador de energía de la invención puede tener múltiples placas disipadoras de energía, en este caso dos, y para ello el componente vinculador posee unas placas separadoras (10) para evitar que se interfieran cuando se deforman plásticamente en un sismo de gran magnitud.
Ejemplo de Aplicación
En la Figura 7 se puede apreciar una típica distribución de las combinaciones de anclaje y disipador de energía según la invención alrededor de la parte inferior de la pared de un estanque cilindrico vertical de pared delgada y apoyo continuo (3). En este caso se han anclado a las fundaciones (2) y fijado al estanque (3) ocho combinaciones de anclaje y disipador de energía, cada uno con una placa disipadora de energía del tipo rómbica.

Claims

REIVINDICACIONES
1 .- Combinación de anclaje a fundaciones y disipador de energía producto de sismos de gran magnitud para un estanque vertical de almacenamiento, recipiente vertical de presión, silo o lo similar de pared delgada y apoyo continuo (3) soportado en unas fundaciones (2), CARACTERIZADO porque comprende:
un componente de anclaje a las fundaciones;
un componente de disipación de energía;
un componente vinculador; y
un componente de transmisión de carga;
en que el componente de disipación de energía está centralmente unido al componente de anclaje a las fundaciones mediante el componente de vinculador y está constituido por una o más placas disipadoras de energía (1) superpuestas y horizontalmente dispuestas que tienen forma de rombo truncado por sus vértices, en donde la diagonal menor es normal a la pared del estanque y en donde los extremos laterales o vértices correspondientes a la diagonal mayor poseen unas prolongaciones cuadrangulares para apoyo en el componente de transmisión de carga, el cual está unido a la pared del estanque de modo de transmitir y distribuir en la pared del estanque las fuerzas desarrolladas por la o las placas disipadoras de energía.
2 - Combinación de anclaje a fundaciones y disipador de energía producto de sismos de gran magnitud para un estanque vertical de almacenamiento, recipiente vertical de presión, silo o lo similar de pared delgada y apoyo continuo (3) soportado en unas fundaciones (2), CARACTERIZADO porque comprende:
un componente de anclaje a las fundaciones;
un componente de disipación de energía;
un componente vinculador; y
un componente de transmisión de carga;
en que el componente de disipación de energía está centralmente unido al componente de anclaje a las fundaciones mediante el componente de vinculador y está constituido por una o más placas disipadoras de energía (1) superpuestas y horizontalmente dispuestas que tienen forma trapezoidal con el lado paralelo mayor tangente a la pared del estanque en donde los extremos laterales o vértices del lado paralelo mayor con los lados no paralelos tienen unas prolongaciones cuadrangulares para apoyo en el componente de transmisión de carga, el cual está unido a la pared del estanque de modo de transmitir y distribuir en la pared del estanque las fuerzas desarrolladas por la o las placas disipadoras de energía.
3. - La combinación de anclaje a fundaciones y disipador de energía de acuerdo a las reivindicaciones 1 o 2, CARACTERIZADO porque el componente vinculador comprende dos placas de apriete (8), una a cada lado del componente de disipación de energía (1), y respectivas golillas (9), una tuerca y una contratuerca (7), en que las placas de apriete y la o las placas disipadoras de energía poseen un orificio pasante central común para recibir a través del mismo un perno de anclaje (4) del componente de anclaje a las fundaciones y unir el componente de disipación de energía al componente de anclaje a las fundaciones por apriete de la tuerca y contratuerca contra las placas de apriete y golillas.
4. - La combinación de anclaje a fundaciones y disipador de energía de acuerdo a las reivindicaciones 1 o 2, CARACTERIZADO porque el componente vinculador comprende dos placas de apriete (8), una a cada lado del componente de disipación de energía (1), respectivas golillas (9), una contratuerca (7) y una copla metálica (5) atornillada en el extremo libre de un perno de anclaje (4) del componente de anclaje a las fundaciones, en que las placas de apriete y la o las placas disipadoras de energía poseen un orificio pasante central común para recibir a través del mismo un perno de fijación removible (6) que se inserta en el extremo opuesto de la copla metálica para unir el componente de disipación de energía con el componente de anclaje a las fundaciones por apriete de la contratuerca y el perno de fijación removible contra las placas de apriete y golillas.
5. - La combinación de anclaje a fundaciones y disipador de energía de acuerdo a las reivindicaciones 3 o 4, CARACTERIZADO porque el perno (4) del componente de anclaje a las fundaciones es un perno de anclaje metálico convencional embebido a las fundaciones.
6. - La combinación de anclaje a fundaciones y disipador de energía de acuerdo a las reivindicaciones 3 o 4, CARACTERIZADO porque el perno (4) del componente de anclaje a las fundaciones comprende un perno de anclaje perforado y adherido a la fundación por medio de resina epóxica.
7. - La combinación de anclaje a fundaciones y disipador de energía de acuerdo a las reivindicaciones 1 o 2, CARACTERIZADO porque el componente de disipación de energía comprende dos o más placas disipadoras de energía y el componente vinculador incorpora unas placas separadoras (10) entre las placas disipadoras de energía para que éstas se deformen sin interferir entre ellas en un sismo de gran magnitud.
8. - La combinación de anclaje a fundaciones y disipador de energía de acuerdo a las reivindicaciones 1 o 2, CARACTERIZADO porque el componente de transmisión de carga comprende: un conjunto de placas atiesadoras (1 1 , 12) que sirven de medio de apoyo para los extremos laterales de la o las placas disipadoras de energía; y una placa de refuerzo (13) de la pared del estanque a la cual está unido el conjunto de placas atiesadoras.
9. - La combinación de anclaje a fundaciones y disipador de energía de acuerdo a la reivindicación 8, CARACTERIZADO porque la o las placas disipadoras de energía (1) están provistas de barras cilindricas (14) en sus extremos laterales, las cuales son deslizables por placas atiesadoras horizontales (12) del componente de transmisión de carga.
PCT/CL2017/050082 2016-12-28 2017-12-26 Combinación de anclaje a fundaciones y disipador de energía para estanques verticales de almacenamiento de líquidos, recipiente vertical de presión, silo o lo similar de pared delgada y apoyo contínuo WO2018119534A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/474,808 US10851559B2 (en) 2016-12-28 2017-12-26 Combination of foundation anchor and energy damper for vertical liquid storage tanks, vertical pressure container, silo or the like with a thin wall and a continuous support

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL3365-2016 2016-12-28
CL2016003365A CL2016003365A1 (es) 2016-12-28 2016-12-28 Combinación de anclaje a fundaciones y disipador de energía para tanques verticales de almacenamiento de líquidos, recipiente vertical de presión, silo o lo similar de pared delgada y apoyo continuo.

Publications (1)

Publication Number Publication Date
WO2018119534A1 true WO2018119534A1 (es) 2018-07-05

Family

ID=62707512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2017/050082 WO2018119534A1 (es) 2016-12-28 2017-12-26 Combinación de anclaje a fundaciones y disipador de energía para estanques verticales de almacenamiento de líquidos, recipiente vertical de presión, silo o lo similar de pared delgada y apoyo contínuo

Country Status (3)

Country Link
US (1) US10851559B2 (es)
CL (1) CL2016003365A1 (es)
WO (1) WO2018119534A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112663595A (zh) * 2020-12-03 2021-04-16 上海市基础工程集团有限公司 地下连续钢墙首根锁口型钢的调整固定装置
CN113174910A (zh) * 2021-05-07 2021-07-27 中国电建集团西北勘测设计研究院有限公司 一种双竖井旋流消能泄洪洞结构型式

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101737347B1 (ko) * 2017-01-10 2017-05-18 김흥열 면진장치
US11447970B2 (en) * 2020-08-04 2022-09-20 Simpson Strong-Tie Company Inc. Pinned base connection for a structural member

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6085472A (en) * 1998-08-07 2000-07-11 Malhotra; Praveen K. Method of protecting liquid storage tanks from seismic shocks and an anchor especially adapted for the same
JP2014069844A (ja) * 2012-09-28 2014-04-21 Ishii Iron Works Co Ltd 平底円筒タンクの保護対策
JP2014189313A (ja) * 2013-03-27 2014-10-06 Ishii Iron Works Co Ltd 低温タンクの制震プレート装置
JP2014198598A (ja) * 2013-03-30 2014-10-23 株式会社石井鐵工所 タンクのアンカー装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6761001B2 (en) * 2000-08-18 2004-07-13 Lee W. Mueller Frame shear assembly for walls
JP4376088B2 (ja) * 2003-02-28 2009-12-02 新日本製鐵株式会社 梁継手構造
US8397444B2 (en) * 2006-10-30 2013-03-19 University Of Utah Research Foundation Perforated plate seismic damper
CN101925713B (zh) * 2008-01-24 2013-03-27 新日铁住金株式会社 接合金属器件及具备该接合金属器件的建筑物
US8621790B2 (en) * 2011-08-19 2014-01-07 Gregory Lekhtman Low cost hurricane and earthquake resistant house
TW201400677A (zh) * 2012-06-22 2014-01-01 Chong-Shien Tsai 可自動歸位的建築阻尼器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6085472A (en) * 1998-08-07 2000-07-11 Malhotra; Praveen K. Method of protecting liquid storage tanks from seismic shocks and an anchor especially adapted for the same
JP2014069844A (ja) * 2012-09-28 2014-04-21 Ishii Iron Works Co Ltd 平底円筒タンクの保護対策
JP2014189313A (ja) * 2013-03-27 2014-10-06 Ishii Iron Works Co Ltd 低温タンクの制震プレート装置
JP2014198598A (ja) * 2013-03-30 2014-10-23 株式会社石井鐵工所 タンクのアンカー装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112663595A (zh) * 2020-12-03 2021-04-16 上海市基础工程集团有限公司 地下连续钢墙首根锁口型钢的调整固定装置
CN113174910A (zh) * 2021-05-07 2021-07-27 中国电建集团西北勘测设计研究院有限公司 一种双竖井旋流消能泄洪洞结构型式

Also Published As

Publication number Publication date
US20190338547A1 (en) 2019-11-07
CL2016003365A1 (es) 2018-09-14
US10851559B2 (en) 2020-12-01

Similar Documents

Publication Publication Date Title
WO2018119534A1 (es) Combinación de anclaje a fundaciones y disipador de energía para estanques verticales de almacenamiento de líquidos, recipiente vertical de presión, silo o lo similar de pared delgada y apoyo contínuo
CN101672039B (zh) 塔状结构物的基础结构
ES2746098T3 (es) Instalación modular y kits de montaje para la construcción de una instalación modular
EP1948878B1 (en) Structure with increased damping by means of fork configuration dampers
JP5123378B2 (ja) 耐震継手装置
ES2587713T3 (es) Dispositivo disipador de energía
KR100740143B1 (ko) 내부구속 중공 콘크리트 충전 강관기둥
KR20090058906A (ko) 좌굴방지부를 구비한 철골가새
US20130001383A1 (en) Spaced t primary member-to-primary member connection
KR20070020820A (ko) 내부구속 중공 철근콘크리트기둥 및 그 시공방법
ES2254594T3 (es) Caja basculante para un vehiculo.
JP6447777B2 (ja) 柱梁接合構造及び鉄骨鉄筋コンクリート柱
ES2362514B1 (es) Elemento de unión entre módulos para construcciones.
KR100748950B1 (ko) 내부구속 중공 콘크리트 충전 frp기둥
JP2009257079A (ja) 耐震構造物
JP5143526B2 (ja) 建築物の柱脚構造
CA2924587C (en) Buckling-restrained braced assembly
CN103758030B (zh) 外管约束橡胶混凝土减震薄壁桥墩
WO2020237403A1 (es) Disipador friccional de energía sísmica para bases de columnas metálicas
AU2009210355B2 (en) Modular footing system
JP3733501B2 (ja) 建築構造物の耐震構造
KR102045624B1 (ko) 기둥부재와 슬래브의 보강구조물
KR960005433Y1 (ko) 배수용 그레이팅 안치대
JP4950615B2 (ja) 耐震壁構造
JP2013509548A (ja) 梁組立体およびスペーサ要素

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888926

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17888926

Country of ref document: EP

Kind code of ref document: A1