WO2018116753A1 - Piston for internal combustion engine, method for manufacturing piston for internal combustion engine, and structure - Google Patents

Piston for internal combustion engine, method for manufacturing piston for internal combustion engine, and structure Download PDF

Info

Publication number
WO2018116753A1
WO2018116753A1 PCT/JP2017/042480 JP2017042480W WO2018116753A1 WO 2018116753 A1 WO2018116753 A1 WO 2018116753A1 JP 2017042480 W JP2017042480 W JP 2017042480W WO 2018116753 A1 WO2018116753 A1 WO 2018116753A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
sintered body
binder
combustion engine
internal combustion
Prior art date
Application number
PCT/JP2017/042480
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 智一
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2018116753A1 publication Critical patent/WO2018116753A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • F02B77/11Thermal or acoustic insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/10Pistons  having surface coverings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/10Pistons  having surface coverings
    • F02F3/12Pistons  having surface coverings on piston heads
    • F02F3/14Pistons  having surface coverings on piston heads within combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J1/00Pistons; Trunk pistons; Plungers
    • F16J1/01Pistons; Trunk pistons; Plungers characterised by the use of particular materials

Definitions

  • the present invention relates to a piston and other structures of an internal combustion engine.
  • Patent Document 1 a piston of an internal combustion engine as a structure for heat insulation is known (for example, Patent Document 1).
  • the conventional structure has room for improving the controllability of thermal conductivity.
  • a structure according to an embodiment of the present invention includes a main body formed of a metal material, a holding portion formed in the main body, and a sintered body that is disposed in the holding portion and contains hollow particles and a metal binder.
  • 1 schematically shows a cross section of a part of an engine taken along a plane passing through the axis of one cylinder of the first embodiment.
  • 1 is a schematic perspective view of a piston according to a first embodiment.
  • 1 schematically shows a cross section (hereinafter referred to as an axial cross section) obtained by cutting a part of a sintered body and a piston head (hereinafter referred to as a sintered body, etc.) according to a first embodiment along a plane parallel to the axis of the piston.
  • 1 schematically shows a partial axial cross section of a sintered body or the like in a material installation step of a first embodiment.
  • 1 schematically shows a sintering process of a first embodiment.
  • FIG. 2 schematically shows a partial axial cross section of a sintered body of a first comparative embodiment in which the sintered body does not contain hollow particles.
  • FIG. 3 schematically shows a partial axial cross section of a sintered body of a second comparative embodiment in which the sintered body does not contain hollow particles.
  • FIG. 6 schematically shows a partial axial cross section of a sintered body of a third comparative embodiment in which the sintered body does not contain hollow particles.
  • the sintering process of 2nd Embodiment is typically shown.
  • a partial axial section of a sintered body or the like of the fourth embodiment is schematically shown.
  • the internal combustion engine (engine) 100 of this embodiment is a 4-stroke gasoline engine.
  • the engine 100 includes a piston 1, a cylinder block 101, a cylinder head 104, a connecting rod (connecting rod) 106, a crankshaft, a valve 107, and an ignition device 108.
  • the valve 107 has two intake valves and two exhaust valves.
  • the cylinder block 101 includes a cylindrical cylinder liner (cylinder sleeve) 102.
  • the inner peripheral side of the cylinder liner 102 functions as the inner wall of the cylinder 10.
  • the cylinder head 104 is installed in the cylinder block 101 so as to close the opening of the cylinder 10.
  • a valve 107 In the cylinder head 104, a valve 107, a nozzle of a fuel injection valve, and an ignition device 108 are installed.
  • a crankshaft is rotatably installed on the cylinder block 101.
  • the piston 1 is accommodated in the cylinder 10 so as to be reciprocally movable.
  • the combustion chamber 11 is defined by the inner wall surface of the cylinder 10, the top surface of the piston, the bottom surface of the cylinder head, and the top surface of the valve.
  • the format of engine 100 is arbitrary.
  • the engine 100 may be a two-stroke engine or a diesel engine.
  • the fuel supply method may be an in-cylinder direct injection type that directly injects into the cylinder 10 (combustion chamber 11), or a port injection type that injects into the intake port.
  • the piston 1 has a main body 2 and a sintered body 3.
  • the main body 2 is formed of an aluminum alloy (for example, Al-Si AC8A) as a material (raw material) for weight reduction or the like.
  • the piston 1 (main body portion 2) has a bottomed cylindrical shape, and includes a piston head (crown portion) 4, a piston boss (apron portion) 5, and a piston skirt (skirt portion) 6.
  • the direction in which the axis of the piston 1 extends (the direction along the moving direction of the main body 2 in the cylinder 10) is referred to as the axial direction.
  • the side of the piston head 4 with respect to the piston boss 5 and piston skirt 6 in the axial direction is called one side, and the opposite side is called the other side.
  • the piston head 4 has a crown surface portion 40 and a land portion 41.
  • the crown surface portion 40 is on one side in the axial direction of the piston head 4 and has a crown surface (top surface) 400.
  • the crown surface 400 has a planar shape that extends perpendicular to the axis of the piston 1 and has a substantially circular outline when viewed from one side in the axial direction.
  • the combustion chamber 11 is defined between the crown surface 400 and the cylinder head 104.
  • the combustion chamber 11 is a pent roof type.
  • the crown surface 400 is directly exposed to the combustion gas in the combustion chamber 11.
  • the main body 2 includes a recess 401 on the combustion chamber 11 side (side facing the combustion chamber 11) of the piston head 4 (crown surface portion 40).
  • the concave portion 401 is substantially at the center of the crown surface 400 in the crown surface portion 40 and has a bottomed cylindrical shape (a shallow dish shape whose bottom surface is a flat surface).
  • the axis of the recess 401 substantially coincides with the axis of the piston 1 (within manufacturing error).
  • the land portion 41 extends from the outer peripheral side of the crown surface portion 40 to the other side in the axial direction.
  • a piston ring 7 is installed in the ring groove 410.
  • the passage 411 extends in the circumferential direction of the piston 1 and surrounds the recess 401 when viewed from the axial direction.
  • the passage 411 overlaps at least a part of the region where the ring groove 410 is formed in the axial direction.
  • the piston boss 5 and the piston skirt 6 extend from the piston head 4 (land portion 41) to the other side in the axial direction, and are on the opposite side of the combustion chamber 11 with respect to the piston head 4.
  • the inner peripheral sides of the piston skirt 6 and the piston boss 5 are hollow.
  • Each piston boss 5 has a pin boss 50.
  • Each pin boss 50 has a piston pin hole 51.
  • the piston pin hole 51 extends through the pin boss 50 in the radial direction of the piston 1.
  • the piston skirt 6 is sandwiched between the piston bosses 5 and 5 in the circumferential direction of the piston 1.
  • Both piston skirts 6 and 6 are connected by a piston boss 5.
  • the piston skirt 6 slides against the inner wall of the cylinder 10.
  • the piston pin end 51 is fitted into the piston pin hole 51.
  • the piston 1 is connected to one end side (small end portion) of the connecting rod 106 via a piston pin.
  • the other end side (large end portion) of the connecting rod 106 is connected to the crankshaft.
  • ⁇ Cooling water circulates in the passage 103 inside the cylinder liner 102.
  • An oil jet 105 is installed in the cylinder block 101.
  • the heat transferred from the combustion chamber 11 to the piston head 4 is released by being transferred to the cylinder liner 102 and the cooling water therein through the piston ring 7.
  • the heat is also released when oil adheres to and flows out from the inner peripheral side (back side) of the piston 1 or when oil flows through the passage 411. This adhesion and distribution of oil is performed, for example, by oil injection from the oil jet 105.
  • the passage 411 functions as a cooling passage (cooling channel).
  • the sintered body 3 is a structure for reducing the thermal conductivity from the combustion chamber 11 to the main body 2 and is located on one side in the axial direction of the piston head 4 (on the combustion chamber 11 side). It is formed on a part of the facing surface (crown surface 400).
  • the sintered body 3 is accommodated in the recess 401.
  • the sintered body 3 has a planar shape extending along the crown surface 400 (and the bottom surface of the recess 401).
  • the thickness of the sintered body 3 (depth of the recess 401) is arbitrary.
  • the sintered body 3 includes a metal binder 31 and hollow particles 32.
  • the binder 31 includes aluminum.
  • Aluminum may be pure aluminum, an aluminum alloy, or may include both pure aluminum and an aluminum alloy.
  • the binder 31 may contain an additive in addition to aluminum.
  • the hollow particle 32 has a spherical outer shell 320 made of metal or ceramics, and its maximum outer dimension is, for example, several tens of ⁇ m. There is a gap 33 inside the outer shell 320.
  • a metal used as the material of the outer shell 320 for example, titanium, a titanium alloy, stainless steel, or the like can be used.
  • the ceramic used as the material of the outer shell 320 for example, alumina, silica, a composite material of alumina and silica, or the like can be used.
  • a plurality of hollow particles 32 are dispersed inside the sintered body 3 together with the gaps 33.
  • One type of hollow particles 32 having an average particle diameter may be used, or two or more hollow particles 32 having different average particle diameters may be used.
  • the manufacturing method of the piston 1 includes a casting process, a sintered body forming process, a heat treatment process, a machining process, and an oxidation treatment process.
  • the prototype (intermediate workpiece) of the main body 2 is cast. Specifically, a molten aluminum alloy as a base metal is poured into a mold and solidified. At this time, the inner periphery of the main body 2 is formed, and the recess 401 and the passage 411 are formed. The concave portion 401 may be formed or finished by machining.
  • the sintered body forming step the sintered body 3 is formed on the prototype of the main body 2 (on the combustion chamber 11 side). Details will be described later.
  • the heat treatment step heat treatment is performed.
  • the properties of the prototype on which the sintered body 3 is formed are improved and adjusted to appropriate strength and hardness.
  • the heat treatment step may be performed before the sintering step.
  • the heat-treated prototype is machined by a lathe or the like.
  • the side of the piston head 4 facing the combustion chamber 11 is cut to form the crown surface 400.
  • the entire surface of the piston head 4 on the combustion chamber 11 side is machined.
  • the piston pin hole 51 and the ring groove 410 are processed, and the outer diameter of the main body 2 such as the outer periphery of the piston head 4 and the piston skirt 6 is finished.
  • the surface of the machined sintered body 3 is anodized.
  • An anodized film 30 is formed in a region where the binder 31 is anodized.
  • a sintered body 3 having the anodized film 30 is formed on the crown surface 400.
  • the anodized film 30 is formed on the entire sintered body 3 (entire range in the radial direction and axial direction of the piston).
  • the anodic oxide film 30 may be formed on a part of the sintered body 3 (a part of the range in the radial direction or the axial direction of the piston). As shown in FIG.
  • the anodized film 30 can be a porous layer having a large number of fine pores (pores) 310.
  • the pore 300 extends in a direction perpendicular to the crown surface between the bottom side (base material side) and the surface of the anodized film 30.
  • the sintered body forming process includes a material preparation process, a material installation process, and a sintering process.
  • a material for forming the sintered body 3 (hereinafter referred to as a forming material) is prepared.
  • the forming material includes metal powder of the binder 31 and hollow particles 32.
  • the metal powder of the binder 31 is aluminum powder.
  • There are various methods for producing the hollow particles 32 For example, mother particles having an average particle diameter of about several tens of ⁇ m and formed from a resin (polymer) are prepared. A metal or ceramic child particle having a smaller average particle diameter (for example, submicron or less) is coated on the outer peripheral surface of the mother particle.
  • Coating can be performed by ejecting and driving the child particles on the outer peripheral surface of the mother particles at a high speed, or by rotating a rotating chamber containing the mother particles and the child particles at a high speed. Thereafter, the coated composite particles are heated to dissolve the mother particles or to thermally decompose (gasify) them. As a result, hollow particles 32 having an outer shell 320 made of child particles are formed. By adjusting the particle size of the mother particles, the particle size of the hollow particles 32 can be controlled as desired.
  • a forming material (mixed material) prepared by mixing aluminum powder and hollow particles 32 in a predetermined (weight or volume) ratio is prepared. By stirring, the hollow particles 32 are dispersed in the aluminum powder in the mixed material.
  • the mixed forming material is filled into the original concave portion 401 as shown in FIG. Specifically, the forming material is put up to the upper end of the recess 401. Note that the position of the forming material into the concave portion 401 is arbitrary. Alternatively, the aluminum powder and the hollow particles 32 may be separately put in the recess 401 and then mixed in the recess 401.
  • the filled forming material specifically, aluminum powder
  • the discharge plasma sintering method is used, and sintering is performed by mechanical pressurization and pulse current heating. As shown in FIG. 5, carbon electrodes 81 and 82 are brought into contact with both sides of the original in the axial direction.
  • a pulse voltage (current) is applied from the power supply 80 in a state where the forming material is pressurized (pressure in the axial direction is indicated by an arrow).
  • the forming material is sintered by heat generation of each aluminum powder by energization, discharge plasma energy generated between the particles, and the like.
  • a sintered body 3 having a volume reduced from the beginning is formed inside the recess 401.
  • the sintered body 3 is a sintered layer that spreads in a direction perpendicular to the crown surface 400.
  • a prototype of the piston head 4 having the recess 401 for accommodating the sintered body 3 is formed.
  • a part of the sintered body 3 is cut together with a part of the piston head 4, and the crown surface 400 including the sintered body 3 on the surface is finished into a flat surface.
  • the piston 1 includes the main body 2.
  • the main body 2 is made of a metal material and has a piston head 4 and a skirt 6.
  • a sintered body 3 made of a material (forming material) containing a metal binder 31 is provided on the combustion chamber 11 side of the piston head 4. Therefore, the piston 1 includes the sintered body 3.
  • the sintered body 3 is on the combustion chamber 11 side of the piston head 4 and includes a metal binder 31.
  • the sintered body 3 faces the combustion chamber 11 and constitutes a part of the inner wall of the combustion chamber 11.
  • the sintered body 3 includes more minute voids (holes) than the main body portion 2 formed by casting.
  • the void has a lower thermal conductivity than the solid. Therefore, the sintered body 3 as a whole can have a lower thermal conductivity than the main body 2.
  • the sintered body 3 is located between the combustion chamber 11 and the main body 2 and functions as a low heat conductive layer (heat insulating layer).
  • the sintered body 3 reduces the heat transfer from the gas inside the combustion chamber 11 to the piston head 4 (main body portion 2), and the heat of the fuel (air mixture) supplied to the combustion chamber 11 is taken to the main body portion 2. Suppress it. Therefore, a reduction in combustion efficiency can be suppressed and the thermal efficiency of engine 100 can be improved.
  • the material of the main body 2 is not limited to an aluminum alloy, and may include, for example, iron.
  • the metal of the binder 31 is not limited to aluminum, but may be a titanium alloy, magnesium, or the like, but a metal (low thermal conductivity material) whose thermal conductivity is equal to or lower than the material (base metal) of the main body 2. preferable. Moreover, it is preferable that it is a metal with high heat resistance and durability.
  • the binder 31 is oxidized at least on the surface (crown surface 400) of the sintered body 3 on the combustion chamber 11 side. Therefore, the binder 31 is oxidized at least on the surface of the sintered body 3 on the combustion chamber 11 side.
  • the portion where the binder 31 is oxidized (oxidized binder portion) has a lower thermal conductivity due to metal oxidation.
  • the oxidized binder portion improves the heat insulating effect of the sintered body 3.
  • the thermal conductivity can be lowered at least on the surface of the sintered body 3 on the combustion chamber 11 side (oxidized binder portion). Note that the oxidation method of the binder 31 is not limited to the anodizing treatment.
  • the binder 31 is oxidized by anodizing treatment in the oxidation treatment step. Therefore, the binder 31 is anodized, and the oxidized binder portion is the anodized film 30.
  • the anodized film can be porous with many pores 300. Due to the pores 300, the thermal conductivity of the sintered body 3 is lower than before the anodizing treatment. By forming a large number of pores 300 by the anodic oxidation treatment, the heat insulating property of the oxidized binder portion is improved as compared with the case of simple oxidation treatment.
  • the binder 31 is oxidized from the surface (crown surface 400) of the sintered body 3 to a predetermined depth. Therefore, the oxidized binder portion is from the surface of the sintered body 3 to a predetermined depth.
  • the predetermined depth is such a depth that the pores 300 of the anodized film 30 are formed.
  • the range in which the anodic oxide film 30 grows and the pores 300 are formed from the surface to the inside of the sintered body 3 functions as an oxidation binder part.
  • the heat insulation effect can be exerted by the pores 300 of the anodized film 30 against heat transferred to the inside of the sintered body 3.
  • the volume ratio of the pores 300 as a whole in the anodized film 30 (the porosity of the anodized film 30) is set to an appropriate value.
  • the growth of the pores 300 depends on various conditions of the anodizing treatment. For this reason, it is difficult to accurately control the proportion of the volume occupied by the pores 300 in the anodized film 30.
  • the pore 300 is fine (for example, several tens of nm) and has a small diameter. Therefore, the effect of increasing the porosity in the anodized film 30 by increasing the pores 300 is small.
  • the sintered body 3 of the material (forming material) including the hollow particles 32 is provided on the side of the combustion chamber 11 in the piston head 4 in the sintered body forming step. Therefore, the sintered body 3 includes the hollow particles 32. Due to the hollow particles 32, the porosity in the sintered body 3 increases.
  • the sintered body 3 has a plurality of relatively large voids 33 in each hollow particle 32 formed therein. These voids 33 have extremely low thermal conductivity, and the hollow particles 32 function as a heat insulating material. Therefore, the sintered body 3 as a whole (on average) has a lower thermal conductivity than the main body 2.
  • the thermal conductivity of the sintered body 3 is further reduced. it can.
  • the shape of the hollow particles 32 is not limited to a spherical shape, and may be a columnar shape. In the present embodiment, the hollow particles 32 (outer shell 320) are spherical. Therefore, the arrangement (direction) of the hollow particles 32 in the sintered body 3 does not need to be particularly taken into consideration, so that the handling is simple and the production of the sintered body 3 can be facilitated.
  • the ratio of the volume occupied by the voids 33 in the individual hollow particles 32 can be controlled as desired by adjusting the particle size of the mother particles as the raw material, for example. Therefore, the overall porosity of the sintered body 3 including the plurality of hollow particles 32 can be accurately controlled by adjusting the type and number of the hollow particles 32. Further, the volume of the void 33 in the hollow particle 32 is relatively large. Therefore, in the sintered body 3, the effect of increasing the porosity by increasing the hollow particles 32 is greater than the effect of increasing the porosity by increasing the pores 300 of the anodized film 30.
  • the porosity of the sintered body 3 including the hollow particles 32 is easy to control to be preferably 30% by volume or more and 70% by volume or less, more preferably 50% by volume or in the vicinity thereof. By controlling the porosity in such a range, it is possible to achieve both a reduction in the thermal conductivity and strength of the sintered body 3 at a high level.
  • a crystallized product 20 (a material such as silicon in the material of the main body 2 crystallized) in the solidification process of the base metal.
  • the crystallized product 20 is dissolved by the anodizing treatment, and the crystallized product 20 and the vicinity 21 can be formed in the vicinity of the crystallized product 20 within the anodized film 30 (sintered body 3).
  • FIG. 6 shows that, as shown in FIG. 6, inside the main body 2 is a crystallized product 20 (a material such as silicon in the material of the main body 2 crystallized) in the solidification process of the base metal.
  • the crystallized product 20 is dissolved by the anodizing treatment, and the crystallized product 20 and the vicinity 21 can be formed in the vicinity of the crystallized product 20 within the anodized film 30 (sintered body 3).
  • the volume of the void 21 as a whole inside the anodized film 30 increases.
  • the porosity of the sintered body 3 is increased not by the voids 21 around the crystallized product 20 but by the hollow particles 32, so that the heat of the sintered body 3 can be obtained without the above-mentioned limit. Conductivity can be reduced. Further, the controllability of the porosity in the sintered body 3 is good.
  • the strength of the hollow particles 32 and the vicinity thereof is lowered due to the voids 33 inside the hollow particles 32. For this reason, insufficient strength of the sintered body 3 can be a problem.
  • the binder 31 improves the bonding strength (hardness) inside the sintered body 3 including the voids 33, and suppresses chipping and collapse thereof.
  • the strength of joining the sintered body 3 and the main body 2 is improved, and the force for holding the sintered body 3 in the piston head 4 (concave portion 401) is improved. Therefore, the function of the sintered body 3 can be maintained for a longer period.
  • additives sining aid and the like
  • the binder 31 is a metal. Therefore, even if a relatively large gap 33 is formed, the strength of the sintered body 3 can be improved and the chipping and collapse can be more easily suppressed.
  • the mixed material (forming material) containing the hollow particles 32 and the binder 31 is sintered.
  • the binder 31 includes a metal powder. Therefore, the sintered body 3 is obtained by sintering a mixed material containing the hollow particles 32 and the metal powder. Since the binder 31 before solidification is a metal powder, the specific gravity of the binder 31 can be prevented from being biased in the sintered body 3, and the hollow particles 32 are dispersed as uniformly as possible inside the sintered body 3. Can be made. By sintering the mixed material in which the metal powder and the hollow particles 32 are stirred, the metal powder and the hollow particles 32 can be dispersed in the sintered body 3 as uniformly as possible. Therefore, the heat insulating performance can be homogenized between the respective parts in the sintered body 3.
  • the metal powder is aluminum powder.
  • the aluminum powder functions as a binder 31 that adheres to each other or the main body 2 and holds the hollow particles 32 in the sintered body 3 by being sintered. Since the binder 31 is made of aluminum powder, the bonding force between the main body 2 and the sintered body 3 formed of an aluminum alloy can be improved.
  • the aluminum powder may be a pure aluminum powder or an aluminum alloy powder (for example, AC8A, which is the same as the base metal of the main body 2).
  • the aluminum powder may be granular aluminum powder.
  • the anodizing treatment not only improves the heat insulating performance of the binder 31 as described above, but also improves the strength of the binder 31. Therefore, the strength of the binder 31 in the vicinity of the hollow particles 32 can be improved, and the chipping of the sintered body 3 and the falling off from the main body 2 can be suppressed. Further, since the anodic oxide film 30 is formed by an anodic oxidation treatment, the bonding strength with the base material is strong. In the casting process, the main body 2 having the recess 401 on the combustion chamber 11 side in the piston head 4 is formed. Therefore, the piston 1 includes the recess 401. The recess 401 is on the combustion chamber 11 side in the piston head 4.
  • the sintered body 3 is provided in the recess 401. Therefore, the sintered body 3 is in the recess 401 and is held by the piston head 4 by the recess 401.
  • the concave portion 401 functions as a holding portion. As a result, it is possible to prevent the sintered body 3 from falling off the main body 2.
  • pressure is applied to the piston head 4 while holding the forming material. This is advantageous.
  • the forming material is filled in the recess 401 in the material setting process, and the (filled) forming material is sintered in the sintering process.
  • a discharge plasma sintering method is used. Since energization is used for heating or the like and friction is not used, there is little possibility that the hollow particles 32 are crushed during sintering.
  • a preform obtained by pressure-molding the forming material may be prepared, and this may be placed in the recess 401 and sintered. In this case, it is possible to improve manufacturing efficiency and quality.
  • the sintered body 3 may be formed in a disc shape separately from the main body 2 and the sintered body 3 may be cast into a base metal such as an aluminum alloy of the piston 1.
  • a machining process is performed after the sintered body forming process.
  • the side facing the combustion chamber 11 of the piston head 4 is cut to form the crown surface 400. That is, the sintered body 3 is formed before the crown surface 400 is formed by cutting. Therefore, in the sintered body forming step, there are few restrictions due to the shape of the crown surface 400, and thus the work of forming the sintered body 3 is facilitated. In other words, even when the crown surface 400 has a complicated shape, the sintered body 3 can be easily formed on the crown surface 400. Further, when machining is performed after the formation of the oxidized binder portion (anodized film 30), the oxidized binder portion may be unnecessarily removed by machining.
  • an oxidation treatment process is performed after the machining process.
  • the oxidized binder portion is in a portion formed by machining in the main body portion 2.
  • the oxidized binder portion can be sufficiently provided without unnecessary cutting.
  • the anodic oxide film 30 has a high hardness and is relatively difficult to machine. Machining can be facilitated by performing machining prior to the anodizing treatment.
  • the sintered body 3 (oxidation binder part) is provided over the entire crown surface 400 of the piston head 4, the temperature of the crown surface 400 increases excessively, abnormal fuel combustion (knocking) occurs, and intake efficiency decreases. Cause it.
  • the sintered body 3 (oxidized binder portion) is in a part of the crown surface 400. Therefore, it is possible to suppress an excessive increase in the temperature of the crown surface 400 and achieve both improvement in heat insulation and suppression of knocking and the like.
  • the sintered body 3 is located on the crown surface 400 at a location corresponding to at least a fuel injection region (a location where the temperature or pressure is highest when the fuel collides or explodes. And its periphery).
  • the principle of friction stir welding is used and sintering is performed using a rotating tool 9.
  • the tool 9 has a cylindrical shape, and the diameter D2 of the axial end 90 thereof is not less than the diameter D1 of the recess 401, and is preferably slightly larger than the diameter D1.
  • the axis of the tool 9 and the axis of the recess 401 are aligned. With the tool 9 rotated around its axis (rotation around the axis is indicated by arrow A), the end 90 of the tool 9 is pressed against the forming material (the axial pressing force is indicated by arrow B). .
  • the tool 9 is rotated with the end 90 pressed against the forming material. Thereby, the forming material is mixed while being pressed and heated by frictional heat.
  • the aluminum powder as the material of the binder 31 plastically flows, the oxide film on the surface of each powder is broken, and the sintered body 3 whose volume is reduced from the beginning is formed.
  • the tool 9 is pulled up from the inside of the recess 401.
  • Other configurations are the same as those of the first embodiment.
  • the piston head 4 has a recess 401. Therefore, even when sintering is performed by rotating the tool 9 in the sintering process, it is advantageous because the forming material is held on the piston head 4 and can be agitated by applying pressure thereto.
  • the diameter D2 of the end 90 is not less than the diameter D1 of the recess 401. Therefore, the formation material can be prevented from jumping out from the radial gap between the rotating end 90 and the recess 401.
  • Diameter D2 is larger than diameter D1. Therefore, since the sintered body 3 is formed while a part of the outer edge of the recess 401 is wound around the rotating end 90, the bonding force between the sintered body 3 and the recess 401 can be improved. Other functions and effects are the same as those of the first embodiment.
  • the pores 300 in the anodized film 30 (oxidized binder portion) of the sintered body 3 are sealed at the site on the side opened to the crown surface 400 (combustion chamber 11). Specifically, the opening is blocked or narrowed at this portion. Or the pore 300 is chemically inactive. This part is called a sealing part.
  • the method for manufacturing the piston 1 includes a sealing treatment process. In the sealing treatment step, as a surface treatment of the anodized sintered body 3, the pores 300 are sealed by boiling the formed anodized film 30 in boiling water. In addition to pure water boiling water, a high temperature aqueous solution to which a chemical is added may be used.
  • the anodized film 30 may be treated with high-temperature pressurized steam. By boiling, hydroxide grows on the anodic oxide film 30 and seals the pores 300 (a sealed part is formed).
  • the sealing portion of each pore 300 functions as a sealing layer that spreads in a direction perpendicular to the crown surface 400 as a whole.
  • Other configurations are the same as those of the first embodiment.
  • the anodic oxide film 30 has a sealed portion in which the pores 300 are sealed, it is possible to prevent the unburned gas from entering the pores 300 and deteriorating the exhaust gas characteristics of the engine 100.
  • Other functions and effects are the same as those of the first embodiment.
  • the surface of the anodized film 30 (oxidized binder portion) of the sintered body 3 facing the combustion chamber 11 is covered with a film 34.
  • the film 34 is a silica film containing silica.
  • the method for manufacturing the piston 1 includes a sealing treatment process. In the sealing treatment step, as the surface treatment of the anodized sintered body 3, the surface of the anodized film 30 is covered with a film. As a result, the pores 300 in the anodized film 30 are sealed.
  • the membrane 34 functions as a sealing layer.
  • the pore 300 is sealed with silica at the sealing portion.
  • Other configurations are the same as those of the first embodiment.
  • the film 34 uniformly covers the surface of the anodized film 30. For this reason, the crown surface 400 can be smoothed. Further, not only the pore 300 but also the opening of the gap 33 can be closed with the film 34. Therefore, it is possible to prevent the unburned gas from entering the gap 33 and deteriorating the exhaust gas characteristics of the engine 100.
  • the material of the film 34 may contain subcomponents other than silica. Further, the film may be formed using a material other than silica.
  • the film 34 is a silica film containing silica as a main component. Since silica is excellent in heat resistance, the durability of the sealing layer can be improved. Other functions and effects are the same as those of the third embodiment.
  • a main body made of a metal material, and a sintered body containing hollow particles and a metal binder, wherein the binder is oxidized at least on the outer surface.
  • it is a structure provided, it functions as a heat insulating structure and can obtain the above-mentioned effect (heat insulating effect) as well as the piston.
  • the structure may be applied to each member (cylinder, valve, etc.) exposed to the high temperature gas facing the combustion chamber of the engine and the inner wall of the intake port or the exhaust port in order to suppress heat transfer. Providing the structure on each member facing the combustion chamber is advantageous for improving the thermal efficiency of the engine.
  • the structure is applied to the inner wall of the intake port, it is possible to suppress the intake air from being heated before being sucked into the cylinder, which is advantageous for suppressing abnormal combustion. If the structure is applied to the inner wall of the exhaust port, the exhaust gas can be discharged at a high temperature, which is advantageous for recovering exhaust energy.
  • the above structure can be applied to various uses as long as it has a wall surface that requires heat insulation, such as a wall surface that constitutes a turbine blade, an outer wall of a housing that houses an internal combustion engine, a house, a boiler, or the like.
  • the metal material of the main body may be aluminum, steel, titanium, nickel, copper, or an alloy thereof.
  • the piston is a main body portion that is formed of a metal material and includes a piston head and a skirt portion, and a holding portion is provided on the combustion chamber side of the internal combustion engine in the piston head.
  • the oxidized binder portion is an anodized film.
  • the oxidized binder portion includes a sealed portion in which pores of the anodized film are sealed.
  • the pores are sealed by boiling at the sealing portion.
  • the pores are sealed with silica at the sealing portion.
  • the oxidized binder portion is in a portion formed by machining in the main body portion.
  • the oxidized binder part is located at a part of the crown surface of the piston head.
  • the oxidized binder portion is disposed from the surface of the sintered body to a predetermined depth.
  • the sintered body is formed by sintering a mixed material containing the hollow particles and the metal powder.
  • the metal material of the main body portion contains an aluminum alloy, and the binder contains aluminum.
  • a method for manufacturing a piston of an internal combustion engine in one embodiment thereof, A main body comprising a piston head and a skirt, the main body of the piston head having a holding part formed on the combustion chamber side of the internal combustion engine, formed of a metal material; Providing a sintered body formed of a material containing hollow particles and a metal binder in the holding portion; And oxidizing the binder on at least the combustion chamber side surface of the sintered body.
  • the step of oxidizing the binder includes a step of oxidizing the binder by anodization.
  • the step of oxidizing the binder includes a step of oxidizing the binder from the surface of the sintered body to a predetermined depth by the anodizing treatment.
  • the binder contains the metal powder
  • the step of providing the sintered body includes a step of sintering the mixed material containing the hollow particles and the binder.

Abstract

Provided is a piston for an internal combustion engine enabling an improvement in the controllability of thermal conductivity. The piston for the internal combustion engine is provided with: a body section which is formed from a metal material and provided with a piston head and a skirt part, wherein a holding part is formed in the piston head on the side toward the combustion chamber of the internal combustion engine; and a sintered body which is disposed in the holding part and contains hollow particles and a metal binder, the sintered body being provided with an oxidized binder part where the binder on at least the surface toward the combustion chamber is oxidized.

Description

内燃機関のピストン、内燃機関のピストンの製造方法、及び構造体Piston for internal combustion engine, method for manufacturing piston for internal combustion engine, and structure
 本発明は、内燃機関のピストンその他の構造体に関する。 The present invention relates to a piston and other structures of an internal combustion engine.
 従来、断熱用の構造体としての内燃機関のピストンが知られている(例えば特許文献1)。 Conventionally, a piston of an internal combustion engine as a structure for heat insulation is known (for example, Patent Document 1).
特開2012-072745号公報JP 2012-072745 A
 従来の構造体では、熱伝導率の制御性を向上する余地があった。 The conventional structure has room for improving the controllability of thermal conductivity.
 本発明の一実施形態に係る構造体は、金属材料から形成された本体部と、本体部に形成された保持部と、保持部内に配置され、中空粒子と金属のバインダーとを含有する焼結体であって、少なくとも外側の表面においてバインダーが酸化している焼結体と、を備える。 A structure according to an embodiment of the present invention includes a main body formed of a metal material, a holding portion formed in the main body, and a sintered body that is disposed in the holding portion and contains hollow particles and a metal binder. A sintered body in which the binder is oxidized at least on the outer surface.
 よって、熱伝導率の制御性を向上できる。 Therefore, controllability of thermal conductivity can be improved.
第1実施形態の1つのシリンダの軸線を通る平面でエンジンの一部を切った断面を模式的に示す。1 schematically shows a cross section of a part of an engine taken along a plane passing through the axis of one cylinder of the first embodiment. 第1実施形態のピストンの模式的な斜視図である。1 is a schematic perspective view of a piston according to a first embodiment. 第1実施形態の焼結体およびピストンヘッド(以下、焼結体等)の一部をピストンの軸線に平行な平面で切った断面(以下、軸方向断面)を模式的に示す。1 schematically shows a cross section (hereinafter referred to as an axial cross section) obtained by cutting a part of a sintered body and a piston head (hereinafter referred to as a sintered body, etc.) according to a first embodiment along a plane parallel to the axis of the piston. 第1実施形態の材料設置工程における焼結体等の一部の軸方向断面を模式的に示す。1 schematically shows a partial axial cross section of a sintered body or the like in a material installation step of a first embodiment. 第1実施形態の焼結工程を模式的に示す。1 schematically shows a sintering process of a first embodiment. 焼結体に中空粒子を含まない第1比較形態の焼結体等の一部の軸方向断面を模式的に示す。FIG. 2 schematically shows a partial axial cross section of a sintered body of a first comparative embodiment in which the sintered body does not contain hollow particles. 焼結体に中空粒子を含まない第2比較形態の焼結体等の一部の軸方向断面を模式的に示す。FIG. 3 schematically shows a partial axial cross section of a sintered body of a second comparative embodiment in which the sintered body does not contain hollow particles. 焼結体に中空粒子を含まない第3比較形態の焼結体等の一部の軸方向断面を模式的に示す。FIG. 6 schematically shows a partial axial cross section of a sintered body of a third comparative embodiment in which the sintered body does not contain hollow particles. 第2実施形態の焼結工程を模式的に示す。The sintering process of 2nd Embodiment is typically shown. 第4実施形態の焼結体等の一部の軸方向断面を模式的に示す。A partial axial section of a sintered body or the like of the fourth embodiment is schematically shown.
 以下、本発明を実施するための形態を、図面に基づき説明する。 Hereinafter, modes for carrying out the present invention will be described with reference to the drawings.
 [第1実施形態]
  まず、構成を説明する。本実施形態の内燃機関(エンジン)100は、4ストローク・ガソリンエンジンである。図1に示すように、エンジン100は、ピストン1と、シリンダブロック101と、シリンダヘッド104と、コネクティングロッド(コンロッド)106と、クランクシャフトと、バルブ107と、点火装置108とを備える。バルブ107は2つの吸気バルブと2つの排気バルブを有する。シリンダブロック101は、円筒状のシリンダライナ(シリンダスリーブ)102を備える。シリンダライナ102の内周側はシリンダ10の内壁として機能する。シリンダヘッド104は、シリンダ10の開口を塞ぐようにシリンダブロック101に設置される。シリンダヘッド104には、バルブ107と、燃料噴射弁のノズルと、点火装置108とが設置される。シリンダブロック101にはクランクシャフトが回転可能に設置される。ピストン1は、シリンダ10の内部に、往復移動可能に収容される。燃焼室11は、シリンダ10の内壁面と、ピストンの頂面と、シリンダヘッドの底面と、バルブの頂面とにより画成される。なお、エンジン100の形式は任意である。例えば、エンジン100は2ストロークエンジンでもよいしディーゼルエンジンでもよい。燃料の供給方式は、シリンダ10(燃焼室11)内に直接噴射する筒内直噴式でもよいし、吸気ポートに噴射するポート噴射式でもよい。
[First embodiment]
First, the configuration will be described. The internal combustion engine (engine) 100 of this embodiment is a 4-stroke gasoline engine. As shown in FIG. 1, the engine 100 includes a piston 1, a cylinder block 101, a cylinder head 104, a connecting rod (connecting rod) 106, a crankshaft, a valve 107, and an ignition device 108. The valve 107 has two intake valves and two exhaust valves. The cylinder block 101 includes a cylindrical cylinder liner (cylinder sleeve) 102. The inner peripheral side of the cylinder liner 102 functions as the inner wall of the cylinder 10. The cylinder head 104 is installed in the cylinder block 101 so as to close the opening of the cylinder 10. In the cylinder head 104, a valve 107, a nozzle of a fuel injection valve, and an ignition device 108 are installed. A crankshaft is rotatably installed on the cylinder block 101. The piston 1 is accommodated in the cylinder 10 so as to be reciprocally movable. The combustion chamber 11 is defined by the inner wall surface of the cylinder 10, the top surface of the piston, the bottom surface of the cylinder head, and the top surface of the valve. The format of engine 100 is arbitrary. For example, the engine 100 may be a two-stroke engine or a diesel engine. The fuel supply method may be an in-cylinder direct injection type that directly injects into the cylinder 10 (combustion chamber 11), or a port injection type that injects into the intake port.
 図2に示すように、ピストン1は、本体部2と焼結体3を有する。本体部2は、軽量化等のため、アルミニウム合金(例えばAl-Si系のAC8A)を材料(素材)として形成される。ピストン1(本体部2)は、有底筒状であり、ピストンヘッド(冠部)4と、ピストンボス(エプロン部)5と、ピストンスカート(スカート部)6とを有する。ピストン1の軸線が延びる方向(シリンダ10内における本体部2の移動方向に沿う方向)を軸線方向という。軸線方向でピストンボス5やピストンスカート6に対しピストンヘッド4の側を一方側といい、その反対側を他方側という。 As shown in FIG. 2, the piston 1 has a main body 2 and a sintered body 3. The main body 2 is formed of an aluminum alloy (for example, Al-Si AC8A) as a material (raw material) for weight reduction or the like. The piston 1 (main body portion 2) has a bottomed cylindrical shape, and includes a piston head (crown portion) 4, a piston boss (apron portion) 5, and a piston skirt (skirt portion) 6. The direction in which the axis of the piston 1 extends (the direction along the moving direction of the main body 2 in the cylinder 10) is referred to as the axial direction. The side of the piston head 4 with respect to the piston boss 5 and piston skirt 6 in the axial direction is called one side, and the opposite side is called the other side.
 ピストンヘッド4は、冠面部40とランド部41を有する。冠面部40は、ピストンヘッド4の軸線方向一方側にあり、冠面(頂面)400を有する。冠面400は、ピストン1の軸線に直交して広がる平面状であり、軸線方向一方側からみて略円形の輪郭を有する。図1に示すように(ピストン1が上死点にあるとき)、冠面400とシリンダヘッド104との間に、燃焼室11が区画される。燃焼室11はペントルーフ型である。冠面400は燃焼室11内の燃焼ガスに直接暴露される。本体部2は、ピストンヘッド4(冠面部40)の燃焼室11側(燃焼室11に臨む側)に凹部401を備える。凹部401は、冠面部40において冠面400の略中央にあり、有底円筒状(底面が平面である浅皿状)である。凹部401の軸線はピストン1の軸線と実質的に(製造誤差の範囲内で)一致する。ランド部41は冠面部40の外周側から軸線方向他方側に延びる。ランド部41の外周には、環状の溝(リング溝)410が3つある。リング溝410にはピストンリング7が設置される。ランド部41の内部には、環状の通路411がある。通路411は、ピストン1の周方向に延び、軸線方向から見て凹部401を取り囲む。通路411は、軸線方向で、リング溝410が形成された領域の少なくとも一部と重なる。 The piston head 4 has a crown surface portion 40 and a land portion 41. The crown surface portion 40 is on one side in the axial direction of the piston head 4 and has a crown surface (top surface) 400. The crown surface 400 has a planar shape that extends perpendicular to the axis of the piston 1 and has a substantially circular outline when viewed from one side in the axial direction. As shown in FIG. 1 (when the piston 1 is at top dead center), the combustion chamber 11 is defined between the crown surface 400 and the cylinder head 104. The combustion chamber 11 is a pent roof type. The crown surface 400 is directly exposed to the combustion gas in the combustion chamber 11. The main body 2 includes a recess 401 on the combustion chamber 11 side (side facing the combustion chamber 11) of the piston head 4 (crown surface portion 40). The concave portion 401 is substantially at the center of the crown surface 400 in the crown surface portion 40 and has a bottomed cylindrical shape (a shallow dish shape whose bottom surface is a flat surface). The axis of the recess 401 substantially coincides with the axis of the piston 1 (within manufacturing error). The land portion 41 extends from the outer peripheral side of the crown surface portion 40 to the other side in the axial direction. There are three annular grooves (ring grooves) 410 on the outer periphery of the land portion 41. A piston ring 7 is installed in the ring groove 410. Inside the land portion 41 is an annular passage 411. The passage 411 extends in the circumferential direction of the piston 1 and surrounds the recess 401 when viewed from the axial direction. The passage 411 overlaps at least a part of the region where the ring groove 410 is formed in the axial direction.
 ピストンボス5及びピストンスカート6は、ピストンヘッド4(ランド部41)から軸線方向他方側に延び、ピストンヘッド4に対し燃焼室11の反対側にある。ピストンスカート6及びピストンボス5の内周側は中空である。ピストンボス5は、ピストン1の径方向両側に一対ある。各ピストンボス5はピンボス50を有する。各ピンボス50はピストンピン穴51を有する。ピストンピン穴51は、ピンボス50を貫通してピストン1の径方向に延びる。ピストンスカート6は、ピストン1の径方向両側に一対ある。ピストンスカート6は、ピストン1の周方向で両ピストンボス5,5に挟まれる。両ピストンスカート6,6はピストンボス5によって連結される。ピストンスカート6はシリンダ10の内壁に対し摺動する。ピストンピン穴51にはピストンピンの端部が嵌合する。ピストン1は、ピストンピンを介してコンロッド106の一端側(小端部)に連結される。コンロッド106の他端側(大端部)はクランクシャフトに連結される。 The piston boss 5 and the piston skirt 6 extend from the piston head 4 (land portion 41) to the other side in the axial direction, and are on the opposite side of the combustion chamber 11 with respect to the piston head 4. The inner peripheral sides of the piston skirt 6 and the piston boss 5 are hollow. There are a pair of piston bosses 5 on both radial sides of the piston 1. Each piston boss 5 has a pin boss 50. Each pin boss 50 has a piston pin hole 51. The piston pin hole 51 extends through the pin boss 50 in the radial direction of the piston 1. There are a pair of piston skirts 6 on both radial sides of the piston 1. The piston skirt 6 is sandwiched between the piston bosses 5 and 5 in the circumferential direction of the piston 1. Both piston skirts 6 and 6 are connected by a piston boss 5. The piston skirt 6 slides against the inner wall of the cylinder 10. The piston pin end 51 is fitted into the piston pin hole 51. The piston 1 is connected to one end side (small end portion) of the connecting rod 106 via a piston pin. The other end side (large end portion) of the connecting rod 106 is connected to the crankshaft.
 シリンダライナ102の内部の通路103には冷却水が循環する。シリンダブロック101にはオイルジェット105が設置される。燃焼室11からピストンヘッド4に伝わった熱は、ピストンリング7を介してシリンダライナ102及びその内部の冷却水に伝わることで放出される。また、上記熱は、ピストン1の内周側(裏側)にオイルが付着し流出したり、通路411内をオイルが流通したりすることでも、放出される。このオイルの付着や流通は、例えばオイルジェット105からのオイルの噴射により行われる。通路411は冷却通路(クーリングチャネル)として機能する。 ¡Cooling water circulates in the passage 103 inside the cylinder liner 102. An oil jet 105 is installed in the cylinder block 101. The heat transferred from the combustion chamber 11 to the piston head 4 is released by being transferred to the cylinder liner 102 and the cooling water therein through the piston ring 7. The heat is also released when oil adheres to and flows out from the inner peripheral side (back side) of the piston 1 or when oil flows through the passage 411. This adhesion and distribution of oil is performed, for example, by oil injection from the oil jet 105. The passage 411 functions as a cooling passage (cooling channel).
 焼結体3は、燃焼室11から本体部2への熱伝導性を低めるための構造体であり、ピストンヘッド4における軸線方向一方側(燃焼室11の側)にあって、燃焼室11に臨む表面(冠面400)の一部に形成される。焼結体3は凹部401に収容される。図1及び図2に示すように、焼結体3は、冠面400(及び凹部401の底面)に沿って広がる平面状である。焼結体3の厚さ(凹部401の深さ)は任意である。焼結体3の内部には空隙(中空部)33があり、複数の空隙33が分散している。空隙33には気体(空気)が存在する。 The sintered body 3 is a structure for reducing the thermal conductivity from the combustion chamber 11 to the main body 2 and is located on one side in the axial direction of the piston head 4 (on the combustion chamber 11 side). It is formed on a part of the facing surface (crown surface 400). The sintered body 3 is accommodated in the recess 401. As shown in FIGS. 1 and 2, the sintered body 3 has a planar shape extending along the crown surface 400 (and the bottom surface of the recess 401). The thickness of the sintered body 3 (depth of the recess 401) is arbitrary. There are voids (hollow portions) 33 inside the sintered body 3, and a plurality of voids 33 are dispersed. Gas (air) exists in the gap 33.
 焼結体3は、金属のバインダー31及び中空粒子32を含む。バインダー31はアルミニウムを含む。アルミニウムは、純アルミニウムであってもよいし、アルミニウム合金であってもよいし、純アルミニウムとアルミニウム合金の両方を含んでもよい。また、バインダー31は、アルミニウムの他に添加物を含んでもよい。図3に示すように、中空粒子32は、金属又はセラミックスから形成された球状の外殻320を有しており、その最大外形寸法は例えば数十μmである。外殻320の内部に空隙33がある。外殻320の材料となる金属として、例えばチタン、チタン合金、ステンレス鋼等を用いることができる。外殻320の材料となるセラミックスとして、例えばアルミナ、シリカ、アルミナとシリカの複合材等を用いることができる。中空粒子32は空隙33と共に焼結体3の内部に複数分散している。なお、1種類の平均粒径の中空粒子32を用いてもよいし、2以上の平均粒径の異なる中空粒子32を用いてもよい。 The sintered body 3 includes a metal binder 31 and hollow particles 32. The binder 31 includes aluminum. Aluminum may be pure aluminum, an aluminum alloy, or may include both pure aluminum and an aluminum alloy. The binder 31 may contain an additive in addition to aluminum. As shown in FIG. 3, the hollow particle 32 has a spherical outer shell 320 made of metal or ceramics, and its maximum outer dimension is, for example, several tens of μm. There is a gap 33 inside the outer shell 320. As a metal used as the material of the outer shell 320, for example, titanium, a titanium alloy, stainless steel, or the like can be used. As the ceramic used as the material of the outer shell 320, for example, alumina, silica, a composite material of alumina and silica, or the like can be used. A plurality of hollow particles 32 are dispersed inside the sintered body 3 together with the gaps 33. One type of hollow particles 32 having an average particle diameter may be used, or two or more hollow particles 32 having different average particle diameters may be used.
 ピストン1の製造方法は、鋳造工程、焼結体形成工程、熱処理工程、機械加工工程、及び酸化処理工程を含む。鋳造工程で、本体部2の原型(中間加工材)を鋳造する。具体的には、母材金属としてのアルミニウム合金の溶湯を金型に流し込み、凝固させる。このとき、本体部2の内周が形成され、凹部401及び通路411が形成される。なお、凹部401を機械加工により形成又は仕上げてもよい。焼結体形成工程で、本体部2の上記原型(における燃焼室11側)に焼結体3を形成する。詳細は後述する。熱処理工程で、熱処理を行う。これにより、焼結体3が形成された上記原型の性質を改善して適当な強度・硬さに調整する。なお、熱処理工程を焼結工程の前に行ってもよい。機械加工工程で、熱処理された上記原型を旋盤等により機械加工する。ピストンヘッド4のうち燃焼室11に臨む側を切削加工し、冠面400を形成する。ピストンヘッド4における燃焼室11側の表面の全部は、機械加工される。また、例えば、ピストンピン穴51やリング溝410を加工するとともに、ピストンヘッド4やピストンスカート6の外周等、本体部2の外径を仕上げる。なお、機械加工工程の後に焼結体形成工程を行ってもよい。 The manufacturing method of the piston 1 includes a casting process, a sintered body forming process, a heat treatment process, a machining process, and an oxidation treatment process. In the casting process, the prototype (intermediate workpiece) of the main body 2 is cast. Specifically, a molten aluminum alloy as a base metal is poured into a mold and solidified. At this time, the inner periphery of the main body 2 is formed, and the recess 401 and the passage 411 are formed. The concave portion 401 may be formed or finished by machining. In the sintered body forming step, the sintered body 3 is formed on the prototype of the main body 2 (on the combustion chamber 11 side). Details will be described later. In the heat treatment step, heat treatment is performed. As a result, the properties of the prototype on which the sintered body 3 is formed are improved and adjusted to appropriate strength and hardness. Note that the heat treatment step may be performed before the sintering step. In the machining process, the heat-treated prototype is machined by a lathe or the like. The side of the piston head 4 facing the combustion chamber 11 is cut to form the crown surface 400. The entire surface of the piston head 4 on the combustion chamber 11 side is machined. Further, for example, the piston pin hole 51 and the ring groove 410 are processed, and the outer diameter of the main body 2 such as the outer periphery of the piston head 4 and the piston skirt 6 is finished. In addition, you may perform a sintered compact formation process after a machining process.
 酸化処理工程で、機械加工された焼結体3の表面に陽極酸化処理を施す。陽極酸化処理の具体的な工程は、周知のものを適宜採用すればよい。バインダー31が陽極酸化される領域に、陽極酸化皮膜30が形成される。陽極酸化皮膜30を有する焼結体3が冠面400に形成される。本実施形態では、焼結体3の全部(ピストンの径方向及び軸線方向における全範囲)に陽極酸化皮膜30を形成する。なお、焼結体3の一部分(ピストンの径方向又は軸線方向における一部の範囲)に陽極酸化皮膜30を形成してもよい。図3に示すように、陽極酸化皮膜30は、微細な空孔(細孔)310を多数有するポーラス(多孔質)状の層になりうる。細孔300は、陽極酸化皮膜30の底部側(母材側)と表面との間で、冠面に直交する方向に延びる。 In the oxidation process, the surface of the machined sintered body 3 is anodized. As a specific step of the anodizing treatment, a well-known one may be adopted as appropriate. An anodized film 30 is formed in a region where the binder 31 is anodized. A sintered body 3 having the anodized film 30 is formed on the crown surface 400. In the present embodiment, the anodized film 30 is formed on the entire sintered body 3 (entire range in the radial direction and axial direction of the piston). The anodic oxide film 30 may be formed on a part of the sintered body 3 (a part of the range in the radial direction or the axial direction of the piston). As shown in FIG. 3, the anodized film 30 can be a porous layer having a large number of fine pores (pores) 310. The pore 300 extends in a direction perpendicular to the crown surface between the bottom side (base material side) and the surface of the anodized film 30.
 焼結体形成工程は、材料準備工程と、材料設置工程と、焼結工程とを含む。材料準備工程で、焼結体3を形成するための材料(以下、形成材料という。)を準備する。形成材料は、バインダー31の金属粉末と中空粒子32とを含む。バインダー31の金属粉末はアルミニウム粉である。中空粒子32の製造方法は種々ある。例えば、数十μm程度の平均粒径であり樹脂(ポリマー)から形成される母粒子を用意する。この母粒子の外周面に、より小さい(例えばサブミクロン以下の)平均粒径である金属又はセラミックスの子粒子をコーティングする。コーティングは、母粒子の外周面に子粒子を高速で噴射して打ち込んだり、母粒子と子粒子を入れた回転チャンバーを高速回転させたりすることで可能である。その後、上記コーティングされた複合粒子を加熱し、母粒子を溶かし出したり熱分解(ガス化)したりする。これにより、子粒子からなる外殻320を有する中空粒子32が形成される。母粒子の粒径を調整することで、中空粒子32の粒径を所望に制御できる。アルミニウム粉と中空粒子32とを所定の(重量又は体積)比率で混ぜ合わせた形成材料(混合材料)を準備する。攪拌により、混合材料において中空粒子32はアルミニウム粉の中に分散している。 The sintered body forming process includes a material preparation process, a material installation process, and a sintering process. In the material preparation step, a material for forming the sintered body 3 (hereinafter referred to as a forming material) is prepared. The forming material includes metal powder of the binder 31 and hollow particles 32. The metal powder of the binder 31 is aluminum powder. There are various methods for producing the hollow particles 32. For example, mother particles having an average particle diameter of about several tens of μm and formed from a resin (polymer) are prepared. A metal or ceramic child particle having a smaller average particle diameter (for example, submicron or less) is coated on the outer peripheral surface of the mother particle. Coating can be performed by ejecting and driving the child particles on the outer peripheral surface of the mother particles at a high speed, or by rotating a rotating chamber containing the mother particles and the child particles at a high speed. Thereafter, the coated composite particles are heated to dissolve the mother particles or to thermally decompose (gasify) them. As a result, hollow particles 32 having an outer shell 320 made of child particles are formed. By adjusting the particle size of the mother particles, the particle size of the hollow particles 32 can be controlled as desired. A forming material (mixed material) prepared by mixing aluminum powder and hollow particles 32 in a predetermined (weight or volume) ratio is prepared. By stirring, the hollow particles 32 are dispersed in the aluminum powder in the mixed material.
 材料設置工程で、混合された形成材料を、図4に示すように、上記原型の凹部401に充填する。具体的には、凹部401の上端部まで形成材料を入れる。なお、凹部401のどの位置まで形成材料を入れるかは任意である。また、凹部401にアルミニウム粉と中空粒子32とを別々に入れた後、凹部401内でこれらを混ぜ合わせてもよい。焼結工程で、充填された形成材料(具体的にはそのうちのアルミニウム粉)を焼結する。本実施形態では、放電プラズマ焼結法を利用し、機械的な加圧とパルス通電加熱とによって焼結を行う。図5に示すように、上記原型の軸線方向両側に炭素電極81,82を接触させる。形成材料を加圧した状態で(軸線方向の圧力を矢印で示す)、電源80からパルス電圧(電流)を印加する。通電による各アルミニウム粉の発熱や粒子間に発生する放電プラズマエネルギー等により、形成材料が焼結される。当初よりも体積が減少した焼結体3が凹部401の内部に形成される。焼結体3は、冠面400に直交する方向に広がる焼結層である。これにより、焼結体3を収容する凹部401を備えたピストンヘッド4の原型が形成される。その後に行われる機械加工工程では、ピストンヘッド4の一部とともに焼結体3の一部を切削加工し、焼結体3を表面に含む冠面400を平面状に仕上げる。 In the material setting step, the mixed forming material is filled into the original concave portion 401 as shown in FIG. Specifically, the forming material is put up to the upper end of the recess 401. Note that the position of the forming material into the concave portion 401 is arbitrary. Alternatively, the aluminum powder and the hollow particles 32 may be separately put in the recess 401 and then mixed in the recess 401. In the sintering process, the filled forming material (specifically, aluminum powder) is sintered. In this embodiment, the discharge plasma sintering method is used, and sintering is performed by mechanical pressurization and pulse current heating. As shown in FIG. 5, carbon electrodes 81 and 82 are brought into contact with both sides of the original in the axial direction. A pulse voltage (current) is applied from the power supply 80 in a state where the forming material is pressurized (pressure in the axial direction is indicated by an arrow). The forming material is sintered by heat generation of each aluminum powder by energization, discharge plasma energy generated between the particles, and the like. A sintered body 3 having a volume reduced from the beginning is formed inside the recess 401. The sintered body 3 is a sintered layer that spreads in a direction perpendicular to the crown surface 400. As a result, a prototype of the piston head 4 having the recess 401 for accommodating the sintered body 3 is formed. In the machining process performed thereafter, a part of the sintered body 3 is cut together with a part of the piston head 4, and the crown surface 400 including the sintered body 3 on the surface is finished into a flat surface.
 次に、作用効果を説明する。鋳造工程で、ピストンヘッド4及びスカート部6を有する本体部2を金属材料(アルミニウム合金)で形成する。よって、ピストン1は本体部2を備える。本体部2は、金属材料からなり、ピストンヘッド4及びスカート部6を有する。焼結体形成工程で、金属のバインダー31を含む材料(形成材料)の焼結体3を、ピストンヘッド4における燃焼室11の側に設ける。よって、ピストン1は焼結体3を備える。焼結体3は、ピストンヘッド4における燃焼室11の側にあり、金属のバインダー31を含む。焼結体3は燃焼室11に面し、燃焼室11の内壁の一部を構成する。焼結体3は、鋳造による本体部2よりも、微少な空隙(空孔)を多く含む。空隙は固体よりも熱伝導率が低い。よって、焼結体3は全体として熱伝導率が本体部2よりも低くなりうる。焼結体3は、燃焼室11と本体部2との間にあって、低熱伝導層(断熱層)として機能する。焼結体3は、燃焼室11の内部のガスからピストンヘッド4(本体部2)への熱伝達を低下させ、燃焼室11に供給された燃料(混合気)の熱が本体部2に奪われるのを抑制する。よって、燃焼効率の低下を抑制し、エンジン100の熱効率の向上を図ることができる。また、焼結体3により本体部2への熱吸収が抑制されることから、冠面400において燃料が付着する箇所が速やかに高温になるとともに、高温状態を維持する。よって、付着した燃料が速やかに気化・燃焼するため、排ガス特性の悪化を抑制できる。なお、本体部2の素材はアルミニウム合金に限らず、例えば鉄を含んでもよい。バインダー31の金属はアルミニウムに限らず、チタン合金やマグネシウム等でもよいが、熱伝導率が本体部2の素材(母材金属)と同等又はそれより低い金属(低熱伝導性材料)であることが好ましい。また、耐熱性や耐久性が高い金属であることが好ましい。 Next, the function and effect will be described. In the casting process, the main body 2 having the piston head 4 and the skirt 6 is formed of a metal material (aluminum alloy). Therefore, the piston 1 includes the main body 2. The main body 2 is made of a metal material and has a piston head 4 and a skirt 6. In the sintered body forming step, a sintered body 3 made of a material (forming material) containing a metal binder 31 is provided on the combustion chamber 11 side of the piston head 4. Therefore, the piston 1 includes the sintered body 3. The sintered body 3 is on the combustion chamber 11 side of the piston head 4 and includes a metal binder 31. The sintered body 3 faces the combustion chamber 11 and constitutes a part of the inner wall of the combustion chamber 11. The sintered body 3 includes more minute voids (holes) than the main body portion 2 formed by casting. The void has a lower thermal conductivity than the solid. Therefore, the sintered body 3 as a whole can have a lower thermal conductivity than the main body 2. The sintered body 3 is located between the combustion chamber 11 and the main body 2 and functions as a low heat conductive layer (heat insulating layer). The sintered body 3 reduces the heat transfer from the gas inside the combustion chamber 11 to the piston head 4 (main body portion 2), and the heat of the fuel (air mixture) supplied to the combustion chamber 11 is taken to the main body portion 2. Suppress it. Therefore, a reduction in combustion efficiency can be suppressed and the thermal efficiency of engine 100 can be improved. In addition, since the heat absorption to the main body 2 is suppressed by the sintered body 3, the location where the fuel adheres on the crown surface 400 quickly becomes high temperature and maintains a high temperature state. Therefore, the adhering fuel is quickly vaporized and burned, so that deterioration of exhaust gas characteristics can be suppressed. Note that the material of the main body 2 is not limited to an aluminum alloy, and may include, for example, iron. The metal of the binder 31 is not limited to aluminum, but may be a titanium alloy, magnesium, or the like, but a metal (low thermal conductivity material) whose thermal conductivity is equal to or lower than the material (base metal) of the main body 2. preferable. Moreover, it is preferable that it is a metal with high heat resistance and durability.
 酸化処理工程で、焼結体3の少なくとも燃焼室11の側の表面(冠面400)においてバインダー31を酸化させる。よって、焼結体3の少なくとも燃焼室11の側の表面において、バインダー31が酸化している。バインダー31が酸化している部分(酸化バインダー部)は、金属の酸化により、熱伝導率が低下する。酸化バインダー部は焼結体3の断熱効果を向上させる。焼結体3の少なくとも燃焼室11の側の表面(酸化バインダー部)において、熱伝導率を低下させることができる。なお、バインダー31の酸化方法は、陽極酸化処理に限らない。本実施形態では、酸化処理工程で、陽極酸化処理によりバインダー31を酸化させる。よって、バインダー31は陽極酸化処理されており、酸化バインダー部は陽極酸化皮膜30である。単なる酸化処理と異なり、陽極酸化処理による皮膜(陽極酸化皮膜30)は、細孔300を多数有するポーラス状になりうる。細孔300により、陽極酸化処理前に比べ、焼結体3の熱伝導率が低くなる。陽極酸化処理により細孔300が多数形成されることで、単なる酸化処理による場合よりも、酸化バインダー部の断熱性が向上する。 In the oxidation treatment step, the binder 31 is oxidized at least on the surface (crown surface 400) of the sintered body 3 on the combustion chamber 11 side. Therefore, the binder 31 is oxidized at least on the surface of the sintered body 3 on the combustion chamber 11 side. The portion where the binder 31 is oxidized (oxidized binder portion) has a lower thermal conductivity due to metal oxidation. The oxidized binder portion improves the heat insulating effect of the sintered body 3. The thermal conductivity can be lowered at least on the surface of the sintered body 3 on the combustion chamber 11 side (oxidized binder portion). Note that the oxidation method of the binder 31 is not limited to the anodizing treatment. In the present embodiment, the binder 31 is oxidized by anodizing treatment in the oxidation treatment step. Therefore, the binder 31 is anodized, and the oxidized binder portion is the anodized film 30. Unlike mere oxidation treatment, the anodized film (anodized film 30) can be porous with many pores 300. Due to the pores 300, the thermal conductivity of the sintered body 3 is lower than before the anodizing treatment. By forming a large number of pores 300 by the anodic oxidation treatment, the heat insulating property of the oxidized binder portion is improved as compared with the case of simple oxidation treatment.
 酸化処理工程で、焼結体3における表面(冠面400)から所定の深さまでバインダー31を酸化させる。よって、酸化バインダー部は、焼結体3における表面から所定の深さまである。所定の深さは、陽極酸化皮膜30の細孔300が形成される程度の深さである。言換えると、焼結体3の表面から内部にかけて、陽極酸化皮膜30が成長し細孔300が形成される範囲が、酸化バインダー部として機能する。焼結体3の内部にまで伝達された熱に対しても、陽極酸化皮膜30の細孔300により、断熱効果を発揮できる。 In the oxidation treatment step, the binder 31 is oxidized from the surface (crown surface 400) of the sintered body 3 to a predetermined depth. Therefore, the oxidized binder portion is from the surface of the sintered body 3 to a predetermined depth. The predetermined depth is such a depth that the pores 300 of the anodized film 30 are formed. In other words, the range in which the anodic oxide film 30 grows and the pores 300 are formed from the surface to the inside of the sintered body 3 functions as an oxidation binder part. The heat insulation effect can be exerted by the pores 300 of the anodized film 30 against heat transferred to the inside of the sintered body 3.
 熱伝導率の低減及び強度確保という観点から、陽極酸化皮膜30において細孔300が全体として占める体積の割合(陽極酸化皮膜30の空隙率)を適当な値に設定することが考えられる。しかし、細孔300の成長は、陽極酸化処理の様々な条件による。このため、陽極酸化皮膜30において細孔300が占める体積の割合を正確に制御することが難しい。また、細孔300は微細(例えば数十nm)であり、その径は小さい。よって、細孔300を増やすことによる、陽極酸化皮膜30における空隙率の増加の効果は小さい。 From the viewpoint of reducing thermal conductivity and ensuring strength, it is conceivable that the volume ratio of the pores 300 as a whole in the anodized film 30 (the porosity of the anodized film 30) is set to an appropriate value. However, the growth of the pores 300 depends on various conditions of the anodizing treatment. For this reason, it is difficult to accurately control the proportion of the volume occupied by the pores 300 in the anodized film 30. The pore 300 is fine (for example, several tens of nm) and has a small diameter. Therefore, the effect of increasing the porosity in the anodized film 30 by increasing the pores 300 is small.
 これに対し、本実施例では、焼結体形成工程で、中空粒子32を含む材料(形成材料)の焼結体3を、ピストンヘッド4における燃焼室11の側に設ける。よって、焼結体3は中空粒子32を含む。中空粒子32により、焼結体3における空隙率が増加する。焼結体3は、その内部に、各中空粒子32における比較的大きな空隙33が複数形成されたものとなる。これらの空隙33は熱伝導率が極めて低く、中空粒子32は断熱材として機能する。よって、焼結体3は、全体として(平均的に)、熱伝導率が本体部2よりも一層低くなる。なお、中空粒子32(外殻320)の材料として、本体部2又はバインダー31よりも熱伝導率が低い材料(低熱伝導性材料)を用いれば、焼結体3の熱伝導率をより一層低くできる。中空粒子32の形状は球状に限らず柱状等でもよい。本実施形態では中空粒子32(外殻320)は球状である。よって、焼結体3における中空粒子32の配置(方向性)を特に考慮しなくてもよいため、取扱いが簡便であり、焼結体3の製造を容易化できる。 On the other hand, in the present embodiment, the sintered body 3 of the material (forming material) including the hollow particles 32 is provided on the side of the combustion chamber 11 in the piston head 4 in the sintered body forming step. Therefore, the sintered body 3 includes the hollow particles 32. Due to the hollow particles 32, the porosity in the sintered body 3 increases. The sintered body 3 has a plurality of relatively large voids 33 in each hollow particle 32 formed therein. These voids 33 have extremely low thermal conductivity, and the hollow particles 32 function as a heat insulating material. Therefore, the sintered body 3 as a whole (on average) has a lower thermal conductivity than the main body 2. If a material having a lower thermal conductivity than the main body 2 or the binder 31 (low thermal conductivity material) is used as the material of the hollow particles 32 (outer shell 320), the thermal conductivity of the sintered body 3 is further reduced. it can. The shape of the hollow particles 32 is not limited to a spherical shape, and may be a columnar shape. In the present embodiment, the hollow particles 32 (outer shell 320) are spherical. Therefore, the arrangement (direction) of the hollow particles 32 in the sintered body 3 does not need to be particularly taken into consideration, so that the handling is simple and the production of the sintered body 3 can be facilitated.
 ここで、個々の中空粒子32において空隙33が占める体積の割合は、例えば、原料である母粒子の粒径を調整することにより所望に制御できる。よって、複数の中空粒子32を含む焼結体3の全体の空隙率は、中空粒子32の種類や数を調節することで正確に制御可能である。また、中空粒子32における空隙33の体積は比較的大きい。よって、焼結体3において、中空粒子32を増やすことによる上記空隙率の増加の効果は、陽極酸化皮膜30の細孔300を増やすことによる上記空隙率の増加の効果よりも大きい。例えば、中空粒子32を含む焼結体3の空隙率を、好ましくは30体積%以上かつ70体積%以下に、より好ましくは50体積%又はその近傍に、制御することが容易である。このような範囲に上記空隙率を制御すれば、焼結体3の熱伝導率の低減及び強度確保を、高いレベルで両立できる。 Here, the ratio of the volume occupied by the voids 33 in the individual hollow particles 32 can be controlled as desired by adjusting the particle size of the mother particles as the raw material, for example. Therefore, the overall porosity of the sintered body 3 including the plurality of hollow particles 32 can be accurately controlled by adjusting the type and number of the hollow particles 32. Further, the volume of the void 33 in the hollow particle 32 is relatively large. Therefore, in the sintered body 3, the effect of increasing the porosity by increasing the hollow particles 32 is greater than the effect of increasing the porosity by increasing the pores 300 of the anodized film 30. For example, it is easy to control the porosity of the sintered body 3 including the hollow particles 32 to be preferably 30% by volume or more and 70% by volume or less, more preferably 50% by volume or in the vicinity thereof. By controlling the porosity in such a range, it is possible to achieve both a reduction in the thermal conductivity and strength of the sintered body 3 at a high level.
 なお、焼結体3の空隙率を改善するための手段として、陽極酸化皮膜30における晶出物周囲の空隙を調整することも考えられる。すなわち、図6に示すように、本体部2の内部には、母材金属の凝固過程での晶出物20(本体部2の材料のうちシリコン等の成分が結晶化したもの)がある。陽極酸化処理により晶出物20が溶解し、陽極酸化皮膜30(焼結体3)の内部で晶出物20及びその近傍に空隙21が形成されうる。図7に示すように、母材金属中において晶出物20となる成分(例えばシリコン)を増量し、晶出物20の数を多くすることが考えられる。晶出物20及びその近傍における空隙21の数が多くなるため、陽極酸化皮膜30(焼結体3)の内部で空隙21を全体として足し合わせた体積が増える。しかし、晶出物20の数を多くすることにより陽極酸化皮膜30の空隙率を増大することには限界があり、焼結体3の熱伝導率の低減効果が十分に得られないおそれがある。また、図8に示すように、母材金属の凝固時間を長くし、晶出物20の粒径を大きくすることが考えられる。晶出物20及びその近傍における空隙21が大きくなるため、陽極酸化皮膜30の内部で空隙21を全体として足し合わせた体積が増える。しかし、晶出物20の粒径を大きくすることにより陽極酸化皮膜30の空隙率を増大することには限界があり、焼結体3の熱伝導率の低減効果が十分に得られないおそれがある。これに対し、本実施形態では、焼結体3における空隙率を、晶出物20の周囲の空隙21によってではなく、中空粒子32により増加させることで、上記限界なく、焼結体3の熱伝導率を低減可能である。また、焼結体3における空隙率の制御性が良好である。 Note that, as a means for improving the porosity of the sintered body 3, it is also conceivable to adjust the voids around the crystallized material in the anodized film 30. That is, as shown in FIG. 6, inside the main body 2 is a crystallized product 20 (a material such as silicon in the material of the main body 2 crystallized) in the solidification process of the base metal. The crystallized product 20 is dissolved by the anodizing treatment, and the crystallized product 20 and the vicinity 21 can be formed in the vicinity of the crystallized product 20 within the anodized film 30 (sintered body 3). As shown in FIG. 7, it is conceivable to increase the amount of the crystallized material 20 by increasing the amount of the crystallized material 20 (for example, silicon) in the base metal. Since the number of the voids 21 in the crystallized product 20 and the vicinity thereof increases, the volume of the voids 21 as a whole inside the anodized film 30 (sintered body 3) increases. However, there is a limit to increasing the porosity of the anodic oxide film 30 by increasing the number of crystallized substances 20, and there is a possibility that the effect of reducing the thermal conductivity of the sintered body 3 cannot be sufficiently obtained. . Further, as shown in FIG. 8, it is conceivable to increase the solidification time of the base metal and increase the grain size of the crystallized product 20. Since the crystallized substance 20 and the void 21 in the vicinity thereof become large, the volume of the void 21 as a whole inside the anodized film 30 increases. However, there is a limit to increasing the porosity of the anodic oxide film 30 by increasing the particle size of the crystallized product 20, and there is a possibility that the effect of reducing the thermal conductivity of the sintered body 3 cannot be sufficiently obtained. is there. On the other hand, in the present embodiment, the porosity of the sintered body 3 is increased not by the voids 21 around the crystallized product 20 but by the hollow particles 32, so that the heat of the sintered body 3 can be obtained without the above-mentioned limit. Conductivity can be reduced. Further, the controllability of the porosity in the sintered body 3 is good.
 焼結体3の内部において、中空粒子32及びその近傍は、中空粒子32の内部の空隙33に起因して強度が低くなる。このため、焼結体3の強度不足が問題となりうる。バインダー31により、空隙33を含む焼結体3の内部における結合の強度(硬さ)が向上し、その欠けや崩れが抑制される。また、焼結体3と本体部2との接合の強度が向上し、焼結体3をピストンヘッド4(凹部401)に保持する力が向上する。よって、焼結体3の機能をより長期にわたり維持できる。なお、形成材料に、中空粒子32とバインダー31の他に、添加物(焼結助剤等)を混ぜてもよい。バインダー31は金属である。よって、比較的大きな空隙33が形成されても、焼結体3の強度を向上し、その欠けや崩れをより容易に抑制できる。 In the sintered body 3, the strength of the hollow particles 32 and the vicinity thereof is lowered due to the voids 33 inside the hollow particles 32. For this reason, insufficient strength of the sintered body 3 can be a problem. The binder 31 improves the bonding strength (hardness) inside the sintered body 3 including the voids 33, and suppresses chipping and collapse thereof. In addition, the strength of joining the sintered body 3 and the main body 2 is improved, and the force for holding the sintered body 3 in the piston head 4 (concave portion 401) is improved. Therefore, the function of the sintered body 3 can be maintained for a longer period. In addition to the hollow particles 32 and the binder 31, additives (sintering aid and the like) may be mixed in the forming material. The binder 31 is a metal. Therefore, even if a relatively large gap 33 is formed, the strength of the sintered body 3 can be improved and the chipping and collapse can be more easily suppressed.
 焼結体形成工程で、中空粒子32とバインダー31とを含む混合材料(形成材料)を焼結する。バインダー31は金属の粉末を含む。よって、焼結体3は、中空粒子32と金属の粉末とを含む混合材料が焼結したものである。固化する前のバインダー31が金属粉末であるため、バインダー31の比重が焼結体3の中で偏ることを抑制できると共に、中空粒子32を焼結体3の内部に可及的に均一に分散させることができる。金属粉末と中空粒子32を撹拌した混合材料を焼結することにより、金属粉末と中空粒子32を可及的に均質に焼結体3の内部に分散することができる。よって、焼結体3の内部における各部位間で断熱性能の均質化を図ることができる。 In the sintered body forming step, the mixed material (forming material) containing the hollow particles 32 and the binder 31 is sintered. The binder 31 includes a metal powder. Therefore, the sintered body 3 is obtained by sintering a mixed material containing the hollow particles 32 and the metal powder. Since the binder 31 before solidification is a metal powder, the specific gravity of the binder 31 can be prevented from being biased in the sintered body 3, and the hollow particles 32 are dispersed as uniformly as possible inside the sintered body 3. Can be made. By sintering the mixed material in which the metal powder and the hollow particles 32 are stirred, the metal powder and the hollow particles 32 can be dispersed in the sintered body 3 as uniformly as possible. Therefore, the heat insulating performance can be homogenized between the respective parts in the sintered body 3.
 上記金属の粉末はアルミニウム粉である。アルミニウム粉は、焼結されることで、互いに又は本体部2と接着し、中空粒子32を焼結体3に保持等するバインダー31として機能する。バインダー31がアルミニウム粉であるため、アルミニウム合金で形成された本体部2と焼結体3との接合力を向上させることができる。なお、アルミニウム粉は、純アルミニウムの粉末であってもよいし、アルミニウム合金(例えば本体部2の母材金属と同じAC8A)の粉末であってもよい。アルミニウム粉は粒状アルミニウム粉であってもよい。 The metal powder is aluminum powder. The aluminum powder functions as a binder 31 that adheres to each other or the main body 2 and holds the hollow particles 32 in the sintered body 3 by being sintered. Since the binder 31 is made of aluminum powder, the bonding force between the main body 2 and the sintered body 3 formed of an aluminum alloy can be improved. The aluminum powder may be a pure aluminum powder or an aluminum alloy powder (for example, AC8A, which is the same as the base metal of the main body 2). The aluminum powder may be granular aluminum powder.
 陽極酸化処理は、上記のようにバインダー31の断熱性能を向上するだけでなく、バインダー31の強度を向上しうる。よって、中空粒子32の近傍におけるバインダー31の強度を向上し、焼結体3の欠損や本体部2からの脱落を抑制できる。また、陽極酸化皮膜30は、陽極酸化処理によって形成されたものであるから、母材との結合力が強い。鋳造工程で、ピストンヘッド4における燃焼室11の側に凹部401を有する本体部2を形成する。よって、ピストン1は凹部401を備える。凹部401は、ピストンヘッド4における燃焼室11の側にある。焼結体形成工程で、焼結体3を凹部401に設ける。よって、焼結体3は凹部401にあり、凹部401によりピストンヘッド4に保持される。凹部401は保持部として機能する。これにより、本体部2からの焼結体3の脱落を抑制できる。また、焼結工程で、放電プラズマ焼結法を利用して機械的な加圧とパルス通電加熱により焼結を行う場合でも、ピストンヘッド4に形成材料を保持しつつこれに圧力を加えて通電できるため、有利である。 The anodizing treatment not only improves the heat insulating performance of the binder 31 as described above, but also improves the strength of the binder 31. Therefore, the strength of the binder 31 in the vicinity of the hollow particles 32 can be improved, and the chipping of the sintered body 3 and the falling off from the main body 2 can be suppressed. Further, since the anodic oxide film 30 is formed by an anodic oxidation treatment, the bonding strength with the base material is strong. In the casting process, the main body 2 having the recess 401 on the combustion chamber 11 side in the piston head 4 is formed. Therefore, the piston 1 includes the recess 401. The recess 401 is on the combustion chamber 11 side in the piston head 4. In the sintered body forming step, the sintered body 3 is provided in the recess 401. Therefore, the sintered body 3 is in the recess 401 and is held by the piston head 4 by the recess 401. The concave portion 401 functions as a holding portion. As a result, it is possible to prevent the sintered body 3 from falling off the main body 2. In addition, even when sintering is performed by mechanical pressurization and pulse current heating using the discharge plasma sintering method in the sintering process, pressure is applied to the piston head 4 while holding the forming material. This is advantageous.
 焼結体形成工程では、材料設置工程で形成材料を凹部401に充填し、焼結工程で(充填された)形成材料を焼結する。焼結工程では、放電プラズマ焼結法を利用する。加熱等のために通電を用い、摩擦を用いないため、焼結時に中空粒子32が潰れてしまうおそれが少ない。なお、形成材料を加圧成型したプリフォームを用意し、これを凹部401に設置して焼結を行ってもよい。この場合、製造効率や品質の向上を図ることができる。また、焼結体3を本体部2とは別に円板状に形成し、ピストン1のアルミニウム合金等の母材金属に焼結体3を鋳込んでもよい。 In the sintered body forming process, the forming material is filled in the recess 401 in the material setting process, and the (filled) forming material is sintered in the sintering process. In the sintering process, a discharge plasma sintering method is used. Since energization is used for heating or the like and friction is not used, there is little possibility that the hollow particles 32 are crushed during sintering. Note that a preform obtained by pressure-molding the forming material may be prepared, and this may be placed in the recess 401 and sintered. In this case, it is possible to improve manufacturing efficiency and quality. Alternatively, the sintered body 3 may be formed in a disc shape separately from the main body 2 and the sintered body 3 may be cast into a base metal such as an aluminum alloy of the piston 1.
 焼結体形成工程後に機械加工工程を行う。ピストンヘッド4に焼結体3を形成した後に、ピストンヘッド4のうち燃焼室11に臨む側を切削加工して冠面400を形成する。すなわち、冠面400を切削加工により形成する前に、焼結体3を形成する。よって、焼結体形成工程において、冠面400の形状による制約が少ないため、焼結体3を形成する作業が容易となる。言い換えると、冠面400を複雑な形状とした場合でも、この冠面400に焼結体3を容易に形成できる。また、酸化バインダー部(陽極酸化皮膜30)の形成後に機械加工を施す場合、酸化バインダー部が機械加工により不要に切除されてしまうおそれがある。これに対し、機械加工工程後に酸化処理工程を行う。言換えると、酸化バインダー部は、本体部2における機械加工によって成形された部位にある。このように、機械加工後に酸化バインダー部を形成することにより、酸化バインダー部を不要に切除することなく充分に設けることができる。また、陽極酸化皮膜30は硬度が高く、機械加工が比較的困難である。陽極酸化処理より前に機械加工を行うことで、加工を容易化できる。 A machining process is performed after the sintered body forming process. After the sintered body 3 is formed on the piston head 4, the side facing the combustion chamber 11 of the piston head 4 is cut to form the crown surface 400. That is, the sintered body 3 is formed before the crown surface 400 is formed by cutting. Therefore, in the sintered body forming step, there are few restrictions due to the shape of the crown surface 400, and thus the work of forming the sintered body 3 is facilitated. In other words, even when the crown surface 400 has a complicated shape, the sintered body 3 can be easily formed on the crown surface 400. Further, when machining is performed after the formation of the oxidized binder portion (anodized film 30), the oxidized binder portion may be unnecessarily removed by machining. On the other hand, an oxidation treatment process is performed after the machining process. In other words, the oxidized binder portion is in a portion formed by machining in the main body portion 2. Thus, by forming the oxidized binder portion after machining, the oxidized binder portion can be sufficiently provided without unnecessary cutting. Further, the anodic oxide film 30 has a high hardness and is relatively difficult to machine. Machining can be facilitated by performing machining prior to the anodizing treatment.
 ピストンヘッド4の冠面400の全域に焼結体3(酸化バインダー部)を設ける場合、冠面400の温度が過度に上昇し、燃料の異常燃焼(ノッキング)が発生したり吸気効率が低下したりする原因となる。これに対し、焼結体3(酸化バインダー部)は冠面400の一部分にある。よって、冠面400の温度の過度な上昇を抑制し、断熱性の向上とノッキング等の抑制とを両立させることができる。具体的には、筒内直噴式のエンジン100では、焼結体3は、冠面400において、少なくとも燃料の噴射領域に対応した箇所(燃料が衝突・爆発し、温度や圧力が最も高くなる部位及びその周辺)に形成されることが好ましい。この箇所に焼結体3を形成することで、燃焼室11の内部のガスからピストンヘッド4(本体部2)への熱伝達をより効果的に低下させることができる。なお、燃料が直接噴射される箇所に相対的に多くの中空粒子32を配置し、断熱効果を高めてもよい。 When the sintered body 3 (oxidation binder part) is provided over the entire crown surface 400 of the piston head 4, the temperature of the crown surface 400 increases excessively, abnormal fuel combustion (knocking) occurs, and intake efficiency decreases. Cause it. On the other hand, the sintered body 3 (oxidized binder portion) is in a part of the crown surface 400. Therefore, it is possible to suppress an excessive increase in the temperature of the crown surface 400 and achieve both improvement in heat insulation and suppression of knocking and the like. Specifically, in the in-cylinder direct injection type engine 100, the sintered body 3 is located on the crown surface 400 at a location corresponding to at least a fuel injection region (a location where the temperature or pressure is highest when the fuel collides or explodes. And its periphery). By forming the sintered body 3 at this location, heat transfer from the gas inside the combustion chamber 11 to the piston head 4 (main body 2) can be more effectively reduced. Note that a relatively large number of hollow particles 32 may be arranged at locations where fuel is directly injected to enhance the heat insulation effect.
 [第2実施形態]
  本実施形態では、焼結工程で、図9に示すように、摩擦撹拌溶接(接合)の原理を利用し、回転する工具9を用いて焼結を行う。工具9は円柱状であって、その軸線方向端部90の直径D2は凹部401の直径D1以上であり、好ましくは直径D1よりも若干大きい。工具9の軸線と凹部401の軸線とを合わせる。工具9をその軸線の周りに回転駆動した状態で(軸線周りの回転を矢印Aで示す。)、工具9の端部90を形成材料に押し当てる(軸線方向の押し付け力を矢印Bで示す)。又は、端部90を形成材料に押し付けた状態で、工具9を回転させる。これにより形成材料が押圧されつつ混ぜられ、摩擦熱により加熱される。バインダー31の材料であるアルミニウム粉が塑性流動し、各粉の表面の酸化膜が破れ、当初よりも体積が減少した焼結体3が形成される。焼結が完了すると、工具9を凹部401の内部から引き上げる。他の構成は第1実施形態と同じである。
[Second Embodiment]
In the present embodiment, in the sintering process, as shown in FIG. 9, the principle of friction stir welding (joining) is used and sintering is performed using a rotating tool 9. The tool 9 has a cylindrical shape, and the diameter D2 of the axial end 90 thereof is not less than the diameter D1 of the recess 401, and is preferably slightly larger than the diameter D1. The axis of the tool 9 and the axis of the recess 401 are aligned. With the tool 9 rotated around its axis (rotation around the axis is indicated by arrow A), the end 90 of the tool 9 is pressed against the forming material (the axial pressing force is indicated by arrow B). . Alternatively, the tool 9 is rotated with the end 90 pressed against the forming material. Thereby, the forming material is mixed while being pressed and heated by frictional heat. The aluminum powder as the material of the binder 31 plastically flows, the oxide film on the surface of each powder is broken, and the sintered body 3 whose volume is reduced from the beginning is formed. When the sintering is completed, the tool 9 is pulled up from the inside of the recess 401. Other configurations are the same as those of the first embodiment.
 ピストンヘッド4には凹部401がある。よって、焼結工程で、工具9の回転により焼結を行う場合でも、ピストンヘッド4に形成材料を保持しつつこれに圧力を加えて撹拌できるため、有利である。端部90の直径D2は凹部401の直径D1以上である。よって、回転する端部90と凹部401との間の径方向隙間から形成材料が飛び出してしまうことを抑制できる。直径D2は直径D1よりも大きい。よって、回転する端部90で凹部401の外縁の一部を巻き込みながら焼結体3が形成されるため、焼結体3と凹部401との接合力を向上させることができる。他の作用効果は第1実施形態と同じである。 The piston head 4 has a recess 401. Therefore, even when sintering is performed by rotating the tool 9 in the sintering process, it is advantageous because the forming material is held on the piston head 4 and can be agitated by applying pressure thereto. The diameter D2 of the end 90 is not less than the diameter D1 of the recess 401. Therefore, the formation material can be prevented from jumping out from the radial gap between the rotating end 90 and the recess 401. Diameter D2 is larger than diameter D1. Therefore, since the sintered body 3 is formed while a part of the outer edge of the recess 401 is wound around the rotating end 90, the bonding force between the sintered body 3 and the recess 401 can be improved. Other functions and effects are the same as those of the first embodiment.
 [第3実施形態]
  本実施形態では、焼結体3の陽極酸化皮膜30(酸化バインダー部)における細孔300は、冠面400(燃焼室11)に開口する側の部位で封孔されている。具体的には、この部位で、上記開口が塞がれるか狭くなっている。又は、細孔300が化学的に不活性になっている。この部位を封孔部という。ピストン1の製造方法は、封孔処理工程を含む。封孔処理工程では、陽極酸化処理された焼結体3の表面処理として、形成された陽極酸化皮膜30を沸騰水中で煮沸することにより、細孔300を封孔する。なお、純水沸騰水以外に、化学薬品を添加した高温水溶液を用いてもよい。また、高温加圧水蒸気で陽極酸化皮膜30を処理してもよい。煮沸により陽極酸化皮膜30に水酸化物が成長し、細孔300を封孔する(封孔部が形成される)。各細孔300の封孔部は、全体としてみると、冠面400に直交する方向に広がる封孔層として機能する。他の構成は第1実施形態と同じである。
[Third embodiment]
In the present embodiment, the pores 300 in the anodized film 30 (oxidized binder portion) of the sintered body 3 are sealed at the site on the side opened to the crown surface 400 (combustion chamber 11). Specifically, the opening is blocked or narrowed at this portion. Or the pore 300 is chemically inactive. This part is called a sealing part. The method for manufacturing the piston 1 includes a sealing treatment process. In the sealing treatment step, as a surface treatment of the anodized sintered body 3, the pores 300 are sealed by boiling the formed anodized film 30 in boiling water. In addition to pure water boiling water, a high temperature aqueous solution to which a chemical is added may be used. Further, the anodized film 30 may be treated with high-temperature pressurized steam. By boiling, hydroxide grows on the anodic oxide film 30 and seals the pores 300 (a sealed part is formed). The sealing portion of each pore 300 functions as a sealing layer that spreads in a direction perpendicular to the crown surface 400 as a whole. Other configurations are the same as those of the first embodiment.
 このように、陽極酸化皮膜30は、細孔300が封孔された封孔部を有するため、細孔300に未燃ガスが侵入してエンジン100の排ガス特性を悪化させることを抑制できる。他の作用効果は第1実施形態と同じである。 As described above, since the anodic oxide film 30 has a sealed portion in which the pores 300 are sealed, it is possible to prevent the unburned gas from entering the pores 300 and deteriorating the exhaust gas characteristics of the engine 100. Other functions and effects are the same as those of the first embodiment.
 [第4実施形態]
  本実施形態では、図10に示すように、燃焼室11に臨む焼結体3の陽極酸化皮膜30(酸化バインダー部)の表面が膜34によって覆われている。膜34は、シリカを含むシリカ膜である。ピストン1の製造方法は、封孔処理工程を含む。封孔処理工程では、陽極酸化処理された焼結体3の表面処理として、膜34で陽極酸化皮膜30の表面を覆う。これにより、陽極酸化皮膜30における細孔300が封孔される。膜34は封孔層として機能する。細孔300は、封孔部でシリカによって封孔されている。他の構成は第1実施形態と同じである。
[Fourth embodiment]
In the present embodiment, as shown in FIG. 10, the surface of the anodized film 30 (oxidized binder portion) of the sintered body 3 facing the combustion chamber 11 is covered with a film 34. The film 34 is a silica film containing silica. The method for manufacturing the piston 1 includes a sealing treatment process. In the sealing treatment step, as the surface treatment of the anodized sintered body 3, the surface of the anodized film 30 is covered with a film. As a result, the pores 300 in the anodized film 30 are sealed. The membrane 34 functions as a sealing layer. The pore 300 is sealed with silica at the sealing portion. Other configurations are the same as those of the first embodiment.
 燃焼室11に臨む焼結体3(陽極酸化皮膜30)の表面には、複数ある空隙33の一部が開口しうる。膜34は陽極酸化皮膜30の表面を一律に覆う。このため、冠面400の平滑化を図ることができる。また、細孔300だけでなく空隙33の開口を膜34で塞ぐことが可能である。よって、空隙33に未燃ガスが侵入してエンジン100の排ガス特性を悪化させることを抑制できる。なお、膜34の材料はシリカ以外の副成分を含んでもよい。また、シリカ以外の材料を用いて膜を形成してもよい。本実施形態では、膜34はシリカを主成分とするシリカ膜である。シリカは耐熱性に優れるため、封孔層の耐久性を向上できる。他の作用効果は第3実施形態と同じである。 On the surface of the sintered body 3 (anodized film 30) facing the combustion chamber 11, a part of the plurality of voids 33 can be opened. The film 34 uniformly covers the surface of the anodized film 30. For this reason, the crown surface 400 can be smoothed. Further, not only the pore 300 but also the opening of the gap 33 can be closed with the film 34. Therefore, it is possible to prevent the unburned gas from entering the gap 33 and deteriorating the exhaust gas characteristics of the engine 100. The material of the film 34 may contain subcomponents other than silica. Further, the film may be formed using a material other than silica. In the present embodiment, the film 34 is a silica film containing silica as a main component. Since silica is excellent in heat resistance, the durability of the sealing layer can be improved. Other functions and effects are the same as those of the third embodiment.
 [他の実施形態]
  以上、本発明を実施するための形態を、図面に基づき説明したが、本発明の具体的な構成は、実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、特許請求の範囲および明細書に記載された各構成要素の任意の組み合わせ、または、省略が可能である。例えば、エンジンのピストン以外であっても、金属材料からなる本体部と、中空粒子及び金属のバインダーを含む焼結体であって、少なくとも外側の表面においてバインダーが酸化している焼結体とを備える構造体であれば、断熱構造体として機能し、ピストンと同じく上記作用効果(断熱効果)を得ることができる。例えば、エンジンの燃焼室に臨んで高温ガスに晒される各部材(シリンダ、バルブ等)や、吸気ポート又は排気ポートの内壁に、熱伝達を抑制するために上記構造体を適用してもよい。燃焼室に臨む上記各部材に上記構造体を設ければ、エンジンの熱効率の向上に有利である。吸気ポートの内壁に上記構造体を適用すれば、吸気がシリンダ内に吸入されるまでに加熱されることを抑制できるため、異常燃焼の抑制等に有利である。排気ポートの内壁に上記構造体を適用すれば、排気ガスを高温で排出できるため、排気エネルギーの回収に有利である。その他、タービンブレードを構成する壁面、内燃機関や家屋、ボイラー等を収容するハウジングの外壁など、断熱が必要な壁面を有するものであれば、様々な用途のものに上記構造体を適用可能である。ここで、本体部の金属材料は、アルミニウムの他、鋼、チタン、ニッケル、銅やそれらの合金であってもよい。
[Other Embodiments]
As mentioned above, although the form for implementing this invention was demonstrated based on drawing, the specific structure of this invention is not limited to embodiment, The design change etc. of the range which does not deviate from the summary of invention are included. Even if it exists, it is included in this invention. In addition, any combination or omission of each constituent element described in the claims and the specification is possible within a range where at least a part of the above-described problems can be solved or a range where at least a part of the effect is achieved. It is. For example, even if it is not an engine piston, a main body made of a metal material, and a sintered body containing hollow particles and a metal binder, wherein the binder is oxidized at least on the outer surface. If it is a structure provided, it functions as a heat insulating structure and can obtain the above-mentioned effect (heat insulating effect) as well as the piston. For example, the structure may be applied to each member (cylinder, valve, etc.) exposed to the high temperature gas facing the combustion chamber of the engine and the inner wall of the intake port or the exhaust port in order to suppress heat transfer. Providing the structure on each member facing the combustion chamber is advantageous for improving the thermal efficiency of the engine. If the structure is applied to the inner wall of the intake port, it is possible to suppress the intake air from being heated before being sucked into the cylinder, which is advantageous for suppressing abnormal combustion. If the structure is applied to the inner wall of the exhaust port, the exhaust gas can be discharged at a high temperature, which is advantageous for recovering exhaust energy. In addition, the above structure can be applied to various uses as long as it has a wall surface that requires heat insulation, such as a wall surface that constitutes a turbine blade, an outer wall of a housing that houses an internal combustion engine, a house, a boiler, or the like. . Here, the metal material of the main body may be aluminum, steel, titanium, nickel, copper, or an alloy thereof.
  以上説明した実施形態から把握しうる他の態様について、以下に記載する。
 (1) 内燃機関のピストンは、その1つの態様において、金属材料から形成され、ピストンヘッドとスカート部とを備える本体部であって、前記ピストンヘッドにおける、内燃機関の燃焼室側に保持部が形成された本体部と、
 前記保持部内に配置され、中空粒子と金属のバインダーとを含有する焼結体であって、少なくとも前記燃焼室側の表面において前記バインダーが酸化している酸化バインダー部を備える焼結体と
 を備える。
 (2) より好ましい態様では、前記態様において、
  前記酸化バインダー部は陽極酸化皮膜である。
 (3) 別の好ましい態様では、前記態様のいずれかにおいて、
  前記酸化バインダー部は、前記陽極酸化皮膜の細孔が封孔された封孔部を備える。
 (4) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記封孔部で前記細孔が煮沸によって封孔されている。
 (5) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記封孔部で前記細孔がシリカによって封孔されている。
 (6) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記酸化バインダー部は、前記本体部における機械加工によって成形された部位にある。
 (7) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記酸化バインダー部は、前記ピストンヘッドの冠面の一部分に位置する。
 (8) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記酸化バインダー部は、前記焼結体における前記表面から所定の深さまで配置される。
 (9) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記焼結体は、前記中空粒子と前記金属の粉末とを含有する混合材料を焼結することによって形成される。
 (10) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記本体部の前記金属材料はアルミニウム合金を含有し、前記バインダーはアルミニウムを含有する。
 (11) 内燃機関のピストンの製造方法は、その1つの態様において、
  ピストンヘッドとスカート部とを備える本体部であって、前記ピストンヘッドにおける、内燃機関の燃焼室側に保持部が形成された本体部を金属材料で形成する工程と、
 中空粒子と金属のバインダーとを含有する材料から形成された焼結体を前記保持部内に設ける工程と、
 前記焼結体のうちの少なくとも前記燃焼室側の表面において前記バインダーを酸化させる工程と
 を備える。
 (12) より好ましい態様では、前記態様において、
  前記バインダーを酸化させる工程は、陽極酸化処理により前記バインダーを酸化させる工程を備える。
 (13) 別の好ましい態様では、前記態様のいずれかにおいて、
  前記陽極酸化処理により形成された皮膜の細孔を煮沸により封孔する工程を備える。
 (14) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記バインダーを酸化させる工程は、前記陽極酸化処理により、前記焼結体における前記表面から所定の深さまで前記バインダーを酸化させる工程を備える。
 (15) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記バインダーは前記金属の粉末を含有し、
  前記焼結体を設ける工程では、前記中空粒子と前記バインダーとを含有する混合材料を焼結する工程を備える。
 (16)構造体は、その1つの態様において、
  金属材料から形成された本体部と、
 前記本体部に形成された保持部と、
 前記保持部内に配置され、中空粒子と金属のバインダーとを含有する焼結体であって、少なくとも外側の表面において前記バインダーが酸化している焼結体と
 を備える。
Other aspects that can be understood from the embodiment described above will be described below.
(1) In one aspect of the piston of the internal combustion engine, the piston is a main body portion that is formed of a metal material and includes a piston head and a skirt portion, and a holding portion is provided on the combustion chamber side of the internal combustion engine in the piston head. A formed main body,
A sintered body that is disposed in the holding portion and contains hollow particles and a metal binder, and includes a sintered body that includes an oxidized binder portion in which the binder is oxidized at least on the surface on the combustion chamber side. .
(2) In a more preferred embodiment, in the above embodiment,
The oxidized binder portion is an anodized film.
(3) In another preferred embodiment, in any of the above embodiments,
The oxidized binder portion includes a sealed portion in which pores of the anodized film are sealed.
(4) In still another preferred embodiment, in any of the above embodiments,
The pores are sealed by boiling at the sealing portion.
(5) In still another preferred embodiment, in any of the above embodiments,
The pores are sealed with silica at the sealing portion.
(6) In still another preferred embodiment, in any of the above embodiments,
The oxidized binder portion is in a portion formed by machining in the main body portion.
(7) In still another preferred embodiment, in any of the above embodiments,
The oxidized binder part is located at a part of the crown surface of the piston head.
(8) In still another preferred embodiment, in any of the above embodiments,
The oxidized binder portion is disposed from the surface of the sintered body to a predetermined depth.
(9) In still another preferred embodiment, in any of the above embodiments,
The sintered body is formed by sintering a mixed material containing the hollow particles and the metal powder.
(10) In still another preferred embodiment, in any of the above embodiments,
The metal material of the main body portion contains an aluminum alloy, and the binder contains aluminum.
(11) A method for manufacturing a piston of an internal combustion engine, in one embodiment thereof,
A main body comprising a piston head and a skirt, the main body of the piston head having a holding part formed on the combustion chamber side of the internal combustion engine, formed of a metal material;
Providing a sintered body formed of a material containing hollow particles and a metal binder in the holding portion;
And oxidizing the binder on at least the combustion chamber side surface of the sintered body.
(12) In a more preferred embodiment, in the above embodiment,
The step of oxidizing the binder includes a step of oxidizing the binder by anodization.
(13) In another preferred embodiment, in any of the above embodiments,
A step of sealing the pores of the film formed by the anodizing treatment by boiling.
(14) In still another preferred embodiment, in any of the above embodiments,
The step of oxidizing the binder includes a step of oxidizing the binder from the surface of the sintered body to a predetermined depth by the anodizing treatment.
(15) In still another preferred embodiment, in any of the above embodiments,
The binder contains the metal powder,
The step of providing the sintered body includes a step of sintering the mixed material containing the hollow particles and the binder.
(16) In one embodiment of the structure,
A main body formed from a metal material;
A holding part formed in the main body part;
A sintered body that is disposed in the holding portion and contains hollow particles and a metal binder, wherein the binder is oxidized at least on the outer surface.
 本願は、2016年12月20日出願の日本特許出願番号2016-247018号に基づく優先権を主張する。2016年12月20日出願の日本特許出願番号2016-247018号の明細書、特許請求の範囲、図面及び要約書を含む全ての開示内容は、参照により全体として本願に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2016-247018 filed on Dec. 20, 2016. The entire disclosure including the specification, claims, drawings, and abstract of Japanese Patent Application No. 2016-247018 filed on December 20, 2016 is incorporated herein by reference in its entirety.
100 エンジン(内燃機関)、11  燃焼室、1   ピストン、2   本体部、3   焼結体、30  陽極酸化皮膜(酸化バインダー部)、31  バインダー、32  中空粒子、4   ピストンヘッド、401 凹部(保持部)、6   ピストンスカート(スカート部) 100 engine (internal combustion engine), 11 combustion chamber, 1 piston, 2 body part, 3 sintered body, 30 anodized film (oxidized binder part), 31 binder, 32 hollow particles, 4 piston head, 401 recess (holding part) , 6 Piston skirt (skirt part)

Claims (12)

  1.  内燃機関のピストンであって、
     金属材料から形成され、ピストンヘッドとスカート部とを備える本体部であって、前記ピストンヘッドにおける、内燃機関の燃焼室側に保持部が形成された本体部と、
     前記保持部内に配置され、中空粒子と金属のバインダーとを含有する焼結体であって、少なくとも前記燃焼室側の表面において前記バインダーが酸化している酸化バインダー部を備える焼結体と
     を備える内燃機関のピストン。
    A piston of an internal combustion engine,
    A main body portion formed of a metal material and having a piston head and a skirt portion, wherein the piston head has a holding portion formed on the combustion chamber side of the internal combustion engine,
    A sintered body that is disposed in the holding portion and contains hollow particles and a metal binder, and includes a sintered body that includes an oxidized binder portion in which the binder is oxidized at least on the surface on the combustion chamber side. Piston for internal combustion engine.
  2.  請求項1に記載の内燃機関のピストンにおいて、
     前記酸化バインダー部は陽極酸化皮膜である
     内燃機関のピストン。
    The piston of the internal combustion engine according to claim 1,
    The oxidation binder part is an anodized film. A piston for an internal combustion engine.
  3.  請求項2に記載の内燃機関のピストンにおいて、
     前記酸化バインダー部は、前記陽極酸化皮膜の細孔が封孔された封孔部を備える
     内燃機関のピストン。
    The piston of the internal combustion engine according to claim 2,
    The said oxidation binder part is provided with the sealing part by which the pore of the said anodic oxide film was sealed, The piston of an internal combustion engine.
  4.  請求項2に記載の内燃機関のピストンにおいて、
     前記酸化バインダー部は、前記ピストンヘッドの冠面の一部分に位置する
     内燃機関のピストン。
    The piston of the internal combustion engine according to claim 2,
    The oxidation binder part is a piston of an internal combustion engine located at a part of a crown surface of the piston head.
  5.  請求項2に記載の内燃機関のピストンにおいて、
     前記酸化バインダー部は、前記焼結体における前記表面から所定の深さまで配置される
     内燃機関のピストン。
    The piston of the internal combustion engine according to claim 2,
    The oxidation binder portion is disposed from the surface of the sintered body to a predetermined depth. A piston of an internal combustion engine.
  6.  請求項1に記載の内燃機関のピストンにおいて、
     前記焼結体は、前記中空粒子と前記金属の粉末とを含有する混合材料を焼結することによって形成された
     内燃機関のピストン。
    The piston of the internal combustion engine according to claim 1,
    The sintered body is formed by sintering a mixed material containing the hollow particles and the metal powder.
  7.  内燃機関のピストンの製造方法であって、
     ピストンヘッドとスカート部とを備える本体部であって、前記ピストンヘッドにおける、内燃機関の燃焼室側に保持部が形成された本体部を金属材料で形成する工程と、
     中空粒子と金属のバインダーとを含有する材料から形成された焼結体を前記保持部内に設ける工程と、
     前記焼結体のうちの少なくとも前記燃焼室側の表面において前記バインダーを酸化させる工程と
     を備える内燃機関のピストンの製造方法。
    A method of manufacturing a piston for an internal combustion engine,
    A main body comprising a piston head and a skirt, the main body of the piston head having a holding part formed on the combustion chamber side of the internal combustion engine, formed of a metal material;
    Providing a sintered body formed of a material containing hollow particles and a metal binder in the holding portion;
    And a step of oxidizing the binder on at least the surface of the sintered body on the combustion chamber side.
  8.  請求項7に記載の内燃機関のピストンの製造方法において、
     前記バインダーを酸化させる工程は、陽極酸化処理により前記バインダーを酸化させる工程を備える
     内燃機関のピストンの製造方法。
    In the manufacturing method of the piston of an internal-combustion engine according to claim 7,
    The step of oxidizing the binder includes a step of oxidizing the binder by anodizing treatment.
  9.  請求項8に記載の内燃機関のピストンの製造方法において、
     前記陽極酸化処理により形成された皮膜の細孔を煮沸により封孔する工程を備える
     内燃機関のピストンの製造方法。
    The method for manufacturing a piston of an internal combustion engine according to claim 8,
    The manufacturing method of the piston of an internal combustion engine provided with the process of sealing the pore of the membrane | film | coat formed by the said anodizing process by boiling.
  10.  請求項8に記載の内燃機関のピストンの製造方法において、
     前記バインダーを酸化させる工程は、前記陽極酸化処理により、前記焼結体における前記表面から所定の深さまで前記バインダーを酸化させる工程を備える
     内燃機関のピストンの製造方法。
    The method for manufacturing a piston of an internal combustion engine according to claim 8,
    The step of oxidizing the binder includes a step of oxidizing the binder from the surface of the sintered body to a predetermined depth by the anodizing treatment.
  11.  請求項7に記載の内燃機関のピストンの製造方法において、
     前記バインダーは前記金属の粉末を含有し、
     前記焼結体を設ける工程は、前記中空粒子と前記バインダーとを含有する混合材料を焼結する工程を備える
     内燃機関のピストンの製造方法。
    In the manufacturing method of the piston of an internal-combustion engine according to claim 7,
    The binder contains the metal powder,
    The step of providing the sintered body includes a step of sintering a mixed material containing the hollow particles and the binder.
  12.  構造体であって、
     金属材料から形成された本体部と、
     前記本体部に形成された保持部と、
     前記保持部内に配置され、中空粒子と金属のバインダーとを含有する焼結体であって、少なくとも外側の表面において前記バインダーが酸化している焼結体と
     を備える構造体。
    A structure,
    A main body formed from a metal material;
    A holding part formed in the main body part;
    A sintered body that is disposed in the holding portion and contains hollow particles and a metal binder, and the sintered body is oxidized at least on the outer surface.
PCT/JP2017/042480 2016-12-20 2017-11-28 Piston for internal combustion engine, method for manufacturing piston for internal combustion engine, and structure WO2018116753A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016247018A JP2018100625A (en) 2016-12-20 2016-12-20 Piston for internal combustion engine, method for manufacturing piston for internal combustion engine and structure
JP2016-247018 2016-12-20

Publications (1)

Publication Number Publication Date
WO2018116753A1 true WO2018116753A1 (en) 2018-06-28

Family

ID=62626345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042480 WO2018116753A1 (en) 2016-12-20 2017-11-28 Piston for internal combustion engine, method for manufacturing piston for internal combustion engine, and structure

Country Status (2)

Country Link
JP (1) JP2018100625A (en)
WO (1) WO2018116753A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115247603A (en) * 2022-03-09 2022-10-28 广州汽车集团股份有限公司 Hydrogen engine piston and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000328292A (en) * 1999-05-11 2000-11-28 Honda Motor Co Ltd Anodic oxidation treatment of si-base aluminum alloy
JP2010185290A (en) * 2009-02-10 2010-08-26 Toyota Central R&D Labs Inc Heat insulating film and method of forming the same
JP2015031226A (en) * 2013-08-05 2015-02-16 トヨタ自動車株式会社 Internal combustion engine and its manufacturing method
JP2015193915A (en) * 2014-03-27 2015-11-05 スズキ株式会社 Anode oxidation treatment method and internal combustion engine structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000328292A (en) * 1999-05-11 2000-11-28 Honda Motor Co Ltd Anodic oxidation treatment of si-base aluminum alloy
JP2010185290A (en) * 2009-02-10 2010-08-26 Toyota Central R&D Labs Inc Heat insulating film and method of forming the same
JP2015031226A (en) * 2013-08-05 2015-02-16 トヨタ自動車株式会社 Internal combustion engine and its manufacturing method
JP2015193915A (en) * 2014-03-27 2015-11-05 スズキ株式会社 Anode oxidation treatment method and internal combustion engine structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115247603A (en) * 2022-03-09 2022-10-28 广州汽车集团股份有限公司 Hydrogen engine piston and manufacturing method thereof

Also Published As

Publication number Publication date
JP2018100625A (en) 2018-06-28

Similar Documents

Publication Publication Date Title
JP5976941B2 (en) Manufacturing method of piston for internal combustion engine
JP2020076409A (en) Piston made using additive manufacturing process
JP2019508623A (en) Multilayer piston crown for opposed piston engine
KR101776738B1 (en) Porous ceramic composite particle and preparing method for the same
EP3219827A1 (en) Heat-resistant member provided with heat-shielding coating, and method for manufacturing same
US20090260594A1 (en) In-cylinder fuel-injection type internal combustion engine, piston for in-cylinder fuel-injection type internal combustion engine and process for manufacturing piston for in-cylinder fuel-injection type internal combustion engine
EP3440331B1 (en) Piston with thermally insulating insert and method of construction thereof
WO2018116753A1 (en) Piston for internal combustion engine, method for manufacturing piston for internal combustion engine, and structure
JP6760812B2 (en) Manufacturing method of piston for internal combustion engine and piston for internal combustion engine
JP2013087721A (en) Method of forming heat shield film and internal combustion engine
WO2018029903A1 (en) Internal combustion engine piston and method for manufacturing internal combustion engine piston
JP2009287486A (en) Piston of internal combustion engine
JPS60119348A (en) Piston of internal-combustion engine and manufacture thereof
JP2018184860A (en) Piston of internal combustion engine and piston cooling control method of internal combustion engine
WO2018037616A1 (en) Piston for internal combustion engine and method for manufacturing piston for internal combustion engine
WO2019049738A1 (en) Internal combustion engine piston, method for measuring film thickness of internal combustion engine piston, and manufacturing method for internal combustion engine piston
WO2014097924A1 (en) Manufacturing method for internal combustion engine piston, manufacturing device for internal combustion engine piston, and internal combustion engine
WO2018131356A1 (en) Piston for internal combustion engine
WO2018190167A1 (en) Piston of internal-combustion engine, and method for manufacturing piston of internal-combustion engine
CN110894813B (en) Cylinder liner, method for manufacturing the same, and method for manufacturing cylinder block using the same
JP2001240902A (en) Low thermal conductivity aluminum sintered material, its producing method and piston top material
WO2020003462A1 (en) Method for manufacturing cylinder head, and cylinder head rough material
CN113137316B (en) Piston for internal combustion engine and method for producing same
EP4137612A1 (en) Piston for internal combustion engine and method for manufacturing the same
JP2004169671A (en) Spark ignition internal combustion engine, its ignition plug, its cylinder head, and manufacturing method of cylinder head

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884109

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17884109

Country of ref document: EP

Kind code of ref document: A1