WO2018117207A1 - ユーザ端末及び無線通信方法 - Google Patents

ユーザ端末及び無線通信方法 Download PDF

Info

Publication number
WO2018117207A1
WO2018117207A1 PCT/JP2017/045869 JP2017045869W WO2018117207A1 WO 2018117207 A1 WO2018117207 A1 WO 2018117207A1 JP 2017045869 W JP2017045869 W JP 2017045869W WO 2018117207 A1 WO2018117207 A1 WO 2018117207A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
reference signal
signal
unit
measurement
Prior art date
Application number
PCT/JP2017/045869
Other languages
English (en)
French (fr)
Inventor
良介 大澤
一樹 武田
浩樹 原田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2018558064A priority Critical patent/JPWO2018117207A1/ja
Priority to US16/471,097 priority patent/US11711189B2/en
Publication of WO2018117207A1 publication Critical patent/WO2018117207A1/ja
Priority to JP2022196066A priority patent/JP7401637B2/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2646Arrangements specific to the transmitter only using feedback from receiver for adjusting OFDM transmission parameters, e.g. transmission timing or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • H04L5/0041Frequency-non-contiguous
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/26524Fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators in combination with other circuits for demodulation
    • H04L27/26526Fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators in combination with other circuits for demodulation with inverse FFT [IFFT] or inverse DFT [IDFT] demodulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] receiver or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/16Deriving transmission power values from another channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to a user terminal and a wireless communication method in a next generation mobile communication system.
  • LTE Long Term Evolution
  • LTE-A also referred to as LTE Advanced, LTE Rel. 10, 11 or 12
  • LTE has been specified for the purpose of further widening and speeding up from LTE (also referred to as LTE Rel. 8 or 9), and LTE.
  • Successor systems for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), NR (New Radio), NX (New radio access), FX (Future generation radio access), LTE Rel. 13, 14 or Also referred to as after 15).
  • CA Carrier Aggregation
  • CC Component Carrier
  • UE User Equipment
  • DC Dual Connectivity
  • CG Cell Group
  • CC Cell Center
  • Inter-eNB CA inter-base station CA
  • LTE Rel. frequency division duplex (FDD) in which downlink (DL) transmission and uplink (UL: Uplink) transmission are performed in different frequency bands, and downlink transmission and uplink transmission are in the same frequency band.
  • Time Division Duplex (TDD) which is performed by switching over time, is introduced.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • Future wireless communication systems for example, 5G, NR are expected to realize various wireless communication services to meet different requirements (for example, ultra-high speed, large capacity, ultra-low delay, etc.) Yes.
  • NR is considering the provision of wireless communication services called eMBB (enhanced Mobile Broad Band), mMTC (massive Machine Type Communication), URLLC (Ultra Reliable and Low Latency Communications), and the like.
  • eMBB enhanced Mobile Broad Band
  • mMTC massive Machine Type Communication
  • URLLC Ultra Reliable and Low Latency Communications
  • NR is studying support for two types of transmission-based waveforms for the uplink. One of them is a multicarrier transmission system, and the other is a single carrier transmission system.
  • a measurement reference signal (SRS: Sounding Reference Signal) is transmitted for channel measurement.
  • SRS Sounding Reference Signal
  • the SRS in the existing LTE has a problem that the overhead is increased because the use of resources is limited by the single carrier transmission method. Such overhead may cause a decrease in frequency use efficiency and a decrease in communication throughput.
  • This invention is made in view of this point, and provides the user terminal and radio
  • a user terminal is different from a reception unit that receives a downlink control signal that schedules transmission of a data signal according to a waveform based on a single carrier transmission scheme, and an uplink measurement reference signal used in an existing LTE. And a transmitter that transmits a measurement reference signal having a wider transmission bandwidth than the data signal using the waveform based on the single carrier transmission method.
  • FIG. 1 is a diagram illustrating an example of SRS resource allocation used in existing LTE.
  • FIG. 2 is a diagram illustrating an example of the extended reference signal.
  • FIG. 3 is a diagram illustrating an example of transmitting the extended reference signal by B-IFDMA.
  • FIG. 4 is a diagram illustrating an example of transmission power control of existing LTE.
  • 5A and 5B are diagrams illustrating an example of presence / absence of precoding of an extended reference signal.
  • 6A and 6B are diagrams illustrating an example of a reference signal for measurement transmitted by CP-OFDM.
  • FIG. 7 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment of the present invention.
  • FIG. 8 is a diagram illustrating an example of the overall configuration of a radio base station according to an embodiment of the present invention.
  • FIG. 9 is a diagram illustrating an example of a functional configuration of a radio base station according to an embodiment of the present invention.
  • FIG. 10 is a diagram illustrating an example of an overall configuration of a user terminal according to an embodiment of the present invention.
  • FIG. 11 is a diagram illustrating an example of a functional configuration of a user terminal according to an embodiment of the present invention.
  • FIG. 12 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
  • NR intends to support two different transmission schemes (which may be called multiplexing schemes, modulation schemes, access schemes, waveform schemes, etc.) based waveforms, at least for the uplink for eMBB applications.
  • These two types of waveforms are specifically cyclic prefix OFDM (CP-OFDM: Cyclic Prefix Orthogonal Frequency Division Multiplexing) based waveform and DFT spread OFDM (DFT-S-OFDM: Discrete Fourier Transform Spread Orthogonal Division Division Multiplexing) This is the base waveform.
  • CP-OFDM Cyclic Prefix Orthogonal Frequency Division Multiplexing
  • DFT-S-OFDM Discrete Fourier Transform Spread Orthogonal Division Division Multiplexing
  • the waveform may be characterized by whether or not DFT precoding (spreading) is applied to the OFDM waveform.
  • DFT precoding spreading
  • CP-OFDM may be referred to as a waveform (signal) to which DFT precoding is not applied
  • DFT-S-OFDM may be referred to as a waveform (signal) to which DFT precoding is applied.
  • waveform may be read as “waveform signal”, “signal following waveform”, “signal waveform”, “signal”, or the like.
  • a network such as a base station (also called gNB) may instruct the UE whether to use a CP-OFDM based waveform or a DFT-S-OFDM based waveform (or waveform switching).
  • the instruction may be notified to the UE by upper layer signaling, physical layer signaling (for example, downlink control information (DCI)) or a combination thereof.
  • DCI downlink control information
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MIB Master Information Block
  • SIB System Information Block
  • a measurement reference signal (SRS: Sounding Reference Signal) is transmitted for channel measurement.
  • the SRS includes a periodic SRS transmitted at a predetermined period and an aperiodic SRS triggered by DCI.
  • FIG. 1 is a diagram illustrating an example of SRS resource allocation used in existing LTE.
  • frequency regions at both ends of the system bandwidth may be used for resources of an uplink control channel (PUCCH: Physical Uplink Control Channel). Resource allocation may be performed in units of resource blocks (RBs). Further, the frequency region other than the PUCCH may be used as an uplink shared channel (PUSCH: Physical Uplink Shared Channel) resource.
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • the final symbol of the subframe may be used as an SRS resource.
  • the SRS is assigned to a frequency region overlapping with the PUSCH, but is not limited thereto.
  • the SRS may overlap with the PUCCH or may be transmitted over the system bandwidth.
  • the SRS in the existing LTE must be allocated to continuous frequency and / or time resources due to limitations of DFT-S-OFDM.
  • the broadband SRS has a large frequency overhead because transmission is performed in a wide band (for example, almost the entire system band).
  • the narrowband SRS hops a narrowband SRS and covers a wide band by a plurality of SRS transmissions, so that a long time is required for measurement (sounding), and the time overhead is large. Such overhead may cause a decrease in frequency use efficiency and a decrease in communication throughput.
  • the present inventors have conceived a method in which a signal sharing resources with other reference signals is used as a measurement reference signal. Thereby, even when DFT-S-OFDM is used, it is possible to reduce resources necessary for the measurement reference signal. In addition, flexible scheduling can be realized.
  • a predetermined reference signal is extended to a band wider than the transmission bandwidth of the data signal (for example, PUSCH allocation bandwidth) and used for measurement purposes.
  • the predetermined reference signal may be referred to as a band extension reference signal, a new measurement reference signal, an extension reference signal, or the like.
  • the extended reference signal is a reference signal different from the SRS used in the existing LTE (for example, LTE Rel. 13), and the uplink reference signal (for example, the demodulation reference signal (DMRS: DeModulation Reference Signal) used in the existing LTE. )), Downlink reference signals used in the existing LTE (for example, cell-specific reference signal (CRS), channel state information reference signal (CSI-RS: Channel State Information-Reference Signal)), other Based on at least one of new reference signals (for example, a reference signal for beam identification (beam-specific RS (BSR), a phase tracking reference signal (PT-RS)) May be a signal.
  • DMRS Demodulation Reference Signal
  • CSI-RS Channel State Information-Reference Signal
  • the extended reference signal may be referred to as a reference signal that shares at least some resources with other reference signals. Further, the extended reference signal may be referred to as a reference signal transmitted in a predetermined subframe other than the last symbol.
  • the UE may or may not transmit an existing SRS by DFT-S-OFDM.
  • other signals for example, data signals
  • the frequency utilization efficiency can be improved.
  • FIG. 2 is a diagram illustrating an example of an extended reference signal.
  • the normal DMRS transmission bandwidth is the same as the PUSCH transmission bandwidth.
  • the transmission bandwidth of the expanded DMRS (DMRS for measurement) may be larger than the PUSCH transmission bandwidth, and may have the same transmission bandwidth as, for example, an existing SRS.
  • the sequence of the extended reference signal may be obtained by increasing the sequence length so that the base reference signal sequence can correspond to the transmission bandwidth of the extended reference signal.
  • Part or all of the extended reference signal sequence may be configured by a sequence different from the base reference signal sequence.
  • the extended reference signal is configured to assign a base reference signal sequence to a region of the PUSCH transmission bandwidth, and to assign a sequence different from the base reference signal sequence to a region that does not overlap with the PUSCH transmission bandwidth. Also good. Further, the extended reference signal may be configured to assign a base reference signal sequence to a region of the PUSCH transmission bandwidth and assign a copy of the base reference signal sequence to a region that does not overlap with the PUSCH transmission bandwidth. Good.
  • the extended reference signal sequence (and the base reference signal sequence) may be generated from a sequence over a wide band (for example, a system band). For example, when the UE does not extend the reference signal (that is, when the base reference signal is transmitted within the PUSCH bandwidth), the UE may transmit a part of the sequence over the wide band (for example, the PUSCH bandwidth). Alternatively, when the reference signal is extended (that is, when the base reference signal is transmitted beyond the PUSCH bandwidth), the entire sequence over the wide band may be transmitted. According to such a configuration, for example, by generating an uplink reference signal and a downlink reference signal from a sequence over the same wide band, it is possible to relatively easily reduce interference between these reference signals.
  • a wide band for example, a system band
  • the transmission bandwidth of the extended reference signal may be notified (instructed) by the UL grant.
  • the PUSCH bandwidth and the bandwidth of the extended reference signal may be notified separately by UL grant.
  • the UE may transmit the PUSCH and the extended reference signal according to each bandwidth. Further, the transmission bandwidth of the extended reference signal may be notified by higher layer signaling (for example, RRC signaling) or may be determined by specifications.
  • the transmission bandwidth of the extended reference signal may be notified by a value including the PUSCH bandwidth (for example, the sum of the transmission bandwidth of the extended reference signal and the PUSCH bandwidth), or a value excluding the PUSCH bandwidth. (For example, a value obtained by subtracting the PUSCH bandwidth from the transmission bandwidth of the extended reference signal) may be notified.
  • the transmission timing of the extended reference signal may be notified by UL grant, may be set by higher layer signaling (for example, RRC signaling), or may be determined by specifications.
  • the information on the transmission timing of the extended reference signal may be information instructing transmission after a predetermined time (for example, 4 subframes) after a predetermined signal (for example, UL grant), or transmission of the extended reference signal It may be information indicating a period, timing offset (for example, subframe offset), or the like.
  • both the transmission bandwidth and the transmission timing of the extended reference signal may be notified by the UL grant. Further, when the transmission bandwidth of the extended reference signal is determined in advance by upper layer signaling or specifications, only the transmission timing may be notified by the UL grant.
  • the UE may transmit the extended reference signal according to the notification, setting, or determined transmission timing.
  • the UE is notified when the correspondence between the transmission bandwidth and / or transmission timing candidate of the extended reference signal and the predetermined index is notified by upper layer signaling (for example, RRC signaling) or defined in the specification.
  • the transmission bandwidth and / or transmission timing of the extended reference signal may be determined based on the index and the correspondence relationship.
  • the index may be notified by DCI (for example, UL grant) or may be notified by higher layer signaling (for example, RRC signaling).
  • the predetermined reference signal for a specific period (for example, a specific symbol) Only the extended reference signal may be used, or all the predetermined reference signals may be used as the extended reference signal.
  • the TTI may be a period corresponding to one or more subframes, one or more slots, one or more minislots, and the like.
  • the specific period is determined by higher layer signaling (for example, RRC signaling), physical layer signaling (for example, DCI (for example, UL grant)), or a combination thereof.
  • RRC signaling for example, RRC signaling
  • physical layer signaling for example, DCI (for example, UL grant)
  • the UE may be notified or may be defined in the specification.
  • the extended reference signal may be transmitted in a period (that is, a period in which no PUSCH is transmitted) that does not overlap with a predetermined period (for example, a subframe, a slot, a minislot, or the like) in which transmission of PUSCH is scheduled by the UL grant. Good.
  • B-IFDMA block interleaved frequency division multiple access
  • B-IFDMA is a scheme in which transmission signals are distributed and arranged in a plurality of blocks allocated at equal intervals in the frequency direction in a predetermined period (for example, a symbol). Each block is composed of a predetermined frequency region (for example, one or more subcarriers, which may be called a block bandwidth).
  • PAPR (which can be read as cubic metric) is larger than when DFT-S-OFDM is used, but the increase in PAPR is suppressed compared to when CP-OFDM is used. However, the resources used can be reduced.
  • FIG. 3 is a diagram showing an example of transmitting the extended reference signal by B-IFDMA.
  • An extended reference signal transmitted using B-IFDMA is a predetermined frequency band interval (for example, an interval represented by a plurality of subcarriers, one or more RBs, etc., and may be called a block interval).
  • the transmission is allocated to a bandwidth wider than the PUSCH transmission bandwidth.
  • Information on the B-IFDMA pattern (for example, block bandwidth, block interval, etc.) regarding the extended reference signal may be notified (indicated) by the UL grant.
  • information on the PUSCH bandwidth and the B-IFDMA pattern may be notified separately by UL grant.
  • the UE may transmit the extended reference signal using B-IFDMA according to the information of the B-IFDMA pattern. Further, the information on the B-IFDMA pattern may be notified by higher layer signaling (for example, RRC signaling) or may be defined in the specification.
  • the transmission timing of the extended reference signal using B-IFDMA may be notified by UL grant, may be set by higher layer signaling (for example, RRC signaling), or may be determined by specifications. For example, both the B-IFDMA pattern and the transmission timing may be notified by the UL grant. Further, when the B-IFDMA pattern is determined in advance by higher layer signaling or specifications, only the transmission timing may be notified by the UL grant.
  • higher layer signaling for example, RRC signaling
  • the UE When the correspondence between a B-IFDMA pattern and / or transmission timing candidate and a predetermined index is notified by upper layer signaling (for example, RRC signaling) or defined in the specification, the UE is notified of the index. And the B-IFDMA pattern and / or transmission timing may be determined based on the correspondence relationship.
  • the index may be notified by DCI (for example, UL grant) or may be notified by higher layer signaling (for example, RRC signaling).
  • FIG. 4 is a diagram illustrating an example of transmission power control of existing LTE.
  • LTE uplink transmission power control PUSCH transmission power control in FIG. 4
  • TPC transmission power control
  • the transmission power P PUSCH, c (i) of the PUSCH in the subframe i of the serving cell c is expressed by the following equation 1, for example.
  • Equation 1 P CMAX, c (i) is the maximum transmittable power (allowable maximum transmission power) of the UE in cell c, and M PUSCH, c (i) is the transmission bandwidth (number of resource blocks) of PUSCH.
  • J is an index indicating the scheduling type of PUSCH
  • P O_PUSCH P O_PUSCH
  • c (j) is a value indicating the target received power of PUSCH
  • ⁇ c (j) is a coefficient by which PL c is multiplied
  • ⁇ TF, c (i) is an offset value according to the transmission format
  • f c (i) is a correction value by the TPC command (for example, a cumulative value of the TPC command, Offset amount based on the TPC command).
  • P O_PUSCH, c (j), ⁇ c (j), etc. may be notified by broadcast information.
  • the parameters relating to the open loop control are M PUSCH, c (i), P O_PUSCH, c (j), ⁇ c (j), PL c, ⁇ TF, c (i).
  • the parameter relating to the closed loop control is f c (i). That is, the transmission power of PUSCH is determined by open loop control and closed loop control with the maximum transmittable power of the UE as an upper limit. Moreover, it is preferable that the transmission power of DMRS is the same as the transmission power of PUSCH.
  • the transmission power P SRS, c (i) of the SRS in the subframe i of the serving cell c is expressed by the following equation 2, for example.
  • Equation 2 P SRS_OFFSET, c (m) is an offset set by higher layer signaling, M SRS, c (i) is the transmission bandwidth (number of resource blocks) of SRS, and other parameters are Equation 1 It is the same.
  • the existing SRS transmission power is calculated independently of the PUSCH transmission power.
  • the UE may determine the transmission power of the extended reference signal based on the PUSCH transmission power. For example, the UE uses the extended reference signal based on the transmission bandwidth so that the power density of the transmission power of the extended reference signal is the same as the power density of the PUSCH transmission power (or the PUSCH transmission power plus an offset). May be adjusted. Also, the transmission power of the extended reference signal may be determined independently of the PUSCH transmission power.
  • the transmission power of the extended reference signal reaches the maximum transmittable power (for example, the maximum transmittable power for each CC) ahead of the PUSCH transmission power.
  • the UE may or may not increase the PUSCH transmission power up to the maximum transmittable power (for example, transmission determined by Equation 1). Power may be maintained). In the former case, the reception quality of the PUSCH can be improved, and in the latter case, the relative power between the extended reference signal and the PUSCH can be kept constant.
  • the base station calculates the path loss based on the power margin (also called Power Headroom (PH), UPH (UE Power Headroom), etc.) notified from the UE, and determines the TPC command. Do.
  • the UE transmits a power headroom report (PHR) including UPH.
  • PHR power headroom report
  • the UE may calculate the UPH based on the PUSCH transmission power and / or the PUSCH transmission bandwidth, and may be calculated based on the transmission power of the extended reference signal and / or the transmission bandwidth of the extended reference signal. You may calculate based on.
  • the extended reference signal is preferably transmitted without precoding. This is because the channel measurement result of the precoded signal deviates from the pure channel measurement result due to the effect of precoding.
  • 5A and 5B are diagrams illustrating an example of presence / absence of precoding of an extended reference signal.
  • FIG. 5A when PUSCH is precoded, it is assumed that DMRS is also precoded. However, even when DMRS is precoded, the extended reference signal may not be precoded. Good.
  • extended reference signals in some bands are precoded while extended reference signals in other bands are not precoded.
  • extended reference signals in other bands are not precoded.
  • FIG. 5B an extended reference signal whose frequency band overlaps with a band for transmitting PUSCH is precoded, while an extended reference signal transmitted in a band other than the band for transmitting PUSCH is not precoded. It is good.
  • Precoding on (precoded) or off (non-precoded) applied to the extended reference signal may be higher layer signaling (eg RRC signaling), physical layer signaling (eg The UE may be notified by DCI (UL grant, etc.) or a combination thereof, or may be defined in the specification.
  • higher layer signaling eg RRC signaling
  • physical layer signaling eg The UE may be notified by DCI (UL grant, etc.) or a combination thereof, or may be defined in the specification.
  • uplink channel measurement can be realized with low overhead by using an extended reference signal different from the existing SRS.
  • the base station determines DFT-S-OFDM scheduling (eg, resource allocation) based on the measurement reference signal (measurement result) transmitted by the UE using CP-OFDM. To do. In this case, since it is not necessary to transmit the measurement reference signal using DFT-S-OFDM, it is possible to reduce overhead when transmitting an existing SRS using DFT-S-OFDM.
  • DFT-S-OFDM scheduling eg, resource allocation
  • the UE may transmit an existing SRS using DFT-S-OFDM, or may transmit an extended reference signal as described in the first embodiment. One and both may not be transmitted.
  • the UE may transmit a reference signal for measurement allocated non-continuously in the frequency domain using CP-OFDM.
  • CP-OFDM may be transmitted by one or more symbols, or may be transmitted in a period of less than one symbol.
  • FIG. 6A and 6B are diagrams illustrating an example of a reference signal for measurement transmitted by CP-OFDM.
  • the UE may transmit a reference signal for measurement at a predetermined frequency interval (for example, a predetermined subcarrier interval) using CP-OFDM.
  • a predetermined frequency interval for example, a predetermined subcarrier interval
  • the UE when using the CP-OFDM, the UE, as shown in FIG. 6B, has a predetermined frequency bandwidth (for example, a bandwidth corresponding to one or more subcarriers, a bandwidth corresponding to one or more RBs, A measurement reference signal that is discontinuously arranged in one or more resource block groups (RBG: Resource Block Group) is transmitted at a predetermined frequency interval (for example, a predetermined RBG interval). Also good. For example, in the example of FIG. 6B, out of RBGs # 0 to # 3 each composed of 8 RBs, the measurement reference signal is discontinuously transmitted in RBGs # 1 and # 3, and in RBGs # 0 and # 2. Do not send measurement reference signals.
  • a predetermined frequency bandwidth for example, a bandwidth corresponding to one or more subcarriers, a bandwidth corresponding to one or more RBs
  • RBG Resource Block Group
  • the resources necessary for transmitting the measurement reference signal can be reduced.
  • CP-OFDM and DFT-S-OFDM have been described as examples of waveforms used by the UE, but are not limited thereto.
  • CP-OFDM may be replaced with a multicarrier transmission scheme
  • DFT-S-OFDM may be replaced with a single carrier transmission scheme.
  • wireless communication system Wireless communication system
  • communication is performed using any one or a combination of the wireless communication methods according to the above embodiments of the present invention.
  • FIG. 7 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment of the present invention.
  • carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied. can do.
  • DC dual connectivity
  • the wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced 4G (4th generation mobile communication system), 5G. (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system that realizes these.
  • the radio communication system 1 includes a radio base station 11 that forms a macro cell C1 having a relatively wide coverage, and a radio base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. It is equipped with. Moreover, the user terminal 20 is arrange
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 simultaneously by CA or DC. Moreover, the user terminal 20 may apply CA or DC using a plurality of cells (CC) (for example, 5 or less CCs, 6 or more CCs).
  • CC cells
  • Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (also referred to as an existing carrier or a legacy carrier).
  • a carrier having a relatively high frequency band for example, 3.5 GHz, 5 GHz, etc.
  • the same carrier may be used.
  • the configuration of the frequency band used by each radio base station is not limited to this.
  • a wired connection for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, etc.
  • a wireless connection It can be set as the structure to do.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point.
  • the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
  • Each user terminal 20 is a terminal that supports various communication schemes such as LTE and LTE-A, and may include not only a mobile communication terminal (mobile station) but also a fixed communication terminal (fixed station).
  • orthogonal frequency division multiple access (OFDMA) is applied to the downlink, and single carrier-frequency division multiple access (SC-FDMA) is used for the uplink.
  • SC-FDMA single carrier-frequency division multiple access
  • Frequency Division Multiple Access and / or OFDMA is applied.
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single-carrier transmission scheme that reduces interference between terminals by dividing the system bandwidth into bands consisting of one or continuous resource blocks for each terminal and using a plurality of terminals with mutually different bands. is there.
  • the uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
  • downlink channels include a downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like. Used. User data, higher layer control information, SIB (System Information Block), etc. are transmitted by PDSCH. Also, MIB (Master Information Block) is transmitted by PBCH.
  • PDSCH downlink shared channel
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • MIB Master Information Block
  • Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), and the like.
  • Downlink control information (DCI: Downlink Control Information) including PDSCH and / or PUSCH scheduling information is transmitted by the PDCCH.
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
  • the PHICH transmits HARQ (Hybrid Automatic Repeat reQuest) acknowledgment information (for example, retransmission control information, HARQ-ACK, ACK / NACK, etc.) to the PUSCH.
  • HARQ Hybrid Automatic Repeat reQuest
  • EPDCCH is frequency-division multiplexed with PDSCH (downlink shared data channel), and is used for transmission of DCI and the like in the same manner as PDCCH.
  • an uplink shared channel (PUSCH) shared by each user terminal 20
  • an uplink control channel (PUCCH: Physical Uplink Control Channel)
  • a random access channel (PRACH: Physical Random Access Channel)
  • User data, higher layer control information, etc. are transmitted by PUSCH.
  • downlink radio quality information (CQI: Channel Quality Indicator), delivery confirmation information, and the like are transmitted by PUCCH.
  • CQI Channel Quality Indicator
  • delivery confirmation information and the like are transmitted by PUCCH.
  • a random access preamble for establishing connection with a cell is transmitted by the PRACH.
  • a cell-specific reference signal CRS
  • CSI-RS channel state information reference signal
  • DMRS demodulation reference signal
  • PRS Positioning Reference Signal
  • a measurement reference signal SRS: Sounding Reference Signal
  • a demodulation reference signal DMRS
  • the DMRS may be referred to as a user terminal specific reference signal (UE-specific Reference Signal). Further, the transmitted reference signal is not limited to these.
  • FIG. 8 is a diagram illustrating an example of the overall configuration of a radio base station according to an embodiment of the present invention.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • the transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may each be configured to include one or more.
  • User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access
  • Retransmission control for example, HARQ transmission processing
  • scheduling transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, precoding processing, and other transmission processing
  • IFFT Inverse Fast Fourier Transform
  • precoding processing precoding processing, and other transmission processing
  • the downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal.
  • the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
  • the transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device, which is described based on common recognition in the technical field according to the present invention.
  • the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
  • the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmission / reception unit 103 receives the uplink signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing, and error correction on user data included in the input upstream signal. Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processor 105 performs communication channel call processing (setting, release, etc.), status management of the radio base station 10, radio resource management, and the like.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
  • the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from other radio base stations 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). May be.
  • CPRI Common Public Radio Interface
  • X2 interface May be.
  • the transmission / reception unit 103 may further include an analog beam forming unit that performs analog beam forming.
  • the analog beam forming unit includes an analog beam forming circuit (for example, phase shifter, phase shift circuit) or an analog beam forming apparatus (for example, phase shifter) described based on common recognition in the technical field according to the present invention. May be.
  • the transmission / reception antenna 101 may be constituted by an array antenna, for example.
  • the transmission / reception unit 103 may transmit, to the user terminal 20, a downlink control signal (for example, DCI) that schedules transmission of a data signal according to the waveform of the first transmission method (for example, single carrier transmission method).
  • the downlink control signal may be a signal generated based on the measurement result of the measurement reference signal according to the waveform of the second transmission scheme (for example, multicarrier transmission scheme).
  • the transmission / reception unit 103 may receive the first transmission method-based waveform and / or the second transmission method-based waveform from the user terminal 20.
  • the transmission / reception unit 103 may receive a measurement reference signal that is different from the existing LTE SRS and has a wider transmission bandwidth than the data signal, using the first transmission method.
  • the transmission / reception unit 103 may receive the measurement reference signal using the second transmission method.
  • the transmission / reception unit 103 may receive PHR and the like.
  • the transmission / reception unit 103 may transmit information on the transmission bandwidth of the extended reference signal, information on the transmission timing of the extended reference signal, information on the B-IFDMA pattern related to the extended reference signal, and the like.
  • FIG. 9 is a diagram illustrating an example of a functional configuration of the radio base station according to the embodiment of the present invention.
  • the functional block of the characteristic part in this embodiment is mainly shown, and the wireless base station 10 shall also have another functional block required for radio
  • the baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. These configurations may be included in the radio base station 10, and a part or all of the configurations may not be included in the baseband signal processing unit 104.
  • the control unit (scheduler) 301 controls the entire radio base station 10.
  • the control part 301 can be comprised from the controller, the control circuit, or control apparatus demonstrated based on the common recognition in the technical field which concerns on this invention.
  • the control unit 301 controls, for example, signal generation by the transmission signal generation unit 302, signal allocation by the mapping unit 303, and the like.
  • the control unit 301 also controls signal reception processing by the reception signal processing unit 304, signal measurement by the measurement unit 305, and the like.
  • the control unit 301 schedules system information, downlink data signals (for example, signals transmitted by PDSCH), downlink control signals (for example, signals transmitted by PDCCH and / or EPDCCH, delivery confirmation information, etc.) (for example, resource Control).
  • the control unit 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is necessary for the uplink data signal.
  • the control unit 301 controls scheduling of synchronization signals (for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)), downlink reference signals (for example, CRS, CSI-RS, DMRS) and the like.
  • control unit 301 includes an uplink data signal (for example, a signal transmitted on PUSCH), an uplink control signal (for example, a signal transmitted on PUCCH and / or PUSCH, delivery confirmation information, etc.), a random access preamble (for example, Scheduling of the uplink reference signal and the like.
  • uplink data signal for example, a signal transmitted on PUSCH
  • uplink control signal for example, a signal transmitted on PUCCH and / or PUSCH, delivery confirmation information, etc.
  • a random access preamble for example, Scheduling of the uplink reference signal and the like.
  • the control unit 301 uses the digital BF (for example, precoding) by the baseband signal processing unit 104 and / or the analog BF (for example, phase rotation) by the transmission / reception unit 103 to form a transmission beam and / or a reception beam. You may control to.
  • the control unit 301 may perform control so as to form a beam based on downlink propagation path information, uplink propagation path information, and the like. Such propagation path information may be acquired from the reception signal processing unit 304 and / or the measurement unit 305. Note that transmission using a transmission beam may be paraphrased as transmission of a signal to which predetermined precoding is applied.
  • the control unit 301 performs control to receive a signal based on at least a first transmission scheme (for example, a single carrier transmission scheme, DFT-S-OFDM) using an uplink.
  • the control unit 301 may perform control to receive a signal based on a second transmission scheme (for example, a multicarrier transmission scheme, CP-OFDM) using an uplink.
  • a first transmission scheme for example, a single carrier transmission scheme, DFT-S-OFDM
  • a second transmission scheme for example, a multicarrier transmission scheme, CP-OFDM
  • the control unit 301 is a downlink control signal (for example, DCI (UL grant)) that schedules transmission of a data signal (for example, a signal transmitted by PUSCH) according to a first transmission method (for example, single carrier transmission method) -based waveform. May be controlled to be transmitted.
  • DCI UL grant
  • a data signal for example, a signal transmitted by PUSCH
  • a first transmission method for example, single carrier transmission method
  • the control unit 301 is different from the uplink measurement reference signal (SRS) of the existing LTE (for example, LTE Rel. 13) and uses a measurement reference signal (extended reference signal) having a wider transmission bandwidth than the data signal. Control may be performed so as to receive and measure a waveform based on a first transmission method (for example, a single carrier transmission method).
  • SRS uplink measurement reference signal
  • the control unit 301 may control to receive and measure the extended reference signal assuming that it is a reference signal sharing at least a part of resources with a demodulation reference signal (DMRS) used in the existing LTE.
  • DMRS demodulation reference signal
  • the extended reference signal may be a reference signal that shares at least a part of resources with CSI-RS, BRS, PT-RS, and the like.
  • control unit 301 may assume that UPH is calculated based on the transmission power of the data signal and / or the transmission bandwidth of the data signal, or the transmission power of the extended reference signal. It may also be assumed that the calculation is based on the transmission bandwidth of the extended reference signal.
  • the control unit 301 may assume that precoding is applied to part or all of the extended reference signal, or may not assume that precoding is applied.
  • the control unit 301 controls to perform reception and measurement assuming a reference signal for measurement based on a second transmission scheme (for example, multicarrier transmission scheme) that is transmitted discontinuously allocated in the frequency domain. Also good.
  • the control unit 301 determines the uplink data transmission scheduling of the user terminal 20 based on the measurement result of the measurement reference signal, and the waveform of the data signal based on the first transmission scheme (for example, single carrier transmission scheme) is determined. You may control to transmit the downlink control signal (for example, DCI (UL grant)) which schedules transmission.
  • a second transmission scheme for example, multicarrier transmission scheme
  • the control unit 301 may estimate a path loss related to a predetermined waveform of the user terminal 20 based on the received PHR, and may determine a TPC command to be transmitted to the user terminal 20 using the path loss.
  • the transmission signal generation unit 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from the control unit 301, and outputs it to the mapping unit 303.
  • the transmission signal generation unit 302 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 302 generates, for example, a DL assignment for notifying downlink data allocation information and / or a UL grant for notifying uplink data allocation information based on an instruction from the control unit 301.
  • the DL assignment and UL grant are both DCI and follow the DCI format.
  • the downlink data signal is subjected to coding processing and modulation processing according to a coding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel State Information) from each user terminal 20.
  • CSI Channel State Information
  • the mapping unit 303 maps the downlink signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs it to the transmission / reception unit 103.
  • the mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 103.
  • the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20.
  • the reception signal processing unit 304 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when receiving PUCCH including HARQ-ACK, HARQ-ACK is output to control section 301.
  • the reception signal processing unit 304 outputs the reception signal and / or the signal after reception processing to the measurement unit 305.
  • the measurement unit 305 performs measurement on the received signal.
  • the measurement unit 305 may measure the extended reference signal transmitted using the first transmission method, or may measure the measurement reference signal transmitted using the second transmission method.
  • the measurement part 305 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • the measurement unit 305 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, and the like based on the received signal.
  • the measurement unit 305 receives received power (for example, RSRP (Reference Signal Received Power)), received quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio)), signal strength (for example, RSSI ( Received Signal Strength Indicator)), propagation path information (for example, CSI), etc. may be measured.
  • the measurement result may be output to the control unit 301.
  • FIG. 10 is a diagram illustrating an example of an overall configuration of a user terminal according to an embodiment of the present invention.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the transmission / reception antenna 201, the amplifier unit 202, and the transmission / reception unit 203 may each be configured to include one or more.
  • the radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202.
  • the transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
  • the transmission / reception unit 203 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present invention.
  • the transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, broadcast information of downlink data may be transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs transmission / reception units for retransmission control (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
  • the transmission / reception unit 203 may further include an analog beam forming unit that performs analog beam forming.
  • the analog beam forming unit includes an analog beam forming circuit (for example, phase shifter, phase shift circuit) or an analog beam forming apparatus (for example, phase shifter) described based on common recognition in the technical field according to the present invention. May be.
  • the transmission / reception antenna 201 may be constituted by an array antenna, for example.
  • the transmission / reception unit 203 may receive from the radio base station 10 a downlink control signal (for example, DCI) that schedules transmission of a data signal according to the waveform of the first transmission scheme (for example, single carrier transmission scheme).
  • the downlink control signal may be a signal generated based on the measurement result of the measurement reference signal according to the waveform of the second transmission scheme (for example, multicarrier transmission scheme).
  • the transmission / reception unit 203 may transmit the first transmission scheme-based waveform and / or the second transmission scheme-based waveform to the radio base station 10.
  • the transmission / reception unit 203 may transmit a measurement reference signal having a transmission bandwidth that is different from the existing LTE SRS and wider than the data signal, using the first transmission method. Further, the transmission / reception unit 203 may transmit the measurement reference signal by using the second transmission method.
  • the transmission / reception unit 203 may apply precoding to the demodulation reference signal for demodulating the data signal, and may not apply precoding to the measurement reference signal having the wide transmission bandwidth. Further, the transmission / reception unit 203 may transmit PHR or the like.
  • the transmission / reception unit 203 may receive information on the transmission bandwidth of the extended reference signal, information on the transmission timing of the extended reference signal, information on the B-IFDMA pattern related to the extended reference signal, and the like.
  • FIG. 11 is a diagram illustrating an example of a functional configuration of a user terminal according to an embodiment of the present invention.
  • the functional blocks of the characteristic part in the present embodiment are mainly shown, and the user terminal 20 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 204 included in the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations may be included in the user terminal 20, and some or all of the configurations may not be included in the baseband signal processing unit 204.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 can be composed of a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the control unit 401 controls, for example, signal generation by the transmission signal generation unit 402, signal allocation by the mapping unit 403, and the like.
  • the control unit 401 also controls signal reception processing by the reception signal processing unit 404, signal measurement by the measurement unit 405, and the like.
  • the control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the radio base station 10 from the reception signal processing unit 404.
  • the control unit 401 controls the generation of the uplink control signal and / or the uplink data signal based on the result of determining the necessity of retransmission control for the downlink control signal and / or the downlink data signal.
  • the control unit 401 uses the digital BF (for example, precoding) by the baseband signal processing unit 204 and / or the analog BF (for example, phase rotation) by the transmission / reception unit 203 to form a transmission beam and / or a reception beam. You may control to.
  • the control unit 401 may perform control so as to form a beam based on downlink propagation path information, uplink propagation path information, and the like. Such propagation path information may be acquired from the reception signal processing unit 404 and / or the measurement unit 405.
  • the control unit 401 performs control to transmit a signal based on at least a first transmission scheme (for example, a single carrier transmission scheme, DFT-S-OFDM) using an uplink.
  • the control unit 401 may perform control to transmit a signal based on the second transmission scheme (for example, multicarrier transmission scheme, CP-OFDM) using the uplink.
  • a first transmission scheme for example, a single carrier transmission scheme, DFT-S-OFDM
  • the control unit 401 may perform control to transmit a signal based on the second transmission scheme (for example, multicarrier transmission scheme, CP-OFDM) using the uplink.
  • the second transmission scheme for example, multicarrier transmission scheme, CP-OFDM
  • the control unit 401 schedules transmission of a data signal (for example, a signal transmitted by PUSCH) from the received signal processing unit 404 according to a first transmission method (for example, single carrier transmission method) -based waveform (for example, a PUSCH) , DCI (UL grant)) is acquired, control is performed so that the data signal is transmitted at a predetermined timing.
  • a data signal for example, a signal transmitted by PUSCH
  • a first transmission method for example, single carrier transmission method
  • a PUSCH for example, single carrier transmission method
  • DCI UL grant
  • the control unit 401 is different from the uplink measurement reference signal (SRS) of the existing LTE (for example, LTE Rel. 13) and has a measurement reference signal (extended reference signal) having a wider transmission bandwidth than the data signal. You may control to transmit using the waveform of a 1st transmission system (for example, single carrier transmission system) base.
  • SRS uplink measurement reference signal
  • the control unit 401 may generate and transmit the extended reference signal as a reference signal that shares at least a part of resources with the demodulation reference signal (DMRS) used in the existing LTE.
  • the extended reference signal may be a reference signal that shares at least a part of resources with CSI-RS, BRS, PT-RS, and the like.
  • the control unit 401 may determine the transmission power of the extended reference signal based on the transmission power of the data signal or may be determined independently of the transmission power of the data signal.
  • control unit 401 may calculate UPH based on the transmission power of the data signal and / or the transmission bandwidth of the data signal, and / or the transmission power of the extended reference signal and / or You may calculate based on the transmission bandwidth of an extended reference signal.
  • the control unit 401 may perform control such that precoding is applied to the demodulation reference signal (DMRS) of the data signal and precoding is not applied to the extended reference signal.
  • DMRS demodulation reference signal
  • the control unit 401 may perform control to allocate and transmit measurement reference signals based on the second transmission method (for example, multicarrier transmission method) in a non-continuous manner in the frequency domain.
  • the control unit 401 schedules transmission of a data signal having a waveform based on the first transmission method (for example, single carrier transmission method) generated by the radio base station 10 based on the measurement result of the measurement reference signal.
  • a control signal for example, DCI (UL grant)
  • the data signal may be controlled to be transmitted using the first transmission method based on the downlink control signal.
  • control unit 401 may update parameters used for control based on the information.
  • the transmission signal generation unit 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from the control unit 401 and outputs the uplink signal to the mapping unit 403.
  • the transmission signal generation unit 402 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 402 generates an uplink control signal related to delivery confirmation information, channel state information (CSI), and the like based on an instruction from the control unit 401, for example. In addition, the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the UL grant is included in the downlink control signal notified from the radio base station 10.
  • CSI channel state information
  • the mapping unit 403 maps the uplink signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs the radio signal to the transmission / reception unit 203.
  • the mapping unit 403 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 203.
  • the received signal is, for example, a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) transmitted from the radio base station 10.
  • the reception signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention. Further, the reception signal processing unit 404 can constitute a reception unit according to the present invention.
  • the reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401.
  • the reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401.
  • the reception signal processing unit 404 outputs the reception signal and / or the signal after reception processing to the measurement unit 405.
  • the measurement unit 405 performs measurement on the received signal.
  • the measurement part 405 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal.
  • the measurement unit 405 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 401.
  • each functional block may be realized by one device physically and / or logically coupled, and two or more devices physically and / or logically separated may be directly and / or indirectly. (For example, wired and / or wireless) and may be realized by these plural devices.
  • a radio base station, a user terminal, etc. in an embodiment of the present invention may function as a computer that performs processing of the radio communication method of the present invention.
  • FIG. 12 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
  • the wireless base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
  • processor 1001 may be implemented by one or more chips.
  • each function in the radio base station 10 and the user terminal 20 reads predetermined software (program) on hardware such as the processor 1001 and the memory 1002, so that the processor 1001 performs computation and communication by the communication device 1004. It is realized by controlling the reading and / or writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the baseband signal processing unit 104 (204) and the call processing unit 105 described above may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, and the like from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • programs program codes
  • software modules software modules
  • data data
  • the like data
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, and may be realized similarly for other functional blocks.
  • the memory 1002 is a computer-readable recording medium such as a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a RAM (Random Access Memory), or any other suitable storage medium. It may be configured by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store programs (program codes), software modules, and the like that can be executed to implement the wireless communication method according to an embodiment of the present invention.
  • the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM)), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium It may be constituted by.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to realize frequency division duplex (FDD) and / or time division duplex (TDD). It may be configured.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
  • the radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured including hardware, and a part or all of each functional block may be realized by the hardware. For example, the processor 1001 may be implemented by at least one of these hardware.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the channel and / or symbol may be a signal (signaling).
  • the signal may be a message.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like depending on an applied standard.
  • a component carrier CC: Component Carrier
  • CC Component Carrier
  • the radio frame may be configured with one or a plurality of periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on the neurology.
  • the slot may be configured with one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain). Further, the slot may be a time unit based on the numerology.
  • the slot may include a plurality of mini slots. Each minislot may be composed of one or more symbols in the time domain. The minislot may also be called a subslot.
  • Radio frame, subframe, slot, minislot, and symbol all represent time units when transmitting signals. Different names may be used for the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • a plurality of consecutive subframes may be called a TTI
  • TTI slot or one minislot
  • a unit representing TTI may be called a slot, a minislot, or the like instead of a subframe.
  • TTI means, for example, a minimum time unit for scheduling in wireless communication.
  • a radio base station performs scheduling for assigning radio resources (frequency bandwidth, transmission power, etc. that can be used in each user terminal) to each user terminal in units of TTI.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit of a channel-encoded data packet (transport block), a code block, and / or a code word, or may be a processing unit such as scheduling or link adaptation.
  • a time interval for example, the number of symbols
  • a transport block, a code block, and / or a code word is actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling unit. Further, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, or a long subframe.
  • a TTI shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, or a subslot.
  • a long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (eg, shortened TTI) is less than the TTI length of the long TTI and 1 ms. It may be replaced with a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. Further, the RB may include one or a plurality of symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. One TTI and one subframe may each be composed of one or a plurality of resource blocks.
  • One or more RBs include physical resource blocks (PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. May be called.
  • the resource block may be composed of one or a plurality of resource elements (RE: Resource Element).
  • RE Resource Element
  • 1RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • the structure of the above-described radio frame, subframe, slot, minislot, symbol, etc. is merely an example.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in the slot, the number of symbols and RBs included in the slot or minislot, and the RB The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and the like can be variously changed.
  • information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by other corresponding information.
  • the radio resource may be indicated by a predetermined index.
  • mathematical formulas and the like using these parameters may differ from those explicitly disclosed herein.
  • PUCCH Physical Uplink Control Channel
  • PDCCH Physical Downlink Control Channel
  • information elements can be identified by any suitable name, so the various channels and information elements assigned to them.
  • the name is not limiting in any way.
  • information, signals, etc. can be output from the upper layer to the lower layer and / or from the lower layer to the upper layer.
  • Information, signals, and the like may be input / output via a plurality of network nodes.
  • the input / output information, signals, etc. may be stored in a specific location (for example, a memory), or may be managed by a management table. Input / output information, signals, and the like can be overwritten, updated, or added. The output information, signals, etc. may be deleted. Input information, signals, and the like may be transmitted to other devices.
  • information notification includes physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling), It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
  • DCI downlink control information
  • UCI uplink control information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be referred to as L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • the MAC signaling may be notified by, for example, a MAC control element (MAC CE (Control Element)).
  • notification of predetermined information is not limited to explicitly performed, but implicitly (for example, by not performing notification of the predetermined information or another (By notification of information).
  • the determination may be performed by a value represented by 1 bit (0 or 1), or may be performed by a boolean value represented by true or false.
  • the comparison may be performed by numerical comparison (for example, comparison with a predetermined value).
  • software, instructions, information, etc. may be transmitted / received via a transmission medium.
  • software can use websites, servers using wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and / or wireless technology (infrared, microwave, etc.) , Or other remote sources, these wired and / or wireless technologies are included within the definition of transmission media.
  • system and “network” used in this specification are used interchangeably.
  • base station BS
  • radio base station eNB
  • gNB gNodeB
  • cell gNodeB
  • cell group a base station
  • carrier a base station
  • component carrier a base station
  • a base station may also be called in terms such as a fixed station, NodeB, eNodeB (eNB), access point, transmission point, reception point, femtocell, and small cell.
  • the base station can accommodate one or a plurality of (for example, three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, an indoor small base station (RRH: The term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication service in this coverage. Point to.
  • RRH indoor small base station
  • MS mobile station
  • UE user equipment
  • terminal may be used interchangeably.
  • a base station may also be called in terms such as a fixed station, NodeB, eNodeB (eNB), access point, transmission point, reception point, femtocell, and small cell.
  • NodeB NodeB
  • eNodeB eNodeB
  • access point transmission point
  • reception point femtocell
  • small cell small cell
  • a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called terminal, remote terminal, handset, user agent, mobile client, client or some other suitable terminology.
  • the radio base station in this specification may be read by the user terminal.
  • each aspect / embodiment of the present invention may be applied to a configuration in which communication between a radio base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device).
  • the user terminal 20 may have a function that the wireless base station 10 has.
  • words such as “up” and “down” may be read as “side”.
  • the uplink channel may be read as a side channel.
  • a user terminal in this specification may be read by a radio base station.
  • the wireless base station 10 may have a function that the user terminal 20 has.
  • the specific operation assumed to be performed by the base station may be performed by the upper node in some cases.
  • various operations performed for communication with a terminal may be performed by one or more network nodes other than the base station and the base station (for example, It is obvious that this can be done by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc., but not limited thereto) or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect / embodiment described in this specification may be used alone, in combination, or may be switched according to execution.
  • the order of the processing procedures, sequences, flowcharts, and the like of each aspect / embodiment described in this specification may be changed as long as there is no contradiction.
  • the methods described herein present the elements of the various steps in an exemplary order and are not limited to the specific order presented.
  • Each aspect / embodiment described herein includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile). communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802 .20, UWB (Ultra-WideBand), Bluetooth (registered trademark), The present invention may be applied to a system using other appropriate wireless communication methods and / or a next generation system extended based on these.
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using designations such as “first”, “second”, etc. as used herein does not generally limit the amount or order of those elements. These designations can be used herein as a convenient way to distinguish between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be employed or that the first element must precede the second element in some way.
  • determining may encompass a wide variety of actions. For example, “determination” means calculating, computing, processing, deriving, investigating, looking up (eg, table, database or other data). It may be considered to “judge” (search in structure), ascertaining, etc.
  • “determination (decision)” includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access ( accessing) (e.g., accessing data in memory), etc. may be considered to be “determining”. Also, “determination” is considered to be “determination (resolving)”, “selecting”, “choosing”, “establishing”, “comparing”, etc. Also good. That is, “determination (determination)” may be regarded as “determination (determination)” of some operation.
  • connection refers to any direct or indirect connection between two or more elements or By coupling, it can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as “access”.
  • the two elements are radio frequency by using one or more wires, cables and / or printed electrical connections, and as some non-limiting and non-inclusive examples It can be considered to be “connected” or “coupled” to each other, such as by using electromagnetic energy having wavelengths in the region, microwave region, and / or light (both visible and invisible) region.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

シングルキャリア伝送方式の波形を用いて通信する場合であっても周波数利用効率の低下を好適に低減すること。本発明の一態様に係るユーザ端末は、シングルキャリア伝送方式ベースの波形に従うデータ信号の送信をスケジュールする下り制御信号を受信する受信部と、既存のLTEで用いられる上り測定用参照信号とは異なり、かつ前記データ信号より広い送信帯域幅の測定用参照信号を、前記シングルキャリア伝送方式ベースの波形を用いて送信する送信部と、を有することを特徴とする。

Description

ユーザ端末及び無線通信方法
 本発明は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8又は9ともいう)からの更なる広帯域化及び高速化を目的として、LTE-A(LTEアドバンスト、LTE Rel.10、11又は12ともいう)が仕様化され、LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、LTE Rel.13、14又は15以降などともいう)も検討されている。
 LTE Rel.10/11では、広帯域化を図るために、複数のコンポーネントキャリア(CC:Component Carrier)を統合するキャリアアグリゲーション(CA:Carrier Aggregation)が導入されている。各CCは、LTE Rel.8のシステム帯域を一単位として構成される。また、CAでは、同一の基地局(例えば、eNB(evolved Node B)、BS(Base Station)などと呼ばれる)の複数のCCがユーザ端末(UE:User Equipment)に設定される。
 一方、LTE Rel.12では、複数のセルグループ(CG:Cell Group)がUEに設定されるデュアルコネクティビティ(DC:Dual Connectivity)も導入されている。各セルグループは、少なくとも一つのセル(CC)で構成される。DCでは、異なる基地局の複数のCCが統合されるため、DCは、基地局間CA(Inter-eNB CA)などとも呼ばれる。
 また、LTE Rel.8-12では、下り(DL:Downlink)伝送と上り(UL:Uplink)伝送とを異なる周波数帯で行う周波数分割複信(FDD:Frequency Division Duplex)と、下り伝送と上り伝送とを同じ周波数帯で時間的に切り替えて行う時分割複信(TDD:Time Division Duplex)とが導入されている。
 将来の無線通信システム(例えば、5G、NR)は、様々な無線通信サービスを、それぞれ異なる要求条件(例えば、超高速、大容量、超低遅延など)を満たすように実現することが期待されている。
 例えば、NRでは、eMBB(enhanced Mobile Broad Band)、mMTC(massive Machine Type Communication)、URLLC(Ultra Reliable and Low Latency Communications)などと呼ばれる無線通信サービスの提供が検討されている。
 NRでは、上りリンクについて2種類の伝送方式ベースの波形(waveform)がサポートされることが検討されている。そのうちの一方は、マルチキャリア伝送方式であり、他方は、シングルキャリア伝送方式である。
 シングルキャリア伝送方式を利用する既存のLTE(例えば、LTE Rel.13)の上りリンクでは、チャネル測定のために測定用参照信号(SRS:Sounding Reference Signal)が送信される。
 しかしながら、既存のLTEにおけるSRSは、シングルキャリア伝送方式によりリソースの利用に制約があるため、オーバーヘッドが大きくなるという課題がある。このようなオーバーヘッドにより、周波数利用効率の低下、通信スループットの低下などが生じるおそれがある。
 本発明はかかる点に鑑みてなされたものであり、シングルキャリア伝送方式の波形を用いて通信する場合であっても周波数利用効率の低下を好適に低減できるユーザ端末及び無線通信方法を提供することを目的の1つとする。
 本発明の一態様に係るユーザ端末は、シングルキャリア伝送方式ベースの波形に従うデータ信号の送信をスケジュールする下り制御信号を受信する受信部と、既存のLTEで用いられる上り測定用参照信号とは異なり、かつ前記データ信号より広い送信帯域幅の測定用参照信号を、前記シングルキャリア伝送方式ベースの波形を用いて送信する送信部と、を有することを特徴とする。
 本発明によれば、シングルキャリア伝送方式の波形を用いて通信する場合であっても周波数利用効率の低下を好適に低減できる。
図1は、既存のLTEで用いられるSRSのリソース割り当ての一例を示す図である。 図2は、拡張参照信号の一例を示す図である。 図3は、拡張参照信号をB-IFDMAで送信する一例を示す図である。 図4は、既存のLTEの送信電力制御の一例を示す図である。 図5A及び5Bは、拡張参照信号のプリコーディング有無の一例を示す図である。 図6A及び6Bは、CP-OFDMで送信する測定用参照信号の一例を示す図である。 図7は、本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図8は、本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。 図9は、本発明の一実施形態に係る無線基地局の機能構成の一例を示す図である。 図10は、本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。 図11は、本発明の一実施形態に係るユーザ端末の機能構成の一例を示す図である。 図12は、本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。
 NRは、少なくともeMBB用途の上りリンクについて、2種類の異なる伝送方式(多重方式、変調方式、アクセス方式、波形方式などと呼ばれてもよい)ベースの波形(waveform)をサポートする予定である。この2種類の波形は、具体的にはサイクリックプレフィックスOFDM(CP-OFDM:Cyclic Prefix Orthogonal Frequency Division Multiplexing)ベースの波形及びDFT拡散OFDM(DFT-S-OFDM:Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing)ベースの波形である。
 なお、波形はOFDM波形に対するDFTプリコーディング(スプレッディング)の適用有無で特徴付けられてもよい。例えば、CP-OFDMはDFTプリコーディングを適用しない波形(信号)と呼ばれてもよいし、DFT-S-OFDMはDFTプリコーディングを適用する波形(信号)と呼ばれてもよい。また、「波形」は「波形の信号」、「波形に従う信号」、「信号の波形」、「信号」などで読み替えられてもよい。
 ネットワーク(基地局(gNBとも呼ばれる)など)がUEに対して、CP-OFDMベースの波形及びDFT-S-OFDMベースの波形のいずれを用いるか(又は、波形の切り替え)を指示してもよい。当該指示は、上位レイヤシグナリング、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information))又はこれらの組み合わせにより、UEに通知されてもよい。
 上位レイヤシグナリングには、例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング(例えば、MAC制御要素(MAC CE(Control Element))、ブロードキャスト情報(MIB(Master Information Block)、SIB(System Information Block)などが用いられてもよい。
 ところで、DFT-S-OFDMを利用する既存のLTE(例えば、LTE Rel.13)の上りリンクでは、チャネル測定のために、測定用参照信号(SRS:Sounding Reference Signal)が送信される。SRSとしては、所定の周期で送信される周期的SRSと、DCIによりトリガされる非周期的SRSと、がある。
 図1は、既存のLTEで用いられるSRSのリソース割り当ての一例を示す図である。図1に示すように、例えば、サブフレームにおいて、システム帯域幅の両端の周波数領域は上り制御チャネル(PUCCH:Physical Uplink Control Channel)のリソースに用いられてもよい。リソース割り当てはリソースブロック(RB:Resource Block)単位で行われてもよい。また、PUCCH以外の周波数領域は、上り共有チャネル(PUSCH:Physical Uplink Shared Channel)のリソースに用いられてもよい。
 サブフレームの最終シンボルは、SRSのリソースに用いられてもよい。図1ではSRSはPUSCHと重複する周波数領域に割り当てられているが、これに限られない。SRSは、PUCCHと重複してもよいし、システム帯域幅に渡って送信されてもよい。
 既存のLTEにおけるSRSは、DFT-S-OFDMの制限により、連続する周波数及び/又は時間リソースに配置されなければならない。広帯域SRSは、広い帯域(例えば、ほぼシステム帯域全体)で送信を行うため周波数的なオーバーヘッドが大きい。また、狭帯域SRSは、狭い帯域のSRSをホッピングさせて複数回のSRS送信により広い帯域をカバーするものであるため、測定(サウンディング)に長い時間を要し、時間的なオーバーヘッドが大きい。このようなオーバーヘッドにより、周波数利用効率の低下、通信スループットの低下などが生じるおそれがある。
 そこで、本発明者らは、他の参照信号とリソースを共有する信号を測定用参照信号として用いる方法を着想した。これにより、DFT-S-OFDMを利用する場合であっても、測定用参照信号に必要なリソースを低減することができる。また、柔軟なスケジューリングを実現することができる。
 以下、本発明に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
(無線通信方法)
<第1の実施形態>
 本発明の第1の実施形態では、所定の参照信号をデータ信号の送信帯域幅(例えば、PUSCH割当帯域幅)より広い帯域に拡張し、測定用途に用いる。当該所定の参照信号は、帯域拡張参照信号、新測定用参照信号、拡張参照信号などと呼ばれてもよい。
 拡張参照信号は、既存のLTE(例えば、LTE Rel.13)で用いられるSRSとは異なる参照信号であり、既存のLTEで用いられる上り参照信号(例えば、復調用参照信号(DMRS:DeModulation Reference Signal))、既存のLTEで用いられる下り参照信号(例えば、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal))、その他の新たな参照信号(例えば、ビーム特定用の参照信号(ビーム固有RS(BSR:beam-specific RS))、位相追跡用の参照信号(PT-RS:Phase Tracking RS))などの少なくとも1つをベースとする信号であってもよい。
 拡張参照信号は、他の参照信号と少なくとも一部のリソースを共有する参照信号と呼ばれてもよい。また、拡張参照信号は、所定のサブフレームにおいて最終シンボル以外で送信される参照信号と呼ばれてもよい。
 第1の実施形態では、UEは、DFT-S-OFDMで既存のSRSを送信してもよいし、送信しなくてもよい。後者の場合、従来SRSに割り当てられるリソースで、他の信号(例えば、データ信号)を送信できるため、周波数利用効率を向上することができる。
 図2は、拡張参照信号の一例を示す図である。通常のDMRSの送信帯域幅は、PUSCH送信帯域幅と同じである。一方拡張されたDMRS(測定用のDMRS)の送信帯域幅は、PUSCH送信帯域幅より大きくてもよく、例えば既存のSRSと同じ送信帯域幅を有してもよい。
 拡張参照信号の系列は、ベースとする参照信号の系列を拡張参照信号の送信帯域幅に対応できるよう系列長を増加したものであってもよい。拡張参照信号の系列の一部又は全部は、ベースとする参照信号の系列と異なる系列で構成されてもよい。
 例えば、拡張参照信号は、ベースとする参照信号の系列をPUSCH送信帯域幅の領域に割り当て、ベースとする参照信号の系列と異なる系列をPUSCH送信帯域幅と重複しない領域に割り当てるように構成されてもよい。また、拡張参照信号は、ベースとする参照信号の系列をPUSCH送信帯域幅の領域に割り当て、ベースとする参照信号の系列のコピーをPUSCH送信帯域幅と重複しない領域に割り当てるように構成されてもよい。
 拡張参照信号の系列(及びベースとする参照信号の系列)は、広帯域(例えば、システム帯域)にわたる系列から生成されてもよい。例えば、UEは、参照信号を拡張しない場合(つまり、ベースとする参照信号をPUSCH帯域幅内で送信する場合)、上記広帯域にわたる系列の一部(例えば、PUSCH帯域幅分)を送信してもよいし、参照信号を拡張する場合(つまり、ベースとする参照信号をPUSCH帯域幅を超えて送信する場合)、上記広帯域にわたる系列の全部を送信してもよい。このような構成によれば、例えば上りリンクの参照信号と下りリンクの参照信号とを同じ広帯域にわたる系列から生成することで、これらの参照信号間の干渉低減を比較的容易に実現できる。
 拡張参照信号の送信帯域幅は、ULグラントで通知(指示)されてもよい。この場合、PUSCH帯域幅と拡張参照信号の帯域幅は、別々にULグラントで通知されてもよい。UEは、それぞれの帯域幅に従って、PUSCH及び拡張参照信号の送信を行ってもよい。また、拡張参照信号の送信帯域幅は、上位レイヤシグナリング(例えば、RRCシグナリング)で通知されてもよいし、仕様で定められてもよい。
 なお、拡張参照信号の送信帯域幅は、PUSCH帯域幅を含む値(例えば、拡張参照信号の送信帯域幅とPUSCH帯域幅との和)で通知されてもよいし、PUSCH帯域幅を除いた値(例えば、拡張参照信号の送信帯域幅からPUSCH帯域幅を減算した値)で通知されてもよい。
 拡張参照信号の送信タイミングは、ULグラントで通知されてもよいし、上位レイヤシグナリング(例えば、RRCシグナリング)で設定されてもよいし、仕様で定められてもよい。拡張参照信号の送信タイミングの情報は、所定の信号(例えば、ULグラント)から所定の時間後(例えば、4サブフレーム後)の送信を指示する情報であってもよいし、拡張参照信号の送信周期、タイミングオフセット(例えば、サブフレームオフセット)を示す情報などであってもよい。
 例えば、拡張参照信号の送信帯域幅及び送信タイミングの両方がULグラントで通知されてもよい。また、拡張参照信号の送信帯域幅が予め上位レイヤシグナリング又は仕様で決定されている場合、送信タイミングのみがULグラントで通知されてもよい。UEは、通知、設定又は定められた送信タイミングに従って、拡張参照信号の送信を行ってもよい。
 拡張参照信号の送信帯域幅及び/又は送信タイミングの候補と、所定のインデックスとの対応関係が、上位レイヤシグナリング(例えば、RRCシグナリング)により通知される又は仕様で定められる場合、UEは、通知されるインデックスと上記対応関係とに基づいて、拡張参照信号の送信帯域幅及び/又は送信タイミングを決定してもよい。当該インデックスは、DCI(例えば、ULグラント)で通知されてもよいし、上位レイヤシグナリング(例えば、RRCシグナリング)により通知されてもよい。
 所定の参照信号(例えば、DMRS)が1送信時間間隔(TTI:Transmission Time Interval)内に複数ある(例えば、複数シンボルある)場合、特定の期間の(例えば、特定シンボルの)当該所定の参照信号のみ拡張参照信号としてもよいし、全ての当該所定の参照信号を拡張参照信号としてもよい。ここで、TTIは、1つ以上のサブフレーム、1つ以上のスロット、1つ以上のミニスロットなどに対応する期間であってもよい。
 1TTI内の特定の期間の参照信号のみを拡張する場合、当該特定の期間は、上位レイヤシグナリング(例えば、RRCシグナリング)、物理レイヤシグナリング(例えば、DCI(ULグラントなど))又はこれらの組み合わせにより、UEに通知されてもよいし、仕様で定められてもよい。
 なお、拡張参照信号は、ULグラントによりPUSCHの送信がスケジュールされた所定の期間(例えば、サブフレーム、スロット、ミニスロットなど)と重複しない期間(つまり、PUSCHが送信されない期間)で送信されてもよい。
[Block-IFDMA]
 UEは、拡張参照信号を、ブロックインターリーブドFDMA(B-IFDMA:Block Interleaved Frequency Division Multiple Access)を用いて非連続な帯域に割り当ててもよい。B-IFDMAは、所定の期間(例えば、シンボル)において、周波数方向に等間隔に割り当てられる複数のブロックに、送信信号を分散して配置する方式である。各ブロックは、所定の周波数領域(例えば、1つ以上のサブキャリアであって、ブロック帯域幅と呼ばれてもよい)から構成される。
 B-IFDMAを用いる場合、DFT-S-OFDMを用いる場合よりもPAPR(キュービックメトリック(cubic metric)と読み替えてもよい)は大きくなるが、CP-OFDMを用いる場合と比べるとPAPRの増大を抑えつつ使用リソースを減らすことができる。
 図3は、拡張参照信号をB-IFDMAで送信する一例を示す図である。B-IFDMAを用いて送信する拡張参照信号は、所定の周波数帯域間隔(例えば、複数のサブキャリア、1つ以上のRBなどで表される間隔であって、ブロック間隔と呼ばれてもよい)で、PUSCH送信帯域幅より広い帯域幅に割り当てられて送信される。
 拡張参照信号に関するB-IFDMAのパターン(例えば、ブロック帯域幅、ブロック間隔など)の情報は、ULグラントで通知(指示)されてもよい。この場合、PUSCH帯域幅とB-IFDMAのパターンの情報は、別々にULグラントで通知されてもよい。UEは、B-IFDMAのパターンの情報に従って、拡張参照信号の送信をB-IFDMAを用いて行ってもよい。また、B-IFDMAのパターンの情報は、上位レイヤシグナリング(例えば、RRCシグナリング)で通知されてもよいし、仕様で定められてもよい。
 B-IFDMAを用いた拡張参照信号の送信タイミングは、ULグラントで通知されてもよいし、上位レイヤシグナリング(例えば、RRCシグナリング)で設定されてもよいし、仕様で定められてもよい。例えば、B-IFDMAのパターン及び送信タイミングの両方がULグラントで通知されてもよい。また、B-IFDMAのパターンが予め上位レイヤシグナリング又は仕様で決定されている場合、送信タイミングのみがULグラントで通知されてもよい。
 B-IFDMAのパターン及び/又は送信タイミングの候補と、所定のインデックスとの対応関係が、上位レイヤシグナリング(例えば、RRCシグナリング)により通知される又は仕様で定められる場合、UEは、通知されるインデックスと上記対応関係とに基づいて、B-IFDMAのパターン及び/又は送信タイミングを決定してもよい。当該インデックスは、DCI(例えば、ULグラント)で通知されてもよいし、上位レイヤシグナリング(例えば、RRCシグナリング)により通知されてもよい。
[拡張参照信号の送信電力決定]
 次に、拡張参照信号の送信電力の決定方法について説明する。まず、既存のLTEの上り送信電力制御について説明する。
 図4は、既存のLTEの送信電力制御の一例を示す図である。LTEの上りリンク送信電力制御(図4ではPUSCHの送信電力制御)では、開ループ制御の誤差を基地局から受信する送信電力制御(TPC:Transmit Power Control)コマンドを用いた閉ループ制御で補正する。
 既存のLTEでは、サービングセルcのサブフレームiにおけるPUSCHの送信電力PPUSCH,c(i)は、例えば下記式1で表される。
Figure JPOXMLDOC01-appb-M000001
 式1において、PCMAX,c(i)はセルcにおけるUEの最大送信可能電力(許容最大送信電力)であり、MPUSCH,c(i)はPUSCHの送信帯域幅(リソースブロック数)であり、jはPUSCHのスケジューリング種別を示すインデックスであり、PO_PUSCH,c(j)はPUSCHの目標受信電力相当を示す値であり、α(j)はPLに乗算する係数であり、PLはUEが算出した下りリンクのパスロスであり、ΔTF,c(i)は送信フォーマットに応じたオフセット値であり、f(i)はTPCコマンドによる補正値(例えば、TPCコマンドの累積値、TPCコマンドに基づくオフセット量など)である。例えば、PO_PUSCH,c(j)、α(j)などは、ブロードキャスト情報で通知されてもよい。
 式1において、開ループ制御に係るパラメータは、MPUSCH,c(i)、PO_PUSCH,c(j)、α(j)、PLc、ΔTF,c(i)である。また、閉ループ制御に係るパラメータは、f(i)である。つまり、PUSCHの送信電力は、UEの最大送信可能電力を上限として、開ループ制御及び閉ループ制御によって決定される。また、DMRSの送信電力は、PUSCHの送信電力と同じとすることが好ましい。
 また、既存のLTEでは、サービングセルcのサブフレームiにおけるSRSの送信電力PSRS,c(i)は、例えば下記式2で表される。
Figure JPOXMLDOC01-appb-M000002
 式2において、PSRS_OFFSET,c(m)は上位レイヤシグナリングにより設定されるオフセットであり、MSRS,c(i)はSRSの送信帯域幅(リソースブロック数)であり、他のパラメータは式1と同様である。このように、既存のSRS送信電力は、PUSCH送信電力とは独立に算出される。
 第1の実施形態において、UEは、拡張参照信号の送信電力を、PUSCH送信電力に基づいて決定してもよい。例えば、UEは、拡張参照信号の送信電力の電力密度が、PUSCH送信電力(又はPUSCH送信電力にオフセットを加えたもの)の電力密度と同じになるように、送信帯域幅に基づいて拡張参照信号の送信電力を調整してもよい。また、拡張参照信号の送信電力を、PUSCH送信電力とは独立に決めてもよい。
 拡張参照信号は、PUSCHよりも広帯域であるため、拡張参照信号の送信電力は、PUSCH送信電力よりも先行して最大送信可能電力(例えば、CCごとの最大送信可能電力)に達すると考えられる。UEは、拡張参照信号の送信電力が最大送信可能電力に達する場合に、PUSCH送信電力を最大送信可能電力まで高くしてもよいし、高くしなくてもよい(例えば、式1で求められる送信電力に維持してもよい)。前者の場合、PUSCHの受信品質を向上することができ、後者の場合、拡張参照信号とPUSCHの相対電力を一定に保つことができる。
[拡張参照信号を用いる場合のパワーヘッドルーム]
 既存のLTEシステムでは、基地局は、UEから通知される電力余裕(パワーヘッドルーム(PH:Power Headroom)、UPH(UE Power Headroom)などとも呼ばれる)を元にパスロス計算し、TPCコマンドの決定を行う。UEは、パワーヘッドルームレポート(PHR:Power Headroom Report)にUPHを含めて送信する。
 UEは、拡張参照信号を用いる場合、UPHを、PUSCH送信電力及び/又はPUSCH送信帯域幅に基づいて算出してもよいし、拡張参照信号の送信電力及び/又は拡張参照信号の送信帯域幅に基づいて算出してもよい。
[拡張参照信号のプリコーディング]
 拡張参照信号は、プリコーディングをかけずに送信されることが好ましい。プリコードされた信号のチャネル測定結果は、プリコーディングの影響で純粋なチャネルの測定結果とはずれが生じるからである。
 図5A及び5Bは、拡張参照信号のプリコーディング有無の一例を示す図である。図5Aに示すように、PUSCHがプリコードされる場合にはDMRSもプリコードされると想定されるが、DMRSがプリコードされる場合であっても、拡張参照信号はプリコードされなくてもよい。
 また、一部の帯域の拡張参照信号がプリコードされる一方、その他の帯域の拡張参照信号がプリコードされない構成としてもよい。例えば、図5Bに示すように、PUSCHを送信する帯域と周波数帯域が重複する拡張参照信号はプリコードされる一方、PUSCHを送信する帯域を除く帯域で送信される拡張参照信号はプリコードされない構成としてもよい。
 拡張参照信号に適用されるプリコーディングのオン(プリコードされる(precoded))又はオフ(プリコードされない(non-precoded))は、上位レイヤシグナリング(例えば、RRCシグナリング)、物理レイヤシグナリング(例えば、DCI(ULグラントなど))又はこれらの組み合わせにより、UEに通知されてもよいし、仕様で定められてもよい。
 以上説明した第1の実施形態によれば、既存のSRSとは異なる拡張参照信号を用いることにより、上りのチャネル測定を低オーバーヘッドで実現することができる。
<第2の実施形態>
 本発明の第2の実施形態では、基地局は、UEがCP-OFDMで送信した測定用参照信号(の測定結果)に基づいて、DFT-S-OFDMのスケジューリング(例えば、リソース割り当て)を決定する。この場合、DFT-S-OFDMを用いて測定用参照信号を送信しなくてもよいため、DFT-S-OFDMで既存のSRSを送信する場合のオーバーヘッドを低減することができる。
 第2の実施形態では、UEは、DFT-S-OFDMで既存のSRSを送信してもよいし、第1の実施形態で説明したような拡張参照信号を送信してもよいし、これらの一方及び両方を送信しなくてもよい。
 UEは、CP-OFDMを用いて、周波数領域に非連続に割り当てた測定用参照信号を送信してもよい。これにより、既存のLTEのSRSに比べて、測定用参照信号に用いるリソース量を低減できる。なお、CP-OFDMで送信する測定用参照信号は、1つ以上のシンボルで送信されてもよいし、1シンボル未満の期間で送信されてもよい。
 図6A及び6Bは、CP-OFDMで送信する測定用参照信号の一例を示す図である。例えば、UEは、図6Aに示すように、CP-OFDMを用いて、所定の周波数間隔(例えば、所定のサブキャリア間隔)で測定用参照信号を送信してもよい。
 また、UEは、CP-OFDMを用いる場合、図6Bに示すように、所定の周波数帯域幅(例えば、1つ以上のサブキャリアに対応する帯域幅、1つ以上のRBに対応する帯域幅、1つ以上のリソースブロックグループ(RBG:Resource Block Group)に対応する帯域幅など)に非連続に配置される測定用参照信号を、所定の周波数間隔(例えば、所定のRBG間隔)で送信してもよい。例えば、図6Bの例では、8RBからそれぞれ構成されるRBG#0-#3のうち、RBG#1及び#3内では非連続に測定用参照信号を送信し、RBG#0及び#2内では測定用参照信号を送信しない。
 以上説明した第2の実施形態によれば、測定用参照信号の送信に必要なリソースを低減することができる。
<変形例>
 なお、上述の実施形態では、UEが利用する波形として、CP-OFDM及びDFT-S-OFDMを例に説明したが、これらに限られない。例えば、CP-OFDMは、マルチキャリア伝送方式で読み替えられてもよいし、DFT-S-OFDMはシングルキャリア伝送方式で読み替えられてもよい。
(無線通信システム)
 以下、本発明の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本発明の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図7は、本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。
 なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、NR(New Radio)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。各セル及びユーザ端末20の配置、数などは、図に示すものに限られない。
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCにより同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、5個以下のCC、6個以上のCC)を用いてCA又はDCを適用してもよい。
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、legacy carrierなどとも呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線接続(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線接続する構成とすることができる。
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。
 無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)及び/又はOFDMAが適用される。
 OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHにより、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHにより、MIB(Master Information Block)が伝送される。
 下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHにより、PDSCH及び/又はPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。PCFICHにより、PDCCHに用いるOFDMシンボル数が伝送される。PHICHにより、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACKなどともいう)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHにより、ユーザデータ、上位レイヤ制御情報などが伝送される。また、PUCCHにより、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認情報などが伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
 無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。
(無線基地局)
 図8は、本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
 下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化、逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。送受信部103は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの呼処理(設定、解放など)、無線基地局10の状態管理、無線リソースの管理などを行う。
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
 なお、送受信部103は、アナログビームフォーミングを実施するアナログビームフォーミング部をさらに有してもよい。アナログビームフォーミング部は、本発明に係る技術分野での共通認識に基づいて説明されるアナログビームフォーミング回路(例えば、位相シフタ、位相シフト回路)又はアナログビームフォーミング装置(例えば、位相シフト器)から構成してもよい。また、送受信アンテナ101は、例えばアレーアンテナにより構成してもよい。
 送受信部103は、ユーザ端末20に対して、第1の伝送方式(例えば、シングルキャリア伝送方式)の波形に従うデータ信号の送信をスケジュールする下り制御信号(例えば、DCI)を送信してもよい。当該下り制御信号は、第2の伝送方式(例えば、マルチキャリア伝送方式)ベースの波形に従う測定用参照信号の測定結果に基づいて生成された信号であってもよい。
 送受信部103は、ユーザ端末20から、第1の伝送方式ベースの波形及び/又は第2の伝送方式ベースの波形を受信してもよい。送受信部103は、第1の伝送方式を用いて、既存のLTEのSRSとは異なり、かつ上記データ信号より広い送信帯域幅の測定用参照信号を受信してもよい。また、送受信部103は、第2の伝送方式を用いて、測定用参照信号を受信してもよい。また、送受信部103は、PHRなどを受信してもよい。
 また、送受信部103は、拡張参照信号の送信帯域幅の情報、拡張参照信号の送信タイミングの情報、拡張参照信号に関するB-IFDMAのパターンの情報などを送信してもよい。
 図9は、本発明の一実施形態に係る無線基地局の機能構成の一例を示す図である。なお、本例では、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているものとする。
 ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、無線基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。
 制御部(スケジューラ)301は、無線基地局10全体の制御を実施する。制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部301は、例えば、送信信号生成部302による信号の生成、マッピング部303による信号の割り当てなどを制御する。また、制御部301は、受信信号処理部304による信号の受信処理、測定部305による信号の測定などを制御する。
 制御部301は、システム情報、下りデータ信号(例えば、PDSCHで送信される信号)、下り制御信号(例えば、PDCCH及び/又はEPDCCHで送信される信号。送達確認情報など)のスケジューリング(例えば、リソース割り当て)を制御する。また、制御部301は、上りデータ信号に対する再送制御の要否を判定した結果などに基づいて、下り制御信号、下りデータ信号などの生成を制御する。また、制御部301は、同期信号(例えば、PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal))、下り参照信号(例えば、CRS、CSI-RS、DMRS)などのスケジューリングの制御を行う。
 また、制御部301は、上りデータ信号(例えば、PUSCHで送信される信号)、上り制御信号(例えば、PUCCH及び/又はPUSCHで送信される信号。送達確認情報など)、ランダムアクセスプリアンブル(例えば、PRACHで送信される信号)、上り参照信号などのスケジューリングを制御する。
 制御部301は、ベースバンド信号処理部104によるデジタルBF(例えば、プリコーディング)及び/又は送受信部103によるアナログBF(例えば、位相回転)を用いて、送信ビーム及び/又は受信ビームを形成するように制御してもよい。制御部301は、下り伝搬路情報、上り伝搬路情報などに基づいて、ビームを形成するように制御してもよい。これらの伝搬路情報は、受信信号処理部304及び/又は測定部305から取得されてもよい。なお、送信ビームを用いる送信は、所定のプリコーディングが適用された信号の送信と言い換えられてもよい。
 制御部301は、少なくとも第1の伝送方式(例えば、シングルキャリア伝送方式、DFT-S-OFDM)ベースの信号を上りリンクを用いて受信する制御を行う。制御部301は、第2の伝送方式(例えば、マルチキャリア伝送方式、CP-OFDM)ベースの信号を上りリンクを用いて受信する制御を行ってもよい。
 制御部301は、第1の伝送方式(例えば、シングルキャリア伝送方式)ベースの波形に従うデータ信号(例えば、PUSCHで送信する信号)の送信をスケジュールする下り制御信号(例えば、DCI(ULグラント))を送信するように制御してもよい。
 制御部301は、既存のLTE(例えば、LTE Rel.13)の上り測定用参照信号(SRS)とは異なり、かつ上記データ信号より広い送信帯域幅の測定用参照信号(拡張参照信号)を、第1の伝送方式(例えば、シングルキャリア伝送方式)ベースの波形を想定して受信し、測定するように制御してもよい。
 制御部301は、拡張参照信号を、既存のLTEで用いられる復調用参照信号(DMRS)と少なくとも一部のリソースを共有する参照信号と想定して受信し、測定するように制御してもよい。なお、拡張参照信号は、CSI-RS、BRS、PT-RSなどと少なくとも一部のリソースを共有する参照信号であってもよい。
 制御部301は、拡張参照信号を用いる場合、UPHが、上記データ信号の送信電力及び/又は上記データ信号の送信帯域幅に基づいて算出されたと想定してもよいし、拡張参照信号の送信電力及び/又は拡張参照信号の送信帯域幅に基づいて算出されたと想定してもよい。
 制御部301は、拡張参照信号の一部又は全部にプリコーディングが適用されると想定してもよいし、プリコーディングが適用されないと想定してもよい。
 制御部301は、周波数領域に非連続に割り当てて送信される第2の伝送方式(例えば、マルチキャリア伝送方式)ベースの測定用参照信号を想定して、受信及び測定を行うように制御してもよい。制御部301は、当該測定用参照信号の測定結果に基づいて、ユーザ端末20の上りデータ送信のスケジューリングを決定し、第1の伝送方式(例えば、シングルキャリア伝送方式)ベースの波形のデータ信号の送信をスケジュールする下り制御信号(例えば、DCI(ULグラント))を送信するように制御してもよい。
 制御部301は、受信したPHRに基づいて、ユーザ端末20の所定の波形に関するパスロスを推定し、当該パスロスを用いてユーザ端末20に送信するTPCコマンドを決定してもよい。
 送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部302は、例えば、制御部301からの指示に基づいて、下りデータの割り当て情報を通知するDLアサインメント及び/又は上りデータの割り当て情報を通知するULグラントを生成する。DLアサインメント及びULグラントは、いずれもDCIであり、DCIフォーマットに従う。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。
 受信信号処理部304は、受信処理により復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力する。
 測定部305は、受信した信号に関する測定を実施する。例えば、測定部305は、第1の伝送方式を用いて送信される拡張参照信号を測定してもよいし、第2の伝送方式を用いて送信される測定用参照信号を測定してもよい。測定部305は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 例えば、測定部305は、受信した信号に基づいて、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定などを行ってもよい。測定部305は、受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio))、信号強度(例えば、RSSI(Received Signal Strength Indicator))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部301に出力されてもよい。
(ユーザ端末)
 図10は、本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、ブロードキャスト情報もアプリケーション部205に転送されてもよい。
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。
 なお、送受信部203は、アナログビームフォーミングを実施するアナログビームフォーミング部をさらに有してもよい。アナログビームフォーミング部は、本発明に係る技術分野での共通認識に基づいて説明されるアナログビームフォーミング回路(例えば、位相シフタ、位相シフト回路)又はアナログビームフォーミング装置(例えば、位相シフト器)から構成してもよい。また、送受信アンテナ201は、例えばアレーアンテナにより構成してもよい。
 送受信部203は、無線基地局10から、第1の伝送方式(例えば、シングルキャリア伝送方式)の波形に従うデータ信号の送信をスケジュールする下り制御信号(例えば、DCI)を受信してもよい。当該下り制御信号は、第2の伝送方式(例えば、マルチキャリア伝送方式)ベースの波形に従う測定用参照信号の測定結果に基づいて生成された信号であってもよい。
 送受信部203は、無線基地局10に対して、第1の伝送方式ベースの波形及び/又は第2の伝送方式ベースの波形を送信してもよい。送受信部203は、第1の伝送方式を用いて、既存のLTEのSRSとは異なり、かつ上記データ信号より広い送信帯域幅の測定用参照信号を送信してもよい。また、送受信部203は、第2の伝送方式を用いて、測定用参照信号を送信してもよい。
 送受信部203は、データ信号を復調するための復調用参照信号にプリコーディングを適用し、上記広い送信帯域幅の測定用参照信号にはプリコーディングを適用しなくてもよい。また、送受信部203は、PHRなどを送信してもよい。
 また、送受信部203は、拡張参照信号の送信帯域幅の情報、拡張参照信号の送信タイミングの情報、拡張参照信号に関するB-IFDMAのパターンの情報などを受信してもよい。
 図11は、本発明の一実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているものとする。
 ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部401は、例えば、送信信号生成部402による信号の生成、マッピング部403による信号の割り当てなどを制御する。また、制御部401は、受信信号処理部404による信号の受信処理、測定部405による信号の測定などを制御する。
 制御部401は、無線基地局10から送信された下り制御信号及び下りデータ信号を、受信信号処理部404から取得する。制御部401は、下り制御信号及び/又は下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号及び/又は上りデータ信号の生成を制御する。
 制御部401は、ベースバンド信号処理部204によるデジタルBF(例えば、プリコーディング)及び/又は送受信部203によるアナログBF(例えば、位相回転)を用いて、送信ビーム及び/又は受信ビームを形成するように制御してもよい。制御部401は、下り伝搬路情報、上り伝搬路情報などに基づいて、ビームを形成するように制御してもよい。これらの伝搬路情報は、受信信号処理部404及び/又は測定部405から取得されてもよい。
 制御部401は、少なくとも第1の伝送方式(例えば、シングルキャリア伝送方式、DFT-S-OFDM)ベースの信号を上りリンクを用いて送信する制御を行う。制御部401は、第2の伝送方式(例えば、マルチキャリア伝送方式、CP-OFDM)ベースの信号を上りリンクを用いて送信する制御を行ってもよい。
 制御部401は、受信信号処理部404から、第1の伝送方式(例えば、シングルキャリア伝送方式)ベースの波形に従うデータ信号(例えば、PUSCHで送信する信号)の送信をスケジュールする下り制御信号(例えば、DCI(ULグラント))を取得すると、所定のタイミングで当該データ信号を送信するように制御する。
 制御部401は、既存のLTE(例えば、LTE Rel.13)の上り測定用参照信号(SRS)とは異なり、かつ上記データ信号より広い送信帯域幅の測定用参照信号(拡張参照信号)を、第1の伝送方式(例えば、シングルキャリア伝送方式)ベースの波形を用いて送信するように制御してもよい。
 制御部401は、拡張参照信号を、既存のLTEで用いられる復調用参照信号(DMRS)と少なくとも一部のリソースを共有する参照信号として生成し、送信するように制御してもよい。なお、拡張参照信号は、CSI-RS、BRS、PT-RSなどと少なくとも一部のリソースを共有する参照信号であってもよい。
 制御部401は、拡張参照信号の送信電力を、上記データ信号の送信電力に基づいて決定してもよいし、上記データ信号の送信電力と独立に決定してもよい。
 制御部401は、拡張参照信号を用いる場合、UPHを、上記データ信号の送信電力及び/又は上記データ信号の送信帯域幅に基づいて算出してもよいし、拡張参照信号の送信電力及び/又は拡張参照信号の送信帯域幅に基づいて算出してもよい。
 制御部401は、上記データ信号の復調用参照信号(DMRS)にプリコーディングを適用し、拡張参照信号にはプリコーディングを適用しない制御を行ってもよい。
 制御部401は、第2の伝送方式(例えば、マルチキャリア伝送方式)ベースの測定用参照信号を、周波数領域に非連続に割り当てて送信する制御を行ってもよい。制御部401は、当該測定用参照信号の測定結果に基づいて無線基地局10で生成された、第1の伝送方式(例えば、シングルキャリア伝送方式)ベースの波形のデータ信号の送信をスケジュールする下り制御信号(例えば、DCI(ULグラント))を受信すると、当該下り制御信号に基づいて上記第1の伝送方式を用いて当該データ信号を送信するように制御してもよい。
 また、制御部401は、無線基地局10から通知された各種情報を受信信号処理部404から取得した場合、当該情報に基づいて制御に用いるパラメータを更新してもよい。
 送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報、チャネル状態情報(CSI)などに関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、無線基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。
 受信信号処理部404は、受信処理により復号された情報を制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号及び/又は受信処理後の信号を、測定部405に出力する。
 測定部405は、受信した信号に関する測定を実施する。測定部405は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 例えば、測定部405は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部405は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部401に出力されてもよい。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
 例えば、本発明の一実施形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図12は、本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサで実行されてもよいし、処理が同時に、逐次に、又はその他の手法で、1以上のプロセッサで実行されてもよい。なお、プロセッサ1001は、1以上のチップで実装されてもよい。
 無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御したりすることで実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001で実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び/又は時分割複信(TDD:Time Division Duplex)を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004で実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。
(変形例)
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)で構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットで構成されてもよい。サブフレームは、ニューメロロジーに依存しない固定の時間長(例えば、1ms)であってもよい。
 さらに、スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)で構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。また、スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルで構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及び/又はTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、及び/又はコードワードの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、及び/又はコードワードがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、又は、サブスロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)で構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースは、所定のインデックスで指示されるものであってもよい。さらに、これらのパラメータを使用する数式などは、本明細書で明示的に開示したものと異なってもよい。
 本明細書においてパラメータなどに使用する名称は、いかなる点においても限定的なものではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的なものではない。
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ、及び/又は下位レイヤから上位レイヤへ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))で通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 本明細書で使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 本明細書では、「基地局(BS:Base Station)」、「無線基地局」、「eNB」、「gNB」、「セル」、「セクタ」、「セルグループ」、「キャリア」及び「コンポーネントキャリア」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び/又は基地局サブシステムのカバレッジエリアの一部又は全体を指す。
 本明細書では、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」及び「端末」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 また、本明細書における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間(D2D:Device-to-Device)の通信に置き換えた構成について、本発明の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。
 同様に、本明細書におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。
 本明細書において、基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)から成るネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本明細書で使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本明細書で使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 本明細書で使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」と読み替えられてもよい。本明細書で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を使用することにより、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び/又は光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを使用することにより、互いに「接続」又は「結合」されると考えることができる。
 本明細書又は特許請求の範囲で「含む(including)」、「含んでいる(comprising)」、及びそれらの変形が使用されている場合、これらの用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは特許請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 本出願は、2016年12月21日出願の特願2016-247586に基づく。この内容は、全てここに含めておく。
 

Claims (6)

  1.  シングルキャリア伝送方式ベースの波形に従うデータ信号の送信をスケジュールする下り制御信号を受信する受信部と、
     既存のLTEで用いられる上り測定用参照信号とは異なり、かつ前記データ信号より広い送信帯域幅の測定用参照信号を、前記シングルキャリア伝送方式ベースの波形を用いて送信する送信部と、を有することを特徴とするユーザ端末。
  2.  前記広い送信帯域幅の測定用参照信号は、既存のLTEで用いられる復調用参照信号と少なくとも一部のリソースを共有する参照信号であることを特徴とする請求項1に記載のユーザ端末。
  3.  前記広い送信帯域幅の測定用参照信号の送信電力を、前記データ信号の送信電力に基づいて決定する制御部を有することを特徴とする請求項1又は請求項2に記載のユーザ端末。
  4.  前記送信部は、前記データ信号を復調するための復調用参照信号にプリコーディングを適用し、前記広い送信帯域幅の測定用参照信号にはプリコーディングを適用しないことを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。
  5.  シングルキャリア伝送方式ベースの波形と異なるマルチキャリア伝送方式ベースの波形に従う測定用参照信号を送信する送信部と、
     前記測定用参照信号の測定結果に基づいて生成された、前記シングルキャリア伝送方式ベースの波形の信号の送信をスケジュールする下り制御信号を受信する受信部と、を有することを特徴とするユーザ端末。
  6.  ユーザ端末の無線通信方法であって、
     シングルキャリア伝送方式ベースの波形に従うデータ信号の送信をスケジュールする下り制御信号を受信する工程と、
     既存のLTEで用いられる上り測定用参照信号とは異なり、かつ前記データ信号より広い送信帯域幅の測定用参照信号を、前記シングルキャリア伝送方式ベースの波形を用いて送信する工程と、を有することを特徴とする無線通信方法。
     
PCT/JP2017/045869 2016-12-21 2017-12-21 ユーザ端末及び無線通信方法 WO2018117207A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018558064A JPWO2018117207A1 (ja) 2016-12-21 2017-12-21 ユーザ端末及び無線通信方法
US16/471,097 US11711189B2 (en) 2016-12-21 2017-12-21 User terminal and radio communication method
JP2022196066A JP7401637B2 (ja) 2016-12-21 2022-12-08 端末、無線通信方法、基地局及びシステム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-247586 2016-12-21
JP2016247586 2016-12-21

Publications (1)

Publication Number Publication Date
WO2018117207A1 true WO2018117207A1 (ja) 2018-06-28

Family

ID=62627479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045869 WO2018117207A1 (ja) 2016-12-21 2017-12-21 ユーザ端末及び無線通信方法

Country Status (3)

Country Link
US (1) US11711189B2 (ja)
JP (2) JPWO2018117207A1 (ja)
WO (1) WO2018117207A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020065052A1 (en) * 2018-09-28 2020-04-02 Telefonaktiebolaget L M Ericsson (Publ) New prs design by extending the base signal

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112020001065A2 (pt) * 2017-08-10 2020-07-14 Panasonic Intellectual Property Corporation Of America equipamento do usuário, estação base e método de comunicação sem fio
EP4088436A1 (en) * 2020-02-07 2022-11-16 Huawei Technologies Co., Ltd. First and second communication devices with improved reference signal design

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011142550A (ja) * 2010-01-08 2011-07-21 Sharp Corp 無線通信システム、移動局装置、基地局装置、無線通信方法および集積回路
JP2013062848A (ja) * 2010-02-15 2013-04-04 Ntt Docomo Inc 参照信号送信方法、移動局装置及び基地局装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4601637B2 (ja) * 2007-03-20 2010-12-22 株式会社エヌ・ティ・ティ・ドコモ 移動局、送信方法及び無線通信システム
WO2010140859A2 (ko) * 2009-06-03 2010-12-09 엘지전자 주식회사 사운딩 기준 신호를 전송하는 방법 및 장치
WO2011139053A2 (en) * 2010-05-01 2011-11-10 Pantech Co., Ltd. Apparatus and method for transmitting sounding reference signal in wireless communication system supporting multiple component carriers
US8885616B2 (en) * 2011-07-13 2014-11-11 Qualcomm Incorporated Enhancing sounding reference signals (SRS)
WO2013065426A1 (ja) 2011-11-01 2013-05-10 シャープ株式会社 移動局装置、通信システム、通信方法および集積回路
US10367558B2 (en) * 2012-02-07 2019-07-30 Motorola Mobility Llc Method and apparatus for optimizing antenna precoder selection with coupled antennas
KR101984754B1 (ko) * 2012-05-08 2019-09-24 한국전자통신연구원 엘티이기반 이동통신시스템에서의 전력 제어 및 링크 적응 방법
US9876621B2 (en) 2013-01-09 2018-01-23 Lg Electronics Inc. Method for transmitting signal and apparatus for same
JP6328843B2 (ja) * 2014-07-18 2018-05-23 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるアップリンクデータの送信方法及びこのための装置
US9930654B2 (en) * 2015-03-17 2018-03-27 Motorola Mobility Llc Method and apparatus for scheduling user equipment uplink transmissions on an unlicensed carrier
WO2017218794A1 (en) * 2016-06-15 2017-12-21 Convida Wireless, Llc Upload control signaling for new radio
TW201826847A (zh) * 2016-09-28 2018-07-16 美商Idac控股公司 多波形資料傳輸公共控制通道及參考符號
US10998994B2 (en) * 2016-10-11 2021-05-04 Lg Electronics Inc. Signal transmission method for removing phase noise in wireless communication system and device therefor
US10575258B2 (en) * 2016-10-27 2020-02-25 Qualcomm Incorporated Techniques and apparatuses for uplink power control
ES2911032T3 (es) * 2016-11-03 2022-05-17 Guangdong Oppo Mobile Telecommunications Corp Ltd Método de transmisión de datos, equipo de usuario y dispositivo de red
EP3535884A1 (en) * 2016-11-04 2019-09-11 Telefonaktiebolaget LM Ericsson (publ) Pt-rs configuration depending on scheduling parameters
KR102133854B1 (ko) * 2016-11-09 2020-07-14 엘지전자 주식회사 무선 통신 시스템에서 위상 잡음 제거를 위한 ptrs의 파워 부스팅 레벨 결정 방법 및 그 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011142550A (ja) * 2010-01-08 2011-07-21 Sharp Corp 無線通信システム、移動局装置、基地局装置、無線通信方法および集積回路
JP2013062848A (ja) * 2010-02-15 2013-04-04 Ntt Docomo Inc 参照信号送信方法、移動局装置及び基地局装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020065052A1 (en) * 2018-09-28 2020-04-02 Telefonaktiebolaget L M Ericsson (Publ) New prs design by extending the base signal
US11956168B2 (en) 2018-09-28 2024-04-09 Telefonaktiebolaget Lm Ericsson (Publ) PRS design by extending the basic signal

Also Published As

Publication number Publication date
US20200022176A1 (en) 2020-01-16
JPWO2018117207A1 (ja) 2019-10-31
JP7401637B2 (ja) 2023-12-19
US11711189B2 (en) 2023-07-25
JP2023029987A (ja) 2023-03-07

Similar Documents

Publication Publication Date Title
JP6721786B2 (ja) 端末、無線通信方法及び基地局
JP6325597B2 (ja) ユーザ端末、無線基地局及び無線通信方法
JP7030686B2 (ja) 端末、基地局、無線通信方法及びシステム
JP6811969B2 (ja) 端末、無線通信方法及び基地局
JP7007289B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2018173235A1 (ja) ユーザ端末及び無線通信方法
CN108886711B (zh) 用户终端以及无线通信方法
WO2018131675A1 (ja) ユーザ端末及び無線通信方法
JP7043419B2 (ja) 端末、無線通信方法及びシステム
WO2019215794A1 (ja) ユーザ端末及び無線通信方法
WO2018079572A1 (ja) ユーザ端末及び無線通信方法
JP7401637B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2019159235A1 (ja) ユーザ端末及び無線通信方法
WO2019180886A1 (ja) ユーザ端末及び無線通信方法
CN110800343B (zh) 用户终端以及无线通信方法
JPWO2017217456A1 (ja) ユーザ端末及び無線通信方法
WO2017188423A1 (ja) ユーザ端末及び無線通信方法
JP7053681B2 (ja) 端末、無線通信方法及びシステム
JP6779380B2 (ja) 端末、無線通信方法及び基地局
WO2018207372A1 (ja) ユーザ端末及び無線通信方法
WO2019167939A1 (ja) ユーザ端末及び無線通信方法
WO2018229837A1 (ja) ユーザ端末及び無線通信方法
WO2017191809A1 (ja) ユーザ端末及び無線通信方法
JP7046954B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2019220641A1 (ja) ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885324

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018558064

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17885324

Country of ref document: EP

Kind code of ref document: A1