WO2018117307A1 - 지열을 이용하는 히트펌프 시스템의 생산 열량과 효율의 계산 방법 - Google Patents

지열을 이용하는 히트펌프 시스템의 생산 열량과 효율의 계산 방법 Download PDF

Info

Publication number
WO2018117307A1
WO2018117307A1 PCT/KR2016/015158 KR2016015158W WO2018117307A1 WO 2018117307 A1 WO2018117307 A1 WO 2018117307A1 KR 2016015158 W KR2016015158 W KR 2016015158W WO 2018117307 A1 WO2018117307 A1 WO 2018117307A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat pump
pump
fluid
turned
Prior art date
Application number
PCT/KR2016/015158
Other languages
English (en)
French (fr)
Inventor
김종률
이원근
문기선
조수진
Original Assignee
주식회사 티이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 티이 filed Critical 주식회사 티이
Publication of WO2018117307A1 publication Critical patent/WO2018117307A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1039Arrangement or mounting of control or safety devices for water heating systems for central heating the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1048Counting of energy consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/002Compression machines, plants or systems with reversible cycle not otherwise provided for geothermal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/01Timing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps

Definitions

  • the present invention relates to a method for calculating the production heat and efficiency of a heat pump system using geothermal heat, and more particularly to a method of calculating the production heat and efficiency of a heat pump system using geothermal heat, which can calculate production heat and efficiency more accurately. It is about.
  • a heat pump includes an air heat source method for obtaining or discharging heat in the atmosphere, a heat source method for discharging heat through a cooling tower, and a geothermal source method for obtaining heat or discharging heat into the ground.
  • the air heat source method consumes a lot of power to discharge the cooling heat because the air temperature is very high, such as 30 ° C or higher, but the geothermal source method has a ground temperature of 10 to 20 ° C. Since it is much lower than the temperature, it is easy to discharge the cooling heat and the efficiency is high.
  • the air heat source method is difficult to supply the heat required for heating because the temperature in the air is very low, while the geothermal source method is stable heating heat because the ground temperature is 10 ⁇ 20 °C higher than the air temperature. Can be supplied to heat pumps.
  • An object of the present invention is to provide a method for calculating production calories and efficiency of a heat pump system using geothermal heat, which can more accurately calculate calories and efficiency of production.
  • the heat pump receives a heat source from the underground heat exchanger and provides a heat source to the heat demand, and circulating the heat pump and the heat demand
  • a heat pump system using geothermal heat comprising a pump for pumping a first fluid, comprising: turning on the heat pump after a first predetermined time after turning on the pump; Production of the heat pump by measuring the inflow temperature of the first fluid flowing into the heat pump, the discharge temperature of the first fluid discharged from the heat pump and the flow rate of the first fluid from the time when the heat pump is turned on Calculating and integrating calories in real time; When the heat pump is turned off, the step of stopping the integration of the heat of production of the heat pump.
  • a method of calculating heat and efficiency of production of a heat pump system using geothermal heat includes a heat pump receiving a heat source from an underground heat exchanger and providing a heat source to a heat demander, the heat pump and the heat demand source.
  • a heat pump system using geothermal heat comprising a pump for pumping a fluid circulating in a gas, comprising: turning on the heat pump after a first predetermined time after turning on the pump; From the time when the heat pump is turned on, the inlet temperature of the first fluid flowing into the heat pump, the discharge temperature of the first fluid discharged from the heat pump and the flow rate of the first fluid are measured to measure the flow rate of the heat pump. Calculating and integrating production calories in real time; Stopping the integration of the heat output of the heat pump when the difference between the inlet temperature and the discharge temperature of the first fluid is less than a preset temperature after turning off the heat pump.
  • the present invention has the advantage that the amount of heat produced can be calculated more quickly and accurately by calculating the amount of heat produced from the time of turning on the heat pump to the time of turning off the heat pump.
  • the present invention by considering the difference between the inlet temperature of the first fluid flowing into the heat pump and the discharge temperature of the first fluid discharged from the heat pump after turning off the heat pump, by stopping the integration of the heat of production, After the heat pump is turned off, more accurate production calories may be calculated by considering production calories.
  • the present invention by bypassing the heat pump of a part of the first fluid in accordance with the temperature of the first fluid flowing into the heat pump, it is possible to measure the heat of production while maintaining the inlet temperature of the first fluid constant,
  • the advantage is that the calories produced can be calculated more quickly and accurately.
  • FIG. 1 is a schematic configuration diagram of a heat pump system using geothermal heat according to a first embodiment of the present invention.
  • FIG. 2 is a graph showing the temperature change of the first fluid with time during the cooling operation of the heat pump system using geothermal heat according to the first embodiment of the present invention.
  • FIG 3 is a graph showing a change in the amount of heat produced during cooling operation of the heat pump system using geothermal heat according to the first embodiment of the present invention.
  • Figure 4 is a graph showing the temperature change of the first fluid with time during the heating operation of the heat pump system using geothermal heat according to the first embodiment of the present invention.
  • FIG. 5 is a graph showing a change in the amount of heat produced during the heating operation of the heat pump system using geothermal heat according to the first embodiment of the present invention.
  • FIG. 6 is a graph showing the temperature change of the first fluid with time during the cooling operation of the heat pump system using geothermal heat according to the second embodiment of the present invention.
  • FIG. 7 is a graph showing a change in the amount of heat produced during cooling operation of the heat pump system using geothermal heat according to the second embodiment of the present invention.
  • FIG 8 is a graph showing a temperature change of the first fluid with time during the heating operation of the heat pump system using geothermal heat according to the second embodiment of the present invention.
  • FIG. 9 is a graph showing a change in the amount of heat produced during the heating operation of the heat pump system using geothermal heat according to the second embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a heat pump system using geothermal energy according to a third exemplary embodiment of the present invention.
  • FIG. 1 is a schematic configuration diagram of a heat pump system using geothermal heat according to a first embodiment of the present invention.
  • a heat pump system using geothermal heat includes a heat pump 20 that receives a heat source from an underground heat exchanger 10 and provides a heat source to a heat demand 40. And a pump 30 for pumping the first fluid circulating the heat pump 20 and the heat demand 40.
  • the underground heat exchanger 10 is a heat exchanger embedded in the ground.
  • the underground heat exchanger 10 and the heat pump 20 are connected to a second flow passage 11 through which a second fluid circulates.
  • the second fluid is described as an example of brine.
  • the second flow passage 11 may be provided with a second flow meter 12 for measuring the flow rate of the brine.
  • the heat pump 20 receives a heat source from the underground heat exchanger 10 and provides a heat source to the heat demand 40.
  • the heat pump 20 is composed of a compressor (not shown), an indoor heat exchanger (not shown), an outdoor heat exchanger (not shown), and an expansion device (not shown), and a third fluid includes the compressor and the indoor heat exchanger. Cycle through the outdoor heat exchanger and the expansion device.
  • the third fluid is described as an example of a refrigerant different from the first fluid.
  • One side of the heat pump 20 and the underground heat exchanger 10 are connected to the second flow passage 11.
  • one side of the heat pump 20 corresponds to the outdoor heat exchanger (not shown).
  • the other side of the heat pump 20 and the heat demand 40 are connected to the first flow passages 21 and 22.
  • the other side of the heat pump 20 corresponds to the indoor heat exchanger (not shown).
  • the first flow passages 21 and 22 are inflow passages 21 formed to introduce the first fluid from the heat demand 40 into the heat pump 20, and heat exchange in the heat pump 20. And a discharge passage 22 formed to discharge the first fluid.
  • the inflow passage 21 is provided with a first flow meter 23 for measuring the flow rate of the first fluid flowing into the heat pump 20.
  • the inflow passage 21 is provided with an inflow temperature sensor 51 for measuring the temperature of the first fluid flowing into the heat pump 20.
  • the pump 30 for pumping the first fluid discharged from the heat pump 20 is installed in the discharge passage 22.
  • the discharge passage 22 is provided with a discharge temperature sensor 52 for measuring the temperature of the first fluid discharged from the heat pump 20.
  • the controller (not shown) turns on the pump 30.
  • the heat pump 20 is turned on. That is, the controller does not turn on the pump 30 and the heat pump 20 at the same time.
  • the indoor heat exchanger (not shown) serves as an evaporator
  • the outdoor heat exchanger (not shown) serves as a condenser
  • the first fluid introduced into the heat pump 20 through the inflow passage 21 is cooled by heat exchange in the heat pump 20, and then the heat demand 40 through the discharge passage 22. Discharged. Thus, cold air may be provided to the heat demand 40.
  • the brine introduced into the heat pump 20 through the second flow passage 11 is heated through heat exchange in the heat pump 20 and then discharged to the underground heat exchanger 10.
  • the controller turns off the heat pump 20.
  • the pump 20 is turned off. That is, the control unit does not turn off the heat pump 20 and the pump 30 at the same time. Since the first fluid remains on the inflow passage 21 or the discharge passage 22 even after the heat pump 20 is turned off, the second set time ⁇ T2 is used to remove all the remaining first fluid. While the pump 30 must be operated further. If the first fluid remains on the inflow passage 21 or the discharge passage 22, the first fluid may be frozen later, resulting in damage to the flow path or the heat pump 20.
  • FIG. 2 is a graph showing the temperature change of the first fluid with time during the cooling operation of the heat pump system using geothermal heat according to the first embodiment of the present invention.
  • a time point T1 at which the pump 30 is turned on and a time point T2 at which the heat pump 20 is turned on may have a time difference by the first predetermined time ⁇ T1.
  • the first set time ⁇ T1 will be described with an example of 2 minutes to 3 minutes.
  • the inlet temperature t in of the first fluid flowing into the heat pump 20 is substantially constant during the first predetermined time ⁇ T1, but is discharged from the heat pump 20. It can be seen that the discharge temperature t out of the first fluid to be gradually decreased.
  • the discharge temperature t out of the first fluid discharged from the heat pump 20 decreases to a predetermined temperature from a time point T2 at which the heat pump 20 is turned on to a time point T3 at which the heat pump 20 is turned off. Maintain the temperature.
  • the time T3 at which the heat pump 20 is turned off and the time T4 at which the pump 30 is turned off have a time difference by the second predetermined time ⁇ T2.
  • the second set time ⁇ T2 will be described with an example of 2 to 3 minutes.
  • the first and second set times may be set in advance by experiment or the like.
  • the discharge temperature t out of the first fluid discharged from the heat pump 20 gradually increases before the inflow temperature of the first fluid is increased. It maintains a state similar to (t in ), the inlet temperature (t in ) of the first fluid is maintained almost constant.
  • FIG 3 is a graph showing a change in the amount of heat produced during cooling operation of the heat pump system using geothermal heat according to the first embodiment of the present invention.
  • the heat output Q of the heat pump 20 gradually increases but is lower than zero. That is, since the heat pump 20 is not driven during the first predetermined time ⁇ T1, the production heat amount Q is a negative value.
  • Q 0 represents the amount of heat at the time when the pump 30 is turned on
  • Q 1 represents the amount of heat at the time of turning on the heat pump 20.
  • the heat pump 20 When the heat pump 20 is driven after the first predetermined time ⁇ T1 has elapsed, the first fluid is heat-exchanged and cooled in the heat pump 20, thereby lowering the discharge temperature t out of the first fluid. . Therefore, it can be seen that the calorific value Q rises above a certain value.
  • the heat output Q of the heat pump 20 gradually decreases and maintains a constant value. Since the heat pump 20 is not driven during the second set time ⁇ T2, but the pump 30 is driven, the production heat Q gradually decreases.
  • the method of calculating the heat output of the heat pump 20 is as follows.
  • the measurement time ⁇ Treal of the production calorific value Qreal is set from a time point T2 at which the heat pump 20 is turned on to a time point T3 at which the heat pump 20 is turned off.
  • the production calorific value Qreal is measured and integrated during the measurement time ⁇ Treal.
  • the production heat amount is measured and integrated from the time point T2 at which the heat pump 20 is turned on, the integration of the production heat amount is stopped when the heat pump 20 is turned off.
  • the measurement of the production calorific value is independent of the operating time of the pump 30.
  • Equation 1 The equation for obtaining the production calorific value Qreal during the measurement time ⁇ Treal is shown in Equation 1.
  • m is a flow rate measured by the first flowmeter 23
  • ⁇ t represents a difference between an inlet temperature t in and a discharge temperature t out of the first fluid.
  • the power P consumed from the time point T1 at which the pump 30 is turned on to the time point T4 at which the pump 30 is turned off is calculated.
  • the power P includes power consumed to drive the pump 30 and the heat pump 20.
  • the efficiency ⁇ of the heat pump system can be known.
  • Equation 2 is an expression representing the efficiency ⁇ of the heat pump system.
  • the controller (not shown) turns on the pump 30.
  • the heat pump 20 is turned on. That is, the controller does not turn on the pump 30 and the heat pump 20 at the same time.
  • the indoor heat exchanger serves as a condenser
  • the outdoor heat exchanger serves as an evaporator
  • the first fluid introduced into the heat pump 20 through the inflow passage 21 is heated through heat exchange in the heat pump 20, and then the heat demand 40 through the discharge passage 22. Is discharged. Thus, heat can be provided to the heat demand 40.
  • the brine introduced into the heat pump 20 through the second passage 11 is cooled through heat exchange in the heat pump 20 and then discharged to the underground heat exchanger 10.
  • the brine absorbs heat from the ground.
  • the controller turns off the heat pump 20.
  • the pump 20 is turned off. That is, the control unit does not turn off the heat pump 20 and the pump 30 at the same time. Since the first fluid remains on the inflow passage 21 or the discharge passage 22 even after the heat pump 20 is turned off, the second set time ⁇ T2 is used to remove all the remaining first fluid. While the pump 30 must be operated further.
  • Figure 4 is a graph showing the temperature change of the first fluid with time during the heating operation of the heat pump system using geothermal heat according to the first embodiment of the present invention.
  • a time point T1 at which the pump 30 is turned on and a time point T2 at which the heat pump 20 is turned on may be time-delayed by the first predetermined time ⁇ T1.
  • the first set time ⁇ T1 will be described with an example of 2 minutes to 3 minutes.
  • the inlet temperature t in of the first fluid flowing into the heat pump 20 is substantially constant during the first predetermined time ⁇ T1, but is discharged from the heat pump 20. It can be seen that the discharge temperature t out of the first fluid to be gradually increased.
  • the discharge temperature t out of the first fluid discharged from the heat pump 20 increases from a time point T2 at which the heat pump 20 is turned on to a time point T3 at which the heat pump 20 is turned off, and then reaches a predetermined temperature. Maintain the temperature.
  • the time T3 at which the heat pump 20 is turned off and the time T4 at which the pump 30 is turned off have a time difference by the second predetermined time ⁇ T2.
  • the second set time ⁇ T2 will be described with an example of 2 to 3 minutes.
  • the first and second set times may be set in advance by experiment or the like.
  • the discharge temperature t out of the first fluid discharged from the heat pump 20 gradually decreases before the inflow temperature of the first fluid is decreased. Similar to t in , the inlet temperature t in of the first fluid remains substantially constant.
  • FIG. 5 is a graph showing a change in the amount of heat produced during the heating operation of the heat pump system using geothermal heat according to the first embodiment of the present invention.
  • the heat output Q of the heat pump 20 gradually increases but is lower than zero. That is, since the heat pump 20 is not driven during the first predetermined time ⁇ T1, the production heat amount Q is a negative value.
  • the heat output Q of the heat pump 20 gradually decreases and maintains a constant value. Since the heat pump 20 is not driven during the second set time ⁇ T2, but the pump 30 is driven, the production heat Q gradually decreases.
  • the method of calculating the heat output of the heat pump 20 during the heating operation of the heat pump 20 is as follows.
  • the measurement time ⁇ Treal of the production calorific value Qreal is determined from the time point T2 at which the heat pump 20 is turned on to the time point T3 at which the heat pump 20 is turned off. It is set to, and the production calorific value Qreal is measured and integrated during the measurement time ⁇ Treal.
  • Equation 1 The equation for obtaining the production calorific value Qreal during the measurement time ⁇ Treal is shown in Equation 1.
  • ⁇ t during heating operation in Equation 1 is a value obtained by subtracting the inlet temperature t in from the discharge temperature t out of the first fluid.
  • the power P consumed from the time point T1 at which the pump 30 is turned on to the time point T4 at which the pump 30 is turned off is calculated.
  • the power P includes power consumed to drive the pump 30 and the heat pump 20.
  • Equation (2) dividing the calculated calorific value (Qreal) by the power (P), it can be seen that the efficiency ( ⁇ ) of the heat pump system.
  • the method for calculating the production heat (Q ') and efficiency of the heat pump system according to the second embodiment of the present invention, the production heat amount (Q') from the time when the heat pump 20 is turned on in real time
  • the measurement time ⁇ T'real of the production calorific value Q ' is measured from the time point at which the heat pump 20 is turned on (T2) from the inlet temperature t in of the first fluid and the discharge temperature ( Since it is different from the first embodiment to set up to a time point T5 at which the difference of t out ) is equal to or greater than the preset set temperature ⁇ t min , the following description will focus on different points.
  • FIG. 6 is a graph showing the temperature change of the first fluid with time during the cooling operation of the heat pump system using geothermal heat according to the second embodiment of the present invention.
  • the time point T1 at which the pump 30 is turned on and the time point T2 at which the heat pump 20 is turned on are time-differentiated by the first predetermined time ⁇ T1.
  • the first set time ⁇ T1 will be described with an example of 2 minutes to 3 minutes.
  • the inlet temperature t in of the first fluid flowing into the heat pump 20 is substantially constant during the first predetermined time ⁇ T1, but is discharged from the heat pump 20. It can be seen that the discharge temperature t out of the first fluid to be gradually decreased.
  • the discharge temperature t out of the first fluid discharged from the heat pump 20 decreases to a predetermined temperature from a time point T2 at which the heat pump 20 is turned on to a time point T3 at which the heat pump 20 is turned off. Maintain the temperature.
  • the time T3 at which the heat pump 20 is turned off and the time T4 at which the pump 30 is turned off have a time difference by the second predetermined time ⁇ T2.
  • the second set time ⁇ T2 will be described with an example of 2 to 3 minutes.
  • the first and second set times may be set in advance by experiment or the like.
  • the discharge temperature t out of the first fluid discharged from the heat pump 20 gradually increases before the inflow temperature of the first fluid is increased.
  • the state similar to (t in ) is maintained, and the inlet temperature t in of the first fluid is maintained at a substantially constant state.
  • FIG. 7 is a graph showing a change in the amount of heat produced during cooling operation of the heat pump system using geothermal heat according to the second embodiment of the present invention.
  • the heat output Q ′ of the heat pump 20 gradually increases but is lower than zero. That is, since the heat pump 20 is not driven during the first predetermined time ⁇ T1, the production heat amount Q ′ is a negative value.
  • the heat output Q 'of the heat pump 20 gradually decreases and maintains a constant value. Since the heat pump 20 is not driven during the second set time ⁇ T2, the pump 30 is driven, and thus the heat output Q ′ gradually decreases.
  • a method of calculating the production calorific value Q ′ of the heat pump 20 according to the second embodiment of the present invention is as follows.
  • the production heat quantity Q ' is measured and integrated from the time point T2 at which the heat pump 20 is turned on.
  • the production is performed until the time T5 at which the difference between the inflow temperature t in and the discharge temperature t out of the first fluid is equal to or greater than a preset set temperature ⁇ t min . Measure and integrate the calories (Q ').
  • the measurement time ⁇ T'real of the production calorific value Q ' is obtained from the point in time T2 at which the heat pump 20 is turned on (T2) and the inlet temperature t in and the discharge temperature t of the first fluid. out ) is set to a time point T5 that is equal to or greater than a preset set temperature ⁇ t min .
  • the difference between the inlet temperature t in and the discharge temperature t out of the first fluid is less than a preset set temperature ⁇ t min , integration of the heat of production is stopped.
  • the set temperature ⁇ t min will be described with an example of about 5 degrees.
  • the discharge temperature t out of the first fluid gradually decreases, and the heat output Q 'also decreases but has a predetermined value or more.
  • the production heat amount Q ' is recognized until the difference between the inflow temperature t in and the discharge temperature t out is the set temperature ⁇ t min .
  • the difference between the inflow temperature t in and the discharge temperature t out of the first fluid from the time point T2 at which the heat pump 20 is turned on is calculated by integrating the production calorific value Q ′.
  • the production calorific value Q ′ can be measured more accurately.
  • FIG 8 is a graph showing a temperature change of the first fluid with time during the heating operation of the heat pump system using geothermal heat according to the second embodiment of the present invention.
  • the time point T1 at which the pump 30 is turned on and the time point T2 at which the heat pump 20 is turned on are as different as the first predetermined time ⁇ T1.
  • the first set time ⁇ T1 will be described with an example of 2 to 3 minutes.
  • the inlet temperature t in of the first fluid flowing into the heat pump 20 is substantially constant during the first predetermined time ⁇ T1, but is discharged from the heat pump 20. It can be seen that the discharge temperature t out of the first fluid to be gradually increased.
  • the discharge temperature t out of the first fluid discharged from the heat pump 20 increases from a time point T2 at which the heat pump 20 is turned on to a time point T3 at which the heat pump 20 is turned off, and then reaches a predetermined temperature. Maintain the temperature.
  • the time T3 at which the heat pump 20 is turned off and the time T4 at which the pump 30 is turned off have a time difference by the second predetermined time ⁇ T2.
  • the second set time ⁇ T2 will be described with an example of 2 to 3 minutes.
  • the first and second set times may be set in advance by experiment or the like.
  • the discharge temperature t out of the first fluid discharged from the heat pump 20 gradually increases before the inflow temperature of the first fluid is increased. It maintains a state similar to (t in ), the inlet temperature (t in ) of the first fluid is maintained almost constant.
  • FIG. 9 is a graph showing a change in the amount of heat produced during the heating operation of the heat pump system using geothermal heat according to the second embodiment of the present invention.
  • the heat output Q 'of the heat pump 20 gradually increases but is lower than zero. That is, since the heat pump 20 is not driven during the first predetermined time ⁇ T1, the production heat amount Q ′ is a negative value.
  • the heat output Q 'of the heat pump 20 gradually decreases and maintains a constant value. Since the heat pump 20 is not driven during the second set time ⁇ T2, the pump 30 is driven, and thus the heat output Q ′ gradually decreases.
  • the method of calculating the production calorific value Q ′ of the heat pump 20 according to the second embodiment of the present invention is as follows.
  • the production heat quantity Q ' is measured and integrated from the time point T2 at which the heat pump 20 is turned on.
  • the production is performed until the time T5 at which the difference between the inflow temperature t in and the discharge temperature t out of the first fluid is equal to or greater than a preset set temperature ⁇ t min . Measure and integrate the calories (Q ').
  • the measurement time ⁇ T'real of the production calorific value Q ' is obtained from the point in time T2 at which the heat pump 20 is turned on (T2) and the inlet temperature t in and the discharge temperature t of the first fluid. out ) is set to a time point T5 that is equal to or greater than a preset set temperature ⁇ t min .
  • the difference between the inlet temperature t in and the discharge temperature t out of the first fluid is less than a preset set temperature ⁇ t min , integration of the heat of production is stopped.
  • the set temperature ⁇ t min will be described with an example of about 5 degrees.
  • the discharge temperature t out of the first fluid gradually decreases, and the heat output Q 'also decreases but has a predetermined value or more.
  • the production heat amount Q ' is recognized until the difference between the inflow temperature t in and the discharge temperature t out is the set temperature ⁇ t min .
  • the difference between the inflow temperature t in and the discharge temperature t out of the first fluid from the time point T2 at which the heat pump 20 is turned on is calculated by integrating the production calorific value Q ′.
  • the production calorific value Q ′ can be measured more accurately.
  • the method for obtaining the efficiency ( ⁇ ) of the heat pump system is as follows.
  • the power P consumed from the time point T1 at which the pump 30 is turned on to the time point T2 at which the pump 30 is turned off is calculated.
  • the power P includes power consumed to drive the pump 30 and the heat pump 20.
  • the efficiency ⁇ of the heat pump system can be known.
  • FIG. 10 is a schematic diagram of a heat pump system using geothermal energy according to a third exemplary embodiment of the present invention.
  • the bypass passage 60 is branched from the inflow passage 21 and connected to the discharge passage 22.
  • the three-way valve 61 is provided at a point where the bypass passage 60 branches from the inflow passage 21.
  • the controller (not shown) compares the inlet temperature of the first fluid before the inlet to the heat pump 20 with a preset minimum set temperature.
  • the three-way valve 61 controls to open the bypass passage 60. Some of the first fluid is introduced into the bypass passage 60.
  • the controller shields the bypass passage 60 again.
  • the heat exchange efficiency of the indoor heat exchanger of the heat pump 20 can be improved. That is, if the temperature of the first fluid before flowing into the heat pump 20 is less than the minimum set temperature, the heat exchange efficiency of the indoor heat exchanger of the heat pump 20 is lowered, it can be prevented.
  • the controller (not shown) compares the inlet temperature of the first fluid before flowing into the heat pump 20 with a preset maximum set temperature.
  • the three-way valve 61 controls to open the bypass flow path 60. Therefore, some of the first fluid is introduced into the bypass flow path 60.
  • the controller shields the bypass passage 60 again.
  • the heat exchange efficiency of the indoor heat exchanger of the heat pump 20 can be improved. That is, when the temperature of the first fluid before flowing into the heat pump 20 is greater than or equal to the maximum set temperature, since the heat exchange efficiency of the indoor heat exchanger of the heat pump 20 decreases, this may be prevented.
  • the calorific value of the production can be measured while keeping the inlet temperature of the first fluid constant, there is an advantage that the calorific value can be calculated more quickly and accurately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Signal Processing (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

본 발명은, 히트펌프를 온시킨 시점부터 히트펌프를 오프시킨 시점까지 생산 열량을 계산함으로써, 보다 신속하게 정확하게 생산 열량을 계산할 수 있는 이점이 있다. 또한, 본 발명은, 히트펌프를 오프시킨 후 상기 히트펌프로 유입되는 제1유체의 유입온도와 상기 히트펌프로부터 토출되는 제1유체의 토출온도의 차이를 고려하여 생산 열량의 적산을 중지함으로써, 상기 히트펌프를 오프시킨 후 생산 열량까지 고려하여 보다 정확한 생산 열량을 계산할 수 있다. 또한, 본 발명은, 히트펌프로 유입되는 제1유체의 온도에 따라 제1유체 중 일부를 히트펌프를 바이패스시킴으로써, 제1유체의 유입온도를 일정하게 유지하면서 생산 열량을 측정할 수 있으므로, 보다 신속하게 정확하게 생산 열량을 계산할 수 있는 이점이 있다.

Description

지열을 이용하는 히트펌프 시스템의 생산 열량과 효율의 계산 방법
본 발명은 지열을 이용하는 히트펌프 시스템의 생산 열량과 효율의 계산 방법에 관한 것으로서, 보다 상세하게는 생산 열량과 효율을 보다 정확하게 계산할 수 있는 지열을 이용하는 히트펌프 시스템의 생산 열량과 효율의 계산 방법에 관한 것이다.
일반적으로 히트 펌프는 대기중에서 열을 얻거나 배출하는 공기열원방식, 냉각탑을 통해 열을 배출하는 수열원방식, 지중에서 열을 얻거나 지중으로 열을 배출하는 지열원 방식 등이 있다.
지중의 온도는 일정 깊이 이상의 경우 거의 일정하게 유지될 수 있으므로, 지열원 방식의 경우, 공기열원방식에 비해 에너지 효율이 높은 이점이 있다. 여름철 냉방의 경우, 공기열원 방식은 대기중의 온도가 30℃이상으로 매우 높은 상태이기 때문에 냉방열을 배출하기 위해 많은 전력이 소모되나, 지열원 방식은 지중의 온도가 10 내지 20℃로서 대기 중의 온도보다 매우 낮기 때문에 냉방열을 배출하는 것이 용이하여 효율이 높다. 겨울철 난방의 경우, 공기열원 방식은 대기중의 온도가 매우 낮기 때문에 난방에 필요한 열을 공급하기 어려운 반면, 지열원 방식은 지중의 온도가 10 내지 20℃로서 대기 중의 온도보다 높기 때문에 안정적으로 난방열을 히트펌프에 공급할 수 있다.
한편, 지열을 이용하는 히트펌프의 경우, 지열을 보다 효율적으로 이용하기 위해서는 냉,난방시 사용되는 지열 에너지를 보다 정확하게 측정하는 것이 필요하다.
본 발명의 목적은, 생산 열량과 효율을 보다 정확하게 계산할 수 있는 지열을 이용하는 히트펌프 시스템의 생산 열량과 효율의 계산 방법을 제공하는 데 있다.
본 발명에 따른 지열을 이용하는 히트펌프 시스템의 생산 열량 및 효율을 계산하는 방법은, 지중 열교환기로부터 열원을 제공받고 열수요처로 열원을 제공하는 히트펌프와, 상기 히트펌프와 상기 열수요처를 순환하는 제1유체를 펌핑하는 펌프를 포함하는 지열을 이용하는 히트펌프 시스템에 있어서, 상기 펌프를 온시킨 후, 제1설정 시간이 지나면 상기 히트펌프를 온시키는 단계와; 상기 히트펌프를 온시킨 시점부터 상기 히트펌프로 유입되는 제1유체의 유입온도, 상기 히트펌프로부터 토출되는 상기 제1유체의 토출온도 및 상기 제1유체의 유량을 측정하여, 상기 히트펌프의 생산 열량을 실시간으로 계산하고 적산하는 단계와; 상기 히트펌프를 오프시키면, 상기 히트펌프의 생산 열량의 적산을 중지하는 단계를 포함한다.
본 발명의 다른 측면에 따른 지열을 이용하는 히트펌프 시스템의 생산 열량 및 효율을 계산하는 방법은, 지중 열교환기로부터 열원을 제공받고 열수요처로 열원을 제공하는 히트펌프와, 상기 히트펌프와 상기 열수요처를 순환하는 유체를 펌핑하는 펌프를 포함하는 지열을 이용하는 히트펌프 시스템에 있어서, 상기 펌프를 온시킨 후, 제1설정 시간이 지나면 상기 히트펌프를 온시키는 단계와; 상기 히트펌프를 온시킨 시점부터 상기 히트펌프로 유입되는 상기 제1유체의 유입온도, 상기 히트펌프로부터 토출되는 상기 제1유체의 토출온도 및 상기 제1유체의 유량을 측정하여, 상기 히트펌프의 생산 열량을 실시간으로 계산하고 적산하는 단계와; 상기 히트펌프를 오프시킨 후 상기 제1유체의 유입온도와 토출온도의 차가 미리 설정된 설정온도 미만이면, 상기 히트펌프의 생산 열량의 적산을 중지하는 단계를 포함한다.
본 발명은, 히트펌프를 온시킨 시점부터 히트펌프를 오프시킨 시점까지 생산 열량을 계산함으로써, 보다 신속하게 정확하게 생산 열량을 계산할 수 있는 이점이 있다.
또한, 본 발명은, 히트펌프를 오프시킨 후 상기 히트펌프로 유입되는 제1유체의 유입온도와 상기 히트펌프로부터 토출되는 제1유체의 토출온도의 차이를 고려하여 생산 열량의 적산을 중지함으로써, 상기 히트펌프를 오프시킨 후 생산 열량까지 고려하여 보다 정확한 생산 열량을 계산할 수 있다.
또한, 본 발명은, 히트펌프로 유입되는 제1유체의 온도에 따라 제1유체 중 일부를 히트펌프를 바이패스시킴으로써, 제1유체의 유입온도를 일정하게 유지하면서 생산 열량을 측정할 수 있으므로, 보다 신속하게 정확하게 생산 열량을 계산할 수 있는 이점이 있다.
도 1은 본 발명의 제1실시예에 따른 지열을 이용한 히트펌프 시스템의 개략적인 구성도이다.
도 2는 본 발명의 제1실시예에 따른 지열을 이용한 히트펌프 시스템의 냉방 운전시 시간에 따른 제1유체의 온도변화를 나타낸 그래프이다.
도 3은 본 발명의 제1실시예에 따른 지열을 이용한 히트펌프 시스템의 냉방 운전시 시간에 따른 생산 열량의 변화를 나타낸 그래프이다.
도 4는 본 발명의 제1실시예에 따른 지열을 이용한 히트펌프 시스템의 난방 운전시 시간에 따른 제1유체의 온도변화를 나타낸 그래프이다.
도 5는 본 발명의 제1실시예에 따른 지열을 이용한 히트펌프 시스템의 난방 운전시 시간에 따른 생산 열량의 변화를 나타낸 그래프이다.
도 6은 본 발명의 제2실시예에 따른 지열을 이용한 히트펌프 시스템의 냉방 운전시 시간에 따른 제1유체의 온도변화를 나타낸 그래프이다.
도 7은 본 발명의 제2실시예에 따른 지열을 이용한 히트펌프 시스템의 냉방 운전시 시간에 따른 생산 열량의 변화를 나타낸 그래프이다.
도 8은 본 발명의 제2실시예에 따른 지열을 이용한 히트펌프 시스템의 난방 운전시 시간에 따른 제1유체의 온도변화를 나타낸 그래프이다.
도 9는 본 발명의 제2실시예에 따른 지열을 이용한 히트펌프 시스템의 난방 운전시 시간에 따른 생산 열량의 변화를 나타낸 그래프이다.
도 10은 본 발명의 제3실시예에 따른 지열을 이용한 히트펌프 시스템의 개략적인 구성도이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예에 대해 설명하면 다음과 같다.
도 1은 본 발명의 제1실시예에 따른 지열을 이용한 히트펌프 시스템의 개략적인 구성도이다.
도 1을 참조하면, 본 발명의 제1실시예에 따른 지열을 이용한 히트펌프 시스템은, 지중 열교환기(10)로부터 열원을 제공받고 열수요처(40)로 열원을 제공하는 히트펌프(20)와, 상기 히트펌프(20)와 상기 열수요처(40)를 순환하는 제1유체를 펌핑하는 펌프(30)를 포함한다.
상기 지중 열교환기(10)는, 지중에 매설된 열교환기다. 상기 지중 열교환기(10)와 상기 히트펌프(20)는 제2유체가 순환하는 제2유로(11)로 연결된다. 이하, 본 실시예에서는, 상기 제2유체는 브라인인 것으로 예를 들어 설명한다.
상기 제2유로(11)에는 상기 브라인의 유량을 측정하는 제2유량계(12)가 설치될 수 있다.
상기 히트펌프(20)는, 상기 지중 열교환기(10)로부터 열원을 제공받고 상기 열수요처(40)로 열원을 제공한다.
상기 히트펌프(20)는, 압축기(미도시), 실내 열교환기(미도시), 실외 열교환기(미도시) 및 팽창장치(미도시)로 구성되어, 제3유체가 상기 압축기, 실내 열교환기, 실외 열교환기 및 팽창장치를 차례로 순환한다. 상기 제3유체는 상기 제1유체와 다른 냉매인 것으로 예를 들어 설명한다.
상기 히트펌프(20)의 일측과 상기 지중 열교환기(10)는 상기 제2유로(11)로 연결된다. 여기서, 상기 히트펌프(20)의 일측은 상기 실외 열교환기(미도시)에 해당한다.
상기 히트펌프(20)의 타측과 상기 열수요처(40)는 상기 제1유로(21)(22)로 연결된다. 여기서, 상기 히트펌프(20)의 타측은 상기 실내 열교환기(미도시)에 해당한다.
상기 제1유로(21)(22)는, 상기 열수요처(40)로부터 나온 상기 제1유체를 상기 히트펌프(20)로 유입되도록 형성된 유입유로(21)와, 상기 히트펌프(20)에서 열교환된 제1유체를 토출하도록 형성된 토출유로(22)를 포함한다.
상기 유입유로(21)에는 상기 히트펌프(20)로 유입되는 제1유체의 유량을 측정하는 제1유량계(23)가 설치된다. 상기 유입유로(21)에는 상기 히트펌프(20)로 유입되는 제1유체의 온도를 측정하는 유입 온도센서(51)가 설치된다.
상기 토출유로(22)에는 상기 히트펌프(20)에서 토출되는 제1유체를 펌핑하는 상기 펌프(30)가 설치된다. 상기 토출유로(22)에는 상기 히트펌프(20)에서 토출되는 제1유체의 온도를 측정하는 토출 온도센서(52)가 설치된다.
상기와 같이 구성된 본 발명에 따른 지열을 이용한 히트펌프시스템의 작동을 설명하면 다음과 같다.
먼저, 상기 히트펌프(20)의 냉방 운전시에 대해 설명한다.
사용자의 조작에 의해 냉방 운전모드가 선택되면, 제어부(미도시)는 상기 펌프(30)를 온시킨다.
상기 펌프(30)를 온시킨 후 미리 설정된 제1설정시간(ΔT1)이 지나면, 상기 히트펌프(20)를 온시킨다. 즉, 상기 제어부는, 상기 펌프(30)와 상기 히트펌프(20)를 동시에 온시키지 않는다.
상기 히트펌프(20)의 냉방 운전시, 상기 실내 열교환기(미도시)는 증발기 역할을 수행하고, 상기 실외 열교환기(미도시)는 응축기 역할을 하게 된다.
상기 유입유로(21)를 통해 상기 히트펌프(20)로 유입된 제1유체는, 상기 히트펌프(20)에서 열교환을 통해 냉각된 후, 상기 토출유로(22)를 통해 상기 열수요처(40)로 토출된다. 따라서, 상기 열수요처(40)에 냉기를 제공할 수 있다.
상기 제2유로(11)를 통해 상기 히트펌프(20)로 유입된 브라인은, 상기 히트펌프(20)에서 열교환을 통해 가열된 후, 상기 지중 열교환기(10)로 토출된다.
상기 지중 열교환기(10)에서는 상기 브라인이 지중으로 열을 방출하게 된다.
이후, 사용자의 조작에 의해 냉방 운전모드의 중지가 선택되면, 상기 제어부는 상기 히트펌프(20)를 오프시킨다.
상기 히트펌프(20)를 오프시킨 후 미리 설정된 제2설정시간(ΔT2)이 지나면, 상기 펌프(20)를 오프시킨다. 즉, 상기 제어부는, 상기 히트펌프(20)와 상기 펌프(30)를 동시에 오프시키지 않는다. 상기 히트펌프(20)를 오프시킨 후에도 상기 유입유로(21)나 상기 토출유로(22)상에 제1유체가 남아있기 때문에, 잔류된 제1유체를 모두 빼내기 위해서 상기 제2설정시간(ΔT2) 동안 상기 펌프(30)를 더 작동시켜야 한다. 상기 유입유로(21)나 상기 토출유로(22)상에 상기 제1유체가 남게 되면, 추후 상기 제1유체가 얼게 되어 유로나 상기 히트펌프(20)의 손상이 발생할 수 있다.
도 2는 본 발명의 제1실시예에 따른 지열을 이용한 히트펌프 시스템의 냉방 운전시 시간에 따른 제1유체의 온도변화를 나타낸 그래프이다.
도 2를 참조하면, 상기 펌프(30)가 온되는 시점(T1)과 상기 히트펌프(20)가 온되는 시점(T2)은 상기 제1설정시간(ΔT1)만큼 시간차가 있다. 상기 제1설정시간(ΔT1)은 2분 내지 3분인 것으로 예를 들어 설명한다.
상기 펌프(30)만이 온된 이후 상기 제1설정시간(ΔT1) 동안, 상기 히트펌프(20)로 유입되는 제1유체의 유입온도(tin)는 거의 일정하나, 상기 히트펌프(20)에서 토출되는 제1유체의 토출온도(tout)는 서서히 감소하는 것을 알 수 있다.
이후, 상기 히트펌프(20)가 온되는 시점(T2)부터 오프되는 시점(T3)까지 상기 히트펌프(20)에서 토출되는 제1유체의 토출온도(tout)는 소정의 온도까지 감소한 후 일정한 온도를 유지한다.
또한, 상기 히트펌프(20)가 오프되는 시점(T3)과 상기 펌프(30)가 오프되는 시점(T4)은 상기 제2설정시간(ΔT2)만큼 시간차가 있다. 상기 제2설정시간(ΔT2)은 2분 내지 3분인 것으로 예를 들어 설명한다. 상기 제1,2설정시간은 실험 등에 의해 미리 설정될 수 있다.
상기 히트펌프(20)가 오프된 이후 상기 제2설정시간(ΔT2) 동안, 상기 히트펌프(20)에서 토출되는 제1유체의 토출온도(tout)는 점차 증가하다가 상기 제1유체의 유입온도(tin)와 비슷한 상태를 유지하고, 상기 제1유체의 유입온도(tin)는 거의 일정한 상태를 유지한다.
도 3은 본 발명의 제1실시예에 따른 지열을 이용한 히트펌프 시스템의 냉방 운전시 시간에 따른 생산 열량의 변화를 나타낸 그래프이다.
도 3을 참조하면, 상기 펌프(30)만이 온된 이후 상기 제1설정시간(ΔT1) 동안, 상기 히트펌프(20)의 생산 열량(Q)은 서서히 증가하나 0보다 낮은 값인 것을 알 수 있다. 즉, 상기 제1설정시간(ΔT1) 동안은 상기 히트펌프(20)가 구동되지 않기 때문에, 상기 생산 열량(Q)은 마이너스 값이다. 도 3에서 Q0은 상기 펌프(30)를 온시킨 시점의 열량을 나타내고, Q1은 상기 히트펌프(20)를 온시킨 시점의 열량을 나타낸다.
상기 제1설정시간(ΔT1)이 경과하여 상기 히트펌프(20)가 구동되면, 상기 히트펌프(20)에서 상기 제1유체가 열교환되어 냉각되므로 상기 제1유체의 토출온도(tout)가 낮아진다. 따라서, 상기 생산 열량(Q)은 일정값 이상으로 상승하는 것을 알 수 있다.
상기 히트펌프(20)가 오프된 이후 상기 제2설정시간(ΔT2) 동안, 상기 히트펌프(20)의 생산 열량(Q)은 점차 감소하다가 일정값을 유지한다. 상기 제2설정시간(ΔT2) 동안은 상기 히트펌프(20)가 구동되지 않으나 상기 펌프(30)는 구동되는 상태이기 때문에, 상기 생산 열량(Q)은 점차 감소한다.
상기 제2설정시간(ΔT2)이 경과하여 상기 펌프(30)까지 오프되면, 상기 생산 열량(Q)은 0이 된다.
따라서, 상기 히트펌프(20)의 냉방 운전시, 상기 히트펌프(20)의 생산 열량을 계산하는 방법은 다음과 같다.
생산 열량(Qreal)의 측정시간(ΔTreal)은, 상기 히트펌프(20)를 온시킨 시점(T2)부터 상기 히트펌프(20)를 오프시키는 시점(T3)까지로 설정된다. 상기 측정시간(ΔTreal)동안 상기 생산 열량(Qreal)을 측정하여 적산한다.
즉, 상기 히트펌프(20)를 온시킨 시점(T2)부터 상기 생산 열량을 측정하여 적산하고, 상기 히트펌프(20)를 오프시키면 상기 생산 열량의 적산을 중지한다. 상기 생산 열량의 측정은, 상기 펌프(30)의 작동시간과는 무관하다.
상기 측정시간(ΔTreal)동안 상기 생산 열량(Qreal)을 구하는 식은 수학식 1과 같다. 수학식 1에서 m은 상기 제1유량계(23)에서 측정한 유량이고, Δt는 상기 제1유체의 유입온도(tin)와 토출온도(tout)의 차이를 나타낸다.
Figure PCTKR2016015158-appb-M000001
상기 생산열량(Qreal)을 계산하면, 상기 지중 열교환기(10)의 생산 열량도 알 수 있다.
상기와 같이, 본 실시예에서는, 상기 히트펌프(20)를 온시킨 시점(T2)부터 상기 히트펌프(20)를 오프시키는 시점(T3)까지의 측정시간(ΔTreal)동안만 상기 생산 열량(Qreal)을 측정하여 적산하기 때문에, 보다 정확한 생산 열량을 측정할 수 있다. 즉, 상기 측정시간(ΔTreal)이외에 상기 제1설정시간(ΔT1)이나 상기 제2설정시간(ΔT2)동안에는 상기 생산 열량의 크기가 매우 작고, 실제 열교환에 따른 생산 열량에 영향이 매우 작기 때문에 무시할 수 있다. 따라서, 보다 신속하고 정확하게 생산 열량을 측정할 수 있다.
또한, 상기 히트펌프 시스템의 효율(η)을 구하는 방법은 다음과 같다.
상기 펌프(30)를 온시킨 시점(T1)부터 상기 펌프(30)를 오프시키는 시점(T4)까지 소모된 동력(P)을 계산한다. 상기 동력(P)은, 상기 펌프(30)와 상기 히트펌프(20)를 구동하는데 소모된 동력을 포함한다.
상기에서 계산된 생산 열량(Qreal)을 상기 동력(P)으로 나누면, 상기 히트펌프 시스템의 효율(η)을 알 수 있다.
수학식 2는 상기 히트펌프 시스템의 효율(η)을 나타낸 식이다.
Figure PCTKR2016015158-appb-M000002
한편, 상기 히트펌프(30)의 난방 운전시에 대해 설명한다.
사용자의 조작에 의해 난방 운전모드가 선택되면, 제어부(미도시)는 상기 펌프(30)를 온시킨다.
상기 펌프(30)를 온시킨 후 미리 설정된 제1설정시간(ΔT1)이 지나면, 상기 히트펌프(20)를 온시킨다. 즉, 상기 제어부는, 상기 펌프(30)와 상기 히트펌프(20)를 동시에 온시키지 않는다.
상기 히트펌프(20)의 난방 운전시, 상기 실내 열교환기(미도시)는 응축기 역할을 수행하고, 상기 실외 열교환기(미도시)는 증발기 역할을 하게 된다.
상기 유입유로(21)를 통해 상기 히트펌프(20)로 유입된 제1유체는, 상기 히트펌프(20)에서 열교환을 통해 가열된 후, 상기 토출유로(22)를 통해 상기 열수요처(40)로 토출된다. 따라서, 상기 열수요처(40)에 열기를 제공할 수 있다.
상기 제2유로(11)를 통해 상기 히트펌프(20)로 유입된 브라인은, 상기 히트펌프(20)에서 열교환을 통해 냉각된 후, 상기 지중 열교환기(10)로 토출된다.
상기 지중 열교환기(10)에서는 상기 브라인이 지중으로부터 열을 흡수한다.
이후, 사용자의 조작에 의해 난방 운전모드의 중지가 선택되면, 상기 제어부는 상기 히트펌프(20)를 오프시킨다.
상기 히트펌프(20)를 오프시킨 후 미리 설정된 제2설정시간(ΔT2)이 지나면, 상기 펌프(20)를 오프시킨다. 즉, 상기 제어부는, 상기 히트펌프(20)와 상기 펌프(30)를 동시에 오프시키지 않는다. 상기 히트펌프(20)를 오프시킨 후에도 상기 유입유로(21)나 상기 토출유로(22)상에 제1유체가 남아있기 때문에, 잔류된 제1유체를 모두 빼내기 위해서 상기 제2설정시간(ΔT2) 동안 상기 펌프(30)를 더 작동시켜야 한다.
도 4는 본 발명의 제1실시예에 따른 지열을 이용한 히트펌프 시스템의 난방 운전시 시간에 따른 제1유체의 온도변화를 나타낸 그래프이다.
도 4를 참조하면, 상기 펌프(30)가 온되는 시점(T1)과 상기 히트펌프(20)가 온되는 시점(T2)은 상기 제1설정시간(ΔT1)만큼 시간차가 있다. 상기 제1설정시간(ΔT1)은 2분 내지 3분인 것으로 예를 들어 설명한다.
상기 펌프(30)만이 온된 이후 상기 제1설정시간(ΔT1) 동안, 상기 히트펌프(20)로 유입되는 제1유체의 유입온도(tin)는 거의 일정하나, 상기 히트펌프(20)에서 토출되는 제1유체의 토출온도(tout)는 서서히 증가하는 것을 알 수 있다.
이후, 상기 히트펌프(20)가 온되는 시점(T2)부터 오프되는 시점(T3)까지 상기 히트펌프(20)에서 토출되는 제1유체의 토출온도(tout)는 소정의 온도까지 증가한 후 일정한 온도를 유지한다.
또한, 상기 히트펌프(20)가 오프되는 시점(T3)과 상기 펌프(30)가 오프되는 시점(T4)은 상기 제2설정시간(ΔT2)만큼 시간차가 있다. 상기 제2설정시간(ΔT2)은 2분 내지 3분인 것으로 예를 들어 설명한다. 상기 제1,2설정시간은 실험 등에 의해 미리 설정될 수 있다.
상기 히트펌프(20)가 오프된 이후 상기 제2설정시간(ΔT2) 동안, 상기 히트펌프(20)에서 토출되는 제1유체의 토출온도(tout)는 점차 감소하다가 상기 제1유체의 유입온도(tin)와 비슷해지고, 상기 제1유체의 유입온도(tin)는 거의 일정한 상태를 유지한다.
도 5는 본 발명의 제1실시예에 따른 지열을 이용한 히트펌프 시스템의 난방 운전시 시간에 따른 생산 열량의 변화를 나타낸 그래프이다.
도 5를 참조하면, 상기 펌프(30)만이 온된 이후 상기 제1설정시간(ΔT1) 동안, 상기 히트펌프(20)의 생산 열량(Q)은 서서히 증가하나 0보다 낮은 값인 것을 알 수 있다. 즉, 상기 제1설정시간(ΔT1) 동안은 상기 히트펌프(20)가 구동되지 않기 때문에, 상기 생산 열량(Q)은 마이너스 값이다.
상기 제1설정시간(ΔT1)이 경과하여 상기 히트펌프(20)가 구동되면, 상기 히트펌프(20)에서 상기 제1유체가 열교환되어 가열되므로 상기 제1유체의 토출온도(tout)가 점차 증가한다. 따라서 상기 생산 열량(Q)은 일정값 이상으로 상승하는 것을 알 수 있다.
상기 히트펌프(20)가 오프된 이후 상기 제2설정시간(ΔT2) 동안, 상기 히트펌프(20)의 생산 열량(Q)은 점차 감소하다가 일정값을 유지한다. 상기 제2설정시간(ΔT2) 동안은 상기 히트펌프(20)가 구동되지 않으나 상기 펌프(30)는 구동되는 상태이기 때문에, 상기 생산 열량(Q)은 점차 감소한다.
상기 제2설정시간(ΔT2)이 경과하여 상기 펌프(30)까지 오프되면, 상기 생산 열량(Q)은 0이 된다.
따라서, 상기 히트펌프(20)의 난방 운전시, 상기 히트펌프(20)의 생산 열량을 계산하는 방법은 다음과 같다.
본 실시예에서는, 냉방 운전시와 마찬가지로 상기 히트펌프(20)를 온시킨 시점(T2)부터 상기 히트펌프(20)를 오프시키는 시점(T3)까지를 생산 열량(Qreal)의 측정시간(ΔTreal)으로 설정하고, 상기 측정시간(ΔTreal)동안 상기 생산 열량(Qreal)을 측정하여 적산한다.
즉, 상기 히트펌프(20)를 온시킨 시점(T2)부터 상기 생산 열량을 측정하여 적산하고, 상기 히트펌프(20)를 오프시키면 상기 생산 열량의 적산을 중지한다.
상기 측정시간(ΔTreal)동안 상기 생산 열량(Qreal)을 구하는 식은 수학식 1과 같다. 수학식 1에서 난방운전시 Δt는 상기 제1유체의 토출온도(tout)에서 유입온도(tin)를 뺀 값이다.
상기와 같이, 본 실시예에서는, 상기 히트펌프(20)를 온시킨 시점(T2)부터 상기 히트펌프(20)를 오프시키는 시점(T3)까지의 측정시간(ΔTreal)동안만 상기 생산 열량(Qreal)을 측정하여 적산하기 때문에, 보다 정확한 생산 열량을 측정할 수 있다. 즉, 상기 측정시간(ΔTreal)이외에 상기 제1설정시간(ΔT1)이나 상기 제2설정시간(ΔT2)동안에는 상기 생산 열량의 크기가 매우 작고, 실제 열교환에 따른 생산 열량에 영향이 매우 작기 때문에 무시할 수 있다. 따라서, 보다 신속하고 정확하게 생산 열량을 측정할 수 있다.
또한, 난방 운전시 상기 히트펌프 시스템의 효율(η)을 구하는 방법은 냉방 운전시와 동일하다.
즉, 상기 펌프(30)를 온시킨 시점(T1)부터 상기 펌프(30)를 오프시키는 시점(T4)까지 소모된 동력(P)을 계산한다. 상기 동력(P)은, 상기 펌프(30)와 상기 히트펌프(20)를 구동하는데 소모된 동력을 포함한다.
수학식 2를 참조하면, 상기에서 계산된 생산 열량(Qreal)을 상기 동력(P)으로 나누면, 상기 히트펌프 시스템의 효율(η)을 알 수 있다.
한편, 본 발명의 제2실시예에 따른 히트펌프 시스템의 생산 열량(Q‘) 및 효율을 계산하는 방법은, 상기 히트펌프(20)를 온시킨 시점부터 생산 열량(Q‘)을 실시간으로 계산하여 적산하되, 상기 생산 열량(Q‘)의 측정시간(ΔT’real)은 상기 히트펌프(20)를 온시킨 시점부터(T2)부터 상기 제1유체의 유입온도(tin)와 토출온도(tout)의 차이가 미리 설정된 설정온도(Δtmin)이상인 시점(T5)까지로 설정하는 것이 상기 제1실시예와 상이하므로, 상이한 점을 중심으로 상세히 설명한다.
도 6은 본 발명의 제2실시예에 따른 지열을 이용한 히트펌프 시스템의 냉방 운전시 시간에 따른 제1유체의 온도변화를 나타낸 그래프이다.
도 6을 참조하면, 상기 펌프(30)가 온되는 시점(T1)과 상기 히트펌프(20)가 온되는 시점(T2)은 상기 제1설정시간(ΔT1)만큼 시간차가 있다. 상기 제1설정시간(ΔT1)은 2분 내지 3분인 것으로 예를 들어 설명한다.
상기 펌프(30)만이 온된 이후 상기 제1설정시간(ΔT1) 동안, 상기 히트펌프(20)로 유입되는 제1유체의 유입온도(tin)는 거의 일정하나, 상기 히트펌프(20)에서 토출되는 제1유체의 토출온도(tout)는 서서히 감소하는 것을 알 수 있다.
이후, 상기 히트펌프(20)가 온되는 시점(T2)부터 오프되는 시점(T3)까지 상기 히트펌프(20)에서 토출되는 제1유체의 토출온도(tout)는 소정의 온도까지 감소한 후 일정한 온도를 유지한다.
또한, 상기 히트펌프(20)가 오프되는 시점(T3)과 상기 펌프(30)가 오프되는 시점(T4)은 상기 제2설정시간(ΔT2)만큼 시간차가 있다. 상기 제2설정시간(ΔT2)은 2분 내지 3분인 것으로 예를 들어 설명한다. 상기 제1,2설정시간은 실험 등에 의해 미리 설정될 수 있다.
상기 히트펌프(20)가 오프된 이후 상기 제2설정시간(ΔT2) 동안, 상기 히트펌프(20)에서 토출되는 제1유체의 토출온도(tout)는 점차 증가하다가 상기 제1유체의 유입온도(tin)와 비슷한 상태를 유지하고, 상기 제1유체의 유입온도(tin)는 거의 일정한 상태를 유지한다.
도 7은 본 발명의 제2실시예에 따른 지열을 이용한 히트펌프 시스템의 냉방 운전시 시간에 따른 생산 열량의 변화를 나타낸 그래프이다.
도 7을 참조하면, 상기 펌프(30)만이 온된 이후 상기 제1설정시간(ΔT1) 동안, 상기 히트펌프(20)의 생산 열량(Q‘)는 서서히 증가하나 0보다 낮은 값인 것을 알 수 있다. 즉, 상기 제1설정시간(ΔT1) 동안은 상기 히트펌프(20)가 구동되지 않기 때문에, 상기 생산 열량(Q‘)는 마이너스 값이다.
상기 제1설정시간(ΔT1)이 경과하여 상기 히트펌프(20)가 구동되면, 상기 히트펌프(20)에서 상기 제1유체가 열교환되어 냉각되므로 상기 제1유체의 토출온도(tout)가 낮아진다. 따라서, 상기 생산 열량(Q‘)은 일정값 이상으로 상승하는 것을 알 수 있다.
상기 히트펌프(20)가 오프된 이후 상기 제2설정시간(ΔT2) 동안, 상기 히트펌프(20)의 생산 열량(Q‘)는 점차 감소하다가 일정값을 유지한다. 상기 제2설정시간(ΔT2) 동안은 상기 히트펌프(20)가 구동되지 않으나 상기 펌프(30)는 구동되는 상태이기 때문에, 상기 생산 열량(Q‘)는 점차 감소한다.
상기 제2설정시간(ΔT2)이 경과하여 상기 펌프(30)까지 오프되면, 상기 생산 열량(Q‘)는 0이 된다.
따라서, 냉방 운전시, 본 발명의 제2실시예에 따른 상기 히트펌프(20)의 생산 열량(Q‘)을 계산하는 방법은 다음과 같다.
상기 히트펌프(20)를 온시킨 시점(T2)부터 상기 생산 열량(Q‘)을 측정하여 적산한다.
상기 히트펌프(20)를 오프시키면, 시간이 갈수록 상기 제1유체의 유입온도(tin)와 토출온도(tout)의 차이가 점차 줄어들게 된다.
따라서, 상기 히트펌프(20)를 오프시킨 이후, 상기 제1유체의 유입온도(tin)와 토출온도(tout)의 차이가 미리 설정된 설정온도(Δtmin)이상인 시점(T5)까지 상기 생산 열량(Q‘)을 측정하여 적산한다.
즉, 상기 생산 열량(Q‘)의 측정시간(ΔT’real)은, 상기 히트펌프(20)를 온시킨 시점부터(T2)부터 상기 제1유체의 유입온도(tin)와 토출온도(tout)의 차이가 미리 설정된 설정온도(Δtmin)이상인 시점(T5)까지로 설정된다.
상기 제1유체의 유입온도(tin)와 토출온도(tout)의 차이가 미리 설정된 설정온도(Δtmin)미만이면, 생산열량의 적산을 중지한다. 여기서, 상기 설정온도(Δtmin)는 약 5도인 것으로 예를 들어 설명한다.
상기 히트펌프(20)를 오프시킨 이후에 상기 제1유체의 토출온도(tout)는 점차 감소하며, 상기 생산 열량(Q‘)도 감소하나 소정의 값 이상을 갖기 때문에, 상기 제1유체의 유입온도(tin)와 토출온도(tout)의 차이가 상기 설정온도(Δtmin)일 때까지는 상기 생산 열량(Q‘)을 인정한다.
한편, 상기 제1유체의 유입온도(tin)와 토출온도(tout)의 차이가 상기 설정온도(Δtmin)미만이면, 상기 생산 열량(Q’)이 매우 작다고 판단하여 무시할 수 있다.
따라서, 상기 생산 열량(Q’)을 계산하여 적산하는 시간을 상기 히트펌프(20)가 온되는 시점(T2)부터 상기 제1유체의 유입온도(tin)와 토출온도(tout)의 차이가 미리 설정된 설정온도(Δtmin)이상인 시점(T5)까지로 설정함으로써, 생산 열량(Q’)을 보다 정확하게 측정할 수 있다.
도 8은 본 발명의 제2실시예에 따른 지열을 이용한 히트펌프 시스템의 난방 운전시 시간에 따른 제1유체의 온도변화를 나타낸 그래프이다.
도 8을 참조하면, 상기 펌프(30)가 온되는 시점(T1)과 상기 히트펌프(20)가 온되는 시점(T2)은 상기 제1설정시간(ΔT1)만큼 시간차가 있다. 상기 제1설정시간(ΔT1)은 2분 내지 3분인 것으로 예를 들어 설명한다.
상기 펌프(30)만이 온된 이후 상기 제1설정시간(ΔT1) 동안, 상기 히트펌프(20)로 유입되는 제1유체의 유입온도(tin)는 거의 일정하나, 상기 히트펌프(20)에서 토출되는 제1유체의 토출온도(tout)는 서서히 증가하는 것을 알 수 있다.
이후, 상기 히트펌프(20)가 온되는 시점(T2)부터 오프되는 시점(T3)까지 상기 히트펌프(20)에서 토출되는 제1유체의 토출온도(tout)는 소정의 온도까지 증가한 후 일정한 온도를 유지한다.
또한, 상기 히트펌프(20)가 오프되는 시점(T3)과 상기 펌프(30)가 오프되는 시점(T4)은 상기 제2설정시간(ΔT2)만큼 시간차가 있다. 상기 제2설정시간(ΔT2)은 2분 내지 3분인 것으로 예를 들어 설명한다. 상기 제1,2설정시간은 실험 등에 의해 미리 설정될 수 있다.
상기 히트펌프(20)가 오프된 이후 상기 제2설정시간(ΔT2) 동안, 상기 히트펌프(20)에서 토출되는 제1유체의 토출온도(tout)는 점차 증가하다가 상기 제1유체의 유입온도(tin)와 비슷한 상태를 유지하고, 상기 제1유체의 유입온도(tin)는 거의 일정한 상태를 유지한다.
도 9는 본 발명의 제2실시예에 따른 지열을 이용한 히트펌프 시스템의 난방 운전시 시간에 따른 생산 열량의 변화를 나타낸 그래프이다.
도 9를 참조하면, 상기 펌프(30)만이 온된 이후 상기 제1설정시간(ΔT1) 동안, 상기 히트펌프(20)의 생산 열량(Q‘)는 서서히 증가하나 0보다 낮은 값인 것을 알 수 있다. 즉, 상기 제1설정시간(ΔT1) 동안은 상기 히트펌프(20)가 구동되지 않기 때문에, 상기 생산 열량(Q‘)는 마이너스 값이다.
상기 제1설정시간(ΔT1)이 경과하여 상기 히트펌프(20)가 구동되면, 상기 히트펌프(20)에서 상기 제1유체가 열교환되어 가열되므로 상기 제1유체의 토출온도(tout)가 높아진다. 따라서, 상기 생산 열량(Q‘)은 일정값 이상으로 상승하는 것을 알 수 있다.
상기 히트펌프(20)가 오프된 이후 상기 제2설정시간(ΔT2) 동안, 상기 히트펌프(20)의 생산 열량(Q‘)는 점차 감소하다가 일정값을 유지한다. 상기 제2설정시간(ΔT2) 동안은 상기 히트펌프(20)가 구동되지 않으나 상기 펌프(30)는 구동되는 상태이기 때문에, 상기 생산 열량(Q‘)는 점차 감소한다.
상기 제2설정시간(ΔT2)이 경과하여 상기 펌프(30)까지 오프되면, 상기 생산 열량(Q‘)는 0이 된다.
따라서, 난방 운전시, 본 발명의 제2실시예에 따른 상기 히트펌프(20)의 생산 열량(Q‘)을 계산하는 방법은 다음과 같다.
상기 히트펌프(20)를 온시킨 시점(T2)부터 상기 생산 열량(Q‘)을 측정하여 적산한다.
상기 히트펌프(20)를 오프시키면, 시간이 갈수록 상기 제1유체의 유입온도(tin)와 토출온도(tout)의 차이가 점차 줄어들게 된다.
따라서, 상기 히트펌프(20)를 오프시킨 이후, 상기 제1유체의 유입온도(tin)와 토출온도(tout)의 차이가 미리 설정된 설정온도(Δtmin)이상인 시점(T5)까지 상기 생산 열량(Q‘)을 측정하여 적산한다.
즉, 상기 생산 열량(Q‘)의 측정시간(ΔT’real)은, 상기 히트펌프(20)를 온시킨 시점부터(T2)부터 상기 제1유체의 유입온도(tin)와 토출온도(tout)의 차이가 미리 설정된 설정온도(Δtmin)이상인 시점(T5)까지로 설정된다.
상기 제1유체의 유입온도(tin)와 토출온도(tout)의 차이가 미리 설정된 설정온도(Δtmin)미만이면, 생산열량의 적산을 중지한다. 여기서, 상기 설정온도(Δtmin)는 약 5도인 것으로 예를 들어 설명한다.
상기 히트펌프(20)를 오프시킨 이후에 상기 제1유체의 토출온도(tout)는 점차 감소하며, 상기 생산 열량(Q‘)도 감소하나 소정의 값 이상을 갖기 때문에, 상기 제1유체의 유입온도(tin)와 토출온도(tout)의 차이가 상기 설정온도(Δtmin)일 때까지는 상기 생산 열량(Q‘)을 인정한다.
한편, 상기 제1유체의 유입온도(tin)와 토출온도(tout)의 차이가 상기 설정온도(Δtmin)미만이면, 상기 생산 열량(Q’)이 매우 작다고 판단하여 무시할 수 있다.
따라서, 상기 생산 열량(Q’)을 계산하여 적산하는 시간을 상기 히트펌프(20)가 온되는 시점(T2)부터 상기 제1유체의 유입온도(tin)와 토출온도(tout)의 차이가 미리 설정된 설정온도(Δtmin)이상인 시점(T5)까지로 설정함으로써, 생산 열량(Q’)을 보다 정확하게 측정할 수 있다.
한편, 상기 히트펌프 시스템의 효율(η)을 구하는 방법은 다음과 같다.
상기 펌프(30)를 온시킨 시점(T1)부터 상기 펌프(30)를 오프시키는 시점(T2)까지 소모된 동력(P)을 계산한다. 상기 동력(P)은, 상기 펌프(30)와 상기 히트펌프(20)를 구동하는데 소모된 동력을 포함한다.
상기에서 계산된 생산 열량(Qreal)을 상기 동력(P)으로 나누면, 상기 히트펌프 시스템의 효율(η)을 알 수 있다.
도 10은 본 발명의 제3실시예에 따른 지열을 이용한 히트펌프 시스템의 개략적인 구성도이다.
도 10을 참조하면, 본 발명의 제3실시예에 따른 지열을 이용한 히트펌프 시스템은, 상기 히트펌프(20)로 유입되기 이전의 제1유체 중 일부를 상기 히트펌프(20)의 토출측으로 바이패스시키는 바이패스유로(60)와, 삼방밸브(61)를 더 포함하는 것이 상기 제1실시예와 상이하고 그 외 나머지 구성 및 작용은 유사하므로, 상이한 구성에 대해서 상세히 설명한다.
상기 바이패스유로(60)는, 상기 유입유로(21)에서 분기되어 상기 토출유로(22)로 연결된다.
상기 삼방밸브(61)는, 상기 유입유로(21)에서 상기 바이패스유로(60)가 분기되는 지점에 설치된다.
냉방 운전시, 상기 제어부(미도시)는, 상기 히트펌프(20)로 유입되기 이전의 제1유체의 유입온도를 미리 설정된 최저설정온도와 비교한다.
상기 제1유체의 유입온도가 상기 최저설정온도 미만이면, 상기 삼방밸브(61)가 상기 바이패스유로(60)를 개방하도록 제어한다. 상기 제1유체 중 일부를 상기 바이패스유로(60)로 유입시킨다.
상기 바이패스유로(60)로 유입된 제1유체는 상기 히트펌프(20)에서 냉각되지 않으므로, 상기 토출유로(22)상의 제1유체의 온도가 높아지게 된다.
상기 토출유로(22)의 제1유체의 온도가 높아지면, 상기 토출유로(22)를 통해 상기 열수요처(40)로 공급되었다가 다시 상기 유입유로(21)로 유입되는 제1유체의 온도가 상승하게 된다.
따라서, 상기 유입유로(21)로 유입되는 제1유체의 온도가 상기 최저설정온도 이상으로 상승하면, 상기 제어부는 상기 바이패스유로(60)를 다시 차폐시킨다.
상기 히트펌프(20)로 유입되기 이전의 제1유체의 온도가 상기 최저설정온도 이상으로 확보될 수 있으므로, 상기 히트펌프(20)의 실내 열교환기의 열교환 효율이 향상될 수 있다. 즉, 상기 히트펌프(20)로 유입되기 이전의 제1유체의 온도가 상기 최저설정온도 미만이면, 상기 히트펌프(20)의 실내 열교환기의 열교환 효율이 떨어지므로, 이를 방지할 수 있다.
따라서, 상기 히트펌프(20)로 유입되기 이전의 제1유체의 온도가 상기 최저설정온도 이상으로 일정하게 유지시킨 후, 상기 제1실시예 또는 상기 제2실시예에 따른 방법을 이용하여 생산 열량과 효율을 구할 수 있다.
한편, 난방 운전시, 상기 제어부(미도시)는, 상기 히트펌프(20)로 유입되기 이전의 제1유체의 유입온도를 미리 설정된 최고설정온도와 비교한다.
상기 제1유체의 유입온도가 상기 최고설정온도를 초과하면, 상기 삼방밸브(61)가 상기 바이패스유로(60)를 개방하도록 제어한다. 따라서, 상기 제1유체 중 일부를 상기 바이패스유로(60)로 유입된다.
상기 바이패스유로(60)로 유입된 제1유체는 상기 히트펌프(20)에서 가열되지 않으므로, 상기 토출유로(22)상의 제1유체의 온도가 낮아지게 된다.
상기 토출유로(22)의 제1유체의 온도가 낮아지면, 상기 토출유로(22)를 통해 상기 열수요처(40)로 공급되었다가 다시 상기 유입유로(21)로 유입되는 제1유체의 온도가 감소하게 된다.
따라서, 상기 유입유로(21)로 유입되는 제1유체의 온도가 상기 최고설정온도 이하로 낮아지면, 상기 제어부는 상기 바이패스유로(60)를 다시 차폐시킨다.
상기 히트펌프(20)로 유입되기 이전의 제1유체의 온도가 상기 최고설정온도 이하로 확보될 수 있으므로, 상기 히트펌프(20)의 실내 열교환기의 열교환 효율이 향상될 수 있다. 즉, 상기 히트펌프(20)로 유입되기 이전의 제1유체의 온도가 상기 최고설정온도 이상이면, 상기 히트펌프(20)의 실내 열교환기의 열교환 효율이 떨어지므로, 이를 방지할 수 있다.
따라서, 상기 히트펌프(20)로 유입되기 이전의 제1유체의 온도가 상기 최고설정온도 미만으로 일정하게 유지시킨 후, 상기 제1실시예 또는 상기 제2실시예에 따른 방법을 이용하여 생산 열량과 효율을 구할 수 있다.
상기 제1유체의 유입온도를 일정하게 유지하면서 생산 열량을 측정할 수 있으므로, 보다 신속하게 정확하게 생산 열량을 계산할 수 있는 이점이 있다.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.
본 발명에 따르면, 생산 열량과 효율을 보다 정확하게 계산함으로써 지열 에너지의 이용을 보다 용이하게 확인하여 지열을 이용하는 히트펌프 시스템를 구현할 수 있다.

Claims (10)

  1. 지중 열교환기로부터 열원을 제공받고 열수요처로 열원을 제공하는 히트펌프와, 상기 히트펌프와 상기 열수요처를 순환하는 제1유체를 펌핑하는 펌프를 포함하는 지열을 이용하는 히트펌프 시스템에 있어서,
    상기 펌프를 온시킨 후, 제1설정 시간이 지나면 상기 히트펌프를 온시키는 단계와;
    상기 히트펌프를 온시킨 시점부터 상기 히트펌프로 유입되는 제1유체의 유입온도, 상기 히트펌프로부터 토출되는 상기 제1유체의 토출온도 및 상기 제1유체의 유량을 측정하여, 상기 히트펌프의 생산 열량을 실시간으로 계산하고 적산하는 단계와;
    상기 히트펌프를 오프시키면, 상기 히트펌프의 생산 열량의 적산을 중지하는 단계를 포함하는 지열을 이용하는 히트펌프 시스템의 생산 열량 및 효율을 계산하는 방법.
  2. 청구항 1에 있어서,
    상기 히트펌프를 오프시킨 후 제2설정시간이 지나면, 상기 펌프를 오프시키는 단계를 더 포함하는 지열을 이용하는 히트펌프 시스템의 생산 열량 및 효율을 계산하는 방법.
  3. 청구항 2에 있어서,
    상기 펌프를 온시킨 시점부터 상기 펌프를 오프시키기 이전까지 상기 펌프와 상기 히트펌프를 작동시키는 데 소모된 동력을 계산하는 단계와;
    상기 계산된 히트펌프의 생산 열량과 상기 계산된 동력을 이용하여, 상기 히트펌프 시스템의 효율을 계산하는 단계를 포함하는 지열을 이용하는 히트펌프 시스템의 생산 열량 및 효율을 계산하는 방법.
  4. 청구항 1에 있어서,
    냉방 운전시 상기 제1유체의 유입온도가 미리 설정된 최저설정온도 미만이면, 상기 히트펌프로 유입되기 이전의 제1유체 중 일부를 상기 히트펌프의 토출측으로 바이패스시키는 지열을 이용하는 히트펌프 시스템의 생산 열량 및 효율을 계산하는 방법.
  5. 청구항 4에 있어서,
    난방 운전시 상기 제1유체의 유입온도가 미리 설정된 최고설정온도를 초과하면, 상기 히트펌프로 유입되기 이전의 제1유체 중 일부를 상기 히트펌프의 토출측으로 바이패스시키는 지열을 이용하는 히트펌프 시스템의 생산 열량 및 효율을 계산하는 방법.
  6. 지중 열교환기로부터 열원을 제공받고 열수요처로 열원을 제공하는 히트펌프와, 상기 히트펌프와 상기 열수요처를 순환하는 유체를 펌핑하는 펌프를 포함하는 지열을 이용하는 히트펌프 시스템에 있어서,
    상기 펌프를 온시킨 후, 제1설정 시간이 지나면 상기 히트펌프를 온시키는 단계와;
    상기 히트펌프를 온시킨 시점부터 상기 히트펌프로 유입되는 상기 제1유체의 유입온도, 상기 히트펌프로부터 토출되는 상기 제1유체의 토출온도 및 상기 제1유체의 유량을 측정하여, 상기 히트펌프의 생산 열량을 실시간으로 계산하고 적산하는 단계와;
    상기 히트펌프를 오프시킨 후 상기 제1유체의 유입온도와 토출온도의 차가 미리 설정된 설정온도 미만이면, 상기 히트펌프의 생산 열량의 적산을 중지하는 단계를 포함하는 지열을 이용하는 히트펌프 시스템의 생산 열량 및 효율을 계산하는 방법.
  7. 청구항 6에 있어서,
    상기 히트펌프를 오프시킨 후 제2설정시간이 지나면, 상기 펌프를 오프시키는 단계를 더 포함하는 지열을 이용하는 히트펌프 시스템의 생산 열량 및 효율을 계산하는 방법.
  8. 청구항 7에 있어서,
    상기 펌프를 온시킨 시점으로부터 상기 펌프를 오프시키기 이전까지 상기 펌프와 상기 히트펌프를 작동시키는 데 소모된 동력을 계산하는 단계와;
    상기 계산된 히트펌프의 생산 열량과 상기 계산된 동력을 이용하여, 상기 히트펌프 시스템의 효율을 계산하는 단계를 포함하는 지열을 이용하는 히트펌프 시스템의 생산 열량 및 효율을 계산하는 방법.
  9. 청구항 8에 있어서,
    냉방운전시 상기 제1유체의 유입온도가 미리 설정된 설정온도 미만이면, 상기 히트펌프로 유입되기 이전의 제1유체 중 일부를 상기 히트펌프의 토출측으로 바이패스시키는 지열을 이용하는 히트펌프 시스템의 생산 열량 및 효율을 계산하는 방법.
  10. 청구항 9에 있어서,
    난방 운전시 상기 제1유체의 유입온도가 미리 설정된 최고설정온도를 초과하면, 상기 히트펌프로 유입되기 이전의 제1유체 중 일부를 상기 히트펌프의 토출측으로 바이패스시키는 지열을 이용하는 히트펌프 시스템의 생산 열량 및 효율을 계산하는 방법.
PCT/KR2016/015158 2016-12-22 2016-12-23 지열을 이용하는 히트펌프 시스템의 생산 열량과 효율의 계산 방법 WO2018117307A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0176345 2016-12-22
KR1020160176345A KR101926642B1 (ko) 2016-12-22 2016-12-22 지열을 이용하는 히트펌프 시스템의 생산 열량과 효율의 계산 방법

Publications (1)

Publication Number Publication Date
WO2018117307A1 true WO2018117307A1 (ko) 2018-06-28

Family

ID=62626738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/015158 WO2018117307A1 (ko) 2016-12-22 2016-12-23 지열을 이용하는 히트펌프 시스템의 생산 열량과 효율의 계산 방법

Country Status (2)

Country Link
KR (1) KR101926642B1 (ko)
WO (1) WO2018117307A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102018132B1 (ko) * 2018-08-23 2019-10-14 주식회사 인터텍 지중 열교환식 냉난방 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003185253A (ja) * 2001-12-14 2003-07-03 Denso Corp ヒートポンプ式給湯装置
JP2009121772A (ja) * 2007-11-16 2009-06-04 Hitachi Appliances Inc ヒートポンプ給湯装置
KR100952591B1 (ko) * 2009-12-11 2010-04-15 주식회사 디씨아이 신재생에너지 제어기능을 내장한 통합제어장치
JP2011033284A (ja) * 2009-08-03 2011-02-17 Hitachi Appliances Inc 電気給湯機
KR20140108818A (ko) * 2013-02-28 2014-09-15 한국에너지기술연구원 Ict 기반 지열원 히트펌프 시스템 및 그 성능 진단 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100740257B1 (ko) * 2006-08-28 2007-07-16 제인상사(주) 지열원식 냉난방 히트펌프 시스템의 상태 감시 및 열성능평가 방법
KR20100108056A (ko) * 2009-03-27 2010-10-06 한밭대학교 산학협력단 지열 열펌프 시스템의 실시간 성능평가방법 및 이를 구현한평가기기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003185253A (ja) * 2001-12-14 2003-07-03 Denso Corp ヒートポンプ式給湯装置
JP2009121772A (ja) * 2007-11-16 2009-06-04 Hitachi Appliances Inc ヒートポンプ給湯装置
JP2011033284A (ja) * 2009-08-03 2011-02-17 Hitachi Appliances Inc 電気給湯機
KR100952591B1 (ko) * 2009-12-11 2010-04-15 주식회사 디씨아이 신재생에너지 제어기능을 내장한 통합제어장치
KR20140108818A (ko) * 2013-02-28 2014-09-15 한국에너지기술연구원 Ict 기반 지열원 히트펌프 시스템 및 그 성능 진단 방법

Also Published As

Publication number Publication date
KR101926642B1 (ko) 2018-12-10
KR20180073733A (ko) 2018-07-03

Similar Documents

Publication Publication Date Title
WO2018117399A1 (ko) 리큐퍼레이터를 이용한 스팀 생산 히트펌프 시스템
WO2017023127A1 (ko) 공기조화기의 제어방법
WO2018012818A1 (ko) 차량용 히트 펌프 시스템
EP3245453A1 (en) Air conditioning system
WO2017069472A1 (ko) 공기조화기 및 그 제어방법
WO2022055202A1 (ko) 에어컨 실외기 보조냉각장치용 전기 어댑터 방식의 제어기
WO2011062348A1 (en) Heat pump
WO2020040418A1 (ko) 열관리 시스템
WO2018006657A1 (zh) 半导体激光器及其温度控制方法
WO2016006872A1 (en) Chiller
WO2011145779A1 (en) Hot water supply device associated with heat pump
WO2016003028A1 (ko) 복합 열원을 이용한 히트펌프 냉난방 시스템 및 그의 제어방법
WO2024106748A1 (ko) 연료전지 배열 활용 고효율 일체형 흡수식 냉방시스템
WO2021154034A1 (ko) 차온 제어 장치에 의한 태양열 과열 및 동파 방지 시스템
WO2018117307A1 (ko) 지열을 이용하는 히트펌프 시스템의 생산 열량과 효율의 계산 방법
WO2019146999A1 (ko) 배터리 셀 스웰링 탐지 시스템 및 방법
WO2020055103A1 (ko) 가스 난방기의 제어 방법
WO2011062349A1 (ko) 히트 펌프
WO2018176332A1 (zh) 压缩机控制方法和装置
WO2017018559A1 (ko) 건설기계용 요소수의 냉각, 히팅장치 및 그 제어방법
WO2020209474A1 (en) Air conditioning apparatus
WO2019066409A1 (ko) 온수 공급 방법, 온수 공급 장치 및 이를 포함하는 정수기
WO2020197052A1 (en) Air conditioning apparatus
WO2019088314A1 (ko) 지열을 이용하는 히트펌프 시스템의 생산 열량과 효율의 계산 방법
WO2019221315A1 (ko) 지열을 이용하는 브라인-냉매 방식 히트펌프 시스템의 열량 계산 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16924480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16924480

Country of ref document: EP

Kind code of ref document: A1