WO2018117147A1 - 端末装置、基地局装置、および、通信方法 - Google Patents

端末装置、基地局装置、および、通信方法 Download PDF

Info

Publication number
WO2018117147A1
WO2018117147A1 PCT/JP2017/045718 JP2017045718W WO2018117147A1 WO 2018117147 A1 WO2018117147 A1 WO 2018117147A1 JP 2017045718 W JP2017045718 W JP 2017045718W WO 2018117147 A1 WO2018117147 A1 WO 2018117147A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
cell
terminal device
uplink
signal
Prior art date
Application number
PCT/JP2017/045718
Other languages
English (en)
French (fr)
Inventor
高橋 宏樹
山田 昇平
秀和 坪井
一成 横枕
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2018558029A priority Critical patent/JP7121659B2/ja
Priority to US16/471,062 priority patent/US11516688B2/en
Priority to EP23151540.4A priority patent/EP4185025A1/en
Priority to CN201780071961.3A priority patent/CN109997389B/zh
Priority to KR1020197017045A priority patent/KR102354792B1/ko
Priority to IL267472A priority patent/IL267472B/en
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN202210707952.1A priority patent/CN114944908A/zh
Priority to RU2019118424A priority patent/RU2761576C2/ru
Priority to CA3046388A priority patent/CA3046388A1/en
Priority to EP17884818.0A priority patent/EP3562222B1/en
Publication of WO2018117147A1 publication Critical patent/WO2018117147A1/ja
Priority to CY20231100180T priority patent/CY1126076T1/el

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/245TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes

Definitions

  • the present invention relates to a terminal device, a base station device, and a communication method.
  • Non-Patent Document 1 As a wireless access method and wireless network technology for the 5th generation cellular system, in the 3rd generation partnership project (3GPP: "The Third Generation Generation Partnership Project"), LTE (Long Term Generation Evolution)-Advanced Pro and NR (New Radio) technology) and standards are being developed (Non-Patent Document 1).
  • 3GPP 3rd generation partnership project
  • LTE Long Term Generation Evolution
  • NR New Radio
  • eMBB enhanced Mobile Broadband
  • URLLC Ultra-Reliable and Low Latency Communication
  • IoT Internet of Things
  • mMTC massive-Machine-Type-Communication
  • Non-patent Document 2 a massive MIMO (Multiple-Input Multiple-Output) technique for securing coverage by beam forming gain using a large number of antenna elements at high frequencies is being studied (Non-patent Document 2, Non-patent Document 3, Non-patent document 4).
  • Non-patent Document 3 a massive MIMO (Multiple-Input Multiple-Output) technique for securing coverage by beam forming gain using a large number of antenna elements at high frequencies is being studied.
  • One embodiment of the present invention provides a terminal device that can efficiently communicate with a base station device, a base station device that communicates with the terminal device, a communication method used for the terminal device, and a communication method used for the base station device.
  • the communication method used for the terminal apparatus and the base station apparatus is an uplink transmission for efficient communication, reduction of complexity, inter-cell and / or interference between terminal apparatuses. Methods, modulation methods, and / or encoding methods may be included.
  • the first aspect of the present invention is a terminal apparatus, which receives a plurality of reference signals in a cell from a base station apparatus, and one or a plurality of reference signals among the plurality of reference signals.
  • RSRP received power
  • a second aspect of the present invention is a terminal apparatus, wherein an uplink signal and / or an uplink channel to be transmitted in the certain cell is based on any one of the one or a plurality of RSRPs.
  • a transmission power control unit that determines transmission power.
  • a third aspect of the present invention is a terminal device, wherein the reference signal is a secondary synchronization signal.
  • a fourth aspect of the present invention is a base station apparatus, wherein a transmission unit that transmits a plurality of reference signals in a cell to a terminal apparatus, and among the plurality of reference signals received by the terminal apparatus
  • a reception unit that receives a measurement report of a reference RSRP that is an average of N RSRPs among one or a plurality of reference signal reception powers (RSRPs).
  • RSRPs reference signal reception powers
  • a fifth aspect of the present invention is a base station device, wherein the reception unit is an uplink transmitted from the terminal device with transmission power based on any one of the one or a plurality of RSRPs. A link signal and / or an uplink channel is received.
  • a sixth aspect of the present invention is a base station apparatus, wherein the reference signal is a secondary synchronization signal.
  • a seventh aspect of the present invention is a communication method used for a terminal apparatus, wherein a plurality of reference signals are received in a cell from a base station apparatus, and one or more of the plurality of reference signals are received.
  • the reference signal received power (RSRP) of the cell is measured, and among the measured one or more RSRPs, the highest N RSRPs are averaged to obtain the reference RSRP of the cell.
  • RSRP reference signal received power
  • An eighth aspect of the present invention is a communication method used in a base station apparatus, wherein a plurality of reference signals are transmitted to a terminal apparatus in a certain cell, and the plurality of reference signals received by the terminal apparatus A reference RSRP measurement report obtained by averaging N RSRPs out of one or a plurality of reference signal received powers (RSRPs) is received.
  • RSRPs reference signal received powers
  • the terminal device and the base station device can efficiently communicate with each other and / or reduce complexity.
  • FIG. 1 is a conceptual diagram of a wireless communication system according to an embodiment of the present invention. It is a figure which shows an example of schematic structure of the downlink slot which concerns on embodiment of this invention. It is a figure which shows the relationship in the time domain of the sub-frame which concerns on embodiment of this invention, a slot, and a minislot. It is a figure which shows an example of the slot or sub-frame which concerns on embodiment of this invention. It is a figure which shows an example of the beam forming which concerns on embodiment of this invention. It is a figure which shows the concept by which the some reference signal to which the transmission beam was applied is transmitted in the 1 or several cell which concerns on embodiment of this invention.
  • LTE and LTE-Advanced Pro
  • NR may be defined as different RAT (Radio Access Technology).
  • NR may be defined as a technology included in LTE. This embodiment may be applied to NR, LTE and other RATs. In the following description, terms related to LTE will be used for explanation, but the present invention may be applied to other technologies using other terms.
  • FIG. 1 is a conceptual diagram of a wireless communication system according to an embodiment of the present invention.
  • the wireless communication system includes a terminal device 1A, a terminal device 1B, and a base station device 3.
  • the terminal device 1A and the terminal device 1B are also referred to as the terminal device 1.
  • the terminal device 1 may also be referred to as a mobile station device, a user terminal (UE: User User Equipment), a communication terminal, a mobile device, a terminal, an MS (Mobile Station), or the like.
  • the base station device 3 includes a radio base station device, a base station, a radio base station, a fixed station, an NB (Node B), an eNB (evolved Node B), an NRNB (NR Node B), a gNB (next generation Node B), It may be called an access point, BTS (Base Transceiver Station), BS (Base Station), or the like.
  • the base station device 3 may include a core network device.
  • the base station apparatus 3 may include one or a plurality of transmission / reception points 4 (transmission reception points: TRP). At least a part of the functions / processes of the base station apparatus 3 described below may be functions / processes at the respective transmission / reception points 4 included in the base station apparatus 3.
  • the base station apparatus 3 may serve the terminal apparatus 1 by setting the communicable range (communication area) controlled by the base station apparatus 3 as one or a plurality of cells.
  • the base station apparatus 3 may serve the terminal apparatus 1 by setting the communicable range (communication area) controlled by one or a plurality of transmission / reception points 4 as one or a plurality of cells.
  • one cell may be divided into a plurality of partial areas (Beamed areas), and the terminal device 1 may be served in each partial area.
  • the partial region may be identified based on a beam index or a precoding index used in beamforming.
  • the communication area covered by the base station device 3 may have a different size and a different shape for each frequency. Moreover, the area to cover may differ for every frequency.
  • a wireless network in which cells having different types of base station apparatuses 3 and different cell radii are mixed at the same frequency or different frequencies to form one communication system is referred to as a heterogeneous network.
  • a wireless communication link from the base station device 3 to the terminal device 1 is referred to as a downlink.
  • a wireless communication link from the terminal device 1 to the base station device 3 is referred to as an uplink.
  • a wireless communication link from the terminal device 1 to another terminal device 1 is referred to as a side link.
  • orthogonal frequency division including a cyclic prefix including a cyclic prefix (CP: Cyclic Prefix).
  • Multiplexing OFDM: Orthogonal Frequency Division Multiplexing
  • SC-FDM Single Carrier Frequency Division, Multiplexing
  • Discrete Fourier Transform Spread OFDM DFT-S-OFDM: Discrete Fourier Transform Spread
  • MC-CDM Multicarrier Code Division Multiplexing
  • a universal filter multicarrier (UFMC: Universal-Filtered Multi- Carrier), filter OFDM (F-OFDM: Filtered OFDM), OFDM multiplied by a window (Windowed OFDM), and filter bank multicarrier (FBMC: Filter-Bank Multi-Carrier) may be used.
  • UMC Universal-Filtered Multi- Carrier
  • F-OFDM Filtered OFDM
  • FBMC Filter-Bank Multi-Carrier
  • OFDM is described as an OFDM transmission system, but the case of using the above-described other transmission system is also included in one aspect of the present invention.
  • the OFDM symbol in this embodiment may be an SC-FDM symbol (sometimes referred to as an SC-FDMA (Single-Carrier Frequency Division Multiple Access) symbol).
  • CP is not used or zero padding is used instead of CP.
  • the above-described transmission method may be used.
  • CP and zero padding may be added to both the front and rear.
  • one or a plurality of serving cells are set for the terminal device 1.
  • the plurality of configured serving cells include one primary cell and one or more secondary cells.
  • the primary cell is a serving cell in which an initial connection establishment (initial connection establishment) procedure has been performed, a serving cell that has initiated a connection re-establishment procedure, or a cell designated as a primary cell in a handover procedure.
  • One or a plurality of secondary cells may be set at or after the RRC (Radio Resource Control) connection is established.
  • RRC Radio Resource Control
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • a TDD (Time Division Division Duplex) method or an FDD (Frequency Division Duplex) method may be applied to all of a plurality of cells.
  • cells to which the TDD scheme is applied and cells to which the FDD scheme is applied may be aggregated.
  • a carrier corresponding to a serving cell is referred to as a downlink component carrier (or downlink carrier).
  • a carrier corresponding to a serving cell is referred to as an uplink component carrier (or uplink carrier).
  • a carrier corresponding to the serving cell is referred to as a side link component carrier (or side link carrier).
  • a downlink component carrier, an uplink component carrier, and / or a side link component carrier are collectively referred to as a component carrier (or carrier).
  • the physical channel and physical signal of this embodiment will be described.
  • the downlink physical channel and / or the downlink physical signal may be collectively referred to as a downlink signal.
  • Uplink physical channels and / or uplink physical signals may be collectively referred to as uplink signals.
  • the downlink physical channel and / or the uplink physical channel may be collectively referred to as a physical channel.
  • the downlink physical signal and / or the uplink physical signal may be collectively referred to as a physical signal.
  • the following physical channels are used in wireless communication between the terminal device 1 and the base station device 3.
  • the physical channel is used to transmit information output from an upper layer.
  • PBCH Physical Broadcast CHannel
  • PCCH Physical Control CHannel
  • PSCH Physical Shared CHannel
  • PRACH Physical Random Access CHannel
  • the PBCH is used for the base station apparatus 3 to broadcast an important information block (MIB: Master Information Block, EIB: Essential Information Block) including important system information (Essential information) required by the terminal apparatus 1.
  • MIB Master Information Block
  • EIB Essential Information Block
  • the important information block may include information indicating a part or all of a frame number (SFN: System Frame Number) (for example, information on a position in a super frame composed of a plurality of frames).
  • SFN System Frame Number
  • a radio frame (10 ms) is composed of 10 subframes of 1 ms, and the radio frame is identified by a frame number. The frame number returns to 0 at 1024 (Wrap around).
  • the important information when different important information blocks are transmitted for each region in the cell, information that can identify the region (for example, identifier information of base station transmission beams constituting the region) may be included.
  • the base station transmission beam identifier information may be indicated using an index of the base station transmission beam (precoding).
  • the time position in the frame for example, the subframe number including the important information block (important information message)
  • Possible information may be included. That is, information for determining each of the subframe numbers in which the transmission of the important information block (important information message) using the index of the different base station transmission beam is performed may be included.
  • the important information may include information necessary for connection to the cell and mobility.
  • the PCCH is used for transmitting uplink control information (Uplink ⁇ Control Information: ⁇ UCI) in the case of uplink wireless communication (wireless communication from the terminal device 1 to the base station device 3).
  • the uplink control information may include channel state information (CSI: Channel State Information) used to indicate the state of the downlink channel.
  • the uplink control information may include a scheduling request (SR: “Scheduling” Request) used for requesting the UL-SCH resource.
  • the uplink control information may include HARQ-ACK (Hybrid Automatic Repeat request ACKnowledgement).
  • the HARQ-ACK may indicate HARQ-ACK for downlink data (Transport block, Medium Access Control, Protocol Data, Unit: MAC PDU, Downlink-Shared Channel: DL-SCH).
  • the PCCH is used for transmitting downlink control information (Downlink Control Information: DCI) in the case of downlink wireless communication (wireless communication from the base station device 3 to the terminal device 1).
  • DCI Downlink Control Information
  • one or a plurality of DCIs (which may be referred to as DCI formats) are defined for transmission of downlink control information. That is, the field for downlink control information is defined as DCI and mapped to information bits.
  • DCI including information indicating whether a signal included in the scheduled PSCH indicates downlink radio communication or uplink radio communication may be defined as DCI.
  • DCI including information indicating a downlink transmission period included in the scheduled PSCH may be defined as DCI.
  • DCI including information indicating an uplink transmission period included in the scheduled PSCH may be defined as DCI.
  • DCI including information indicating the timing of transmitting HARQ-ACK for the scheduled PSCH may be defined as DCI.
  • DCI including information indicating the downlink transmission period, gap, and uplink transmission period included in the scheduled PSCH may be defined as DCI.
  • DCI used for scheduling of one downlink radio communication PSCH (transmission of one downlink transport block) in one cell may be defined as DCI.
  • DCI used for scheduling of one uplink radio communication PSCH (transmission of one uplink transport block) in one cell may be defined as DCI.
  • DCI includes information on PSCH scheduling when the PSCH includes an uplink or a downlink.
  • the DCI for the downlink is also referred to as a downlink grant (downlink grant) or a downlink assignment (downlink assignment).
  • the DCI for the uplink is also called an uplink grant (uplink grant) or an uplink assignment (Uplink assignment).
  • the PSCH is used for transmission of uplink data (UL-SCH: Uplink Shared CHannel) or downlink data (DL-SCH: Downlink Shared CHannel) from mediated access (MAC: Medium Access Control).
  • UL-SCH Uplink Shared CHannel
  • DL-SCH Downlink Shared CHannel
  • SI System Information
  • RAR Random Access, Response
  • uplink it may be used to transmit HARQ-ACK and / or CSI along with uplink data. Further, it may be used to transmit only CSI or only HARQ-ACK and CSI. That is, it may be used to transmit only UCI.
  • the base station device 3 and the terminal device 1 exchange (transmit / receive) signals in a higher layer.
  • the base station device 3 and the terminal device 1 transmit and receive RRC signaling (RRC message: Radio Resource Control message, RRC information: also called Radio Resource Control information) in a radio resource control (RRC: Radio Resource Control) layer. May be.
  • RRC Radio Resource Control
  • the base station device 3 and the terminal device 1 may transmit and receive a MAC control element in a MAC (Medium Access Control) layer.
  • MAC Medium Access Control
  • the RRC signaling and / or the MAC control element is also referred to as a higher layer signal.
  • the upper layer means an upper layer viewed from the physical layer, and may include one or more of a MAC layer, an RRC layer, an RLC layer, a PDCP layer, a NAS layer, and the like.
  • the upper layer may include one or a plurality of RRC layers, RLC layers, PDCP layers, NAS layers, and the like.
  • the PSCH may be used to transmit RRC signaling and MAC control elements.
  • the RRC signaling transmitted from the base station apparatus 3 may be common signaling for a plurality of terminal apparatuses 1 in the cell.
  • the RRC signaling transmitted from the base station device 3 may be signaling dedicated to a certain terminal device 1 (also referred to as dedicated signaling). That is, information specific to a terminal device (UE specific) may be transmitted to a certain terminal device 1 using dedicated signaling.
  • the PSCH may be used for transmission of UE capability (UE Capability) in the uplink.
  • the downlink shared channel may be referred to as a physical downlink shared channel (PDSCH: Physical Downlink Shared CHannel).
  • the uplink shared channel may be referred to as a physical uplink shared channel (PUSCH: Physical-Uplink-Shared-CHannel).
  • the downlink control channel may be referred to as a physical downlink control channel (PDCCH: Physical Downlink Control CHannel).
  • the uplink control channel may be referred to as a physical uplink control channel (PUCCH: Physical-Uplink-Control-CHannel).
  • PRACH may be used to transmit a random access preamble.
  • PRACH includes initial connection establishment procedure, handover procedure, connection re-establishment procedure, synchronization for uplink transmission (timing adjustment), and uplink PSCH (UL-SCH) resource request. May be used to indicate
  • the following downlink physical signals are used in downlink wireless communication.
  • the downlink physical signal is not used for transmitting information output from the upper layer, but is used by the physical layer.
  • SS Synchronization signal
  • RS Reference signal
  • the synchronization signal is used for the terminal device 1 to synchronize the downlink frequency domain and time domain.
  • the synchronization signal may include a primary synchronization signal (PSS: Primary Synchronization Signal) and a secondary synchronization signal (SSS).
  • PSS Primary Synchronization Signal
  • SSS secondary synchronization signal
  • the synchronization signal may be used for the terminal device 1 to specify a cell identifier (cell ID: Cell : Identifier).
  • the synchronization signal may be used for selection / identification / determination of a base station transmission beam used by the base station apparatus 3 and / or a terminal reception beam used by the terminal apparatus 1 in downlink beamforming. That is, the synchronization signal may be used for the terminal device 1 to select / identify / determine the index of the base station transmission beam applied to the downlink signal by the base station device 3.
  • the downlink reference signal (hereinafter, also simply referred to as a reference signal in the present embodiment) may be classified into a plurality of reference signals based on the usage or the like. For example, one or more of the following reference signals may be used as the reference signal.
  • DMRS Demodulation Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • PTRS Phase Tracking Reference Signal
  • MRS Mobility Reference Signal
  • DMRS may be used for propagation path compensation when demodulating a received modulated signal.
  • the DMRS for PSCH demodulation, PCCH demodulation, and / or PBCH demodulation may be collectively referred to as DMRS, or may be individually defined.
  • CSI-RS may be used for channel state measurement.
  • PTRS may be used to track the phase, such as by movement of the terminal.
  • MRS may be used to measure reception quality from multiple base station devices for handover.
  • a reference signal for compensating for phase noise may be defined in the reference signal.
  • the plurality of reference signals may have the function of other reference signals.
  • At least one of the plurality of reference signals, or other reference signal is a cell-specific reference signal (CRS), a base station apparatus 3 or a transmission / reception point 4 individually set for a cell.
  • CRS cell-specific reference signal
  • BRS beam-specific reference signal
  • UE-specific reference signal UE-specific reference signal
  • At least one of the reference signals may be used for fine synchronization such as numerology such as radio parameters and subcarrier intervals, FFT window synchronization, and the like.
  • At least one of the reference signals may be used for radio resource measurement (RRM: Radio Resource Measurement).
  • RRM Radio Resource Measurement
  • at least one of the reference signals may be used for beam management.
  • a synchronization signal may be used as at least one of the reference signals.
  • subframes will be described. Although referred to as a subframe in this embodiment, it may be referred to as a resource unit, a radio frame, a time interval, a time interval, or the like.
  • FIG. 2 is a diagram illustrating an example of a schematic configuration of a downlink slot according to the embodiment of the present invention.
  • Each radio frame is 10 ms long.
  • Each radio frame is composed of 10 subframes and X slots. That is, the length of one subframe is 1 ms.
  • the uplink slot is defined in the same manner, and the downlink slot and the uplink slot may be defined separately.
  • the signal or physical channel transmitted in each of the slots may be represented by a resource grid.
  • the resource grid is defined by a plurality of subcarriers and a plurality of OFDM symbols.
  • the number of subcarriers constituting one slot depends on the downlink and uplink bandwidths of the cell.
  • Each element in the resource grid is referred to as a resource element.
  • Resource elements may be identified using subcarrier numbers and OFDM symbol numbers.
  • the resource block is used to express a mapping of resource elements of a certain physical downlink channel (PDSCH or the like) or uplink channel (PUSCH or the like).
  • resource blocks virtual resource blocks and physical resource blocks are defined.
  • a physical uplink channel is first mapped to a virtual resource block. Thereafter, the virtual resource block is mapped to the physical resource block.
  • one physical resource block is defined by 7 consecutive OFDM symbols in the time domain and 12 consecutive subcarriers in the frequency domain. The That is, one physical resource block is composed of (7 ⁇ 12) resource elements.
  • one physical resource block is defined by, for example, 6 consecutive OFDM symbols in the time domain and 12 consecutive subcarriers in the frequency domain. That is, one physical resource block is composed of (6 ⁇ 12) resource elements. At this time, one physical resource block corresponds to one slot in the time domain and corresponds to 180 kHz in the frequency domain. Physical resource blocks are numbered from 0 in the frequency domain.
  • FIG. 3 is a diagram illustrating the relationship in the time domain between subframes, slots, and minislots.
  • the subframe is 1 ms regardless of the subcarrier interval, the number of OFDM symbols included in the slot is 7 or 14, and the slot length varies depending on the subcarrier interval.
  • the slot length may be defined as 0.5 / ( ⁇ f / 15) ms when the number of OFDM symbols constituting one slot is 7, where the subcarrier interval is ⁇ f (kHz).
  • ⁇ f may be defined by a subcarrier interval (kHz).
  • the slot length may be defined as 1 / ( ⁇ f / 15) ms.
  • ⁇ f may be defined by a subcarrier interval (kHz).
  • the slot length may be defined as X / 14 / ( ⁇ f / 15) ms.
  • a mini-slot (may be referred to as a sub-slot) is a time unit configured with fewer OFDM symbols than the number of OFDM symbols included in the slot. This figure shows an example in which a minislot is composed of 2 OFDM symbols. The OFDM symbols in the minislot may coincide with the OFDM symbol timing that constitutes the slot.
  • the minimum scheduling unit may be a slot or a minislot.
  • FIG. 4 shows an example of a slot or a subframe.
  • a case where the slot length is 0.5 ms at a subcarrier interval of 15 kHz is shown as an example.
  • D indicates the downlink and U indicates the uplink.
  • ⁇ Downlink part (duration) ⁇ Gap ⁇ Uplink part (duration) One or more of them.
  • 4A may be referred to as a certain time interval (for example, a minimum unit of time resources that can be allocated to one UE, or a time unit, etc.
  • a plurality of minimum units of time resources are bundled to be referred to as a time unit.
  • 4 (b) is an example in which all are used for downlink transmission, and FIG. 4 (b) performs uplink scheduling via the PCCH, for example, with the first time resource, and the processing delay and downlink of the PCCH.
  • Uplink signal is transmitted through the uplink switching time and the gap for generating the transmission signal.
  • FIG. 4 (c) is used for transmission of the downlink PCCH and / or downlink PSCH in the first time resource, through the processing delay, the downlink to uplink switching time, and the gap for transmission signal generation. Used for transmission of PSCH or PCCH.
  • the uplink signal may be used for transmission of HARQ-ACK and / or CSI, that is, UCI.
  • FIG. 4 (d) is used for transmission of downlink PCCH and / or downlink PSCH in the first time resource, via processing delay, downlink to uplink switching time, and gap for transmission signal generation. Used for uplink PSCH and / or PCCH transmission.
  • the uplink signal may be used for transmission of uplink data, that is, UL-SCH.
  • FIG. 4E is an example in which all are used for uplink transmission (uplink PSCH or PCCH).
  • the above-described downlink part and uplink part may be composed of a plurality of OFDM symbols as in LTE.
  • Beam forming on the transmission side controls the amplitude and phase in analog or digital for each of the plurality of transmission antenna elements. This is a method of transmitting a signal with a high transmission antenna gain in an arbitrary direction, and the field pattern is referred to as a transmission beam.
  • beam forming on the receiving side controls the amplitude and phase in an analog or digital manner for each of a plurality of receiving antenna elements. This is a method of receiving a signal with a high receiving antenna gain in an arbitrary direction, and the field pattern is referred to as a receiving beam.
  • the beam management may be an operation of the base station apparatus 3 and / or the terminal apparatus 1 for obtaining directivity alignment and beam gain of the transmission beam and / or the reception beam.
  • Fig. 5 shows an example of beamforming.
  • a plurality of antenna elements are connected to a single transmission unit (TXRU: “Transceiver” unit) 50, the phase is controlled by a phase shifter 51 for each antenna element, and transmitted from the antenna element 52 in any direction with respect to the transmission signal.
  • the beam can be directed.
  • the TXRU 50 may be defined as an antenna port, and in the terminal device 1, only the antenna port may be defined. Since the directivity can be directed in an arbitrary direction by controlling the phase shifter 51, the base station apparatus 3 can communicate with the terminal apparatus 1 using a beam having a high gain.
  • Beam forming may be referred to as virtualization, precoding, weight multiplication, and the like. Further, the signal itself transmitted simply using beam forming may be called a transmission beam.
  • the transmission beam used by the terminal device 1 in uplink transmission beamforming is referred to as an uplink transmission beam (UL Tx beam), and the reception beam used by the base station device 3 in uplink reception beamforming.
  • This is called an uplink receive beam (UL (Rx beam).
  • a transmission beam used by the base station apparatus 3 in downlink transmission beamforming is referred to as a downlink transmission beam (DL (Tx beam), and a reception beam used by the terminal device 1 in downlink reception beamforming is downlink received.
  • DL Rx beam beam
  • the uplink transmission beam and the uplink reception beam may be collectively referred to as an uplink beam
  • the downlink transmission beam and the downlink reception beam may be collectively referred to as a downlink beam.
  • the processing performed by the terminal device 1 for uplink beamforming is referred to as uplink transmission beam processing or uplink precoding
  • the processing performed by the base station device 3 for uplink beamforming is uplink reception beam processing. May be referred to.
  • the processing performed by the terminal apparatus 1 for downlink beamforming is referred to as downlink reception beam processing
  • the processing performed by the base station apparatus 3 for downlink beamforming is referred to as downlink transmission beam processing or downlink precoding. You may call it.
  • the base station apparatus 3 may transmit a signal using a plurality of downlink transmission beams in one OFDM symbol.
  • the antenna element of the base station apparatus 3 may be divided into subarrays, and different downlink beamforming may be performed in each subarray. Different downlink beamforming may be performed for each polarization using a polarization antenna.
  • the terminal apparatus 1 may transmit a signal using a plurality of uplink transmission beams with one OFDM symbol.
  • the base station apparatus 3 switches and uses a plurality of downlink transmission beams in a cell formed by the base station apparatus 3 and / or the transmission / reception point 4.
  • An individual cell may be configured for each.
  • Beam management may include the following operations.
  • the beam selection may be an operation of selecting a beam in communication between the base station device 3 and the terminal device 1.
  • the beam improvement may be an operation of changing the beam between the base station apparatus 3 and the terminal apparatus 1 that is optimal by selecting a beam having a higher gain or moving the terminal apparatus 1.
  • the beam recovery may be an operation of reselecting a beam when the quality of the communication link is deteriorated due to a blockage caused by passage of an obstacle or a person in communication between the base station device 3 and the terminal device 1.
  • a reference signal for example, CSI-RS
  • QCL pseudo-co-location
  • Two antenna ports are said to be QCL if the long term property of a channel carrying a symbol at one antenna port can be inferred from the channel carrying a symbol at the other antenna port.
  • the long-term characteristics of the channel include one or more of delay spread, Doppler spread, Doppler shift, average gain, and average delay. For example, when antenna port 1 and antenna port 2 are QCL with respect to average delay, this means that the reception timing of antenna port 2 can be inferred from the reception timing of antenna port 1.
  • the long-term characteristics (Long ⁇ ⁇ ⁇ ⁇ term property) of a channel in a spatial QCL assumption include arrival angles (AoA (Angle of Arrival), ZoA (Zenith angle of Arrival), etc.) and / or angular spread (Angle) Spread, eg ASA (Angle Spread of Arrival) or ZSA (Zenith angle Spread of Arrival)), sending angle (AoD, ZoD, etc.) and its angular spread (Angle Spread, eg ASD (Angle Spread of Departure) or ZSS (Zenith angle) Spread of Departure)) or spatial (correlation.
  • the operations of the base station device 3 and the terminal device 1 equivalent to the beam management may be defined as the beam management by the QCL assumption of the space and the radio resource (time and / or frequency).
  • an antenna port may be assigned to each of precoding or transmission beams.
  • a signal transmitted using different precoding or a signal transmitted using different transmission beams according to the present embodiment may be defined as a signal transmitted through different one or a plurality of antenna ports.
  • an antenna port is defined as a channel through which a symbol that is a certain antenna port is transmitted can be estimated from a channel through which another symbol is transmitted through the same antenna port.
  • the same antenna port may mean that the antenna port number (number for identifying the antenna port) is the same.
  • An antenna port set may be configured by a plurality of antenna ports.
  • the same antenna port set may be that the antenna port set number (the number for identifying the antenna port set) is the same.
  • Transmitting signals by applying different terminal transmission beams may be transmitting signals using different antenna port sets including different antenna ports or a plurality of antenna ports.
  • Each beam index may be an OFDM symbol number, an antenna port number, or an antenna port set number.
  • Transform precoding In the transform precoding, complex modulation symbols for one or a plurality of layers generated by layer mapping are input.
  • Transform precoding may be a process of dividing a block of complex symbols into sets for each layer corresponding to one OFDM symbol. If OFDM is used, DFT (Discrete Fourier Transform) processing in transform precoding may not be necessary.
  • Precoding may be to generate a vector block that maps to a resource element using the resulting vector block from the transform precoder as input. In the case of spatial multiplexing, one of the precoding matrices may be applied when generating a vector block that maps to resource elements. This processing may be called digital beam forming.
  • Precoding may be defined including analog beam forming and digital beam forming, or may be defined as digital beam forming.
  • Beamforming may be applied to a precoded signal, or precoding may be applied to a signal to which beamforming is applied.
  • Beam forming may include analog beam forming and not include digital beam forming, or may include both digital beam forming and analog beam forming.
  • a beamformed signal, a precoded signal, or a beamformed and precoded signal may be referred to as a beam.
  • the beam index may be a precoding matrix index.
  • the index of the beam and the index of the precoding matrix may be defined independently.
  • a signal may be generated by applying the precoding matrix indicated by the index of the precoding matrix to the beam indicated by the index of the beam.
  • the signal may be generated by applying the beamforming indicated by the beam index to the signal to which the precoding matrix indicated by the index of the precoding matrix is applied.
  • Digital beamforming may apply different precoding matrices to resources in the frequency direction (eg, a set of subcarriers).
  • FIG. 6 shows a case where the terminal apparatus 1 receives a plurality of reference signals to which independent transmission beams are applied from the plurality of base station apparatuses 3.
  • the terminal apparatus 1 receives a plurality of reference signals T1-1 to T1-P using the transmission beams b1-1 to b1-P from the base station apparatus 3 configuring the cell 100.
  • a procedure in the case where the terminal device 1 selects a cell (for example, the cell 100) as a cell suitable for camping (suitable cell) will be described with reference to the flowchart shown in FIG.
  • step S1001 of FIG. 8 the terminal apparatus 1 receives a plurality of terminals corresponding to one or more cells from one or more base station apparatuses 3 via synchronization signals, system information, and / or higher layer signals.
  • the information for specifying the setting of the reference signal is received.
  • the terminal device 1 does not depend on information for specifying settings of a plurality of reference signals corresponding to each of the one or more cells, and each of the one or more cells.
  • the setting of a plurality of reference signals corresponding to may be specified.
  • An example of information for identifying a plurality of reference signal settings is for identifying a plurality of time and / or frequency resource settings assigned to each of the reference signals transmitted using a plurality of transmit beams. It may be information.
  • the information for specifying the resource of the time and / or frequency to which the reference signal is allocated may be a cell identifier (Cell ID) and / or a beam identifier (Beam ID).
  • the information for specifying the resource of time and / or frequency to which the reference signal is allocated may be information indicating the corresponding resource in the bitmap.
  • an example of information for specifying settings of a plurality of reference signals may be information for specifying each series of reference signals transmitted using a plurality of transmission beams.
  • Another example of information for specifying settings of a plurality of reference signals may be information for specifying an antenna port number to which each of reference signals using a plurality of transmission beams is assigned.
  • the terminal device 1 may implicitly specify the settings of a plurality of reference signals from the signal received from the base station device 3.
  • the terminal device 1 may specify the setting (for example, beam identifier, sequence, etc.) of the reference signal from the resource and / or the sequence that has received a certain reference signal.
  • the terminal device 1 receives a plurality of corresponding reference signals based on the specified settings of the plurality of reference signals.
  • the terminal device 1 sets at least a part of the settings of a plurality of reference signals in each cell (for example, sets each corresponding setting as a reference signal).
  • Reference Signal Received Power (RSRP) (for example, each RSRP corresponding to each reference signal setting A is referred to as received power PA) and / or a plurality of reference signals corresponding to A ).
  • reference signal reception quality (Reference Signal Received Quality; RSRQ) (for example, each RSRQ corresponding to reference signal setting A is referred to as reception quality Q A ) is measured / specified.
  • RSRQ Reference Signal Received Quality
  • reception quality Q A is measured / specified.
  • RSRP and / or RSRQ at each of a plurality of time / frequency resources and / or a plurality of antenna ports corresponding to a plurality of reference signals transmitted from a cell may be measured / identified.
  • the reference signal received based on the setting of the reference signal may be a synchronization signal.
  • the reference signal received based on the setting of the reference signal may be a synchronization signal.
  • FIG. 7 shows an example when information specifying the setting of three reference signals (reference signal setting A) is received in a cell in which the terminal device 1 is located.
  • Set 1 terminal device 1 is identified from the information received indicates that the corresponding reference signal frequency and / or time resources are allocated to the resource 1, the received power P A corresponding in the resource 1 RSRP.
  • Configuration 2 the terminal device 1 is identified from the information received indicates that the reference signal frequency, and / or time resources corresponding is assigned to the resource 2, the received power P A A corresponding in the resource 2 RSRP.
  • Setting terminal 1 is identified from information received 3 shows that the reference signal frequency and / or time resources corresponding is assigned to resource 3, the received power P A A corresponding in the resource 3 RSRP.
  • the terminal apparatus 1 the one or more reception quality Q A measured / identified in one or more of the received power P A and / or each cell measured / identified in each cell Select a suitable cell for camping based on.
  • the terminal device 1 may calculate the reference value R P in each cell based on the plurality of received power P A measured / identified in each cell.
  • the terminal apparatus 1 may calculate the reference value R Q based on the plurality of reception quality Q A measured / identified in each cell.
  • the cell may be selected which is suitable for camping based on arithmetic reference value R P and / or the reference value R Q in each cell.
  • the terminal device 1 searches for the strongest cell (for example, the cell having the highest first reference value) in the frequency band supported by the own device, and the cell is a cell suitable for camping. If there is, select the cell and camp.
  • a cell suitable for camping is a cell that satisfies a predetermined cell selection criterion and is allowed to camp on the cell.
  • the predetermined cell selection criterion may be defined by, for example, whether the first reference value is greater than or equal to a predetermined threshold and / or whether the second reference value is greater than or equal to the predetermined threshold.
  • the base station apparatus 3 configuring a certain cell transmits a plurality of reference signals using different downlink transmission beams (and / or the terminal apparatus 1 uses a plurality of downlink reception beams
  • a plurality of reference signals are transmitted.
  • the RSRP of the reference signal received by the terminal device 1 depends on the beam gain due to the used downlink transmission beam (and / or downlink reception beam). Therefore, when the terminal apparatus 1 receives a reference signal using a plurality of downlink transmission beams (and / or downlink reception beams), it selects and / or reselects a cell suitable for camping. Or is a problem.
  • the terminal device 1 has the highest value among the received powers P A (1) to P A (P) of the reference signals T1-1 to T1-P in the cell 100 received from the base station device 3. things as the reference value R P of the cell 100.
  • the terminal device 1, the reference value R P of the cell 100 which is calculated may be fed back to the base station apparatus 3 as a measurement report.
  • the terminal device 1 in this example selects a cell based on RSRP when the base station device 3 uses the best transmission beam (best Tx beam) and / or the best reception beam (best Rx beam) in the cell. Therefore, a high beam gain is obtained in the downlink signal of the selected cell.
  • the terminal device 1 calculates a value obtained by averaging the received powers P A (1) to P A (P) of the reference signals T1-1 to T1-P in the cell 100 received from the base station device 3. and the reference value R P of the cell 100.
  • the terminal device 1, the reference value R P of the cell 100 which is calculated may be fed back to the base station apparatus 3 as a measurement report.
  • the terminal device 1 can perform other operations within the same cell without reselecting the cell when the reception characteristics of the transmission beam used for downlink signal transmission in the camped cell deteriorate due to blockage or the like. Switch to a good transmit beam and / or receive beam.
  • the terminal device 1 starts from the higher received power P A (1) to P A (P) of each of the reference signals T1-1 to T1-P in the cell 100 received from the base station device 3. the value obtained by averaging the N to the reference value R P of the cell C10.
  • the terminal device 1, the reference value R P of the cell 100 which is calculated may be fed back to the base station apparatus 3 as a measurement report.
  • the terminal device 1 in this example can perform selection and / or reselection of a cell without being affected by a transmission beam and / or a reception beam having poor reception characteristics in the same cell, and other terminals in the same cell. It is possible to switch to a good transmit beam and / or receive beam.
  • a cell in which the terminal device 1 in the present embodiment is located is a serving cell (serving cell)
  • transmission power control for determining the transmission power of an uplink signal and / or an uplink channel transmitted in the serving cell. This procedure will be described with reference to the flowchart shown in FIG.
  • step S2001 of FIG. 9 the terminal device 1 uses the synchronization signal, the system information, and / or the higher layer signal from the base station device 3 to specify the settings of a plurality of reference signals corresponding to a certain cell. Receive.
  • the terminal device 1 when calculating the path loss (propagation loss) in the serving cell, performs at least a part of the setting of the plurality of reference signals in the serving cell (for example, each of the corresponding settings). Measure RSRP (eg, referred to as received power P B ) and / or RSRQ (eg, referred to as received quality Q B ) of one or more reference signals corresponding to reference signal setting B) /Identify.
  • the terminal device 1 may measure / specify RSRP and / or RSRQ in each of a plurality of time / frequency resources and / or a plurality of antenna ports corresponding to a plurality of reference signals transmitted from a cell.
  • the terminal device 1 measures / measures one RSRP and / or RSRQ corresponding to one reference signal setting B instructed via a signal (for example, a higher layer signal, a control channel, etc.) from the base station device 3. You may specify.
  • the terminal device 1 determines the uplink signal and / or uplink channel to be transmitted in the serving cell based on any one of the measured / identified one or more received powers P B. Determine the transmission power. For example, the terminal apparatus 1 determines the downlink path loss between the terminal apparatus 1 and the base station apparatus 3 in the serving cell based on any one of one or a plurality of received power P B measured / identified. calculate. The terminal device 1 may calculate the downlink path loss based on the highest value among the plurality of received power P B based on the plurality of specified second settings. However, the path loss may be calculated for each of the plurality of measured / specified received powers P B , and the path loss in the serving cell may be the one with the smallest value. For example, the path loss may be calculated by Expression (1).
  • ReferenceSignalPower is the transmission power of the reference signal corresponding to the reference signal setting B, and may be specified based on the information notified via the higher layer signal or the downlink control channel.
  • the higher layer filtered RSRP is the received power P B measured / identified based on the reference signal setting B, and may be the received power obtained by performing filtering processing on the measured value of the physical layer by the higher layer.
  • the downlink path loss value calculated by equation (1) is considered to be substantially the same as the uplink path loss, and is used to compensate for the uplink path loss.
  • the terminal device 1 determines transmission power used for transmission of the uplink signal and / or uplink channel to be transmitted based on the calculated path loss.
  • the transmission power of the PSCH transmitted by the terminal device 1 may be calculated by Expression (2).
  • PCMAX represents the maximum transmission power of the terminal device 1.
  • MPSCH represents the transmission bandwidth.
  • P O_PSCH represents the reference received power of the PSCH.
  • is a path loss coefficient used for fractional transmission power control of the entire cell.
  • ⁇ TF is a parameter depending on the modulation and coding schemes (MCS) of the uplink signal.
  • f is a correction value for excess or deficiency in received power determined by the TPC command notified from the base station apparatus.
  • the plurality of reference signal settings A and the plurality of reference signal settings B may be the same.
  • the plurality of reference signal settings A and the plurality of reference signal settings B may be settings for the same reference signal.
  • to determine the cell which is suitable for camping based on a plurality of received power P A are the respective received power of a plurality of reference signals corresponding to the setting of a plurality of reference signals, among the received power P A of said plurality of
  • the uplink signal and / or uplink channel transmission power to be transmitted in the serving cell may be determined based on any one of them.
  • the plurality of reference signal settings A and the plurality of reference signal settings B described above may be settings for independent reference signals.
  • the reference signal setting A may be a setting for the first reference signal
  • the reference signal setting B may be a setting for the second reference signal.
  • Terminal device 1 determines a cell suitable to camp on the basis of a plurality of received power P A corresponding to each of the plurality of first reference signals corresponding to a plurality of reference signal configuration A, a plurality of reference signal configuration
  • the uplink signal and / or uplink channel transmission power to be transmitted in the serving cell may be determined based on the received power P B corresponding to any one of the plurality of second reference signals corresponding to B. .
  • FIG. 10 is a schematic block diagram showing the configuration of the terminal device 1 of the present embodiment.
  • the terminal device 1 includes a wireless transmission / reception unit 10 and an upper layer processing unit 14.
  • the wireless transmission / reception unit 10 includes an antenna unit 11, an RF (Radio Frequency) unit 12, and a baseband unit 13.
  • the wireless transmission / reception unit 10 is also referred to as a transmission unit, a reception unit, or a physical layer processing unit.
  • the upper layer processing unit 14 is also referred to as a measurement unit or a control unit.
  • the upper layer processing unit 14 outputs uplink data (which may be referred to as a transport block) generated by a user operation or the like to the radio transmission / reception unit 10.
  • the upper layer processing unit 14 includes a medium access control (MAC: Medium Access Control) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, a radio resource control (Radio). (Resource Control: RRC) part or all of the processing.
  • MAC Medium Access Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • Radio Radio Resource Control
  • the upper layer processing unit 14 controls the transmission of the scheduling request based on various setting information / parameters.
  • the upper layer processing unit 14 manages various setting information / parameters of its own device.
  • the upper layer processing unit 14 sets various setting information / parameters based on the upper layer signal received from the base station apparatus 3. That is, the upper layer processing unit 14 sets various setting information / parameters based on information indicating various setting information / parameters received from the base station apparatus 3.
  • the upper layer processing unit 14 may have a function of specifying settings of a plurality of reference signals in a certain cell based on information received from the base station device 3.
  • the upper layer processing unit 14 may have a function of specifying each RSRP of a plurality of reference signals corresponding to the specified settings of the plurality of reference signals.
  • the upper layer processing unit 14 may have a function of selecting a cell suitable for camping based on RSRP of a plurality of reference signals.
  • the wireless transmission / reception unit 10 performs physical layer processing such as modulation, demodulation, encoding, and decoding.
  • the radio transmission / reception unit 10 separates, demodulates, and decodes the signal received from the base station apparatus 3 and outputs the decoded information to the upper layer processing unit 14.
  • the radio transmission / reception unit 10 generates a transmission signal by modulating and encoding data, and transmits the transmission signal to the base station apparatus 3.
  • the radio transmission / reception unit 10 may have a function of receiving information for specifying settings of a plurality of reference signals in a certain cell.
  • the wireless transmission / reception unit 10 may have a function of receiving a plurality of reference signals based on settings of a plurality of reference signals.
  • the RF unit 12 converts the signal received via the antenna unit 11 into a baseband signal by orthogonal demodulation (down-conversion: down covert), and removes unnecessary frequency components.
  • the RF unit 12 outputs the processed analog signal to the baseband unit.
  • the baseband unit 13 converts the analog signal input from the RF unit 12 into a digital signal.
  • the baseband unit 13 removes a portion corresponding to CP (Cyclic Prefix) from the converted digital signal, and performs a fast Fourier transform (FFT) on the signal from which the CP has been removed to obtain a frequency domain signal. Extract.
  • CP Cyclic Prefix
  • FFT fast Fourier transform
  • the baseband unit 13 performs inverse fast Fourier transform (Inverse Fourier Transform: IFFT) on the data to generate an OFDM symbol, adds a CP to the generated OFDM symbol, generates a baseband digital signal, and generates a baseband signal. Convert band digital signal to analog signal.
  • the baseband unit 13 outputs the converted analog signal to the RF unit 12.
  • IFFT inverse fast Fourier transform
  • the RF unit 12 removes an extra frequency component from the analog signal input from the baseband unit 13 using a low-pass filter, up-converts the analog signal to a carrier frequency, and transmits the signal via the antenna unit 11. To do.
  • the RF unit 12 amplifies power.
  • the RF unit 12 may have a function of determining uplink signal and / or uplink channel transmission power to be transmitted in the serving cell.
  • the RF unit 12 is also referred to as a transmission power control unit.
  • FIG. 11 is a schematic block diagram showing the configuration of the base station apparatus 3 of the present embodiment.
  • the base station apparatus 3 includes a radio transmission / reception unit 30 and an upper layer processing unit 34.
  • the wireless transmission / reception unit 30 includes an antenna unit 31, an RF unit 32, and a baseband unit 33.
  • the wireless transmission / reception unit 30 is also referred to as a transmission unit, a reception unit, or a physical layer processing unit.
  • the upper layer processing unit 34 is also referred to as a terminal control unit.
  • the upper layer processing unit 34 includes a medium access control (MAC: Medium Access Control) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, a radio resource control (Radio). (Resource Control: RRC) part or all of the processing.
  • MAC Medium Access Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • Radio Radio Resource Control
  • the upper layer processing unit 34 performs processing related to the scheduling request based on the managed various setting information / parameters.
  • the upper layer processing unit 34 generates downlink data (transport block), system information, RRC message, MAC CE (Control Element), etc. arranged in the physical downlink shared channel, or obtains it from the upper node, and wirelessly The data is output to the transmission / reception unit 30.
  • the upper layer processing unit 34 manages various setting information / parameters of each terminal device 1.
  • the upper layer processing unit 34 may set various setting information / parameters for each terminal device 1 via an upper layer signal. That is, the upper layer processing unit 34 transmits / notifies information indicating various setting information / parameters.
  • the upper layer processing unit 34 transmits / broadcasts information for specifying settings of a plurality of reference signals in a certain cell.
  • the wireless transmission / reception unit 30 has a function of transmitting information for specifying settings of a plurality of reference signals in a certain cell. Further, the wireless transmission / reception unit 30 has a function of transmitting a plurality of reference signals. In addition, some functions of the wireless transmission / reception unit 30 are the same as those of the wireless transmission / reception unit 10, and thus description thereof is omitted. When the base station apparatus 3 is connected to one or more transmission / reception points 4, some or all of the functions of the wireless transmission / reception unit 30 may be included in each transmission / reception point 4.
  • the upper layer processing unit 34 transmits (transfers) a control message or user data between the base station apparatuses 3 or between the upper network apparatus (MME, S-GW (Serving-GW)) and the base station apparatus 3. ) Or receive.
  • MME upper network apparatus
  • S-GW Serving-GW
  • the upper layer processing unit 34 includes a radio resource management (Radio Resource Management) layer processing unit and an application layer processing unit.
  • part in the figure is an element that realizes the functions and procedures of the terminal device 1 and the base station device 3, which are also expressed by terms such as section, circuit, component device, device, and unit.
  • Each of the units denoted by reference numerals 10 to 16 included in the terminal device 1 may be configured as a circuit.
  • Each of the parts denoted by reference numerals 30 to 36 included in the base station device 3 may be configured as a circuit.
  • a first aspect of the present invention is a terminal apparatus 1 that specifies a plurality of reference signal settings corresponding to a plurality of reference signals transmitted from a base station apparatus 3 in a cell, and the plurality of references
  • a receiving unit 10 that receives a plurality of reference signals based on signal settings, and one or more reference signals corresponding to one or more first reference signal settings that are at least part of the plurality of reference signal settings
  • a measurement unit 14 that identifies one or more second received powers that are respective received powers (RSRP) of one or more reference signals, and camping based on the one or more first received powers Suitable cell for Transmission power control for determining the transmission power of the uplink signal and / or uplink channel to be transmitted in the serving cell based on any one of the control unit 14 to be selected and the one or more second received powers Unit
  • the plurality of reference signal settings may include information indicating time and / or frequency resources of the plurality of reference signals and / or antenna port numbers.
  • the one or more first reference signal settings and the one or more second reference signal settings may be the same reference signal settings.
  • the one or more first reference signal settings and the one or more second reference signal settings may be different reference signal settings.
  • the second aspect of the present invention is the terminal device 1, and the plurality of reference signals based on a plurality of reference signal settings corresponding to a plurality of reference signals transmitted from a base station device 3 in a certain cell.
  • RSRP reception power
  • a third aspect of the present invention is the base station apparatus 3, wherein the terminal apparatus 1 receives the plurality of reference signals based on a plurality of reference signal settings corresponding to a plurality of reference signals transmitted in a certain cell.
  • a fourth aspect of the present invention is the base station apparatus 3, wherein the terminal apparatus 1 receives the plurality of reference signals based on a plurality of reference signal settings corresponding to a plurality of reference signals transmitted in a certain cell.
  • Transmitting unit 30 for transmitting and transmitting a parameter for selecting a cell suitable for camping based on one or more first received powers, and one or more terminal devices 1
  • a terminal control unit 34 that performs control for determining uplink signal and / or uplink channel transmission power to be transmitted in the serving cell based on any one of the second received power of
  • the one or more first received powers are the respective received powers (RSRP) of the plurality of reference signals corresponding to the one or more first reference signal settings that are at least part of the plurality of reference signal settings.
  • the one or more second received powers are received by each of the plurality of reference signals corresponding to the one or more second reference signal settings that are at least part of the plurality of reference signal settings. Power (RSRP).
  • RSRP received powers
  • the fifth aspect of the present invention is a terminal apparatus, which receives a plurality of reference signals in a cell from a base station apparatus, and one or a plurality of reference signals among the plurality of reference signals.
  • RSRP received power
  • a sixth aspect of the present invention is a terminal device, wherein an uplink signal and / or an uplink channel to be transmitted in the certain cell based on any one of the one or more RSRPs
  • a transmission power control unit that determines transmission power.
  • a seventh aspect of the present invention is a terminal device, wherein the reference signal is a secondary synchronization signal.
  • An eighth aspect of the present invention is a base station apparatus, wherein a transmission unit that transmits a plurality of reference signals in a certain cell to a terminal apparatus, and among the plurality of reference signals received by the terminal apparatus A reception unit that receives a measurement report of a reference RSRP that is an average of N RSRPs among one or a plurality of reference signal reception powers (RSRPs).
  • a transmission unit that transmits a plurality of reference signals in a certain cell to a terminal apparatus, and among the plurality of reference signals received by the terminal apparatus
  • a reception unit that receives a measurement report of a reference RSRP that is an average of N RSRPs among one or a plurality of reference signal reception powers (RSRPs).
  • a ninth aspect of the present invention is a base station device, wherein the reception unit is an uplink transmitted from the terminal device with transmission power based on any one of the one or a plurality of RSRPs. A link signal and / or an uplink channel is received.
  • a tenth aspect of the present invention is a base station apparatus, wherein the reference signal is a secondary synchronization signal.
  • An eleventh aspect of the present invention is a communication method used for a terminal apparatus, wherein a plurality of reference signals are received from a base station apparatus in a cell, and one or more of the plurality of reference signals are received.
  • the reference signal received power (RSRP) of the cell is measured, and among the measured one or more RSRPs, the highest N RSRPs are averaged to obtain the reference RSRP of the cell.
  • a twelfth aspect of the present invention is a communication method used in a base station apparatus, wherein a plurality of reference signals are transmitted to a terminal apparatus in a cell, and the plurality of reference signals received by the terminal apparatus A reference RSRP measurement report obtained by averaging N RSRPs out of one or a plurality of reference signal received powers (RSRPs) is received.
  • RSRPs reference signal received powers
  • a program that operates on an apparatus according to one aspect of the present invention is a program that controls a central processing unit (CPU) or the like to function a computer so as to realize the function of the embodiment according to one aspect of the present invention. Also good.
  • the program or information handled by the program is temporarily stored in a volatile memory such as a Random Access Memory (RAM), a non-volatile memory such as a flash memory, a Hard Disk Drive (HDD), or other storage system.
  • RAM Random Access Memory
  • HDD Hard Disk Drive
  • a program for realizing the functions of the embodiments according to one aspect of the present invention may be recorded on a computer-readable recording medium. You may implement
  • the “computer system” here is a computer system built in the apparatus, and includes hardware such as an operating system and peripheral devices.
  • the “computer-readable recording medium” refers to a semiconductor recording medium, an optical recording medium, a magnetic recording medium, a medium that dynamically holds a program for a short time, or other recording medium that can be read by a computer. Also good.
  • each functional block or various features of the apparatus used in the above-described embodiments can be implemented or executed by an electric circuit, for example, an integrated circuit or a plurality of integrated circuits.
  • Electrical circuits designed to perform the functions described herein can be general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or others Programmable logic devices, discrete gate or transistor logic, discrete hardware components, or a combination thereof.
  • a general purpose processor may be a microprocessor or a conventional processor, controller, microcontroller, or state machine.
  • the electric circuit described above may be configured by a digital circuit or an analog circuit.
  • one or more aspects of the present invention can use a new integrated circuit based on the technology.
  • the present invention is not limited to the above-described embodiment.
  • an example of the apparatus has been described.
  • the present invention is not limited to this, and a stationary or non-movable electronic device installed indoors or outdoors, such as an AV device, a kitchen device, It can be applied to terminal devices or communication devices such as cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other daily life equipment.
  • One embodiment of the present invention is used in, for example, a communication system, a communication device (for example, a mobile phone device, a base station device, a wireless LAN device, or a sensor device), an integrated circuit (for example, a communication chip), a program, or the like. be able to.
  • a communication device for example, a mobile phone device, a base station device, a wireless LAN device, or a sensor device
  • an integrated circuit for example, a communication chip
  • a program or the like.
  • Terminal equipment 1 (1A, 1B) Terminal equipment 3 Base station equipment 4 Transmission / reception point (TRP) DESCRIPTION OF SYMBOLS 10 Radio transmission / reception part 11 Antenna part 12 RF part 13 Baseband part 14 Upper layer processing part 30 Wireless transmission / reception part 31 Antenna part 32 RF part 33 Baseband part 34 Upper layer processing part 50 Transmission unit (TXRU) 51 Phase shifter 52 Antenna element

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

端末装置が、基地局装置からあるセルにおいて複数の参照信号を受信する受信部と、前記複数の参照信号のうちの1つまたは複数の参照信号受信電力(RSRP)を測定する測定部と、前記測定した1つまたは複数のRSRPのうち、高いものからN個のRSRPを平均して、前記セルの基準RSRPとする算出部と、を備える。

Description

端末装置、基地局装置、および、通信方法
 本発明は、端末装置、基地局装置、および、通信方法に関する。
 本願は、2016年12月20日に日本に出願された特願2016-246461号について優先権を主張し、その内容をここに援用する。
 現在、第5世代のセルラーシステムに向けた無線アクセス方式および無線ネットワーク技術として、第三世代パートナーシッププロジェクト(3GPP: The Third Generation Partnership Project)において、LTE(Long Term Evolution)-Advanced Pro及びNR(New Radio technology)の技術検討及び規格策定が行われている(非特許文献1)。
 第5世代のセルラーシステムでは、高速・大容量伝送を実現するeMBB(enhanced Mobile BroadBand)、低遅延・高信頼通信を実現するURLLC(Ultra-Reliable and Low Latency Communication)、IoT(Internet of Things)などマシン型デバイスが多数接続するmMTC(massive Machine Type Communication)の3つがサービスの想定シナリオとして要求されている。
 NRでは、高い周波数で多数のアンテナエレメントを用いてビームフォーミングゲインによりカバレッジを確保するマッシブMIMO(Multiple-Input Multiple-Output)の技術検討が行われている(非特許文献2、非特許文献3、非特許文献4)。
RP-161214 NTT DOCOMO,"Revision of SI:Study on New Radio Access Technology",2016年6月 R1-162883 Nokia,Alcatel-Lucent ShanghaiBell,"Basic Principles for the 5G New Radio Access technology",2016年4月 R1-162380,Intel Corporation,"Overview ofof antenna technology for new radio interface",2016年,4月 R1-163215,Ericsson,"Overview of NR",2016年,4月
 本発明の一態様は効率的に基地局装置と通信することができる端末装置、該端末装置と通信する基地局装置、該端末装置に用いられる通信方法、該基地局装置に用いられる通信方法を提供する。例えば、該端末装置、および、該基地局装置に用いられる通信方法は、効率的な通信、複雑性の低減、セル間、および/または、端末装置間の干渉を低減するための、上りリンク送信方法、変調方法、および/または、符号化方法を含んでもよい。
 (1)本発明の一態様は、以下のような手段を講じた。すなわち、本発明の第1の態様は、端末装置であって、基地局装置からあるセルにおいて複数の参照信号を受信する受信部と、前記複数の参照信号のうちの1つまたは複数の参照信号受信電力(RSRP)を測定する測定部と、前記測定した1つまたは複数のRSRPのうち、高いものからN個のRSRPを平均して、前記セルの基準RSRPとする算出部と、を備える。
 (2)本発明の第2の態様は、端末装置であって、前記1つまたは複数のRSRPのいずれか1つに基づいて、前記あるセルにおいて送信する上りリンク信号および/または上りリンクチャネルの送信電力を決定する送信電力制御部と、を備える。
 (3)本発明の第3の態様は、端末装置であって、前記参照信号は、セカンダリ同期信号である。
 (4)本発明の第4の態様は、基地局装置であって、端末装置に、あるセルにおいて複数の参照信号を送信する送信部と、前記端末装置が受信した前記複数の参照信号のうちの1つまたは複数の参照信号受信電力(RSRP)のうち、N個のRSRPを平均した基準RSRPの測定レポートを受信する受信部と、を備える。
 (5)本発明の第5の態様は、基地局装置であって、前記受信部は、前記端末装置から、前記1つまたは複数のRSRPのいずれか1つに基づく送信電力で送信された上りリンク信号および/または上りリンクチャネルを受信する。
 (6)本発明の第6の態様は、基地局装置であって、前記参照信号は、セカンダリ同期信号である。
 (7)本発明の第7の態様は、端末装置に用いられる通信方法であって、基地局装置からあるセルにおいて複数の参照信号を受信し、前記複数の参照信号のうちの1つまたは複数の参照信号受信電力(RSRP)を測定し、前記測定した1つまたは複数のRSRPのうち、高いものからN個のRSRPを平均して、前記セルの基準RSRPとする。
 (8)本発明の第8の態様は、基地局装置に用いられる通信方法であって、端末装置に、あるセルにおいて複数の参照信号を送信し、前記端末装置が受信した前記複数の参照信号のうちの1つまたは複数の参照信号受信電力(RSRP)のうち、N個のRSRPを平均した基準RSRPの測定レポートを受信する。
 この発明の一態様によれば、端末装置および基地局装置は互いに効率的に通信および/または複雑性の低減をすることができる。
本発明の実施形態に係る無線通信システムの概念図である。 本発明の実施形態に係る下りリンクスロットの概略構成の一例を示す図である。 本発明の実施形態に係るサブフレーム、スロット、ミニスロットの時間領域における関係を示す図である。 本発明の実施形態に係るスロットまたはサブフレームの一例を示す図である。 本発明の実施形態に係るビームフォーミングの一例を示す図である。 本発明の実施形態に係る1つまたは複数のセルにおいて送信ビームの適用された複数の参照信号が送信される概念を示す図である。 本発明の実施形態に係る端末装置1があるセルにおいて3つの参照信号の設定を特定する情報を受信した場合の例を示す図である。 本発明の実施形態に係る端末装置1があるセルをキャンプするに適したセルとして選択する場合の手順を示すフロー図である。 本発明の実施形態に係る端末装置1が在圏セルにおいて送信する上りリンク信号および/または上りリンクチャネルの送信電力を決定する送信電力制御の手順について示すフロー図である。 本発明の実施形態に係る端末装置1の構成を示す概略ブロック図である。 本発明の実施形態に係る基地局装置3の構成を示す概略ブロック図である。
 以下、本発明の実施形態について説明する。
 LTE(およびLTE-Advanced Pro)とNRは、異なるRAT(Radio Access Technology)として定義されてもよい。NRは、LTEに含まれる技術として定義されてもよい。本実施形態はNR、LTEおよび他のRATに適用されてよい。以下の説明では、LTEに関連する用語を用いて説明するが、他の用語を用いる他の技術においても適用されてもよい。
 図1は、本発明の実施形態に係る無線通信システムの概念図である。図1において、無線通信システムは、端末装置1A、端末装置1B、基地局装置3を具備する。端末装置1A、および、端末装置1Bを、端末装置1とも称する。
 端末装置1は、移動局装置、ユーザ端末(UE: User Equipment)、通信端末、移動機、端末、MS(Mobile Station)などと称される場合もある。基地局装置3は、無線基地局装置、基地局、無線基地局、固定局、NB(Node B)、eNB(evolved Node B)、NR NB(NR Node B)、gNB(next generation Node B)、アクセスポイント、BTS(Base Transceiver Station)、BS(Base Station)などと称される場合もある。基地局装置3は、コアネットワーク装置を含んでもよい。また、基地局装置3は、1つまたは複数の送受信点4(transmission reception point:TRP)を具備してもよい。以下で説明する基地局装置3の機能/処理の少なくとも一部は、該基地局装置3が具備する各々の送受信点4における機能/処理であってもよい。基地局装置3は、基地局装置3によって制御される通信可能範囲(通信エリア)を1つまたは複数のセルとして端末装置1をサーブしてもよい。また、基地局装置3は、1つまたは複数の送受信点4によって制御される通信可能範囲(通信エリア)を1つまたは複数のセルとして端末装置1をサーブしてもよい。また、1つのセルを複数の部分領域(Beamed area)にわけ、それぞれの部分領域において端末装置1をサーブしてもよい。ここで、部分領域は、ビームフォーミングで使用されるビームのインデックスあるいはプリコーディングのインデックスに基づいて識別されてもよい。
 基地局装置3がカバーする通信エリアは周波数毎にそれぞれ異なる広さ、異なる形状であっても良い。また、カバーするエリアが周波数毎に異なっていてもよい。また、基地局装置3の種別やセル半径の大きさが異なるセルが、同一の周波数または異なる周波数に混在して1つの通信システムを形成している無線ネットワークのことを、ヘテロジニアスネットワークと称する。
 基地局装置3から端末装置1への無線通信リンクを下りリンクと称する。端末装置1から基地局装置3への無線通信リンクを上りリンクと称する。端末装置1から他の端末装置1への無線通信リンクをサイドリンクと称する。
 図1において、端末装置1と基地局装置3の間の無線通信および/または端末装置1と他の端末装置1の間の無線通信では、サイクリックプレフィックス(CP: Cyclic Prefix)を含む直交周波数分割多重(OFDM: Orthogonal Frequency Division Multiplexing)、シングルキャリア周波数多重(SC-FDM: Single-Carrier Frequency Division Multiplexing)、離散フーリエ変換拡散OFDM(DFT-S-OFDM: Discrete Fourier Transform Spread OFDM)、マルチキャリア符号分割多重(MC-CDM: Multi-Carrier Code Division Multiplexing)が用いられてもよい。
 また、図1において、端末装置1と基地局装置3の間の無線通信および/または端末装置1と他の端末装置1の間の無線通信では、ユニバーサルフィルタマルチキャリア(UFMC: Universal-Filtered Multi-Carrier)、フィルタOFDM(F-OFDM: Filtered OFDM)、窓が乗算されたOFDM(Windowed OFDM)、フィルタバンクマルチキャリア(FBMC: Filter-Bank Multi-Carrier)が用いられてもよい。
 なお、本実施形態ではOFDMを伝送方式としてOFDMシンボルで説明するが、上述の他の伝送方式の場合を用いた場合も本発明の一態様に含まれる。例えば、本実施形態におけるOFDMシンボルはSC-FDMシンボル(SC-FDMA(Single-Carrier Frequency Division Multiple Access)シンボルと称される場合もある)であってもよい。
 また、図1において、端末装置1と基地局装置3の間の無線通信および/または端末装置1と他の端末装置1の間の無線通信では、CPを用いない、あるいはCPの代わりにゼロパディングをした上述の伝送方式が用いられてもよい。また、CPやゼロパディングは前方と後方の両方に付加されてもよい。
 本実施形態では、端末装置1に対して1つまたは複数のサービングセルが設定される。設定された複数のサービングセルは、1つのプライマリーセルと1つまたは複数のセカンダリーセルとを含む。プライマリーセルは、初期コネクション確立(initial connection establishment)プロシージャが行なわれたサービングセル、コネクション再確立(connection re-establishment)プロシージャを開始したサービングセル、または、ハンドオーバプロシージャにおいてプライマリーセルと指示されたセルである。RRC(Radio Resource Control)コネクションが確立された時点、または、後に、1つまたは複数のセカンダリーセルが設定されてもよい。
 本実施形態の無線通信システムは、TDD(Time Division Duplex)および/またはFDD(Frequency Division Duplex)が適用されてよい。複数のセルの全てに対してTDD(Time Division Duplex)方式またはFDD(Frequency Division Duplex)方式が適用されてもよい。また、TDD方式が適用されるセルとFDD方式が適用されるセルが集約されてもよい。
 下りリンクにおいて、サービングセルに対応するキャリアを下りリンクコンポーネントキャリア(あるいは下りリンクキャリア)と称する。上りリンクにおいて、サービングセルに対応するキャリアを上りリンクコンポーネントキャリア(あるいは上りリンクキャリア)と称する。サイドリンクにおいて、サービングセルに対応するキャリアをサイドリンクコンポーネントキャリア(あるいはサイドリンクキャリア)と称する。下りリンクコンポーネントキャリア、上りリンクコンポーネントキャリア、および/またはサイドリンクコンポーネントキャリアを総称してコンポーネントキャリア(あるいはキャリア)と称する。
 本実施形態の物理チャネルおよび物理信号について説明する。ただし、下りリンク物理チャネルおよび/または下りリンク物理信号を総称して、下りリンク信号と称してもよい。上りリンク物理チャネルおよび/または上りリンク物理信号を総称して、上りリンク信号と称してもよい。下りリンク物理チャネルおよび/または上りリンク物理チャネルを総称して、物理チャネルと称してもよい。下りリンク物理信号および/または上りリンク物理信号を総称して、物理信号と称してもよい。
 図1において、端末装置1と基地局装置3の無線通信では、以下の物理チャネルが用いられる。物理チャネルは、上位層から出力された情報を送信するために使用される。
・PBCH(Physical Broadcast CHannel)
・PCCH(Physical Control CHannel)
・PSCH(Physical Shared CHannel)
・PRACH(Physical Random Access CHannel)
 PBCHは、端末装置1が必要とする重要なシステム情報(Essential information)を含む重要情報ブロック(MIB:Master Information Block、EIB:Essential Information Block)を基地局装置3が報知するために用いられる。ここで、1つまたは複数の重要情報ブロックは、重要情報メッセージとして送信されてもよい。例えば、重要情報ブロックにはフレーム番号(SFN:System Frame Number)の一部あるいは全部を示す情報(例えば、複数のフレームで構成されるスーパーフレーム内における位置に関する情報)が含まれてもよい。例えば、無線フレーム(10ms)は、1msのサブフレームの10個で構成され、無線フレームは、フレーム番号で識別される。フレーム番号は、1024で0に戻る(Wrap around)。また、セル内の領域ごとに異なる重要情報ブロックが送信される場合には領域を識別できる情報(例えば、領域を構成する基地局送信ビームの識別子情報)が含まれてもよい。ここで、基地局送信ビームの識別子情報は、基地局送信ビーム(プリコーディング)のインデックスを用いて示されてもよい。また、セル内の領域ごとに異なる重要情報ブロック(重要情報メッセージ)が送信される場合にはフレーム内の時間位置(例えば、当該重要情報ブロック(重要情報メッセージ)が含まれるサブフレーム番号)を識別できる情報が含まれてもよい。すなわち、異なる基地局送信ビームのインデックスが用いられた重要情報ブロック(重要情報メッセージ)の送信のそれぞれが行われるサブフレーム番号のそれぞれを決定するための情報が含まれてもよい。例えば、重要情報には、セルへの接続やモビリティのために必要な情報が含まれてもよい。
 PCCHは、上りリンクの無線通信(端末装置1から基地局装置3の無線通信)の場合には、上りリンク制御情報(Uplink Control Information: UCI)を送信するために用いられる。ここで、上りリンク制御情報には、下りリンクのチャネルの状態を示すために用いられるチャネル状態情報(CSI: Channel State Information)が含まれてもよい。また、上りリンク制御情報には、UL-SCHリソースを要求するために用いられるスケジューリング要求(SR: Scheduling Request)が含まれてもよい。また、上りリンク制御情報には、HARQ-ACK(Hybrid Automatic Repeat request ACKnowledgement)が含まれてもよい。HARQ-ACKは、下りリンクデータ(Transport block, Medium Access Control Protocol Data Unit: MAC PDU, Downlink-Shared Channel: DL-SCH)に対するHARQ-ACKを示してもよい。
 また、PCCHは、下りリンクの無線通信(基地局装置3から端末装置1への無線通信)の場合には、下りリンク制御情報(Downlink Control Information: DCI)を送信するために用いられる。ここで、下りリンク制御情報の送信に対して、1つまたは複数のDCI(DCIフォーマットと称してもよい)が定義される。すなわち、下りリンク制御情報に対するフィールドがDCIとして定義され、情報ビットへマップされる。
 例えば、DCIとして、スケジューリングされたPSCHに含まれる信号が下りリンクの無線通信か上りリンクの無線通信か示す情報を含むDCIが定義されてもよい。
 例えば、DCIとして、スケジューリングされたPSCHに含まれる下りリンクの送信期間を示す情報を含むDCIが定義されてもよい。
 例えば、DCIとして、スケジューリングされたPSCHに含まれる上りリンクの送信期間を示す情報を含むDCIが定義されてもよい。
 例えば、DCIとして、スケジューリングされたPSCHに対するHARQ-ACKを送信するタイミング(例えば、PSCHに含まれる最後のシンボルからHARQ-ACK送信までのシンボル数)示す情報を含むDCIが定義されてもよい。
 例えば、DCIとして、スケジューリングされたPSCHに含まれる下りリンクの送信期間、ギャップ、及び上りリンクの送信期間を示す情報を含むDCIが定義されてもよい。
 例えば、DCIとして、1つのセルにおける1つの下りリンクの無線通信PSCH(1つの下りリンクトランスポートブロックの送信)のスケジューリングのために用いられるDCIが定義されてもよい。
 例えば、DCIとして、1つのセルにおける1つの上りリンクの無線通信PSCH(1つの上りリンクトランスポートブロックの送信)のスケジューリングのために用いられるDCIが定義されてもよい。
 ここで、DCIには、PSCHに上りリンクまたは下りリンクが含まれる場合にPSCHのスケジューリングに関する情報が含まれる。ここで、下りリンクに対するDCIを、下りリンクグラント(downlink grant)、または、下りリンクアサインメント(downlink assignment)とも称する。ここで、上りリンクに対するDCIを、上りリンクグラント(uplink grant)、または、上りリンクアサインメント(Uplink assignment)とも称する。
 PSCHは、媒介アクセス(MAC: Medium Access Control)からの上りリンクデータ(UL-SCH: Uplink Shared CHannel)または下りリンクデータ(DL-SCH: Downlink Shared CHannel)の送信に用いられる。また、下りリンクの場合にはシステム情報(SI: System Information)やランダムアクセス応答(RAR: Random Access Response)などの送信にも用いられる。上りリンクの場合には、上りリンクデータと共にHARQ-ACKおよび/またはCSIを送信するために用いられてもよい。また、CSIのみ、または、HARQ-ACKおよびCSIのみを送信するために用いられてもよい。すなわち、UCIのみを送信するために用いられてもよい。
 ここで、基地局装置3と端末装置1は、上位層(higher layer)において信号をやり取り(送受信)する。例えば、基地局装置3と端末装置1は、無線リソース制御(RRC: Radio Resource Control)層において、RRCシグナリング(RRC message: Radio Resource Control message、RRC information: Radio Resource Control informationとも称される)を送受信してもよい。また、基地局装置3と端末装置1は、MAC(Medium Access Control)層において、MACコントロールエレメントを送受信してもよい。ここで、RRCシグナリング、および/または、MACコントロールエレメントを、上位層の信号(higher layer signaling)とも称する。ここでの上位層は、物理層から見た上位層を意味するため、MAC層、RRC層、RLC層、PDCP層、NAS層などの一つまたは複数を含んでもよい。例えば、MAC層の処理において上位層とは、RRC層、RLC層、PDCP層、NAS層などの一つまたは複数を含んでもよい。
 PSCHは、RRCシグナリング、および、MACコントロールエレメントを送信するために用いられてもよい。ここで、基地局装置3から送信されるRRCシグナリングは、セル内における複数の端末装置1に対して共通のシグナリングであってもよい。また、基地局装置3から送信されるRRCシグナリングは、ある端末装置1に対して専用のシグナリング(dedicated signalingとも称する)であってもよい。すなわち、端末装置固有(UEスペシフィック)な情報は、ある端末装置1に対して専用のシグナリングを用いて送信されてもよい。PSCHは、上りリンクに置いてUEの能力(UE Capability)の送信に用いられてもよい。
 なお、PCCHおよびPSCHは下りリンクと上りリンクで同一の呼称を用いているが、下りリンクと上りリンクで異なるチャネルが定義されてもよい。例えば、下りリンクの共有チャネルは、物理下りリンク共有チャネル(PDSCH:Physical Downlink Shared CHannel)と称されてよい。また、上りリンクの共有チャネルは物理上りリンク共有チャネル(PUSCH:Physical Uplink Shared CHannel)と称されてよい。また、下りリンクの制御チャネルは物理下りリンク制御チャネル(PDCCH:Physical Downlink Control CHannel)と称されてよい。上りリンクの制御チャネルは物理上りリンク制御チャネル(PUCCH:Physical Uplink Control CHannel)と称されてよい。
 PRACHは、ランダムアクセスプリアンブルを送信するために用いられてもよい。PRACHは、初期コネクション確立(initial connection establishment)プロシージャ、ハンドオーバプロシージャ、コネクション再確立(connection re-establishment)プロシージャ、上りリンク送信に対する同期(タイミング調整)、および上りリンクのPSCH(UL-SCH)リソースの要求を示すために用いられてもよい。
 図1において、下りリンクの無線通信では、以下の下りリンク物理信号が用いられる。ここで、下りリンク物理信号は、上位層から出力された情報を送信するために使用されないが、物理層によって使用される。
・同期信号(Synchronization signal: SS)
・参照信号(Reference Signal: RS)
 同期信号は、端末装置1が下りリンクの周波数領域および時間領域の同期をとるために用いられる。同期信号は、プライマリ同期信号(PSS:Primary Synchronization Signal)およびセカンダリ同期信号(SSS)を含んでよい。また、同期信号は、端末装置1がセル識別子(セルID:Cell Identifier)を特定するために用いられてもよい。また、同期信号は、下りリンクビームフォーミングにおいて基地局装置3が用いる基地局送信ビームおよび/または端末装置1が用いる端末受信ビームの選択/識別/決定に用いられて良い。すなわち、同期信号は、基地局装置3によって下りリンク信号に対して適用された基地局送信ビームのインデックスを、端末装置1が選択/識別/決定するために用いられてもよい。
 下りリンクの参照信号(以下、本実施形態では単に参照信号とも記載する)は、用途等に基づいて複数の参照信号に分類されてよい。例えば、参照信号には以下の参照信号の1つまたは複数が用いられてよい。
 ・DMRS(Demodulation Reference Signal)
 ・CSI-RS(Channel State Information Reference Signal)
 ・PTRS(Phase Tracking Reference Signal)
 ・MRS(Mobility Reference Signal)
 DMRSは、受信した変調信号の復調時の伝搬路補償に用いられてよい。DMRSは、PSCHの復調用、PCCHの復調用、および/またはPBCHの復調用のDMRSを総じてDMRSと称してもよいし、それぞれ個別に定義されてもよい。
 CSI-RSは、チャネル状態測定に用いられてよい。PTRSは、端末の移動等により位相をトラックするために使用されてよい。MRSは、ハンドオーバのための複数の基地局装置からの受信品質を測定するために使用されてよい。
 また、参照信号には、位相雑音を補償するための参照信号が定義されてもよい。
 ただし、上記複数の参照信号の少なくとも一部は、他の参照信号がその機能を有してもよい。
 また、上記複数の参照信号の少なくとも1つ、あるいはその他の参照信号が、セルに対して個別に設定されるセル固有参照信号(Cell-specific reference signal;CRS)、基地局装置3あるいは送受信点4が用いる送信ビーム毎のビーム固有参照信号(Beam-specific reference signal;BRS)、および/または、端末装置1に対して個別に設定される端末固有参照信号(UE-specific reference signal;URS)として定義されてもよい。
 また、参照信号の少なくとも1つは、無線パラメータやサブキャリア間隔などのヌメロロジーやFFTの窓同期などができる程度の細かい同期(Fine synchronization)に用いられて良い。
 また、参照信号の少なくとも1つは、無線リソース測定(RRM:Radio Resource Measurement)に用いられてよい。また、参照信号の少なくとも1つは、ビームマネジメントに用いられてよい。
 また、参照信号の少なくとも1つには、同期信号が用いられてもよい。
 以下、サブフレームについて説明する。本実施形態ではサブフレームと称するが、リソースユニット、無線フレーム、時間区間、時間間隔などと称されてもよい。
 図2は、本発明の実施形態に係る下りリンクスロットの概略構成の一例を示す図である。無線フレームのそれぞれは、10ms長である。また、無線フレームのそれぞれは10個のサブフレームおよびX個のスロットから構成される。つまり、1サブフレームの長さは1msである。スロットのそれぞれは、サブキャリア間隔によって時間長が定義される。例えば、OFDMシンボルのサブキャリア間隔が15kHz、NCP(Normal Cyclic Prefix)の場合、X=7あるいはX=14であり、それぞれ0.5msおよび1msである。また、サブキャリア間隔が60kHzの場合は、X=7あるいはX=14であり、それぞれ0.125msおよび0.25msである。図2は、X=7の場合を一例として示している。なお、X=14の場合にも同様に拡張できる。また、上りリンクスロットも同様に定義され、下りリンクスロットと上りリンクスロットは別々に定義されてもよい。
 スロットのそれぞれにおいて送信される信号または物理チャネルは、リソースグリッドによって表現されてよい。リソースグリッドは、複数のサブキャリアと複数のOFDMシンボルによって定義される。1つのスロットを構成するサブキャリアの数は、セルの下りリンクおよび上りリンクの帯域幅にそれぞれ依存する。リソースグリッド内のエレメントのそれぞれをリソースエレメントと称する。リソースエレメントは、サブキャリアの番号とOFDMシンボルの番号とを用いて識別されてよい。
 リソースブロックは、ある物理下りリンクチャネル(PDSCHなど)あるいは上りリンクチャネル(PUSCHなど)のリソースエレメントのマッピングを表現するために用いられる。リソースブロックは、仮想リソースブロックと物理リソースブロックが定義される。ある物理上りリンクチャネルは、まず仮想リソースブロックにマップされる。その後、仮想リソースブロックは、物理リソースブロックにマップされる。スロットに含まれるOFDMシンボル数X=7で、NCPの場合には、1つの物理リソースブロックは、時間領域において7個の連続するOFDMシンボルと周波数領域において12個の連続するサブキャリアとから定義される。つまり、1つの物理リソースブロックは、(7×12)個のリソースエレメントから構成される。ECP(Extended CP)の場合、1つの物理リソースブロックは、例えば、時間領域において6個の連続するOFDMシンボルと、周波数領域において12個の連続するサブキャリアとにより定義される。つまり、1つの物理リソースブロックは、(6×12)個のリソースエレメントから構成される。このとき、1つの物理リソースブロックは、時間領域において1つのスロットに対応し、周波数領域において180kHzに対応する。物理リソースブロックは、周波数領域において0から番号が付けられている。
 次に、サブフレーム、スロット、ミニスロットについて説明する。図3は、サブフレーム、スロット、ミニスロットの時間領域における関係を示した図である。同図のように、3種類の時間ユニットが定義される。サブフレームは、サブキャリア間隔によらず1msであり、スロットに含まれるOFDMシンボル数は7または14であり、スロット長はサブキャリア間隔により異なる。ここで、サブキャリア間隔が15kHzの場合、1サブフレームには14OFDMシンボル含まれる。そのため、スロット長は、サブキャリア間隔をΔf(kHz)とすると、1スロットを構成するOFDMシンボル数が7の場合、スロット長は0.5/(Δf/15)msで定義されてよい。ここで、Δfはサブキャリア間隔(kHz)で定義されてよい。また、1スロットを構成するOFDMシンボル数が7の場合、スロット長は1/(Δf/15)msで定義されてよい。ここで、Δfはサブキャリア間隔(kHz)で定義されてよい。さらに、スロットに含まれるOFDMシンボル数をXとしたときに、スロット長はX/14/(Δf/15)msで定義されてもよい。
 ミニスロット(サブスロットと称されてもよい)は、スロットに含まれるOFDMシンボル数よりも少ないOFDMシンボルで構成される時間ユニットである。同図はミニスロットが2OFDMシンボルで構成される場合を一例として示している。ミニスロット内のOFDMシンボルは、スロットを構成するOFDMシンボルタイミングに一致してもよい。なお、スケジューリングの最小単位はスロットまたはミニスロットでよい。
 図4に、スロットまたはサブフレームの一例を示している。ここでは、サブキャリア間隔15kHzにおいてスロット長が0.5msの場合を例として示している。同図において、Dは下りリンク、Uは上りリンクを示している。同図に示されるように、ある時間区間内(例えば、システムにおいて1つのUEに対して割り当てなければならない最小の時間区間)においては、
・下りリンクパート(デュレーション)
・ギャップ
・上りリンクパート(デュレーション)
のうち1つまたは複数を含んでよい。
 図4(a)は、ある時間区間(例えば、1UEに割当可能な時間リソースの最小単位、またはタイムユニットなどとも称されてよい。また、時間リソースの最小単位を複数束ねてタイムユニットと称されてもよい。)で、全て下りリンク送信に用いられている例であり、図4(b)は、最初の時間リソースで例えばPCCHを介して上りリンクのスケジューリングを行い、PCCHの処理遅延及び下りから上りの切り替え時間、送信信号の生成のためのギャップを介して上りリンク信号を送信する。図4(c)は、最初の時間リソースで下りリンクのPCCHおよび/または下りリンクのPSCHの送信に用いられ、処理遅延及び下りから上りの切り替え時間、送信信号の生成のためのギャップを介してPSCHまたはPCCHの送信に用いられる。ここで、一例としては、上りリンク信号はHARQ-ACKおよび/またはCSI、すなわちUCIの送信に用いられてよい。図4(d)は、最初の時間リソースで下りリンクのPCCHおよび/または下りリンクのPSCHの送信に用いられ、処理遅延及び下りから上りの切り替え時間、送信信号の生成のためのギャップを介して上りリンクのPSCHおよび/またはPCCHの送信に用いられる。ここで、一例としては、上りリンク信号は上りリンクデータ、すなわちUL-SCHの送信に用いられてもよい。図4(e)は、全て上りリンク送信(上りリンクのPSCHまたはPCCH)に用いられている例である。
 上述の下りリンクパート、上りリンクパートは、LTEと同様複数のOFDMシンボルで構成されてよい。
 本発明の実施形態におけるビームフォーミング、ビームマネジメントおよび/またはビームスウィーピングについて説明する。
 送信側(下りリンクの場合は基地局装置3であり、上りリンクの場合は端末装置1である)におけるビームフォーミングは、複数の送信アンテナエレメントの各々に対してアナログまたはデジタルで振幅・位相を制御することで任意の方向に高い送信アンテナゲインで信号を送信する方法であり、そのフィールドパターンを送信ビームと称する。また、受信側(下りリンクの場合は端末装置1、上りリンクの場合は基地局装置3である)におけるビームフォーミングは、複数の受信アンテナエレメントの各々に対してアナログまたはデジタルで振幅・位相を制御することで任意の方向に高い受信アンテナゲインで信号を受信する方法であり、そのフィールドパターンを受信ビームと称する。ビームマネジメントは、送信ビームおよび/または受信ビームの指向性合わせ、ビーム利得を獲得するための基地局装置3および/または端末装置1の動作であってよい。
 図5に、ビームフォーミングの一例を示す。複数のアンテナエレメントは1つの送信ユニット(TXRU: Transceiver unit)50に接続され、アンテナエレメント毎の位相シフタ51によって位相を制御し、アンテナエレメント52から送信することで送信信号に対して任意の方向にビームを向けることができる。典型的には、TXRU50がアンテナポートとして定義されてよく、端末装置1においてはアンテナポートのみが定義されてよい。位相シフタ51を制御することで任意の方向に指向性を向けることができるため、基地局装置3は端末装置1に対して利得の高いビームを用いて通信することができる。
 ビームフォーミングは、ヴァーチャライゼーション、プリコーディング、ウェイトの乗算などと称されてもよい。また、単にビームフォーミングを用いて送信された信号そのものを送信ビームと呼んでもよい。
 本実施形態では、上りリンク送信のビームフォーミングで端末装置1が使用する送信ビームを上りリンク送信ビーム(UL Tx beam)と称し、上りリンク受信のビームフォーミングで基地局装置3が使用する受信ビームを上りリンク受信ビーム(UL Rx beam)と称する。また、下りリンク送信のビームフォーミングで基地局装置3が使用する送信ビームを下りリンク送信ビーム(DL Tx beam)と称し、下りリンク受信のビームフォーミングで端末装置1が使用する受信ビームを下りリンク受信ビーム(DL Rx beam)と称する。ただし、上りリンク送信ビームと上りリンク受信ビームを総じて上りリンクビーム、下りリンク送信ビームと下りリンク受信ビームを総じて下りリンクビームと称してもよい。ただし、上りリンクビームフォーミングのために端末装置1が行う処理を上りリンク送信ビーム処理、または上りリンクプリコーディングと称し、上りリンクビームフォーミングのために基地局装置3が行う処理を上りリンク受信ビーム処理と称してもよい。ただし、下りリンクビームフォーミングのために端末装置1が行う処理を下りリンク受信ビーム処理と称し、下りリンクビームフォーミングのために基地局装置3が行う処理を下りリンク送信ビーム処理または下りリンクプリコーディングと称してもよい。
 ただし、1OFDMシンボルで基地局装置3が複数の下りリンク送信ビームを用いて信号を送信してもよい。例えば、基地局装置3のアンテナエレメントをサブアレーに分割して各サブアレーで異なる下りリンクビームフォーミングを行ってもよい。偏波アンテナを用いて各偏波で異なる下りリンクビームフォーミングを行ってもよい。同様に1OFDMシンボルで端末装置1が複数の上りリンク送信ビームを用いて信号を送信してもよい。
 ただし、本実施形態では、基地局装置3および/または送受信点4が構成するセル内で当該基地局装置3が複数の下りリンク送信ビームを切り替えて使用する場合を説明するが、下りリンク送信ビーム毎に個別のセルが構成されてもよい。
 ビームマネジメントには、下記の動作を含んでよい。
・ビーム選択(Beam selection)
・ビーム改善(Beam refinement)
・ビームリカバリ(Beam recovery)
 例えば、ビーム選択は、基地局装置3と端末装置1の間の通信においてビームを選択する動作であってよい。また、ビーム改善は、さらに利得の高いビームの選択、あるいは端末装置1の移動によって最適な基地局装置3と端末装置1の間のビームの変更をする動作であってよい。ビームリカバリは、基地局装置3と端末装置1の間の通信において遮蔽物や人の通過などにより生じるブロッケージにより通信リンクの品質が低下した際にビームを再選択する動作であってよい。
 例えば、端末装置1における基地局装置3の送信ビームを選択する際に参照信号(例えば、CSI-RS)を用いてもよいし、擬似同位置(QCL:Quasi Co-Location)想定を用いてもよい。
 もしあるアンテナポートにおけるあるシンボルが搬送されるチャネルの長区間特性(Long Term Property)が他方のアンテナポートにおけるあるシンボルが搬送されるチャネルから推論されうるなら、2つのアンテナポートはQCLであるといわれる。チャネルの長区間特性は、遅延スプレッド、ドップラースプレッド、ドップラーシフト、平均利得、及び平均遅延の1つまたは複数を含む。例えば、アンテナポート1とアンテナポート2が平均遅延に関してQCLである場合、アンテナポート1の受信タイミングからアンテナポート2の受信タイミングが推論されうることを意味する。
 このQCLは、ビームマネジメントにも拡張されうる。そのために、空間に拡張したQCLが新たに定義されてもよい。例えば、空間のQCL想定におけるチャネルの長区間特性(Long term property)として、無線リンクあるいはチャネルにおける到来角(AoA(Angle of Arrival), ZoA(Zenith angle of Arrival)など)および/または角度広がり(Angle Spread、例えばASA(Angle Spread of Arrival)やZSA(Zenith angle Spread of Arrival))、送出角(AoD, ZoDなど)やその角度広がり(Angle Spread、例えばASD(Angle Spread of Departure)やZSS(Zenith angle Spread of Departure))、空間相関(Spatial Correlation)であってもよい。
 この方法により、ビームマネジメントとして、空間のQCL想定と無線リソース(時間および/または周波数)によりビームマネジメントと等価な基地局装置3、端末装置1の動作が定義されてもよい。
 ただし、プリコーディングあるいは送信ビームの各々に対してアンテナポートが割り当てられてもよい。例えば、本実施形態に係る異なるプリコーディングを用いて送信される信号あるいは異なる送信ビームを用いて送信される信号は異なる一つまたは複数のアンテナポートで送信される信号として定義されてもよい。ただし、アンテナポートは、あるアンテナポートであるシンボルが送信されるチャネルを、同一のアンテナポートで別のシンボルが送信されるチャネルから推定できるものとして定義される。同一のアンテナポートとは、アンテナポートの番号(アンテナポートを識別するための番号)が、同一であることであってもよい。複数のアンテナポートでアンテナポートセットが構成されてもよい。同一のアンテナポートセットとは、アンテナポートセットの番号(アンテナポートセットを識別するための番号)が、同一であることであってもよい。異なる端末送信ビームを適用して信号を送信するとは、異なるアンテナポートまたは複数のアンテナポートで構成される異なるアンテナポートセットで信号を送信することであってもよい。ビームインデックスはそれぞれOFDMシンボル番号、アンテナポート番号またはアンテナポートセット番号であってもよい。
 トランスフォームプリコーディングには、レイヤマッピングで生成された、一つまたは複数のレイヤに対する複素変調シンボルが入力される。トランスフォームプリコーディングは、複素数シンボルのブロックを、一つのOFDMシンボルに対応するそれぞれのレイヤごとのセットに分割する処理であってもよい。OFDMが使われる場合には、トランスフォームプリコーディングでのDFT(Discrete Fourier Transform)の処理は必要ないかもしれない。プリコーディングは、トランスフォームプリコーダからの得られたベクターのブロックを入力として、リソースエレメントにマッピングするベクターのブロックを生成することであってもよい。空間多重の場合、リソースエレメントにマッピングするベクターのブロックを生成する際に、プリコーディングマトリックスの一つを適応してもよい。この処理を、デジタルビームフォーミングと呼んでもよい。また、プリコーディングは、アナログビームフォーミングとデジタルビームフォーミングを含んで定義されてもよいし、デジタルビームフォーイングとして定義されてもよい。プリコーディングされた信号にビームフォーミングが適用されるようにしてもよいし、ビームフォーミングが適用された信号にプリコーディングが適用されるようにしてもよい。ビームフォーミングは、アナログビームフォーミングを含んでデジタルビームフォーミングを含まなくてもよいし、デジタルビームフォーミングとアナログビームフォーミングの両方を含んでもよい。ビームフォーミングされた信号、プリコーディングされた信号、またはビームフォーミングおよびプリコーディングされた信号をビームと呼んでもよい。ビームのインデックスはプレコーディングマトリックスのインデックスでもよい。ビームのインデックスとプリコーディングマトリックスのインデックスが独立に定義されてもよい。ビームのインデックスで示されたビームにプリコーディングマトリックスのインデックスで示されるプリコーディングマトリックスを適用して信号を生成してもよい。プリコーディングマトリックスのインデックスで示されるプリコーディングマトリックスを適用した信号に、ビームのインデックスで示されたビームフォーミングを適用して信号を生成してもよい。デジタルビームフォーミングは、周波数方向のリソース(例えば、サブキャリアのセット)に異なるプリコーディングマトリックス適応することかもしれない。
 本実施形態における端末装置1のセル選択手順について説明する。
 図6は、端末装置1が、複数の基地局装置3からそれぞれ独立した送信ビームが適用された複数の参照信号を受信している場合を示している。例えば、端末装置1は、セル100を構成する基地局装置3から送信ビームb1-1~b1-Pを用いた複数の参照信号T1-1~T1-Pを受信する。一例として、端末装置1があるセル(例えば、セル100)をキャンプするに適したセル(suitable cell)として選択する場合の手順を図8に示すフロー図を用いて説明する。
 図8のステップS1001において、端末装置1は、1つまたは複数の基地局装置3から同期信号、システム情報、および/または上位レイヤ信号を介して、1つまたは複数のセルのそれぞれに対応する複数の参照信号の設定を特定するための情報を受信する。または、図8のステップS1001において、端末装置1は、1つまたは複数のセルのそれぞれに対応する複数の参照信号の設定を特定するための情報に基づくことなく、1つまたは複数のセルのそれぞれに対応する複数の参照信号の設定を特定してもよい。
 複数の参照信号の設定を特定するための情報の一例は、複数の送信ビームを用いて送信される参照信号の各々に割り当てられている複数の時間および/または周波数のリソース設定を特定するための情報であってもよい。例えば、参照信号が割り当てられている時間および/または周波数のリソースを特定するための情報は、セル識別子(Cell ID)および/またはビーム識別子(Beam ID)であってもよい。例えば、参照信号が割り当てられている時間および/または周波数のリソースを特定するための情報は、ビットマップで対応するリソースが示される情報であってもよい。また、複数の参照信号の設定を特定するための情報の一例は、複数の送信ビームを用いて送信される参照信号の各々の系列を特定するための情報であってもよい。
 複数の参照信号の設定を特定するための情報の別の一例は、複数の送信ビームを用いた参照信号の各々が割り当てられているアンテナポート番号を特定する情報であってもよい。
 ただし、端末装置1は、前記基地局装置3から受信した信号から暗黙的に複数の参照信号の設定を特定してもよい。例えば、端末装置1は、ある参照信号を受信したリソースおよび/または系列からその参照信号の設定(例えば、ビーム識別子、系列等)を特定してもよい。
 端末装置1は、特定した複数の参照信号の設定に基づいて、対応する複数の参照信号を受信する。
 図8のステップS1002において、端末装置1は、キャンプするに適したセルを選択するために、それぞれのセルにおける複数の参照信号の設定の少なくとも一部(例えば、対応する設定のそれぞれを参照信号設定Aと称する)に対応する複数の参照信号のそれぞれの参照信号受信電力(Reference Signal Received Power;RSRP)(例えば、各参照信号設定Aに対応するRSRPのそれぞれを受信電力Pと称する)および/または参照信号受信品質(Reference Signal Received Quality;RSRQ)(例えば、参照信号設定Aに対応するRSRQのそれぞれを受信品質Qと称する)を測定/特定する。例えば、セルから送信された複数の参照信号に対応する複数の時間/周波数リソースおよび/または複数のアンテナポートのそれぞれにおけるRSRPおよび/またはRSRQを測定/特定してもよい。
 ただし、上記参照信号の設定に基づいて受信する参照信号は同期信号であってもよい。例えば、
 図7は、端末装置1があるセルにおいて3つの参照信号の設定(参照信号設定A)を特定する情報を受信した場合の例を示している。端末装置1が受信した情報から特定される設定1は、対応する参照信号が周波数および/または時間リソースがリソース1に割り当てられていることを示しており、対応する受信電力Pはリソース1におけるRSRPである。端末装置1が受信した情報から特定される設定2は、対応する参照信号が周波数および/または時間リソースがリソース2に割り当てられていることを示しており、対応する受信電力Pはリソース2におけるRSRPである。端末装置1が受信した情報から特定される設定3は、対応する参照信号が周波数および/または時間リソースがリソース3に割り当てられていることを示しており、対応する受信電力Pはリソース3におけるRSRPである。
 図8のステップS1003において、端末装置1は、各セルにおいて測定/特定された1つまたは複数の受信電力Pおよび/または各セルにおいて測定/特定された1つまたは複数の受信品質Qに基づいてキャンプするに適したセルを選択する。例えば、端末装置1は、各セルにおいて測定/特定された複数の受信電力Pに基づいてそれぞれのセルにおける基準値Rを算出してもよい。また、端末装置1は、各セルにおいて測定/特定された複数の受信品質Qに基づいて基準値Rを算出してもよい。端末装置1は、各セルにおいて算術された基準値Rおよび/または基準値Rに基づいてキャンプするに適したセルを選択してもよい。
 例えば、端末装置1は、自装置がサポートする周波数帯域で、最も強いセル(strongest cell)(例えば、第1の基準値が最も高いセル)を探索し、該セルがキャンプするに適したセルである場合に、該セルを選択してキャンプする。ただし、キャンプするに適したセルとは、所定のセル選択基準を満たし、かつ、該セルにキャンプすることを許可されているセルである。また、所定のセル選択基準とは、例えば、第1の基準値が所定の閾値以上であるか、および/または、第2の基準値が所定の閾値以上であるか、により定義されてよい。
 ただし、あるセルを構成する基地局装置3が異なる下りリンク送信ビームを用いて複数の参照信号を送信する場合、(および/または、端末装置1が複数の下りリンク受信ビームを用いて複数の参照信号を受信する場合、)端末装置1が受信した参照信号のRSRPは使用された下りリンク送信ビーム(および/または下りリンク受信ビーム)によるビーム利得に依存する。したがって、端末装置1が、複数の下りリンク送信ビーム(および/または下りリンク受信ビーム)を用いた参照信号を受信した場合に、どのようにキャンプするに適したセルを選択および/または再選択するか、が問題となる。
 一例として、端末装置1は、基地局装置3から受信したセル100における参照信号T1-1~T1-Pのそれぞれの受信電力P(1)~P(P)のうち、最も高い値のものをセル100の基準値Rとする。また、端末装置1は、算出したセル100の基準値Rを測定レポートとして基地局装置3にフィードバックしてもよい。本例における端末装置1は、基地局装置3がセル内での最もよい送信ビーム(best Tx beam)および/またはもっともよい受信ビーム(best Rx beam)を用いた場合のRSRPに基づいてセルを選択するため、選択したセルの下りリンク信号において高いビーム利得が得られる。
 別の一例として、端末装置1は、基地局装置3から受信したセル100における参照信号T1-1~T1-Pのそれぞれの受信電力P(1)~P(P)を平均した値をセル100の基準値Rとする。また、端末装置1は、算出したセル100の基準値Rを測定レポートとして基地局装置3にフィードバックしてもよい。本例における端末装置1は、キャンプしたセルにおいて下りリンク信号の送信に用いられている送信ビームがブロッケージ等により受信特性が劣化した場合に、セルの再選択をすることなく同一セル内での他の良好な送信ビームおよび/または受信ビームへスイッチすることできる。
 別の一例として、端末装置1は、基地局装置3から受信したセル100における参照信号T1-1~T1-Pのそれぞれの受信電力P(1)~P(P)のうち高いものからN個を平均した値をセルC10の基準値Rとする。また、端末装置1は、算出したセル100の基準値Rを測定レポートとして基地局装置3にフィードバックしてもよい。本例における端末装置1は、同一セル内の受信特性の悪い送信ビームおよび/または受信ビームに影響されることなく、セルの選択および/再選択を行なうことができ、かつ同一セル内の他の良好な送信ビームおよび/または受信ビームへスイッチすることができる。
 また、本実施形態における端末装置1があるセルを在圏セル(serving cell)としている場合に、当該在圏セルにおいて送信する上りリンク信号および/または上りリンクチャネルの送信電力を決定する送信電力制御の手順について図9に示すフロー図を用いて説明する。
 図9のステップS2001において、端末装置1は、基地局装置3から同期信号、システム情報、および/または上位レイヤ信号を介して、あるセルに対応する複数の参照信号の設定を特定するための情報を受信する。
 図9のステップS2002において、端末装置1は、在圏セルにおけるパスロス(伝搬損失)を算出する場合に、在圏セルにおける複数の参照信号の設定の少なくとも一部(例えば、対応する設定のそれぞれを参照信号設定Bと称してもよい)に対応する1つまたは複数の参照信号のそれぞれのRSRP(例えば、受信電力Pと称する)および/またはRSRQ(例えば、受信品質Qと称する)を測定/特定する。例えば、端末装置1は、セルから送信された複数の参照信号に対応する複数の時間/周波数リソースおよび/または複数のアンテナポートのそれぞれにおけるRSRPおよび/またはRSRQを測定/特定してもよい。例えば、端末装置1は、基地局装置3からの信号(例えば、上位レイヤ信号、制御チャネル等)を介して指示された1つの参照信号設定Bに対応する1つのRSRPおよび/またはRSRQを測定/特定してもよい。
 図9のステップS2003において、端末装置1は、測定/特定した1つまたは複数の受信電力Pのいずれか1つに基づいて、在圏セルにおいて送信する上りリンク信号および/または上りリンクチャネルの送信電力を決定する。例えば、端末装置1は、測定/特定した1つまたは複数の受信電力Pのいずれか1つに基づいて、在圏セルにおける端末装置1と基地局装置3との間の下りリンクのパスロスを算出する。端末装置1は、特定した複数の第2の設定に基づく複数の受信電力Pのうち、最も高い値のものに基づいて下りリンクのパスロスを算出してもよい。ただし、測定/特定した複数の受信電力Pのそれぞれに対してパスロスを算出し、値の最も小さいものを在圏セルにおけるパスロスとしてもよい。例えば、パスロスは数式(1)により算出されてもよい。
Figure JPOXMLDOC01-appb-M000001
 
 ただし、ReferenceSignalPowerは、参照信号設定Bに対応する参照信号の送信電力であり、上位レイヤ信号あるいは下りリンク制御チャネルを介して通知された情報に基づいて特定されてよい。ただし、higherlayerfiltered RSRPは、参照信号設定Bに基づいて測定/特定した受信電力Pであり、上位レイヤが物理レイヤによる測定値に対してフィルタリング処理を施した受信電力であってよい。式(1)により算出された下りリンクのパスロス値は、上り回線のパスロスとほぼ同値であるものとみなし、上りリンクのパスロスの補償に使用される。
また、端末装置1は算出したパスロスに基づいて送信する上りリンク信号および/または上りリンクチャネルの送信に用いる送信電力を決定する。例えば、端末装置1が送信するPSCHの送信電力は数式(2)によって算出されてもよい。
Figure JPOXMLDOC01-appb-M000002
 
 PCMAXは、端末装置1の最大送信電力を表している。MPSCHは、送信帯域幅を表している。また、PO_PSCHは、PSCHの基準受信電力を表している。αは、セル全体のフラクショナル送信電力制御に用いられるパスロス係数である。ΔTFは、上り回線信号の変調符号化方式(MCS:Modulation and Coding Schemes)に依存したパラメータである。また、fは、基地局装置から通知されるTPCコマンドで決定される受信電力の過不足の補正値である。
 ただし、上記した複数の参照信号設定Aと複数の参照信号設定Bは同一のものであってもよい。例えば、複数の参照信号設定Aと複数の参照信号設定Bは、同一の参照信号に対する設定であってもよい。例えば、複数の参照信号の設定に対応する複数の参照信号のそれぞれの受信電力である複数の受信電力Pに基づいてキャンプするに適したセルを決定し、該複数の受信電力Pのうちいずれか1つに基づいて在圏セルにおいて送信する上りリンク信号および/または上りリンクチャネルの送信電力を決定してもよい。
 ただし、上記した複数の参照信号設定Aと複数の参照信号設定Bは、独立した参照信号に対する設定であってもよい。例えば、参照信号設定Aは、第1の参照信号に対する設定であり、参照信号設定Bは、第2の参照信号に対する設定であってもよい。端末装置1は、複数の参照信号設定Aに対応する複数の第1の参照信号のそれぞれに対応する複数の受信電力Pに基づいてキャンプするに適したセルを決定し、複数の参照信号設定Bに対応する複数の第2の参照信号のいずれか1つに対応する受信電力Pに基づいて在圏セルにおいて送信する上りリンク信号および/または上りリンクチャネルの送信電力を決定してもよい。
 以下、本実施形態における装置の構成について説明する。
 図10は、本実施形態の端末装置1の構成を示す概略ブロック図である。図示するように、端末装置1は、無線送受信部10、および、上位層処理部14を含んで構成される。無線送受信部10は、アンテナ部11、RF(Radio Frequency)部12、および、ベースバンド部13を含んで構成される。無線送受信部10を送信部、受信部、または、物理層処理部とも称する。上位層処理部14を測定部または制御部とも称する。
 上位層処理部14は、ユーザの操作等により生成された上りリンクデータ(トランスポートブロックと称されてもよい)を、無線送受信部10に出力する。上位層処理部14は、媒体アクセス制御(MAC: Medium Access Control)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の一部あるいはすべての処理を行なう。
 上位層処理部14は、各種設定情報/パラメータに基づいて、スケジューリングリクエストの伝送の制御を行う。
 上位層処理部14は、自装置の各種設定情報/パラメータの管理をする。上位層処理部14は、基地局装置3から受信した上位層の信号に基づいて各種設定情報/パラメータをセットする。すなわち、上位層処理部14は、基地局装置3から受信した各種設定情報/パラメータを示す情報に基づいて各種設定情報/パラメータをセットする。上位層処理部14は、基地局装置3から受信した情報に基づいてあるセルにおける複数の参照信号の設定を特定する機能を有してもよい。上位層処理部14は、特定した複数の参照信号の設定に対応する複数の参照信号のそれぞれのRSRPを特定する機能を有してもよい。上位層処理部14は、複数の参照信号のRSRPに基づいてキャンプするに適したセルを選択する機能を有してもよい。
 無線送受信部10は、変調、復調、符号化、復号化などの物理層の処理を行う。無線送受信部10は、基地局装置3から受信した信号を、分離、復調、復号し、復号した情報を上位層処理部14に出力する。無線送受信部10は、データを変調、符号化することによって送信信号を生成し、基地局装置3に送信する。無線送受信部10は、あるセルにおける複数の参照信号の設定を特定するための情報を受信する機能を有してもよい。無線送受信部10は、複数の参照信号の設定に基づいて複数の参照信号を受信する機能を有してもよい。
 RF部12は、アンテナ部11を介して受信した信号を、直交復調によりベースバンド信号に変換し(ダウンコンバート: down covert)、不要な周波数成分を除去する。RF部12は、処理をしたアナログ信号をベースバンド部に出力する。
 ベースバンド部13は、RF部12から入力されたアナログ信号を、アナログ信号をデジタル信号に変換する。ベースバンド部13は、変換したデジタル信号からCP(Cyclic Prefix)に相当する部分を除去し、CPを除去した信号に対して高速フーリエ変換(Fast Fourier Transform: FFT)を行い、周波数領域の信号を抽出する。
 ベースバンド部13は、データを逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)して、OFDMシンボルを生成し、生成されたOFDMシンボルにCPを付加し、ベースバンドのデジタル信号を生成し、ベースバンドのデジタル信号をアナログ信号に変換する。ベースバンド部13は、変換したアナログ信号をRF部12に出力する。
 RF部12は、ローパスフィルタを用いてベースバンド部13から入力されたアナログ信号から余分な周波数成分を除去し、アナログ信号を搬送波周波数にアップコンバート(up convert)し、アンテナ部11を介して送信する。また、RF部12は、電力を増幅する。また、RF部12は在圏セルにおいて送信する上りリンク信号および/または上りリンクチャネルの送信電力を決定する機能を備えてもよい。RF部12を送信電力制御部とも称する。
 図11は、本実施形態の基地局装置3の構成を示す概略ブロック図である。図示するように、基地局装置3は、無線送受信部30、および、上位層処理部34を含んで構成される。無線送受信部30は、アンテナ部31、RF部32、および、ベースバンド部33を含んで構成される。無線送受信部30を送信部、受信部、または、物理層処理部とも称する。また様々な条件に基づき各部の動作を制御する制御部を別途備えてもよい。上位層処理部34を、端末制御部とも称する。
 上位層処理部34は、媒体アクセス制御(MAC: Medium Access Control)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の一部あるいはすべての処理を行なう。
 上位層処理部34は、管理されている各種設定情報/パラメータに基づいて、スケジューリングリクエストに関する処理を行う。
 上位層処理部34は、物理下りリンク共用チャネルに配置される下りリンクデータ(トランスポートブロック)、システム情報、RRCメッセージ、MAC CE(Control Element)などを生成し、又は上位ノードから取得し、無線送受信部30に出力する。また、上位層処理部34は、端末装置1各々の各種設定情報/パラメータの管理をする。上位層処理部34は、上位層の信号を介して端末装置1各々に対して各種設定情報/パラメータをセットしてもよい。すなわち、上位層処理部34は、各種設定情報/パラメータを示す情報を送信/報知する。上位層処理部34は、あるセルにおける複数の参照信号の設定を特定するための情報を送信/報知する。
 無線送受信部30は、あるセルにおける複数の参照信号の設定を特定するための情報を送信する機能を有する。また、無線送受信部30は、複数の参照信号を送信する機能を有する。その他、無線送受信部30の一部の機能は、無線送受信部10と同様であるため説明を省略する。なお、基地局装置3が1つまたは複数の送受信点4と接続している場合、無線送受信部30の機能の一部あるいは全部が、各送受信点4に含まれてもよい。
 また、上位層処理部34は、基地局装置3間あるいは上位のネットワーク装置(MME、S-GW(Serving-GW))と基地局装置3との間の制御メッセージ、またはユーザデータの送信(転送)または受信を行なう。図11において、その他の基地局装置3の構成要素や、構成要素間のデータ(制御情報)の伝送経路については省略してあるが、基地局装置3として動作するために必要なその他の機能を有する複数のブロックを構成要素として持つことは明らかである。例えば、上位層処理部34には、無線リソース管理(Radio Resource Management)層処理部や、アプリケーション層処理部が存在している。
 なお、図中の「部」とは、セクション、回路、構成装置、デバイス、ユニットなど用語によっても表現される、端末装置1および基地局装置3の機能および各手順を実現する要素である。
 端末装置1が備える符号10から符号16が付された部のそれぞれは、回路として構成されてもよい。基地局装置3が備える符号30から符号36が付された部のそれぞれは、回路として構成されてもよい。
 以下、本発明の一態様における、端末装置1および基地局装置3の態様について説明する。
 (1)本発明の第1の態様は、端末装置1であって、基地局装置3からあるセルにおいて送信される複数の参照信号に対応する複数の参照信号設定を特定し、前記複数の参照信号設定に基づいて複数の参照信号を受信する受信部10と、前記複数の参照信号設定の少なくとも一部である1つまたは複数の第1の参照信号設定に対応する1つまたは複数の参照信号のそれぞれの受信電力(RSRP)である1つまたは複数の第1の受信電力を特定し、前記複数の参照信号設定の少なくとも一部である1つまたは複数の第2の参照信号設定に対応する1つまたは複数の参照信号のそれぞれの受信電力(RSRP)である1つまたは複数の第2の受信電力を特定する測定部14と、前記1つまたは複数の第1の受信電力に基づいてキャンプするに適したセルを選択する制御部14と、前記1つまたは複数の第2の受信電力のいずれか1つに基づいて在圏セルにおいて送信する上りリンク信号および/または上りリンクチャネルの送信電力を決定する送信電力制御部12と、を備える。
 (2)本発明の第1の態様において、前記複数の参照信号設定は、前記複数の参照信号の時間および/または周波数のリソース、および/またはアンテナポート番号を示す情報を含んでもよい。
 (3)本発明の第1の態様において、前記1つまたは複数の第1の参照信号設定と前記1つまたは複数の第2の参照信号設定は同一の参照信号の設定であってもよい。
 (4)本発明の第1の態様において、前記1つまたは複数の第1の参照信号設定と前記1つまたは複数の第2の参照信号設定は異なる参照信号の設定であってもよい。
 (5)本発明の第2の態様は、端末装置1であって、基地局装置3からあるセルにおいて送信される複数の参照信号に対応する複数の参照信号設定に基づいて前記複数の参照信号を受信し、前記複数の参照信号のうち上りリンク信号および/または上りリンクチャネルの送信電力を決定するために用いる1つの参照信号を指示する第1の情報を受信する受信部10と、前記第1の情報により指示された前記1つの参照信号に基づいて受信電力(RSRP)を特定する測定部14と、前記受信電力に基づいて上りリンク信号および/または上りリンクチャネルの送信電力を決定する送信電力制御部12と、決定した前記送信電力を用いて前記上りリンク信号および/または上りリンクチャネルを送信する送信部10と、を備える。
 (6)本発明の第3の態様は、基地局装置3であって、端末装置1に、あるセルにおいて送信する複数の参照信号に対応する複数の参照信号設定に基づく前記複数の参照信号を送信し、前記複数の参照信号のうち上りリンク信号および/または上りリンクチャネルの送信電力を決定するために用いる1つの参照信号を指示する情報を送信する送信部30と、前記上りリンク信号および/または上りリンクチャネルを受信する受信部30と、を備える。
 (7)本発明の第4の態様は、基地局装置3であって、端末装置1に、あるセルにおいて送信する複数の参照信号に対応する複数の参照信号設定に基づく前記複数の参照信号を送信し、前記端末装置1が1つまたは複数の第1の受信電力に基づいてキャンプするに適したセルを選択するためのパラメータを送信する送信部30と、前記端末装置1が1つまたは複数の第2の受信電力のいずれか1つに基づいて在圏セルにおいて送信する上りリンク信号および/または上りリンクチャネルの送信電力を決定するための制御を行なう端末制御部34と、を備え、前記1つまたは複数の第1の受信電力は、前記複数の参照信号設定の少なくとも一部である1つまたは複数の第1参照信号設定に対応する複数の参照信号のそれぞれの受信電力(RSRP)であり、前記1つまたは複数の第2の受信電力は、前記複数の参照信号設定の少なくとも一部である1つまたは複数の第2の参照信号設定に対応する複数の参照信号のそれぞれの受信電力(RSRP)である。
 (A1)本発明の一態様は、以下のような手段を講じた。すなわち、本発明の第5の態様は、端末装置であって、基地局装置からあるセルにおいて複数の参照信号を受信する受信部と、前記複数の参照信号のうちの1つまたは複数の参照信号受信電力(RSRP)を測定する測定部と、前記測定した1つまたは複数のRSRPのうち、高いものからN個のRSRPを平均して、前記セルの基準RSRPとする算出部と、を備える。
 (A2)本発明の第6の態様は、端末装置であって、前記1つまたは複数のRSRPのいずれか1つに基づいて、前記あるセルにおいて送信する上りリンク信号および/または上りリンクチャネルの送信電力を決定する送信電力制御部と、を備える。
 (A3)本発明の第7の態様は、端末装置であって、前記参照信号は、セカンダリ同期信号である。
 (A4)本発明の第8の態様は、基地局装置であって、端末装置に、あるセルにおいて複数の参照信号を送信する送信部と、前記端末装置が受信した前記複数の参照信号のうちの1つまたは複数の参照信号受信電力(RSRP)のうち、N個のRSRPを平均した基準RSRPの測定レポートを受信する受信部と、を備える。
 (A5)本発明の第9の態様は、基地局装置であって、前記受信部は、前記端末装置から、前記1つまたは複数のRSRPのいずれか1つに基づく送信電力で送信された上りリンク信号および/または上りリンクチャネルを受信する。
 (A6)本発明の第10の態様は、基地局装置であって、前記参照信号は、セカンダリ同期信号である。
 (A7)本発明の第11の態様は、端末装置に用いられる通信方法であって、基地局装置からあるセルにおいて複数の参照信号を受信し、前記複数の参照信号のうちの1つまたは複数の参照信号受信電力(RSRP)を測定し、前記測定した1つまたは複数のRSRPのうち、高いものからN個のRSRPを平均して、前記セルの基準RSRPとする。
 (A8)本発明の第12の態様は、基地局装置に用いられる通信方法であって、端末装置に、あるセルにおいて複数の参照信号を送信し、前記端末装置が受信した前記複数の参照信号のうちの1つまたは複数の参照信号受信電力(RSRP)のうち、N個のRSRPを平均した基準RSRPの測定レポートを受信する。
 本発明の一態様に関わる装置で動作するプログラムは、本発明の一態様に関わる実施形態の機能を実現するように、Central Processing Unit(CPU)等を制御してコンピュータを機能させるプログラムであっても良い。プログラムあるいはプログラムによって取り扱われる情報は、一時的にRandom Access Memory(RAM)などの揮発性メモリあるいはフラッシュメモリなどの不揮発性メモリやHard Disk Drive(HDD)、あるいはその他の記憶装置システムに格納される。
 尚、本発明の一態様に関わる実施形態の機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録しても良い。この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。ここでいう「コンピュータシステム」とは、装置に内蔵されたコンピュータシステムであって、オペレーティングシステムや周辺機器等のハードウェアを含むものとする。また、「コンピュータが読み取り可能な記録媒体」とは、半導体記録媒体、光記録媒体、磁気記録媒体、短時間動的にプログラムを保持する媒体、あるいはコンピュータが読み取り可能なその他の記録媒体であっても良い。
 また、上述した実施形態に用いた装置の各機能ブロック、または諸特徴は、電気回路、たとえば、集積回路あるいは複数の集積回路で実装または実行され得る。本明細書で述べられた機能を実行するように設計された電気回路は、汎用用途プロセッサ、デジタルシグナルプロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、またはその他のプログラマブル論理デバイス、ディスクリートゲートまたはトランジスタロジック、ディスクリートハードウェア部品、またはこれらを組み合わせたものを含んでよい。汎用用途プロセッサは、マイクロプロセッサであってもよいし、従来型のプロセッサ、コントローラ、マイクロコントローラ、またはステートマシンであっても良い。前述した電気回路は、デジタル回路で構成されていてもよいし、アナログ回路で構成されていてもよい。また、半導体技術の進歩により現在の集積回路に代替する集積回路化の技術が出現した場合、本発明の一又は複数の態様は当該技術による新たな集積回路を用いることも可能である。
 なお、本願発明は上述の実施形態に限定されるものではない。実施形態では、装置の一例を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などの端末装置もしくは通信装置に適用出来る。
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明の一態様は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。
 本発明の一態様は、例えば、通信システム、通信機器(例えば、携帯電話装置、基地局装置、無線LAN装置、或いはセンサーデバイス)、集積回路(例えば、通信チップ)、又はプログラム等において、利用することができる。
1(1A、1B) 端末装置
3 基地局装置
4 送受信点(TRP)
10 無線送受信部
11 アンテナ部
12 RF部
13 ベースバンド部
14 上位層処理部
30 無線送受信部
31 アンテナ部
32 RF部
33 ベースバンド部
34 上位層処理部
50 送信ユニット(TXRU)
51 位相シフタ
52 アンテナエレメント

Claims (8)

  1.  端末装置であって、
     基地局装置からあるセルにおいて複数の参照信号を受信する受信部と、
     前記複数の参照信号のうちの1つまたは複数の参照信号受信電力(RSRP)を測定する測定部と、
     前記測定した1つまたは複数のRSRPのうち、高いものからN個のRSRPを平均して、前記セルの基準RSRPとする算出部と、
     を備える端末装置。
  2.  前記1つまたは複数のRSRPのいずれか1つに基づいて、前記あるセルにおいて送信する上りリンク信号および/または上りリンクチャネルの送信電力を決定する送信電力制御部と、
     を備える請求項1記載の端末装置。
  3.  前記参照信号は、セカンダリ同期信号である
     請求項1記載の端末装置。
  4.  基地局装置であって、
     端末装置に、あるセルにおいて複数の参照信号を送信する送信部と、
     前記端末装置が受信した前記複数の参照信号のうちの1つまたは複数の参照信号受信電力(RSRP)のうち、N個のRSRPを平均した基準RSRPの測定レポートを受信する受信部と、
     を備える基地局装置。
  5.  前記受信部は、前記端末装置から、前記1つまたは複数のRSRPのいずれか1つに基づく送信電力で送信された上りリンク信号および/または上りリンクチャネルを受信する
     を備える請求項4記載の基地局装置。
  6.  前記参照信号は、セカンダリ同期信号である
     請求項4記載の基地局装置。
  7.  端末装置に用いられる通信方法であって、
     基地局装置からあるセルにおいて複数の参照信号を受信し、
     前記複数の参照信号のうちの1つまたは複数の参照信号受信電力(RSRP)を測定し、
     前記測定した1つまたは複数のRSRPのうち、高いものからN個のRSRPを平均して、前記セルの基準RSRPとする
     通信方法。
  8.  基地局装置に用いられる通信方法であって、
     端末装置に、あるセルにおいて複数の参照信号を送信し、
     前記端末装置が受信した前記複数の参照信号のうちの1つまたは複数の参照信号受信電力(RSRP)のうち、N個のRSRPを平均した基準RSRPの測定レポートを受信する
     通信方法。
PCT/JP2017/045718 2016-12-20 2017-12-20 端末装置、基地局装置、および、通信方法 WO2018117147A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
US16/471,062 US11516688B2 (en) 2016-12-20 2017-12-20 Terminal apparatus, base station apparatus, and communication method
EP23151540.4A EP4185025A1 (en) 2016-12-20 2017-12-20 Terminal apparatus, base station apparatus, and communication method
CN201780071961.3A CN109997389B (zh) 2016-12-20 2017-12-20 终端装置、基站装置以及通信方法
KR1020197017045A KR102354792B1 (ko) 2016-12-20 2017-12-20 단말 장치, 기지국 장치 및 통신 방법
IL267472A IL267472B (en) 2016-12-20 2017-12-20 Terminal device, base station device, and communication method
JP2018558029A JP7121659B2 (ja) 2016-12-20 2017-12-20 端末装置、基地局装置、および、通信方法
CN202210707952.1A CN114944908A (zh) 2016-12-20 2017-12-20 终端装置、基站装置以及通信方法
RU2019118424A RU2761576C2 (ru) 2016-12-20 2017-12-20 Терминальное устройство, устройство базовой станции и способ связи
CA3046388A CA3046388A1 (en) 2016-12-20 2017-12-20 Terminal apparatus, base station apparatus, and communication method
EP17884818.0A EP3562222B1 (en) 2016-12-20 2017-12-20 Terminal device, base station device, and communication method
CY20231100180T CY1126076T1 (el) 2016-12-20 2023-04-04 Συσκευη τερματικου, συσκευη σταθμου βασης και μεθοδος επικοινωνιας

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-246461 2016-12-20
JP2016246461 2016-12-20

Publications (1)

Publication Number Publication Date
WO2018117147A1 true WO2018117147A1 (ja) 2018-06-28

Family

ID=62626442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045718 WO2018117147A1 (ja) 2016-12-20 2017-12-20 端末装置、基地局装置、および、通信方法

Country Status (10)

Country Link
US (1) US11516688B2 (ja)
EP (2) EP4185025A1 (ja)
JP (1) JP7121659B2 (ja)
KR (1) KR102354792B1 (ja)
CN (2) CN109997389B (ja)
CA (1) CA3046388A1 (ja)
CY (1) CY1126076T1 (ja)
IL (1) IL267472B (ja)
RU (1) RU2761576C2 (ja)
WO (1) WO2018117147A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112335305A (zh) * 2018-08-20 2021-02-05 富士通株式会社 下行信号的监听和发送方法、参数配置方法以及装置
WO2024070104A1 (ja) * 2022-09-29 2024-04-04 Kddi株式会社 マルチアンテナを用いてビームフォーミングを実行する端末、基地局及びプログラム

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11611420B2 (en) * 2017-03-24 2023-03-21 Telefonaktiebolaget Lm Ericsson (Publ) CSI-RS for AMM measurements
WO2019064445A1 (ja) * 2017-09-28 2019-04-04 富士通株式会社 基地局装置、端末装置、無線通信システム及び送信タイミング設定方法
KR20200087011A (ko) * 2019-01-10 2020-07-20 삼성전자주식회사 무선 통신 시스템에서 전력 제어 방법 및 장치
KR102162864B1 (ko) 2020-04-29 2020-10-07 영남강철 주식회사 학생용 책걸상 높낮이 조절장치
CN114766081A (zh) * 2020-11-13 2022-07-19 北京小米移动软件有限公司 Aod获取方法、装置和通信设备
US11611459B1 (en) * 2021-08-25 2023-03-21 Qualcomm Incorporated Symbol configuration for single-carrier for frequency domain equalization waveform
CN114095104B (zh) * 2021-10-14 2022-10-14 荣耀终端有限公司 一种通信方法、电子设备、芯片系统及存储介质
US20230388069A1 (en) * 2022-05-24 2023-11-30 Qualcomm Incorporated Light layer 1 measurement report
KR20240000972A (ko) 2022-06-24 2024-01-03 영남강철 주식회사 결속조절모듈과 이것이 구비된 책걸상 높낮이 조절장치

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015092735A (ja) * 2009-06-23 2015-05-14 サムスン エレクトロニクス カンパニー リミテッド 移動通信システムで上りリンク送信出力を制御する方法及び装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106068023A (zh) * 2009-12-23 2016-11-02 交互数字专利控股公司 无线发射/接收单元
CN102098265B (zh) * 2011-03-08 2013-11-06 华为技术有限公司 一种确定参考信号接收功率的方法和装置
WO2012177207A1 (en) * 2011-06-21 2012-12-27 Telefonaktiebolaget L M Ericsson (Publ) A user equipment and a method therein for transmission power control of uplink transmissions
US9072055B2 (en) * 2011-06-21 2015-06-30 Telefonaktiebolaget L M Ericsson (Publ) Systems and methods for controlling the power at which a communication device transmits an uplink signal
JP5914918B2 (ja) * 2011-08-02 2016-05-11 シャープ株式会社 基地局、端末および通信方法
US20130059589A1 (en) * 2011-09-01 2013-03-07 Nokia Corporation Enhanced mobility for devices using moving relay
US8743791B2 (en) 2011-09-22 2014-06-03 Samsung Electronics Co., Ltd. Apparatus and method for uplink transmission in wireless communication systems
US9369971B2 (en) * 2011-09-28 2016-06-14 Sharp Kabushiki Kaisha Mobile station device, communication system, communication method, and integrated circuit
US20130095819A1 (en) * 2011-10-18 2013-04-18 Qualcomm Incorporated Method and apparatus for performing neighboring cell measurements in wireless networks
WO2013058612A1 (en) * 2011-10-19 2013-04-25 Samsung Electronics Co., Ltd. Uplink control method and apparatus in wireless communication system
US9642114B2 (en) * 2011-11-04 2017-05-02 Intel Corporation Path-loss estimation for uplink power control in a carrier aggregation environment
US9480027B2 (en) * 2011-11-07 2016-10-25 Nokia Solutions And Networks Oy Uplink power control for wireless communications
KR101881847B1 (ko) * 2012-02-21 2018-08-24 삼성전자주식회사 통신 시스템에서 신호를 송수신하는 방법 및 장치
CN103313250B (zh) * 2012-03-16 2016-09-28 华为技术有限公司 小区配置方法和同步方法,用户设备和基站
KR101995798B1 (ko) * 2012-07-03 2019-07-03 삼성전자주식회사 빔포밍을 사용하는 통신 시스템의 랜덤 억세스 장치 및 방법
US20150222402A1 (en) * 2012-09-27 2015-08-06 Sharp Kabushiki Kaisha Terminal, communication method, and integrated circuit
US9768940B2 (en) * 2012-12-09 2017-09-19 Lg Electronics Inc. Method and device for transmitting and receiving signal in multi-cell cooperative communication system
KR102008467B1 (ko) * 2012-12-27 2019-08-07 삼성전자주식회사 빔포밍 기반 무선 통신시스템의 상향링크 전력 제어 방법 및 장치
CN104796218B (zh) * 2014-01-17 2019-02-12 电信科学技术研究院 信号传输方法和装置
JP5650343B1 (ja) * 2014-04-14 2015-01-07 ソフトバンクモバイル株式会社 推定装置及びプログラム
CN108496312A (zh) * 2015-09-24 2018-09-04 株式会社Ntt都科摩 无线基站和用户设备
US10524213B2 (en) * 2016-02-24 2019-12-31 Intel IP Corporation Power control for systems based on uplink link identifier
US11223403B2 (en) * 2016-05-05 2022-01-11 Nokia Technologies Oy Mobility measurements
US20190174423A1 (en) 2016-08-05 2019-06-06 Intel Corporation Systems and methods for uplink transmission power control
HUE051179T2 (hu) * 2016-08-11 2021-03-01 Ericsson Telefon Ab L M Eljárás és berendezés vezeték nélküli eszközszinkronizáláshoz sugáralapú kommunikációs rendszerben
WO2018029364A1 (en) * 2016-08-12 2018-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for network planning and operation of a beam-based communication system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015092735A (ja) * 2009-06-23 2015-05-14 サムスン エレクトロニクス カンパニー リミテッド 移動通信システムで上りリンク送信出力を制御する方法及び装置

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"April Basic Principles for the 5 G New Radio Access technology", RL-162883 NOKIA, ALCATEL-LUCENT SHANGHAIBELL, April 2016 (2016-04-01)
"Overview of antenna technology for new radio interface", RL-162380, INTEL CORPORATION, April 2016 (2016-04-01)
"Overview of NR", RL-163215, ERICSSON, April 2016 (2016-04-01)
"Revision of SI: Study on New Radio Access Technology", RP-161214, NTT DOCOMO, June 2016 (2016-06-01)
NOKIA ET AL.: "Mobility Measurement in IDLE and INACTIVE Mode", 3GPP TSG-RAN WG2#96 R2-167712, 4 November 2016 (2016-11-04), XP051192258 *
SAMSUNG: "Discussion on Beam Measurement for 5G New Radio Interface in mmWave Frequency Bands", 3GPP TSG-RAN WG2#94 R2-163652, 13 May 2016 (2016-05-13), XP051095759 *
SAMSUNG: "Evaluation of beam-based RRM Measurement", 3GPP TSG-RAN WG2#95BIS R2-167157, 7 October 2016 (2016-10-07), XP051162523 *
See also references of EP3562222A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112335305A (zh) * 2018-08-20 2021-02-05 富士通株式会社 下行信号的监听和发送方法、参数配置方法以及装置
CN112335305B (zh) * 2018-08-20 2024-03-01 富士通株式会社 下行信号的监听和发送方法、参数配置方法以及装置
WO2024070104A1 (ja) * 2022-09-29 2024-04-04 Kddi株式会社 マルチアンテナを用いてビームフォーミングを実行する端末、基地局及びプログラム

Also Published As

Publication number Publication date
RU2761576C2 (ru) 2021-12-10
US20190387423A1 (en) 2019-12-19
JPWO2018117147A1 (ja) 2019-10-31
KR20190097020A (ko) 2019-08-20
JP7121659B2 (ja) 2022-08-18
IL267472B (en) 2022-08-01
KR102354792B1 (ko) 2022-01-21
EP3562222A4 (en) 2020-08-12
EP3562222A1 (en) 2019-10-30
RU2019118424A3 (ja) 2021-01-22
IL267472A (ja) 2020-01-30
CN114944908A (zh) 2022-08-26
CN109997389A (zh) 2019-07-09
EP4185025A1 (en) 2023-05-24
CN109997389B (zh) 2022-06-24
US11516688B2 (en) 2022-11-29
CY1126076T1 (el) 2023-11-15
EP3562222B1 (en) 2023-03-01
RU2019118424A (ru) 2021-01-22
CA3046388A1 (en) 2018-06-28

Similar Documents

Publication Publication Date Title
JP7094416B2 (ja) 端末装置、通信方法、および、集積回路
KR102354792B1 (ko) 단말 장치, 기지국 장치 및 통신 방법
JP6837129B2 (ja) 端末装置、基地局装置、通信方法、および、集積回路
JP7039258B2 (ja) 端末装置、基地局装置、通信方法、および、集積回路
JP6937324B2 (ja) 端末装置、基地局装置、および、通信方法
WO2019139047A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
WO2018230667A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
JP7391124B2 (ja) 端末装置、基地局装置、通信方法、および、集積回路
AU2017334682B2 (en) Terminal apparatus, base station apparatus, communication method, and integrated circuit
WO2019139046A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
WO2019031058A1 (ja) 端末装置、基地局装置、および通信方法
WO2014203298A1 (ja) 無線通信方法、無線通信システム、無線局および無線端末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884818

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018558029

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3046388

Country of ref document: CA

Ref document number: 20197017045

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019118424

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2017884818

Country of ref document: EP

Effective date: 20190722