WO2018037616A1 - Piston for internal combustion engine and method for manufacturing piston for internal combustion engine - Google Patents

Piston for internal combustion engine and method for manufacturing piston for internal combustion engine Download PDF

Info

Publication number
WO2018037616A1
WO2018037616A1 PCT/JP2017/014608 JP2017014608W WO2018037616A1 WO 2018037616 A1 WO2018037616 A1 WO 2018037616A1 JP 2017014608 W JP2017014608 W JP 2017014608W WO 2018037616 A1 WO2018037616 A1 WO 2018037616A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
low heat
conduction part
forming material
heat conduction
Prior art date
Application number
PCT/JP2017/014608
Other languages
French (fr)
Japanese (ja)
Inventor
圭太郎 宍戸
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2018037616A1 publication Critical patent/WO2018037616A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/10Pistons  having surface coverings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/10Pistons  having surface coverings
    • F02F3/12Pistons  having surface coverings on piston heads
    • F02F3/14Pistons  having surface coverings on piston heads within combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J1/00Pistons; Trunk pistons; Plungers
    • F16J1/01Pistons; Trunk pistons; Plungers characterised by the use of particular materials

Definitions

  • the present invention relates to a piston for an internal combustion engine.
  • Patent Document 1 a piston of an internal combustion engine is known (for example, Patent Document 1).
  • the heat insulating material provided on the crown surface may fall off and the wear of the cylinder or the piston may be accelerated.
  • the piston of the internal combustion engine according to one embodiment of the present invention has a low heat conduction part made of a material containing a substance functioning as a solid lubricant in the piston head.
  • FIG. 1 schematically shows a cross section of a part of an engine cut by a plane passing through the axis of one cylinder of the first embodiment.
  • 1 is a perspective view of a piston according to a first embodiment.
  • FIG. 3 is a top view of the piston according to the first embodiment viewed from the crown surface side.
  • 1 schematically shows a cross section (hereinafter referred to as an axial cross section) in which a part of a low heat conduction portion and a piston head (hereinafter referred to as a low heat conduction portion) of the first embodiment is cut by a plane parallel to the axis of the piston.
  • 2 is an enlarged photograph showing a part of an axial cross section of a low heat conduction portion or the like of the first embodiment.
  • FIG. 1 schematically shows a coating process of a first embodiment.
  • FIG. 2 is an axial sectional view schematically showing a part of the coating film after the drying step of the first embodiment.
  • FIG. 5 is an axial cross-sectional view schematically showing a part of a low heat conduction portion and the like of a second embodiment.
  • FIG. 5 is an axial direction cross-sectional view schematically showing a part of a low heat conduction portion and the like according to a third embodiment.
  • FIG. 10 is an axial cross-sectional view schematically showing a part of a coating film after the coating step of the third embodiment.
  • pouring process of 3rd Embodiment are shown typically.
  • FIG. 6 is an axial cross-sectional view schematically showing a part of a coating film after a spraying process of a third embodiment.
  • FIG. 9 is an axial cross-sectional view schematically showing a part of a low heat conduction portion and the like of a fourth embodiment.
  • FIG. 9 is an axial cross-sectional view schematically showing a part of a low heat conduction portion and the like according to a fifth embodiment.
  • FIG. 10 is a photograph showing an enlarged part of an axial cross section of a low thermal conductive portion or the like according to a fifth embodiment.
  • FIG. 10 is an axial cross-sectional view schematically showing a part of a low heat conduction portion and the like of a sixth embodiment.
  • FIG. 10 is an axial cross-sectional view schematically showing a part of a low heat conduction portion and the like according to a seventh embodiment.
  • FIG. 10 is an axial cross-sectional view schematically showing a part of a low thermal conductive portion or the like according to an eighth embodiment.
  • FIG. 10 is an axial cross-sectional view schematically showing a part of a low heat conduction portion or the like according to a ninth embodiment.
  • the material heating process of 9th Embodiment is typically shown.
  • FIG. 16 is an axial cross-sectional view schematically showing a part of a low heat conduction portion or the like according to a tenth embodiment. A part of 1st application
  • FIG. 20 is an axial cross-sectional view schematically showing a part of the first coating film immediately after the first application step of the tenth embodiment.
  • FIG. 15 is an axial cross-sectional view schematically showing a part of a first coating film when a certain amount of time has passed since the first application step of the tenth embodiment.
  • FIG. 20 is an axial cross-sectional view schematically showing a part of the first mixed material material applied to the crown surface in the first application process of the eleventh embodiment.
  • FIG. 16 is an axial cross-sectional view schematically showing a part of a low thermal conductive portion or the like according to a twelfth embodiment.
  • FIG. 20 is a top view of a piston according to an eighteenth embodiment viewed from the crown side.
  • FIG. 23 is a perspective view of a piston of another example of the 18th embodiment.
  • FIG. 23 is a top view of a piston of another example of the eighteenth embodiment viewed from the crown surface side.
  • the internal combustion engine (engine) 100 of the present embodiment shown in FIG. 1 is a 4-stroke gasoline engine.
  • the engine 100 includes a piston 1, a cylinder block 101, a cylinder head 104, a connecting rod (connecting rod) 106, a crankshaft, a valve 107, an ignition device 108, and a combustion chamber 11.
  • the valve 107 has two intake valves and two exhaust valves.
  • the cylinder block 101 includes a cylindrical cylinder liner (cylinder sleeve) 102.
  • the inner peripheral side of the cylinder liner 102 functions as the inner wall of the cylinder 10.
  • the cylinder head 104 is installed in the cylinder block 101 so as to close the opening of the cylinder 10.
  • the cylinder head 104 is provided with a valve 107, a fuel injection nozzle, and an ignition device 108.
  • a crankshaft is rotatably installed on the cylinder block 101.
  • the piston 1 is accommodated in the cylinder 10 so as to be reciprocally movable.
  • the piston 1 has a piston main body 2 and a low heat conducting portion 3.
  • the piston body 2 is formed of an aluminum alloy (for example, Al—Si AC8A) as a material (raw material).
  • the piston 1 (piston main body 2) has a bottomed cylindrical shape, and includes a piston head (crown portion) 4, a piston boss (apron portion) 5, and a piston skirt (skirt portion) 6.
  • the direction in which the axial center of the piston 1 extends is referred to as the axial direction.
  • the side of the piston head 4 with respect to the piston boss 5 and the piston skirt 6 is referred to as one side, and the opposite side is referred to as the other side.
  • the piston head 4 has a crown surface portion 40 and a land portion 41.
  • the crown surface portion 40 is on one side in the axial direction of the piston head 4 and has a crown surface (top surface) 400.
  • the crown surface 400 extends perpendicular to the axis of the piston 1 and has a substantially circular outline when viewed from one axial direction.
  • the combustion chamber 11 is defined between the crown surface 400 and the cylinder head 104.
  • the combustion chamber 11 is a pent roof type.
  • the crown surface 400 is exposed to the combustion gas in the combustion chamber 11.
  • the crown surface portion 40 has a cavity 401.
  • the cavity 401 is a recess formed in the crown surface portion 40 and defines the combustion chamber 11.
  • the piston head 4 includes the cavity 401 on the combustion chamber 11 side (side facing the combustion chamber 11).
  • the cavity 401 is in the shape of a shallow dish that is substantially at the center of the crown surface 400 and has a flat bottom surface.
  • the crown surface portion 40 has four recesses (inclined valve recesses) 402 along the tip shape of each valve 107 at the peripheral edge of the cavity 401.
  • the land portion 41 extends from the outer peripheral side of the crown surface portion 40 to the other side in the axial direction.
  • a piston ring 7 is installed in the ring groove 410.
  • the piston boss 5 and the piston skirt 6 extend from the piston head 4 to the other side in the axial direction, and are on the opposite side of the combustion chamber 11 with respect to the piston head 4.
  • the inner peripheral side of the piston skirt 6 and the piston boss 5 is hollow.
  • Each piston boss 5 has a pin boss 50.
  • Each pin boss 50 has a piston pin hole 51.
  • the piston pin hole 51 extends through the pin boss 50 in the radial direction of the piston 1.
  • the piston skirt 6 is sandwiched between the piston bosses 5 and 5 in the circumferential direction of the piston 1.
  • Both piston skirts 6 and 6 are connected by a piston boss 5.
  • the piston skirt 6 slides against the inner wall of the cylinder 10.
  • the piston pin end 51 is fitted into the piston pin hole 51.
  • the piston 1 is connected to one end side (small end portion) of the connecting rod 106 via a piston pin.
  • the other end side (large end portion) of the connecting rod 106 is connected to the crankshaft.
  • Cooling water circulates in the passage 103 inside the cylinder liner 102.
  • An oil jet 105 is installed in the cylinder block 101.
  • the heat transferred from the combustion chamber 11 to the piston head 4 is released by being transferred to the cylinder liner 102 and the cooling water therein through the piston ring 7.
  • the heat is also released when oil adheres to the inner peripheral side (back side) of the piston 1 and flows out.
  • the adhesion of the oil is performed by, for example, the injection of oil from the oil jet 105.
  • the low heat conduction unit 3 is a structure for reducing the thermal conductivity from the combustion chamber 11 to the piston head 4 (piston body 2), and is on the combustion chamber 11 side of the piston head 4 and faces the combustion chamber 11 It is formed all over (crown surface 400). A part of the low heat conducting unit 3 is accommodated in the cavity 401. As shown in FIGS. 4 and 5, the low heat conducting portion 3 has a layer shape that extends along the crown surface 400 (including the bottom surface of the cavity 401) of the piston body 2. The low heat conducting part 3 has a layer 30. The thickness of the layer 30 is arbitrary. Of the materials for forming the low heat conducting section 3, those that are solid (during operation of the engine 100) are hereinafter referred to as solid materials.
  • the air gap 31 is a gap between the solid materials or between the solid material and the piston body 2.
  • the air gap 31 is sandwiched and closed by a solid material on both sides of the piston 1 in an arbitrary radial direction.
  • the air gap 31 is closed on the one side (combustion chamber 11 side) in the axial direction (the direction perpendicular to the direction in which the low heat conducting section 3 spreads in layers) (the first air gap 311), and on this one side Some are not closed (second air gap 312).
  • the first gap 311 is a closed space sandwiched between the solid material on both sides in the axial direction or sandwiched between the solid material and the piston body 2.
  • the second gap 312 is an open space opened to the combustion chamber 11 on one side in the axial direction and closed with a solid material or the piston body 2 on the other side in the axial direction.
  • the second air gap 312 is a concave portion of fine irregularities on the surface of the low heat conducting unit 3 on the combustion chamber 11 side, and opens on the combustion chamber 11 side in the low heat conducting unit 3.
  • Solid material includes carbon and binder.
  • Carbon contains 50% by volume or more of SP2 structure components, that is, graphite (graphite).
  • graphite graphite
  • carbon black may be included.
  • Carbon particles are agglomerated.
  • the average particle diameter of this lump is 20 ⁇ m or more, preferably 100 ⁇ m or less, and more preferably 50 ⁇ m or less.
  • the binder is a synthetic resin and has a function of bonding carbon particles (lumps) to each other.
  • the binder is an engineering plastic. For example, at least one of polyamide imide, polyamide, and epoxy resin can be used.
  • the low heat conduction part 3 is a layered structure in which carbon blocks (and binders) are deposited. In the layer 30 of the low heat conducting portion 3, carbon lump (particles) and binder are mixed and dispersed.
  • the voids 31 are between a plurality of carbon masses (and binders).
  • the manufacturing method includes a piston body forming step and a low heat conduction portion forming step.
  • the piston body forming process includes a casting process, a heat treatment process, and a machining process.
  • a prototype (intermediate workpiece) of the piston body 2 is cast. Specifically, a molten aluminum alloy is poured into a mold and solidified. At this time, the inner periphery of the piston body 2 is formed, and the basic shape of the cavity 401 is formed.
  • heat treatment step heat treatment is performed. As a result, the properties of the cast prototype are improved and adjusted to appropriate strength and hardness.
  • the heat-treated prototype is machined with a lathe or the like.
  • the piston pin hole 51 and the ring groove 410 are processed, and the outer diameter of the piston body 2 such as the outer periphery of the piston head 4 and the piston skirt 6 is finished.
  • the crown surface 400 (cavity 401) is formed by machining. The entire surface of the piston head 4 on the combustion chamber 11 side (including the cavity 401) is machined.
  • the low heat conduction part 3 is formed on the piston head 4 (on the combustion chamber 11 side).
  • the low heat conduction part 3 is formed after the heat treatment process at the earliest (the heat treatment process is performed before the low heat conduction part formation step).
  • the low heat conduction part 3 is formed after the said machining process.
  • the low heat conduction part forming step includes a material preparation step, a coating step, and a drying step.
  • a material preparation step a material (hereinafter referred to as a forming material) for forming the low thermal conductive portion 3 is prepared.
  • the forming material includes a solid material (carbon and binder) and a solvent (solvent).
  • a powder made of carbon particles having an average particle diameter of, for example, 20 ⁇ m to 50 ⁇ m is prepared.
  • a test sieve of JIS Z8801 can be used.
  • the median diameter (d50) can be used as the average diameter.
  • the “powder having an average particle diameter of x ⁇ m” refers to a powder of particles (lumps) classified by the test sieve and having a median diameter of x ⁇ m.
  • the solvent is a component that vaporizes in the forming material, and a volatile solvent can be used.
  • Organic solvents such as N-methyl-2-pyrrolidone (NMP) and dimethylacetamide (DMAc) can be used.
  • a mixture of carbon and binder powder and a solvent (hereinafter referred to as a mixed material) is prepared.
  • the mixed material contains a solvent, and carbon lump (particles) and binder particles are dispersed in the solvent.
  • the piston body 2 is installed in advance (before actual application) so that the piston head 4 is vertically above the piston boss 5 and the piston skirt 6.
  • the crown surface 400 is set to face upward in the vertical direction.
  • the forming material (mixed material) is applied to the entire combustion chamber 11 side (crown surface 400) of the piston body 2 by the spray gun 90.
  • a coating film of the forming material is formed on the crown surface 400 (including the surface of the cavity 401).
  • the applied forming material is dried by, for example, infrared irradiation.
  • the solvent in the coating film (mixed material) is vaporized (evaporated).
  • a plurality of voids 31 are formed between the solid materials.
  • the low heat conduction unit 3 faces the combustion chamber 11 and constitutes a wall of the combustion chamber 11.
  • Table 1 shows an example of general characteristics of an aluminum alloy (a base metal of the piston body 2) and carbon (graphite or carbon black).
  • Carbon (graphite or carbon black) in the low heat conducting portion 3 is a low heat conductive material and has a lower thermal conductivity than an aluminum alloy that is a material (base metal) of the piston body 2. Therefore, the low heat conducting portion 3 is located between the combustion chamber 11 and the piston body 2 and functions as a heat insulating layer.
  • the low heat conducting section 3 reduces heat transfer from the gas in the combustion chamber 11 to the piston head 4 (piston body 2), and the heat of the fuel (air mixture) supplied to the combustion chamber 11 is taken away by the piston body 2. To suppress. Therefore, the thermal efficiency of engine 100 can be improved. Carbon has a smaller heat capacity (product of specific heat and density) per unit volume than the aluminum alloy that is the material of the piston body 2, in other words, volume specific heat. In general, the temperature conductivity of a solid is inversely proportional to the volume specific heat. Therefore, the low thermal conductivity portion 3 has a property that the temperature conductivity is less likely to be small (even if the thermal conductivity is low) compared to the piston body 2.
  • the temperature conductivity of the surface of the piston head 4 in contact with the gas in the combustion chamber 11 (low heat conduction portion 3) is large, the surface temperature easily follows the temperature of the gas in the combustion chamber 11. Thus, the heat loss in the cylinder 10 (combustion chamber 11) can be reduced by reducing the difference between the two temperatures.
  • the low heat conduction part 3 has a gap 31 inside.
  • the air gap 31 has an extremely low thermal conductivity and an extremely small volume specific heat. Therefore, since the heat conductivity is lower as a whole (on average) in the low heat conduction section 3, heat transfer from the gas in the combustion chamber 11 to the piston head 4 (piston body 2) can be further reduced. . Further, since the specific heat of the volume of the low heat conducting portion 3 as a whole becomes smaller, the temperature conductivity of the low heat conducting portion 3 can be made larger than that of the piston main body 2, thereby the surface temperature of the piston head 4 and the combustion chamber 11. The difference with the gas temperature inside can be made smaller. Note that the size of the gap 31 is arbitrary. The number of voids 31 is arbitrary, and may be one, for example. In this embodiment, since there are a plurality of gaps 31, the above effects can be improved.
  • the carbon in the low heat conduction part 3 includes graphite.
  • Graphite has a layered crystal structure in which carbons of SP2 hybrid orbitals are bonded to each other, and is excellent in lubricity. That is, graphite is generally used as a solid lubricant because it has an anisotropic layered structure with a low bonding force between crystal planes and is easily sheared by friction. As is clear from this, even if a part of the low heat conducting portion 3 falls into the cylinder 10, the graphite in this part functions as a lubricant, and the cylinder 10 and the piston 1 (piston body) 2) Wear can be suppressed.
  • the low thermal conductive portion 3 is formed of a high hardness material (for example, ceramic such as zirconia).
  • the ratio of the graphite in the carbon in the low heat conductive part 3 is arbitrary, for example, may be less than 50 volume%.
  • carbon contains 50% by volume or more of graphite. Therefore, the above effect can be improved.
  • carbon has high heat resistance represented by melting point and is excellent in durability. Therefore, the durability of the low heat conduction part 3 can be improved.
  • the binder By the binder, the adhesion between the carbon particles (lumps) and the adhesion between the carbon particles (lumps) and the piston body 2 are improved, and the force for holding these particles (lumps) in the piston body 2 is improved. be able to.
  • the function of the low heat conduction part 3 By improving the strength of the low heat conduction part 3 and suppressing the chipping and collapse thereof, the function of the low heat conduction part 3 can be maintained for a longer period of time. Engineering plastics have high heat resistance. For this reason, the durability of the low heat conducting portion 3 can be further improved.
  • the low heat conductive part 3 does not need to contain a binder. Even if the low heat conducting portion 3 is chipped or collapsed and falls into the cylinder 10, wear of the cylinder 10 and the piston 1 (piston body 2) is suppressed as described above.
  • the gap 31 is between a plurality of carbon chunks (and binders). Since the average particle diameter of the carbon lump is 20 ⁇ m or more, a relatively large void 31 is formed. Therefore, since the heat conductivity becomes lower and the volume specific heat becomes smaller as a whole of the low heat conducting portion 3, the above effects can be improved. Since the average particle diameter of the carbon lump is 100 ⁇ m or less, the contact area between the solid materials is suppressed from becoming excessively small. Therefore, the strength of the low heat conducting portion 3 can be improved and the chipping or collapse can be more easily suppressed. Since the average particle size of the lump is 50 ⁇ m or less, the above effect can be improved.
  • the air gap 31 is formed by the vaporization of a substance, that is, a solvent (solvent) mixed in the material for forming the low thermal conductive portion 3.
  • a solvent solvent
  • the solvent evaporates and escapes from the coating film, and voids 31 are formed between the deposited carbon blocks (and the binder).
  • the drying process functions as a void forming process.
  • it is not necessary to provide a drying process in particular the coating film may be naturally dried). In this manner, the void 31 can be easily formed by mixing the vaporizing component (substance) in the forming material.
  • Some of the plurality of voids 31 are closed on the combustion chamber 11 side in the low heat conducting section 3. Air or solvent gas is confined in the first gap 311. Since convection hardly occurs inside the first gap 311, the heat insulating property of the low heat conducting portion 3 is improved. Further, intrusion of unburned fuel from the combustion chamber 11 into the first gap 311 is suppressed. Thereby, deterioration of exhaust gas performance is suppressed.
  • a layer 303 having relatively few voids 31 in which carbon masses are closely approached by their own weight is formed on one side in the axial direction (combustion chamber 11 side).
  • a rough layer 304 is formed in which there are relatively many voids 31 between the carbon blocks.
  • the layer 30 includes a first layer 303 and a second layer 304. Since there are many voids 31 on the combustion chamber 11 side, the heat insulating effect of the low heat conducting section 3 is high.
  • the format of the engine 100 is arbitrary.
  • the engine 100 may be a two-stroke engine or a diesel engine.
  • the fuel supply method may be an in-cylinder direct injection type that directly injects into the cylinder 10 (combustion chamber 11), or a port injection type that injects into the intake port.
  • the shape of the piston 1 is arbitrary.
  • the shape of the cavity 401 is not limited to the above and is arbitrary.
  • the crown surface 400 may not have a recess such as the cavity 401 or the valve recess 402.
  • the low heat conducting section 3 has a first layer 301 on the piston body 2 side (inner side) and a second layer 302 on the combustion chamber 11 side (outer side).
  • first layer 301 on the piston body 2 side (inner side)
  • second layer 302 on the combustion chamber 11 side (outer side).
  • the structure of the first layer 301 is the same as that of the layer 30 of the first embodiment.
  • the second layer 302 is a film containing cyanoacrylate.
  • the first layer 301 has a plurality of voids 31 (first voids 311).
  • These voids 31 are covered with the second layer 302 on the combustion chamber 11 side (one side in the axial direction) in the low heat conducting section 3.
  • the second layer 302 closes (seals) the openings of these voids 31 toward the combustion chamber 11 side.
  • Other configurations are the same as those of the first embodiment.
  • the low heat conduction part forming step includes a material preparation step, a coating step, a drying step, and a sealing treatment step.
  • the material preparation process, the application process, and the drying process are the same as those in the first embodiment.
  • sealing treatment step sealing treatment is performed on the void 31 (second void 312) formed in the drying step.
  • a liquid adhesive (instant adhesive) containing cyanoacrylate as a main component is prepared. This adhesive is sprayed onto the coating of the mixed material, for example by spraying.
  • the piston main body 2 is installed so that the piston head 4 is on the lower side in the vertical direction, preferably without leaving an excessive interval. Specifically, the crown surface 400 is directed downward in the vertical direction.
  • the adhesive penetrates into the coating film through the opening of the gap 31 (second gap 312), and is cured by moisture in the coating process in the process. Since the piston head 4 is on the lower side in the vertical direction, the adhesive stays on one side in the axial direction of the coating film (on the combustion chamber 11 side) due to gravity and hardens at that position. Adhesive cyanoacrylate is polymerized on the combustion chamber 11 side of the coating film to form a coating film (sealing film) while leaving a gap 31 on the other axial side of the coating film (piston body 2 side). The opening on the combustion chamber 11 side of the gap 31 is closed with the sealing film. In addition, after installing the piston main body 2 so that the piston head 4 may become a vertical direction lower side, you may spray an adhesive agent on a coating film. Other manufacturing steps of the piston 1 are the same as those in the first embodiment.
  • the air gap 31 is covered with a film (second layer 302) containing cyanoacrylate on the combustion chamber 11 side in the low heat conducting section 3.
  • the opening of the second gap 312 formed in the drying process is closed (sealed) by the second layer 302.
  • the second gap 312 is converted into the first gap 311.
  • instantaneous adhesive containing cyanoacrylate a film for sealing the gap 31 can be easily formed.
  • second voids 312 when there are many voids 31 (second voids 312), these numerous voids 31 can be easily closed in a short time.
  • the low heat conduction part 3 has two layers 301 and 302. Thereby, adjustment of the thickness and characteristic (function) of the low thermal conduction part 3 becomes easy. As described above, the second gap 312 can be reduced and the first gap 311 can be increased. Since the gap 31 is on the first layer 301 side, the thermal conductivity of the first layer 301 is lower than that of the second layer 302. In other words, the thermal conductivity on the combustion chamber 11 side (second layer 302) is higher than that on the piston main body 2 side (first layer 301) of the low heat conducting section 3. For this reason, the temperature on the combustion chamber 11 side (second layer 302) in the low heat conducting section 3 can more easily follow the temperature of the gas in the combustion chamber 11.
  • the temperature distribution on the combustion chamber 11 side (second layer 302) in the low heat conducting section 3 is more easily made uniform, thereby suppressing abnormal combustion (knocking) of fuel.
  • the volume specific heat of the second layer 302 may be made smaller than that of the first layer 301 regardless of the presence or absence of the void 31, and in this case, the above-described effects can be obtained.
  • the characteristics of each layer may be adjusted so that the first layer 301 in contact with the piston body 2 has higher bonding strength with the piston body 2 than the second layer 302.
  • the number of layers is not limited to two, and may be three. Other functions and effects are the same as those of the first embodiment.
  • the low thermal conductive portion 3 is a thin film and has a layer 30.
  • the thickness of the layer 30 is arbitrary.
  • the low heat conduction part 3 contains carbon and a binder. Carbon includes a plurality of lumps (particles). The average particle size of the lumps is arbitrary.
  • the binder is the same as in the first embodiment. Carbon clumps are dispersed in the binder layer.
  • the plurality of gaps 31 in the low heat conducting unit 3 are mainly the first gaps 311. A carbon lump is embedded in or supported on the wall of the binder constituting each void 31. Other configurations are the same as those of the first embodiment.
  • the low heat conduction part forming step includes a material preparation step, a coating step, a material heating step, a spraying step, and a drying step.
  • a mixed material 32 containing a binder and a solvent is prepared.
  • the solvent is the same as in the first embodiment.
  • a solvent is mixed in the binder, and the binder (particles thereof) is dispersed in the solvent.
  • an additive etc. may be mixed with a mixed material and a binder may be abbreviate
  • a carbon material (powder) composed of a plurality of carbon masses 33 is prepared.
  • the mixed material 32 is applied to the entire crown surface 400 of the piston body 2 by, for example, a spray gun.
  • the material heating process the carbon material is heated.
  • the spraying process the heated carbon material (powder) is sprayed onto the crown surface 400 (the coated mixed material 32).
  • a heat gun 91 can be used in these steps.
  • the carbon material is heated by the heat gun 91 and sprayed onto the piston head 4 (mixed material 32) together with hot air.
  • the coating film onto which the carbon material has been sprayed is dried.
  • it is not necessary to provide a drying process in particular the coating film may be naturally dried).
  • the material heating step and the injection step may be performed (separately) using a tool or apparatus other than the heat gun 91.
  • Other manufacturing steps of the piston 1 are the same as those in the first embodiment.
  • a plurality of heated carbon masses 33 are embedded in the coating film of the binder (mixed with the solvent).
  • the solvent in the coating is vaporized and expanded by the heat of the mass 33.
  • a plurality of voids 31 are formed in the coating film.
  • the injection process functions as a gap forming process.
  • the shape of the void 31 is formed by the vaporization (expansion) of the solvent.
  • the void 31 formed by the vaporization / expansion of the solvent is relatively large.
  • the porosity (ratio of the volume of the void 31 in the low heat conduction part 3) can be improved, and the heat insulating property of the low heat conduction part 3 can be improved.
  • the coating film binder layer
  • voids 31 are easily formed therein.
  • the layer 30 of the low heat conducting portion 3 having the void 31 can be thinned.
  • a carbon material may be embedded mainly on the combustion chamber 11 side of the coating film. In this case, the air gap 31 is easily formed on the combustion chamber 11 side in the low heat conduction section 3, and a layer having low thermal conductivity is formed on the side facing the combustion chamber 11. For this reason, the heat insulation effect can be improved.
  • a carbon material may be embedded mainly on the piston body 2 side of the coating film.
  • the number of the second gaps 312 can be easily reduced because the gaps 31 are difficult to open to the combustion chamber 11 side.
  • Other functions and effects are the same as those of the first embodiment.
  • the other configurations of the low heat conducting unit 3 are the same as those of the third embodiment.
  • the low heat conduction part forming step is the same as that of the third embodiment except for the sealing treatment step.
  • the sealing treatment process may be performed before or after the drying process.
  • the sealing treatment step among the plurality of voids 31 formed in the injection step, the one opened to the combustion chamber 11 side (second void 312) is closed with the sealing film 35.
  • the second gap 312 is converted into the first gap 311.
  • the material used for the closing may be a mixed material prepared in the material preparation step, or may be an adhesive as in the second embodiment.
  • Other manufacturing steps of the piston 1 are the same as those in the first embodiment. Similar to the second embodiment, the second gap 312 can be reduced and the first gap 311 can be increased. Other functions and effects are the same as those of the third embodiment.
  • the low heat conduction part forming step includes a material preparation step, a piston body heating step, and an application step.
  • a mixed material containing carbon, a binder, and a solvent is prepared.
  • the solvent is the same as in the first embodiment.
  • a solvent is mixed in the carbon and the binder, and the lump of carbon and the binder (particles thereof) are dispersed in the solvent.
  • an additive etc. may be mixed with a mixed material and a binder may be abbreviate
  • the piston body 2 is heated in the piston body heating step.
  • the application process is the same as in the first embodiment, and the mixed material is applied to the entire crown surface 400 of the heated piston body 2 by, for example, a spray gun.
  • Other manufacturing steps of the piston 1 are the same as those in the first embodiment.
  • the coating process functions as a void forming process.
  • the piston body heating step may be a step of heating only the combustion chamber 11 side (piston head 4) of the piston body 2. In this case, for example, compared with the case where the piston boss 5 side is also heated, the amount of heat (energy) required for heating can be suppressed.
  • the heat of the piston body 2 is less transmitted than the back surface side and is at a low temperature. Therefore, the opening of the gap 31 to the combustion chamber 11 is suppressed, and the first gap 311 is formed.
  • the gap 31 (first gap 311) is formed on the piston body 2 side, so that the thermal conductivity on the combustion chamber 11 side is increased, and the same effect as in the second embodiment is obtained.
  • the shape of the void 31 is formed by the vaporization (expansion) of the solvent, the same effect as in the third embodiment can be obtained.
  • Other functions and effects are the same as those of the first embodiment.
  • the low heat conducting unit 3 includes layers 301 and 302.
  • the first layer 301 is the same as the layer 30 of the fifth embodiment.
  • the second layer 302 is a film containing cyanoacrylate. There is a void 31 in the first layer 301.
  • the second layer 302 closes (seals) the opening of the gap 31 toward the combustion chamber 11.
  • Other configurations are the same as those of the fifth embodiment.
  • the low thermal conductive portion forming step is the same as that of the fifth embodiment except for the sealing treatment step.
  • the sealing treatment step is performed after the coating step, and the pore 31 is sealed.
  • An adhesive similar to that of the second embodiment is prepared and sprayed on the coating film.
  • the piston head 4 does not have to be on the lower side in the vertical direction as in the second embodiment.
  • Other manufacturing steps of the piston 1 are the same as those in the first embodiment.
  • the material of the second layer 302 may be a mixed material prepared in the material preparation step. That is, the opening of the void 31 toward the combustion chamber 11 may be closed (sealed) by further applying a mixed material to the first layer 301 formed including the void 31 in the application step. At this time, if the solvent of the mixed material of the second layer 302 is less likely to evaporate than the solvent of the mixed material of the first layer 301, the first layer 301 and the second layer 302 are excessively separated. It becomes easy to apply without a time lag (in the same process). Other functions and effects are the same as those of the fifth embodiment.
  • the low heat conducting section 3 has a plurality of mountain-shaped protrusions (convex sections) 34 that spread from the combustion chamber 11 side toward the piston body 2 side.
  • the first gap 311 is a space inside each protrusion 34, and is closed by a solid material on one side in the axial direction (combustion chamber 11 side) and closed by the piston body 2 or the solid material on the other side in the axial direction. Yes.
  • the second gap 312 is a space between the adjacent protrusions 34 (a recess between the protrusions).
  • Other configurations are the same as those of the fifth embodiment.
  • the low heat conduction part forming step includes a material preparation step, a piston body heating step, a coating step, and a peeling step.
  • the material preparation process and the piston body heating process are the same as in the fifth embodiment.
  • the mixed material is applied to the entire crown surface 400 of the heated piston body 2 by a stamp.
  • the stamp includes, for example, a porous member (rubber, sponge, etc.), and this member is impregnated with a mixture. Press this stamp against the crown 400.
  • the peeling step the stamp is peeled off from the piston head 4.
  • the stamp is a roller for painting. By using a roller, the coating process and the peeling process can be performed in one operation, and the processes can be simplified together. Other manufacturing steps of the piston 1 are the same as those in the first embodiment.
  • the mixed material is applied to the piston head 4 by a stamp.
  • a stamp is peeled off from the piston head 4 (piston body 2) in the peeling process, for example, a plurality of protrusions (convex portions) 34 corresponding to a plurality of unevenness (pores) on the surface of the porous member are formed. Formed with mixed material. A plurality of second gaps 312 are formed between the adjacent protrusions 34.
  • Each protrusion 34 is dried and solidified by heat from the piston body 2. At that time, the heat of the piston main body 2 promotes the vaporization (expansion) of the solvent in the mixed material on the piston main body 2 side in the protrusion 34, and a cavity is generated.
  • a first gap 311 is formed in the protrusion 34. Since the air gap 31 (first air gap 311) is formed not only outside but also inside the protrusion 34, the air gap 31 is efficiently provided (increase the porosity) in the low heat conducting section 3, and the low heat conducting section 3 Can be prevented from becoming thick in the axial direction as a whole.
  • the stamp may not be a roller.
  • a sealing process similar to that in the second embodiment may be applied. That is, a second layer that seals the second gap 312 (the recess between the protrusions 34) and converts it into the first gap 311 may be provided.
  • Other functions and effects are the same as those of the fifth embodiment.
  • the low heat conducting unit 3 includes layers 301 and 302. In each of the layers 301 and 302, carbon lump and binder are mixed and dispersed. The thickness of each layer 301, 302 is arbitrary.
  • the first layer 301 has a plurality of voids 31 (first voids 311).
  • the air gap 31 is biased toward the combustion chamber 11 side (second layer 302 side) in the first layer 301.
  • the second layer 302 closes the opening of the gap 31 toward the combustion chamber 11 side.
  • Other configurations are the same as those of the fifth embodiment.
  • the low heat conduction part forming step includes a material preparation step, a coating step, a drying step, and a heating step.
  • the material preparation process is the same as in the fifth embodiment.
  • the application process is the same as in the fifth embodiment, and the mixed material is applied to the crown surface 400 of the piston body 2 by, for example, a spray gun.
  • the drying step the surface of the applied forming material (coating film) (surface layer facing the combustion chamber 11) is dried by, for example, infrared irradiation.
  • the heating step the inside (deep layer) of the coating film whose surface has been dried is heated. By heating the piston body 2, the coating film (forming material) is heated from the back side (piston body 2 side).
  • Other manufacturing steps of the piston 1 are the same as those in the first embodiment.
  • the surface of the coating film is dried. That is, the solvent of the forming material is evaporated from the surface. As a result, the surface of the coating is solidified and a coating (second layer 302) is formed.
  • a coating On the inner side (piston main body 2 side) of the coating film than the second layer 302 is a fluid first layer 301 in which the solvent remains in the forming material.
  • the heating step the back surface of the coating film is heated. A plurality of voids 31 are formed on the piston body 2 side in the first layer 301 as the solvent evaporates (boils) in this portion and expands. The heating process functions as a void forming process.
  • the heating step may be a step of heating only the combustion chamber 11 side (piston head 4) of the piston main body 2 as in the piston main body heating step of the fifth embodiment.
  • the coating film instead of heating the piston main body 2, the coating film (with the surface dried) may be directly heated by infrared rays or the like.
  • the coating film (dried surface) may be heated not from the back side but from the front side (combustion chamber 11 side). Since the shape of the void 31 is formed by the vaporization (expansion) of the solvent, the same effect as in the third embodiment can be obtained.
  • the air gap 31 will move from the piston body 2 side in the first layer 301 to the combustion chamber 11 side (second layer 302 side). And however, the air gap 31 is blocked by the solidified second layer 302 and does not open on the surface of the low thermal conductive portion 3 (the surface of the second layer 302). In other words, the second layer 302 functions as a sealing film that closes the opening of the gap 31. As described above, it is easy to form a sealing film on the surface of the low thermal conductive portion 3, and the sealed void 311 (first void 311) can be easily formed.
  • the heat insulation effect is improved.
  • Other functions and effects are the same as those of the second embodiment. Note that the formation material of the first layer 301 and the second layer 302 is the same, and only the presence or absence of the void 31 is different. Therefore, both layers 301 and 302 can be collectively regarded as one layer if the presence or absence of the void 31 and the sealing function is not taken into consideration.
  • the air gap 31 is present not only on the combustion chamber 11 side (second layer 302 side) but also on the piston body 2 side in the first layer 301.
  • the low heat conduction part forming step includes a material preparation step, a coating step, and a material heating step.
  • the material preparation process and the application process are the same as in the eighth embodiment.
  • the applied forming material (coating film 36) is heated by, for example, irradiating infrared rays 92 only from the combustion chamber 11 side.
  • Other manufacturing steps of the piston 1 are the same as those in the first embodiment.
  • the coating film 36 is heated from the surface (surface layer facing the combustion chamber 11) side. Thereby, the surface of the coating film 36 is dried, and a solidified film (second layer 302) is formed on the surface side, and on the inner side (first layer 301) of the second layer 302 in the coating film, The solvent is vaporized by heat and expands, and a plurality of voids 31 are formed.
  • the material heating process functions as a void forming process. Similar to the eighth embodiment, even if the air gap 31 tries to move to the combustion chamber 11 side in the first layer 301, it is stopped by the solidified second layer 302 and does not open on the surface.
  • the void 31 formed in the coating film 36 is easily sealed.
  • the void 31 and the film (second layer 302) that seals the gap 31 are formed, so the drying process and heating process of the eighth embodiment are combined into one process and simplified. It becomes.
  • the coating film 36 is first heated rapidly (for example, from the vicinity of the coating film 36), and then slowly (from a distance from the coating film 36), so that the air gap 31 is sealed.
  • the hole 302 may be effectively formed.
  • This material heating step may also be interrupted (may be discontinuous).
  • the forming material may be heated not only from the combustion chamber 11 side but also from the piston body 2 side, for example. By heating the forming material only from the combustion chamber 11 side, the amount of heat required for heating can be suppressed as compared to the case of heating from the other side.
  • Other functions and effects are the same as those of the eighth embodiment.
  • the low heat conducting unit 3 includes two layers 301 and 302.
  • the first layer 301 has a plurality of mountain-shaped protrusions (convex portions) 37 that spread from the combustion chamber 11 side toward the piston body 2 side.
  • the air gap 31 is a space between adjacent projections 37 (a recess between the projections 37), is closed by the second layer 302 on one side in the axial direction (combustion chamber 11 side), and on the other side in the axial direction, the piston body 2 Or solid material.
  • Other configurations are the same as those of the fifth embodiment.
  • the low heat conduction part forming step includes a material preparation step, a first application step, a first drying step, a second application step, and a second drying step.
  • the material preparation process is the same as in the fifth embodiment.
  • a mesh-like member (mesh) 93 is installed on the entire crown surface 400 of the piston body 2.
  • the forming material (mixed material) 370 is applied through the mesh 93.
  • FIG. 22 is a schematic view of the forming material 370 together with the mesh 93 as viewed from the combustion chamber 11 side.
  • a forming material 370 is applied to the crown surface 400 through the mesh 93.
  • FIG. 23 is a schematic view of the forming material 370 (first coating film) after the mesh 93 is removed as viewed from the combustion chamber 11 side.
  • the first coating film is dried by, for example, infrared irradiation.
  • a forming material (mixed material) 370 is further applied on the dried first coating film.
  • the mesh 93 may be used again, or a stamp may be used.
  • the forming material 370 (second coating film) applied in the second application step is dried by, for example, infrared irradiation.
  • Other manufacturing steps of the piston 1 are the same as those in the first embodiment.
  • the forming material 370 remains in a mesh shape (a plurality of dots or grains). That is, the forming material 370 is applied in a fine uneven shape.
  • Each convex part made of the forming material 370 maintains its shape immediately after application as shown in FIG. 24, but after a certain amount of time, it is scooped by its own weight, and as shown in FIG. 25, the piston body with the combustion chamber 11 side as the apex It becomes the mountain-shaped protrusion 37 which spreads toward 2 side.
  • the first layer 301 is formed by these protrusions 37. That is, the gap 31 is derived from the unevenness formed during the first application process.
  • the first application process functions as a void forming process.
  • each protrusion 37 is solidified by drying.
  • the forming material 370 is overcoated at a position that overlaps the apex of each protrusion 37 in the direction in which the axis of the piston 1 extends.
  • the opening of the recess between the protrusions 37 is closed by the second coating film, and a first gap 311 is formed.
  • the second coating film (second layer 302) that solidifies in the second drying step functions as a sealing film for the recesses (voids 31).
  • the second application process functions as a sealing treatment process. Note that the first and second drying steps are not particularly required (the coating film may be naturally dried).
  • the piston body 2 may be heated, and the coating film may be dried by heat from the piston body 2.
  • the same adhesive as in the second embodiment may be used instead of the mixed material.
  • the second coating step may not be provided (the second layer 302 may not be formed).
  • the recess between the protrusions 37 functions as the gap 31 (second gap 312).
  • the second gap 312 since the second coating step is provided (the second layer 302 is formed), the second gap 312 is converted into the first gap 311 and the same effect as in the second embodiment is obtained.
  • the size of the gap 31 can be adjusted by changing the mesh roughness of the mesh 93. Thereby, the porosity can be adjusted. Other functions and effects are the same as those of the first embodiment.
  • the configuration is substantially the same as in the tenth embodiment.
  • the low heat conduction part forming step includes a material preparation step, a pretreatment step, a first application step, a first drying step, a second application step, and a second drying step.
  • the material preparation step the water-repellent paint 373, the first mixed material 371, and the second mixed material are prepared.
  • the first mixed material 371 includes a solid material (carbon and binder) and water. Carbon includes a plurality of lumps (particles). The average particle size of the lumps is arbitrary.
  • the binder is a water-soluble binder for adhering carbon particles, and is a chemical glue such as carboxymethyl cellulose (CMC) or polyvinyl alcohol (PVA).
  • Water is a solvent (solvent) for chemical glue.
  • first mixed material 371 carbon lump and binder particles are dispersed in water.
  • An additive or the like may be mixed in the first mixed material 371.
  • the second mixed material is the same as the mixed material of the fifth embodiment.
  • the water repellent paint 373 is applied to the entire crown surface 400 of the piston body 2.
  • the first mixed material 371 is applied on the applied water-repellent paint 373.
  • a spray may be used, or a mesh or a stamp may be used.
  • the coating film of the first mixed material 371 is dried by, for example, infrared irradiation.
  • the second mixed material is repeatedly applied to the dried coating film of the first mixed material 371 as in the tenth embodiment.
  • the applied second mixed material is dried as in the tenth embodiment.
  • Other manufacturing steps of the piston 1 are the same as those in the first embodiment.
  • the first mixed material 371 is repelled without getting wet in the region where the water repellent paint 373 is applied.
  • the first mixed material 371 remains on the crown surface 400 in a plurality of dots or grains. That is, the first mixed material 371 is applied in a fine uneven shape.
  • the first layer 301 is formed by a plurality of convex portions of the first mixed material 371.
  • each convex portion (first mixed material 371) is solidified by drying.
  • the first application process functions as a void formation process
  • the second application process functions as a sealing treatment process
  • the drying process and the second application process may be omitted
  • an adhesive instead of the second mixed material As in the tenth embodiment, may be used.
  • the composition of the first mixed material 371 the size of the protrusions formed in the first application step (that is, the size of the gap 31) can be adjusted. Thereby, the porosity of the low heat conductive part 3 can be adjusted.
  • chemical glue as the binder of the first mixed material 371
  • the application of the first mixed material 371 is easy.
  • the binder is easily burned by heat from the combustion chamber 11 and the like.
  • the voids 31 can be formed more efficiently by burning out the binder.
  • Other functions and effects are the same as those of the first and second embodiments.
  • the low heat conduction part forming step includes a material preparation step, a foaming step, a coating step, and a drying step.
  • the material preparation process is the same as in the fifth embodiment.
  • the foaming step the forming material (mixed material) 370 is bubbled by bubbling, stirring, or using a foaming agent.
  • the forming material 370 in a foamed state is applied to the crown surface 400 of the piston body 2 in the application process.
  • the applied forming material 370 (coating film) is dried by, for example, infrared irradiation.
  • Other manufacturing steps of the piston 1 are the same as those in the first embodiment.
  • the air gap 31 of the low heat conducting portion 3 is formed by foaming the forming material 370.
  • the foaming process and the coating process function as a void forming process.
  • the solid material remains in the form of foam and forms a film-like wall 38 that defines the gap 31.
  • the foaming step and the coating step may be combined as one step. That is, the forming material (mixed material) 370 may be applied while foaming, or may be foamed while being applied.
  • the low heat conduction portion 3 By forming the gap 31 by foaming the forming material 370, the low heat conduction portion 3 having a relatively high porosity can be formed. Moreover, the porosity of the low heat conductive part 3 can be adjusted by adjusting a foaming degree. Other functions and effects are the same as those of the first and second embodiments.
  • any of the following (1) to (5) is used instead of carbon.
  • Other configurations and the manufacturing process of the piston 1 are the same as those in any of the first to twelfth embodiments.
  • Table 2 shows an example of general characteristics of the base metal and molybdenum disulfide and boron nitride.
  • boron nitride and molybdenum disulfide have lower thermal conductivity than the aluminum alloy that is the material of the piston body 2.
  • boron nitride (h-BN) and molybdenum disulfide have a layered structure with a low bonding force between crystal faces, and are generally used as solid lubricants. Further, boron nitride and molybdenum disulfide have high heat resistance and excellent durability. Therefore, the same effect as that of the first to twelfth embodiments can be obtained.
  • the entire crown surface 400 (including the surface of the cavity 401) in the piston body 2 is a casting surface when the piston body 2 is cast.
  • the other configuration and the manufacturing process of the piston 1 are the same as those in any of the first to thirteenth embodiments. Therefore, the site
  • crown surface 400 only a part of the crown surface 400 may be a casting surface, and the other part may not be a casting surface.
  • the cavity 401 may be a casting surface, and other parts may be machined.
  • the same effects as those of the first to thirteenth embodiments can be obtained.
  • the entire crown surface 400 (including the surface of the cavity 401) is subjected to a surface treatment that improves the bonding force with the low heat conducting unit 3.
  • the piston body forming step includes a surface treatment step.
  • the surface treatment process is performed, for example, after the machining process.
  • the other configuration and the manufacturing process of the piston 1 are the same as those in any of the first to thirteenth embodiments.
  • a shot (projection material) 94 is sprayed to roughen the surface of the crown surface 400 to provide fine irregularities. This unevenness increases the degree of adhesion (anchor effect) of the solid material to the surface. Therefore, it is possible to suppress the dropout of the low heat conducting unit 3.
  • the projection material 94 adheres to the surface. If molybdenum disulfide is used as the projection material 94 (molybdenum disulfide shot), even if the fixed projection material 94 falls into the cylinder 10, it functions as a lubricant, and the cylinder 10 and the piston 1 Wear can be suppressed.
  • surface treatment for providing fine unevenness may be performed by a method other than shot blasting (for example, a photoetching method). In the crown surface 400, only a part of the surface treatment is performed, and other portions may not be subjected to the surface treatment. For example, the surface treatment may be performed only on the cavity 401, and the surface treatment may not be performed on other portions. In addition, the same effects as those of the first to thirteenth embodiments can be obtained.
  • the solvent is water.
  • the other structure and the manufacturing process of the piston 1 are the same as those in any of the first to tenth and twelfth embodiments. The same effects as the first to tenth and twelfth embodiments can be obtained.
  • the binder is chemical glue (CMC or PVA).
  • CMC or PVA chemical glue
  • the other configuration and the manufacturing process of the piston 1 are the same as those of any of the first to tenth and twelfth embodiments.
  • the same effects as those of the first to tenth and twelfth embodiments can be obtained.
  • chemical glue as the binder, the same effects as those of the eleventh embodiment can be obtained.
  • the low heat conducting portion 3 is partially formed on the crown surface 400 of the piston body 2.
  • the other configuration and the manufacturing process of the piston 1 are the same as those in any of the first to 17th embodiments.
  • the same effect as that of the first to 17th embodiments can be obtained at the site where the low heat conducting section 3 is formed.
  • the low heat conduction unit 3 is provided on the crown surface 400 at least a part corresponding to the fuel injection region (the part where the fuel collides / explodes and the temperature or pressure becomes highest) It is preferable to be formed on the periphery.
  • the low heat conduction portion 3 By forming the low heat conduction portion 3 at this location, heat transfer from the gas in the combustion chamber 11 to the piston head 4 (piston body 2) can be more effectively reduced. Moreover, since the heat absorption to the piston main body 2 is suppressed by the low heat conductive layer 3, the location where the fuel adheres on the crown surface 400 quickly becomes high temperature and maintains a high temperature state. Therefore, the adhering fuel is quickly vaporized and burned, so that deterioration of exhaust gas characteristics can be suppressed.
  • the low heat conducting portion 3 may be formed only on the surface of the cavity 401 or other concave portion on the crown surface 400.
  • the low heat conduction part 3 is accommodated in the recess, and thus it is possible to suppress the crown surface 400 from rising to the combustion chamber 11 side by the low heat conduction part 3.
  • FIG. 30 shows an example in which the low heat conducting portion 3 is formed only on the surface of a part of the recess (valve recess 402).
  • 31 and 32 show an example of the piston 1 in which the shape of the piston body 2 is different from that of the first to 17th embodiments.
  • the low heat conduction part 3 is formed only on the surface of a part of the recess (valve recess 403).
  • the portion where the low heat conductive portion 3 is formed on the surface of the recesses 401 to 403 may be a cast surface as in the fourteenth embodiment, or may be subjected to a surface treatment as in the fifteenth embodiment. .
  • a body comprising an aluminum alloy and facing a combustion chamber of an internal combustion engine; and a piston boss and a piston skirt disposed on the opposite side of the combustion chamber with respect to the piston head;
  • the piston head is located on the combustion chamber side and is made of a material containing at least one of carbon, boron nitride, and molybdenum disulfide, and has a low heat conduction portion having a void inside.
  • the material includes carbon, and the carbon includes 50% by volume or more of a component having an SP2 structure.
  • the voids are formed by the vaporization of the solvent mixed in the material.
  • the material is a synthetic resin and includes a binder that bonds the particles of the carbon, the boron nitride, or the molybdenum disulfide.
  • the binder is an engineering plastic.
  • the gap is closed on the combustion chamber side in the low heat conduction portion.
  • the air gap is covered with a film containing cyanoacrylate on the combustion chamber side in the low heat conduction portion.
  • the voids are formed by vaporizing substances mixed in the material.
  • the low heat conduction part has a plurality of layers.
  • the main body includes a concave portion that accommodates the low heat conduction portion on the combustion chamber side, A surface treatment is performed on the surface of the concave portion to improve the bonding force with the low thermal conductive portion.
  • the main body includes a concave portion that accommodates the low heat conduction portion on the combustion chamber side, The surface of the said recessed part is a casting surface at the time of casting the said main body.
  • the material includes a plurality of carbon chunks having an average particle size of 20 ⁇ m or more, The voids are between the plurality of carbon chunks.
  • the gap is formed by foaming the material.
  • the component is a solvent
  • the solvent is vaporized and expanded to form the voids.
  • the material is a synthetic resin, and includes a binder that bonds particles of the carbon, the boron nitride, or the molybdenum disulfide, and a solvent as the component to be vaporized,
  • the step of forming the low thermal conduction part includes Applying the binder mixed with the solvent to the combustion chamber side of the piston head; Heating a powder comprising at least one of the carbon, the boron nitride, and the molybdenum disulfide; Injecting the heated powder to the combustion chamber side of the piston head.
  • the material is a synthetic resin, and includes a binder that bonds particles of the carbon, the boron nitride, or the molybdenum disulfide, and a solvent as the component to be vaporized,
  • the step of forming the low thermal conduction part includes Heating the body; Applying the material to the combustion chamber side of the piston head of the heated body.
  • the material is a synthetic resin, and includes a binder that bonds particles of the carbon, the boron nitride, or the molybdenum disulfide, and a solvent as the component to be vaporized
  • the step of forming the low thermal conduction part includes Applying the material to the combustion chamber side of the piston head; Drying the surface of the applied material; Heating the material whose surface has been dried.
  • the material includes a vaporizing component;
  • the step of forming the low thermal conduction part includes Applying the material to the combustion chamber side of the piston head; Heating the applied material from the combustion chamber side.
  • the material is heated only from the combustion chamber side.
  • the material is a synthetic resin and includes a binder that bonds particles of the carbon, the boron nitride, or the molybdenum disulfide,
  • the step of forming the low thermal conduction part includes Applying the material to the combustion chamber side of the piston head through a mesh member; Applying the material on the applied material.
  • the material includes water, a water-soluble binder that bonds the particles of the carbon, the boron nitride, or the molybdenum disulfide, and water.
  • the step of forming the low thermal conduction part includes Applying a water repellent coating to the combustion chamber side surface of the piston head; Applying the material onto the applied water-repellent paint.
  • the material is a synthetic resin and includes a binder that bonds particles of the carbon, the boron nitride, or the molybdenum disulfide, and a solvent.
  • the step of forming the low thermal conduction part includes Pressing the stamp containing the material against the combustion chamber side of the piston head; Peeling the stamp from the piston head.

Abstract

Provided is a piston for an internal combustion engine, in which cylinder or piston wear can be minimized. This piston for an internal combustion engine has a main body and a low-thermal-conductivity part. The main body, which contains an aluminum alloy, has a piston head, a piston boss, and a piston skirt. The low-thermal-conductivity part is located on a combustion-chamber side of the piston head, and comprises at least one of carbon, boron nitride, and molybdenum disulfide. The low-thermal-conductivity part has a gap in the interior thereof. The piston for an internal combustion engine is provided with a main body part formed from an aluminum alloy. The main body part has a piston head part, and a piston boss part and piston skirt part provided to the side of the piston head part opposite from the combustion chamber of the internal combustion engine. The piston furthermore is provided with a low-thermal-conductivity part that: is provided on the side of the piston head adjacent to the combustion chamber of the internal combustion engine; is formed from a low-thermal-conductivity-part-forming material containing carbon, boron nitride, or molybdenum disulfide; and has a gap in the interior thereof.

Description

内燃機関のピストン、および内燃機関のピストンの製造方法Piston for internal combustion engine and method for manufacturing piston for internal combustion engine
 本発明は、内燃機関のピストンに関する。 The present invention relates to a piston for an internal combustion engine.
 従来、内燃機関のピストンが知られている(例えば特許文献1)。 Conventionally, a piston of an internal combustion engine is known (for example, Patent Document 1).
特開2009-243355号公報JP 2009-243355 A
 従来のピストンでは、冠面に設けられた断熱材が脱落し、シリンダまたはピストンの摩耗が促進されるおそれがあった。 In the conventional piston, the heat insulating material provided on the crown surface may fall off and the wear of the cylinder or the piston may be accelerated.
 本発明の1つの実施形態に係る内燃機関のピストンは、固体潤滑剤として機能する物質を含む材料からなる低熱伝導部を、ピストンヘッドに有する。 The piston of the internal combustion engine according to one embodiment of the present invention has a low heat conduction part made of a material containing a substance functioning as a solid lubricant in the piston head.
 よって、シリンダまたはピストンの摩耗の抑制を図ることができる。 Therefore, it is possible to suppress wear of the cylinder or piston.
第1実施形態の1つのシリンダの軸心を通る平面でエンジンの一部を切った断面を模式的に示す。1 schematically shows a cross section of a part of an engine cut by a plane passing through the axis of one cylinder of the first embodiment. 第1実施形態のピストンの斜視図である。1 is a perspective view of a piston according to a first embodiment. 第1実施形態のピストンを冠面の側から見た上面図である。FIG. 3 is a top view of the piston according to the first embodiment viewed from the crown surface side. 第1実施形態の低熱伝導部およびピストンヘッド(以下、低熱伝導部等)の一部をピストンの軸心に平行な平面で切った断面(以下、軸方向断面)を模式的に示す。1 schematically shows a cross section (hereinafter referred to as an axial cross section) in which a part of a low heat conduction portion and a piston head (hereinafter referred to as a low heat conduction portion) of the first embodiment is cut by a plane parallel to the axis of the piston. 第1実施形態の低熱伝導部等の軸方向断面の一部を拡大して示す写真である。2 is an enlarged photograph showing a part of an axial cross section of a low heat conduction portion or the like of the first embodiment. 第1実施形態の塗布工程を模式的に示す。1 schematically shows a coating process of a first embodiment. 第1実施形態の乾燥工程後の塗膜の一部を模式的に示す軸方向断面図である。FIG. 2 is an axial sectional view schematically showing a part of the coating film after the drying step of the first embodiment. 第2実施形態の低熱伝導部等の一部を模式的に示す軸方向断面図である。FIG. 5 is an axial cross-sectional view schematically showing a part of a low heat conduction portion and the like of a second embodiment. 第3実施形態の低熱伝導部等の一部を模式的に示す軸方向断面図である。FIG. 5 is an axial direction cross-sectional view schematically showing a part of a low heat conduction portion and the like according to a third embodiment. 第3実施形態の塗布工程後の塗膜の一部を模式的に示す軸方向断面図である。FIG. 10 is an axial cross-sectional view schematically showing a part of a coating film after the coating step of the third embodiment. 第3実施形態の材料加熱工程と噴射工程を模式的に示す。The material heating process and injection | pouring process of 3rd Embodiment are shown typically. 第3実施形態の噴射工程後の塗膜の一部を模式的に示す軸方向断面図である。FIG. 6 is an axial cross-sectional view schematically showing a part of a coating film after a spraying process of a third embodiment. 第4実施形態の低熱伝導部等の一部を模式的に示す軸方向断面図である。FIG. 9 is an axial cross-sectional view schematically showing a part of a low heat conduction portion and the like of a fourth embodiment. 第5実施形態の低熱伝導部等の一部を模式的に示す軸方向断面図である。FIG. 9 is an axial cross-sectional view schematically showing a part of a low heat conduction portion and the like according to a fifth embodiment. 第5実施形態の低熱伝導部等の軸方向断面の一部を拡大して示す写真である。FIG. 10 is a photograph showing an enlarged part of an axial cross section of a low thermal conductive portion or the like according to a fifth embodiment. 第6実施形態の低熱伝導部等の一部を模式的に示す軸方向断面図である。FIG. 10 is an axial cross-sectional view schematically showing a part of a low heat conduction portion and the like of a sixth embodiment. 第7実施形態の低熱伝導部等の一部を模式的に示す軸方向断面図である。FIG. 10 is an axial cross-sectional view schematically showing a part of a low heat conduction portion and the like according to a seventh embodiment. 第8実施形態の低熱伝導部等の一部を模式的に示す軸方向断面図である。FIG. 10 is an axial cross-sectional view schematically showing a part of a low thermal conductive portion or the like according to an eighth embodiment. 第9実施形態の低熱伝導部等の一部を模式的に示す軸方向断面図である。FIG. 10 is an axial cross-sectional view schematically showing a part of a low heat conduction portion or the like according to a ninth embodiment. 第9実施形態の材料加熱工程を模式的に示す。The material heating process of 9th Embodiment is typically shown. 第10実施形態の低熱伝導部等の一部を模式的に示す軸方向断面図である。FIG. 16 is an axial cross-sectional view schematically showing a part of a low heat conduction portion or the like according to a tenth embodiment. 第10実施形態の第1塗布工程の一部を模式的に示す。A part of 1st application | coating process of 10th Embodiment is typically shown. 第10実施形態の第1塗布工程の一部を模式的に示す。A part of 1st application | coating process of 10th Embodiment is typically shown. 第10実施形態の第1塗布工程の直後における第1の塗膜の一部を模式的に示す軸方向断面図である。FIG. 20 is an axial cross-sectional view schematically showing a part of the first coating film immediately after the first application step of the tenth embodiment. 第10実施形態の第1塗布工程からある程度時間が経ったときの第1の塗膜の一部を模式的に示す軸方向断面図である。FIG. 15 is an axial cross-sectional view schematically showing a part of a first coating film when a certain amount of time has passed since the first application step of the tenth embodiment. 第11実施形態の第1塗布工程で冠面に塗布された第1混合材料料の一部を模式的に示す軸方向断面図である。FIG. 20 is an axial cross-sectional view schematically showing a part of the first mixed material material applied to the crown surface in the first application process of the eleventh embodiment. 第12実施形態の低熱伝導部等の一部を模式的に示す軸方向断面図である。FIG. 16 is an axial cross-sectional view schematically showing a part of a low thermal conductive portion or the like according to a twelfth embodiment. 第12実施形態の塗布工程を模式的に示す。The application | coating process of 12th Embodiment is shown typically. 第15実施形態のショットブラストによる表面処理工程を模式的に示す。A surface treatment process by shot blasting according to a fifteenth embodiment is schematically shown. 第18実施形態のピストンを冠面の側から見た上面図である。FIG. 20 is a top view of a piston according to an eighteenth embodiment viewed from the crown side. 第18実施形態の他の例のピストンの斜視図である。FIG. 23 is a perspective view of a piston of another example of the 18th embodiment. 第18実施形態の他の例のピストンを冠面の側から見た上面図である。FIG. 23 is a top view of a piston of another example of the eighteenth embodiment viewed from the crown surface side.
 以下、本発明を実施するための形態を、図面に基づき説明する。 Hereinafter, modes for carrying out the present invention will be described with reference to the drawings.
 [第1実施形態]
  まず、構成を説明する。図1に示す本実施形態の内燃機関(エンジン)100は、4ストローク・ガソリンエンジンである。エンジン100は、ピストン1と、シリンダブロック101と、シリンダヘッド104と、コネクティングロッド(コンロッド)106と、クランクシャフトと、バルブ107と、点火装置108と、燃焼室11とを備える。バルブ107は2つの吸気バルブと2つの排気バルブを有する。シリンダブロック101は、円筒状のシリンダライナ(シリンダスリーブ)102を備える。シリンダライナ102の内周側はシリンダ10の内壁として機能する。シリンダヘッド104は、シリンダ10の開口を塞ぐようにシリンダブロック101に設置される。シリンダヘッド104には、バルブ107と、燃料の噴射ノズルと、点火装置108とが設置される。シリンダブロック101にはクランクシャフトが回転可能に設置される。ピストン1は、シリンダ10の内部に、往復移動可能に収容される。
[First embodiment]
First, the configuration will be described. The internal combustion engine (engine) 100 of the present embodiment shown in FIG. 1 is a 4-stroke gasoline engine. The engine 100 includes a piston 1, a cylinder block 101, a cylinder head 104, a connecting rod (connecting rod) 106, a crankshaft, a valve 107, an ignition device 108, and a combustion chamber 11. The valve 107 has two intake valves and two exhaust valves. The cylinder block 101 includes a cylindrical cylinder liner (cylinder sleeve) 102. The inner peripheral side of the cylinder liner 102 functions as the inner wall of the cylinder 10. The cylinder head 104 is installed in the cylinder block 101 so as to close the opening of the cylinder 10. The cylinder head 104 is provided with a valve 107, a fuel injection nozzle, and an ignition device 108. A crankshaft is rotatably installed on the cylinder block 101. The piston 1 is accommodated in the cylinder 10 so as to be reciprocally movable.
 図2および図3に示すように、ピストン1は、ピストン本体2と低熱伝導部3を有する。ピストン本体2は、アルミニウム合金(例えばAl-Si系のAC8A)を材料(素材)として形成される。ピストン1(ピストン本体2)は、有底筒状であり、ピストンヘッド(冠部)4と、ピストンボス(エプロン部)5と、ピストンスカート(スカート部)6とを有する。以下、ピストン1の軸心が延びる方向を軸方向という。軸方向でピストンボス5やピストンスカート6に対しピストンヘッド4の側を一方側といい、その反対側を他方側という。ピストンヘッド4は、冠面部40とランド部41を有する。冠面部40は、ピストンヘッド4の軸方向一方側にあり、冠面(頂面)400を有する。冠面400は、ピストン1の軸心に直交して広がり、軸方向一方側からみて略円形の輪郭を有する。図1に示すように(ピストン1が上死点にあるとき)、冠面400とシリンダヘッド104との間に、燃焼室11が区画される。燃焼室11はペントルーフ型である。冠面400は燃焼室11内の燃焼ガスに暴露される。冠面部40には、キャビティ401がある。キャビティ401は、冠面部40に形成された凹部であり、燃焼室11を画成する。言い換えると、ピストンヘッド4は、燃焼室11側(燃焼室11に臨む側)にキャビティ401を備える。キャビティ401は、冠面400の略中央にあり、底面が平面である浅皿状である。冠面部40には、キャビティ401の周縁部に、各バルブ107の先端形状に沿った凹部(傾斜したバルブリセス)402が4つある。ランド部41は冠面部40の外周側から軸方向他方側に延びる。ランド部41の外周には、環状の溝(リング溝)410が3つある。リング溝410にはピストンリング7が設置される。 2 and 3, the piston 1 has a piston main body 2 and a low heat conducting portion 3. The piston body 2 is formed of an aluminum alloy (for example, Al—Si AC8A) as a material (raw material). The piston 1 (piston main body 2) has a bottomed cylindrical shape, and includes a piston head (crown portion) 4, a piston boss (apron portion) 5, and a piston skirt (skirt portion) 6. Hereinafter, the direction in which the axial center of the piston 1 extends is referred to as the axial direction. In the axial direction, the side of the piston head 4 with respect to the piston boss 5 and the piston skirt 6 is referred to as one side, and the opposite side is referred to as the other side. The piston head 4 has a crown surface portion 40 and a land portion 41. The crown surface portion 40 is on one side in the axial direction of the piston head 4 and has a crown surface (top surface) 400. The crown surface 400 extends perpendicular to the axis of the piston 1 and has a substantially circular outline when viewed from one axial direction. As shown in FIG. 1 (when the piston 1 is at the top dead center), the combustion chamber 11 is defined between the crown surface 400 and the cylinder head 104. The combustion chamber 11 is a pent roof type. The crown surface 400 is exposed to the combustion gas in the combustion chamber 11. The crown surface portion 40 has a cavity 401. The cavity 401 is a recess formed in the crown surface portion 40 and defines the combustion chamber 11. In other words, the piston head 4 includes the cavity 401 on the combustion chamber 11 side (side facing the combustion chamber 11). The cavity 401 is in the shape of a shallow dish that is substantially at the center of the crown surface 400 and has a flat bottom surface. The crown surface portion 40 has four recesses (inclined valve recesses) 402 along the tip shape of each valve 107 at the peripheral edge of the cavity 401. The land portion 41 extends from the outer peripheral side of the crown surface portion 40 to the other side in the axial direction. There are three annular grooves (ring grooves) 410 on the outer periphery of the land portion 41. A piston ring 7 is installed in the ring groove 410.
 ピストンボス5およびピストンスカート6は、ピストンヘッド4から軸方向他方側に延び、ピストンヘッド4に対し燃焼室11の反対側にある。ピストンスカート6およびピストンボス5の内周側は中空である。ピストンボス5は、ピストン1の径方向両側に一対ある。各ピストンボス5はピンボス50を有する。各ピンボス50はピストンピン穴51を有する。ピストンピン穴51は、ピンボス50を貫通してピストン1の径方向に延びる。ピストンスカート6は、ピストン1の径方向両側に一対ある。ピストンスカート6は、ピストン1の周方向で両ピストンボス5,5に挟まれる。両ピストンスカート6,6はピストンボス5によって連結される。ピストンスカート6はシリンダ10の内壁に対し摺動する。ピストンピン穴51にはピストンピンの端部が嵌合する。ピストン1は、ピストンピンを介してコンロッド106の一端側(小端部)に連結される。コンロッド106の他端側(大端部)はクランクシャフトに連結される。シリンダライナ102の内部の通路103には冷却水が循環する。シリンダブロック101にはオイルジェット105が設置される。燃焼室11からピストンヘッド4に伝わった熱は、ピストンリング7を介してシリンダライナ102およびその内部の冷却水に伝わることで放出される。また、上記熱は、ピストン1の内周側(裏側)にオイルが付着し流出することでも放出される。このオイルの付着は、例えばオイルジェット105からのオイルの噴射により行われる。 The piston boss 5 and the piston skirt 6 extend from the piston head 4 to the other side in the axial direction, and are on the opposite side of the combustion chamber 11 with respect to the piston head 4. The inner peripheral side of the piston skirt 6 and the piston boss 5 is hollow. There are a pair of piston bosses 5 on both sides in the radial direction of the piston 1. Each piston boss 5 has a pin boss 50. Each pin boss 50 has a piston pin hole 51. The piston pin hole 51 extends through the pin boss 50 in the radial direction of the piston 1. There are a pair of piston skirts 6 on both sides in the radial direction of the piston 1. The piston skirt 6 is sandwiched between the piston bosses 5 and 5 in the circumferential direction of the piston 1. Both piston skirts 6 and 6 are connected by a piston boss 5. The piston skirt 6 slides against the inner wall of the cylinder 10. The piston pin end 51 is fitted into the piston pin hole 51. The piston 1 is connected to one end side (small end portion) of the connecting rod 106 via a piston pin. The other end side (large end portion) of the connecting rod 106 is connected to the crankshaft. Cooling water circulates in the passage 103 inside the cylinder liner 102. An oil jet 105 is installed in the cylinder block 101. The heat transferred from the combustion chamber 11 to the piston head 4 is released by being transferred to the cylinder liner 102 and the cooling water therein through the piston ring 7. The heat is also released when oil adheres to the inner peripheral side (back side) of the piston 1 and flows out. The adhesion of the oil is performed by, for example, the injection of oil from the oil jet 105.
 低熱伝導部3は、燃焼室11からピストンヘッド4(ピストン本体2)への熱伝導性を低めるための構造体であり、ピストンヘッド4における燃焼室11側にあって、燃焼室11に臨む表面(冠面400)の全部に形成される。低熱伝導部3の一部はキャビティ401に収容される。図4および図5に示すように、低熱伝導部3は、ピストン本体2の(キャビティ401の底面を含む)冠面400に沿って広がる層状である。低熱伝導部3は層30を有する。層30の厚さは任意である。低熱伝導部3を形成するための材料のうち(エンジン100の運転時に)固体であるものを、以下、固体材料という。低熱伝導部3の内部には空隙(中空部)31が複数ある。空隙31には気体(エンジン100の運転時に気体であるもの)が存在する。空隙31は、固体材料同士の間、または固体材料とピストン本体2との間の隙間である。空隙31は、ピストン1の任意の径方向における両側で固体材料に挟まれ閉塞されている。空隙31は、軸方向(低熱伝導部3が層状に広がる方向に対して直交する方向)の一方側(燃焼室11側)で閉塞されたもの(第1の空隙311)と、この一方側で閉塞されていないもの(第2の空隙312)とがある。第1の空隙311は、軸方向の両側で固体材料に挟まれるか、または固体材料とピストン本体2とに挟まれた閉空間である。第2の空隙312は、軸方向一方側で燃焼室11に開放され、軸方向他方側で固体材料またはピストン本体2により閉塞された開空間である。第2の空隙312は、低熱伝導部3の燃焼室11側の表面における微細な凹凸のうちの凹部であり、低熱伝導部3における燃焼室11側で開口する。 The low heat conduction unit 3 is a structure for reducing the thermal conductivity from the combustion chamber 11 to the piston head 4 (piston body 2), and is on the combustion chamber 11 side of the piston head 4 and faces the combustion chamber 11 It is formed all over (crown surface 400). A part of the low heat conducting unit 3 is accommodated in the cavity 401. As shown in FIGS. 4 and 5, the low heat conducting portion 3 has a layer shape that extends along the crown surface 400 (including the bottom surface of the cavity 401) of the piston body 2. The low heat conducting part 3 has a layer 30. The thickness of the layer 30 is arbitrary. Of the materials for forming the low heat conducting section 3, those that are solid (during operation of the engine 100) are hereinafter referred to as solid materials. There are a plurality of voids (hollow portions) 31 inside the low heat conducting portion 3. There is a gas (a gas that is a gas when the engine 100 is operated) in the gap 31. The air gap 31 is a gap between the solid materials or between the solid material and the piston body 2. The air gap 31 is sandwiched and closed by a solid material on both sides of the piston 1 in an arbitrary radial direction. The air gap 31 is closed on the one side (combustion chamber 11 side) in the axial direction (the direction perpendicular to the direction in which the low heat conducting section 3 spreads in layers) (the first air gap 311), and on this one side Some are not closed (second air gap 312). The first gap 311 is a closed space sandwiched between the solid material on both sides in the axial direction or sandwiched between the solid material and the piston body 2. The second gap 312 is an open space opened to the combustion chamber 11 on one side in the axial direction and closed with a solid material or the piston body 2 on the other side in the axial direction. The second air gap 312 is a concave portion of fine irregularities on the surface of the low heat conducting unit 3 on the combustion chamber 11 side, and opens on the combustion chamber 11 side in the low heat conducting unit 3.
 固体材料は、炭素およびバインダーを含む。炭素はSP2構造の成分、すなわちグラファイト(黒鉛)を50体積%以上含む。炭素におけるグラファイト以外の成分として、例えばカーボンブラックを含んでよい。炭素の粒子は塊をなしている。この塊の平均粒径は、20μm以上であり、好ましくは100μm以下であって、より好ましくは50μm以下である。バインダーは、合成樹脂であって、炭素の粒子(塊)同士を接着させる機能を有する。バインダーはエンジニアリングプラスチックであり、例えばポリアミドイミド、ポリアミド、およびエポキシ樹脂のうち、少なくとも1つを用いることができる。低熱伝導部3は、炭素の塊(およびバインダー)が堆積した層状である。低熱伝導部3の層30内には炭素の塊(粒子)とバインダーが混ざり合って分散している。空隙31は、複数の炭素の塊(およびバインダー)の間にある。 ∙ Solid material includes carbon and binder. Carbon contains 50% by volume or more of SP2 structure components, that is, graphite (graphite). As a component other than graphite in carbon, for example, carbon black may be included. Carbon particles are agglomerated. The average particle diameter of this lump is 20 μm or more, preferably 100 μm or less, and more preferably 50 μm or less. The binder is a synthetic resin and has a function of bonding carbon particles (lumps) to each other. The binder is an engineering plastic. For example, at least one of polyamide imide, polyamide, and epoxy resin can be used. The low heat conduction part 3 is a layered structure in which carbon blocks (and binders) are deposited. In the layer 30 of the low heat conducting portion 3, carbon lump (particles) and binder are mixed and dispersed. The voids 31 are between a plurality of carbon masses (and binders).
 以下、本実施形態のピストン1の製造方法を説明する。製造方法は、ピストン本体形成工程と低熱伝導部形成工程を含む。ピストン本体形成工程は、鋳造工程、熱処理工程、および機械加工工程を含む。鋳造工程で、ピストン本体2の原型(中間加工材)を鋳造する。具体的には、アルミニウム合金の溶湯を金型に流し込み、凝固させる。このとき、ピストン本体2の内周が形成され、キャビティ401の基本形状が形成される。熱処理工程で、熱処理を行う。これにより、鋳造された原型の性質を改善して適当な強度・硬さに調整する。機械加工工程で、熱処理された原型を旋盤等により機械加工する。例えば、ピストンピン穴51やリング溝410を加工するとともに、ピストンヘッド4やピストンスカート6の外周等、ピストン本体2の外径を仕上げる。また、冠面400(キャビティ401)を加工により形成する。ピストンヘッド4における燃焼室11側の(キャビティ401を含む)表面の全部は、機械加工される。 Hereinafter, a method for manufacturing the piston 1 of the present embodiment will be described. The manufacturing method includes a piston body forming step and a low heat conduction portion forming step. The piston body forming process includes a casting process, a heat treatment process, and a machining process. In the casting process, a prototype (intermediate workpiece) of the piston body 2 is cast. Specifically, a molten aluminum alloy is poured into a mold and solidified. At this time, the inner periphery of the piston body 2 is formed, and the basic shape of the cavity 401 is formed. In the heat treatment step, heat treatment is performed. As a result, the properties of the cast prototype are improved and adjusted to appropriate strength and hardness. In the machining process, the heat-treated prototype is machined with a lathe or the like. For example, the piston pin hole 51 and the ring groove 410 are processed, and the outer diameter of the piston body 2 such as the outer periphery of the piston head 4 and the piston skirt 6 is finished. Further, the crown surface 400 (cavity 401) is formed by machining. The entire surface of the piston head 4 on the combustion chamber 11 side (including the cavity 401) is machined.
 低熱伝導部形成工程で、ピストンヘッド4(における燃焼室11側)に低熱伝導部3を形成する。低熱伝導部3は、早くとも上記熱処理工程後に形成される(熱処理工程は低熱伝導部形成工程の前に行われる)。本実施形態では、上記機械加工工程後に低熱伝導部3を形成する。低熱伝導部形成工程は、材料準備工程と、塗布工程と、乾燥工程とを含む。材料準備工程で、低熱伝導部3を形成するための材料(以下、形成材料)を準備する。形成材料は、固体材料(炭素およびバインダー)と溶剤(溶媒)を含む。平均粒径が例えば20μm~50μmである炭素の粒子からなる粉体を用意する。粒径の測定には、例えばJIS Z8801の試験用ふるいを用いることができる。平均径としてメジアン径(d50)を用いることができる。この場合、「平均粒径がxμmである粉体」とは、上記試験用ふるいで分級され、メジアン径がxμmである粒子(塊)の粉体をいう。溶剤は、形成材料のうち気化する成分であり、揮発性のものを用いることができる。N-メチル-2-ピロリドン(NMP)やジメチルアセトアミド(DMAc)等の有機溶剤を用いることができる。材料準備工程では、炭素およびバインダーの粉体と溶剤とを混ぜ合わせたもの(以下、混合材料)を用意する。混合材料には溶剤が含まれ、炭素の塊(粒子)およびバインダーの粒子は溶剤中に分散している。なお、混合材料に、炭素とバインダーと溶剤以外の材料(添加剤等)を混ぜてもよい。 In the low heat conduction part forming step, the low heat conduction part 3 is formed on the piston head 4 (on the combustion chamber 11 side). The low heat conduction part 3 is formed after the heat treatment process at the earliest (the heat treatment process is performed before the low heat conduction part formation step). In this embodiment, the low heat conduction part 3 is formed after the said machining process. The low heat conduction part forming step includes a material preparation step, a coating step, and a drying step. In the material preparation step, a material (hereinafter referred to as a forming material) for forming the low thermal conductive portion 3 is prepared. The forming material includes a solid material (carbon and binder) and a solvent (solvent). A powder made of carbon particles having an average particle diameter of, for example, 20 μm to 50 μm is prepared. For the measurement of the particle size, for example, a test sieve of JIS Z8801 can be used. The median diameter (d50) can be used as the average diameter. In this case, the “powder having an average particle diameter of x μm” refers to a powder of particles (lumps) classified by the test sieve and having a median diameter of x μm. The solvent is a component that vaporizes in the forming material, and a volatile solvent can be used. Organic solvents such as N-methyl-2-pyrrolidone (NMP) and dimethylacetamide (DMAc) can be used. In the material preparation step, a mixture of carbon and binder powder and a solvent (hereinafter referred to as a mixed material) is prepared. The mixed material contains a solvent, and carbon lump (particles) and binder particles are dispersed in the solvent. In addition, you may mix materials (additive etc.) other than carbon, a binder, and a solvent in mixed material.
 塗布工程で、事前(実際に塗布する前)に、ピストンヘッド4がピストンボス5やピストンスカート6に対し鉛直方向上側となるようにピストン本体2を設置する。具体的には、冠面400が鉛直方向上側を向くようにする。図6に示すように、ピストン本体2における燃焼室11側(冠面400)の全部に、形成材料(混合材料)をスプレーガン90により塗布する。これにより形成材料の塗膜が(キャビティ401の表面を含む)冠面400に形成される。乾燥工程で、例えば赤外線の照射により、塗布された形成材料を乾燥させる。塗膜(混合材料)中の溶剤が気化(蒸発)する。これによって固体材料同士の間などに空隙31が複数形成される。 In the application process, the piston body 2 is installed in advance (before actual application) so that the piston head 4 is vertically above the piston boss 5 and the piston skirt 6. Specifically, the crown surface 400 is set to face upward in the vertical direction. As shown in FIG. 6, the forming material (mixed material) is applied to the entire combustion chamber 11 side (crown surface 400) of the piston body 2 by the spray gun 90. As a result, a coating film of the forming material is formed on the crown surface 400 (including the surface of the cavity 401). In the drying step, the applied forming material is dried by, for example, infrared irradiation. The solvent in the coating film (mixed material) is vaporized (evaporated). As a result, a plurality of voids 31 are formed between the solid materials.
 次に、作用効果を説明する。低熱伝導部3は燃焼室11に面し、燃焼室11の壁を構成する。表1は、アルミニウム合金(ピストン本体2の母材金属)と炭素(グラファイトやカーボンブラック)の一般的な特性の一例を示す。
Figure JPOXMLDOC01-appb-T000001
  低熱伝導部3中の炭素(グラファイトやカーボンブラック)は、低熱伝導性材料であり、ピストン本体2の素材(母材金属)であるアルミニウム合金よりも、熱伝導率が低い。よって、低熱伝導部3は、燃焼室11とピストン本体2との間にあって、断熱層として機能する。低熱伝導部3は、燃焼室11内のガスからピストンヘッド4(ピストン本体2)への熱伝達を低下させ、燃焼室11に供給された燃料(混合気)の熱がピストン本体2に奪われるのを抑制する。よって、エンジン100の熱効率の向上を図ることができる。炭素は、ピストン本体2の素材であるアルミニウム合金よりも、単位体積当たりの熱容量(比熱と密度の積)言い換えると容積比熱が小さい。一般に固体の温度伝導率は容積比熱に反比例する。よって、低熱伝導部3は、ピストン本体2に比べ、(熱伝導率が低くても)温度伝導率が小さくなりにくい性質を有する。燃焼室11内のガスに接触するピストンヘッド4の表面(低熱伝導部3)の温度伝導率が大きければ、この表面温度が、燃焼室11内のガスの温度に追従しやすい。このように両温度の差を小さくすることで、シリンダ10(燃焼室11)内における熱損失を低減できる。
Next, the function and effect will be described. The low heat conduction unit 3 faces the combustion chamber 11 and constitutes a wall of the combustion chamber 11. Table 1 shows an example of general characteristics of an aluminum alloy (a base metal of the piston body 2) and carbon (graphite or carbon black).
Figure JPOXMLDOC01-appb-T000001
Carbon (graphite or carbon black) in the low heat conducting portion 3 is a low heat conductive material and has a lower thermal conductivity than an aluminum alloy that is a material (base metal) of the piston body 2. Therefore, the low heat conducting portion 3 is located between the combustion chamber 11 and the piston body 2 and functions as a heat insulating layer. The low heat conducting section 3 reduces heat transfer from the gas in the combustion chamber 11 to the piston head 4 (piston body 2), and the heat of the fuel (air mixture) supplied to the combustion chamber 11 is taken away by the piston body 2. To suppress. Therefore, the thermal efficiency of engine 100 can be improved. Carbon has a smaller heat capacity (product of specific heat and density) per unit volume than the aluminum alloy that is the material of the piston body 2, in other words, volume specific heat. In general, the temperature conductivity of a solid is inversely proportional to the volume specific heat. Therefore, the low thermal conductivity portion 3 has a property that the temperature conductivity is less likely to be small (even if the thermal conductivity is low) compared to the piston body 2. If the temperature conductivity of the surface of the piston head 4 in contact with the gas in the combustion chamber 11 (low heat conduction portion 3) is large, the surface temperature easily follows the temperature of the gas in the combustion chamber 11. Thus, the heat loss in the cylinder 10 (combustion chamber 11) can be reduced by reducing the difference between the two temperatures.
 低熱伝導部3は、内部に空隙31を有する。空隙31は、熱伝導率が極めて低く、容積比熱が極めて小さい。よって、低熱伝導部3の全体として(平均的に)、熱伝導率がより低くなるため、燃焼室11内のガスからピストンヘッド4(ピストン本体2)への熱伝達をより低下させることができる。また、低熱伝導部3の全体として、容積比熱がより小さくなるため、ピストン本体2よりも低熱伝導部3の温度伝導率を大きくすることができ、これによってピストンヘッド4の表面温度と燃焼室11内のガス温度との差をより小さくできる。なお、空隙31の大きさは任意である。空隙31の数は任意であり、例えば1つでもよい。本実施形態では空隙31は複数あるため、上記各効果を向上できる。 The low heat conduction part 3 has a gap 31 inside. The air gap 31 has an extremely low thermal conductivity and an extremely small volume specific heat. Therefore, since the heat conductivity is lower as a whole (on average) in the low heat conduction section 3, heat transfer from the gas in the combustion chamber 11 to the piston head 4 (piston body 2) can be further reduced. . Further, since the specific heat of the volume of the low heat conducting portion 3 as a whole becomes smaller, the temperature conductivity of the low heat conducting portion 3 can be made larger than that of the piston main body 2, thereby the surface temperature of the piston head 4 and the combustion chamber 11. The difference with the gas temperature inside can be made smaller. Note that the size of the gap 31 is arbitrary. The number of voids 31 is arbitrary, and may be one, for example. In this embodiment, since there are a plurality of gaps 31, the above effects can be improved.
 低熱伝導部3中の炭素はグラファイトを含む。グラファイトは、SP2混成軌道の炭素同士が結合した層状の結晶構造を有しており、潤滑性に優れる。すなわち、グラファイトは、異方性の、結晶面間の結合力が小さい層状構造を有しており、摩擦により容易にせん断されるため、一般に固体潤滑剤として用いられる。このことから明らかなように、仮に低熱伝導部3の一部がシリンダ10内に脱落した場合であっても、この一部中のグラファイトが潤滑剤として機能し、シリンダ10やピストン1(ピストン本体2)の摩耗の抑制を図ることができる。これは、高硬度の材料(例えばジルコニア等のセラミック)により低熱伝導部3を形成した場合と比べて有利な効果である。なお、低熱伝導部3中の炭素におけるグラファイトの割合は任意であり、例えば50体積%未満でもよい。本実施形態では炭素はグラファイトを50体積%以上含む。よって、上記効果を向上できる。また、炭素は、融点に代表される耐熱性が高く、耐久性にも優れる。よって、低熱伝導部3の耐久性を向上できる。 The carbon in the low heat conduction part 3 includes graphite. Graphite has a layered crystal structure in which carbons of SP2 hybrid orbitals are bonded to each other, and is excellent in lubricity. That is, graphite is generally used as a solid lubricant because it has an anisotropic layered structure with a low bonding force between crystal planes and is easily sheared by friction. As is clear from this, even if a part of the low heat conducting portion 3 falls into the cylinder 10, the graphite in this part functions as a lubricant, and the cylinder 10 and the piston 1 (piston body) 2) Wear can be suppressed. This is an advantageous effect as compared with the case where the low thermal conductive portion 3 is formed of a high hardness material (for example, ceramic such as zirconia). In addition, the ratio of the graphite in the carbon in the low heat conductive part 3 is arbitrary, for example, may be less than 50 volume%. In the present embodiment, carbon contains 50% by volume or more of graphite. Therefore, the above effect can be improved. Moreover, carbon has high heat resistance represented by melting point and is excellent in durability. Therefore, the durability of the low heat conduction part 3 can be improved.
 バインダーにより、炭素の粒子(塊)間の密着性、および炭素の粒子(塊)とピストン本体2との密着性を向上し、これらの粒子(塊)をピストン本体2に保持する力を向上することができる。低熱伝導部3の強度を向上し、その欠けや崩れを抑制することで、低熱伝導部3の機能をより長期にわたり維持できる。エンジニアリングプラスチックは耐熱性が高い。このため、低熱伝導部3の耐久性をより向上できる。なお、低熱伝導部3はバインダーを含まなくてもよい。仮に、低熱伝導部3に欠けや崩れが生じてシリンダ10内に脱落しても、上記のように、シリンダ10やピストン1(ピストン本体2)の摩耗は抑制される。 By the binder, the adhesion between the carbon particles (lumps) and the adhesion between the carbon particles (lumps) and the piston body 2 are improved, and the force for holding these particles (lumps) in the piston body 2 is improved. be able to. By improving the strength of the low heat conduction part 3 and suppressing the chipping and collapse thereof, the function of the low heat conduction part 3 can be maintained for a longer period of time. Engineering plastics have high heat resistance. For this reason, the durability of the low heat conducting portion 3 can be further improved. In addition, the low heat conductive part 3 does not need to contain a binder. Even if the low heat conducting portion 3 is chipped or collapsed and falls into the cylinder 10, wear of the cylinder 10 and the piston 1 (piston body 2) is suppressed as described above.
 空隙31は、複数の炭素の塊(およびバインダー)の間にある。炭素の塊の平均粒径が20μm以上であるため、比較的大きな空隙31が形成される。よって、低熱伝導部3の全体として、熱伝導率がより低くなり、容積比熱がより小さくなるため、上記各効果を向上できる。炭素の塊の平均粒径が100μm以下であるため、固体材料同士の接触面積が過度に小さくなることが抑制される。よって、低熱伝導部3の強度を向上し、その欠けや崩れをより容易に抑制できる。塊の平均粒径が50μm以下であるため、上記効果を向上できる。 The gap 31 is between a plurality of carbon chunks (and binders). Since the average particle diameter of the carbon lump is 20 μm or more, a relatively large void 31 is formed. Therefore, since the heat conductivity becomes lower and the volume specific heat becomes smaller as a whole of the low heat conducting portion 3, the above effects can be improved. Since the average particle diameter of the carbon lump is 100 μm or less, the contact area between the solid materials is suppressed from becoming excessively small. Therefore, the strength of the low heat conducting portion 3 can be improved and the chipping or collapse can be more easily suppressed. Since the average particle size of the lump is 50 μm or less, the above effect can be improved.
 空隙31は、低熱伝導部3の形成材料に混在していた物質すなわち溶剤(溶媒)が気化することによって形成されたものである。乾燥工程で、溶剤が気化して塗膜から抜け出るとともに、堆積した炭素の塊(およびバインダー)同士の間に空隙31が形成される。乾燥工程は空隙形成工程として機能する。なお、乾燥工程を特に設けなくてもよい(塗膜を自然乾燥してもよい)。このように、気化する成分(物質)を形成材料に混在させることによって、空隙31を容易に形成することができる。 The air gap 31 is formed by the vaporization of a substance, that is, a solvent (solvent) mixed in the material for forming the low thermal conductive portion 3. In the drying step, the solvent evaporates and escapes from the coating film, and voids 31 are formed between the deposited carbon blocks (and the binder). The drying process functions as a void forming process. In addition, it is not necessary to provide a drying process in particular (the coating film may be naturally dried). In this manner, the void 31 can be easily formed by mixing the vaporizing component (substance) in the forming material.
 複数ある空隙31のうち一部(第1の空隙311)は、低熱伝導部3における燃焼室11側で閉塞される。第1の空隙311の内部には、空気または溶剤のガスが閉じ込められている。第1の空隙311の内部では対流が起きにくいため、低熱伝導部3の断熱性が向上する。また、燃焼室11から第1の空隙311へ未燃焼の燃料が侵入することは抑制される。これにより排ガス性能の悪化が抑制される。 Some of the plurality of voids 31 (the first void 311) are closed on the combustion chamber 11 side in the low heat conducting section 3. Air or solvent gas is confined in the first gap 311. Since convection hardly occurs inside the first gap 311, the heat insulating property of the low heat conducting portion 3 is improved. Further, intrusion of unburned fuel from the combustion chamber 11 into the first gap 311 is suppressed. Thereby, deterioration of exhaust gas performance is suppressed.
 低熱伝導部3の内部において、軸方向他方側(ピストン本体2側)では、炭素の塊同士が自重によって密に接近した、空隙31が比較的少ない層303が形成される。軸方向一方側(燃焼室11側)では、炭素の塊同士の間に空隙31が比較的多い、粗な層304が形成される。言い換えると、層30は、第1の層303と第2の層304を有する。燃焼室11側で空隙31が多いことにより、低熱伝導部3の断熱効果が高い。 In the inside of the low heat conducting portion 3, on the other side in the axial direction (on the piston main body 2 side), a layer 303 having relatively few voids 31 in which carbon masses are closely approached by their own weight is formed. On one side in the axial direction (combustion chamber 11 side), a rough layer 304 is formed in which there are relatively many voids 31 between the carbon blocks. In other words, the layer 30 includes a first layer 303 and a second layer 304. Since there are many voids 31 on the combustion chamber 11 side, the heat insulating effect of the low heat conducting section 3 is high.
 なお、エンジン100の形式は任意である。例えば、エンジン100は2ストロークエンジンでもよいしディーゼルエンジンでもよい。燃料の供給方式は、シリンダ10(燃焼室11)内に直接噴射する筒内直噴式でもよいし、吸気ポートに噴射するポート噴射式でもよい。ピストン1の形状は任意である。例えば、キャビティ401の形状は上記に限らず任意である。冠面400にキャビティ401やバルブリセス402等の凹部を有しなくてもよい。 Note that the format of the engine 100 is arbitrary. For example, the engine 100 may be a two-stroke engine or a diesel engine. The fuel supply method may be an in-cylinder direct injection type that directly injects into the cylinder 10 (combustion chamber 11), or a port injection type that injects into the intake port. The shape of the piston 1 is arbitrary. For example, the shape of the cavity 401 is not limited to the above and is arbitrary. The crown surface 400 may not have a recess such as the cavity 401 or the valve recess 402.
 [第2実施形態]
  まず、構成を説明する。以下、第1実施形態と共通する部材や構造については第1実施形態と同じ符号を付して、説明を省略する。図8に示すように、低熱伝導部3は、ピストン本体2側(内側)に第1の層301を有し、燃焼室11側(外側)に第2の層302を有する。一般に、層の違いは、性状、形状、機能等によって判別可能である。第1の層301の構造は第1実施形態の層30と同様である。第2の層302はシアノアクリレートを含む皮膜である。第1の層301には複数の空隙31(第1の空隙311)がある。これらの空隙31は、低熱伝導部3における燃焼室11側(軸方向一方側)において第2の層302で覆われる。第2の層302はこれらの空隙31の燃焼室11側への開口を閉塞(封孔)する。他の構成は第1実施形態と同じである。
[Second Embodiment]
First, the configuration will be described. Hereinafter, members and structures common to the first embodiment are denoted by the same reference numerals as in the first embodiment, and description thereof is omitted. As shown in FIG. 8, the low heat conducting section 3 has a first layer 301 on the piston body 2 side (inner side) and a second layer 302 on the combustion chamber 11 side (outer side). In general, the difference between layers can be determined by properties, shapes, functions, and the like. The structure of the first layer 301 is the same as that of the layer 30 of the first embodiment. The second layer 302 is a film containing cyanoacrylate. The first layer 301 has a plurality of voids 31 (first voids 311). These voids 31 are covered with the second layer 302 on the combustion chamber 11 side (one side in the axial direction) in the low heat conducting section 3. The second layer 302 closes (seals) the openings of these voids 31 toward the combustion chamber 11 side. Other configurations are the same as those of the first embodiment.
 以下、ピストン1の製造方法を説明する。低熱伝導部形成工程は、材料準備工程と、塗布工程と、乾燥工程と、封孔処理工程とを含む。材料準備工程、塗布工程、および乾燥工程は、第1実施形態と同じである。封孔処理工程では、乾燥工程で形成された空隙31(第2の空隙312)の封孔処理を行う。シアノアクリレートを主成分として含む液体の接着剤(瞬間接着剤)を準備する。この接着剤を、例えばスプレーにより混合材料の塗膜上に噴霧する。その後、好ましくは過度な間をおかずに、ピストンヘッド4が鉛直方向下側となるようにピストン本体2を設置する。具体的には、冠面400が鉛直方向下側を向くようにする。接着剤は、空隙31(第2の空隙312)の開口を介して塗膜内に浸透するとともに、その過程で塗膜内の水分により硬化する。ピストンヘッド4が鉛直方向下側であるため、接着剤が重力により塗膜の軸方向一方側(燃焼室11側)にとどまり、その位置で硬化する。塗膜の軸方向他方側(ピストン本体2側)で空隙31を残しつつ、接着剤のシアノアクリレートが塗膜の燃焼室11側で重合して皮膜(封孔膜)を形成する。上記空隙31の燃焼室11側における開口が、上記封孔膜で閉塞される。なお、ピストンヘッド4が鉛直方向下側となるようにピストン本体2を設置した後、接着剤を塗膜上に噴霧してもよい。ピストン1の他の製造工程は第1実施形態と同じである。 Hereinafter, a method for manufacturing the piston 1 will be described. The low heat conduction part forming step includes a material preparation step, a coating step, a drying step, and a sealing treatment step. The material preparation process, the application process, and the drying process are the same as those in the first embodiment. In the sealing treatment step, sealing treatment is performed on the void 31 (second void 312) formed in the drying step. A liquid adhesive (instant adhesive) containing cyanoacrylate as a main component is prepared. This adhesive is sprayed onto the coating of the mixed material, for example by spraying. Thereafter, the piston main body 2 is installed so that the piston head 4 is on the lower side in the vertical direction, preferably without leaving an excessive interval. Specifically, the crown surface 400 is directed downward in the vertical direction. The adhesive penetrates into the coating film through the opening of the gap 31 (second gap 312), and is cured by moisture in the coating process in the process. Since the piston head 4 is on the lower side in the vertical direction, the adhesive stays on one side in the axial direction of the coating film (on the combustion chamber 11 side) due to gravity and hardens at that position. Adhesive cyanoacrylate is polymerized on the combustion chamber 11 side of the coating film to form a coating film (sealing film) while leaving a gap 31 on the other axial side of the coating film (piston body 2 side). The opening on the combustion chamber 11 side of the gap 31 is closed with the sealing film. In addition, after installing the piston main body 2 so that the piston head 4 may become a vertical direction lower side, you may spray an adhesive agent on a coating film. Other manufacturing steps of the piston 1 are the same as those in the first embodiment.
 次に、作用効果を説明する。空隙31は、低熱伝導部3における燃焼室11側においてシアノアクリレートを含む膜(第2の層302)で覆われている。乾燥工程で形成された第2の空隙312の開口は、第2の層302によって閉塞(封孔)される。これにより第2の空隙312が第1の空隙311に変換される。第2の空隙312を減らし第1の空隙311を増加させることで、より効果的に、低熱伝導部3の断熱性を向上し、排ガス性能の悪化を抑制できる。シアノアクリレートを含むいわゆる瞬間接着剤により、空隙31を封孔する膜を容易に形成できる。特に、空隙31(第2の空隙312)が多い場合、これら多数の空隙31を短時間で容易に閉塞できる。 Next, the function and effect will be described. The air gap 31 is covered with a film (second layer 302) containing cyanoacrylate on the combustion chamber 11 side in the low heat conducting section 3. The opening of the second gap 312 formed in the drying process is closed (sealed) by the second layer 302. As a result, the second gap 312 is converted into the first gap 311. By reducing the second gap 312 and increasing the first gap 311, it is possible to more effectively improve the heat insulation of the low heat conducting section 3 and suppress the deterioration of the exhaust gas performance. With a so-called instantaneous adhesive containing cyanoacrylate, a film for sealing the gap 31 can be easily formed. In particular, when there are many voids 31 (second voids 312), these numerous voids 31 can be easily closed in a short time.
 低熱伝導部3は2つの層301,302を有する。これにより、低熱伝導部3の厚みや特性(機能)の調整が容易となる。上記のように、第2の空隙312を減らし第1の空隙311を増加させることができる。空隙31が第1の層301の側にあることで、第2の層302よりも第1の層301の熱伝導率が低い。言い換えると、低熱伝導部3のピストン本体2側(第1の層301)よりも燃焼室11側(第2の層302)の熱伝導率が高い。このため、低熱伝導部3における燃焼室11側(第2の層302)の温度が、燃焼室11内のガスの温度に、より追従しやすい。また、低熱伝導部3における燃焼室11側(第2の層302)の温度分布が、より均一化しやすく、これにより燃料の異常燃焼(ノッキング)を抑制できる。なお、空隙31の有無とは関係なく、第1の層301よりも第2の層302の容積比熱を小さくしてもよく、この場合も上記作用効果が得られる。また、ピストン本体2に接する第1の層301のほうが第2の層302よりも、ピストン本体2との結合強度が高くなるように、各層の特性を調整してもよい。層の数は2つに限らず3つ等でもよい。他の作用効果は第1実施形態と同じである。 The low heat conduction part 3 has two layers 301 and 302. Thereby, adjustment of the thickness and characteristic (function) of the low thermal conduction part 3 becomes easy. As described above, the second gap 312 can be reduced and the first gap 311 can be increased. Since the gap 31 is on the first layer 301 side, the thermal conductivity of the first layer 301 is lower than that of the second layer 302. In other words, the thermal conductivity on the combustion chamber 11 side (second layer 302) is higher than that on the piston main body 2 side (first layer 301) of the low heat conducting section 3. For this reason, the temperature on the combustion chamber 11 side (second layer 302) in the low heat conducting section 3 can more easily follow the temperature of the gas in the combustion chamber 11. In addition, the temperature distribution on the combustion chamber 11 side (second layer 302) in the low heat conducting section 3 is more easily made uniform, thereby suppressing abnormal combustion (knocking) of fuel. Note that the volume specific heat of the second layer 302 may be made smaller than that of the first layer 301 regardless of the presence or absence of the void 31, and in this case, the above-described effects can be obtained. In addition, the characteristics of each layer may be adjusted so that the first layer 301 in contact with the piston body 2 has higher bonding strength with the piston body 2 than the second layer 302. The number of layers is not limited to two, and may be three. Other functions and effects are the same as those of the first embodiment.
 [第3実施形態]
  図9に示すように、低熱伝導部3は薄膜状であり、層30を有する。層30の厚さは任意である。低熱伝導部3は、炭素とバインダーを含む。炭素は複数の塊(粒子)を含む。塊の平均粒径は任意である。バインダーは第1実施形態と同じである。バインダーの層内に炭素の塊が分散している。低熱伝導部3における複数の空隙31は、主に第1の空隙311である。各空隙31を構成するバインダーの壁に、炭素の塊が埋め込まれ、または塊が支持されている。他の構成は第1実施形態と同じである。
[Third embodiment]
As shown in FIG. 9, the low thermal conductive portion 3 is a thin film and has a layer 30. The thickness of the layer 30 is arbitrary. The low heat conduction part 3 contains carbon and a binder. Carbon includes a plurality of lumps (particles). The average particle size of the lumps is arbitrary. The binder is the same as in the first embodiment. Carbon clumps are dispersed in the binder layer. The plurality of gaps 31 in the low heat conducting unit 3 are mainly the first gaps 311. A carbon lump is embedded in or supported on the wall of the binder constituting each void 31. Other configurations are the same as those of the first embodiment.
 以下、ピストン1の製造方法を説明する。低熱伝導部形成工程は、材料準備工程と、塗布工程と、材料加熱工程と、噴射工程と、乾燥工程とを含む。材料準備工程で、バインダーと溶剤とを含む混合材料32を用意する。溶剤は第1実施形態と同じである。混合材料32において、バインダーには溶剤が混在しており、バインダー(の粒子)は溶剤中に分散している。なお、混合材料に添加剤等を混ぜてもよいし、バインダーを省略してもよい。また、炭素の複数の塊33からなる炭素材(粉体)を用意する。塗布工程で、ピストン本体2の冠面400の全部に、混合材料32を例えばスプレーガンにより塗布する。材料加熱工程で、炭素材を加熱する。噴射工程で、加熱された炭素材(粉体)を、冠面400(塗布された混合材料32)に噴射する。図11に示すように、これらの工程ではヒートガン91を用いることができる。これにより材料加熱工程と噴射工程とが1つの工程にまとめられて簡素化される。ヒートガン91で炭素材を加熱しこれを熱風とともにピストンヘッド4(混合材料32)に吹き付ける。乾燥工程で、炭素材が吹き付けられた塗膜を乾燥する。なお、乾燥工程を特に設けなくてもよい(塗膜を自然乾燥してもよい)。ヒートガン91以外の道具や装置を用いて材料加熱工程と噴射工程を(別々に)実施してもよい。ピストン1の他の製造工程は第1実施形態と同じである。 Hereinafter, a method for manufacturing the piston 1 will be described. The low heat conduction part forming step includes a material preparation step, a coating step, a material heating step, a spraying step, and a drying step. In the material preparation step, a mixed material 32 containing a binder and a solvent is prepared. The solvent is the same as in the first embodiment. In the mixed material 32, a solvent is mixed in the binder, and the binder (particles thereof) is dispersed in the solvent. In addition, an additive etc. may be mixed with a mixed material and a binder may be abbreviate | omitted. Also, a carbon material (powder) composed of a plurality of carbon masses 33 is prepared. In the application step, the mixed material 32 is applied to the entire crown surface 400 of the piston body 2 by, for example, a spray gun. In the material heating process, the carbon material is heated. In the spraying process, the heated carbon material (powder) is sprayed onto the crown surface 400 (the coated mixed material 32). As shown in FIG. 11, a heat gun 91 can be used in these steps. As a result, the material heating process and the injection process are combined into one process and simplified. The carbon material is heated by the heat gun 91 and sprayed onto the piston head 4 (mixed material 32) together with hot air. In the drying step, the coating film onto which the carbon material has been sprayed is dried. In addition, it is not necessary to provide a drying process in particular (the coating film may be naturally dried). The material heating step and the injection step may be performed (separately) using a tool or apparatus other than the heat gun 91. Other manufacturing steps of the piston 1 are the same as those in the first embodiment.
 次に作用効果を説明する。図12に示すように、噴射工程で、加熱された炭素の複数の塊33が、(溶剤が混在した)バインダーの塗膜中に埋め込まれる。埋め込まれた炭素の各塊33の周りで、塗膜中の溶剤が、塊33の熱により気化し膨張する。これによって、塗膜内に複数の空隙31が形成される。噴射工程は、空隙形成工程として機能する。このように空隙31の形状が、溶剤の気化(膨張)により形成される。溶剤の気化・膨張により形成される空隙31は比較的大きい。よって、空隙率(低熱伝導部3に占める空隙31の体積の割合)を向上し、低熱伝導部3の断熱性を向上できる。また、塗膜(バインダーの層)が薄膜であっても、その内部に空隙31を形成しやすい。言い換えると、空隙31を有する低熱伝導部3の層30を薄くできる。なお、噴射工程で、重点的に塗膜の燃焼室11側に、炭素材が埋め込まれるようにしてもよい。この場合、低熱伝導部3における燃焼室11側に空隙31ができやすく、燃焼室11に面する側に、熱伝導率が低い層ができる。このため、断熱効果を向上できる。噴射工程で、重点的に塗膜のピストン本体2側に、炭素材が埋め込まれるようにしてもよい。この場合、空隙31が燃焼室11側に開口しにくいため、第2の空隙312の数を減らすことが容易である。他の作用効果は第1実施形態と同じである。 Next, the function and effect will be described. As shown in FIG. 12, in the spraying process, a plurality of heated carbon masses 33 are embedded in the coating film of the binder (mixed with the solvent). Around each embedded mass 33 of carbon, the solvent in the coating is vaporized and expanded by the heat of the mass 33. Thereby, a plurality of voids 31 are formed in the coating film. The injection process functions as a gap forming process. Thus, the shape of the void 31 is formed by the vaporization (expansion) of the solvent. The void 31 formed by the vaporization / expansion of the solvent is relatively large. Therefore, the porosity (ratio of the volume of the void 31 in the low heat conduction part 3) can be improved, and the heat insulating property of the low heat conduction part 3 can be improved. Further, even if the coating film (binder layer) is a thin film, voids 31 are easily formed therein. In other words, the layer 30 of the low heat conducting portion 3 having the void 31 can be thinned. In the injection process, a carbon material may be embedded mainly on the combustion chamber 11 side of the coating film. In this case, the air gap 31 is easily formed on the combustion chamber 11 side in the low heat conduction section 3, and a layer having low thermal conductivity is formed on the side facing the combustion chamber 11. For this reason, the heat insulation effect can be improved. In the spraying process, a carbon material may be embedded mainly on the piston body 2 side of the coating film. In this case, the number of the second gaps 312 can be easily reduced because the gaps 31 are difficult to open to the combustion chamber 11 side. Other functions and effects are the same as those of the first embodiment.
 [第4実施形態]
  低熱伝導部3その他の構成は第3実施形態と同じである。低熱伝導部形成工程は、封孔処理工程を含むほか、第3実施形態と同じである。封孔処理工程は、乾燥工程より前に行われても後に行われてもよい。封孔処理工程では、噴射工程で形成された複数の空隙31のうち、燃焼室11側に開口するもの(第2の空隙312)を封孔膜35により閉塞する。これにより第2の空隙312が第1の空隙311へ変換される。閉塞に用いる材料は材料準備工程で用意した混合材料であってもよいし、第2実施形態のような接着剤であってもよい。ピストン1の他の製造工程は第1実施形態と同じである。第2実施形態と同様、第2の空隙312を減らし第1の空隙311を増やすことができる。他の作用効果は第3実施形態と同じである。
[Fourth embodiment]
The other configurations of the low heat conducting unit 3 are the same as those of the third embodiment. The low heat conduction part forming step is the same as that of the third embodiment except for the sealing treatment step. The sealing treatment process may be performed before or after the drying process. In the sealing treatment step, among the plurality of voids 31 formed in the injection step, the one opened to the combustion chamber 11 side (second void 312) is closed with the sealing film 35. As a result, the second gap 312 is converted into the first gap 311. The material used for the closing may be a mixed material prepared in the material preparation step, or may be an adhesive as in the second embodiment. Other manufacturing steps of the piston 1 are the same as those in the first embodiment. Similar to the second embodiment, the second gap 312 can be reduced and the first gap 311 can be increased. Other functions and effects are the same as those of the third embodiment.
 [第5実施形態]
  図14および図15に示すように、低熱伝導部3の層30内には炭素の塊とバインダーが混ざり合って分散している。空隙31は、層30内の軸方向他方側(ピストン本体2側)にある。空隙31は、軸方向一方側(燃焼室11側)で固体材料により閉塞され、軸方向他方側でピストン本体2や固体材料により閉塞されている。他の構成は第3実施形態と同じである。低熱伝導部形成工程は、材料準備工程と、ピストン本体加熱工程と、塗布工程とを含む。材料準備工程で、炭素とバインダーと溶剤とを含む混合材料を用意する。溶剤は第1実施形態と同じである。混合材料において、炭素とバインダーには溶剤が混在しており、炭素の塊とバインダー(の粒子)は溶剤中に分散している。なお、混合材料に添加剤等を混ぜてもよいし、バインダーを省略してもよい。ピストン本体加熱工程で、ピストン本体2を加熱する。塗布工程は、第1実施形態と同様であり、加熱されたピストン本体2の冠面400の全部に、混合材料を例えばスプレーガンにより塗布する。なお、塗布工程後に乾燥工程を設けてもよい。ピストン1の他の製造工程は第1実施形態と同じである。
[Fifth Embodiment]
As shown in FIG. 14 and FIG. 15, carbon lump and binder are mixed and dispersed in the layer 30 of the low heat conducting portion 3. The air gap 31 is on the other axial side in the layer 30 (on the piston body 2 side). The air gap 31 is closed by a solid material on one side in the axial direction (combustion chamber 11 side), and is closed by the piston body 2 and the solid material on the other side in the axial direction. Other configurations are the same as those of the third embodiment. The low heat conduction part forming step includes a material preparation step, a piston body heating step, and an application step. In the material preparation step, a mixed material containing carbon, a binder, and a solvent is prepared. The solvent is the same as in the first embodiment. In the mixed material, a solvent is mixed in the carbon and the binder, and the lump of carbon and the binder (particles thereof) are dispersed in the solvent. In addition, an additive etc. may be mixed with a mixed material and a binder may be abbreviate | omitted. The piston body 2 is heated in the piston body heating step. The application process is the same as in the first embodiment, and the mixed material is applied to the entire crown surface 400 of the heated piston body 2 by, for example, a spray gun. In addition, you may provide a drying process after an application | coating process. Other manufacturing steps of the piston 1 are the same as those in the first embodiment.
 次に作用効果を説明する。塗布工程で、予め加熱(予熱)されたピストン本体2のピストンヘッド4に混合材料を塗布すると、塗膜の裏面側(冠面400に面する側)で、混合材料中の溶剤が、ピストン本体2の熱により気化(沸騰)して膨張する。これにより、層30内に複数の空隙31が形成される。塗布工程は、空隙形成工程として機能する。なお、ピストン本体加熱工程は、ピストン本体2の燃焼室11側(ピストンヘッド4)のみを加熱する工程であってもよい。この場合、例えばピストンボス5側も加熱する場合に比べ、加熱に要する熱量(エネルギー)を抑制することができる。塗膜の表面側(燃焼室11に面する側)は、裏面側よりもピストン本体2の熱が伝わりにくく低温であるため、空隙31が形成されづらい。よって、空隙31が燃焼室11に開口することは抑制され、第1の空隙311が形成される。低熱伝導部3において、空隙31(第1の空隙311)がピストン本体2側に形成されることで、燃焼室11側の熱伝導率が高くなり、第2実施形態と同様の効果が得られる。空隙31の形状が溶剤の気化(膨張)により形成されることで、第3実施形態と同様の効果が得られる。他の作用効果は第1実施形態と同じである。 Next, the function and effect will be described. When the mixed material is applied to the piston head 4 of the piston body 2 that has been preheated (preheated) in the coating process, the solvent in the mixed material is removed from the piston body on the back side of the coating film (the side facing the crown surface 400). Evaporates (boils) by the heat of 2 and expands. As a result, a plurality of voids 31 are formed in the layer 30. The coating process functions as a void forming process. The piston body heating step may be a step of heating only the combustion chamber 11 side (piston head 4) of the piston body 2. In this case, for example, compared with the case where the piston boss 5 side is also heated, the amount of heat (energy) required for heating can be suppressed. On the surface side of the coating film (side facing the combustion chamber 11), the heat of the piston body 2 is less transmitted than the back surface side and is at a low temperature. Therefore, the opening of the gap 31 to the combustion chamber 11 is suppressed, and the first gap 311 is formed. In the low heat conducting section 3, the gap 31 (first gap 311) is formed on the piston body 2 side, so that the thermal conductivity on the combustion chamber 11 side is increased, and the same effect as in the second embodiment is obtained. . Since the shape of the void 31 is formed by the vaporization (expansion) of the solvent, the same effect as in the third embodiment can be obtained. Other functions and effects are the same as those of the first embodiment.
 [第6実施形態]
  図16に示すように、第2実施形態と同様、低熱伝導部3は層301,302を有する。第1の層301は第5実施形態の層30と同じである。第2の層302はシアノアクリレートを含む膜である。第1の層301には空隙31がある。第2の層302は、空隙31の燃焼室11側への開口を閉塞(封孔)する。他の構成は第5実施形態と同じである。低熱伝導部形成工程は、封孔処理工程を含むほか、第5実施形態と同じである。封孔処理工程は、塗布工程後に行われ、空隙31の封孔処理を行う。第2実施形態と同様の接着剤を準備し、これを塗膜上に噴霧する。なお、封孔すべき空隙31の開口の数(ないし面積)が第2実施形態よりも少なければ、第2実施形態のようにピストンヘッド4を鉛直方向下側としなくてもよい。ピストン1の他の製造工程は第1実施形態と同じである。
[Sixth embodiment]
As shown in FIG. 16, as in the second embodiment, the low heat conducting unit 3 includes layers 301 and 302. The first layer 301 is the same as the layer 30 of the fifth embodiment. The second layer 302 is a film containing cyanoacrylate. There is a void 31 in the first layer 301. The second layer 302 closes (seals) the opening of the gap 31 toward the combustion chamber 11. Other configurations are the same as those of the fifth embodiment. The low thermal conductive portion forming step is the same as that of the fifth embodiment except for the sealing treatment step. The sealing treatment step is performed after the coating step, and the pore 31 is sealed. An adhesive similar to that of the second embodiment is prepared and sprayed on the coating film. If the number (or area) of openings of the gap 31 to be sealed is smaller than that in the second embodiment, the piston head 4 does not have to be on the lower side in the vertical direction as in the second embodiment. Other manufacturing steps of the piston 1 are the same as those in the first embodiment.
 塗布工程で形成される空隙31が燃焼室11側に開口する場合でも、第2の層302によって閉塞(封孔)される。よって、第2実施形態と同様の作用効果が得られる。第2の層302の材料は、材料準備工程で用意した混合材料であってもよい。すなわち、塗布工程で空隙31を含んで形成された第1の層301にさらに混合材料を塗布することで、上記空隙31の燃焼室11側への開口を閉塞(封孔)してもよい。このとき、第2の層302の混合材料の溶剤として、第1の層301の混合材料の溶剤よりも気化しにくいものを用いれば、第1の層301と第2の層302とを余計なタイムラグなく(同じ工程で)塗布することが容易となる。他の作用効果は第5実施形態と同じである。 Even when the gap 31 formed in the coating process opens to the combustion chamber 11 side, it is blocked (sealed) by the second layer 302. Therefore, the same effect as the second embodiment can be obtained. The material of the second layer 302 may be a mixed material prepared in the material preparation step. That is, the opening of the void 31 toward the combustion chamber 11 may be closed (sealed) by further applying a mixed material to the first layer 301 formed including the void 31 in the application step. At this time, if the solvent of the mixed material of the second layer 302 is less likely to evaporate than the solvent of the mixed material of the first layer 301, the first layer 301 and the second layer 302 are excessively separated. It becomes easy to apply without a time lag (in the same process). Other functions and effects are the same as those of the fifth embodiment.
 [第7実施形態]
  図17に示すように、低熱伝導部3は、燃焼室11側を頂点としてピストン本体2側に向かって広がる山状の突起(凸部)34を複数有する。第1の空隙311は、各突起34の内部にある空間であり、軸方向一方側(燃焼室11側)で固体材料により閉塞され、軸方向他方側でピストン本体2や固体材料により閉塞されている。第2の空隙312は、隣接する突起34の間の空間(突起間の凹部)である。他の構成は第5実施形態と同じである。低熱伝導部形成工程は、材料準備工程と、ピストン本体加熱工程と、塗布工程と、引きはがし工程とを含む。材料準備工程とピストン本体加熱工程は、第5実施形態と同じである。塗布工程で、加熱されたピストン本体2の冠面400の全部に、混合材料をスタンプにより塗布する。スタンプは例えば多孔質の部材(ゴムやスポンジ等)を備えており、この部材に混合剤が含浸される。このスタンプを、冠面400に押し付ける。引きはがし工程で、スタンプをピストンヘッド4から引きはがす。スタンプは、塗装用のローラである。ローラを用いることで、塗布工程と引きはがし工程を1つの作業で行うことができ、工程をまとめて簡素化できる。ピストン1の他の製造工程は第1実施形態と同じである。
[Seventh embodiment]
As shown in FIG. 17, the low heat conducting section 3 has a plurality of mountain-shaped protrusions (convex sections) 34 that spread from the combustion chamber 11 side toward the piston body 2 side. The first gap 311 is a space inside each protrusion 34, and is closed by a solid material on one side in the axial direction (combustion chamber 11 side) and closed by the piston body 2 or the solid material on the other side in the axial direction. Yes. The second gap 312 is a space between the adjacent protrusions 34 (a recess between the protrusions). Other configurations are the same as those of the fifth embodiment. The low heat conduction part forming step includes a material preparation step, a piston body heating step, a coating step, and a peeling step. The material preparation process and the piston body heating process are the same as in the fifth embodiment. In the application process, the mixed material is applied to the entire crown surface 400 of the heated piston body 2 by a stamp. The stamp includes, for example, a porous member (rubber, sponge, etc.), and this member is impregnated with a mixture. Press this stamp against the crown 400. In the peeling step, the stamp is peeled off from the piston head 4. The stamp is a roller for painting. By using a roller, the coating process and the peeling process can be performed in one operation, and the processes can be simplified together. Other manufacturing steps of the piston 1 are the same as those in the first embodiment.
 次に作用効果を説明する。塗布工程で、混合材料がスタンプによりピストンヘッド4に塗布される。引きはがし工程で、スタンプがピストンヘッド4(ピストン本体2)から引き剥がされる際、例えば多孔質の部材の表面における複数の凹凸(細孔)に対応して、複数の突起(凸部)34が混合材料により形成される。隣接する突起34の間に第2の空隙312が複数形成される。各突起34は、ピストン本体2からの熱により乾燥し固化する。その際、ピストン本体2の熱により、突起34内におけるピストン本体2側で混合材料中の溶剤の気化(膨張)が促進され、空洞が発生する。これにより突起34内に第1の空隙311が形成される。空隙31(第1の空隙311)が突起34の外側だけでなく内部にも形成されることで、低熱伝導部3において空隙31を効率的に設け(空隙率を増加し)、低熱伝導部3が全体として軸方向に厚くなることを抑制できる。なお、スタンプは、ローラでなくてもよい。第2実施形態と同様の封孔処理工程を適用してもよい。すなわち、第2の空隙312(突起34間の凹部)を封孔して第1の空隙311に変換する第2の層を設けてもよい。他の作用効果は第5実施形態と同じである。 Next, the function and effect will be described. In the application process, the mixed material is applied to the piston head 4 by a stamp. When the stamp is peeled off from the piston head 4 (piston body 2) in the peeling process, for example, a plurality of protrusions (convex portions) 34 corresponding to a plurality of unevenness (pores) on the surface of the porous member are formed. Formed with mixed material. A plurality of second gaps 312 are formed between the adjacent protrusions 34. Each protrusion 34 is dried and solidified by heat from the piston body 2. At that time, the heat of the piston main body 2 promotes the vaporization (expansion) of the solvent in the mixed material on the piston main body 2 side in the protrusion 34, and a cavity is generated. As a result, a first gap 311 is formed in the protrusion 34. Since the air gap 31 (first air gap 311) is formed not only outside but also inside the protrusion 34, the air gap 31 is efficiently provided (increase the porosity) in the low heat conducting section 3, and the low heat conducting section 3 Can be prevented from becoming thick in the axial direction as a whole. The stamp may not be a roller. A sealing process similar to that in the second embodiment may be applied. That is, a second layer that seals the second gap 312 (the recess between the protrusions 34) and converts it into the first gap 311 may be provided. Other functions and effects are the same as those of the fifth embodiment.
 [第8実施形態]
  図18に示すように、第2実施形態と同様、低熱伝導部3は層301,302を有する。各層301,302内には炭素の塊とバインダーが混ざり合って分散している。各層301,302の厚さは任意である。第1の層301には複数の空隙31(第1の空隙311)がある。空隙31は、第1の層301内において燃焼室11側(第2の層302側)に偏って在る。第2の層302は燃焼室11側への空隙31の開口を閉塞する。他の構成は第5実施形態と同じである。低熱伝導部形成工程は、材料準備工程と、塗布工程と、乾燥工程と、加熱工程とを含む。材料準備工程は、第5実施形態と同じである。塗布工程は、第5実施形態と同様であり、ピストン本体2の冠面400に、混合材料を例えばスプレーガンにより塗布する。乾燥工程では、塗布された形成材料(塗膜)の表面(燃焼室11に面する表層)を、例えば赤外線の照射により乾燥させる。加熱工程では、表面を乾燥させた塗膜の内部(深層)を加熱する。ピストン本体2を加熱することで、塗膜(形成材料)を裏面側(ピストン本体2側)から加熱する。ピストン1の他の製造工程は第1実施形態と同じである。
[Eighth embodiment]
As shown in FIG. 18, as in the second embodiment, the low heat conducting unit 3 includes layers 301 and 302. In each of the layers 301 and 302, carbon lump and binder are mixed and dispersed. The thickness of each layer 301, 302 is arbitrary. The first layer 301 has a plurality of voids 31 (first voids 311). The air gap 31 is biased toward the combustion chamber 11 side (second layer 302 side) in the first layer 301. The second layer 302 closes the opening of the gap 31 toward the combustion chamber 11 side. Other configurations are the same as those of the fifth embodiment. The low heat conduction part forming step includes a material preparation step, a coating step, a drying step, and a heating step. The material preparation process is the same as in the fifth embodiment. The application process is the same as in the fifth embodiment, and the mixed material is applied to the crown surface 400 of the piston body 2 by, for example, a spray gun. In the drying step, the surface of the applied forming material (coating film) (surface layer facing the combustion chamber 11) is dried by, for example, infrared irradiation. In the heating step, the inside (deep layer) of the coating film whose surface has been dried is heated. By heating the piston body 2, the coating film (forming material) is heated from the back side (piston body 2 side). Other manufacturing steps of the piston 1 are the same as those in the first embodiment.
 次に、作用効果を説明する。乾燥工程で、塗膜の表面を乾燥させる。すなわち、形成材料の溶剤を表面から蒸発させる。これにより塗膜の表面が固化し、皮膜(第2の層302)が形成される。塗膜における第2の層302よりも内側(ピストン本体2側)は、形成材料中に溶剤が残った流動性の第1の層301となる。加熱工程で、塗膜の裏面を加熱する。この部分で溶媒が気化(沸騰)して膨張することで、第1の層301におけるピストン本体2側に空隙31が複数形成される。加熱工程は空隙形成工程として機能する。なお、加熱工程は、第5実施形態のピストン本体加熱工程と同様、ピストン本体2の燃焼室11側(ピストンヘッド4)のみを加熱する工程であってもよい。また、ピストン本体2を加熱するのでなく、(表面を乾燥させた)塗膜を赤外線等により直接加熱してもよい。(表面を乾燥させた)塗膜を裏面側からでなく表面側(燃焼室11側)から加熱してもよい。空隙31の形状が溶剤の気化(膨張)により形成されることで、第3実施形態と同様の効果が得られる。 Next, the function and effect will be described. In the drying step, the surface of the coating film is dried. That is, the solvent of the forming material is evaporated from the surface. As a result, the surface of the coating is solidified and a coating (second layer 302) is formed. On the inner side (piston main body 2 side) of the coating film than the second layer 302 is a fluid first layer 301 in which the solvent remains in the forming material. In the heating step, the back surface of the coating film is heated. A plurality of voids 31 are formed on the piston body 2 side in the first layer 301 as the solvent evaporates (boils) in this portion and expands. The heating process functions as a void forming process. The heating step may be a step of heating only the combustion chamber 11 side (piston head 4) of the piston main body 2 as in the piston main body heating step of the fifth embodiment. Further, instead of heating the piston main body 2, the coating film (with the surface dried) may be directly heated by infrared rays or the like. The coating film (dried surface) may be heated not from the back side but from the front side (combustion chamber 11 side). Since the shape of the void 31 is formed by the vaporization (expansion) of the solvent, the same effect as in the third embodiment can be obtained.
 ピストンヘッド4が鉛直方向上側となるようにピストン本体2が設置されているため、空隙31は第1の層301におけるピストン本体2側から燃焼室11側(第2の層302側)へ移動しようとする。しかし、空隙31は、固化した第2の層302に阻まれて止まり、低熱伝導部3の表面(第2の層302の表面)に開口しない。第2の層302は、いわば空隙31の開口を閉塞する封孔膜として機能する。このように、低熱伝導部3の表面に封孔膜を形成しやすく、封孔された空隙311(第1の空隙311)を容易に形成することができる。一方、複数の空隙31が第1の層301における燃焼室11側に集まることで、断熱効果が向上する。他の作用効果は第2実施形態と同様である。なお、第1の層301と第2の層302の形成材料は同じであり、空隙31の有無のみ異なる。よって、空隙31や封孔機能の有無を考慮しなければ、両層301,302をまとめて1つの層とみることもできる。 Since the piston body 2 is installed so that the piston head 4 is on the upper side in the vertical direction, the air gap 31 will move from the piston body 2 side in the first layer 301 to the combustion chamber 11 side (second layer 302 side). And However, the air gap 31 is blocked by the solidified second layer 302 and does not open on the surface of the low thermal conductive portion 3 (the surface of the second layer 302). In other words, the second layer 302 functions as a sealing film that closes the opening of the gap 31. As described above, it is easy to form a sealing film on the surface of the low thermal conductive portion 3, and the sealed void 311 (first void 311) can be easily formed. On the other hand, since the plurality of voids 31 gather on the combustion chamber 11 side in the first layer 301, the heat insulation effect is improved. Other functions and effects are the same as those of the second embodiment. Note that the formation material of the first layer 301 and the second layer 302 is the same, and only the presence or absence of the void 31 is different. Therefore, both layers 301 and 302 can be collectively regarded as one layer if the presence or absence of the void 31 and the sealing function is not taken into consideration.
 [第9実施形態]
  図19に示すように、空隙31は、第1の層301内において燃焼室11側(第2の層302側)だけでなくピストン本体2側にもある。他の構成は第8実施形態と同じである。低熱伝導部形成工程は、材料準備工程と、塗布工程と、材料加熱工程とを含む。材料準備工程と塗布工程は、第8実施形態と同じである。図20に示すように、材料加熱工程では、塗布された形成材料(塗膜36)を、例えば赤外線92を燃焼室11側からのみ照射することにより、加熱する。ピストン1の他の製造工程は第1実施形態と同じである。
[Ninth Embodiment]
As shown in FIG. 19, the air gap 31 is present not only on the combustion chamber 11 side (second layer 302 side) but also on the piston body 2 side in the first layer 301. Other configurations are the same as those in the eighth embodiment. The low heat conduction part forming step includes a material preparation step, a coating step, and a material heating step. The material preparation process and the application process are the same as in the eighth embodiment. As shown in FIG. 20, in the material heating step, the applied forming material (coating film 36) is heated by, for example, irradiating infrared rays 92 only from the combustion chamber 11 side. Other manufacturing steps of the piston 1 are the same as those in the first embodiment.
 次に、作用効果を説明する。材料加熱工程で、塗膜36を表面(燃焼室11に面する表層)側から加熱する。これにより塗膜36の表面が乾燥し、固化した皮膜(第2の層302)が表面側に形成されるとともに、塗膜における第2の層302よりも内側(第1の層301)で、溶剤が熱により気化して膨張し、空隙31が複数形成される。材料加熱工程は空隙形成工程として機能する。第8実施形態と同様、空隙31が第1の層301における燃焼室11側へ移動しようとしても、固化した第2の層302に阻まれて止まり、表面に開口しない。このように、塗膜36の表面側が先に乾燥し、固化するため、塗膜36内に形成される空隙31が封孔されやすい。同一の材料加熱工程において、空隙31と、これを封孔する皮膜(第2の層302)とが形成されるため、第8実施形態の乾燥工程と加熱工程が1つの工程にまとめられて簡素化される。材料加熱工程で、塗膜36を、例えば最初は急速に(例えば塗膜36の近くから)加熱し、その後はゆっくり(塗膜36の遠くから)加熱することで、空隙31と、これを封孔する皮膜302とを効果的に形成するようにしてもよい。また、この材料加熱工程は中断を有しても(非連続的であっても)よい。材料加熱工程で、形成材料を燃焼室11側からのみ加熱するのでなく、例えばピストン本体2側からも加熱してもよい。燃焼室11側からのみ形成材料を加熱することで、他の側からも加熱する場合に比べ、加熱に要する熱量を抑制することができる。他の作用効果は第8実施形態と同じである。 Next, the function and effect will be described. In the material heating step, the coating film 36 is heated from the surface (surface layer facing the combustion chamber 11) side. Thereby, the surface of the coating film 36 is dried, and a solidified film (second layer 302) is formed on the surface side, and on the inner side (first layer 301) of the second layer 302 in the coating film, The solvent is vaporized by heat and expands, and a plurality of voids 31 are formed. The material heating process functions as a void forming process. Similar to the eighth embodiment, even if the air gap 31 tries to move to the combustion chamber 11 side in the first layer 301, it is stopped by the solidified second layer 302 and does not open on the surface. Thus, since the surface side of the coating film 36 is first dried and solidified, the void 31 formed in the coating film 36 is easily sealed. In the same material heating process, the void 31 and the film (second layer 302) that seals the gap 31 are formed, so the drying process and heating process of the eighth embodiment are combined into one process and simplified. It becomes. In the material heating step, the coating film 36 is first heated rapidly (for example, from the vicinity of the coating film 36), and then slowly (from a distance from the coating film 36), so that the air gap 31 is sealed. The hole 302 may be effectively formed. This material heating step may also be interrupted (may be discontinuous). In the material heating step, the forming material may be heated not only from the combustion chamber 11 side but also from the piston body 2 side, for example. By heating the forming material only from the combustion chamber 11 side, the amount of heat required for heating can be suppressed as compared to the case of heating from the other side. Other functions and effects are the same as those of the eighth embodiment.
 [第10実施形態]
  図21に示すように、第2実施形態と同様、低熱伝導部3は2つの層301,302を有する。第1の層301は、燃焼室11側を頂点としてピストン本体2側に向かって広がる山状の突起(凸部)37を複数有する。空隙31は、隣接する突起37の間の空間(突起37間の凹部)であり、軸方向一方側(燃焼室11側)で第2の層302により閉塞され、軸方向他方側でピストン本体2や固体材料により閉塞されている。他の構成は第5実施形態と同じである。低熱伝導部形成工程は、材料準備工程と、第1塗布工程と、第1乾燥工程と、第2塗布工程と、第2乾燥工程とを含む。材料準備工程は第5実施形態と同じである。第1塗布工程で、ピストン本体2の冠面400の全部に網目状の部材(メッシュ)93を設置する。形成材料(混合材料)370をメッシュ93越しに塗布する。図22は、形成材料370をメッシュ93とともに燃焼室11側からみた模式図である。メッシュ93を通して形成材料370が冠面400に塗布される。図23は、メッシュ93を外した後の形成材料370(第1の塗膜)を燃焼室11側からみた模式図である。第1乾燥工程で、第1の塗膜を、例えば赤外線の照射により乾燥させる。第2塗布工程で、乾燥された第1の塗膜の上に更に形成材料(混合材料)370を塗布する。塗布には、メッシュ93を再度用いてもよいし、スタンプを用いてもよい。第2乾燥工程で、第2塗布工程で塗布された形成材料370(第2の塗膜)を、例えば赤外線の照射により乾燥させる。ピストン1の他の製造工程は第1実施形態と同じである。
[Tenth embodiment]
As shown in FIG. 21, as in the second embodiment, the low heat conducting unit 3 includes two layers 301 and 302. The first layer 301 has a plurality of mountain-shaped protrusions (convex portions) 37 that spread from the combustion chamber 11 side toward the piston body 2 side. The air gap 31 is a space between adjacent projections 37 (a recess between the projections 37), is closed by the second layer 302 on one side in the axial direction (combustion chamber 11 side), and on the other side in the axial direction, the piston body 2 Or solid material. Other configurations are the same as those of the fifth embodiment. The low heat conduction part forming step includes a material preparation step, a first application step, a first drying step, a second application step, and a second drying step. The material preparation process is the same as in the fifth embodiment. In the first application step, a mesh-like member (mesh) 93 is installed on the entire crown surface 400 of the piston body 2. The forming material (mixed material) 370 is applied through the mesh 93. FIG. 22 is a schematic view of the forming material 370 together with the mesh 93 as viewed from the combustion chamber 11 side. A forming material 370 is applied to the crown surface 400 through the mesh 93. FIG. 23 is a schematic view of the forming material 370 (first coating film) after the mesh 93 is removed as viewed from the combustion chamber 11 side. In the first drying step, the first coating film is dried by, for example, infrared irradiation. In the second application step, a forming material (mixed material) 370 is further applied on the dried first coating film. For application, the mesh 93 may be used again, or a stamp may be used. In the second drying step, the forming material 370 (second coating film) applied in the second application step is dried by, for example, infrared irradiation. Other manufacturing steps of the piston 1 are the same as those in the first embodiment.
 次に、作用効果を説明する。第1塗布工程で、メッシュ93を外すと、形成材料370がメッシュ状(複数の点状ないし粒状)に残る。すなわち、形成材料370が微細な凹凸状に塗布される。形成材料370からなる各凸部は、図24に示すように、塗布直後は形を保つが、ある程度時間がたつと自重によりひしゃげ、図25に示すように、燃焼室11側を頂点としてピストン本体2側に向かって広がる山状の突起37になる。これらの突起37により第1の層301が形成される。すなわち、空隙31は、第1塗布工程時に形成される凹凸に由来する。第1塗布工程は空隙形成工程として機能する。第1乾燥工程で、各突起37は乾燥により固化する。第2塗布工程で、ピストン1の軸心が延びる方向で各突起37の頂点と重なる位置で、形成材料370を重ね塗りする。この第2の塗膜により突起37間の凹部の開口が閉塞され、第1の空隙311が形成される。第2乾燥工程で固化する第2の塗膜(第2の層302)は、上記凹部(空隙31)の封孔膜として機能する。第2塗布工程は、封孔処理工程として機能する。なお、第1、第2乾燥工程を特に設けなくてもよい(塗膜を自然乾燥してもよい)。ピストン本体2を加熱し、ピストン本体2からの熱により塗膜を乾燥させてもよい。第2塗布工程で、混合材料の代わりに、第2実施形態と同様の接着剤を用いてもよい。第2塗布工程を設けなくてもよい(第2の層302を形成しなくてよい)。この場合、突起37間の凹部が空隙31(第2の空隙312)として機能する。本実施形態では第2塗布工程を設けた(第2の層302を形成した)ため、第2の空隙312を第1の空隙311に変換し、第2実施形態と同じ効果が得られる。メッシュ93の目の粗さを変更することにより空隙31の大きさを調整することができる。これにより、空隙率を調整することができる。他の作用効果は第1実施形態と同じである。 Next, the function and effect will be described. When the mesh 93 is removed in the first application step, the forming material 370 remains in a mesh shape (a plurality of dots or grains). That is, the forming material 370 is applied in a fine uneven shape. Each convex part made of the forming material 370 maintains its shape immediately after application as shown in FIG. 24, but after a certain amount of time, it is scooped by its own weight, and as shown in FIG. 25, the piston body with the combustion chamber 11 side as the apex It becomes the mountain-shaped protrusion 37 which spreads toward 2 side. The first layer 301 is formed by these protrusions 37. That is, the gap 31 is derived from the unevenness formed during the first application process. The first application process functions as a void forming process. In the first drying step, each protrusion 37 is solidified by drying. In the second application step, the forming material 370 is overcoated at a position that overlaps the apex of each protrusion 37 in the direction in which the axis of the piston 1 extends. The opening of the recess between the protrusions 37 is closed by the second coating film, and a first gap 311 is formed. The second coating film (second layer 302) that solidifies in the second drying step functions as a sealing film for the recesses (voids 31). The second application process functions as a sealing treatment process. Note that the first and second drying steps are not particularly required (the coating film may be naturally dried). The piston body 2 may be heated, and the coating film may be dried by heat from the piston body 2. In the second application step, the same adhesive as in the second embodiment may be used instead of the mixed material. The second coating step may not be provided (the second layer 302 may not be formed). In this case, the recess between the protrusions 37 functions as the gap 31 (second gap 312). In the present embodiment, since the second coating step is provided (the second layer 302 is formed), the second gap 312 is converted into the first gap 311 and the same effect as in the second embodiment is obtained. The size of the gap 31 can be adjusted by changing the mesh roughness of the mesh 93. Thereby, the porosity can be adjusted. Other functions and effects are the same as those of the first embodiment.
 [第11実施形態]
  構成は第10実施形態と実質的に同じである。低熱伝導部形成工程は、材料準備工程と、前処理工程と、第1塗布工程と、第1乾燥工程と、第2塗布工程と、第2乾燥工程とを含む。材料準備工程で、撥水性塗料373と、第1混合材料371と、第2混合材料とを用意する。第1混合材料371は、固体材料(炭素およびバインダー)と水を含む。炭素は複数の塊(粒子)を含む。塊の平均粒径は任意である。バインダーは、炭素の粒子同士を接着させるための水溶性バインダーであり、カルボキシメチルセルロース(CMC)やポリビニルアルコール(PVA)等の化学糊である。水は化学糊の溶剤(溶媒)である。第1混合材料371において、炭素の塊およびバインダーの粒子が水中に分散している。なお、第1混合材料371に添加剤等を混ぜてもよい。第2混合材料は、第5実施形態の混合材料と同じである。前処理工程で、ピストン本体2の冠面400の全部に撥水性塗料373を塗布する。第1塗布工程で、塗布された撥水性塗料373の上に第1混合材料371を塗布する。塗布には、スプレーを用いてもよいし、メッシュやスタンプを用いてもよい。第1乾燥工程で、第1混合材料371の塗膜を、例えば赤外線の照射により乾燥させる。第2塗布工程で、乾燥した第1混合材料371の塗膜に、第10実施形態と同様に第2混合材料を重ね塗りする。第2乾燥工程で、塗布された第2混合材料を、第10実施形態と同様に乾燥させる。ピストン1の他の製造工程は第1実施形態と同じである。
[Eleventh embodiment]
The configuration is substantially the same as in the tenth embodiment. The low heat conduction part forming step includes a material preparation step, a pretreatment step, a first application step, a first drying step, a second application step, and a second drying step. In the material preparation step, the water-repellent paint 373, the first mixed material 371, and the second mixed material are prepared. The first mixed material 371 includes a solid material (carbon and binder) and water. Carbon includes a plurality of lumps (particles). The average particle size of the lumps is arbitrary. The binder is a water-soluble binder for adhering carbon particles, and is a chemical glue such as carboxymethyl cellulose (CMC) or polyvinyl alcohol (PVA). Water is a solvent (solvent) for chemical glue. In the first mixed material 371, carbon lump and binder particles are dispersed in water. An additive or the like may be mixed in the first mixed material 371. The second mixed material is the same as the mixed material of the fifth embodiment. In the pretreatment step, the water repellent paint 373 is applied to the entire crown surface 400 of the piston body 2. In the first application step, the first mixed material 371 is applied on the applied water-repellent paint 373. For application, a spray may be used, or a mesh or a stamp may be used. In the first drying step, the coating film of the first mixed material 371 is dried by, for example, infrared irradiation. In the second application step, the second mixed material is repeatedly applied to the dried coating film of the first mixed material 371 as in the tenth embodiment. In the second drying step, the applied second mixed material is dried as in the tenth embodiment. Other manufacturing steps of the piston 1 are the same as those in the first embodiment.
 次に、作用効果を説明する。第1塗布工程では、撥水塗料373が塗布された領域で、第1混合材料371が濡れずに、はじかれる。これにより、図26に示すように、冠面400上に第1混合材料371が複数の点状ないし粒状に残る。すなわち、第1混合材料371が微細な凹凸状に塗布される。第1混合材料371の複数の凸部により第1の層301が形成される。第1乾燥工程で、各凸部(第1混合材料371)は、乾燥により固化する。第1塗布工程が空隙形成工程として機能し、第2塗布工程が封孔処理工程として機能すること、乾燥工程や第2塗布工程を省略してよいこと、および第2混合材料の代わりに接着剤を用いてもよいことは、第10実施形態と同様である。第1混合材料371の配合を変更することで、第1塗布工程で形成される凸部の大きさ(すなわち空隙31の大きさ)を調整することができる。これにより、低熱伝導部3の空隙率を調整することができる。第1混合材料371のバインダーとして化学糊を用いることで、第1混合材料371の塗布が容易である。また、燃焼室11等からの熱によりバインダーは容易に燃焼する。バインダーが焼失することで空隙31をより効率的に形成可能である。他の作用効果は第1,第2実施形態と同じである。 Next, the function and effect will be described. In the first application step, the first mixed material 371 is repelled without getting wet in the region where the water repellent paint 373 is applied. As a result, as shown in FIG. 26, the first mixed material 371 remains on the crown surface 400 in a plurality of dots or grains. That is, the first mixed material 371 is applied in a fine uneven shape. The first layer 301 is formed by a plurality of convex portions of the first mixed material 371. In the first drying step, each convex portion (first mixed material 371) is solidified by drying. The first application process functions as a void formation process, the second application process functions as a sealing treatment process, the drying process and the second application process may be omitted, and an adhesive instead of the second mixed material As in the tenth embodiment, may be used. By changing the composition of the first mixed material 371, the size of the protrusions formed in the first application step (that is, the size of the gap 31) can be adjusted. Thereby, the porosity of the low heat conductive part 3 can be adjusted. By using chemical glue as the binder of the first mixed material 371, the application of the first mixed material 371 is easy. In addition, the binder is easily burned by heat from the combustion chamber 11 and the like. The voids 31 can be formed more efficiently by burning out the binder. Other functions and effects are the same as those of the first and second embodiments.
 [第12実施形態]
  図27に示すように、複数の空隙31(第1の空隙311)は、固体材料からなる薄い膜状の壁38を挟んで互いに隣接する。他の構成は第5実施形態と同じである。低熱伝導部形成工程は、材料準備工程と、発泡工程と、塗布工程と、乾燥工程とを含む。材料準備工程は第5実施形態と同じである。発泡工程で、バブリングや撹拌により、または発泡剤を用いて、形成材料(混合材料)370を泡立てる。図28に示すように、塗布工程で、発泡状態となった形成材料370を、ピストン本体2の冠面400に塗布する。乾燥工程で、例えば赤外線の照射により、塗布された形成材料370(塗膜)を乾燥させる。ピストン1の他の製造工程は第1実施形態と同じである。
[Twelfth embodiment]
As shown in FIG. 27, the plurality of voids 31 (first voids 311) are adjacent to each other across a thin film-like wall 38 made of a solid material. Other configurations are the same as those of the fifth embodiment. The low heat conduction part forming step includes a material preparation step, a foaming step, a coating step, and a drying step. The material preparation process is the same as in the fifth embodiment. In the foaming step, the forming material (mixed material) 370 is bubbled by bubbling, stirring, or using a foaming agent. As shown in FIG. 28, the forming material 370 in a foamed state is applied to the crown surface 400 of the piston body 2 in the application process. In the drying step, the applied forming material 370 (coating film) is dried by, for example, infrared irradiation. Other manufacturing steps of the piston 1 are the same as those in the first embodiment.
 次に、作用効果を説明する。低熱伝導部3の空隙31は、形成材料370の発泡により形成されたものである。発泡工程および塗布工程は空隙形成工程として機能する。乾燥工程により塗膜が乾燥・固化すると、固体材料が泡状にそのまま残り、空隙31を区画する膜状の壁38を形成する。なお、乾燥工程を特に設けなくてもよい(塗膜を自然乾燥してもよい)。また、発泡工程と塗布工程を1つの工程としてまとめてもよい。すなわち、形成材料(混合材料)370を泡立てつつ塗布してもよいし、塗布しつつ泡立ててもよい。形成材料370の発泡により空隙31を形成することで、空隙率が比較的高い低熱伝導部3を形成することができる。また、発泡度合を調整することにより、低熱伝導部3の空隙率を調整することができる。他の作用効果は第1,第2実施形態と同じである。 Next, the function and effect will be described. The air gap 31 of the low heat conducting portion 3 is formed by foaming the forming material 370. The foaming process and the coating process function as a void forming process. When the coating film is dried and solidified by the drying process, the solid material remains in the form of foam and forms a film-like wall 38 that defines the gap 31. In addition, it is not necessary to provide a drying process in particular (the coating film may be naturally dried). Further, the foaming step and the coating step may be combined as one step. That is, the forming material (mixed material) 370 may be applied while foaming, or may be foamed while being applied. By forming the gap 31 by foaming the forming material 370, the low heat conduction portion 3 having a relatively high porosity can be formed. Moreover, the porosity of the low heat conductive part 3 can be adjusted by adjusting a foaming degree. Other functions and effects are the same as those of the first and second embodiments.
 [第13実施形態]
  低熱伝導部3の固体材料において、炭素に代えて、下記(1)~(5)のいずれかを用いる。(1) 窒化ホウ素(2) 二硫化モリブデン(3) 炭素と窒化ホウ素(4) 窒化ホウ素と二硫化モリブデン(5) 炭素と窒化ホウ素と二硫化モリブデン
  以上において、窒化ホウ素は常圧相のh-BNである。バインダーは、(1)~(5)の粒子同士を接着させる。他の構成およびピストン1の製造工程は第1-12実施形態のいずれかと同じである。
[Thirteenth embodiment]
In the solid material of the low heat conducting section 3, any of the following (1) to (5) is used instead of carbon. (1) Boron nitride (2) Molybdenum disulfide (3) Carbon and boron nitride (4) Boron nitride and molybdenum disulfide (5) Carbon, boron nitride and molybdenum disulfide Above, boron nitride is an atmospheric pressure h- BN. The binder adheres the particles (1) to (5). Other configurations and the manufacturing process of the piston 1 are the same as those in any of the first to twelfth embodiments.
 表2は、母材金属と二硫化モリブデンおよび窒化ホウ素の一般的な特性の一例を示す。
Figure JPOXMLDOC01-appb-T000002
炭素と同じく、窒化ホウ素と二硫化モリブデンは、ピストン本体2の素材であるアルミニウム合金よりも、熱伝導率が低い。炭素(グラファイト)と同じく、窒化ホウ素(h-BN)および二硫化モリブデンは、結晶面間の結合力が小さい層状構造を有しており、一般に固体潤滑剤として用いられる。また、窒化ホウ素および二硫化モリブデンは、耐熱性が高く、耐久性にも優れる。よって、第1-12実施形態と同様の作用効果が得られる。
Table 2 shows an example of general characteristics of the base metal and molybdenum disulfide and boron nitride.
Figure JPOXMLDOC01-appb-T000002
Like carbon, boron nitride and molybdenum disulfide have lower thermal conductivity than the aluminum alloy that is the material of the piston body 2. Like carbon (graphite), boron nitride (h-BN) and molybdenum disulfide have a layered structure with a low bonding force between crystal faces, and are generally used as solid lubricants. Further, boron nitride and molybdenum disulfide have high heat resistance and excellent durability. Therefore, the same effect as that of the first to twelfth embodiments can be obtained.
 [第14実施形態]
  ピストン本体2における(キャビティ401の表面を含む)冠面400の全部は、ピストン本体2を鋳造する際の鋳肌面である。他の構成およびピストン1の製造工程は第1-13実施形態のいずれかと同じである。よって、ピストンヘッド4における低熱伝導部3が形成される部位は、鋳肌面となる。鋳肌面には微細な凹凸が有るため、この凹凸が固体材料を保持する機能(アンカー効果)を発揮し、ピストン本体2からの低熱伝導部3の脱落を抑制することができる。また、ピストン本体2の鋳造の際にできる鋳肌面をそのまま活用するため、特別な表面処理を必要としない。なお、冠面400において、一部のみが鋳肌面であり、他の部位が鋳肌面でなくてもよい。例えば、キャビティ401のみが鋳肌面であり、他の部位が機械加工されてもよい。その他、第1-13実施形態と同様の作用効果が得られる。
[14th Embodiment]
The entire crown surface 400 (including the surface of the cavity 401) in the piston body 2 is a casting surface when the piston body 2 is cast. The other configuration and the manufacturing process of the piston 1 are the same as those in any of the first to thirteenth embodiments. Therefore, the site | part in which the low heat conductive part 3 in the piston head 4 is formed becomes a casting surface. Since the casting surface has fine irregularities, the irregularities exhibit a function (anchor effect) for holding a solid material, and can prevent the low heat conduction portion 3 from falling off the piston body 2. Further, since the casting surface that is formed when the piston body 2 is cast is utilized as it is, no special surface treatment is required. In the crown surface 400, only a part of the crown surface 400 may be a casting surface, and the other part may not be a casting surface. For example, only the cavity 401 may be a casting surface, and other parts may be machined. In addition, the same effects as those of the first to thirteenth embodiments can be obtained.
 [第15実施形態]
  ピストン本体2において、(キャビティ401の表面を含む)冠面400の全部は、低熱伝導部3との結合力を向上させる表面処理が施されている。ピストン本体形成工程は、表面処理工程を含む。表面処理工程は、例えば機械加工工程後に行われる。他の構成およびピストン1の製造工程は第1-13実施形態のいずれかと同じである。図29に示すように、ショット(投射材)94を吹き付けることで冠面400の表面を粗くして微細な凹凸を設ける。この凹凸が、表面への固体材料の密着度(アンカー効果)を高める。よって、低熱伝導部3の脱落を抑制することができる。ここで、投射材94が表面に固着することも考えられる。投射材94として二硫化モリブデンを用いれば(二硫化モリブデンショット)、仮に、上記固着した投射材94がシリンダ10内に脱落した場合であっても、これが潤滑剤として機能し、シリンダ10やピストン1の摩耗を抑制することができる。なお、ショットブラスト以外の方法(例えばフォトエッチング法)により、微細な凹凸を設ける表面処理を行ってもよい。冠面400において、一部のみに表面処理が施され、他の部位に表面処理が施されなくてもよい。例えば、キャビティ401のみに表面処理が施され、他の部位に表面処理が施されなくてもよい。その他、第1-13実施形態と同様の作用効果が得られる。
[Fifteenth embodiment]
In the piston main body 2, the entire crown surface 400 (including the surface of the cavity 401) is subjected to a surface treatment that improves the bonding force with the low heat conducting unit 3. The piston body forming step includes a surface treatment step. The surface treatment process is performed, for example, after the machining process. The other configuration and the manufacturing process of the piston 1 are the same as those in any of the first to thirteenth embodiments. As shown in FIG. 29, a shot (projection material) 94 is sprayed to roughen the surface of the crown surface 400 to provide fine irregularities. This unevenness increases the degree of adhesion (anchor effect) of the solid material to the surface. Therefore, it is possible to suppress the dropout of the low heat conducting unit 3. Here, it is also conceivable that the projection material 94 adheres to the surface. If molybdenum disulfide is used as the projection material 94 (molybdenum disulfide shot), even if the fixed projection material 94 falls into the cylinder 10, it functions as a lubricant, and the cylinder 10 and the piston 1 Wear can be suppressed. Note that surface treatment for providing fine unevenness may be performed by a method other than shot blasting (for example, a photoetching method). In the crown surface 400, only a part of the surface treatment is performed, and other portions may not be subjected to the surface treatment. For example, the surface treatment may be performed only on the cavity 401, and the surface treatment may not be performed on other portions. In addition, the same effects as those of the first to thirteenth embodiments can be obtained.
 [第16実施形態]
  低熱伝導部形成工程で用いる混合材料において、溶剤は水である。他の構成およびピストン1の製造工程は第1-10,12-15実施形態のいずれかと同じである。第1-10,12-15実施形態と同様の作用効果が得られる。
[Sixteenth embodiment]
In the mixed material used in the low heat conduction part forming step, the solvent is water. The other structure and the manufacturing process of the piston 1 are the same as those in any of the first to tenth and twelfth embodiments. The same effects as the first to tenth and twelfth embodiments can be obtained.
 [第17実施形態]
  低熱伝導部形成工程で用いる混合材料において、バインダーは化学糊(CMCやPVA)である。他の構成およびピストン1の製造工程は第1-10,12-16実施形態のいずれかと同じである。第1-10,12-16実施形態と同様の作用効果が得られる。また、バインダーとして化学糊を用いることで、第11実施形態と同様の作用効果が得られる。
[17th embodiment]
In the mixed material used in the low heat conduction part forming step, the binder is chemical glue (CMC or PVA). The other configuration and the manufacturing process of the piston 1 are the same as those of any of the first to tenth and twelfth embodiments. The same effects as those of the first to tenth and twelfth embodiments can be obtained. Further, by using chemical glue as the binder, the same effects as those of the eleventh embodiment can be obtained.
 [第18実施形態]
  低熱伝導部3は、ピストン本体2の冠面400において部分的に形成される。他の構成およびピストン1の製造工程は第1-17実施形態のいずれかと同じである。低熱伝導部3が形成される部位について、第1-17実施形態と同様の作用効果が得られる。この場合、筒内直噴式のエンジン100では、低熱伝導部3は、冠面400において、少なくとも燃料の噴射領域に対応した箇所(燃料が衝突・爆発し、温度や圧力が最も高くなる部位およびその周辺)に形成されることが好ましい。この箇所に低熱伝導部3を形成することで、燃焼室11内のガスからピストンヘッド4(ピストン本体2)への熱伝達をより効果的に低下させることができる。また、低熱伝導層3によりピストン本体2への熱吸収が抑制されることから、冠面400において燃料が付着する箇所が速やかに高温になるとともに、高温状態を維持する。よって、付着した燃料が速やかに気化・燃焼するため、排ガス特性の悪化を抑制できる。
[Eighteenth embodiment]
The low heat conducting portion 3 is partially formed on the crown surface 400 of the piston body 2. The other configuration and the manufacturing process of the piston 1 are the same as those in any of the first to 17th embodiments. The same effect as that of the first to 17th embodiments can be obtained at the site where the low heat conducting section 3 is formed. In this case, in the in-cylinder direct injection type engine 100, the low heat conduction unit 3 is provided on the crown surface 400 at least a part corresponding to the fuel injection region (the part where the fuel collides / explodes and the temperature or pressure becomes highest) It is preferable to be formed on the periphery. By forming the low heat conduction portion 3 at this location, heat transfer from the gas in the combustion chamber 11 to the piston head 4 (piston body 2) can be more effectively reduced. Moreover, since the heat absorption to the piston main body 2 is suppressed by the low heat conductive layer 3, the location where the fuel adheres on the crown surface 400 quickly becomes high temperature and maintains a high temperature state. Therefore, the adhering fuel is quickly vaporized and burned, so that deterioration of exhaust gas characteristics can be suppressed.
 また、低熱伝導部3は、冠面400においてキャビティ401その他の凹部の表面のみに形成されるようにしてもよい。このように低熱伝導部3を形成することで、低熱伝導部3が凹部に収容されるため、冠面400が低熱伝導部3により燃焼室11側へ盛り上がってしまうことを抑制できる。図30は、低熱伝導部3が凹部の一部(バルブリセス402)の表面のみに形成された例を示す。図31および図32は、ピストン本体2の形状が第1-17実施形態と異なるピストン1の例を示す。低熱伝導部3が凹部の一部(バルブリセス403)の表面のみに形成されている。凹部401~403の表面において低熱伝導部3が形成される部位は、第14実施形態のように鋳肌面であってもよいし、第15実施形態のように表面処理が施されてもよい。 Further, the low heat conducting portion 3 may be formed only on the surface of the cavity 401 or other concave portion on the crown surface 400. By forming the low heat conduction part 3 in this way, the low heat conduction part 3 is accommodated in the recess, and thus it is possible to suppress the crown surface 400 from rising to the combustion chamber 11 side by the low heat conduction part 3. FIG. 30 shows an example in which the low heat conducting portion 3 is formed only on the surface of a part of the recess (valve recess 402). 31 and 32 show an example of the piston 1 in which the shape of the piston body 2 is different from that of the first to 17th embodiments. The low heat conduction part 3 is formed only on the surface of a part of the recess (valve recess 403). The portion where the low heat conductive portion 3 is formed on the surface of the recesses 401 to 403 may be a cast surface as in the fourteenth embodiment, or may be subjected to a surface treatment as in the fifteenth embodiment. .
 [他の実施形態]
  以上、本発明を実施するための形態を、図面に基づき説明したが、本発明の具体的な構成は、実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、特許請求の範囲および明細書に記載された各構成要素の任意の組み合わせ、または、省略が可能である。
[Other Embodiments]
As mentioned above, although the form for implementing this invention was demonstrated based on drawing, the specific structure of this invention is not limited to embodiment, The design change etc. of the range which does not deviate from the summary of invention are included. Even if it exists, it is included in this invention. In addition, any combination or omission of each constituent element described in the claims and the specification is possible within a range where at least a part of the above-described problems can be solved or a range where at least a part of the effect is achieved. It is.
 [実施形態から把握しうる他の態様]
  以上説明した実施形態から把握しうる他の態様(または技術的解決策。以下同じ。)について、以下に記載する。
(1)内燃機関のピストンは、その1つの態様において、
  アルミニウム合金を含み、内燃機関の燃焼室に臨むピストンヘッドと、前記ピストンヘッドに対し前記燃焼室の反対側に配置されるピストンボスおよびピストンスカートとを有する本体と、
  前記ピストンヘッドにおける前記燃焼室側にあり、炭素、窒化ホウ素、および二硫化モリブデンのうち少なくとも1つを含む材料からなり、内部に空隙を有する低熱伝導部とを有する。
(2) より好ましい態様では、前記態様において、
   前記材料は炭素を含み、前記炭素はSP2構造の成分を50体積%以上含む。
(3) 別の好ましい態様では、前記態様のいずれかにおいて、
   前記空隙は、前記材料に混在していた溶剤が気化することによって形成されたものである。
(4) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記材料は、合成樹脂であって前記炭素、前記窒化ホウ素、または前記二硫化モリブデンの粒子同士を接着させるバインダーを含む。
(5) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記バインダーはエンジニアリングプラスチックである。
(6) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記空隙は、前記低熱伝導部における前記燃焼室側で閉塞されている。
(7) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記空隙は、前記低熱伝導部における前記燃焼室側で、シアノアクリレートを含む膜により覆われている。
(8) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記空隙は、前記材料に混在していた物質が気化することによって形成されたものである。
(9) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記低熱伝導部は複数の層を有する。
(10) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記本体は、前記燃焼室側に、前記低熱伝導部を収容する凹部を備え、
  前記凹部の表面に、前記低熱伝導部との結合力を向上させる表面処理が施されている。
(11) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記本体は、前記燃焼室側に、前記低熱伝導部を収容する凹部を備え、
  前記凹部の表面は、前記本体を鋳造する際の鋳肌面である。
(12) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記材料は、平均粒径が20μm以上である複数の炭素の塊を含み、
  前記空隙は、前記複数の炭素の塊の間にある。
(13) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記空隙は、前記材料が発泡することによって形成されたものである。
(14) 内燃機関のピストンの製造方法は、その1つの態様において、
  内燃機関の燃焼室に臨むピストンヘッドと、前記ピストンヘッドに対し前記燃焼室の反対側に配置されるピストンボスおよびピストンスカートとを有する本体を、アルミニウム合金で形成する工程と、
  前記ピストンヘッドにおける前記燃焼室側に、内部に空隙を有する低熱伝導部を、炭素、窒化ホウ素、および二硫化モリブデンのうち少なくとも1つを含む材料で形成する工程とを含む。
(15) より好ましい態様では、前記態様において、
  前記材料は気化する成分を含み、
  前記低熱伝導部を形成する工程は、前記成分が気化することによって前記空隙を形成する工程を含む。
(16) 別の好ましい態様では、前記態様のいずれかにおいて、
  前記成分は溶剤であって、
  前記空隙を形成する工程では、前記溶剤が気化して膨張することによって前記空隙を形成する。
(17) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記材料は、合成樹脂であって前記炭素、前記窒化ホウ素、または前記二硫化モリブデンの粒子同士を接着させるバインダーと、前記気化する成分としての溶剤とを含み、
  前記低熱伝導部を形成する工程は、
  前記溶剤が混在した前記バインダーを前記ピストンヘッドにおける前記燃焼室側に塗布する工程と、
  前記炭素、前記窒化ホウ素、および前記二硫化モリブデンのうち少なくとも1つを含む粉体を加熱する工程と、
  前記加熱された粉体を前記ピストンヘッドにおける前記燃焼室側に噴射する工程とを含む。
(18) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記材料は、合成樹脂であって前記炭素、前記窒化ホウ素、または前記二硫化モリブデンの粒子同士を接着させるバインダーと、前記気化する成分としての溶剤とを含み、
  前記低熱伝導部を形成する工程は、
  前記本体を加熱する工程と、
  前記加熱された本体の前記ピストンヘッドにおける前記燃焼室側に前記材料を塗布する工程とを含む。
(19) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記材料は、合成樹脂であって前記炭素、前記窒化ホウ素、または前記二硫化モリブデンの粒子同士を接着させるバインダーと、前記気化する成分としての溶剤とを含み、
  前記低熱伝導部を形成する工程は、
  前記ピストンヘッドにおける前記燃焼室側に前記材料を塗布する工程と、
  前記塗布された材料の表面を乾燥させる工程と、
  前記表面を乾燥させた材料を加熱する工程とを含む。
(20) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記材料は気化する成分を含み、
  前記低熱伝導部を形成する工程は、
  前記ピストンヘッドにおける前記燃焼室側に前記材料を塗布する工程と、
  前記塗布された材料を前記燃焼室側から加熱する工程とを含む。
(21) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記材料を加熱する工程では、前記燃焼室側からのみ前記材料を加熱する。
(22) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記材料は、合成樹脂であって前記炭素、前記窒化ホウ素、または前記二硫化モリブデンの粒子同士を接着させるバインダーを含み、
  前記低熱伝導部を形成する工程は、
  網目状の部材を通して前記材料を前記ピストンヘッドにおける前記燃焼室側に塗布する工程と、
  前記塗布された材料の上に更に前記材料を塗布する工程とを含む。
(23) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記材料は、前記炭素、前記窒化ホウ素、または前記二硫化モリブデンの粒子同士を接着させる水溶性バインダーと、水とを含み、
  前記低熱伝導部を形成する工程は、
  前記ピストンヘッドにおける前記燃焼室側の表面に撥水性塗料を塗布する工程と、
  前記塗布された撥水性塗料の上に前記材料を塗布する工程とを含む。
(24) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記材料は、合成樹脂であって前記炭素、前記窒化ホウ素、または前記二硫化モリブデンの粒子同士を接着させるバインダーと、溶剤とを含み、
  前記低熱伝導部を形成する工程は、
  前記材料を含むスタンプを前記ピストンヘッドにおける前記燃焼室側に押し付ける工程と、
  前記スタンプを前記ピストンヘッドから引きはがす工程とを含む。
[Other aspects that can be grasped from the embodiment]
Other aspects (or technical solutions, the same applies hereinafter) that can be understood from the embodiment described above will be described below.
(1) In one aspect of the piston of the internal combustion engine,
A body comprising an aluminum alloy and facing a combustion chamber of an internal combustion engine; and a piston boss and a piston skirt disposed on the opposite side of the combustion chamber with respect to the piston head;
The piston head is located on the combustion chamber side and is made of a material containing at least one of carbon, boron nitride, and molybdenum disulfide, and has a low heat conduction portion having a void inside.
(2) In a more preferred embodiment, in the above embodiment,
The material includes carbon, and the carbon includes 50% by volume or more of a component having an SP2 structure.
(3) In another preferred embodiment, in any of the above embodiments,
The voids are formed by the vaporization of the solvent mixed in the material.
(4) In still another preferred embodiment, in any of the above embodiments,
The material is a synthetic resin and includes a binder that bonds the particles of the carbon, the boron nitride, or the molybdenum disulfide.
(5) In still another preferred embodiment, in any of the above embodiments,
The binder is an engineering plastic.
(6) In still another preferred embodiment, in any of the above embodiments,
The gap is closed on the combustion chamber side in the low heat conduction portion.
(7) In still another preferred embodiment, in any of the above embodiments,
The air gap is covered with a film containing cyanoacrylate on the combustion chamber side in the low heat conduction portion.
(8) In still another preferred embodiment, in any of the above embodiments,
The voids are formed by vaporizing substances mixed in the material.
(9) In still another preferred embodiment, in any of the above embodiments,
The low heat conduction part has a plurality of layers.
(10) In still another preferred embodiment, in any of the above embodiments,
The main body includes a concave portion that accommodates the low heat conduction portion on the combustion chamber side,
A surface treatment is performed on the surface of the concave portion to improve the bonding force with the low thermal conductive portion.
(11) In still another preferred embodiment, in any of the above embodiments,
The main body includes a concave portion that accommodates the low heat conduction portion on the combustion chamber side,
The surface of the said recessed part is a casting surface at the time of casting the said main body.
(12) In still another preferred embodiment, in any of the above embodiments,
The material includes a plurality of carbon chunks having an average particle size of 20 μm or more,
The voids are between the plurality of carbon chunks.
(13) In still another preferred embodiment, in any of the above embodiments,
The gap is formed by foaming the material.
(14) In one aspect of the method for producing a piston of an internal combustion engine,
Forming a body having a piston head facing a combustion chamber of an internal combustion engine and a piston boss and a piston skirt disposed on the opposite side of the combustion chamber with respect to the piston head from an aluminum alloy;
Forming a low thermal conduction part having a void inside on the combustion chamber side of the piston head with a material containing at least one of carbon, boron nitride, and molybdenum disulfide.
(15) In a more preferred embodiment, in the above embodiment,
The material includes a vaporizing component;
The step of forming the low thermal conductive portion includes the step of forming the voids by the vaporization of the components.
(16) In another preferred embodiment, in any of the above embodiments,
The component is a solvent,
In the step of forming the voids, the solvent is vaporized and expanded to form the voids.
(17) In still another preferred embodiment, in any of the above embodiments,
The material is a synthetic resin, and includes a binder that bonds particles of the carbon, the boron nitride, or the molybdenum disulfide, and a solvent as the component to be vaporized,
The step of forming the low thermal conduction part includes
Applying the binder mixed with the solvent to the combustion chamber side of the piston head;
Heating a powder comprising at least one of the carbon, the boron nitride, and the molybdenum disulfide;
Injecting the heated powder to the combustion chamber side of the piston head.
(18) In still another preferred embodiment, in any of the above embodiments,
The material is a synthetic resin, and includes a binder that bonds particles of the carbon, the boron nitride, or the molybdenum disulfide, and a solvent as the component to be vaporized,
The step of forming the low thermal conduction part includes
Heating the body;
Applying the material to the combustion chamber side of the piston head of the heated body.
(19) In still another preferred embodiment, in any of the above embodiments,
The material is a synthetic resin, and includes a binder that bonds particles of the carbon, the boron nitride, or the molybdenum disulfide, and a solvent as the component to be vaporized,
The step of forming the low thermal conduction part includes
Applying the material to the combustion chamber side of the piston head;
Drying the surface of the applied material;
Heating the material whose surface has been dried.
(20) In still another preferred embodiment, in any of the above embodiments,
The material includes a vaporizing component;
The step of forming the low thermal conduction part includes
Applying the material to the combustion chamber side of the piston head;
Heating the applied material from the combustion chamber side.
(21) In still another preferred embodiment, in any of the above embodiments,
In the step of heating the material, the material is heated only from the combustion chamber side.
(22) In still another preferred embodiment, in any of the above embodiments,
The material is a synthetic resin and includes a binder that bonds particles of the carbon, the boron nitride, or the molybdenum disulfide,
The step of forming the low thermal conduction part includes
Applying the material to the combustion chamber side of the piston head through a mesh member;
Applying the material on the applied material.
(23) In still another preferred embodiment, in any of the above embodiments,
The material includes water, a water-soluble binder that bonds the particles of the carbon, the boron nitride, or the molybdenum disulfide, and water.
The step of forming the low thermal conduction part includes
Applying a water repellent coating to the combustion chamber side surface of the piston head;
Applying the material onto the applied water-repellent paint.
(24) In still another preferred embodiment, in any of the above embodiments,
The material is a synthetic resin and includes a binder that bonds particles of the carbon, the boron nitride, or the molybdenum disulfide, and a solvent.
The step of forming the low thermal conduction part includes
Pressing the stamp containing the material against the combustion chamber side of the piston head;
Peeling the stamp from the piston head.
 本願は、2016年8月25日出願の日本特許出願番号2016-164279号に基づく優先権を主張する。2016年8月25日出願の日本特許出願番号2016-164279号の明細書、特許請求の範囲、図面及び要約書を含む全ての開示内容は、参照により全体として本願に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2016-164279 filed on August 25, 2016. The entire disclosure including the specification, claims, drawings, and abstract of Japanese Patent Application No. 2016-164279 filed on August 25, 2016 is incorporated herein by reference in its entirety.
 100  エンジン(内燃機関)、 11  燃焼室、 1  ピストン、 2  ピストン本体、 3  低熱伝導部、 31  空隙、 4  ピストンヘッド、 5  ピストンボス、 6  ピストンスカート 100 engine (internal combustion engine), 11 combustion chamber, 1 piston, 2 piston body, 3 low heat conduction part, 31 gap, 4 piston head, 5 piston boss, 6 piston skirt

Claims (24)

  1.  内燃機関のピストンであって、
     アルミニウム合金で形成された本体部であって、ピストンヘッド部と、前記ピストンヘッド部に対し前記内燃機関の燃焼室とは反対側に設けられたピストンボス部およびピストンスカート部と、を有する本体部と、
     前記ピストンヘッドの、前記内燃機関の燃焼室側に設けられ、炭素、窒化ホウ素、または二硫化モリブデンを含む低熱伝導部形成材料で形成され、内部に空隙を有する低熱伝導部と、
     を備える
     ピストン。
    A piston of an internal combustion engine,
    A main body formed of an aluminum alloy, the main body having a piston head, and a piston boss and a piston skirt provided on a side opposite to the combustion chamber of the internal combustion engine with respect to the piston head When,
    A low heat conduction part provided on the combustion chamber side of the internal combustion engine of the piston head, formed of a low heat conduction part forming material containing carbon, boron nitride, or molybdenum disulfide, and having a void inside;
    With a piston.
  2.  請求項1に記載のピストンであって、
     前記低熱伝導部形成材料は、SP2構造の成分を50体積%以上含む炭素を含む
     ピストン。
    The piston according to claim 1,
    The low heat conduction part forming material includes a piston containing 50% by volume or more of a component of SP2 structure.
  3.  請求項2に記載のピストンであって、
     前記低熱伝導部の前記空隙は、前記低熱伝導部形成材料に混在していた揮発性溶剤が揮発することによって形成された
     ピストン。
    The piston according to claim 2,
    The air gap of the low thermal conduction part is formed by volatilization of a volatile solvent mixed in the low thermal conduction part forming material.
  4.  請求項3に記載のピストンであって、
     前記低熱伝導部形成材料は、合成樹脂から形成されたバインダーであって、前記炭素、前記窒化ホウ素または前記二硫化モリブデン同士を接着力させるバインダーを含む
     ピストン。
    The piston according to claim 3,
    The low heat conduction portion forming material is a binder formed of a synthetic resin, and includes a binder that bonds the carbon, the boron nitride, or the molybdenum disulfide together.
  5.  請求項4に記載のピストンであって、
     前記バインダーは、エンジニアリングプラスチックである
     ピストン。
    The piston according to claim 4, wherein
    The binder is an engineering plastic piston.
  6.  請求項1に記載のピストンであって、
     前記低熱伝導部の前記空隙は、前記ピストンヘッドの冠面側において閉塞されている
     ピストン。
    The piston according to claim 1,
    The air gap of the low heat conduction part is closed on the crown side of the piston head.
  7.  請求項6に記載のピストンであって、
     前記低熱伝導部の前記空隙は、前記ピストンヘッドの冠面側において、アクリルアセテートの被膜で被覆されている
     ピストン。
    The piston according to claim 6,
    The air gap of the low heat conduction part is covered with a coating of acryl acetate on the crown surface side of the piston head.
  8.  請求項1に記載のピストンであって、
     前記低熱伝導部の前記空隙は、前記低熱伝導部形成材料に混在していた物質が気化することによって形成された
     ピストン。
    The piston according to claim 1,
    The air gap of the low thermal conduction part is formed by vaporizing a substance mixed in the low thermal conduction part forming material.
  9.  請求項1に記載のピストンであって、
     前記低熱伝導部は、多層構造を有する
     ピストン。
    The piston according to claim 1,
    The low heat conduction part has a multilayer structure.
  10.  請求項1に記載のピストンであって、
     前記本体部は、前記本体部の前記燃焼室側に設けられた収容凹部であって、前記低熱伝導部を収容する収容凹部を備え、
     前記収容凹部は、前記低熱伝導部との結合力を向上させる表面処理が施されている
     ピストン。
    The piston according to claim 1,
    The main body is a housing recess provided on the combustion chamber side of the main body, and includes a housing recess that houses the low heat conduction unit,
    The accommodation recess is subjected to a surface treatment that improves the binding force with the low thermal conductivity portion.
  11.  請求項1に記載のピストンであって、
     前記収容凹部は、前記本体部を鋳造する際の鋳肌面によって形成された
     ピストン。
    The piston according to claim 1,
    The said accommodating recessed part was formed by the casting surface at the time of casting the said main-body part.
  12.  請求項1に記載のピストンであって、
     前記低熱伝導部形成材料は平均粒径が20μm以上の炭素の塊であり、
     前記空隙は、複数の前記炭素の塊の間に形成されている
     ピストン。
    The piston according to claim 1,
    The low heat conduction part forming material is a lump of carbon having an average particle size of 20 μm or more,
    The air gap is formed between the plurality of carbon chunks.
  13.  請求項1に記載のピストンであって、
     前記低熱伝導部の空隙は、前記低熱伝導部形成材料に混在していた物質が発砲することによって形成された
     ピストン。
    The piston according to claim 1,
    The air gap of the low heat conduction part is formed by firing a substance mixed in the low heat conduction part forming material.
  14.  内燃機関のピストンの製造方法であって、
     ピストンヘッド部と、前記ピストンヘッド部に対し前記内燃機関の燃焼室とは反対側に設けられたピストンボス部と、ピストンスカート部と、を有する本体部をアルミニウム合金で形成する本体部形成工程と、
     前記ピストンヘッドの前記内燃機関の燃焼室側に、炭素、窒化ホウ素、または二硫化モリブデンを含む低熱伝導部形成材料で形成された低熱伝導部であって、内部に空隙を有する低熱伝導部を形成する低熱伝導部形成工程と
     を備えるピストンの製造方法。
    A method of manufacturing a piston for an internal combustion engine,
    A main body portion forming step of forming a main body portion made of an aluminum alloy with a piston head portion, a piston boss portion provided on the opposite side of the combustion chamber of the internal combustion engine with respect to the piston head portion, and a piston skirt portion; ,
    A low heat conduction part formed of a low heat conduction part forming material containing carbon, boron nitride, or molybdenum disulfide is formed on the combustion chamber side of the internal combustion engine of the piston head, and a low heat conduction part having a void inside is formed. The manufacturing method of a piston provided with the low heat conductive part formation process.
  15.  請求項14に記載のピストンの製造方法であって、
     前記低熱伝導部形成材料は気化成分を含み、
     前記低熱伝導部形成工程は、前記気化成分が気化することにより前記空隙を形成する空隙形成工程を備える
     ピストンの製造方法。
    The method for manufacturing a piston according to claim 14,
    The low heat conduction part forming material includes a vaporizing component,
    The low thermal conduction part forming step includes a gap forming step of forming the gap by vaporizing the vaporized component.
  16.  請求項15に記載のピストンの製造方法であって、
     前記気化成分は、揮発性溶剤であり、
     前記空隙形成工程は、前記揮発性溶剤が膨張した後に揮発することによって前記空隙を形成する工程である
     ピストンの製造方法。
    A method of manufacturing a piston according to claim 15,
    The vaporizing component is a volatile solvent,
    The said space | gap formation process is a process of forming the said space | gap by volatilizing, after the said volatile solvent expand | swells The manufacturing method of a piston.
  17.  請求項15に記載のピストンの製造方法であって、
     前記低熱伝導部形成材料は、合成樹脂から形成されたバインダーであって、前記炭素、前記窒化ホウ素または前記二硫化モリブデン同士を接着させるバインダーと、揮発性溶剤と、を含み、
     前記低熱伝導部形成工程は、
      前記低熱伝導部形成材料を加熱する低熱伝導部形成材料加熱工程と、
      前記低熱伝導部形成材料加熱工程によって加熱された前記低熱伝導部形成材料を前記本体部に噴射する噴射工程と、
      を備える
     ピストンの製造方法。
    A method of manufacturing a piston according to claim 15,
    The low heat conduction part forming material is a binder formed of a synthetic resin, and includes a binder that bonds the carbon, the boron nitride, or the molybdenum disulfide, and a volatile solvent.
    The low thermal conduction part forming step includes:
    A low heat conduction part forming material heating step for heating the low heat conduction part forming material;
    An injection step of injecting the low thermal conductive portion forming material heated by the low thermal conductive portion forming material heating step onto the main body portion;
    A method for manufacturing a piston.
  18.  請求項15に記載のピストンの製造方法であって、
     前記低熱伝導部形成材料は、合成樹脂から形成されたバインダーであって、前記炭素、前記窒化ホウ素または前記二硫化モリブデン同士を接着させるバインダーと、揮発性溶剤と、を含み、
     前記低熱伝導部形成工程は、
      前記本体部を加熱する本体部加熱工程と、
      前記低熱伝導部形成材料を前記本体部に塗布する塗布工程と、
      を備える
     ピストンの製造方法。
    A method of manufacturing a piston according to claim 15,
    The low heat conduction part forming material is a binder formed of a synthetic resin, and includes a binder that bonds the carbon, the boron nitride, or the molybdenum disulfide, and a volatile solvent.
    The low thermal conduction part forming step includes:
    A body heating step for heating the body,
    An application step of applying the low thermal conduction part forming material to the main body part;
    A method for manufacturing a piston.
  19.  請求項15に記載のピストンの製造方法であって、
     前記低熱伝導部形成材料は、合成樹脂から形成されたバインダーであって、前記炭素、前記窒化ホウ素または前記二硫化モリブデン同士を接着させるバインダーと、揮発性溶剤と、を含み、
     前記低熱伝導部形成工程は、
      前記低熱伝導部形成材料を前記本体部に塗布する塗布工程と、
      前記塗布工程によって塗布された前記低熱伝導部形成材料の表面を乾燥させる乾燥工程と、
      前記乾燥工程後、前記低熱伝導部形成材料を加熱する加熱工程と、
      を備える
     ピストンの製造方法。
    A method of manufacturing a piston according to claim 15,
    The low heat conduction part forming material is a binder formed of a synthetic resin, and includes a binder that bonds the carbon, the boron nitride, or the molybdenum disulfide, and a volatile solvent.
    The low thermal conduction part forming step includes:
    An application step of applying the low thermal conduction part forming material to the main body part;
    A drying step of drying the surface of the low thermal conductive portion forming material applied by the application step;
    After the drying step, a heating step for heating the low thermal conduction part forming material,
    A method for manufacturing a piston.
  20.  請求項14に記載のピストンの製造方法であって、
     前記低熱伝導部形成材料は気化成分を含み、
     前記低熱伝導部形成工程は、
      前記低熱伝導部形成材料を前記本体部に塗布する塗布工程と、
      前記塗布工程後、前記本体部の冠面側から前記低熱伝導部形成材料を加熱する低熱伝導部加熱工程と、
     を備える
     ピストンの製造方法。
    The method for manufacturing a piston according to claim 14,
    The low heat conduction part forming material includes a vaporizing component,
    The low thermal conduction part forming step includes:
    An application step of applying the low thermal conduction part forming material to the main body part;
    After the application step, a low heat conduction part heating step of heating the low heat conduction part forming material from the crown side of the main body part,
    A method for manufacturing a piston.
  21.  請求項20に記載のピストンの製造方法であって、
     前記低熱伝導部加熱工程は、前記本体部の冠面側からのみ前記低熱伝導部形成材料を加熱する工程である
     ピストンの製造方法。
    A method of manufacturing a piston according to claim 20,
    The said low heat conductive part heating process is a process of heating the said low heat conductive part formation material only from the crown side of the said main-body part The manufacturing method of a piston.
  22.  請求項14に記載のピストンの製造方法であって、
     前記低熱伝導部形成材料は、合成樹脂から形成されたバインダーであって、前記炭素、前記窒化ホウ素または前記二硫化モリブデン同士を接着させるバインダーと、揮発性溶剤と、を含み、
     前記低熱部形成工程は、メッシュを介して前記低熱部形成材料を前記本体部に塗布した後、前記本体部に塗布された前記低熱部形成材料の上に更にメッシュを介して前記低熱部形成材料を塗布する工程を備える
     ピストンの製造方法。
    The method for manufacturing a piston according to claim 14,
    The low heat conduction part forming material is a binder formed of a synthetic resin, and includes a binder that bonds the carbon, the boron nitride, or the molybdenum disulfide, and a volatile solvent.
    In the low heat part forming step, the low heat part forming material is applied to the main body part via a mesh, and then the low heat part forming material is further applied to the low heat part forming material applied to the main body part via the mesh. The manufacturing method of a piston provided with the process of apply | coating.
  23.  請求項14に記載のピストンの製造方法であって、
     前記低熱伝導部形成材料は、合成樹脂から形成されたバインダーであって、前記炭素、前記窒化ホウ素または前記二硫化モリブデン同士を接着させるバインダーと、水溶性溶剤と、を含み、
     前記低熱部形成工程は、前記本体部の表面に分散するように撥水塗料を塗布した後、前記本体部に塗布された前記撥水塗料の上に前記低熱部形成材料を塗布する工程を備える
     ピストンの製造方法。
    The method for manufacturing a piston according to claim 14,
    The low heat conduction part forming material is a binder formed of a synthetic resin, and includes a binder that bonds the carbon, the boron nitride, or the molybdenum disulfide together, and a water-soluble solvent.
    The low heat part forming step includes a step of applying the water repellent paint so as to be dispersed on the surface of the main body, and then applying the low heat part forming material on the water repellent paint applied to the main body. Piston manufacturing method.
  24.  請求項14に記載のピストンの製造方法であって、
     前記低熱伝導部形成材料は、合成樹脂から形成されたバインダーであって、前記炭素、前記窒化ホウ素または前記二硫化モリブデン同士を接着させるバインダーと、揮発性溶剤と、を含み、
     前記低熱部形成工程は、前記本体部にスタンプによって前記低熱部形成材料を塗布した後、前記スタンプを前記本体部から引きはがす工程を備える
     ピストンの製造方法。
    The method for manufacturing a piston according to claim 14,
    The low heat conduction part forming material is a binder formed of a synthetic resin, and includes a binder that bonds the carbon, the boron nitride, or the molybdenum disulfide, and a volatile solvent.
    The low heat portion forming step includes a step of applying the low heat portion forming material to the main body portion by a stamp and then peeling the stamp from the main body portion.
PCT/JP2017/014608 2016-08-25 2017-04-10 Piston for internal combustion engine and method for manufacturing piston for internal combustion engine WO2018037616A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-164279 2016-08-25
JP2016164279A JP2018031302A (en) 2016-08-25 2016-08-25 Piston of internal combustion engine and method of manufacturing piston of internal combustion engine

Publications (1)

Publication Number Publication Date
WO2018037616A1 true WO2018037616A1 (en) 2018-03-01

Family

ID=61245787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014608 WO2018037616A1 (en) 2016-08-25 2017-04-10 Piston for internal combustion engine and method for manufacturing piston for internal combustion engine

Country Status (2)

Country Link
JP (1) JP2018031302A (en)
WO (1) WO2018037616A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020133492A (en) * 2019-02-20 2020-08-31 日立オートモティブシステムズ株式会社 Piston for internal combustion engine and method for manufacturing the same
JP2021113505A (en) 2020-01-16 2021-08-05 トヨタ自動車株式会社 Piston of internal combustion engine and method for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912119A (en) * 1982-07-13 1984-01-21 Mazda Motor Corp Combustion chamber structure of internal combustion engine
JP2009243352A (en) * 2008-03-31 2009-10-22 Toyota Central R&D Labs Inc Internal combustion engine
JP2013164028A (en) * 2012-02-10 2013-08-22 Toyota Motor Corp Piston
JP2015224362A (en) * 2014-05-27 2015-12-14 トヨタ自動車株式会社 Internal combustion engine
JP2016125082A (en) * 2014-12-26 2016-07-11 トヨタ自動車株式会社 Method for forming thermal barrier film and internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912119A (en) * 1982-07-13 1984-01-21 Mazda Motor Corp Combustion chamber structure of internal combustion engine
JP2009243352A (en) * 2008-03-31 2009-10-22 Toyota Central R&D Labs Inc Internal combustion engine
JP2013164028A (en) * 2012-02-10 2013-08-22 Toyota Motor Corp Piston
JP2015224362A (en) * 2014-05-27 2015-12-14 トヨタ自動車株式会社 Internal combustion engine
JP2016125082A (en) * 2014-12-26 2016-07-11 トヨタ自動車株式会社 Method for forming thermal barrier film and internal combustion engine

Also Published As

Publication number Publication date
JP2018031302A (en) 2018-03-01

Similar Documents

Publication Publication Date Title
US11111851B2 (en) Combustion engine components with dynamic thermal insulation coating and method of making and using such a coating
US11511515B2 (en) Piston including a composite layer applied to a metal substrate
US10502130B2 (en) Composite thermal barrier coating
US10221103B2 (en) Porous ceramic composite particle and method for preparing the same
US20180128166A1 (en) Steel piston crown and/or combustion engine components with dynamic thermal insulation coating and method of making and using such a coating
US20190186407A1 (en) Cylinder liner for an internal combustion engine and method of forming
WO2017087734A1 (en) Thermally insulated engine components and method of making using a ceramic coating
US20090260594A1 (en) In-cylinder fuel-injection type internal combustion engine, piston for in-cylinder fuel-injection type internal combustion engine and process for manufacturing piston for in-cylinder fuel-injection type internal combustion engine
WO2018037616A1 (en) Piston for internal combustion engine and method for manufacturing piston for internal combustion engine
US20170167373A1 (en) Porous thermal insulation coating layer and preparing method for the same
CN108884780A (en) Piston and its building method with thermal insulation insertion piece
CA2684972A1 (en) Method for producing an abradable coating
Krishnamani et al. Thermal analysis of ceramic coated aluminum alloy piston using finite element method
CN104602858A (en) An engine piston and a process for making an engine piston
JP6065389B2 (en) Thermal insulation structure and manufacturing method thereof
WO2018029903A1 (en) Internal combustion engine piston and method for manufacturing internal combustion engine piston
US20190107045A1 (en) Multi-layer thermal barrier
JPH0435620B2 (en)
WO2018116753A1 (en) Piston for internal combustion engine, method for manufacturing piston for internal combustion engine, and structure
JPS60119348A (en) Piston of internal-combustion engine and manufacture thereof
KR102429005B1 (en) Munti-layered thermal insulation coating layer and preparing method for the same
JP2013087719A (en) Method of forming heat shield film and internal combustion engine
WO2018190167A1 (en) Piston of internal-combustion engine, and method for manufacturing piston of internal-combustion engine
CN110894813A (en) Cylinder liner, method of manufacturing the same, and method of manufacturing cylinder block using the same
WO2018131356A1 (en) Piston for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17843106

Country of ref document: EP

Kind code of ref document: A1