WO2013161529A1 - Engine combustion chamber structure - Google Patents

Engine combustion chamber structure Download PDF

Info

Publication number
WO2013161529A1
WO2013161529A1 PCT/JP2013/060195 JP2013060195W WO2013161529A1 WO 2013161529 A1 WO2013161529 A1 WO 2013161529A1 JP 2013060195 W JP2013060195 W JP 2013060195W WO 2013161529 A1 WO2013161529 A1 WO 2013161529A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion chamber
film
wall surface
boehmite
heat
Prior art date
Application number
PCT/JP2013/060195
Other languages
French (fr)
Japanese (ja)
Inventor
飯島 章
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2013161529A1 publication Critical patent/WO2013161529A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • F02B77/11Thermal or acoustic insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/10Pistons  having surface coverings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/10Pistons  having surface coverings
    • F02F3/12Pistons  having surface coverings on piston heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/10Pistons  having surface coverings
    • F02F3/12Pistons  having surface coverings on piston heads
    • F02F3/14Pistons  having surface coverings on piston heads within combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0603Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston at least part of the interior volume or the wall of the combustion space being made of material different from the surrounding piston part, e.g. combustion space formed within a ceramic part fixed to a metal piston head
    • F02B2023/0612Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston at least part of the interior volume or the wall of the combustion space being made of material different from the surrounding piston part, e.g. combustion space formed within a ceramic part fixed to a metal piston head the material having a high temperature and pressure resistance, e.g. ceramic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2251/00Material properties
    • F05C2251/04Thermal properties
    • F05C2251/048Heat transfer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a combustion chamber structure for an engine having a combustion chamber defined by a cylinder bore, a cylinder head lower surface, and a piston top.
  • the combustion chamber of a diesel engine is generally defined by a cylinder bore, the lower surface of the cylinder head, and the top of the piston.
  • a cavity is recessed at the top of the piston, and fuel is injected into the cavity from a fuel injection valve disposed above the piston.
  • Patent Document 1 Such a combustion chamber structure of a diesel engine is disclosed in Patent Document 1, for example.
  • a heat insulation paint or a heat insulation paint is applied to the heat insulation object as a method for simply insulating the heat insulation object.
  • thermal insulation paint or thermal barrier paint When applying thermal insulation paint or thermal barrier paint to the wall surface of the combustion chamber, it is necessary to firmly bond the thermal insulation paint or thermal insulation paint to the wall surface of the combustion chamber because the flame hits the thermal insulation paint or thermal insulation paint during fuel combustion. There is.
  • an object of the present invention is to firmly apply a heat insulating paint or a heat insulating paint (heat insulating film) to the wall of the combustion chamber when forming a heat insulating film by applying a heat insulating paint or a heat insulating paint on the wall of the combustion chamber. It is to be combined.
  • a combustion chamber structure of an engine according to the present invention includes a combustion chamber defined by a cylinder bore, a cylinder head lower surface, and a piston top, and at least a part of the wall surface of the combustion chamber is made of aluminum or A combustion chamber structure of an engine composed of an aluminum alloy, wherein a plurality of dimples provided on the wall surface of the combustion chamber composed of aluminum or aluminum alloy to increase the surface area of the wall surface of the combustion chamber; A boehmite film formed on the wall surface of the combustion chamber provided with a large number of dimples, and a barrier formed by applying a heat insulating coating or a thermal barrier coating on the surface of the boehmite film. And a hot film.
  • the plurality of dimples may be provided on the wall surface of the combustion chamber by performing shot blasting for projecting a projection material onto the wall surface of the combustion chamber.
  • the boehmite film may be formed on the wall surface of the combustion chamber by performing a boehmite treatment on the wall surface of the combustion chamber.
  • the heat-insulating paint or heat-shielding paint when forming a heat-shielding film by applying a heat-insulating paint or a heat-shielding paint on the wall surface of the combustion chamber, the heat-insulating paint or heat-shielding paint (heat-shielding film) is firmly bonded to the wall surface of the combustion chamber. There is an excellent effect of being able to.
  • (A) is the schematic of the combustion chamber structure of the engine which concerns on one Embodiment of this invention
  • (b) is the A section enlarged view of (a). It is the schematic of the combustion chamber structure of the engine which concerns on other embodiment of this invention.
  • FIG. 1 shows a combustion chamber structure of an engine according to an embodiment of the present invention.
  • an engine 10 in this embodiment, a diesel engine 10 includes a cylinder bore 12 formed in a cylinder block 11, and a piston made of aluminum or aluminum alloy that reciprocates up and down in the cylinder bore 12. 13, and a cylinder head 15 made of aluminum or aluminum alloy attached to the upper part of the cylinder block 11 with a gasket 14 interposed therebetween.
  • a space surrounded by the cylinder bore 12, the lower surface of the cylinder head 15, and the top of the piston 13 forms a combustion chamber 16.
  • the cylinder head 15 has an intake / exhaust port (intake port 17 and exhaust port 18) communicating with the combustion chamber 16, an intake valve 19 that opens and closes the intake port 17, an exhaust valve 20 that opens and closes the exhaust port 18, and fuel.
  • a fuel injection valve (injector) 21 for injecting the combustion chamber 16 from above is provided.
  • a cavity in the illustrated example, a cavity with a lip
  • 13 b is formed in the top surface 13 a of the piston 13.
  • the fuel in the combustion chamber 16 is automatically injected by injecting the fuel from the fuel injection valve 21 into the combustion chamber 16. Ignite and burn.
  • a plurality of nozzle holes 22 are provided at the tip of the fuel injection valve 21, and each nozzle 22 is configured so that the fuel injected from the nozzle 22 near the compression top dead center of the piston 13 is directed toward the lip 13c of the cavity 13b. It is oriented.
  • a heat shield film 23 for suppressing heat transfer from the combustion gas in the combustion chamber 16 to the piston 13 is formed on the top of the piston 13 forming the combustion chamber 16. More specifically, the thermal barrier film 23 is formed over the entire circumference on the top surface 13a of the piston 13 and a part of the cavity 13b (in the figure, in the vicinity of the lip portion 13c of the cavity 13b).
  • shot blasting and boehmite treatment are performed as an anchor treatment (pretreatment before applying paint) for the thermal barrier film 23. That is, in the present embodiment, by performing shot blasting on the surface of the piston 13, a large number of dimples 24 are generated on the surface of the piston 13, and further, boehmite treatment is performed on the surface of the piston 13 from above the dimple 24. Then, a boehmite film 25 is formed on the surface of the piston 13, and a heat insulating coating or a heat insulating coating is applied on the boehmite film 25 to form a heat insulating film 23 on the boehmite film 25 (FIG. 1B). )reference).
  • Shot blasting is a process in which a projection material (blast material) is projected onto the surface of a workpiece, and a dent due to the projection material is generated on the surface of the workpiece. This shot blasting is performed not only as an anchoring process for painting, but also for removal of burrs from the workpiece, surface grinding, and the like.
  • boehmite treatment the surface of the base (aluminum or aluminum alloy) and the like blowing hot steam (distilled water), an alumina 1 represented by a composition of Al 2 O 3 ⁇ H 2 O on the surface of the base It forms hydrates (boehmite).
  • the boehmite treatment may be performed by adding a small amount of an additive such as aqueous ammonia to high-temperature distilled water.
  • This boehmite treatment is mainly performed as an antirust treatment for aluminum.
  • alumina monohydrate (boehmite) formed by boehmite treatment has a needle-like crystal structure.
  • the thickness (film thickness) Ta (see FIG. 1B) of the heat shield film 23 is, for example, about 100 ⁇ m.
  • the depth (maximum depth) D of the dimple 24 (see FIG. 1B) is, for example, about 4 ⁇ m, and the diameter (maximum diameter) R (see FIG. 1B) of the dimple 24 is, for example, about 40 ⁇ m.
  • the thickness (film thickness) Tb (see FIG. 1B) of the boehmite film 25 is, for example, about 0.1 ⁇ m to 10 ⁇ m.
  • a boehmite treatment is performed on the surface of the piston 13 from above the dimple 24.
  • a boehmite film 25 is formed on the surface 13 and a heat insulating paint or a heat insulating paint is applied on the boehmite film 25, thereby forming a heat shielding film 23 on the boehmite film 25.
  • the heat-insulating paint or heat-shielding paint applied on the boehmite film 25 can bite into the boehmite film 25 firmly and deeply.
  • the bonding force between the heat insulating paint or the heat insulating paint (heat insulating film 23) and the surface of the piston 13 becomes very strong. Therefore, when forming the heat shield film 23 by applying a heat insulating paint or a heat insulating paint on the surface of the piston 13, the heat insulating paint or the heat insulating paint (heat insulating film 23) may be firmly bonded to the surface of the piston 13. It becomes possible.
  • the boehmite film 25 is chemically bonded to the surface of the piston 13 which is a base material (aluminum or aluminum alloy), the boehmite film 25 itself is firmly bonded to the surface of the piston 13. Therefore, by performing the boehmite treatment as the anchor treatment for the thermal barrier film 23, as well as the case where the anchor treatment is not performed, the heat insulating paint or the shielding paint is stronger than the case where the shot blasting is performed alone as the anchor treatment.
  • a thermal paint thermal barrier film 23
  • a heat insulating paint or thermal barrier paint ( A thermal barrier film 23) can be bonded to the surface of the piston 13.
  • a thermal barrier film 23 By performing shot blasting on the surface of the piston 13 before performing the boehmite treatment, as shown in FIG. 1B, a large number of dimples 24 are generated on the surface of the piston 13 to increase the surface area. This is because the contact area between the heat treatment film 25 and the boehmite film 25 is increased, and the heat-shielding film 23 is more firmly bonded to the boehmite film 25.
  • the heat shielding film 23 is formed on the top of the piston 13, but this is not a limitation, and as shown in FIG. 2, the lower surface of the cylinder head 15 that forms the combustion chamber 16 is formed. It is also possible to form the heat shield film 23.
  • the thermal barrier film 23 may be formed only on the portion of the lower surface of the cylinder head 15 that faces the combustion chamber 16.
  • the heat shield film 23 may be formed on the entire lower surface of the cylinder head 15. In either case, shot blasting and boehmite treatment are performed as an anchor treatment for the thermal barrier film 23, and a large number of dimples 24 and boehmite coating 25 are formed on the surface of the cylinder head 15.
  • the heat shield film 23 is formed on a part of the top surface 13 a and the cavity 13 b of the piston 13.
  • the present invention is not limited to this, and the heat shield film 23 is formed on the top of the piston 13.
  • a heat shielding film 23 may be formed on the entire top surface 13 a and the cavity 13 b of the piston 13.
  • shot blasting and boehmite treatment are performed as an anchor treatment for the thermal barrier film 23, and a large number of dimples 24 and boehmite film 25 are formed on the surface of the piston 13.
  • the engine 10 is not limited to a diesel engine, and may be a gasoline engine or the like. Further, the engine 10 is not limited to a direct injection type, and may be a spark ignition type.
  • the shape of the cavity 13b recessed at the top of the piston 13, in the case of a diesel engine is not limited to a lip type, and may be a reentrant type or a toroidal type.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Acoustics & Sound (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

In the present invention, when forming a heat shield film resulting from applying a heat insulating coating material or a heat shielding coating material to the wall surface of a combustion chamber, the heat insulating coating material or heat shielding coating material (heat shield film) is strongly bonded to the wall surface of the combustion chamber. This engine (10) combustion chamber structure is provided with a combustion chamber (16) demarcated by a cylinder bore (12), the bottom surface of a cylinder head (15), and the apex of a piston (13), and at least a portion of the wall surface of the combustion chamber (16) is configured from aluminum or an aluminum alloy. The engine (10) combustion chamber structure is provided with: a plurality of dimples (24) provided, in order to increase the surface area of the wall surface of the combustion chamber (16), to the wall surface of the combustion chamber (16) configured from aluminum or an aluminum alloy; a boehmite coating film (25) formed at the wall surface of the combustion chamber (16) to which the plurality of dimples (24) have been formed; and a heat shield film (23) provided to the surface of the boehmite coating film (25) and formed by applying a heat insulating coating material or a heat shielding coating material to the surface of the boehmite coating film (25).

Description

エンジンの燃焼室構造Engine combustion chamber structure
 本発明は、シリンダボアとシリンダヘッド下面とピストン頂部とで区画される燃焼室を有するエンジンの燃焼室構造に関する。 The present invention relates to a combustion chamber structure for an engine having a combustion chamber defined by a cylinder bore, a cylinder head lower surface, and a piston top.
 ディーゼルエンジンの燃焼室は、一般的に、シリンダボアとシリンダヘッドの下面とピストンの頂部とで区画される。ピストンの頂部にキャビティが凹設されており、ピストンの上方に配置された燃料噴射弁からキャビティ内に燃料が噴射されるようになっている。 The combustion chamber of a diesel engine is generally defined by a cylinder bore, the lower surface of the cylinder head, and the top of the piston. A cavity is recessed at the top of the piston, and fuel is injected into the cavity from a fuel injection valve disposed above the piston.
 このようなディーゼルエンジンの燃焼室構造は、例えば特許文献1に開示されている。 Such a combustion chamber structure of a diesel engine is disclosed in Patent Document 1, for example.
特開2011-117319号公報JP 2011-117319 A
 ところで、冷却損失(燃焼室内の燃焼ガスからの熱伝達)を低減するため、燃焼室の壁面(特に、キャビティの淵に沿って全周)を遮熱することが望ましい。 By the way, in order to reduce the cooling loss (heat transfer from the combustion gas in the combustion chamber), it is desirable to shield the wall of the combustion chamber (especially the entire circumference along the edge of the cavity).
 遮熱対象物を簡易的に遮熱する方法として、断熱塗料又は遮熱塗料と称されるものを遮熱対象物に塗布することが知られている。断熱塗料又は遮熱塗料を燃焼室の壁面に塗布する場合、燃料の燃焼時に火炎が断熱塗料又は遮熱塗料に当たること等から、断熱塗料又は遮熱塗料を燃焼室の壁面に強固に結合させる必要がある。 It is known that a heat insulation paint or a heat insulation paint is applied to the heat insulation object as a method for simply insulating the heat insulation object. When applying thermal insulation paint or thermal barrier paint to the wall surface of the combustion chamber, it is necessary to firmly bond the thermal insulation paint or thermal insulation paint to the wall surface of the combustion chamber because the flame hits the thermal insulation paint or thermal insulation paint during fuel combustion. There is.
 そこで、本発明の目的は、燃焼室の壁面に断熱塗料又は遮熱塗料の塗布による遮熱膜を形成する際に、断熱塗料又は遮熱塗料(遮熱膜)を燃焼室の壁面に強固に結合させることにある。 Therefore, an object of the present invention is to firmly apply a heat insulating paint or a heat insulating paint (heat insulating film) to the wall of the combustion chamber when forming a heat insulating film by applying a heat insulating paint or a heat insulating paint on the wall of the combustion chamber. It is to be combined.
 上述の目的を達成するために、本発明に係るエンジンの燃焼室構造は、シリンダボアとシリンダヘッド下面とピストン頂部とで区画される燃焼室を備え、前記燃焼室の壁面の少なくとも一部がアルミニウム又はアルミニウム合金から構成されるエンジンの燃焼室構造であって、アルミニウム又はアルミニウム合金から構成される前記燃焼室の壁面に前記燃焼室の壁面の表面積を増加させるために設けられた多数のディンプルと、前記多数のディンプルが設けられた前記燃焼室の壁面に形成されたベーマイト皮膜と、前記ベーマイト皮膜の表面に設けられ、前記ベーマイト皮膜の表面に断熱塗料又は遮熱塗料を塗布することにより形成される遮熱膜とを備えるものである。 In order to achieve the above object, a combustion chamber structure of an engine according to the present invention includes a combustion chamber defined by a cylinder bore, a cylinder head lower surface, and a piston top, and at least a part of the wall surface of the combustion chamber is made of aluminum or A combustion chamber structure of an engine composed of an aluminum alloy, wherein a plurality of dimples provided on the wall surface of the combustion chamber composed of aluminum or aluminum alloy to increase the surface area of the wall surface of the combustion chamber; A boehmite film formed on the wall surface of the combustion chamber provided with a large number of dimples, and a barrier formed by applying a heat insulating coating or a thermal barrier coating on the surface of the boehmite film. And a hot film.
 前記多数のディンプルは、投射材を前記燃焼室の壁面に投射するショットブラストを行うことにより前記燃焼室の壁面に設けられるものであっても良い。 The plurality of dimples may be provided on the wall surface of the combustion chamber by performing shot blasting for projecting a projection material onto the wall surface of the combustion chamber.
 前記ベーマイト皮膜は、前記燃焼室の壁面にベーマイト処理を施すことにより前記燃焼室の壁面に形成されるものであっても良い。 The boehmite film may be formed on the wall surface of the combustion chamber by performing a boehmite treatment on the wall surface of the combustion chamber.
 本発明によれば、燃焼室の壁面に断熱塗料又は遮熱塗料の塗布による遮熱膜を形成する際に、断熱塗料又は遮熱塗料(遮熱膜)を燃焼室の壁面に強固に結合させることができるという優れた効果を奏する。 According to the present invention, when forming a heat-shielding film by applying a heat-insulating paint or a heat-shielding paint on the wall surface of the combustion chamber, the heat-insulating paint or heat-shielding paint (heat-shielding film) is firmly bonded to the wall surface of the combustion chamber. There is an excellent effect of being able to.
(a)は本発明の一実施形態に係るエンジンの燃焼室構造の概略図であり、(b)は(a)のA部拡大図である。(A) is the schematic of the combustion chamber structure of the engine which concerns on one Embodiment of this invention, (b) is the A section enlarged view of (a). 本発明の他の実施形態に係るエンジンの燃焼室構造の概略図である。It is the schematic of the combustion chamber structure of the engine which concerns on other embodiment of this invention.
 以下、本発明の好適な実施形態を添付図面に基づいて詳述する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
 図1に本発明の一実施形態に係るエンジンの燃焼室構造を示す。 FIG. 1 shows a combustion chamber structure of an engine according to an embodiment of the present invention.
 図1(a)に示すように、エンジン(本実施形態では、ディーゼルエンジン)10は、シリンダブロック11に形成されたシリンダボア12と、シリンダボア12内を上下に往復運動するアルミニウム又はアルミニウム合金製のピストン13と、シリンダブロック11の上部にガスケット14を挟んで取り付けられたアルミニウム又はアルミニウム合金製のシリンダヘッド15とを備えている。シリンダボア12と、シリンダヘッド15の下面と、ピストン13の頂部とで囲まれた空間が、燃焼室16を形成する。シリンダヘッド15には、燃焼室16に連通する吸排気ポート(吸気ポート17及び排気ポート18)と、吸気ポート17を開閉する吸気弁19と、排気ポート18を開閉する排気弁20と、燃料を上方から燃焼室16内に噴射する燃料噴射弁(インジェクタ)21とが設けられている。また、ピストン13の頂面13aには、キャビティ(図例では、リップ付タイプのキャビティ)13bが凹設されている。 As shown in FIG. 1 (a), an engine (in this embodiment, a diesel engine) 10 includes a cylinder bore 12 formed in a cylinder block 11, and a piston made of aluminum or aluminum alloy that reciprocates up and down in the cylinder bore 12. 13, and a cylinder head 15 made of aluminum or aluminum alloy attached to the upper part of the cylinder block 11 with a gasket 14 interposed therebetween. A space surrounded by the cylinder bore 12, the lower surface of the cylinder head 15, and the top of the piston 13 forms a combustion chamber 16. The cylinder head 15 has an intake / exhaust port (intake port 17 and exhaust port 18) communicating with the combustion chamber 16, an intake valve 19 that opens and closes the intake port 17, an exhaust valve 20 that opens and closes the exhaust port 18, and fuel. A fuel injection valve (injector) 21 for injecting the combustion chamber 16 from above is provided. In addition, a cavity (in the illustrated example, a cavity with a lip) 13 b is formed in the top surface 13 a of the piston 13.
 図1(a)に示すエンジン10では、例えばピストン13が圧縮上死点付近に位置するときに燃料を燃料噴射弁21から燃焼室16内に噴射することで、燃焼室16内の燃料が自着火して燃焼する。燃料噴射弁21の先端部には噴口22が複数設けられており、各噴口22は、ピストン13の圧縮上死点付近において噴口22から噴射された燃料がキャビティ13bのリップ部13cに向かうように指向されている。 In the engine 10 shown in FIG. 1A, for example, when the piston 13 is located near the compression top dead center, the fuel in the combustion chamber 16 is automatically injected by injecting the fuel from the fuel injection valve 21 into the combustion chamber 16. Ignite and burn. A plurality of nozzle holes 22 are provided at the tip of the fuel injection valve 21, and each nozzle 22 is configured so that the fuel injected from the nozzle 22 near the compression top dead center of the piston 13 is directed toward the lip 13c of the cavity 13b. It is oriented.
 本実施形態では、燃焼室16を形成するピストン13の頂部に、燃焼室16内の燃焼ガスからピストン13への伝熱を抑制するための遮熱膜23が形成されている。より詳細には、遮熱膜23は、ピストン13の頂面13a及びキャビティ13bの一部(図例では、キャビティ13bのリップ部13c近傍)に全周に亘って形成されている。 In this embodiment, a heat shield film 23 for suppressing heat transfer from the combustion gas in the combustion chamber 16 to the piston 13 is formed on the top of the piston 13 forming the combustion chamber 16. More specifically, the thermal barrier film 23 is formed over the entire circumference on the top surface 13a of the piston 13 and a part of the cavity 13b (in the figure, in the vicinity of the lip portion 13c of the cavity 13b).
 本実施形態では、ショットブラスト及びベーマイト処理を遮熱膜23のためのアンカー処理(塗料を塗布する前の前処理)として行う。即ち、本実施形態では、ピストン13の表面にショットブラストを行うことにより、ピストン13の表面に多数のディンプル24を生じさせ、さらに、ディンプル24の上からピストン13の表面にベーマイト処理を施すことにより、ピストン13の表面にベーマイト皮膜25を形成し、そのベーマイト皮膜25の上に断熱塗料又は遮熱塗料を塗布することにより、ベーマイト皮膜25の上に遮熱膜23を形成する(図1(b)参照)。 In this embodiment, shot blasting and boehmite treatment are performed as an anchor treatment (pretreatment before applying paint) for the thermal barrier film 23. That is, in the present embodiment, by performing shot blasting on the surface of the piston 13, a large number of dimples 24 are generated on the surface of the piston 13, and further, boehmite treatment is performed on the surface of the piston 13 from above the dimple 24. Then, a boehmite film 25 is formed on the surface of the piston 13, and a heat insulating coating or a heat insulating coating is applied on the boehmite film 25 to form a heat insulating film 23 on the boehmite film 25 (FIG. 1B). )reference).
 ショットブラストとは、投射材(ブラスト材)を加工対象物の表面に投射して、加工対象物の表面に投射材による凹みを生じさせるものである。このショットブラストは、塗装のためのアンカー処理としてのみならず、加工対象物のバリの除去、表面研削等のためにも行われるものである。 Shot blasting is a process in which a projection material (blast material) is projected onto the surface of a workpiece, and a dent due to the projection material is generated on the surface of the workpiece. This shot blasting is performed not only as an anchoring process for painting, but also for removal of burrs from the workpiece, surface grinding, and the like.
 ベーマイト処理とは、母材(アルミニウム又はアルミニウム合金)の表面に高温の水蒸気(蒸留水)を吹き付ける等して、母材の表面にAl23・H2Oの組成で表されるアルミナ1水和物(ベーマイト)を形成するものである。また、ベーマイト処理においては、高温の蒸留水に少量のアンモニア水等の添加剤を添加して行う場合もある。このベーマイト処理は、主にアルミニウムの防錆処理として行われるものである。また、ベーマイト処理により形成されるアルミナ1水和物(ベーマイト)は、針状結晶構造である。 The boehmite treatment, the surface of the base (aluminum or aluminum alloy) and the like blowing hot steam (distilled water), an alumina 1 represented by a composition of Al 2 O 3 · H 2 O on the surface of the base It forms hydrates (boehmite). In addition, the boehmite treatment may be performed by adding a small amount of an additive such as aqueous ammonia to high-temperature distilled water. This boehmite treatment is mainly performed as an antirust treatment for aluminum. In addition, alumina monohydrate (boehmite) formed by boehmite treatment has a needle-like crystal structure.
 遮熱膜23の厚さ(膜厚さ)Ta(図1(b)参照)は、例えば100μm程度とする。また、ディンプル24の深さ(最大深さ)D(図1(b)参照)は、例えば4μm程度とし、ディンプル24の直径(最大直径)R(図1(b)参照)は、例えば40μm程度とする。さらに、ベーマイト皮膜25の厚さ(皮膜厚さ)Tb(図1(b)参照)は、例えば0.1μm~10μm程度とする。 The thickness (film thickness) Ta (see FIG. 1B) of the heat shield film 23 is, for example, about 100 μm. The depth (maximum depth) D of the dimple 24 (see FIG. 1B) is, for example, about 4 μm, and the diameter (maximum diameter) R (see FIG. 1B) of the dimple 24 is, for example, about 40 μm. And Further, the thickness (film thickness) Tb (see FIG. 1B) of the boehmite film 25 is, for example, about 0.1 μm to 10 μm.
 本実施形態の作用効果を説明する。 The function and effect of this embodiment will be described.
 本実施形態では、ピストン13の表面にショットブラストを行うことにより、ピストン13の表面に多数のディンプル24を生じさせ、さらに、ディンプル24の上からピストン13の表面にベーマイト処理を施すことにより、ピストン13の表面にベーマイト皮膜25を形成し、そのベーマイト皮膜25の上に断熱塗料又は遮熱塗料を塗布することにより、ベーマイト皮膜25の上に遮熱膜23を形成するようにしている。 In the present embodiment, by performing shot blasting on the surface of the piston 13, a large number of dimples 24 are generated on the surface of the piston 13, and further, a boehmite treatment is performed on the surface of the piston 13 from above the dimple 24. A boehmite film 25 is formed on the surface 13 and a heat insulating paint or a heat insulating paint is applied on the boehmite film 25, thereby forming a heat shielding film 23 on the boehmite film 25.
 ベーマイト皮膜25を構成するアルミナ1水和物(ベーマイト)が針状結晶構造であるため、ベーマイト皮膜25の上に塗布した断熱塗料又は遮熱塗料がベーマイト皮膜25にしっかりと深く食い込むことができ、断熱塗料又は遮熱塗料(遮熱膜23)とピストン13の表面との結合力は非常に強固となる。そのため、ピストン13の表面に断熱塗料又は遮熱塗料の塗布による遮熱膜23を形成する際に、断熱塗料又は遮熱塗料(遮熱膜23)をピストン13の表面に強固に結合させることが可能となる。 Since the alumina monohydrate (boehmite) constituting the boehmite film 25 has a needle-like crystal structure, the heat-insulating paint or heat-shielding paint applied on the boehmite film 25 can bite into the boehmite film 25 firmly and deeply. The bonding force between the heat insulating paint or the heat insulating paint (heat insulating film 23) and the surface of the piston 13 becomes very strong. Therefore, when forming the heat shield film 23 by applying a heat insulating paint or a heat insulating paint on the surface of the piston 13, the heat insulating paint or the heat insulating paint (heat insulating film 23) may be firmly bonded to the surface of the piston 13. It becomes possible.
 また、ベーマイト皮膜25は、母材(アルミニウム又はアルミニウム合金)であるピストン13の表面と化学結合しているため、ベーマイト皮膜25自体がピストン13の表面に強固に結合する。よって、ベーマイト処理を遮熱膜23のためのアンカー処理として行うことにより、アンカー処理を行わない場合に対しては勿論、ショットブラストを単独でアンカー処理として行う場合よりも強固に、断熱塗料又は遮熱塗料(遮熱膜23)をピストン13の表面に結合させることができる。 Further, since the boehmite film 25 is chemically bonded to the surface of the piston 13 which is a base material (aluminum or aluminum alloy), the boehmite film 25 itself is firmly bonded to the surface of the piston 13. Therefore, by performing the boehmite treatment as the anchor treatment for the thermal barrier film 23, as well as the case where the anchor treatment is not performed, the heat insulating paint or the shielding paint is stronger than the case where the shot blasting is performed alone as the anchor treatment. A thermal paint (thermal barrier film 23) can be bonded to the surface of the piston 13.
 さらに、ショットブラストとベーマイト処理とを組み合わせることにより、アンカー処理を行わない場合に対しては勿論、ショットブラスト又はベーマイト処理を単独でアンカー処理として行う場合よりも強固に、断熱塗料又は遮熱塗料(遮熱膜23)をピストン13の表面に結合させることができる。ベーマイト処理を行う前にショットブラストをピストン13の表面に行うことで、図1(b)に示すように、ピストン13の表面に多数のディンプル24が生じることで表面積が増加し、遮熱膜23とベーマイト皮膜25との接触面積が増加し、遮熱膜23がベーマイト皮膜25にさらに強固に結合するためである。 Furthermore, by combining shot blasting and boehmite treatment, of course, when not performing anchor treatment, as well as when performing shot blasting or boehmite treatment alone as an anchor treatment, a heat insulating paint or thermal barrier paint ( A thermal barrier film 23) can be bonded to the surface of the piston 13. By performing shot blasting on the surface of the piston 13 before performing the boehmite treatment, as shown in FIG. 1B, a large number of dimples 24 are generated on the surface of the piston 13 to increase the surface area. This is because the contact area between the heat treatment film 25 and the boehmite film 25 is increased, and the heat-shielding film 23 is more firmly bonded to the boehmite film 25.
 以上、本発明の好適な実施形態について説明したが、本発明は上述の実施形態には限定されず他の様々な実施形態を採ることが可能である。 The preferred embodiments of the present invention have been described above, but the present invention is not limited to the above-described embodiments, and various other embodiments can be adopted.
 例えば、上述の実施形態では、ピストン13の頂部に遮熱膜23を形成するとしたが、これには限定はされず、図2に示すように、燃焼室16を形成するシリンダヘッド15の下面に遮熱膜23を形成することも可能である。シリンダヘッド15の下面に遮熱膜23を形成する場合には、図2に示すように、シリンダヘッド15の下面における燃焼室16内に臨む部分のみに遮熱膜23を形成しても良く、図示はしないが、シリンダヘッド15の下面全体に遮熱膜23を形成しても良い。いずれの場合も、ショットブラスト及びベーマイト処理を遮熱膜23のためのアンカー処理として行い、シリンダヘッド15の表面に多数のディンプル24及びベーマイト皮膜25を形成する。 For example, in the above-described embodiment, the heat shielding film 23 is formed on the top of the piston 13, but this is not a limitation, and as shown in FIG. 2, the lower surface of the cylinder head 15 that forms the combustion chamber 16 is formed. It is also possible to form the heat shield film 23. When the thermal barrier film 23 is formed on the lower surface of the cylinder head 15, as shown in FIG. 2, the thermal barrier film 23 may be formed only on the portion of the lower surface of the cylinder head 15 that faces the combustion chamber 16. Although not shown, the heat shield film 23 may be formed on the entire lower surface of the cylinder head 15. In either case, shot blasting and boehmite treatment are performed as an anchor treatment for the thermal barrier film 23, and a large number of dimples 24 and boehmite coating 25 are formed on the surface of the cylinder head 15.
 また、上述の実施形態では、ピストン13の頂面13a及びキャビティ13bの一部に遮熱膜23を形成したが、これには限定はされず、ピストン13の頂部に遮熱膜23を形成する際には、図2に示すように、ピストン13の頂面13a及びキャビティ13bの全体に遮熱膜23を形成しても良い。この場合も、ショットブラスト及びベーマイト処理を遮熱膜23のためのアンカー処理として行い、ピストン13の表面に多数のディンプル24及びベーマイト皮膜25を形成する。 In the above-described embodiment, the heat shield film 23 is formed on a part of the top surface 13 a and the cavity 13 b of the piston 13. However, the present invention is not limited to this, and the heat shield film 23 is formed on the top of the piston 13. In this case, as shown in FIG. 2, a heat shielding film 23 may be formed on the entire top surface 13 a and the cavity 13 b of the piston 13. Also in this case, shot blasting and boehmite treatment are performed as an anchor treatment for the thermal barrier film 23, and a large number of dimples 24 and boehmite film 25 are formed on the surface of the piston 13.
 また、エンジン10は、ディーゼルエンジンには限定はされず、ガソリンエンジン等であっても良い。さらに、エンジン10は、直噴式のものには限定はされず、火花点火式のものであっても良い。 Further, the engine 10 is not limited to a diesel engine, and may be a gasoline engine or the like. Further, the engine 10 is not limited to a direct injection type, and may be a spark ignition type.
 さらに、ピストン13の頂部に凹設されるキャビティ13bの形状に関しては、ディーゼルエンジンの場合、リップ付タイプに限定はされず、リエントラントタイプやトロイダルタイプ等であっても良い。 Furthermore, regarding the shape of the cavity 13b recessed at the top of the piston 13, in the case of a diesel engine, it is not limited to a lip type, and may be a reentrant type or a toroidal type.
10 エンジン
12 シリンダボア
13 ピストン
15 シリンダヘッド
16 燃焼室
23 遮熱膜
24 ディンプル
25 ベーマイト皮膜
10 Engine 12 Cylinder bore 13 Piston 15 Cylinder head 16 Combustion chamber 23 Heat shield film 24 Dimple 25 Boehmite film

Claims (3)

  1.  シリンダボアとシリンダヘッド下面とピストン頂部とで区画される燃焼室を備え、前記燃焼室の壁面の少なくとも一部がアルミニウム又はアルミニウム合金から構成されるエンジンの燃焼室構造であって、アルミニウム又はアルミニウム合金から構成される前記燃焼室の壁面に前記燃焼室の壁面の表面積を増加させるために設けられた多数のディンプルと、前記多数のディンプルが設けられた前記燃焼室の壁面に形成されたベーマイト皮膜と、前記ベーマイト皮膜の表面に設けられ、前記ベーマイト皮膜の表面に断熱塗料又は遮熱塗料を塗布することにより形成される遮熱膜とを備えることを特徴とするエンジンの燃焼室構造。 A combustion chamber structure of an engine comprising a combustion chamber defined by a cylinder bore, a cylinder head lower surface and a piston top, wherein at least a part of a wall surface of the combustion chamber is made of aluminum or an aluminum alloy, A large number of dimples provided on the wall surface of the combustion chamber configured to increase the surface area of the wall surface of the combustion chamber; and a boehmite film formed on the wall surface of the combustion chamber provided with the multiple dimples; A combustion chamber structure for an engine, comprising: a heat shielding film provided on a surface of the boehmite film and formed by applying a heat insulating paint or a heat shielding paint on the surface of the boehmite film.
  2.  前記多数のディンプルは、投射材を前記燃焼室の壁面に投射するショットブラストを行うことにより前記燃焼室の壁面に設けられる請求項1に記載のエンジンの燃焼室構造。 2. The engine combustion chamber structure according to claim 1, wherein the plurality of dimples are provided on a wall surface of the combustion chamber by performing shot blasting for projecting a projection material onto the wall surface of the combustion chamber.
  3.  前記ベーマイト皮膜は、前記燃焼室の壁面にベーマイト処理を施すことにより前記燃焼室の壁面に形成される請求項1又は2に記載のエンジンの燃焼室構造。 The engine combustion chamber structure according to claim 1 or 2, wherein the boehmite film is formed on a wall surface of the combustion chamber by performing a boehmite treatment on the wall surface of the combustion chamber.
PCT/JP2013/060195 2012-04-25 2013-04-03 Engine combustion chamber structure WO2013161529A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-100196 2012-04-25
JP2012100196A JP5987450B2 (en) 2012-04-25 2012-04-25 Engine combustion chamber structure

Publications (1)

Publication Number Publication Date
WO2013161529A1 true WO2013161529A1 (en) 2013-10-31

Family

ID=49482861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060195 WO2013161529A1 (en) 2012-04-25 2013-04-03 Engine combustion chamber structure

Country Status (2)

Country Link
JP (1) JP5987450B2 (en)
WO (1) WO2013161529A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016056161A1 (en) * 2014-10-07 2016-04-14 Toyota Jidosha Kabushiki Kaisha Internal combustion engine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6056836B2 (en) * 2014-11-18 2017-01-11 マツダ株式会社 Combustion chamber structure of direct injection engine
US20170145951A1 (en) * 2015-11-19 2017-05-25 Caterpillar Inc. Textured Piston
JP6233391B2 (en) * 2015-11-26 2017-11-22 トヨタ自動車株式会社 Internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5984240U (en) * 1982-11-29 1984-06-07 イズミ工業株式会社 Piston for internal combustion engine
JPS6158915A (en) * 1984-08-29 1986-03-26 Nissan Motor Co Ltd Wall surface structure of internal-combustion chamber of internal combustion engine
JPH03224144A (en) * 1989-12-18 1991-10-03 Fujitsu Ltd Optical disk substrate
JP2001329273A (en) * 2000-05-25 2001-11-27 Mitsubishi Heavy Ind Ltd Apparatus for selective oxidation of carbon monoxide and method of removing carbon monoxide
JP2012072745A (en) * 2010-09-30 2012-04-12 Mazda Motor Corp Heat insulating structure of aluminum alloy product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5984240U (en) * 1982-11-29 1984-06-07 イズミ工業株式会社 Piston for internal combustion engine
JPS6158915A (en) * 1984-08-29 1986-03-26 Nissan Motor Co Ltd Wall surface structure of internal-combustion chamber of internal combustion engine
JPH03224144A (en) * 1989-12-18 1991-10-03 Fujitsu Ltd Optical disk substrate
JP2001329273A (en) * 2000-05-25 2001-11-27 Mitsubishi Heavy Ind Ltd Apparatus for selective oxidation of carbon monoxide and method of removing carbon monoxide
JP2012072745A (en) * 2010-09-30 2012-04-12 Mazda Motor Corp Heat insulating structure of aluminum alloy product

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016056161A1 (en) * 2014-10-07 2016-04-14 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
CN106795831A (en) * 2014-10-07 2017-05-31 丰田自动车株式会社 Explosive motor
US10309293B2 (en) 2014-10-07 2019-06-04 Toyota Jidosha Kabushiki Kaisha Internal combustion engine

Also Published As

Publication number Publication date
JP2013227911A (en) 2013-11-07
JP5987450B2 (en) 2016-09-07

Similar Documents

Publication Publication Date Title
JP5082987B2 (en) Internal combustion engine
US9957916B2 (en) Internal combustion engine
WO2013161529A1 (en) Engine combustion chamber structure
JP6714198B2 (en) Gas engine
JP5617785B2 (en) Internal combustion engine
JP5974701B2 (en) Engine combustion chamber structure
JP2019124187A (en) Compression self-ignition type internal combustion engine
JP6544378B2 (en) Engine combustion chamber structure
JPH11193721A (en) Direct injection type spark-ignition engine
JP2016094925A (en) Internal combustion engine
WO2018198786A1 (en) Internal-combustion engine piston, and method for controlling cooling of internal-combustion engine piston
JP2013087721A (en) Method of forming heat shield film and internal combustion engine
JP6446973B2 (en) Internal combustion engine
WO2013161528A1 (en) Engine combustion chamber structure
JP2014088863A (en) Internal combustion engine
JP2014015843A (en) Internal combustion engine
JP2013087719A (en) Method of forming heat shield film and internal combustion engine
JP6526456B2 (en) diesel engine
JP5983110B2 (en) Internal combustion engine
WO2013161531A1 (en) Internal combustion engine piston
JP2013170555A (en) Heat insulation structure and method of manufacturing the same
JPS5912119A (en) Combustion chamber structure of internal combustion engine
JP4900311B2 (en) In-cylinder injection spark ignition internal combustion engine
JP6971746B2 (en) An engine component having a heat shield film and a method for manufacturing the engine component.
JP2016008545A (en) Combustion chamber structure for water emulsion fuel injection of diesel engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13780651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13780651

Country of ref document: EP

Kind code of ref document: A1