JP2013087721A - Method of forming heat shield film and internal combustion engine - Google Patents

Method of forming heat shield film and internal combustion engine Download PDF

Info

Publication number
JP2013087721A
JP2013087721A JP2011230652A JP2011230652A JP2013087721A JP 2013087721 A JP2013087721 A JP 2013087721A JP 2011230652 A JP2011230652 A JP 2011230652A JP 2011230652 A JP2011230652 A JP 2011230652A JP 2013087721 A JP2013087721 A JP 2013087721A
Authority
JP
Japan
Prior art keywords
combustion chamber
heat shield
plating
internal combustion
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011230652A
Other languages
Japanese (ja)
Inventor
Akira Iijima
章 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2011230652A priority Critical patent/JP2013087721A/en
Publication of JP2013087721A publication Critical patent/JP2013087721A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2251/00Material properties
    • F05C2251/04Thermal properties
    • F05C2251/048Heat transfer

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Chemically Coating (AREA)

Abstract

PROBLEM TO BE SOLVED: To form a heat shield film on an inner wall of a combustion chamber of an internal combustion engine in a short time at a low cost.SOLUTION: A method of forming the heat shield film 23 on the inner wall of the combustion chamber 16 defined by a cylinder bore 12, a lower surface of a cylinder head 15 and a top of a piston 13 in the internal combustion engine 10 includes a step of plating the inner wall of the combustion chamber 16 with a plating solution containing hollow micro-capsules 25 made of metal or alloy, thereby forming a plated layer 24 and the heat shield film 23 including the micro-capsules 25 interposed in the plated layer 24 on the inner wall of the combustion chamber 16.

Description

本発明は、内燃機関におけるシリンダボアとシリンダヘッド下面とピストン頂部とで区画される燃焼室の内壁に遮熱膜を形成する方法、及び、シリンダボアとシリンダヘッド下面とピストン頂部とで区画される燃焼室を備える内燃機関に関する。   The present invention relates to a method for forming a thermal barrier film on the inner wall of a combustion chamber defined by a cylinder bore, a cylinder head lower surface and a piston top in an internal combustion engine, and a combustion chamber defined by a cylinder bore, cylinder head lower surface and piston top. It is related with an internal combustion engine provided with.

遮熱層を内燃機関の燃焼室内壁に形成することで、燃焼室内の燃焼ガスからの熱伝達を低減させて燃費の向上を図る技術が知られている。   There is known a technique for improving fuel efficiency by forming a heat shield layer on a combustion chamber wall of an internal combustion engine to reduce heat transfer from combustion gas in the combustion chamber.

例えば特許文献1等に記載されているように、アルミ製のピストン本体頂面部に、熱伝導率の低いセラミック製のピストンヘッド部分を、ピストン本体との間に空気層(隙間)を設けて取り付けるという方法が公知である。   For example, as described in Patent Document 1 and the like, a ceramic piston head portion having a low thermal conductivity is attached to the top surface portion of an aluminum piston body with an air layer (gap) provided between the piston body and the piston body. This method is known.

特開平8−4585号公報JP-A-8-4585

しかしながら、上述の方法では、セラミック製のピストンヘッド部分の熱容量が大きく、吸気行程中もピストンヘッド部分の温度が高い状態となり得る。そのため、充填効率が上がらず、却って燃費が悪化してしまう虞がある。   However, in the above-described method, the heat capacity of the ceramic piston head portion is large, and the temperature of the piston head portion can be high even during the intake stroke. For this reason, the charging efficiency does not increase, and there is a risk that the fuel consumption will deteriorate.

また、膜厚の薄い遮熱膜を燃焼室内壁に形成することが考えられる。しかしながら、公知の工法(例えば、溶射等)では、遮熱膜の施工に時間がかかり、また、遮熱膜を安価に大量生産することができない。   It is also conceivable to form a thin thermal barrier film on the combustion chamber wall. However, in a known method (for example, thermal spraying or the like), it takes time to apply the heat shield film, and the heat shield film cannot be mass-produced at low cost.

そこで、本発明の目的は、短時間に且つ安価に遮熱膜を内燃機関の燃焼室内壁に形成することにある。   Therefore, an object of the present invention is to form a heat shield film on the combustion chamber wall of an internal combustion engine in a short time and at a low cost.

上述の目的を達成するために、本発明は、内燃機関におけるシリンダボアとシリンダヘッド下面とピストン頂部とで区画される燃焼室の内壁に遮熱膜を形成する方法であって、中空の金属製又は合金製のマイクロカプセルが含有されたメッキ液を用いて前記燃焼室の内壁にメッキを施すことで、メッキ層及び前記メッキ層内に介在する前記マイクロカプセルを含む遮熱膜を前記燃焼室の内壁に形成することを特徴とする遮熱膜の形成方法である。   In order to achieve the above-mentioned object, the present invention is a method of forming a thermal barrier film on the inner wall of a combustion chamber defined by a cylinder bore, a cylinder head lower surface and a piston top in an internal combustion engine, which is made of hollow metal or An inner wall of the combustion chamber is formed by plating the inner wall of the combustion chamber with a plating solution containing an alloy microcapsule, thereby forming a plating layer and a thermal barrier film including the microcapsule interposed in the plating layer. It is a formation method of the thermal barrier film characterized by forming in.

前記マイクロカプセルを、前記メッキ液の主成分と同一材質の材料により製造しても良い。   The microcapsules may be manufactured from the same material as the main component of the plating solution.

また、本発明は、シリンダボアとシリンダヘッド下面とピストン頂部とで区画される燃焼室を備える内燃機関において、前記燃焼室の内壁に形成された遮熱膜を備え、前記遮熱膜は、前記燃焼室の内壁に形成されたメッキ層と、前記メッキ層内に介在する中空の金属製又は合金製のマイクロカプセルとを含むことを特徴とする内燃機関である。   Further, the present invention provides an internal combustion engine including a combustion chamber defined by a cylinder bore, a cylinder head lower surface, and a piston top, and further includes a heat shield film formed on an inner wall of the combustion chamber, and the heat shield film includes the combustion chamber An internal combustion engine comprising a plating layer formed on an inner wall of a chamber and a hollow metal or alloy microcapsule interposed in the plating layer.

本発明によれば、短時間に且つ安価に遮熱膜を内燃機関の燃焼室内壁に形成することができるという優れた効果を奏する。   According to the present invention, there is an excellent effect that the heat shield film can be formed on the combustion chamber wall of the internal combustion engine in a short time and at a low cost.

本発明の一実施形態に係る遮熱膜の形成方法が適用される内燃機関を示し、(a)は内燃機関の概略図であり、(b)は(a)のA部拡大図である。The internal combustion engine to which the thermal barrier film forming method according to one embodiment of the present invention is applied is shown, (a) is a schematic view of the internal combustion engine, and (b) is an enlarged view of part A of (a). マイクロカプセルを作る方法の一例を示す説明図である。It is explanatory drawing which shows an example of the method of making a microcapsule. 本発明の一実施形態に係る遮熱膜の形成方法を示す説明図である。It is explanatory drawing which shows the formation method of the thermal barrier film which concerns on one Embodiment of this invention. 変形例に係る内燃機関の概略図である。It is the schematic of the internal combustion engine which concerns on a modification.

以下、本発明の好適な実施形態を添付図面に基づいて詳述する。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1(a)に示すように、本実施形態に係る内燃機関(本実施形態では、直噴式ディーゼルエンジン)10は、シリンダブロック11に形成されたシリンダボア12と、シリンダボア12内を上下に往復運動(摺動)するピストン13と、シリンダブロック11の上部にガスケット14を挟んで取り付けられたシリンダヘッド15とを備えている。シリンダボア12と、シリンダヘッド15の下面と、ピストン13の頂部とで囲まれた空間が、燃焼室16を形成する。シリンダヘッド15には、燃焼室16に連通する吸排気ポート(吸気ポート17及び排気ポート18)と、吸気ポート17を開閉する吸気弁19と、排気ポート18を開閉する排気弁20と、燃料を上方から燃焼室16内に噴射する燃料噴射弁(インジェクタ)21とが設けられている。また、ピストン13の頂面13aには、キャビティ(図例では、リエントラントタイプのキャビティ)13bが凹設されている。   As shown in FIG. 1A, an internal combustion engine (in this embodiment, a direct injection diesel engine) 10 according to the present embodiment is reciprocated up and down in a cylinder bore 12 formed in a cylinder block 11 and in the cylinder bore 12. A piston 13 (sliding) and a cylinder head 15 attached to the upper part of the cylinder block 11 with a gasket 14 interposed therebetween are provided. A space surrounded by the cylinder bore 12, the lower surface of the cylinder head 15, and the top of the piston 13 forms a combustion chamber 16. The cylinder head 15 has an intake / exhaust port (intake port 17 and exhaust port 18) communicating with the combustion chamber 16, an intake valve 19 that opens and closes the intake port 17, an exhaust valve 20 that opens and closes the exhaust port 18, and fuel. A fuel injection valve (injector) 21 for injecting the combustion chamber 16 from above is provided. Further, a cavity (reentrant type cavity in the illustrated example) 13 b is recessed in the top surface 13 a of the piston 13.

図1(a)に示す内燃機関(直噴式ディーゼルエンジン)10では、例えばピストン13が圧縮上死点付近に位置するときに燃料を燃料噴射弁21から燃焼室16内に噴射することで、燃焼室16内の燃料が自着火して燃焼する。燃料噴射弁21の先端部には噴口22が複数設けられており、各噴口22は、ピストン13の圧縮上死点付近において噴口22から噴射された燃料がキャビティ13bのリップ部13cに向かうように指向されている。   In the internal combustion engine (direct injection type diesel engine) 10 shown in FIG. 1A, for example, fuel is injected into the combustion chamber 16 from the fuel injection valve 21 when the piston 13 is positioned near the compression top dead center. The fuel in the chamber 16 self-ignites and burns. A plurality of nozzle holes 22 are provided at the tip of the fuel injection valve 21, and each nozzle 22 is configured so that the fuel injected from the nozzle 22 near the compression top dead center of the piston 13 is directed toward the lip 13c of the cavity 13b. It is oriented.

本実施形態では、燃焼室16を形成するピストン13の頂部に、燃焼室16内の燃焼ガスからピストン13への伝熱を抑制するための遮熱膜(遮熱層)23が形成される。より詳細には、図1(a)及び(b)に示すように、遮熱膜23は、ピストン13の頂面13a及びキャビティ13bの一部(図例では、キャビティ13bのリップ部13c近傍)に形成され、中空の金属製又は合金製のマイクロカプセル25を含有するメッキ液を用いてピストン13の頂部にメッキを施してなる。そのため、本実施形態の遮熱膜23は、ピストン13の頂部に形成されたメッキ層24と、メッキ層24内に介在するマイクロカプセル25とを含むものである。つまり、本実施形態の遮熱膜23は、マイクロカプセル25の内部空間により形成される遮熱層(遮熱空気層)として機能するものである。   In the present embodiment, a heat shield film (heat shield layer) 23 for suppressing heat transfer from the combustion gas in the combustion chamber 16 to the piston 13 is formed on the top of the piston 13 forming the combustion chamber 16. More specifically, as shown in FIGS. 1A and 1B, the thermal barrier film 23 is formed on the top surface 13a of the piston 13 and a part of the cavity 13b (in the illustrated example, in the vicinity of the lip portion 13c of the cavity 13b). The top of the piston 13 is plated using a plating solution containing a microcapsule 25 made of a hollow metal or alloy. Therefore, the thermal barrier film 23 of the present embodiment includes a plated layer 24 formed on the top of the piston 13 and microcapsules 25 interposed in the plated layer 24. That is, the heat shield film 23 of the present embodiment functions as a heat shield layer (heat shield air layer) formed by the internal space of the microcapsule 25.

次に、本実施形態に係る遮熱膜23の形成方法を図2及び図3を用いて説明する。   Next, a method for forming the thermal barrier film 23 according to the present embodiment will be described with reference to FIGS.

〔1〕マイクロカプセルの準備
マイクロカプセル25を作る方法は種々あるが、マイクロカプセル25を作る方法の一例を図2に示す。つまり、マイクロカプセル25を作る方法は、以下に説明する方法には限定はされない。
[1] Preparation of Microcapsule There are various methods for making the microcapsule 25. An example of the method for making the microcapsule 25 is shown in FIG. That is, the method for making the microcapsule 25 is not limited to the method described below.

本実施形態では、ニッケルメッキを用いると想定し、マイクロカプセル25をニッケル製とする。   In this embodiment, it is assumed that nickel plating is used, and the microcapsules 25 are made of nickel.

先ず、図2(a)に示すように、ニッケルの子粒子を、樹脂製の母粒子に、衝撃力により打ち込む。つまり、子粒子を母粒子に高速で噴射する。その後、図2(b)に示すように、母粒子と子粒子との結合体を加熱し、図2(c)に示すように、結合体(子粒子)から母粒子を溶かし出して中空のニッケル製のマイクロカプセル25とする。   First, as shown in FIG. 2A, the nickel child particles are driven into the resin-made mother particles by impact force. That is, the child particles are jetted onto the mother particles at a high speed. Thereafter, as shown in FIG. 2 (b), the combined body of the mother particles and the child particles is heated, and as shown in FIG. The microcapsule 25 is made of nickel.

マイクロカプセル25の粒径Rは、例えば0.1〜20μm程度とする。また、マイクロカプセル25の外殻となる子粒子は、ナノ粒子サイズのものとする。   The particle size R of the microcapsule 25 is, for example, about 0.1 to 20 μm. In addition, the child particles that form the outer shell of the microcapsule 25 are assumed to be of nanoparticle size.

なお、本実施形態においてマイクロカプセル25をニッケル製としたのは、後述する無電解メッキの場合は、ニッケルメッキとすることが多いためである。ニッケルメッキ以外のメッキとする場合は、そのメッキの種類に応じて子粒子も変える。つまり、マイクロカプセル25を、メッキ液の主成分と同一材質の材料により製造するのが好ましい。   Note that the reason why the microcapsules 25 are made of nickel in the present embodiment is that nickel plating is often used in electroless plating described later. In the case of plating other than nickel plating, the child particles are also changed according to the type of plating. That is, it is preferable to manufacture the microcapsule 25 using the same material as the main component of the plating solution.

しかしながら、マイクロカプセル25の材料は、メッキ液の主成分と同一材質の材料には限定はされず、種々の材料(例えば、メッキ液の主成分よりも融点が高い材料)を用いることが可能である。   However, the material of the microcapsule 25 is not limited to the same material as the main component of the plating solution, and various materials (for example, materials having a melting point higher than that of the main component of the plating solution) can be used. is there.

〔2〕遮熱膜の形成
上述の〔1〕で準備したニッケル製のマイクロカプセル25を、アルミ合金製のピストン13(被メッキ体)に付着させるために、無電解メッキを用いる。
[2] Formation of Thermal Barrier Film Electroless plating is used to adhere the nickel microcapsules 25 prepared in [1] above to the aluminum alloy piston 13 (to-be-plated body).

無電解メッキとは、例えば図3に示すように、メッキ槽26内における金属塩(M;本実施形態では、Ni)と還元剤(Red)とが共存する溶液(無電解メッキ液)に、被メッキ体を浸漬させてメッキを被メッキ体の表面に成膜させるもので、還元剤(Red)の酸化(Ox)によって放出される電子が金属イオンに転移し、被メッキ体の表面に金属被膜が形成される。   For example, as shown in FIG. 3, electroless plating is a solution (electroless plating solution) in which a metal salt (M; Ni in the present embodiment) and a reducing agent (Red) coexist in the plating tank 26. An object to be plated is immersed to form a film on the surface of the object to be plated. Electrons released by oxidation (Ox) of the reducing agent (Red) are transferred to metal ions, and metal is deposited on the surface of the object to be plated. A film is formed.

無電解メッキの際に、上述の〔1〕で準備したニッケル製のマイクロカプセル25を無電解メッキ液中に浮遊(混合)させておくと、上述の反応でニッケルが被メッキ体の表面に成膜する際に、マイクロカプセル25も取り込まれ、図1(b)に示すような気泡層(遮熱膜23)をピストン13(被メッキ体)に形成することができる。   During the electroless plating, if the nickel microcapsules 25 prepared in [1] above are floated (mixed) in the electroless plating solution, nickel is formed on the surface of the object to be plated by the above reaction. When the film is formed, the microcapsule 25 is also taken in, and a bubble layer (heat shielding film 23) as shown in FIG. 1B can be formed on the piston 13 (to-be-plated body).

遮熱膜23の厚さTは、例えば50〜100μm程度とする。   The thickness T of the heat shield film 23 is, for example, about 50 to 100 μm.

なお、メッキの手法は無電解メッキには限定はされず、他の手法のメッキ(例えば、電気メッキ)であっても良い。また、メッキの種類はニッケルメッキには限定はされず、ニッケルメッキ以外のメッキであっても良い。   Note that the plating method is not limited to electroless plating, and may be plating of other methods (for example, electroplating). The kind of plating is not limited to nickel plating, and plating other than nickel plating may be used.

以上要するに、本実施形態によれば、中空の金属製又は合金製のマイクロカプセル25が含有されたメッキ液を用いて燃焼室16を形成するピストン13の頂部にメッキを施すことで、メッキ層24及びメッキ層24内に介在するマイクロカプセル25を含む遮熱膜23をピストン13の頂部に形成するので、短時間に且つ安価に遮熱膜23をピストン13(相手部材)に形成することが可能となる。   In short, according to the present embodiment, the plating layer 24 is plated by plating the top of the piston 13 forming the combustion chamber 16 using a plating solution containing hollow metal or alloy microcapsules 25. Since the heat shield film 23 including the microcapsules 25 interposed in the plating layer 24 is formed on the top of the piston 13, the heat shield film 23 can be formed on the piston 13 (the counterpart member) in a short time and at a low cost. It becomes.

即ち、本実施形態では、中空の金属製又は合金製のマイクロカプセル25が含有されたメッキ液を用いて燃焼室16を形成するピストン13の頂部にメッキを施すので、溶射等と比較して短時間に且つ安価に遮熱膜23をピストン13(相手部材)に形成することが可能となる。また、本実施形態の遮熱膜23は、マイクロカプセル25の内部空間により形成される遮熱層(遮熱空気層)として機能するものであるので、メッキ液の主成分やマイクロカプセル25の材料自体に熱伝導率の低いものを採用する必要はない。そのため、メッキ液の主成分やマイクロカプセル25の材料は種々の材料を使用することができる。   That is, in this embodiment, since the top of the piston 13 that forms the combustion chamber 16 is plated using a plating solution containing hollow metal or alloy microcapsules 25, it is shorter than spraying or the like. The heat shield film 23 can be formed on the piston 13 (the counterpart member) at a low cost in time. In addition, since the thermal barrier film 23 of the present embodiment functions as a thermal barrier layer (thermal barrier air layer) formed by the internal space of the microcapsule 25, the main component of the plating solution and the material of the microcapsule 25 are used. It is not necessary to adopt a low thermal conductivity. Therefore, various materials can be used as the main component of the plating solution and the material of the microcapsule 25.

以上、本発明の好適な実施形態について説明したが、本発明は上述の実施形態には限定されず他の様々な実施形態を採ることが可能である。   The preferred embodiments of the present invention have been described above, but the present invention is not limited to the above-described embodiments, and various other embodiments can be adopted.

例えば、上述の実施形態では、ピストン13の頂部に遮熱膜23を形成したが、これには限定はされず、図4に示すように、燃焼室16を形成するシリンダヘッド15の下面又はシリンダボア12に遮熱膜23を形成することも可能である。シリンダヘッド15の下面に遮熱膜23を形成する場合には、図4に示すように、シリンダヘッド15の下面における燃焼室16内に臨む部分のみに遮熱膜23を形成しても良く、図示はしないが、シリンダヘッド15の下面全体に遮熱膜23を形成しても良い。また、シリンダボア12に遮熱膜23を形成する場合には、遮熱膜23の表面にホーニング加工等の表面処理を施すことが考えられる。   For example, in the above-described embodiment, the heat shielding film 23 is formed on the top of the piston 13, but this is not a limitation, and as shown in FIG. 4, the lower surface of the cylinder head 15 forming the combustion chamber 16 or the cylinder bore It is also possible to form a thermal barrier film 23 on the substrate 12. When the thermal barrier film 23 is formed on the lower surface of the cylinder head 15, as shown in FIG. 4, the thermal barrier film 23 may be formed only on the portion of the lower surface of the cylinder head 15 that faces the combustion chamber 16. Although not shown, the heat shield film 23 may be formed on the entire lower surface of the cylinder head 15. Further, when the heat shield film 23 is formed on the cylinder bore 12, it is conceivable that the surface of the heat shield film 23 is subjected to a surface treatment such as honing.

また、上述の実施形態では、ピストン13の頂面13a及びキャビティ13bの一部に遮熱膜23を形成したが、これには限定はされず、ピストン13の頂部に遮熱膜23を形成する際には、図4に示すように、ピストン13の頂面13a及びキャビティ13bの全体に遮熱膜23を形成しても良い。   In the above-described embodiment, the heat shield film 23 is formed on a part of the top surface 13 a and the cavity 13 b of the piston 13. However, the present invention is not limited to this, and the heat shield film 23 is formed on the top of the piston 13. In this case, as shown in FIG. 4, a heat shielding film 23 may be formed on the entire top surface 13 a and the cavity 13 b of the piston 13.

また、内燃機関10は、ディーゼルエンジンには限定はされず、ガソリンエンジン等であっても良い。さらに、内燃機関10は、直噴式のものには限定はされず、火花点火式のものであっても良い。   The internal combustion engine 10 is not limited to a diesel engine, and may be a gasoline engine or the like. Further, the internal combustion engine 10 is not limited to a direct injection type, and may be a spark ignition type.

10 内燃機関
12 シリンダボア
13 ピストン
15 シリンダヘッド
16 燃焼室
23 遮熱膜
24 メッキ層
25 マイクロカプセル
DESCRIPTION OF SYMBOLS 10 Internal combustion engine 12 Cylinder bore 13 Piston 15 Cylinder head 16 Combustion chamber 23 Thermal insulation film 24 Plating layer 25 Microcapsule

Claims (3)

内燃機関におけるシリンダボアとシリンダヘッド下面とピストン頂部とで区画される燃焼室の内壁に遮熱膜を形成する方法であって、中空の金属製又は合金製のマイクロカプセルが含有されたメッキ液を用いて前記燃焼室の内壁にメッキを施すことで、メッキ層及び前記メッキ層内に介在する前記マイクロカプセルを含む遮熱膜を前記燃焼室の内壁に形成することを特徴とする遮熱膜の形成方法。   A method of forming a thermal barrier film on the inner wall of a combustion chamber defined by a cylinder bore, a cylinder head lower surface and a piston top in an internal combustion engine, using a plating solution containing hollow metal or alloy microcapsules Forming a heat shielding film including a plating layer and the microcapsules interposed in the plating layer on the inner wall of the combustion chamber by plating the inner wall of the combustion chamber. Method. 前記マイクロカプセルを、前記メッキ液の主成分と同一材質の材料により製造する請求項1に記載の遮熱膜の形成方法。   The method for forming a thermal barrier film according to claim 1, wherein the microcapsule is manufactured from a material that is the same material as the main component of the plating solution. シリンダボアとシリンダヘッド下面とピストン頂部とで区画される燃焼室を備える内燃機関において、前記燃焼室の内壁に形成された遮熱膜を備え、前記遮熱膜は、前記燃焼室の内壁に形成されたメッキ層と、前記メッキ層内に介在する中空の金属製又は合金製のマイクロカプセルとを含むことを特徴とする内燃機関。   An internal combustion engine having a combustion chamber defined by a cylinder bore, a cylinder head lower surface, and a piston top, includes a heat shield film formed on an inner wall of the combustion chamber, and the heat shield film is formed on an inner wall of the combustion chamber. An internal combustion engine comprising: a plated layer; and a hollow metal or alloy microcapsule interposed in the plated layer.
JP2011230652A 2011-10-20 2011-10-20 Method of forming heat shield film and internal combustion engine Pending JP2013087721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011230652A JP2013087721A (en) 2011-10-20 2011-10-20 Method of forming heat shield film and internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011230652A JP2013087721A (en) 2011-10-20 2011-10-20 Method of forming heat shield film and internal combustion engine

Publications (1)

Publication Number Publication Date
JP2013087721A true JP2013087721A (en) 2013-05-13

Family

ID=48531876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011230652A Pending JP2013087721A (en) 2011-10-20 2011-10-20 Method of forming heat shield film and internal combustion engine

Country Status (1)

Country Link
JP (1) JP2013087721A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014018694A1 (en) * 2014-12-18 2016-06-23 Mahle International Gmbh Piston for an internal combustion engine and method for its production
WO2017004645A1 (en) * 2015-07-03 2017-01-12 Ge Jenbacher Gmbh & Co Og Piston for an internal combustion engine
US10876475B2 (en) 2015-11-20 2020-12-29 Tenneco Inc. Steel piston crown and/or combustion engine components with dynamic thermal insulation coating and method of making and using such a coating
US10995661B2 (en) 2015-11-20 2021-05-04 Tenneco Inc. Thermally insulated engine components using a ceramic coating
US11111851B2 (en) 2015-11-20 2021-09-07 Tenneco Inc. Combustion engine components with dynamic thermal insulation coating and method of making and using such a coating

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014018694A1 (en) * 2014-12-18 2016-06-23 Mahle International Gmbh Piston for an internal combustion engine and method for its production
WO2017004645A1 (en) * 2015-07-03 2017-01-12 Ge Jenbacher Gmbh & Co Og Piston for an internal combustion engine
US10634090B2 (en) 2015-07-03 2020-04-28 Ge Jenbacher Gmbh & Co Og Piston for an internal combustion engine
US10876475B2 (en) 2015-11-20 2020-12-29 Tenneco Inc. Steel piston crown and/or combustion engine components with dynamic thermal insulation coating and method of making and using such a coating
US10995661B2 (en) 2015-11-20 2021-05-04 Tenneco Inc. Thermally insulated engine components using a ceramic coating
US11111851B2 (en) 2015-11-20 2021-09-07 Tenneco Inc. Combustion engine components with dynamic thermal insulation coating and method of making and using such a coating

Similar Documents

Publication Publication Date Title
JP2013087721A (en) Method of forming heat shield film and internal combustion engine
US10502130B2 (en) Composite thermal barrier coating
JP2014040820A (en) Heat insulating structure of member facing engine combustion chamber, and method of manufacturing the same
JP4458496B2 (en) In-cylinder injection internal combustion engine, piston for in-cylinder injection internal combustion engine, method for manufacturing piston for in-cylinder injection internal combustion engine
CN102444497A (en) Heat-insulting structure
EP3377665A1 (en) Thermally insulated engine components and method of making using a ceramic coating
CN110056423B (en) Compression self-ignition internal combustion engine
JP2013194561A (en) Compression self ignition engine
JP5974701B2 (en) Engine combustion chamber structure
CN109943847A (en) The gap filling sealant of thermal barrier coating
US20190390591A1 (en) Piston for internal combustion engine and method of manufacturing same
CN110546367A (en) Piston for internal combustion engine and piston cooling control method for internal combustion engine
JP2013087719A (en) Method of forming heat shield film and internal combustion engine
WO2013161529A1 (en) Engine combustion chamber structure
JP2014088863A (en) Internal combustion engine
JP2014105619A (en) Piston
US20190107045A1 (en) Multi-layer thermal barrier
JP6920826B2 (en) Internal combustion engine
WO2014097924A1 (en) Manufacturing method for internal combustion engine piston, manufacturing device for internal combustion engine piston, and internal combustion engine
WO2013137127A1 (en) Process for producing heat-shielding film, heat-shielding film, and internal combustion engine
WO2018116753A1 (en) Piston for internal combustion engine, method for manufacturing piston for internal combustion engine, and structure
JP2019124189A (en) Compression ignition type engine
US20210222645A1 (en) Piston of internal combustion engine and a manufacturing method thereof
JP2013204443A (en) Internal combustion engine and method of manufacturing the same
JP2014138951A (en) Heat insulation film formation method