WO2018117762A1 - 내식성이 우수한 마그네슘 합금 판재 및 그 제조방법 - Google Patents

내식성이 우수한 마그네슘 합금 판재 및 그 제조방법 Download PDF

Info

Publication number
WO2018117762A1
WO2018117762A1 PCT/KR2017/015406 KR2017015406W WO2018117762A1 WO 2018117762 A1 WO2018117762 A1 WO 2018117762A1 KR 2017015406 W KR2017015406 W KR 2017015406W WO 2018117762 A1 WO2018117762 A1 WO 2018117762A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium alloy
corrosion resistance
plate
intermetallic compound
less
Prior art date
Application number
PCT/KR2017/015406
Other languages
English (en)
French (fr)
Inventor
박우진
박재신
김혜정
추동균
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Publication of WO2018117762A1 publication Critical patent/WO2018117762A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Definitions

  • the present invention relates to a magnesium alloy sheet material excellent in corrosion resistance and a method of manufacturing the same.
  • Magnesium alloy is the lightest among the structural metal materials, and excellent strength, non-stiffness, vibration absorption ability, etc. is becoming more important as a lightweight material for transportation equipment as well as electronics and IT industry.
  • Pure magnesium is a very active metal electrochemically with a standard hydrogen electrode potential of -2.38V, which quickly corrodes when exposed to corrosive environments.
  • the MgO coating formed on the surface shows a level of corrosion resistance comparable to that of medium-carbon steels or ordinary aluminum alloys, whereas in the presence of water or in acidic or neutral solutions, the surface coating becomes unstable and does not form a passivation, resulting in rapid corrosion. Proceed. That is, magnesium is an electrochemically active metal, and when exposed to a corrosive environment, there is a disadvantage that corrosion proceeds at a rapid rate, and thus there is a limit to the application of material.
  • Patent Document 1 Korean Unexamined Patent Publication No. 10-2015-0077494
  • One aspect of the present invention is to provide a magnesium alloy sheet having excellent corrosion resistance and a method of manufacturing the same.
  • One aspect of the present invention by weight, Al: 2.5 to 7.0%, the remaining Mg and includes unavoidable impurities,
  • Mg-Al intermetallic compound on the surface 0001 Mg-Al intermetallic compound having a length of 250 nm or less and 50 nm or less Mg-Al intermetallic compound having a thickness of 50 nm or less when observed in a cross section perpendicular to the surface 0001 It is about.
  • another aspect of the present invention is to prepare a molten metal by weight, Al: 2.5 ⁇ 7.0%, the remaining Mg and inevitable impurities;
  • It relates to a method of producing a magnesium alloy sheet having excellent corrosion resistance, comprising; aging treatment of the cooled magnesium alloy sheet for 2 to 48 hours at 150 ⁇ 250 °C.
  • Figure 2 is a bright field image and dark field image of the invention material 1 observed with a transmission electron microscope, the picture inserted in the upper center shows the diffraction pattern at this time.
  • FIG. 3 is a result of analyzing the precipitated phase in Inventive Material 1.
  • the present inventors have recognized that there is a problem that corrosion proceeds rapidly when magnesium is an electrochemically active metal and exposed to a corrosive environment.
  • Magnesium alloy sheet having excellent corrosion resistance according to an aspect of the present invention in weight%, Al: 2.5 ⁇ 7.0%, the remaining Mg and includes unavoidable impurities,
  • the Mg-Al intermetallic compound is included on the 0001 plane, the length of which is 250 nm or less when observed in a cross section perpendicular to the 0001 plane, and the Mg-Al intermetallic compound having a thickness of 50 nm or less is 5 area% or more.
  • the unit of each element content hereafter means weight% unless there is particular notice.
  • Al is an element that increases tensile strength or yield strength and improves castability by improving flowability of the molten alloy.
  • the Al content is less than 2.5%, the above effects are insufficient.
  • the Al content is greater than 7.0%, the brittleness may be increased to reduce workability and ductility. Therefore, the Al content is preferably 2.5 to 7.0%.
  • the lower limit of Al content may be 2.7%, and the lower limit may be 2.9%.
  • the more preferable upper limit of Al content may be 6.5%, and a still more preferable upper limit may be 6.0%.
  • the remaining component of the present invention is magnesium (Mg).
  • Mg magnesium
  • impurities which are not intended from the raw material or the surrounding environment may be inevitably mixed, and thus cannot be excluded. Since these impurities are known to those skilled in the art, all of them are not specifically mentioned in the present specification. For example, there may be Fe, Cu, Ni, Cr, Si, Ca, Li, Na, K, Ba, F, S, N and the like.
  • Mg-Al intermetallic compound in addition to the above-described elements to further improve corrosion resistance, it may further include B: 0.001 to 0.1% and Y: 0.05 to 1.5% by weight.
  • B boron
  • B content When the B content is less than 0.001%, the above effects are insufficient. On the other hand, when the B content is more than 0.1%, there is a problem in that the Al-B compound is formed at the grain boundary to reduce the ductility. Therefore, it is preferable that B content is 0.001 to 0.1%.
  • the lower limit of the B content may be 0.005%, and the lower limit may be 0.01%.
  • the more preferable upper limit of B content may be 0.095%.
  • Y combines with Al to form precipitates and makes grains finer, contributing to improved strength, and its high oxygen affinity enhances the protective film on the surface of the molten metal, which not only inhibits oxidation of the molten metal but also improves flame retardancy after solidification. It is an element that plays a role.
  • Y content When the Y content is less than 0.05%, the above effects are insufficient. On the other hand, when the Y content is more than 1.5%, ductility may be reduced due to coarse Al-Y compound formation. Therefore, it is preferable that Y content is 0.05 to 1.5%.
  • the lower limit of the Y content may be 0.1%, and the upper limit of the Y content may be 1.2%.
  • the magnesium alloy sheet having excellent corrosion resistance according to an aspect of the present invention not only satisfies the alloy composition described above, but also includes Mg-Al intermetallic compound on the 0001 plane, and has a length of 250 nm or less when observed in a cross section perpendicular to the 0001 plane.
  • the thickness of the Mg-Al intermetallic compound having a thickness of 50 nm or less is 5 area% or more.
  • Mg-Al intermetallic compound has a small deviation of the standard electrode potential from ⁇ -Mg, which is a known structure, it serves to improve corrosion resistance when formed finely dispersed.
  • the corrosion resistance may be lowered.
  • the Mg-Al intermetallic compound is less than 5 area%, the effect of improving the corrosion resistance is insufficient.
  • the upper limit of the area fraction of the Mg-Al intermetallic compound is not particularly limited, but if it exceeds 30 area%, the coarse Mg-Al intermetallic compound may be formed, so the upper limit may be 30 area%. Preferably 20 area%.
  • the Mg-Al intermetallic compound may consist mainly of the Mg 17 Al 12 phase, and may include a precipitated phase of some other crystal structure.
  • the Mg-Al intermetallic compound may be in the form of a plate or bar parallel to the 0001 plane.
  • the magnesium alloy sheet of the present invention may have a maximum intensity (Maximum Intensity) of more than 6.5 in the 0001 surface pole figure (Pole Figure). If the value is 6.5 or more, the texture is sufficiently developed to form a large amount of Mg-Al intermetallic compound on the 0001 plane.
  • the magnesium alloy sheet according to the present invention may be less than 1.5mm / year corrosion rate. More preferably, it may be 1.0 mm / year or less.
  • Another aspect of the present invention provides a method for producing a magnesium alloy sheet having excellent corrosion resistance comprising the steps of preparing a melt that satisfies the alloy composition; Casting the molten metal into a plate shape to obtain a plate-shaped casting material; Solution-forming the plate-shaped cast material for 2 to 48 hours in a temperature range of 350 to 550 ° C .; Cooling the solution-shaped plate-shaped casting material, and then rolling at a reduction ratio of 65% or more at 150 to 380 ° C. to obtain a magnesium alloy sheet material; And aging the cooled magnesium alloy plate at 150 to 250 ° C. for 2 to 48 hours.
  • a molten metal that satisfies the alloy composition described above is prepared. It does not need to specifically limit, According to the general preparation of the molten metal for magnesium alloys.
  • the above-described alloying elements are prepared in accordance with the proposed composition range, and then charged into a melting crucible and then dissolved. Since the melting point of the magnesium alloy is relatively low, any method such as gas, electric furnace, induction melting furnace, etc. may be applied.
  • the crucible material may be graphite or low carbon steel, and the magnesium dissolution temperature is advantageously controlled so as not to exceed 750 ° C. to prevent the oxidation of magnesium. It is advantageous.
  • each alloying element may be prepared in a pure form, but when B and Y are added, it may be charged into the crucible in the form of a mother alloy in which B and Y are mixed with Mg or Al. Since B and Y have a high melting point, charging to the crucible in the form of a mother alloy mixed with Mg or Al is advantageous for dissolution.
  • the molten metal is cast in the form of a plate to obtain a plate-shaped casting. This is because it is advantageous to be plate-like for later rolling.
  • a plate-shaped casting material may be obtained using one or more of various casting methods such as gravity casting, low pressure casting, slab casting, billet casting, and sheet casting.
  • the mold must be cooled with cooling water, and when cooling water is applied, the mold surface must be kept above room temperature so that condensate can be removed from the mold surface before casting, and then the mold surface should be kept below room temperature after condensate is removed.
  • the magnesium alloy casting material is subjected to a solution treatment for 2 to 48 hours in a temperature range of 350 to 550 ° C. to obtain a magnesium alloy. This is to facilitate formation of fine Mg-Al intermetallic compounds necessary for improving corrosion resistance in a future aging treatment step by allowing the coarse or unavoidable intermetallic compound and segregation layer formed in the casting material to be dissolved in the magnesium base material during casting.
  • the solution temperature is less than 350 ° C or the holding time is less than 2 hours, the total amount of Mg-Al intermetallic compound is difficult to be employed. If the solution temperature is more than 550 ° C or the holding time is more than 48 hours, the production cost increases. Productivity may drop, and oxidation may occur before B and Y are added. Therefore, it is preferable to perform for 2 to 48 hours in the temperature range of 350 ⁇ 550 °C, more preferably can be carried out for 2 to 20 hours in the temperature range of 400 ⁇ 460 °C.
  • the solution-formed plate-shaped casting After cooling the solution-formed plate-shaped casting, it is rolled at a reduction ratio of 65% or more at 150 to 380 ° C to obtain a magnesium alloy sheet.
  • the rolling temperature is less than 150 ° C, edge cracks and surface cracks may occur. If the rolling temperature is higher than 380 ° C, the temperature by rolling rises, and there is a possibility of ignition by oxidation.
  • the magnesium alloy is vulnerable to corrosion because of the low standard electrode potential.
  • the Mg-Al intermetallic compound having a low variation of the standard electrode potential with ⁇ -Mg which is a matrix structure, is formed to be fine and uniformly distributed. You have to.
  • the 0001 aggregate is developed so that most of the rolled surface is parallel to the 0001 plane of the basic plane of magnesium alloy (HCP, Hexagonal Close Packed Crystal Strucutre). Corrosion resistance can be improved by inducing a large amount of plate-like or rod-shaped Mg-Al intermetallic compounds to be precipitated.
  • HCP Hexagonal Close Packed Crystal Strucutre
  • the 0001 face has a 0001 aggregate structure arranged in parallel with the rolled face, and the dislocations and lamination defects generated by rolling are formed on the 0001 face, such a strain structure causes plate-like or rod-shaped Mg-Al to face the 0001 face.
  • Intermetallic compounds are preferentially precipitated. Therefore, the Mg-Al precipitated phase fraction of the magnesium surface can be greatly increased, and in particular, the formed Mg-Al precipitated phase can also be finely formed in a size of 250 nm or less in length and 50 nm or less in thickness, thereby greatly improving the corrosion resistance of the magnesium alloy. .
  • the reduction ratio is less than 65%, the development of the 0001 texture may not be sufficient, and it may be difficult to form a large amount of Mg-Al intermetallic compound on the 0001 surface.
  • the rolling may be performed so that the maximum intensity of the 0001 surface in the 0001 surface pole figure is 6.5 or more.
  • the aggregate structure due to the rolling effect must be sufficiently developed, which is 0001 in the Pole Figure of the rolled material. This means that the maximum intensity of the face should be at least 6.5.
  • the cooling can be performed up to 100 °C or less at a cooling rate of 1 °C / sec or more. This is to minimize the natural aging phenomenon that can occur during cooling and to prevent the precipitated Al element from randomly precipitation. For example, it is preferable to cool rapidly by methods such as forced air blowing, water cooling, oil cooling, and the like.
  • the cooled magnesium alloy is aged at 150 to 250 ° C. for 2 to 48 hours. In order to improve corrosion resistance by depositing a large amount of Mg-Al intermetallic compound on the 0001 surface.
  • the aging treatment temperature is less than 150 ° C. or the holding time is less than 2 hours, it is difficult to sufficiently secure the Mg-Al intermetallic compound.
  • the aging treatment temperature is greater than 250 ° C. or the retention time is more than 48 hours, Mg-Al intermetallic compounds may be employed, and the production cost may increase and productivity may decrease. Therefore, it is preferable to aging for 2 to 48 hours at 150 ⁇ 250 °C. More preferably, the temperature and the holding time may be increased within the temperature and the holding time according to the amount of Al added.
  • the molten metal having the component composition shown in Table 1 was cast to cast a plate-shaped cast material.
  • the magnesium alloy cast material was subjected to a solution treatment at 420 ° C. for 4 hours, then cooled, and rolled at 285 ° C. at a reduction ratio shown in Table 2 to prepare a magnesium alloy plate. Thereafter, Comparative Materials 4 and Inventive Materials 1 to 3 were aged at 200 ° C. for 3 hours, and Comparative Materials 1 to 3 were not aged.
  • Corrosion rate was measured by immersing the plate-shaped samples of 40 mm, 60 mm, and 1 mm in width, length, and thickness, respectively, in 5% saline at room temperature, and then measured relative thickness loss.
  • the area% of the Mg-Al intermetallic compound having a length of 250 nm or less and a thickness of 50 nm or less by measuring It is shown in Table 1.
  • Inventive materials satisfying both the alloy composition and the production conditions of the present invention were excellent in corrosion resistance with a corrosion rate of less than 1.5mm / y.
  • Comparative materials 1 to 4 also satisfied the alloy composition of the present invention.
  • Comparative Materials 1 to 3 were satisfied with the reduction ratio, but did not perform aging treatment, so that sufficient Mg-Al intermetallic compound could not be secured, resulting in inferior corrosion resistance.
  • Figure 2 is a bright field image and dark field image of the invention material 1 observed with a transmission electron microscope, the picture inserted in the upper center shows the diffraction pattern at this time.
  • a dark field image was photographed from a spot pattern in a circle indicated by a white dotted line. It can be confirmed that a large amount of plate-like or rod-shaped fine precipitated phases are formed on the 0001 surface.
  • FIG. 3 is an analysis result of Inventive Material 1, and the part indicated by 1 was analyzed as Mg: 61.52% by weight and Al: 38.48% by weight, thereby confirming that the fine precipitated phase was composed of Mg-Al. It was mainly Mg 17 Al 12 phase and some other crystal structure was observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Continuous Casting (AREA)

Abstract

본 발명의 일 측면은 중량%로, Al: 2.5~7.0%, 나머지 Mg 및 불가피한 불순물을 포함하고, 0001면 상에 Mg-Al 금속간화합물을 포함하며, 0001면에 수직한 단면에서 관찰시 길이가 250nm 이하이며, 두께는 50nm 이하인 Mg-Al 금속간화합물이 5면적% 이상인 내식성이 우수한 마그네슘 합금 판재에 관한 것이다.

Description

내식성이 우수한 마그네슘 합금 판재 및 그 제조방법
본 발명은 내식성이 우수한 마그네슘 합금 판재 및 그 제조방법에 관한 것이다.
마그네슘 합금은 구조용 금속소재 중 가장 가벼우며, 비강도, 비강성, 진동 흡수능 등이 우수하여 전자 및 IT 산업뿐 아니라 수송기기용 경량 소재로서 갈수록 그 중요성이 더해지고 있다.
순수 마그네슘은 전기화학적으로 표준 수소 전극 전위가 -2.38V 정도로 활성이 매우 큰 금속으로 부식 환경에 노출 시 빠른 속도로 부식이 진행된다. 대기 중에서는 표면에 형성되는 MgO 피막으로 인해 중탄소강 또는 일반 알루미늄 합금과 대등한 내식성 수준을 보이는 반면, 수분이 존재하거나 산성 또는 중성 용액 내에서는 표면 피막이 불안정해져 부동태를 형성하지 못해 빠른 속도로 부식이 진행된다. 즉, 마그네슘은 전기화학적으로 활성이 큰 금속으로 부식 환경에 노출될 경우 빠른 속도로 부식이 진행되는 단점이 있어 소재화 적용에 한계가 있다.
따라서, 마그네슘 합금의 적용 분야 확대를 위해 열악한 부식 환경에 적용 가능한 내식성이 우수한 마그네슘 합금 및 그 제조방법에 대한 개발이 요구되고 있는 실정이다.
(선행기술문헌)
(특허문헌 1) 한국 공개특허공보 제10-2015-0077494호
본 발명의 일 측면은 내식성이 우수한 마그네슘 합금 판재 및 그 제조방법을 제공하기 위함이다.
한편, 본 발명의 과제는 상술한 내용에 한정하지 않는다. 본 발명의 과제는 본 명세서의 내용 전반으로부터 이해될 수 있을 것이며, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 부가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.
본 발명의 일 측면은 중량%로, Al: 2.5~7.0%, 나머지 Mg 및 불가피한 불순물을 포함하고,
0001면 상에 Mg-Al 금속간화합물을 포함하며, 0001면에 수직한 단면에서 관찰시 길이가 250nm 이하이며, 두께는 50nm 이하인 Mg-Al 금속간화합물이 5면적% 이상인 내식성이 우수한 마그네슘 합금 판재에 관한 것이다.
또한, 본 발명의 다른 일 측면은 중량%로, Al: 2.5~7.0%, 나머지 Mg 및 불가피한 불순물을 포함하는 용탕을 준비하는 단계;
용탕을 판재형태로 주조하여 판상형 주조재를 얻는 단계;
상기 판상형 주조재를 350~550℃의 온도범위에서 2~48시간 동안 용체화 처리하는 단계;
상기 용체화 처리된 판상형 주조재를 냉각한 후, 150~380℃에서 압하율 65% 이상으로 압연하여 마그네슘 합금 판재를 얻는 단계; 및
상기 냉각된 마그네슘 합금 판재을 150~250℃에서 2~48시간 동안 시효 처리하는 단계;를 포함하는 내식성이 우수한 마그네슘 합금 판재의 제조방법에 관한 것이다.
덧붙여 상기한 과제의 해결수단은, 본 발명의 특징을 모두 열거한 것은 아니다. 본 발명의 다양한 특징과 그에 따른 장점과 효과는 아래의 구체적인 실시형태를 참조하여 보다 상세하게 이해될 수 있다.
본 발명에 의하면, 0001면 상에 Mg-Al 금속간화합물을 다량 형성시킴으로써 내식성이 우수한 마그네슘 합금 판재 및 그 제조방법을 제공할 수 있는 효과가 있다.
도 1은 발명재1(a) 및 비교재4(b)의 0001면 극점도(pole figure)이다.
도 2는 투과전자현미경으로 관찰한 발명재1의 명시야상 및 암시야상이며, 가운데 상단에 삽입된 사진은 이때의 회절패턴을 나타낸다.
도 3은 발명재 1에서 석출상을 분석한 결과이다.
이하, 본 발명의 바람직한 실시 형태들을 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.
본 발명자들은 마그네슘은 전기화학적으로 활성이 큰 금속으로 부식 환경에 노출될 경우 빠른 속도로 부식이 진행되는 문제가 있음을 인지하고, 이를 해결하기 위하여 깊이 연구하였다.
그 결과, 압연 조건을 제어함으로써 0001면을 발달시키고, 시효 처리를 통하여 0001면 상에 미세한 Mg-Al 금속간화합물을 다량 형성시킴으로써 내식성을 향상시킬 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.
내식성이 우수한 마그네슘 합금 판재
이하, 본 발명의 일 측면에 따른 내식성이 우수한 마그네슘 합금 판재에 대하여 상세히 설명한다.
본 발명의 일 측면에 따른 내식성이 우수한 마그네슘 합금 판재는 중량%로, Al: 2.5~7.0%, 나머지 Mg 및 불가피한 불순물을 포함하고,
0001면 상에 Mg-Al 금속간화합물을 포함하며, 0001면에 수직한 단면에서 관찰시 길이가 250nm 이하이며, 두께는 50nm 이하인 Mg-Al 금속간화합물이 5면적% 이상이다.
먼저, 본 발명의 합금조성에 대하여 상세히 설명한다. 이하 각 원소 함량의 단위는 특별한 언급이 없는 한 중량%를 의미한다.
Al: 2.5~7.0%
Al은 인장강도나 항복강도를 증가시키며, 합금 용탕의 유동성을 향상시켜 주조성을 향상시키는 역할을 하는 원소이다.
Al 함량이 2.5% 미만인 경우에는 상술한 효과가 불충분하다. 반면에 Al 함량이 7.0% 초과인 경우에는 취성을 증가시켜 가공성 및 연성을 감소시킬 수 있다. 따라서 Al 함량은 2.5~7.0%인 것이 바람직하다.
또한, Al 함량의 보다 바람직한 하한은 2.7%일 수 있으며, 보다 더 바람직한 하한은 2.9%일 수 있다. 또한, Al 함량의 보다 바람직한 상한은 6.5%일 수 있고, 보다 더 바람직한 상한은 6.0%일 수 있다.
본 발명의 나머지 성분은 마그네슘(Mg)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다. 예를 들어, Fe, Cu, Ni, Cr, Si, Ca, Li, Na, K, Ba, F, S, N 등이 있을 수 있다.
이때, 상술한 원소 외에 Mg-Al 금속간 화합물을 보다 많이 형성시켜 내식성을 보다 향상시키기 위하여 중량%로, B: 0.001~0.1% 및 Y: 0.05~1.5%을 추가로 포함할 수 있다.
B: 0.001~0.1%
B(보론)은 융점도 매우 높을 뿐 아니라 마그네슘 고상이나 액상에서의 용해도가 거의 제로(zero)에 가깝기 때문에 일반적인 마그네슘 합금에서는 잘 사용하지 않는 원소로 알려져 있다.
마그네슘 합금에 B 및 Y를 복합 첨가하고 시효 처리를 행함으로써, Mg-Al 금속간 화합물을 다량 형성시키는데 기여하여 인장강도를 향상시킬 뿐만 아니라, B이 단독 첨가된 경우보다 내식성을 더욱 향상시킬 수 있다. 또한, 용탕 산화 방지에 기여하여 용탕 산화 방지를 위해 사용되는 고가의 SF6 가스나 환경오염을 유발시킬 수 있는 SO2 가스의 사용량을 줄일 수 있으므로 생산비용 감소 및 환경보호에 기여할 수 있다.
B 함량이 0.001% 미만인 경우에는 상술한 효과가 불충분하다. 반면에 B 함량이 0.1% 초과인 경우에는 Al-B 화합물이 결정립계에 형성되어 연성을 감소시키는 문제점이 있다. 따라서, B 함량은 0.001~0.1%인 것이 바람직하다.
또한, B 함량의 보다 바람직한 하한은 0.005%일 수 있으며, 보다 더 바람직한 하한은 0.01%일 수 있다. 또한, B 함량의 보다 바람직한 상한은 0.095%일 수 있다.
Y: 0.05~1.5%
Y는 Al과 결합하여 석출물을 형성하고 또한 결정립을 미세하게 함으로써 강도향상에 기여하며, 산소친화력이 높아 용탕 표면의 보호막을 견고하게 하여 용탕의 산화를 억제시킬 뿐만 아니라, 응고 후에도 난연성을 향상시켜주는 역할을 하는 원소이다.
또한, 상술한 바와 같이 B와 복합 첨가하고 시효 처리를 행함으로써, Mg-Al 금속간 화합물을 다량 형성시키는데 기여하여 내식성을 더욱 향상시킬 수 있다.
Y 함량이 0.05% 미만인 경우에는 상술한 효과가 불충분하다. 반면에 Y 함량이 1.5% 초과인 경우에는 조대한 Al-Y 화합물 형성으로 연성이 감소될 우려가 있다. 따라서, Y 함량은 0.05~1.5%인 것이 바람직하다.
또한, Y 함량의 보다 바람직한 하한은 0.1%일 수 있으며, 보다 바람직한 상한은 1.2%일 수 있다.
본 발명의 일 측면에 따른 내식성이 우수한 마그네슘 합금 판재는 상술한 합금조성을 만족할 뿐만 아니라, 0001면 상에 Mg-Al 금속간화합물을 포함하며, 0001면에 수직한 단면에서 관찰시 길이가 250nm 이하이며, 두께는 50nm 이하인 Mg-Al 금속간화합물이 5면적% 이상이다.
Mg-Al 금속간화합물은 기지조직인 α-Mg와의 표준전극전위의 편차가 작기 때문에, 미세하게 분산되어 형성될 경우 내식성을 향상시키는 역할을 한다.
길이가 250nm 초과이거나, 두께가 50nm 초과인 경우에는 내식성이 저하될 수 있으며, Mg-Al 금속간화합물이 5면적% 미만인 경우에는 내식성 향상 효과가 불충분하다.
한편, Mg-Al 금속간화합물의 면적분율의 상한은 특별히 제한하지는 않으나, 30 면적% 초과인 경우에는 조대한 Mg-Al 금속간화합물이 형성될 수 있으므로 그 상한은 30 면적%일 수 있으며, 보다 바람직하게는 20 면적%일 수 있다.
또한, Mg-Al 금속간화합물은 주로 Mg17Al12 상으로 이루어질 수 있으며, 일부 다른 결정구조의 석출상을 포함할 수 있다.
이때, 상기 Mg-Al 금속간화합물은 0001면과 평행한 판상형 또는 막대형일 수 있다.
또한, 본 발명의 마그네슘 합금 판재는 0001면 극점도(Pole Figure)에서 0001면의 최대강도(Maximum Intensity)가 6.5 이상일 수 있다. 상기 값이 6.5 이상일 경우 집합조직이 충분히 발달하여 0001면 상에 다량의 Mg-Al 금속간화합물을 형성시킬 수 있기 때문이다.
한편, 본 발명에 따른 마그네슘 합금 판재는 부식속도가 1.5mm/year 이하일 수 있다. 보다 바람직하게는 1.0mm/year 이하일 수 있다.
내식성이 우수한 마그네슘 합금 판재의 제조방법
이하, 본 발명의 다른 일 측면인 내식성이 우수한 마그네슘 합금 판재의 제조방법에 대하여 상세히 설명한다.
본 발명의 다른 일 측면인 내식성이 우수한 마그네슘 합금 판재의 제조방법은 상술한 합금조성을 만족하는 용탕을 준비하는 단계; 상기 용탕을 판재형태로 주조하여 판상형 주조재를 얻는 단계; 상기 판상형 주조재를 350~550℃의 온도범위에서 2~48시간 동안 용체화 처리하는 단계; 상기 용체화 처리된 판상형 주조재를 냉각한 후, 150~380℃에서 압하율 65% 이상으로 압연하여 마그네슘 합금 판재를 얻는 단계; 및 상기 냉각된 마그네슘 합금 판재을 150~250℃에서 2~48시간 동안 시효 처리하는 단계;를 포함한다.
용탕 준비 단계
상술한 합금조성을 만족하는 용탕을 준비한다. 특별히 한정할 필요는 없으며, 일반적인 마그네슘 합금용 용탕 준비에 따르면 된다.
예를 들어, 상술한 합금원소들을 제시된 조성범위에 맞추어 준비한 다음, 이를 용해용 도가니에 장입한 후 용해 작업을 실시한다. 마그네슘 합금의 융점은 비교적 낮은 편이므로 가스로, 전기로, 유도용해로 등 어떠한 방식을 적용하더라도 무방하다. 도가니 재질은 그라파이트 재질이나 저탄소강일 수 있으며, 마그네슘 용해 온도는 마그네슘의 산화방지를 위해 750℃를 넘지 않도록 조절하는 것이 유리하고, 400℃ 이상에서는 산화방지를 위한 마그네슘 전용 보호가스를 용탕표면에 주입하는 것이 유리하다.
합금원소를 준비함에 있어서 각 합금원소를 순수한 형태로 준비할 수도 있지만, B 및 Y를 첨가할 경우에는 B 및 Y가 Mg 또는 Al과 혼합되어 있는 모합금 형태로 도가니에 장입할 수 있다. B 및 Y는 융점이 높기 때문에 Mg 또는 Al과 혼합되어 있는 모합금 형태로 도가니에 장입하는 것이 용해에 유리하기 때문이다.
주조 단계
상기 용탕을 판재형태로 주조하여 판상형 주조재를 얻는다. 추후 압연을 위하여 판상형인 것이 유리하기 때문이다.
예를 들어, 중력주조, 저압주조, 슬라브주조, 빌렛주조, 박판주조 등의 여러 주조공법 중 한가지 이상을 이용하여 판상형 주조재를 얻을 수 있다.
주조공정으로서 상기의 여러가지 방법을 이용할 수 있지만, 마그네슘에 대한 고용도가 낮은 붕소 및 이트륨을 알루미늄과 함께 첨가할 경우에는 냉각속도를 높일 수 있는 주조공법이 적용되는 것이 유리하다. 이를 위해서는 금형이 냉각수로 냉각되어야 하며, 냉각수를 적용할 시에는 주조 전에는 먼저 금형표면의 응축수가 제거될 수 있도록 상온 이상으로 유지하다가 응축수가 제거된 후에는 금형표면이 상온 이하로 유지되어야 한다.
용체화 처리 단계
상기 마그네슘 합금 주조재를 350~550℃의 온도범위에서 2~48시간 동안 용체화 처리하여 마그네슘 합금을 얻는다. 주조 중 주조재 내에 형성된 조대하거나 불가피한 금속간화합물 및 편석층이 마그네슘 모재 내에 고용되게 함으로써 향후의 시효 처리 단계에서 내식성 향상에 필요한 미세한 Mg-Al 금속간화합물을 용이하게 형성시키기 위함이다.
용체화 온도가 350℃ 미만이거나 유지시간이 2시간 미만인 경우에는 Mg-Al 금속간화합물이 전량 고용되기 어려우며, 용체화 온도가 550℃ 초과이거나 유지시간이 48시간 초과인 경우에는 생산비용이 증가하고 생산성이 떨어질 수 있으며, 또한 B, Y이 첨가되기 전에는 산화에 의한 발화현상이 나타날 수도 있다. 따라서 350~550℃의 온도범위에서 2~48시간 동안 행하는 것이 바람직하며, 보다 바람직하게는 400~460℃의 온도범위에서 2~20시간 동안 행할 수 있다.
압연 단계
상기 용체화 처리된 판상형 주조재를 냉각한 후, 150~380℃에서 압하율 65% 이상으로 압연하여 마그네슘 합금 판재를 얻는다.
압연 온도가 150℃ 미만인 경우에는 에지크랙 및 표면크랙이 발생할 우려가 있으며, 380℃ 초과인 경우에는 압연에 의한 온도가 상승하므로 산화에 의한 발화의 가능성이 있다.
상술한 바와 같이, 마그네슘 합금은 표준전극전위가 낮기 때문에 부식에 취약하며, 이를 극복하기 위해서는 기지조직인 α-Mg와의 표준전극전위의 편차가 낮은 Mg-Al 금속간화합물을 미세하고 균일하게 분포되도록 형성시켜야 한다.
압연을 통하여 압연면 대부분이 조밀육방정구조(HCP, Hexagonal Close Packed Crystal Strucutre)인 마그네슘 합금의 기저면(Basal Plane) 0001면과 평행하도록 0001 집합조직을 발달시키고, 시효 처리시 0001면 상에 0001면과 평행한 판상형 혹은 막대형 Mg-Al 금속간화합물이 다량 석출되도록 유도함으로써 내식성을 향상시킬 수 있다.
0001면이 압연면과 평행하게 배열되는 0001 집합조직을 띠며, 또한 그 0001면에 압연에 의해 생성된 전위 및 적층결함이 형성되므로, 이러한 변형조직에 의해 0001면 상에 판상형 혹은 막대형 Mg-Al 금속간화합물이 우선적으로 석출된다. 따라서 마그네슘 표면의 Mg-Al 석출상 분율이 크게 증가될 수 있으며, 특히 형성된 Mg-Al 석출상도 길이 250nm 이하, 두께 50nm 이하의 크기로 미세하게 형성될 수 있으므로 마그네슘 합금의 내식성을 크게 향상시킬 수 있다.
압하율이 65% 미만인 경우에는 0001 집합조직의 발달이 충분하지 않아, 0001면 상에 다량의 Mg-Al 금속간화합물을 형성시키기 어려울 수 있다.
이때, 상기 압연은 0001면 극점도(Pole Figure)에서 0001면의 최대강도(Maximum Intensity)가 6.5 이상이 되도록 행할 수 있다.
압연재의 시효 처리시 0001면 상에 가급적 많은 Mg-Al 금속간화합물을 석출시키기 위해서는 압연효과에 의한 집합조직이 충분히 발달되도록 하여야 하며, 이는 압연재에 대한 0001면 극점도(Pole Figure)에서 0001면의 최대강도(Maximum Intensity)가 최소한 6.5 이상이 되어야 함을 의미하기 때문이다.
이때, 상기 냉각은 1℃/초 이상의 냉각속도로 100℃ 이하까지 행할 수 있다. 냉각되는 동안 발생할 수 있는 자연 시효 현상을 최소화하고, 고용된 Al 원소가 임의로 석출되지 않도록 하기 위함이다. 예를 들어, 강제송풍, 수냉, 유냉 등의 방법으로 신속하게 냉각하는 것이 바람직하다.
시효 처리 단계
상기 냉각된 마그네슘 합금을 150~250℃에서 2~48시간 동안 시효 처리한다. 0001면 상에 Mg-Al 금속간화합물을 다량 석출시켜 내식성을 향상시키기 위함이다.
시효 처리 온도가 150℃ 미만이거나 유지시간이 2시간 미만인 경우에는 Mg-Al 금속간화합물을 충분히 확보하기 어렵다. 반면에, 시효 처리 온도가 250℃ 초과이거나 유지시간이 48시간 초과인 경우에는 Mg-Al 금속간화합물이 고용될 수 있으며, 생산비용이 증가하고 생산성이 떨어질 수 있다. 따라서 150~250℃에서 2~48시간 동안 시효 처리하는 것이 바람직하다. 보다 바람직하게는 Al 첨가량에 따라 상기 온도 및 유지시간 내에서 온도 및 유지시간을 증가시킬 수 있다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.
하기 표 1에 나타낸 성분조성을 갖는 용탕을 주조하여 판재형 주조재를 주조하였다. 상기 마그네슘 합금 주조재를 420 ℃에서 4시간 동안 용체화 처리한 후 냉각하고, 285℃에서 하기 표 2에 기재된 압하율로 압연하여 마그네슘 합금 판재를 제조하였다. 그 후, 비교재 4 및 발명재 1~3은 200℃에서 3시간 동안 시효 처리하였으며, 비교재 1~3은 시효 처리를 하지 않았다.
비교재 및 발명재들의 부식속도를 측정하여 표 1에 기재하였다. 부식속도 측정은 가로, 세로, 두께가 각각 40mm, 60mm, 1mm인 판상 샘플을 상온의 5% 염수에 침적시킨 후, 상대적인 두께 감량을 측정하였다.
또한, 0001면 상에 포함된 Mg-Al 금속간화합물을 관찰하여, 0001면에 수직한 단면에서 관찰시 길이가 250nm 이하이며, 두께는 50nm 이하인 Mg-Al 금속간화합물의 면적%를 측정하여 하기 표 1에 기재하였다.
구분 화학성분 (중량%) 압하율(%) 시효 처리 부식속도(mm/y) Mg-Al(면적%)
Al B Y Mg
비교재 1 5.3 - - 나머지 70 X 3.2 2.1
비교재 2 2.9 0.013 1.23 나머지 70 2.9 2.4
비교재 3 5.7 0.001 0.41 나머지 70 3.0 2.2
비교재 4 5.5 0.093 0.11 나머지 50 O 2.4 3.1
발명재 1 5.3 - - 나머지 70 O 1.3 8.2
발명재 2 2.9 0.074 0.36 나머지 70 1.0 6.8
발명재 3 3.9 0.021 0.43 나머지 70 0.7 8.4
발명재 4 5.5 0.093 0.11 나머지 70 0.5 12.6
본 발명의 합금조성 및 제조조건을 모두 만족하는 발명재들은 부식속도가 1.5mm/y 이하로 내식성이 우수하였다.
비교재 1~4도 본 발명의 합금조성은 만족하였다.
그러나, 비교재 1 내지 3은 압하율은 만족하였으나, 시효 처리를 행하지 않아 충분한 Mg-Al 금속간화합물을 확보하지 못하여 내식성이 열위하였다.
비교재 4는 압하율이 50%로 0001 집합조직이 충분히 발달하지 않아 시효처리를 행하여도 충분하 Mg-Al 금속간화합물을 확보하지 못하여 내식성이 열위하였다.
도 1은 발명재1(a) 및 비교재4(b)의 0001면 극점도(pole figure)이다.
발명재 1의 경우 70%의 압하율로 압연되어 0001 면의 최대강도가 8.7로 텍스처가 강하게 발달되어 있음을 알 수 있으며, 비교재 4의 경우 50%의 압하율로 압연되어 0001 면의 최대강도가 5.6을 나타내어 집합조직의 발달이 충분하지 않은 것을 확인할 수 있다.
도 2는 투과전자현미경으로 관찰한 발명재1의 명시야상 및 암시야상이며, 가운데 상단에 삽입된 사진은 이때의 회절패턴을 나타낸다. 회절패턴에서 흰색 점선으로 표시한 원 내에 있는 Spot Pattern으로부터 암시야상을 촬영하였다. 0001면 상에 판상형 혹은 막대형의 미세한 석출상이 다량 형성된 것을 확인할 수 있다.
도 3은 발명재 1에 대한 분석 결과로, 1로 표시한 부분은 Mg: 61.52 중량%, Al: 38.48 중량%로 분석되어 미세 석출상은 Mg-Al로 구성되었음을 확인할 수 있었다. 주로 Mg17Al12 상이었으며, 일부 다른 결정구조의 석출상도 관찰되었다.
한편, 도 3에서 2로 표시한 부분은 Mg: 91.75 중량%, Al: 8.25 중량%로 측정되어 Mg-Al 금속간화합물이 형성되지 않았음을 확인할 수 있었다.
이상 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (10)

  1. 중량%로, Al: 2.5~7.0%, 나머지 Mg 및 불가피한 불순물을 포함하고,
    0001면 상에 Mg-Al 금속간화합물을 포함하며, 0001면에 수직한 단면에서 관찰시 길이가 250nm 이하이며, 두께는 50nm 이하인 Mg-Al 금속간화합물이 5면적% 이상인 내식성이 우수한 마그네슘 합금 판재.
  2. 제1항에 있어서,
    상기 마그네슘 합금 판재는 중량%로, B: 0.001~0.1% 및 Y: 0.05~1.5%을 추가로 포함하는 내식성이 우수한 마그네슘 합금 판재.
  3. 제1항에 있어서,
    상기 Mg-Al 금속간화합물은 0001면과 평행한 판상형 또는 막대형인 내식성이 우수한 마그네슘 합금 판재.
  4. 제1항에 있어서,
    상기 마그네슘 합금 판재는 0001면 극점도(Pole Figure)에서 0001면의 최대강도(Maximum Intensity)가 6.5 이상인 내식성이 우수한 마그네슘 합금 판재.
  5. 제1항에 있어서,
    상기 마그네슘 합금 판재는 부식속도가 1.5mm/year 이하인 내식성이 우수한 마그네슘 합금 판재.
  6. 중량%로, Al: 2.5~7.0%, 나머지 Mg 및 불가피한 불순물을 포함하는 용탕을 준비하는 단계;
    용탕을 판재형태로 주조하여 판상형 주조재를 얻는 단계;
    상기 판상형 주조재를 350~550℃의 온도범위에서 2~48시간 동안 용체화 처리하는 단계;
    상기 용체화 처리된 판상형 주조재를 냉각한 후, 150~380℃에서 압하율 65% 이상으로 압연하여 마그네슘 합금 판재를 얻는 단계; 및
    상기 냉각된 마그네슘 합금 판재을 150~250℃에서 2~48시간 동안 시효 처리하는 단계;를 포함하는 내식성이 우수한 마그네슘 합금 판재의 제조방법.
  7. 제6항에 있어서,
    상기 용탕은 중량%로, B: 0.001~0.1% 및 Y: 0.05~1.5%을 추가로 포함하는 내식성이 우수한 마그네슘 합금 판재의 제조방법.
  8. 제7항에 있어서,
    상기 용탕을 준비하는 단계는 B 및 Y가 Mg 또는 Al과 혼합되어 있는 모합금 형태로 도가니에 장입하여 행하는 마그네슘 합금 판재의 제조방법.
  9. 제6항에 있어서,
    상기 압연은 0001면 극점도(Pole Figure)에서 0001면의 최대강도(Maximum Intensity)가 6.5 이상이 되도록 행하는 마그네슘 합금 판재의 제조방법.
  10. 제6항에 있어서,
    상기 냉각은 1℃/초 이상의 냉각속도로 100℃ 이하까지 행하는 마그네슘 합금 판재의 제조방법.
PCT/KR2017/015406 2016-12-22 2017-12-22 내식성이 우수한 마그네슘 합금 판재 및 그 제조방법 WO2018117762A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0177173 2016-12-22
KR1020160177173 2016-12-22

Publications (1)

Publication Number Publication Date
WO2018117762A1 true WO2018117762A1 (ko) 2018-06-28

Family

ID=62627571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015406 WO2018117762A1 (ko) 2016-12-22 2017-12-22 내식성이 우수한 마그네슘 합금 판재 및 그 제조방법

Country Status (1)

Country Link
WO (1) WO2018117762A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11542577B2 (en) 2018-07-18 2023-01-03 Posco Holdings Inc. Magnesium alloy sheet and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012143811A (ja) * 2010-12-24 2012-08-02 Sumitomo Electric Ind Ltd マグネシウム合金材
JP2014237896A (ja) * 2014-08-07 2014-12-18 住友電気工業株式会社 マグネシウム合金板
KR20150143896A (ko) * 2010-02-08 2015-12-23 스미토모덴키고교가부시키가이샤 마그네슘 합금판 및 마그네슘 합금 부재
KR20160011136A (ko) * 2015-03-25 2016-01-29 한국기계연구원 내식성이 향상된 마그네슘 합금 및 이를 이용하여 제조한 마그네슘 합금 부재의 제조방법
KR20160025898A (ko) * 2014-08-28 2016-03-09 홍익대학교 산학협력단 기계적 물성과 생분해성이 우수한 마그네슘 합금 판재 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150143896A (ko) * 2010-02-08 2015-12-23 스미토모덴키고교가부시키가이샤 마그네슘 합금판 및 마그네슘 합금 부재
JP2012143811A (ja) * 2010-12-24 2012-08-02 Sumitomo Electric Ind Ltd マグネシウム合金材
JP2014237896A (ja) * 2014-08-07 2014-12-18 住友電気工業株式会社 マグネシウム合金板
KR20160025898A (ko) * 2014-08-28 2016-03-09 홍익대학교 산학협력단 기계적 물성과 생분해성이 우수한 마그네슘 합금 판재 및 그 제조방법
KR20160011136A (ko) * 2015-03-25 2016-01-29 한국기계연구원 내식성이 향상된 마그네슘 합금 및 이를 이용하여 제조한 마그네슘 합금 부재의 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11542577B2 (en) 2018-07-18 2023-01-03 Posco Holdings Inc. Magnesium alloy sheet and manufacturing method thereof

Similar Documents

Publication Publication Date Title
WO2016137211A1 (ko) 열전도성과 난연성이 우수한 소성가공용 마그네슘 합금과 그의 제조방법
WO2011122785A2 (en) Magnesium-based alloy for high temperature and manufacturing method thereof
WO2018117716A1 (ko) 내식성이 우수한 알루미늄계 도금 강재, 이를 이용한 알루미늄계 합금화 도금 강재 및 이들의 제조방법
WO2020013524A1 (en) Lightweight medium-entropy alloys using spinodal decomposition
WO2020122472A2 (ko) 마그네슘 합금재 및 이의 제조방법
WO2017162198A1 (zh) 一种加铁的轻质高导耐热铝导线及其制备工艺
WO2012070870A2 (ko) 상온성형성이 우수한 마그네슘 합금 판재 및 그 제조방법
WO2020209485A1 (ko) 굽힘가공성이 우수한 cu-co-si-fe-p계 구리합금 및 그 제조 방법
WO2021215666A1 (ko) 고물성 마그네슘 합금 가공재 및 그 제조방법
WO2011122786A2 (en) Magnesium-based alloy with superior fluidity and hot-tearing resistance and manufacturing method thereof
WO2011062448A2 (ko) 알루미늄 합금 및 이의 제조 방법
WO2012161484A2 (ko) 실리콘화합물을 이용하여 제조된 마그네슘계 합금 및 그 제조 방법
JP2007237237A (ja) アルミニウム合金鋳造板の製造方法
WO2020067704A1 (ko) 마그네슘 합금 판재 및 이의 제조방법
WO2015126054A1 (ko) 마그네슘 합금 판재 및 이의 제조방법
WO2018117762A1 (ko) 내식성이 우수한 마그네슘 합금 판재 및 그 제조방법
WO2018117632A1 (ko) 내식성이 우수한 마그네슘 합금 및 그 제조방법
WO2023224218A1 (ko) 강도, 전기전도도 및 굽힘가공성이 우수한 구리-니켈-실리콘-망간-주석계 동합금재 및 그의 제조 방법
WO2018079945A1 (ko) 핫스탬핑 알루미늄 케이스의 제조방법 및 그 방법에 의해 제조된 핫스탬핑 알루미늄 케이스
WO2018117713A1 (ko) 난연성이 우수한 고강도 마그네슘 합금 및 그 제조방법
WO2019124837A1 (ko) 고 전기전도도 고강도 동합금 및 그 제조방법
WO2020067702A1 (ko) 내피쉬스케일이 우수한 법랑용 냉연 강판 및 그 제조 방법
WO2020116876A2 (ko) 수소취성에 대한 저항성이 우수한 열간 프레스 성형 부재 및 그 제조방법
WO2016105003A1 (ko) 취성균열전파 저항성이 우수한 구조용 극후물 강재 및 그 제조방법
WO2020111879A1 (ko) 내식성 및 내열성이 우수한 열간성형용 알루미늄-철 합금 도금 강판, 열간 프레스 성형 부재 및 이들의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17882323

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17882323

Country of ref document: EP

Kind code of ref document: A1