WO2018116495A1 - 潤滑油添加剤、潤滑油、グリース組成物、燃料油添加剤、燃料油およびオイルスラッジ抑制方法 - Google Patents

潤滑油添加剤、潤滑油、グリース組成物、燃料油添加剤、燃料油およびオイルスラッジ抑制方法 Download PDF

Info

Publication number
WO2018116495A1
WO2018116495A1 PCT/JP2017/014381 JP2017014381W WO2018116495A1 WO 2018116495 A1 WO2018116495 A1 WO 2018116495A1 JP 2017014381 W JP2017014381 W JP 2017014381W WO 2018116495 A1 WO2018116495 A1 WO 2018116495A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
titanium dioxide
additive
lubricating oil
dioxide particles
Prior art date
Application number
PCT/JP2017/014381
Other languages
English (en)
French (fr)
Inventor
清英 宮本
Original Assignee
株式会社Vab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Vab filed Critical 株式会社Vab
Priority to JP2017531645A priority Critical patent/JP6327658B1/ja
Priority to CN201780016215.4A priority patent/CN108779407A/zh
Priority to US16/470,966 priority patent/US20200024540A1/en
Publication of WO2018116495A1 publication Critical patent/WO2018116495A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/10Metal oxides, hydroxides, carbonates or bicarbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/12Inorganic compounds
    • C10L1/1233Inorganic compounds oxygen containing compounds, e.g. oxides, hydroxides, acids and salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/02Use of additives to fuels or fires for particular purposes for reducing smoke development
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M139/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing atoms of elements not provided for in groups C10M127/00 - C10M137/00
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/02Inorganic or organic compounds containing atoms other than C, H or O, e.g. organic compounds containing heteroatoms or metal organic complexes
    • C10L2200/0204Metals or alloys
    • C10L2200/0222Group IV metals: Ti, Zr, Hf, Ge, Sn, Pb
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0415Light distillates, e.g. LPG, naphtha
    • C10L2200/0423Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2230/00Function and purpose of a components of a fuel or the composition as a whole
    • C10L2230/04Catalyst added to fuel stream to improve a reaction
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2230/00Function and purpose of a components of a fuel or the composition as a whole
    • C10L2230/22Function and purpose of a components of a fuel or the composition as a whole for improving fuel economy or fuel efficiency
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2250/00Structural features of fuel components or fuel compositions, either in solid, liquid or gaseous state
    • C10L2250/06Particle, bubble or droplet size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines
    • C10L2270/023Specifically adapted fuels for internal combustion engines for gasoline engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/062Oxides; Hydroxides; Carbonates or bicarbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/08Groups 4 or 14
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/055Particles related characteristics
    • C10N2020/06Particles of special shape or size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/04Detergent property or dispersant property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy

Definitions

  • the present invention relates to a lubricating oil additive, a lubricating oil, a grease composition, a fuel oil additive, a fuel oil, and a method for suppressing oil sludge.
  • titanium dioxide to lubricating oil in the prior art focuses on the particle size and hardness of titanium dioxide, and polishes uneven portions on the metal surface with titanium dioxide, or allows titanium dioxide to enter the uneven portions on the metal surface.
  • the object is to improve the surface roughness of the metal surface and reduce the friction coefficient of the lubricating oil. It has not been known that addition of titanium dioxide to lubricating oil suppresses oil sludge of the lubricating oil.
  • An object of the present invention is to provide a lubricating oil additive, a lubricating oil, a grease composition, a fuel oil additive, a fuel oil, and an oil sludge suppressing method capable of effectively suppressing oil sludge.
  • the present invention pays attention to the photocatalytic function of titanium dioxide particles, and when it is added to a lubricating oil containing titanium dioxide particles as an active ingredient, the present invention has been found to exhibit a useful effect of suppressing oil sludge in the lubricating oil.
  • the invention has been completed.
  • the gist of the present invention is the following lubricating oil additives (1) to (9).
  • (1) Titanium dioxide particles not subjected to a coating treatment are used as an active ingredient, and the titanium dioxide particles are added to a lubricating oil in an amount of 0.005% by weight or more and less than 0.3% by weight to suppress an increase in oil sludge.
  • the gist of the present invention is the following lubricating oil (9) or (10).
  • (9) A lubricating oil in which the lubricating oil additive according to any one of (1) to (8) is mixed.
  • the gist of the present invention is the following grease composition (11).
  • (11) A grease composition in which the lubricating oil according to any one of (10) to (12) is mixed.
  • the gist of the present invention is the following oil sludge suppression method (12) to (15).
  • (12) An oil sludge suppression method for suppressing oil sludge by adding the lubricant additive according to any one of (1) to (8) above to the lubricant.
  • (123) The oil sludge suppression method according to (12), which is a method for further improving fuel consumption.
  • (124) The oil sludge suppression method according to the above (12) or (13), which is a method for further suppressing mechanical vibration.
  • the gist of the present invention is the following fuel oil additive (16) to (23).
  • the gist of the present invention is the following fuel oil (24). (24) A fuel oil to which the fuel oil additive according to any one of (16) to (23) is added.
  • the gist of the present invention is the following oil sludge suppression method (25) to (27).
  • a lubricating oil additive, a lubricating oil, a grease composition, a fuel oil additive, a fuel oil, and an oil sludge suppressing method capable of effectively suppressing oil sludge using the photocatalytic function of titanium dioxide particles.
  • a fuel oil additive, fuel oil, and oil sludge suppression method can be provided.
  • the lubricating oil additive according to this embodiment is added so that the titanium dioxide particles are 0.3% by weight (added lubricating oil A), and the titanium dioxide particles are added to 0.03% by weight.
  • A added lubricating oil
  • B added lubricating oil
  • B additive-free lubricating oil which does not add the lubricating oil additive which concerns on this embodiment.
  • FIG. The result of the vibration test using the additive lubricant added with the lubricant additive according to the present embodiment and the additive-free lubricant not added with the lubricant additive according to the present embodiment is shown.
  • FIG. The result of the vibration test using the additive lubricant added with the lubricant additive according to the present embodiment and the additive-free lubricant not added with the lubricant additive according to the present embodiment (vibration result in the longitudinal direction of the vehicle body) is shown.
  • FIG. It is a figure which shows the result of the engine output test using the added fuel oil which added the fuel oil additive which concerns on this embodiment, and the non-added fuel oil which does not add the fuel oil additive which concerns on this embodiment.
  • the lubricating oil additive according to this embodiment is used by being added to lubricating oil for internal combustion engines, industrial equipment, precision equipment, mechanical equipment, and the like.
  • the lubricating oil to which the lubricating oil additive according to the present embodiment is added can be used by mixing with a grease composition used for industrial equipment, precision equipment, mechanical equipment, and the like.
  • a grease composition used for industrial equipment, precision equipment, mechanical equipment, and the like.
  • the lubricating oil additive according to this embodiment includes titanium dioxide particles having a photocatalytic function.
  • titanium dioxide particles titanium dioxide particles having an anatase type crystal structure can be used.
  • Anatase-type titanium dioxide can exert its photocatalytic function by the action of ultraviolet rays such as sunlight, so that a layer of anatase-type titanium dioxide is usually formed on the surface of an article irradiated with sunlight (ultraviolet rays). Etc., and used in an environment exposed to sunlight (ultraviolet rays). For this reason, lubricating oil used inside internal combustion engines, industrial equipment, precision equipment, or mechanical equipment is usually used in dark places where ultraviolet rays do not reach. In anticipation, lubricating oil additives including anatase-type titanium dioxide have not been added to such lubricating oils.
  • the lubricating oil additive according to the present embodiment is an additive for mixing with a lubricating oil used in a dark place where sunlight (ultraviolet rays) does not reach. Even when the lubricant additive according to the present embodiment is added to the lubricant used inside the internal combustion engine, inside the industrial equipment, inside the precision equipment, or inside the mechanical equipment, It was found that oil sludge is suppressed by the lubricating oil. This is thought to be because the anatase-type titanium dioxide particles contained in the lubricant additive exerted a photocatalytic function due to the plasma generated by the sliding of these machines (Toshio Sakurai, “Physical Chemistry of Lubrication”). 151-152, “Shoshobo Publishing”.
  • the photocatalytic function of the titanium dioxide particles suppresses the polymerization reaction and oxidation reaction of the lubricating oil, and the products produced by the polymerization reaction and oxidation reaction are decomposed, so that the oil in the lubricating oil It seems that it was possible to suppress the increase in sludge.
  • the lubricating oil additive according to the present embodiment when added to the lubricating oil, the oil sludge is suppressed, so that friction between the machine parts due to the oil sludge is suppressed, improving fuel consumption and mechanical vibration. The effect such as suppression is also exhibited.
  • the titanium dioxide particles according to this embodiment are nanoparticles having an average particle diameter of 1 nm to 300 nm, more preferably nanoparticles having a diameter of 1 nm to 100 nm.
  • the titanium dioxide particles polish the uneven portions on the metal surface.
  • the metal surface machine surface
  • the lubricating oil additive according to the present embodiment is in a powder form, and the transportability and quality retention of the lubricating oil additive are good.
  • the user dispenses a small amount (for example, about 100 ml) of the target lubricating oil into a separate container immediately before use, adds the necessary amount of powdered lubricating oil additive to this, and agitate for 2 to 3 minutes. By mixing in, functions such as oil sludge suppression can be exhibited.
  • the titanium dioxide particles according to the present embodiment are not subjected to a coating treatment for dispersion or settling prevention. This is because the photocatalytic function of titanium dioxide can be sufficiently exhibited.
  • the titanium dioxide particles according to the present embodiment are nanoparticles, they are highly condensable and have a higher settling property because of their higher specific gravity than lubricating oil. Therefore, the lubricant additive according to the present embodiment can contain a dispersant for improving the dispersibility of the titanium dioxide particles and a sedimentation inhibitor for suppressing the sedimentation of the titanium dioxide particles.
  • the dispersant added to the lubricating oil additive is effectively adsorbed on the surface of the titanium dioxide particles to effectively prevent aggregation between the titanium dioxide particles, thereby improving the dispersibility of the titanium dioxide particles in the lubricating oil.
  • a dispersant is not particularly limited, and is a polymer-based dispersant such as polyester, polyurethane, polyamino, acrylic, styrene / acrylic, styrene / maleic acid copolymer, alkylsulfonic acid, Surfactant type dispersants such as quaternary ammonium, higher alcohol alkylene oxide, polyhydric alcohol ester, and alkyl polyamine can be used.
  • the settling inhibitor added to the lubricating oil additive suppresses the settling of the titanium dioxide particles by floating or suspending the titanium dioxide particles packed in the dispersant in the lubricating oil.
  • a precipitation inhibitor is not particularly limited, and amide, ethanol, isopropanol, butyl acetate, alkylcyclohexane, polyethylene oxide, and the like can be used.
  • the lubricating oil additive is added to the lubricating oil so that the titanium dioxide particles in the lubricating oil are 0.005 wt% or more and less than 0.3 wt% (weight ratio is 50 ppm or more and less than 3000 ppm). Is done. This is because when the titanium dioxide particles in the lubricating oil are less than 0.005% by weight (50 ppm), the photocatalytic effect of titanium dioxide is not exhibited effectively, while when the titanium dioxide particles are 0.3% by weight (3000 ppm) or more.
  • the concentration of titanium dioxide particles in the lubricating oil is preferably 0.01 to 0.1% by weight (100 to 1000 ppm by weight), more preferably 0.03 to 0.04% by weight. % (300 to 400 ppm by weight) is desirable.
  • the concentration of titanium dioxide particles in the lubricating oil additive is 3% by weight, the user can add 0.255 g of lubricating oil additive to 1000 ml (850 g) of lubricating oil having a density of 0.85, The concentration of titanium dioxide particles in the lubricating oil can be 0.03% by weight (300 ppm).
  • Another embodiment of the lubricating oil additive of the present invention is a liquid composition comprising the lubricating oil additive and oil described above.
  • a liquid additive composition comprising the lubricating oil additive and oil described above.
  • the oil used in the additive composition is preferably a mineral oil or synthetic oil having a kinematic viscosity at 40 ° C. of 5 to 100 mm 2 / s.
  • mineral oil for example, a lubricating oil fraction from paraffinic crude oil, naphthenic crude oil, aromatic crude oil, or the like can be used.
  • synthetic oils polyolefin synthetic oils such as polyalphaolefins, ester synthetic oils such as diesters, and alkyl naphthalene can be used.
  • G3 oil is used as the base oil of the lubricating oil additive in the SAE base oil classification.
  • the additive composition according to this embodiment includes 0.1 to 5% by weight of anatase-type titanium dioxide particles.
  • the concentration of the titanium dioxide particles in the lubricating oil is 0.005% by weight or more, similarly to the powdery lubricating oil additive described above. More preferably, the concentration of titanium dioxide particles in the lubricating oil is 0.01 to 0.1% by weight (100 to 1000 ppm by weight) so that it is less than 0.3% by weight (50 ppm or more and less than 3000 ppm by weight). More preferably, the additive composition is added to the lubricating oil so that the concentration of the titanium dioxide particles is 0.03 to 0.04% by weight (300 to 400 ppm by weight). Can do.
  • an additive composition having a titanium dioxide particle concentration of about 1.18% by weight is formed. be able to.
  • the user adds the additive composition (including 1 g of titanium dioxide particles) for one container to 3500 ml (2975 g) of the lubricating oil having a density of 0.85, thereby anatase in the lubricating oil.
  • the concentration of the titanium dioxide particles in the mold can be about 0.03% by weight (about 300 ppm).
  • the additive composition according to the present embodiment can contain 1 to 5% by volume of the dispersant described above. Since the titanium dioxide particles according to this embodiment are 1 to 300 nm nanoparticles, aggregation is likely to occur when an additive composition containing oil is used. Therefore, by adding a dispersant to the additive composition, it is possible to effectively suppress aggregation of titanium dioxide particles in the additive composition containing oil and further in the lubricating oil to which the additive composition is added. And the titanium dioxide particles can diffuse throughout the lubricating oil. As a result, the photocatalytic function of the titanium dioxide particles can be sufficiently exhibited in the lubricating oil.
  • the additive composition according to the present embodiment can include 1 to 5% by volume of the precipitation inhibitor described above.
  • titanium dioxide particles have a relatively high specific gravity and are likely to settle.
  • the titanium dioxide particles settle in the additive composition containing the oil, and further in the lubricating oil to which the additive composition is added. Can be prevented.
  • the titanium dioxide particles in the additive composition can be added to the lubricating oil at a relatively uniform concentration.
  • the titanium particles can be dispersed relatively evenly, and the photocatalytic function of the titanium dioxide particles can be exhibited more effectively.
  • the lubricating oil according to the present embodiment is a lubricating oil in which the above-described lubricating oil additive (including the above-described additive composition) is mixed.
  • the lubricating oil before mixing the lubricating oil additive is not particularly limited, and for example, a lubricating oil that is generally sold and used can be used.
  • the concentration of titanium dioxide particles in the lubricating oil is more preferably 0.005 wt% or more and less than 0.3 wt% (weight ratio is 50 ppm or more and less than 3000 ppm).
  • the concentration of titanium dioxide particles in the lubricating oil is 0.03 to 0.04 so that the concentration of titanium dioxide particles is 0.01 to 0.1% by weight (100 to 1000 ppm by weight).
  • Lubricating oil additive is mixed with the lubricating oil so that the weight percentage (300 to 400 ppm by weight) is obtained.
  • the lubricating oil mixed with the lubricating oil additive as described above can be used by filling an internal combustion engine, industrial equipment, precision equipment, mechanical equipment, and the like.
  • the grease composition according to this embodiment is a grease composition in which the above-described lubricating oil is mixed.
  • Components other than lubricating oil in the grease composition are not particularly limited, and commonly used components can be used. Since the grease composition according to the present embodiment includes a lubricating oil containing anatase-type titanium dioxide particles, when applied to industrial equipment, precision equipment, mechanical equipment, and the like, the photocatalytic function by plasma generated in these equipment The oxidation of the lubricating oil in the grease composition can be suppressed. Thereby, in addition to the oil sludge suppression function described above, the grease composition can maintain the performance of retaining the lubricating oil for a longer period of time, and thus the life of the grease composition can be extended.
  • a lubricating oil (hereinafter, also referred to as “added lubricating oil A”) in which the lubricating oil additive according to the present embodiment is added so that the titanium dioxide particles are 0.3 wt% (3000 ppm by weight), Lubricating oil added so that the titanium dioxide particles are 0.03% by weight (300 ppm by weight) (hereinafter also referred to as additive lubricating oil B), and a lubricating oil to which the lubricating oil additive according to this embodiment is not added (Hereinafter, also referred to as additive-free lubricating oil) will be described.
  • a 60-minute wear test was performed under the conditions shown in Table 1 below using a Pin-VeeBlock high-speed FALEX tester, and the friction coefficient ⁇ was measured.
  • the lubricating oil an engine oil having an SAE viscosity grade of 0W-20 was used.
  • the titanium dioxide particles are generated so that the average particle size is 30 nm.
  • the particle size of the titanium dioxide particles varies with a peak of about 30 nm. (The same applies to the following examples).
  • the added lubricating oil B added with titanium dioxide particles at 0.03% by weight becomes a lubricating oil obtained by mixing the lubricating oil additive according to the present embodiment by the above-described method of use.
  • FIG. 1 is a diagram showing a change in the friction coefficient ⁇ in the wear test using the additive lubricants A and B and the additive lubricant
  • FIG. 2 is a graph showing the result of the wear test shown in FIG.
  • FIG. 3 is a diagram showing a change in the friction coefficient ⁇ from 10 minutes before the end of the result of the wear test shown in FIG. 1.
  • the friction coefficient ⁇ for each lubricating oil up to 10 minutes from the start will be described. As shown in FIGS. 1 and 2, when the additive lubricant A and the additive lubricant A containing 0.3% by weight of titanium dioxide particles were compared, the additive lubricant A was used when the additive lubricant A was used. Compared to the case, the friction coefficient ⁇ for 10 minutes from the start was small. Similarly, when additive-free lubricant and additive lubricant B containing 0.03% by weight of titanium dioxide particles are compared, when additive lubricant B is used, start is greater than when additive-free lubricant is used. The coefficient of friction ⁇ up to min.
  • the additive lubricant B is used when the additive lubricant A is used.
  • the friction coefficient ⁇ for 10 minutes from the start became small. This is because immediately after the titanium dioxide particles are added to the lubricating oil, the wear of the metal surface is promoted by the titanium dioxide particles and the surface roughness of the friction surface is improved. As a result, the oil film on the metal surface is formed thicker and the friction is increased. This is probably because the coefficient ⁇ has decreased.
  • the additive lubricating oil B having a titanium dioxide particle concentration of 0.03% by weight exhibits the photocatalytic function of anatase-type titanium dioxide particles after a certain period of time has elapsed since the addition of titanium dioxide particles to the lubricating oil.
  • the suppression of oil sludge suppresses an increase in frictional force due to the oil sludge, and as a result, the friction coefficient ⁇ is considered to be lower than that of the additive-free lubricating oil.
  • the fact that the photocatalytic function of the titanium dioxide particles was exerted in the additive lubricating oil B in this way can also be confirmed from Examples 2 and 3 described later.
  • the additive lubricating oil A containing 0.3% by weight of titanium dioxide particles contains excessive titanium dioxide particles in the lubricating oil. Therefore, when a certain period of time elapses after the titanium dioxide particles are added to the lubricating oil, It is considered that most of the titanium particles entered the friction surface and increased the frictional force, resulting in a higher friction coefficient ⁇ than that of the additive-free lubricating oil.
  • FIG. 4 is a diagram showing changes in the oil temperature in the wear test of the additive lubricants A and B and the additive lubricant
  • FIG. 5 is an oil from 10 minutes before the end of the change in the oil temperature shown in FIG. It is a figure which shows the change of temperature.
  • the temperature of the additive lubricating oils A and B and the non-added lubricating oil increased with the start of the wear test. Then, the oil temperature does not increase from about 20 to 30 minutes after the start of the test. With additive lubricant A containing 0.3% by weight of additive-free lubricant and titanium dioxide particles, the oil temperature remains almost constant after 40 minutes from the start of the test, but additive lubricant containing 0.03% by weight of titanium dioxide particles. In oil B, the oil temperature decreased about 40 minutes after the start of the test, and as shown in FIG. 5, after about 60 minutes after the start of the test, the oil temperature was about 20 ° C. lower than that of the additive-free lubricating oil.
  • the additive lubricating oil B containing 0.03% by weight of titanium dioxide particles can suppress an increase in the oil temperature, particularly after a certain time has elapsed from the start of the test, as compared with the additive-free lubricating oil.
  • the oxidation reaction or polymerization reaction of the lubricating oil due to an increase in oil temperature can be suppressed, and the generation of oil sludge by the oxidation reaction or polymerization reaction can be suppressed. Therefore, the life of the lubricating oil can be extended.
  • FIG. 6A is a table showing the wear loss weight in the wear test shown in FIG. 1
  • FIG. 6B is a graph showing the wear loss weight shown in FIG.
  • a cylindrical metal (SUJ-2) called Pin is sandwiched between metals (SCM421) called VeeBlock, and the Pin is rotated in that state, and each wear loss weight of Pin and Vee Block (Mg) was detected.
  • SCM421 metals
  • Mg wear loss weight of Pin and Vee Block
  • additive lubricant A containing 0.3% by weight of titanium dioxide particles
  • additive lubricant B containing 0.03% by weight of titanium dioxide particles
  • 0.42 0.4 mg of Pin and 0.4 mg of VeeBlock were lost.
  • the hardness (HRC) of the used Pin is 60
  • the hardness (HRC) of VeeBlock is 45
  • the Pin is Vee. Hardness is higher than Block.
  • FIG. 6 it can be seen that in the additive lubricant A containing 0.3% by weight of additive-free lubricant and titanium dioxide particles, Pin is worn about four times as compared to VeeBlock.
  • the added lubricating oil B containing 0.03% by weight of titanium dioxide particles Pin and Vee Block are worn to the same extent.
  • the additive lubricating oil B containing 0.03% by weight of titanium dioxide particles has an effect of suppressing wear of the metal having higher hardness in wear between metals. Such an effect is considered to lead to the following effects, for example.
  • a substantially elliptical cam nose rotates and pushes out the shim, so that the valve connected to the shim is opened and a gas mixture of gasoline can be introduced into the combustion chamber.
  • the cam nose is a mechanism that rotates while contacting the shim, wear occurs between the cam nose and the shim. If the cam nose is worn, the shim cannot be pushed out sufficiently and the engine valve cannot be opened sufficiently.
  • the lubricating oil added with the lubricating oil additive according to the present embodiment it is possible to suppress the wear of the metal having a higher hardness in the wear between metals, and therefore, the wear of the cam nose having a higher hardness can be suppressed. This can extend the life of the cam nose.
  • Infrared spectroscopy In order to support that the photocatalytic function of the titanium dioxide particles is exhibited in the lubricating oil when the lubricating oil additive according to the present embodiment is added to the lubricating oil, the present inventor added the lubricating oil according to the present embodiment. Infrared spectroscopic analysis (hereinafter also referred to as FT-IR analysis) of the lubricating oil added with the agent was performed. In this example, the additive-free lubricant before adding the lubricant additive according to this embodiment and the lubricant additive according to this embodiment were added so that the titanium dioxide particles would be 0.03% by weight.
  • FT-IR analysis Infrared spectroscopic analysis
  • FT-IR analysis was performed on the added lubricating oil B after traveling 500 km by a liquid film method using a KBr Cell at a film thickness of 0.1.
  • the present inventor since it is known that an ester is generated when oil sludge is decomposed, the present inventor has added lubricating oil B containing 0.03% by weight of anatase type titanium dioxide particles and anatase type dioxide dioxide.
  • FT-IR analysis was performed using an additive-free lubricating oil not containing titanium particles, and the absorbance (transmittance) at a wavelength of 1730 cm ⁇ 1 absorbed by the ester (C ⁇ O) was detected.
  • Table 2 shows the results of FT-IR analysis (detected absorbance at a wavelength of 1730 cm ⁇ 1 ).
  • the additive lubricant B after the wear test shown in Example 1 was performed, that is, the additive lubricant B and the additive-free lubricant after the wear test was performed for 60 minutes.
  • the present inventor discovered from the following investigation that the photocatalytic function of the titanium dioxide particles is exerted in the lubricating oil to which the lubricating oil additive according to the present embodiment is added. That is, it was discovered that when a racing motorcycle was run with engine oil to which the lubricant additive according to the present embodiment was not added, gasoline was mixed in the engine oil after the race. As a result of the investigation, it was found that the gasoline ring leaked from the gap between the cylinder and the piston because the piston ring that prevented the gasoline mixture was fixed by oil sludge. Therefore, the inventors added the lubricating oil additive according to the present embodiment to the engine oil and caused the racing motorcycle to run in the same manner.
  • FIG. 7 is a diagram showing the results of a running test using additive engine oil and additive-free engine oil.
  • the same vehicle is filled with additive-free engine oil with no additive added, and each engine oil travels twice in the same section (the same approximately 100km section of the highway), and the average fuel consumption of the added engine oil (Average of fuel consumption for two driving times for each running time with additive engine oil) and average fuel consumption for additive-free engine oil (average of fuel consumption for two driving times for each driving time with additive-free engine oil) And calculated.
  • Fig. 7 (A) shows the average fuel consumption with additive engine oil and the average fuel consumption with no additive engine oil.
  • the added engine oil has better fuel efficiency than the non-added engine oil. This is presumably because, in the additive engine oil, the oil sludge is suppressed by the anatase-type titanium dioxide particles, and the increase in the frictional force due to the oil sludge is suppressed, thereby improving the fuel efficiency.
  • FIG. 7B it was confirmed that the fuel consumption was improved by about 5 to 10% while the vehicle was running.
  • FIG. 8 is a diagram showing the detection result of the vibration in the vehicle body lateral direction in the vibration test using the additive engine oil and the additive-free engine oil.
  • FIG. 9 is a diagram of the vibration test using the additive engine oil and the additive-free engine oil. It is a figure which shows the detection result of the vibration of a vehicle body front-back direction.
  • the same vehicle was filled with an additive-free engine oil to which no additive was added.
  • a vibration meter is installed on the engine cover, and the engine is operated while the vehicle is stopped, so that the lateral vibration (lateral acceleration) and the longitudinal vibration (longitudinal acceleration) of the vehicle body with the respective engine oil are detected. It was measured.
  • FIG. 8A shows the detection result of the lateral vibration (lateral acceleration) in the additive engine oil
  • FIG. 8B shows the lateral vibration (lateral acceleration) in the additive engine oil.
  • the detection result is shown.
  • the vibration of the vehicle body in the lateral direction was greatly suppressed in the additive engine oil compared to the additive-free engine oil.
  • the lateral vibration (lateral acceleration) of the vehicle body is considered to be vibration caused by the head vibration of the engine piston.
  • FIG. 9 (A) shows the detection result of longitudinal vibration (longitudinal acceleration) in the non-added engine oil
  • FIG. 9 (B) shows longitudinal vibration (vertical acceleration) in the added engine oil. (Acceleration) detection results are shown.
  • T1 the period of vibration in the case of additive-free engine oil
  • T2 the period of vibration in the case of additive engine oil
  • T1 the period of vibration in the case of additive-free engine oil
  • T2 which was longer than T1.
  • the period of T1 is indicated by a broken line in order to make it easier to compare T1 and T2.
  • the lubricating oil additive according to the present embodiment is used for lubricating oil used inside an internal combustion engine, industrial equipment, precision equipment, or mechanical equipment that does not receive sunlight (ultraviolet rays). It is an additive to be added and contains titanium dioxide particles having a photocatalytic function as an active ingredient. Then, by adding the lubricating oil additive according to this embodiment to the lubricating oil, the inside of the internal combustion engine, the inside of the industrial equipment, the inside of the precision equipment, or the inside of the mechanical equipment where sunlight (ultraviolet rays) does not reach. Even so, oil sludge can be suppressed by the photocatalytic function of the titanium dioxide particles. Further, by suppressing the oil sludge, an increase in the friction coefficient ⁇ due to the oil sludge can be suppressed, and effects such as improvement of fuel consumption and suppression of mechanical vibration can be exhibited.
  • the titanium dioxide particles according to the present embodiment are not subjected to a coating treatment for dispersion or settling prevention, the photocatalytic function of the titanium dioxide particles can be sufficiently exhibited. Furthermore, since the titanium dioxide particles according to this embodiment are nanoparticles having an average particle diameter of 1 nm to 300 nm, more preferably nanoparticles of 1 nm to 100 nm, when a lubricating oil additive is added to the lubricating oil, In addition to the photocatalytic function, the metal surface can be brought close to a mirror surface by polishing the uneven portion on the metal surface and entering the uneven portion on the metal surface.
  • the concentration of titanium dioxide particles in the lubricating oil is 0.005 wt% or more and less than 0.3 wt% (weight ratio is 50 ppm or more and less than 3000 ppm), more preferably, the dioxide dioxide in the lubricating oil.
  • the concentration of titanium particles is 0.01 to 0.1% by weight (100 to 1000 ppm by weight), more preferably the concentration of titanium dioxide particles in the lubricating oil is 0.03 to 0.04% by weight (by weight).
  • the lubricating oil additive is mixed with the lubricating oil so as to be 300 to 400 ppm. Thereby, while the titanium dioxide particle can exhibit a photocatalytic function effectively, the bad influence by excess titanium dioxide particle can also be suppressed.
  • the fuel oil additive according to the present embodiment can be used by being added to fuel oil such as gasoline.
  • the fuel oil additive which concerns on this embodiment can also be applied to fuel oils, such as kerosene, light oil, and heavy oil other than gasoline.
  • the fuel oil which added the fuel oil additive which concerns on this embodiment can be used for a vehicle, a ship, an airplane, a heating appliance, a thermal power plant etc., for example.
  • the fuel oil additive according to this embodiment includes titanium dioxide particles having a photocatalytic function.
  • titanium dioxide particles titanium dioxide particles having an anatase type crystal structure can be used.
  • anatase-type titanium dioxide particles exhibit a photocatalytic function by ultraviolet rays.
  • sunlight ultraviolet rays
  • the photocatalytic function by ultraviolet rays is not exhibited.
  • the present inventors have found that fuel efficiency is improved when the fuel oil additive according to the present embodiment is added to gasoline (fuel oil) combusted in an internal combustion engine.
  • the inventor increases the combustion efficiency of gasoline (fuel oil), and the acidic gas in the exhaust gas, for example, carbon monoxide (CO ), Methane gas (CH 4 ), nitrogen oxides (NO X ) and the like were found to be reduced.
  • the anatase-type titanium dioxide particles contained in the fuel oil additive function as a photocatalyst by the flame (light) generated by the combustion (explosion) in the combustion chamber, suppressing oil sludge of gasoline (fuel oil), It is considered that fuel efficiency has been improved by disassembling.
  • titanium dioxide functions as a photocatalyst in the combustion chamber, thereby suppressing the polymerization reaction of fuel oil and oil sludge, and ions generated in the photocatalyst decompose oil sludge.
  • the function of titanium dioxide can reduce the molecular weight of the fuel oil and promote the combustion of the fuel oil. Thereby, it is considered that the complete combustion of the fuel oil can be promoted, the discharge of the acid gas caused by the incomplete combustion can be suppressed, and the fuel consumption can be improved.
  • the titanium dioxide particles according to this embodiment are nanoparticles having an average particle diameter of 1 nm to 300 nm, more preferably nanoparticles having a diameter of 1 nm to 100 nm.
  • the fuel oil additive according to the present embodiment is powdery and has good transportability and quality retention.
  • the user can add a powdery fuel oil additive according to the present embodiment to a liquid fuel oil additive different from the fuel oil additive according to the present embodiment, such as a so-called draining agent or cleaning agent.
  • a necessary amount of the fuel oil additive is added, stirred for 2 to 3 minutes, and then mixed into the target gasoline, whereby functions such as oil sludge suppression can be exhibited in the internal combustion engine.
  • the titanium dioxide particles according to the present embodiment are not subjected to a coating treatment for dispersion or settling prevention. This is because the photocatalytic function of titanium dioxide can be sufficiently exhibited.
  • the fuel oil additive according to the present embodiment is added to the internal combustion engine, it is stirred and dispersed to some extent by the operation of the piston and the engine shaft.
  • the titanium dioxide particles according to the present embodiment are high in condensability because they are nanoparticles, as in the case of the lubricating oil additive described above, and have high sedimentation properties because of their higher specific gravity than fuel oil. Therefore, the fuel oil additive according to the present embodiment can include a dispersant for improving the dispersibility of the titanium dioxide particles and a sedimentation inhibitor for suppressing sedimentation of the titanium dioxide particles.
  • the dispersant added to the fuel oil additive is effectively adsorbed on the surface of the titanium dioxide particles, thereby effectively preventing aggregation between the titanium dioxide particles.
  • the dispersibility of the titanium dioxide particles can be improved.
  • a dispersant is not particularly limited, and is a polymer-based dispersant such as polyester, polyurethane, polyamino, acrylic, styrene / acrylic, styrene / maleic acid copolymer, alkylsulfonic acid, Surfactant type dispersants such as quaternary ammonium, higher alcohol alkylene oxide, polyhydric alcohol ester, and alkyl polyamine can be used.
  • the settling inhibitor added to the fuel oil additive is the same as the lubricating oil additive described above, by allowing the titanium dioxide particles packed in the dispersant to float or be suspended in the fuel oil. Moreover, sedimentation of titanium dioxide particles can be suppressed.
  • a precipitation inhibitor is not particularly limited, and amide, ethanol, isopropanol, butyl acetate, alkylcyclohexane, polyethylene oxide, and the like can be used.
  • the titanium dioxide particles are not coated, but in order to promote the sedimentation suppressing effect and the dispersion effect, the titanium dioxide particles are coated with organic titanium or the like. You can also.
  • the fuel oil additive is added to the fuel oil so that the titanium dioxide particles in the fuel oil are 0.00001 wt% or more and less than 0.01 wt% (weight ratio is 0.1 ppm or more and less than 100 ppm). Added. This is because when the titanium dioxide particles in the fuel oil are less than 0.00001 wt% (0.1 ppm), the photocatalytic effect of titanium dioxide is not exhibited effectively, while the titanium dioxide particles are 0.01 wt% (100 ppm). In the above, the amount of precipitated titanium dioxide particles is increased, so that the effect on the amount of titanium dioxide particles is reduced, and the cost is increased.
  • the concentration of titanium dioxide particles in the fuel oil is preferably 0.00001 to 0.01 wt% (0.1 to 100 ppm by weight), more preferably 0.0001 to 0.001. 005% by weight (1 to 50 ppm by weight) is desirable.
  • concentration of titanium dioxide particles in the fuel oil additive is 3% by weight, the user can add 35 g of fuel oil additive to 45 L (33750 g) of fuel oil having a density of 0.75.
  • concentration of the titanium dioxide particles therein can be 0.0031% by weight (31 ppm).
  • Another embodiment of the fuel oil additive of the present invention is a liquid state different from the fuel oil additive containing titanium dioxide described above and the fuel oil additive according to the present embodiment such as a so-called drainage agent or cleaning agent.
  • a composition comprising a fuel oil additive.
  • the additive composition according to this embodiment contains 0.3 to 1.4% by weight of anatase type titanium dioxide particles.
  • the concentration of titanium dioxide particles in the fuel oil is 0.00001% by weight or more, as in the case of the above-described powdery lubricant additive. More preferably, the concentration of the titanium dioxide particles in the fuel oil is 0.0001 to 0.005% by weight (1 by weight) so that it is less than 0.01% by weight (0.1 to 100 ppm by weight).
  • This additive composition can be added to the fuel oil so as to be ⁇ 50 ppm.
  • the concentration of titanium dioxide particles can be obtained by adding a fuel oil additive containing 1 g of titanium dioxide particles to a container containing 360 ml (280.7 g) of a drainage agent mainly composed of isopropyl alcohol having a density of 0.78.
  • An additive composition with about 0.7% by weight can be formed.
  • the user adds an additive composition (including 1 g of titanium dioxide particles) for one container to 45 L (33750 g) of fuel oil having a density of 0.75, thereby anatase in the fuel oil.
  • the concentration of the titanium dioxide particles in the mold can be about 0.03% by weight (about 30 ppm).
  • the additive composition according to the present embodiment can contain 1 to 5% by volume of the dispersant described above. Since the titanium dioxide particles according to the present embodiment are 1 to 300 nm nanoparticles, aggregation tends to occur when an additive composition is used. Therefore, by adding a dispersant to the additive composition, aggregation of titanium dioxide particles can be effectively suppressed in the additive composition and further in the fuel oil to which the additive composition is added. The titanium dioxide particles can be diffused throughout the fuel oil. As a result, the photocatalytic function of the titanium dioxide particles can be sufficiently exhibited in the fuel oil.
  • the additive composition according to the present embodiment can include 1 to 5% by volume of the precipitation inhibitor described above.
  • titanium dioxide particles have a relatively high specific gravity and are likely to settle.
  • the titanium dioxide particles will settle in the additive composition and further in the fuel oil to which the additive composition is added. Can be prevented.
  • the titanium dioxide particles in the additive composition can be added to the fuel oil at a relatively uniform concentration.
  • the titanium particles can be dispersed relatively evenly, and the photocatalytic function of the titanium dioxide particles can be exhibited more effectively.
  • the fuel oil according to the present embodiment is a fuel oil in which the above-described fuel oil additive (including the above-described additive composition) is mixed.
  • the fuel oil before mixing the fuel oil additive is not particularly limited, and for example, a fuel oil that is generally sold and used can be used.
  • the fuel is more preferably used so that the concentration of titanium dioxide particles in the fuel oil is 0.00001 wt% or more and less than 0.01 wt% (0.1 ppm or more and less than 100 ppm by weight).
  • the fuel oil additive is mixed with the fuel oil so that the concentration of the titanium dioxide particles in the oil is 0.0001 to 0.005 wt% (1 to 50 ppm by weight). And the fuel oil which mixed the fuel oil additive in this way can be filled and used for an internal combustion engine.
  • Fuel consumption test 1 The fuel consumption was measured when the fuel oil additive according to this embodiment was added to gasoline.
  • fuel consumption test 1 (A) gasoline only, (B) 180 ml of water draining agent and this implementation were performed so that the concentration of titanium dioxide in gasoline 45L was 0.003% by weight (30 ppm by weight).
  • Fuel economy was measured using two types of gasoline to which the fuel oil additive according to the embodiment was added.
  • Toyota Porte (model CBA-NNP11) is used to drive 31.8km on the highway at a fixed speed of 80km / h
  • Tectom's fuel consumption manager (FCM-NX1) is used as an on-board diagnostics (OBD) for automobiles. Installed and measured. The results are shown in Table 3 below.
  • OBD on-board diagnostics
  • FIG. 10A is a diagram showing the measurement results of torque, where the thick line indicates the added fuel oil and the thin line indicates the non-added fuel oil.
  • FIG. 10B is a diagram showing the measurement result of horsepower. Like FIG. 10A, the thick line indicates the added fuel oil and the thin line indicates the non-added fuel oil.
  • the vertical axis of the graph shown in FIG. 10A is the torque
  • the horizontal axis is the rotational speed
  • the vertical axis of the graph shown in FIG. 10B is horsepower
  • the horizontal axis is the rotation speed.
  • the engine used in this test is a tuning engine.
  • the engine Torque improved regardless of the number of revolutions.
  • the torque of the added fuel oil is about 16.3 kgf ⁇ m
  • the torque of the non-added fuel oil is about 15.8 kgf ⁇ m
  • the added fuel oil is not added.
  • the added fuel oil to which the fuel oil additive according to this embodiment is added is compared with the non-added fuel oil to which the fuel oil additive according to this embodiment is not added.
  • the fuel oil additive according to the present embodiment can suppress oil sludge by using titanium dioxide particles as an active ingredient, and as a result, can improve fuel consumption and reduce acid gas emissions. .
  • the titanium dioxide particles according to the present embodiment are not subjected to a coating treatment, the photocatalytic function of the titanium dioxide particles can be further exhibited.
  • the photocatalytic function by the titanium dioxide particles is made to function more effectively by adding the titanium dioxide particles to the fuel oil so as to be 0.00001 wt% or more and less than 0.001 wt%. And oil sludge can be appropriately suppressed.
  • the titanium dioxide particles are nanoparticles having an average particle diameter of 1 nm to 300 nm, when a fuel oil additive having a photocatalytic function by the titanium dioxide particles is added to the fuel oil, in addition to the photocatalytic function, the metal surface By polishing the concavo-convex portion of the metal and entering the concavo-convex portion of the metal surface, the metal surface can be brought close to a mirror surface, and the frictional force can be reduced.
  • the powdery fuel oil additive is mixed with another liquid fuel oil additive to obtain a liquid fuel oil additive, whereby anatase-type titanium dioxide particles are obtained. It can be effectively diffused by fuel oil.
  • the fuel oil additive can be provided as a fuel oil to which the fuel oil additive is added.
  • the molecular weight of the fuel oil can be reduced by the action of the titanium dioxide particles, and there is also an auxiliary combustion effect that promotes the combustion of the fuel oil.
  • the photocatalytic function of the titanium dioxide particles can provide an oil sludge dispersion effect for decomposing and dispersing oil sludge and a cleaning effect for decomposing carbon, varnish, gum, and the like.
  • the effect of improving the torque and horsepower of the engine by promoting the combustion of the fuel oil is also achieved.
  • the anatase-type titanium dioxide particles are exemplified and described as the titanium dioxide particles having a photocatalytic function.
  • the titanium dioxide particles having a photocatalytic function are not limited to this configuration.
  • a configuration using rutile-type titanium dioxide particles may be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Lubricants (AREA)

Abstract

課題:潤滑油中のオイルスラッジを有効に抑制することが可能な潤滑油添加剤、潤滑油、グリース組成物、燃料油添加剤、燃料油およびオイルスラッジ抑制方法を提供する。 解決手段:二酸化チタン粒子を有効成分とする、オイルスラッジを抑制するための潤滑油添加剤。

Description

潤滑油添加剤、潤滑油、グリース組成物、燃料油添加剤、燃料油およびオイルスラッジ抑制方法
 本発明は、潤滑油添加剤、潤滑油、グリース組成物、燃料油添加剤、燃料油およびオイルスラッジ抑制方法に関する。
 従来より、潤滑油の摩擦係数を低減させるために、二酸化チタンを含有させた潤滑油が知られている(たとえば特許文献1参照)。
特開2009-179715号公報
 従来技術における二酸化チタンの潤滑油への添加は、二酸化チタンの粒度や硬さに着目し、金属表面の凹凸部を二酸化チタンで研磨し、あるいは、金属表面の凹凸部に二酸化チタンを入り込ませることで、金属表面の面粗さを改善し、潤滑油の摩擦係数を低減させることを目的としたものである。
 二酸化チタンの潤滑油への添加により、潤滑油のオイルスラッジが抑制されることは知られていなかった。
 本発明は、オイルスラッジを有効に抑制することが可能な潤滑油添加剤、潤滑油、グリース組成物、燃料油添加剤、燃料油およびオイルスラッジ抑制方法の提供を目的とする。
 本発明は二酸化チタン粒子の光触媒機能に着目し、二酸化チタン粒子を有効成分とする潤滑油に添加すると、潤滑油でのオイルスラッジが抑制されるという有用な作用効果を発揮することを見出して本発明を完成するに至った。
 本発明は、以下の(1)ないし(9)の潤滑油添加剤を要旨とする。
(1)コーティング処理が施されていない二酸化チタン粒子を有効成分とする、潤滑油に前記二酸化チタン粒子を0.005重量%以上かつ0.3重量%未満添加してオイルスラッジの増加を抑制するための潤滑油添加剤。
(2)前記二酸化チタン粒子はアナターゼ型の二酸化チタン粒子である上記(1)に記載の潤滑油添加剤。
(3)前記二酸化チタン粒子は、平均粒径が1nm~300nmのナノ粒子である上記(1)または(2)に記載の潤滑油添加剤。
(4)前記二酸化チタン粒子が光触媒機能を有する上記(1)ないし(3)のいずれかに記載の潤滑油添加剤。
(5)さらにオイルを含む上記(1)ないし(4)のいずれかに記載の潤滑油添加剤。
(6)前記二酸化チタン粒子を0.1~5重量%含む、オイルとの組成物である上記(1)ないし(5)のいずれかに記載の潤滑油添加剤。
(7)さらに燃費を向上させるための上記(1)ないし(6)のいずれかに記載の潤滑油添加剤。
(8)さらに機械振動を抑制させるための上記(1)ないし(7)のいずれかに記載の潤滑油添加剤。
 また、本発明は、以下の(9)または(10)の潤滑油を要旨とする。
(9)上記(1)ないし(8)のいずれかに記載の潤滑油添加剤が混合された潤滑油。
(10)前記二酸化チタン粒子を0.01~0.1重量%含む上記(1)ないし(9)に記載の潤滑油。
 また、本発明は、以下の(11)のグリース組成物を要旨とする。
(11)上記(10)ないし(12)のいずれかに記載の潤滑油が混合されたグリース組成物。
 また、本発明は、以下の(12)ないし(15)のオイルスラッジ抑制方法を要旨とする。
(12)上記(1)ないし(8)のいずれかに記載の潤滑油添加剤を潤滑油に添加することで、オイルスラッジを抑制するオイルスラッジ抑制方法。
(13)さらに燃費を向上させるための方法である上記(12)に記載のオイルスラッジ抑制方法。
(14)さらに機械振動を抑制させるための方法である上記(12)または(13)に記載のオイルスラッジ抑制方法。
(15)前記二酸化チタン粒子を潤滑油に0.005重量%以上かつ0.3重量%未満添加する上記(12)ないし(14)のいずれかに記載のオイルスラッジ抑制方法。
 また、本発明は、以下の(16)ないし(23)の燃料油添加剤を要旨とする。
(16)コーティング処理が施されていない二酸化チタン粒子を有効成分とする、オイルスラッジを抑制するための燃料油添加剤。
(17)燃料油に前記二酸化チタン粒子を0.00001重量%以上かつ0.01重量%未満添加して使用される上記(16)に記載の燃料油添加剤。
(18)前記二酸化チタン粒子はアナターゼ型の二酸化チタン粒子である上記(16)または(17)に記載の燃料油添加剤。
(19)前記二酸化チタン粒子は、平均粒径が1nm~300nmのナノ粒子である上記(16)ないし(18)のいずれかに記載の燃料油添加剤。
(20)さらに別の液体状の燃料油添加剤を含む組成物である上記(16)ないし(19)のいずれかに記載の燃料油添加剤。
(21)さらに燃費を向上させるための上記(16)ないし(20)のいずれかに記載の燃料油添加剤。
(22)さらに酸性ガスの排出量を低減するための上記(16)ないし(21)のいずれかに記載の燃料油添加剤。
(23)さらに燃料油の燃焼を促進するための、燃焼室を洗浄するための、またはオイルスラッジを分散させるための上記(16)ないし(22)のいずれかに記載の燃料油添加剤。
 また、本発明は、以下の(24)の燃料油を要旨とする。
(24)上記(16)ないし(23)のいずれかに記載の燃料油添加剤が添加された燃料油。
 また、本発明は、以下の(25)ないし(27)のオイルスラッジ抑制方法を要旨とする。
(25)上記(16)ないし(23)のいずれかに記載の燃料油添加剤を燃料油に添加することで、オイルスラッジを抑制するオイルスラッジ抑制方法。
(26)さらに燃費を向上させるための方法である上記(25)に記載のオイルスラッジ抑制方法。
(27)さらに酸性ガスの排出量を低減するための方法である上記(23)または(26)に記載のオイルスラッジ抑制方法。
(28)さらに燃料油の燃焼を促進するための、燃焼室を洗浄するための、またはオイルスラッジを分散させるための上記(25)ないし(27)のいずれかに記載のオイルスラッジ抑制方法。
 本発明により、二酸化チタン粒子の光触媒機能を利用して、オイルスラッジを有効に抑制することができる潤滑油添加剤、潤滑油、グリース組成物、燃料油添加剤、燃料油およびオイルスラッジ抑制方法を提供することができる。また、本発明により、オイルスラッジを有効に抑制することに加えて、燃費を向上させることができる、および/または、機械振動を抑制させることができる潤滑油添加剤、潤滑油、グリース組成物、燃料油添加剤、燃料油およびオイルスラッジ抑制方法を提供することができる。
本実施形態に係る潤滑油添加剤を、二酸化チタン粒子が0.3重量%となるように添加した潤滑油(添加潤滑油A)と、二酸化チタン粒子が0.03重量%となるように添加した潤滑油(添加潤滑油B)と、本実施形態に係る潤滑油添加剤を添加しない無添加潤滑油とを用いた摩耗試験における摩擦係数の変化を示す図である。 図1に示す摩耗試験の結果のうち開始10分後までの摩擦係数の変化を示す図である。 図1に示す摩耗試験の結果のうち終了10分前からの摩擦係数の変化を示す図である。 図1に示す摩耗試験における油温の変化を示す図である。 図4に示す油温の変化のうち終了10分前からの油温の変化を示す図である。 図1に示す摩耗試験における摩耗損失重量を示す図である。 本実施形態に係る潤滑油添加剤を添加した添加潤滑油と、本実施形態に係る潤滑油添加剤を添加しない無添加潤滑油を用いた走行試験の結果を示す図である。 本実施形態に係る潤滑油添加剤を添加した添加潤滑油と、本実施形態に係る潤滑油添加剤を添加しない無添加潤滑油を用いた振動試験の結果(車体横方向の振動結果)を示す図である。 本実施形態に係る潤滑油添加剤を添加した添加潤滑油と、本実施形態に係る潤滑油添加剤を添加しない無添加潤滑油を用いた振動試験の結果(車体前後方向の振動結果)を示す図である。 本実施形態に係る燃料油添加剤を添加した添加燃料油と、本実施形態に係る燃料油添加剤を添加しない無添加燃料油を用いたエンジン出力試験の結果を示す図である。
 以下、本発明の実施形態について説明する。本実施形態に係る潤滑油添加剤は、内燃機関、産業機器、精密機器、機械機器などの潤滑油に添加して使用される。また、本実施形態に係る潤滑油添加剤を添加した潤滑油は、産業機器、精密機器、機械機器などに用いられるグリース組成物に混合して使用することもできる。たとえば、本実施形態に係る潤滑油およびグリース組成物の用途の一例として、船舶や車両などのエンジンオイル、緩衝器や油圧機器用の作動油、回転機器、軸受けまたは歯車用の潤滑油やグリースなどが挙げられるが、これらに限定されるものではない。
(潤滑油添加剤)
 本実施形態に係る潤滑油添加剤は、光触媒機能を有する二酸化チタン粒子を含む。このような二酸化チタン粒子としては、アナターゼ型の結晶構造を有する二酸化チタン粒子を用いることができる。アナターゼ型の二酸化チタンは、太陽光などの紫外線の作用によって光触媒機能を発揮させることができるため、通常は太陽光(紫外線)が照射される物品の表面にアナターゼ型の二酸化チタンの層を形成させるなどし、太陽光(紫外線)の当たる環境下で使用される。そのため、内燃機関の内部、産業機器の内部、精密機器の内部、あるいは機械機器の内部で使用される潤滑油は、通常、紫外線が届かない暗所で使用されることとなるため、光触媒機能を期待して、アナターゼ型の二酸化チタンを含む潤滑油添加剤をこのような潤滑油に添加することはなかった。
 本実施形態に係る潤滑油添加剤は、このような太陽光(紫外線)が届かない暗所で使用される潤滑油に混合するための添加剤である。本発明者らは、内燃機関の内部、産業機器の内部、精密機器の内部、または機械機器の内部で使用する潤滑油に対して、本実施形態に係る潤滑油添加剤を添加した場合でも、潤滑油でオイルスラッジが抑制されることを見出した。これは、これら機械の摺動によりプラズマが発生し、発生したプラズマにより、潤滑油添加剤に含まれるアナターゼ型の二酸化チタン粒子が光触媒機能を発揮したためと考えられる(桜井俊男著「潤滑の物理化学」の151-152ページ 幸書房出版)。その結果、二酸化チタン粒子の光触媒機能により、潤滑油の重合反応や酸化反応が抑制され、また、これら重合反応や酸化反応により生成された生成物の分解が行われることで、潤滑油でのオイルスラッジの増加を抑制することが可能になったと考えられる。
 さらに、潤滑油でのオイルスラッジの増加が抑制されることで、燃費の向上や機械振動の抑制などの効果を奏することができる。すなわち、潤滑油中でオイルスラッジが増加した場合には、オイルスラッジが機械部品間に入り込むことで機械部品間の摩擦力が増大し、燃費が悪化してしまうことが知られている。また、オイルスラッジにより機械部品間の摩擦力が増加することで機械部品間が円滑に摺動せず(機械部品が左右に振れてしまい)、機械振動が発生してしまうことも知られている。これに対して、本実施形態に係る潤滑油添加剤を潤滑油に添加した場合には、オイルスラッジが抑制されるため、オイルスラッジによる機械部品同士の摩擦が抑制され、燃費の向上や機械振動の抑制などの効果も発揮される。
 本実施形態に係る二酸化チタン粒子は、平均粒径が1nm~300nmのナノ粒子、より好ましくは1nm~100nmのナノ粒子である。このように二酸化チタン粒子をナノ粒子とすることで、潤滑油添加剤を潤滑油に添加した場合に、光触媒機能に加えて、二酸化チタン粒子が金属表面の凹凸部を研磨し、また、二酸化チタン粒子が金属表面の凹凸部に入り込むことで、金属表面(機械表面)を鏡面に近づけることができる。これにより、金属表面の油膜比(油膜厚さ(μm)/平均面粗さ(μm)=Λ(ラムダ値))が大きくなり、機械部品同士の摩擦を抑制することができる。
 また、本実施形態に係る潤滑油添加剤は粉状であり、潤滑油添加剤の運搬性や品質保持性が良好となっている。使用者は、使用直前に対象潤滑油少量(例えば100ml程度)を別容器に分取し、これに粉状の潤滑油添加剤を必要量添加し、2~3分撹拌した後、対象潤滑油に混入することで、オイルスラッジの抑制などの機能を発揮させることができる。
 さらに、本実施形態に係る二酸化チタン粒子には、分散や沈降防止などのためのコーティング処理が施されていない。これは、二酸化チタンの光触媒機能を十分に発揮できるようにするためである。ただし、本実施形態に係る二酸化チタン粒子は、ナノ粒子であるために凝縮性が高く、また潤滑油に比べ、比重が大きいので沈降性が高い。そのため、本実施形態に係る潤滑油添加剤には、二酸化チタン粒子の分散性を向上させるための分散剤と、二酸化チタン粒子の沈降を抑制するための沈降抑制剤とを含ませることができる。
 潤滑油添加剤に添加される分散剤は、二酸化チタン粒子の表面に吸着することで、二酸化チタン粒子間の凝集を有効に防ぎ、これにより、潤滑油での二酸化チタン粒子の分散性を向上させることができる。このような分散剤は、特に限定されず、ポリエステル系、ポリウレタン系、ポリアミノ系、アクリル系、スチレン・アクリル系、スチレン・マレイン酸共重合体等の高分子型分散剤や、アルキルスルホン酸系、四級アンモニウム系、高級アルコールアルキレンオキサイド系、多価アルコールエステル系、アルキルポリアミン系等の界面活性剤型分散剤などを使用することができる。
 また、潤滑油添加剤に添加される沈降抑制剤は、分散剤に梱包された二酸化チタン粒子を、潤滑油中に浮遊、または懸濁状態とすることで、二酸化チタン粒子の沈降を抑制することができる。このような沈降抑制剤も、特に限定されず、アマイド、エタノール、イソプロパノール、酢酸ブチル、アルキルシクロヘキサン、および酸化ポリエチレンなどを使用することができる。
 次に、本実施形態に係る潤滑油添加剤の使用方法について説明する。本実施形態では、潤滑油中における二酸化チタン粒子が0.005重量%以上かつ0.3重量%未満(重量比で50ppm以上かつ3000ppm未満)となるように、潤滑油添加剤が潤滑油に添加される。これは、潤滑油中の二酸化チタン粒子が0.005重量%(50ppm)未満では、二酸化チタンによる光触媒効果が有効に発揮されず、一方、二酸化チタン粒子が0.3重量%(3000ppm)以上では二酸化チタン粒子による摩耗効果が大きくなりすぎてしまい、却って機械を劣化させてしまう恐れがあるためである。特に、潤滑油中の二酸化チタン粒子の濃度は、0.01~0.1重量%(重量比で100~1000ppm)であることが好適であり、さらに好適には0.03~0.04重量%(重量比で300~400ppm)であることが望ましい。たとえば、潤滑油添加剤の二酸化チタン粒子の濃度が3重量%である場合、使用者は、密度が0.85の潤滑油1000ml(850g)に0.255gの潤滑油添加剤を加えることで、潤滑油中の二酸化チタン粒子の濃度を0.03重量%(300ppm)とすることができる。
 (添加剤組成物)
 本発明の潤滑油添加剤の別の実施形態は、上述した潤滑油添加剤とオイルとを含む液状の組成物である。このように、潤滑油添加剤を液状の添加剤組成物とすることで、この添加剤組成物を潤滑油に添加した場合に、粉状の潤滑油添加剤と比べて、アナターゼ型の二酸化チタン粒子を潤滑油により効果的に拡散させることができる。添加剤組成物に用いるオイルは、特に限定されないが、添加する潤滑油(たとえばエンジンオイル)に用いられるベースオイルを使用することができる。また、添加剤組成物を添加する前の潤滑油の一部を、添加剤組成物に用いるオイルとすることもできる。なお、添加剤組成物に用いるオイルとしては、40℃における動粘度が5~100mm/sの鉱油または合成油を使用することが好ましい。このような鉱油としては、たとえば、パラフィン系原油、ナフテン系原油、芳香族系原油などからの潤滑油留分を使用することができる。また、合成油としては、ポリアルファオレフィンなどのポリオレフィン系合成油、ジエステルなどのエステル系合成油、およびアルキルナフタレンなどを使用することができる。本実施形態では、SAE基油分類でG3のオイルを潤滑油添加剤の基油として使用するものとする。
 本実施形態に係る添加剤組成物は、アナターゼ型の二酸化チタン粒子を0.1~5重量%含む。本実施形態に係る添加剤組成物も、潤滑油に添加する場合には、上述した粉状の潤滑油添加剤と同様に、潤滑油中における二酸化チタン粒子の濃度が0.005重量%以上かつ0.3重量%未満(重量比で50ppm以上かつ3000ppm未満)となるように、より好適には潤滑油における二酸化チタン粒子の濃度が0.01~0.1重量%(重量比で100~1000ppm)となるように、さらに好適には二酸化チタン粒子の濃度が0.03~0.04重量%(重量比で300~400ppm)となるように、この添加剤組成物を潤滑油に添加することができる。
 たとえば、密度が0.85のオイル100ml(85g)を含む容器に、1gの二酸化チタン粒子を添加することで、二酸化チタン粒子の濃度を約1.18重量%とした添加剤組成物を構成することができる。この場合、使用者は、密度が0.85の潤滑油3500ml(2975g)に、当該容器1本分の添加剤組成物(1gの二酸化チタン粒子を含む)を加えることで、潤滑油中のアナターゼ型の二酸化チタン粒子の濃度を約0.03重量%(約300ppm)とすることができる。
 本実施形態に係る添加剤組成物は、上述した分散剤を1~5容量%含むことができる。本実施形態に係る二酸化チタン粒子は、1~300nmのナノ粒子であるため、オイルを含む添加剤組成剤とした場合に凝集が起こり易い。そこで、添加剤組成物に分散剤を添加することで、オイルを含む添加剤組成物中において、さらには、添加剤組成物を添加した潤滑油中において、二酸化チタン粒子の凝集を有効に抑制することができ、二酸化チタン粒子を潤滑油全体に拡散させることができる。その結果、潤滑油中で二酸化チタン粒子の光触媒機能を十分に発揮させることができる。
 また、本実施形態に係る添加剤組成物は、上述した沈降抑制剤を1~5容量%含むことができる。通常、二酸化チタン粒子は、比重が比較的高く、沈降し易い性質がある。本実施形態では、沈降抑制剤を潤滑油添加剤に添加することで、オイルを含む添加剤組成物中において、さらには、添加剤組成物を添加した潤滑油中において、二酸化チタン粒子が沈降してしまうことを防止することができる。その結果、使用者が添加剤組成物を潤滑油に添加する場合に添加剤組成物中の二酸化チタン粒子を比較的均等な濃度で潤滑油に添加することができ、また、潤滑油中において二酸化チタン粒子を比較的均等に分散させることができ、二酸化チタン粒子の光触媒機能をより効果的に発揮させることができる。
 (潤滑油)
 本実施形態に係る潤滑油は、上述した潤滑油添加剤(上述した添加剤組成物も含む)が混合された潤滑油である。潤滑油添加剤を混合する前の潤滑油は、特に限定されず、たとえば一般に販売、利用されている潤滑油を使用することができる。本実施形態では、潤滑油中の二酸化チタン粒子の濃度が0.005重量%以上かつ0.3重量%未満(重量比で50ppm以上かつ3000ppm未満)となるように、より好適には潤滑油中の二酸化チタン粒子の濃度が0.01~0.1重量%(重量比で100~1000ppm)となるように、さらに好適には潤滑油中の二酸化チタン粒子の濃度が0.03~0.04重量%(重量比で300~400ppm)となるように、潤滑油添加剤が潤滑油に混合されている。そして、このように潤滑油添加剤を混合した潤滑油を、内燃機関、産業機器、精密機器、機械機器などに充填して用いることができる。
(グリース組成物)
 本実施形態に係るグリース組成物は、上述した潤滑油を混合したグリース組成物である。当該グリース組成物のうち潤滑油以外の成分は、特に限定されず、一般的に用いられている成分を使用することができる。本実施形態に係るグリース組成物は、アナターゼ型の二酸化チタン粒子を含有する潤滑油を含むため、産業機器、精密機器および機械機器などに適用する場合に、これら機器で生じたプラズマによる光触媒機能により、グリース組成物中の潤滑油の酸化を抑制することができる。これにより、上述したオイルスラッジ抑制機能に加えて、グリース組成物が潤滑油を保持する性能をより長い期間維持することができるなど、グリース組成物の長寿命化を図ることができる。
 (摩耗試験)
 次に、本実施形態に係る潤滑油添加剤を、二酸化チタン粒子が0.3重量%(重量比で3000ppm)となるように添加した潤滑油(以下、添加潤滑油Aともいう。)と、二酸化チタン粒子が0.03重量%(重量比で300ppm)となるように添加した潤滑油(以下、添加潤滑油Bともいう。)と、本実施形態に係る潤滑油添加剤を添加しない潤滑油(以下、無添加潤滑油ともいう。)とを用いて摩擦係数μを測定した実施例について説明する。具体的には、Pin-VeeBlockの高速FALEX試験機を用いて、下記の表1に示す条件にて60分間の摩耗試験を実施し、摩擦係数μを測定した。なお、潤滑油は、SAE粘度グレードが0W-20のエンジンオイルを用いた。なお、本実施例では、平均粒径が30nmとなるように二酸化チタン粒子を生成しているが、二酸化チタン粒子の生成方法上、二酸化チタン粒子の粒径は約30nmをピークにばらつきが生じている(以下の実施例でも同様)。なお、二酸化チタン粒子を0.03重量%となるように添加した添加潤滑油Bは、本実施形態に係る潤滑油添加剤を上述した使用方法にて混合した潤滑油となる。
Figure JPOXMLDOC01-appb-T000001
 (摩擦係数)
 図1は、添加潤滑油A,Bおよび無添加潤滑油を用いた摩耗試験における摩擦係数μの変化を示す図であり、図2は、図1に示す摩耗試験の結果のうち開始10分後までの摩擦係数μの変化を示す図であり、図3は、図1に示す摩耗試験の結果のうち終了10分前からの摩擦係数μの変化を示す図である。
 まず、開始10分までのそれぞれの潤滑油での摩擦係数μについて説明する。図1,2に示すように、無添加潤滑油と二酸化チタン粒子を0.3重量%含む添加潤滑油Aとを比べた場合、添加潤滑油Aを用いた場合では無添加潤滑油を用いた場合と比べて開始10分までの摩擦係数μが小さくなった。同様に、無添加潤滑油と二酸化チタン粒子を0.03重量%含む添加潤滑油Bとを比べた場合、添加潤滑油Bを用いた場合では無添加潤滑油を用いた場合と比べて開始10分までの摩擦係数μが小さくなった。また、二酸化チタン粒子を0.3重量%含む添加潤滑油Aと二酸化チタン粒子を0.03重量%含む添加潤滑油Bと比べた場合、添加潤滑油Aを用いた場合では添加潤滑油Bを用いた場合と比べて開始10分までの摩擦係数μが小さくなった。これは、潤滑油に二酸化チタン粒子を添加した直後は、二酸化チタン粒子により金属表面の摩耗が促進されて摩擦面の面粗さが改善され、その結果、金属表面の油膜がより厚く形成され摩擦係数μが低下したためと考えられる。
 次に、終了10分前から(開始50分から60分まで)のそれぞれの潤滑油の摩擦係数μについて説明する。図1,3に示すように、無添加潤滑油と二酸化チタン粒子を0.3重量%含む添加潤滑油Aとを比べた場合、添加潤滑油Aを用いた場合では無添加潤滑油を用いた場合と比べて終了10分までの摩擦係数μは高くなった。一方、無添加潤滑油と二酸化チタン粒子を0.03重量%含む添加潤滑油Bとを比べた場合、添加潤滑油Bを用いた場合では無添加潤滑油を用いた場合と比べて終了10分前からの摩擦係数μが小さくなった。これは、二酸化チタン粒子の濃度が0.03重量%である添加潤滑油Bでは、潤滑油に二酸化チタン粒子を添加してから一定時間が経過すると、アナターゼ型の二酸化チタン粒子の光触媒機能が発揮され、オイルスラッジが抑制されることで、オイルスラッジによる摩擦力の増加が抑制され、その結果、無添加潤滑油と比べて摩擦係数μが低下したためと考えられる。このように添加潤滑油Bにおいて二酸化チタン粒子の光触媒機能が発揮したことは、後述する実施例2および実施例3からも裏付けることができる。なお、二酸化チタン粒子が0.3重量%である添加潤滑油Aでは、潤滑油中に二酸化チタン粒子を過剰に含むため、潤滑油に二酸化チタン粒子を添加してから一定時間が経過すると、二酸化チタン粒子の多くが摩擦面に入り込んで摩擦力が増加してしまい、無添加潤滑油よりも摩擦係数μが高くなったと考えられる。
 (油温)
 次に、図4および図5を参照して、添加潤滑油A,Bおよび無添加潤滑油の摩耗試験における油温の変化について説明する。図4は、添加潤滑油A,Bおよび無添加潤滑油の摩耗試験における油温の変化を示す図であり、図5は、図4に示す油温の変化のうち終了10分前からの油温の変化を示す図である。
 図4および図5に示すように、添加潤滑油A,Bおよび無添加潤滑油ではともに摩耗試験の開始とともに油温が上昇している。そして、試験開始後20~30分ごろから油温が上昇しなくなる。無添加潤滑油および二酸化チタン粒子を0.3重量%含む添加潤滑油Aでは、試験開始後40分経過後も油温はほぼ一定のままだが、二酸化チタン粒子を0.03重量%含む添加潤滑油Bにおいては、試験開始後40分ごろから油温が低下し、図5に示すように、試験開始後60分後には、無添加潤滑油と比べて20℃程度低くなった。
 このように二酸化チタン粒子を0.03重量%含む添加潤滑油Bでは、無添加潤滑油と比べて、特に試験開始から一定時間を経過した後に、油温の上昇を抑制することができる。これにより、本実施形態に係る潤滑油添加剤を添加した潤滑油では、油温の上昇による潤滑油の酸化反応や重合反応を抑制することができ、酸化反応や重合反応によるオイルスラッジの生成を抑制することができ、潤滑油の長寿命化を図ることができる。また、油温が上昇してしまうと潤滑油の粘度が低下してしまい、その結果、油膜の厚みが小さくなり摩擦力が上昇してしまう傾向にあることが知られている。本実施形態に係る潤滑油添加剤を添加した潤滑油では油温の上昇を抑制することができるため、このような油膜が薄くなることによる摩擦力の増加も抑制することができる。このことは、上述した図1~図3に示す摩擦係数μの変化からも確認することができる。
 (摩耗損失重量)
 次いで、図6を参照して、添加潤滑油A,Bおよび無添加潤滑油と金属の摩耗損失重量との関係について説明する。図6(A)は、図1に示す摩耗試験における摩耗損失重量を示す表であり、(B)は(A)に示す摩耗損失重量を棒グラフにした図である。本実施例の摩耗試験では、Pinと呼ばれる円柱形状の金属(SUJ-2)をVeeBlockと呼ばれる金属(SCM421)で挟み、その状態でPinを回転させて、PinおよびVee Blockのそれぞれの摩耗損失重量(mg)を検出した。本実施例では、無添加潤滑油を用いた場合にPinが0.7mg、VeeBlockが0.2mg損失した。また、二酸化チタン粒子を0.3重量%含む添加潤滑油Aを用いた場合にPinが0.4mg、Vee Blockが0.1mg損失し、二酸化チタン粒子を0.03重量%含む添加潤滑油Bを用いた場合にPinが0.4mg、VeeBlockが0.4mg損失した。
 ここで、本実施例の摩耗試験では、上記表1に記載しているとおり、使用したPinの硬度(HRC)は60であり、VeeBlockの硬度(HRC)は45であり、Pinの方がVee Blockよりも硬度が高い。図6を参照すると、無添加潤滑油および二酸化チタン粒子を0.3重量%含む添加潤滑油Aでは、Pinの方がVeeBlockと比べて約4倍摩耗していることがわかる。これに対して、二酸化チタン粒子を0.03重量%含む添加潤滑油Bでは、PinとVee Blockとが同程度摩耗していることがわかる。さらに、二酸化チタン粒子を0.03重量%含む添加潤滑油Bでは、無添加潤滑油と比べて、Pinの摩耗量が0.7から0.4に低下したことがわかる。これらのことから、二酸化チタン粒子を0.03重量%含む添加潤滑油Bでは、金属同士の摩耗において硬度がより高い方の金属の摩耗を抑制する効果があると考えられる。このような効果は、たとえば下記のような効果に繋がるものと考えられる。
 たとえば、エンジンバルブでは、略楕円形のカムノーズが回転運動してシムを押し出すことで、シムに連接されているバルブが開き、燃焼室内にガソリンの混合気体を導入することができる。このように、エンジンバルブでは、カムノーズがシムと当接しながら回転する機構であるため、カムノーズとシムとの間に摩耗が生じる。そして、カムノーズが摩耗してしまうとシムを充分に押し出すことができず、エンジンバルブを充分に開けることができなくなってしまう。本実施形態に係る潤滑油添加剤を添加した潤滑油では、金属同士の摩耗において硬度のより高い方の金属の摩耗を抑制することができるため、硬度がより高いカムノーズの摩耗を抑制することができ、カムノーズの長寿命化を図ることができる。
 (赤外分光分析)
 本実施形態に係る潤滑油添加剤を潤滑油に添加した場合に、潤滑油において二酸化チタン粒子の光触媒機能が発揮されることを裏付けるために、本発明者は、本実施形態に係る潤滑油添加剤を添加した潤滑油の赤外分光分析(以下、FT-IR分析ともいう。)を行った。本実施例では、本実施形態に係る潤滑油添加剤を添加する前の無添加潤滑油と、本実施形態に係る潤滑油添加剤を二酸化チタン粒子が0.03重量%となるように添加し500kmを走行した後の添加潤滑油Bとを、KBrのCellを用いて、膜厚0.1にて、液膜法により、FT-IR分析を行った。また、オイルスラッジが分解されるとエステルが生成されることが知られているため、本発明者は、アナターゼ型の二酸化チタン粒子を0.03重量%含む添加潤滑油Bと、アナターゼ型の二酸化チタン粒子を含まない無添加潤滑油とを用いてFT-IR分析を行い、エステル(C=O)が吸収する1730cm-1の波長の吸光度(透過率)を検出した。以下の表2にFT-IR分析の結果(検出した1730cm-1の波長の吸光度)を示す。
Figure JPOXMLDOC01-appb-T000002
 上記表2に示すように、アナターゼ型の二酸化チタン粒子を0.03重量%含む添加潤滑油Bの方が、無添加潤滑油よりも、1730cm-1の波長の吸光度が高くなった。これは、アナターゼ型の二酸化チタン粒子を0.03重量%含む添加潤滑油Bでは、無添加潤滑油と比べて、アナターゼ型の二酸化チタン粒子の光触媒機能によりオイルスラッジの分解が促進され、エステル(C=0)が生成されたためと考えられる。なお、上述したように、本実施例では、実施例1に示す摩耗試験を行った後の添加潤滑油B、すなわち、摩耗試験を60分間行った後の添加潤滑油Bおよび無添加潤滑油を用いてFT-IR分析を行ったが、摩耗試験を60分間よりも長い時間行った場合には、その分、オイルスラッジが発生し光触媒により分解されるため、添加潤滑油Bにおけるエステル(C=O)はより検出されるものと考えられる。
 さらに、本発明者は、以下の調査から、本実施形態に係る潤滑油添加剤を添加した潤滑油において二酸化チタン粒子の光触媒機能が発揮することを発見した。すなわち、本実施形態に係る潤滑油添加剤を添加しないエンジンオイルでレース用バイクを走行させた場合に、レース走行後に、エンジンオイル内にガソリンが混入していることが発見された。調査の結果、ガソリン混入を防止するピストンリングがオイルスラッジにより固着したことが原因でシリンダーとピストンとの隙間からガソリンが漏れたためであることが分かった。そこで、本発明者らはエンジンオイルに本実施形態に係る潤滑油添加剤を添加して同様にレース用バイクを走行させたところ、オイルスラッジが抑制され、結果、ガソリンがエンジンオイルに混入することを防げることを発見した。このようなオイルスラッジの抑制は、単に二酸化チタン粒子による摩擦係数μの低下だけでは説明することができず、アナターゼ型の二酸化チタン粒子により光触媒機能が発揮されたことを裏付けるものである。
 (走行試験)
 次に、図7を参照して、本実施形態に係る潤滑油添加剤を添加したエンジンオイル(以下、添加エンジンオイルともいう)と、本実施形態に係る潤滑油添加剤を添加しないエンジンオイル(以下、無添加エンジンオイルともいう)とを用いた走行試験について説明する。図7は、添加エンジンオイルと、無添加エンジンオイルとを用いた走行試験の結果を示す図である。
 本実施例では、本実施形態に係る潤滑油添加剤を、二酸化チタン粒子が0.03重量%(重量比で300ppm)となるように添加した添加エンジンオイルと、本実施形態に係る潤滑油添加剤を添加しない無添加エンジンオイルとを同一の車両にそれぞれ充填し、それぞれのエンジンオイルで同じ区間(高速道路の同一の約100Kmの区間)を2回ずつ走行し、添加エンジンオイルでの平均燃費(添加エンジンオイルで走行した各走行時間における燃費の走行2回分の平均)と、無添加エンジンオイルでの平均燃費(無添加エンジンオイルで走行した各走行時間における燃費の走行2回での平均)とを算出した。
 図7(A)に、添加エンジンオイルでの平均燃費および無添加エンジンオイルでの平均燃費を示す。図7(A)に示すように、添加エンジンオイルでは、無添加エンジンオイルと比べて、燃費が良いことがわかる。これは、添加エンジンオイルでは、アナターゼ型の二酸化チタン粒子によりオイルスラッジが抑制され、オイルスラッジによる摩擦力の増加が抑制されることで、燃費が向上したためと考えられる。具体的には、図7(B)に示すように、車両の走行中5~10%程度の燃費の向上が確認された。
 (振動試験)
 次に、図8および図9を参照して、添加エンジンオイルと無添加エンジンオイルを用いた振動試験について説明する。図8は、添加エンジンオイルと無添加エンジンオイルを用いた振動試験の車体横方向の振動の検出結果を示す図であり、図9は、添加エンジンオイルと無添加エンジンオイルを用いた振動試験の車体前後方向の振動の検出結果を示す図である。
 本実施例では、本実施形態に係る潤滑油添加剤を、二酸化チタン粒子が0.03重量%(重量比で300ppm)となるように添加した添加エンジンオイルと、本実施形態に係る潤滑油添加剤を添加しない無添加エンジンオイルとを同一の車両にそれぞれ充填した。そして、エンジンカバーに振動計を設置し、車両を停車させたままエンジンを稼動させることで、それぞれのエンジンオイルでの車体横方向の振動(横加速度)および車体前後方向の振動(縦加速度)を測定した。
 図8(A)に、無添加エンジンオイルでの車体横方向の振動(横加速度)の検出結果を示し、図8(B)には、添加エンジンオイルでの車体横方向の振動(横加速度)の検出結果を示す。図8(A),(B)に示すように、車体横方向の振動(横加速度)は、無添加エンジンオイルと比べて、添加エンジンオイルにおいて大幅に振動が抑制された。車体横方向の振動(横加速度)は、エンジンピストンのヘッド振れによる振動であると考えられ、エンジンオイルに本実施形態に係る潤滑油添加剤を添加することで、ピストンリングとシリンダーとの摩擦力低減やスティックスリップ現象を抑制し、機械振動を抑制することができたと考えられる。
 また、図9(A)に、無添加エンジンオイルでの車体前後方向の振動(縦加速度)の検出結果を示し、図9(B)には、添加エンジンオイルでの車体前後方向の振動(縦加速度)の検出結果を示す。図9(A),(B)に示すように、車体前後方向の振動(縦加速度)では、無添加エンジンオイルの場合の振動の周期がT1であるのに対して、添加エンジンオイルの場合の振動の周期がT1よりも長いT2となった。これば、エンジンオイルに本実施形態に係る潤滑油添加剤を添加することで、振動(振幅の変化)が緩やかとなり、機械振動が抑制されたためと考えられる。なお、図9(B)においては、T1とT2とを比べやすくするために、T1の周期を破線で示している。
 以上のように、本実施形態に係る潤滑油添加剤は、太陽光(紫外線)が届かない内燃機関の内部、産業機器の内部、精密機器の内部、または機械機器の内部で使用する潤滑油に添加される添加剤であり、光触媒機能を有する二酸化チタン粒子を有効成分とする。そして、本実施形態に係る潤滑油添加剤を潤滑油に添加することで、太陽光(紫外線)が届かない内燃機関の内部、産業機器の内部、精密機器の内部、または機械機器の内部であっても、二酸化チタン粒子の光触媒機能によりオイルスラッジを抑制することができる。また、オイルスラッジを抑制することで、オイルスラッジによる摩擦係数μの増加が抑制され、また、燃費の向上や機械振動の抑制などの効果を発揮することができる。
 また、本実施形態に係る二酸化チタン粒子は、分散や沈降防止などのためのコーティング処理が施されていないため、二酸化チタン粒子の光触媒機能を十分に発揮することができる。さらに、本実施形態に係る二酸化チタン粒子は、平均粒径が1nm~300nmのナノ粒子、より好ましくはが1nm~100nmのナノ粒子であるため、潤滑油添加剤を潤滑油に添加した場合に、光触媒機能に加えて、金属表面の凹凸部を研磨し、また、金属表面の凹凸部に入り込むことで、金属表面を鏡面に近づけることができる。
 さらに、本実施形態では、潤滑油中の二酸化チタン粒子の濃度が0.005重量%以上かつ0.3重量%未満(重量比で50ppm以上かつ3000ppm未満)、より好適には潤滑油中の二酸化チタン粒子の濃度が0.01~0.1重量%(重量比で100~1000ppm)、さらに好適には潤滑油中の二酸化チタン粒子の濃度が0.03~0.04重量%(重量比で300~400ppm)となるように、潤滑油添加剤が潤滑油に混合される。これにより、二酸化チタン粒子が光触媒機能を有効に発揮することができるとともに、過剰な二酸化チタン粒子による弊害も抑制することができる。
 続いて、本実施形態に係る燃料油添加剤について説明する。本実施形態に係る燃料油添加剤は、たとえば、ガソリンなどの燃料油に添加して使用することができる。また、本実施形態に係る燃料油添加剤は、ガソリンの他に、灯油、軽油、および重油などの燃料油に適用することもできる。そして、本実施形態に係る燃料油添加剤を添加した燃料油は、たとえば、車両、船舶、飛行機、暖房器具、火力発電所などに使用することができる。
(燃料油添加剤)
 本実施形態に係る燃料油添加剤は、光触媒機能を有する二酸化チタン粒子を含む。このような二酸化チタン粒子としては、アナターゼ型の結晶構造を有する二酸化チタン粒子を用いることができる。上述したように、アナターゼ型の二酸化チタン粒子は紫外線により光触媒機能を発揮することが知られているが、ガソリン(燃料油)が循環する内燃機関内においては、太陽光(紫外線)が届かない暗所であるため、紫外線による光触媒機能は発揮されない。しかしながら、本発明者らは、内燃機関で燃焼されるガソリン(燃料油)に本実施形態に係る燃料油添加剤を添加した場合に、燃費が向上することを見出した。また、本発明者は、燃料油に本実施形態に係る燃料油添加剤を添加した場合に、ガソリン(燃料油)の燃焼効率が増加し、排出ガス中の酸性ガス、たとえば一酸化炭素(CO)、メタンガス(CH)、窒素酸化物(NO)などの排出量が低減されることを見出した。これは、燃焼室での燃焼(爆発)により生じた火炎(光)により、燃料油添加剤に含まれるアナターゼ型の二酸化チタン粒子が光触媒として機能し、ガソリン(燃料油)のオイルスラッジを抑制、分解することで、燃費が向上したものと考えられる。特に、燃焼室内で二酸化チタンが光触媒として働くことで、燃料油の重合反応を抑制しオイルスラッジを抑制するとともに、光触媒で発生したイオンがオイルスラッジを分解する。また、二酸化チタンの働きによって、燃料油を低分子化することができ、燃料油の燃焼を促進することができる。これにより、燃料油の完全燃焼を促進することができ、不完全燃焼により生じる酸性ガスの排出を抑制することができるとともに、燃費を向上することができたものと考える。
 本実施形態に係る二酸化チタン粒子は、平均粒径が1nm~300nmのナノ粒子、より好ましくは1nm~100nmのナノ粒子である。このように二酸化チタン粒子をナノ粒子とすることで、燃料油添加剤を燃料油に添加した場合に、光触媒機能に加えて、二酸化チタン粒子が金属表面の凹凸部を研磨し、また、二酸化チタン粒子が金属表面の凹凸部に入り込むことで、金属表面(機械表面)を鏡面に近づけることができる。これにより、金属表面の油膜比(油膜厚さ(μm)/平均面粗さ(μm)=Λ(ラムダ値))が大きくなり、機械部品同士の摩擦を抑制することもできる。
 本実施形態に係る燃料油添加剤は粉状であり、運搬性や品質保持性が良好となっている。使用者は、使用直前に、たとえば、いわゆる水抜き剤や洗浄剤などの、本実施形態に係る燃料油添加剤とは別の液体状の燃料油添加剤に、本実施形態に係る粉状の燃料油添加剤を必要量添加し、2~3分撹拌した後、対象のガソリンに混入させることで、内燃機関においてオイルスラッジの抑制などの機能を発揮させることができる。
 本実施形態に係る二酸化チタン粒子には、分散や沈降防止などのためのコーティング処理は施されていない。これは、二酸化チタンの光触媒機能を十分に発揮できるようにするためである。ここで、本実施形態に係る燃料油添加剤は内燃機関内に添加されるためピストンやエンジンシャフトの動作によりある程度撹拌され分散されることとなる。ただし、本実施形態に係る二酸化チタン粒子は、上述した潤滑油添加剤と同様に、ナノ粒子であるために凝縮性が高く、また燃料油に比べ、比重が大きいので沈降性が高い。そのため、本実施形態に係る燃料油添加剤には、二酸化チタン粒子の分散性を向上させるための分散剤と、二酸化チタン粒子の沈降を抑制するための沈降抑制剤とを含ませることができる。
 燃料油添加剤に添加される分散剤は、上述した潤滑油添加剤と同様に、二酸化チタン粒子の表面に吸着することで、二酸化チタン粒子間の凝集を有効に防ぎ、これにより、燃料油での二酸化チタン粒子の分散性を向上させることができる。このような分散剤は、特に限定されず、ポリエステル系、ポリウレタン系、ポリアミノ系、アクリル系、スチレン・アクリル系、スチレン・マレイン酸共重合体等の高分子型分散剤や、アルキルスルホン酸系、四級アンモニウム系、高級アルコールアルキレンオキサイド系、多価アルコールエステル系、アルキルポリアミン系等の界面活性剤型分散剤などを使用することができる。
 また、燃料油添加剤に添加される沈降抑制剤は、上述した潤滑油添加剤と同様に、分散剤に梱包された二酸化チタン粒子を、燃料油中に浮遊、または懸濁状態とすることで、二酸化チタン粒子の沈降を抑制することができる。このような沈降抑制剤も、特に限定されず、アマイド、エタノール、イソプロパノール、酢酸ブチル、アルキルシクロヘキサン、および酸化ポリエチレンなどを使用することができる。
 さらに、本実施形態に係る燃料油添加剤では、二酸化チタン粒子にコーティング処理を施していないが、沈降抑制効果や分散効果を促進するために、有機チタンなどにより二酸化チタン粒子をコーティングする構成とすることもできる。
 次に、本実施形態に係る燃料油添加剤の使用方法について説明する。本実施形態では、燃料油における二酸化チタン粒子が0.00001重量%以上かつ0.01重量%未満(重量比で0.1ppm以上かつ100ppm未満)となるように、燃料油添加剤が燃料油に添加される。これは、燃料油中の二酸化チタン粒子が0.00001重量%(0.1ppm)未満では、二酸化チタンによる光触媒効果が有効に発揮されず、一方、二酸化チタン粒子が0.01重量%(100ppm)以上では、沈殿する二酸化チタン粒子の量が増えるため二酸化チタン粒子の量に対して効果が低減してしまい、またコストも高くなるためである。なお、燃料油中の二酸化チタン粒子の濃度は、0.00001~0.01重量%(重量比で0.1~100ppm)であることが好適であり、さらに好適には0.0001~0.005重量%(重量比で1~50ppm)であることが望ましい。たとえば、燃料油添加剤の二酸化チタン粒子の濃度が3重量%である場合、使用者は、密度が0.75の燃料油45L(33750g)に35gの燃料油添加剤を加えることで、燃料油中の二酸化チタン粒子の濃度を0.0031重量%(31ppm)とすることができる。
 (添加剤組成物)
 本発明の燃料油添加剤の別の実施形態は、上述した二酸化チタンを含む燃料油添加剤と、いわゆる水抜き剤や洗浄剤など本実施形態に係る燃料油添加剤とは別の液体状の燃料油添加剤とを含む組成物である。本実施形態に係る燃料油添加剤を液体状の組成物とすることで、この添加剤組成物を燃料油に添加した場合に、粉状の燃料油添加剤のまま添加する場合と比べて、アナターゼ型の二酸化チタン粒子を燃料油により効果的に拡散させることができる。なお、本実施形態に係る燃料油添加剤とは別の液体状の燃料油添加剤としては、いわゆる水抜き剤や洗浄剤の他、燃料油に添加可能な、堆積物改良剤、アンチノック剤、酸化防止剤、金属付活性剤、防錆剤、腐食防止剤、着色剤、着臭剤、芳香剤、帯電防止剤、低温流動性向上剤、セタン価向上剤、潤滑性向上剤、識別剤、消泡剤、氷結防止剤、煤煙防止剤、助燃剤、スラッジ分散剤などが挙げられる。
 本実施形態に係る添加剤組成物は、アナターゼ型の二酸化チタン粒子を0.3~1.4重量%含む。本実施形態に係る添加剤組成物も、燃料油に添加する場合には、上述した粉状の潤滑油添加剤と同様に、燃料油中における二酸化チタン粒子の濃度が0.00001重量%以上かつ0.01重量%未満(重量比で0.1ppm以上かつ100ppm未満)となるように、より好適には燃料油における二酸化チタン粒子の濃度が0.0001~0.005重量%(重量比で1~50ppm)となるように、この添加剤組成物を燃料油に添加することができる。
 たとえば、密度が0.78のイソプロピルアルコールを主成分とする水抜き剤360ml(280.7g)を含む容器に、二酸化チタン粒子1gを含む燃料油添加剤を添加することで、二酸化チタン粒子の濃度を約0.7重量%とした添加剤組成物を構成することができる。この場合、使用者は、密度が0.75の燃料油45L(33750g)に、当該容器1本分の添加剤組成物(1gの二酸化チタン粒子を含む)を加えることで、燃料油中のアナターゼ型の二酸化チタン粒子の濃度を約0.03重量%(約30ppm)とすることができる。
 本実施形態に係る添加剤組成物は、上述した分散剤を1~5容量%含むことができる。本実施形態に係る二酸化チタン粒子は、1~300nmのナノ粒子であるため、添加剤組成剤とした場合に凝集が起こり易い。そこで、添加剤組成物に分散剤を添加することで、添加剤組成物中において、さらには、添加剤組成物を添加した燃料油中において、二酸化チタン粒子の凝集を有効に抑制することができ、二酸化チタン粒子を燃料油全体に拡散させることができる。その結果、燃料油中で二酸化チタン粒子の光触媒機能を十分に発揮させることができる。
 また、本実施形態に係る添加剤組成物は、上述した沈降抑制剤を1~5容量%含むことができる。通常、二酸化チタン粒子は、比重が比較的高く、沈降し易い性質がある。本実施形態では、沈降抑制剤を燃料油添加剤に添加することで、添加剤組成物中において、さらには、添加剤組成物を添加した燃料油中において、二酸化チタン粒子が沈降してしまうことを防止することができる。その結果、使用者が添加剤組成物を燃料油に添加する場合に添加剤組成物中の二酸化チタン粒子を比較的均等な濃度で燃料油に添加することができ、また、燃料油中において二酸化チタン粒子を比較的均等に分散させることができ、二酸化チタン粒子の光触媒機能をより効果的に発揮させることができる。
 (燃料油)
 本実施形態に係る燃料油は、上述した燃料油添加剤(上述した添加剤組成物も含む)が混合された燃料油である。燃料油添加剤を混合する前の燃料油は、特に限定されず、たとえば一般に販売、利用されている燃料油を使用することができる。本実施形態では、燃料油中の二酸化チタン粒子の濃度が0.00001重量%以上かつ0.01重量%未満(重量比で0.1ppm以上かつ100ppm未満)となるように、より好適には燃料油中の二酸化チタン粒子の濃度が0.0001~0.005重量%(重量比で1~50ppm)となるように、燃料油添加剤が燃料油に混合されている。そして、このように燃料油添加剤を混合した燃料油を、内燃機関に充填して用いることができる。
 (燃費試験1)
 本実施形態に係る燃料油添加剤をガソリンに添加した場合の燃費を計測した。燃費試験1では、(A)ガソリンのみ、(B)ガソリン45L中の二酸化チタンの濃度が0.003重量%(重量比で30ppm)となるように、ガソリン45Lに、水抜き剤180mlおよび本実施形態に係る燃料油添加剤を添加した、2種類のガソリンを用いて燃費を測定した。なお、測定条件として、車種トヨタポルテ(型式CBA-NNP11)により、高速道路31.8Kmを時速80Km固定で走行し、テクトム社燃費マネージャー(FCM-NX1)を自動車のOBD(On-board diagnostics)に取り付けて計測した。その結果を下記表3に示す。なお、燃費試験1ではA地点からB地点までを往復して走行しており、A地点からB地点までの往路での結果と、B地点で折り返した後A地点に到達するまでの往復での結果とを示している。
Figure JPOXMLDOC01-appb-T000003
 上記表3に示すように、(B)ガソリン45L中の二酸化チタンの濃度を約0.003重量%(重量比で約30ppm)とした場合には、ガソリンだけの場合と比べて、走行距離が16.0Kmである場合には燃費が約10.4%向上し、走行距離が35.2Kmである場合には燃費が約13.0%向上した。なお、走行距離が16.0Kmである場合の燃費が、走行距離が31.8Kmである場合の燃費よりも低いのは、走行経路上、A地点からB地点までの経路における傾斜が上りにある傾向が高かったためである(燃費試験2も同様。)。
 (燃費試験2)
 また、燃費試験2では、(C)ガソリンのみ、(D)ガソリン45Lに水抜き剤360mlのみを添加、(E)ガソリン45L中の二酸化チタンの濃度が0.003重量%(重量比で30ppm)となるように、ガソリン45Lに、水抜き剤360mlおよび本実施形態に係る燃料油添加剤を添加した、3種類のガソリンを用いて燃費を測定した。なお、測定条件として、車種スバルサンバー(型式EBD-S331D)により、高速道路35.2Kmを時速80Km固定で走行し、テクトム社燃費マネージャー(FCM-NX1)を自動車のOBD(On-board diagnostics)に取り付けて計測した。その結果を下記表4に示す。なお、燃費試験1と同様に、燃費試験2ではC地点からD地点までを往復して走行しており、C地点からD地点までの往路での結果と、D地点で折り返した後C地点に到達するまでの往復での結果とを示している。
Figure JPOXMLDOC01-appb-T000004
 上記表4に示すように、(C)ガソリン45L中の二酸化チタンの濃度を0.003重量%(重量比で30ppm)とした場合には、ガソリン45Lに水抜き剤360mlのみを加えた場合と比べて、走行距離が17.7Kmである場合には燃費が約2.8%向上し、走行距離が35.2Kmである場合には燃費が約1.2%向上した。
 燃費試験1,2から、二酸化チタン粒子を含有する燃料油添加剤を燃料油に添加することで、燃料油の燃費を向上させることができることが分かった。
 (酸性ガスの排出量測定試験)
 本実施形態に係る燃料油添加剤をガソリンに添加した場合のガス排出量について試験した。具体的には、(A)ガソリンのみ、(B)ガソリン30Lに水抜き剤360mlのみを添加、(C)ガソリン30L中の二酸化チタンの濃度が0.003重量%(重量比で30ppm)となるように、ガソリン30Lに水抜き剤360mlおよび本実施形態に係る燃料油添加剤を添加の、3種類のガソリンを用いて酸性ガスの排出量を測定した。具体的には、車両を2Km走行させた場合の排ガス中のCO量、HC量を、排ガス測定機器(製品:BANZAI MEXA-324)を用いて計測した。下記表5にその結果を示す。
Figure JPOXMLDOC01-appb-T000005
 上記表5に示すように、(C)ガソリン30L中の二酸化チタンの濃度が0.003重量%(重量比で30ppm)となるように、ガソリン30Lに水抜き剤360mlおよび本実施形態に係る燃料油添加剤を添加した場合には、(B)ガソリン30Lに水抜き剤360mlのみを添加した場合と比べて、酸性ガスの排出量を大幅に削減できることが分かった。
 (エンジン出力試験)
 次いで、本実施形態に係る燃料油添加剤をガソリンに添加した場合のエンジン出力について試験した。具体的には、本実施形態に係る燃料油添加剤を添加していない無添加燃料油と、ガソリン40L中の二酸化チタンの濃度が0.00125重量%(重量比で12.5ppm)となるように、本実施形態に係る燃料油添加剤を添加した添加燃料油について、エンジンのトルクおよび馬力を測定した。図10(A)は、トルクの測定結果を示す図であり、太線が添加燃料油を、細線が無添加燃料油を示す。また、図10(B)は、馬力の測定結果を示す図であり、図10(A)と同様に、太線が添加燃料油を、細線が無添加燃料油を示す。また、図10(A)に示すグラフの縦軸はトルクであり横軸は回転数である。さらに、図10(B)に示すグラフの縦軸は馬力であり横軸は回転数である。なお、本試験において使用したエンジンはチューニングエンジンである。
 図10(A)に示すように、本実施形態に係る燃料油添加剤を添加した添加燃料油では、本実施形態に係る燃料油添加剤を添加していない無添加燃料油と比べて、エンジンの回転数にかかわらずに、トルクが向上した。たとえば、回転数が4500rpmである場合には、添加燃料油でのトルクは約16.3kgf・mとなり、無添加燃料油のトルクは約15.8kgf・mとなり、添加燃料油の方が無添加燃料油よりも約0.5kgf・m大きくなった。
 また、図10(B)に示すように、本実施形態に係る燃料油添加剤を添加した添加燃料油では、本実施形態に係る燃料油添加剤を添加していない無添加燃料油と比べて、エンジンの回転数にかかわらずに、馬力が向上した。たとえば、回転数が6800rpm程度である場合には、添加燃料油でのトルクは139.3PSとなり、無添加燃料油のトルクは137.2PSとなり、添加燃料油の方が無添加燃料油よりも約2.1PSも大きくなった。
 以上のように、本実施形態に係る燃料油添加剤は、二酸化チタン粒子を有効成分とすることで、オイルスラッジを抑制し、その結果、燃費向上や酸性ガスの排出量を低減することができる。特に、本実施形態に係る二酸化チタン粒子は、コーティング処理が施されていないため、二酸化チタン粒子による光触媒機能をより発揮することができる。また、本実施形態では、燃料油に二酸化チタン粒子が0.00001重量%以上かつ0.001重量%未満となるように添加されることで、二酸化チタン粒子による光触媒機能をより効果的に機能させることができ、オイルスラッジを適切に抑制することができる。加えて、二酸化チタン粒子は平均粒径が1nm~300nmのナノ粒子であるため、二酸化チタン粒子による光触媒機能を有する燃料油添加剤を燃料油に添加した場合に、光触媒機能に加えて、金属表面の凹凸部を研磨し、また、金属表面の凹凸部に入り込むことで、金属表面を鏡面に近づけることができ、摩擦力を低減することもできる。
 また、本実施形態では、粉状の上記燃料油添加剤を、別の液体状の燃料油添加剤と混合して、液体状の燃料油添加剤とすることで、アナターゼ型の二酸化チタン粒子を燃料油により効果的に拡散させることができる。また、上記燃料油添加剤を添加された燃料油として提供することもできる。
 さらに、本実施形態に係る燃料油添加剤では、二酸化チタン粒子の働きにより、燃料油を低分子化することができ、燃料油の燃焼を促進する助燃効果も奏する。また、二酸化チタン粒子の光触媒機能により、オイルスラッジを分解、分散するオイルスラッジ分散効果、及び、カーボン、ワニス、ガム質などの分解する洗浄効果も奏することができる。また、燃料油の燃焼を促進することでエンジンのトルクや馬力を向上する効果も奏する。
 以上、本発明の好ましい実施形態例について説明したが、本発明の技術的範囲は上記実施形態の記載に限定されるものではない。上記実施形態例には様々な変更・改良を加えることが可能であり、そのような変更または改良を加えた形態のものも本発明の技術的範囲に含まれる。
 たとえば、上述した実施形態では、光触媒機能を有する二酸化チタン粒子として、アナターゼ型の二酸化チタン粒子を例示して説明したが、この構成に限定されるものではなく、光触媒機能を有する二酸化チタン粒子として、ルチル型の二酸化チタン粒子を用いる構成としてもよい。

Claims (28)

  1.  コーティング処理が施されていない二酸化チタン粒子を有効成分とする、潤滑油に前記二酸化チタン粒子を0.005重量%以上かつ0.3重量%未満添加してオイルスラッジを抑制するための潤滑油添加剤。
  2.  前記二酸化チタン粒子はアナターゼ型の二酸化チタン粒子である請求項1に記載の潤滑油添加剤。
  3.  前記二酸化チタン粒子は、平均粒径が1nm~300nmのナノ粒子である請求項1または2に記載の潤滑油添加剤。
  4.  前記二酸化チタン粒子が光触媒機能を有する請求項1ないし3のいずれかに記載の潤滑油添加剤。
  5.  さらにオイルを含む請求項1ないし4のいずれかに記載の潤滑油添加剤。
  6.  前記二酸化チタン粒子を0.1~5重量%含む、オイルとの組成物である請求項5に記載の潤滑油添加剤。
  7.  さらに燃費を向上させるための請求項1ないし6のいずれかに記載の潤滑油添加剤。
  8.  さらに機械振動を抑制させるための請求項1ないし7のいずれかに記載の潤滑油添加剤。
  9.  請求項1ないし8のいずれかに記載の潤滑油添加剤が混合された潤滑油。
  10.  前記二酸化チタン粒子を0.01~0.1重量%含む請求項1ないし9に記載の潤滑油。
  11.  請求項9または10に記載の潤滑油が混合されたグリース組成物。
  12.  請求項1ないし8のいずれかに記載の潤滑油添加剤を潤滑油に添加することで、オイルスラッジを抑制するオイルスラッジ抑制方法。
  13.  さらに燃費を向上させるための方法である請求項12に記載のオイルスラッジ抑制方法。
  14.  さらに機械振動を抑制させるための方法である請求項12または13に記載のオイルスラッジ抑制方法。
  15.  前記二酸化チタン粒子が潤滑油に0.005重量%以上かつ0.3重量%未満含む請求項12ないし14のいずれかに記載のオイルスラッジ抑制方法。
  16.  コーティング処理が施されていない二酸化チタン粒子を有効成分とする、オイルスラッジを抑制するための燃料油添加剤。
  17.  燃料油に前記二酸化チタン粒子を0.0000重量%以上かつ0.01重量%未満添加して使用される請求項16に記載の燃料油添加剤。
  18.  前記二酸化チタン粒子はアナターゼ型の二酸化チタン粒子である請求項16または17に記載の燃料油添加剤。
  19.  前記二酸化チタン粒子は、平均粒径が1nm~300nmのナノ粒子である請求項16ないし18のいずれかに記載の燃料油添加剤。
  20.  さらに別の液体状の燃料油添加剤を含む組成物である請求項16ないし19のいずれかに記載の燃料油添加剤。
  21.  さらに燃費を向上させるための請求項16ないし20のいずれかに記載の燃料油添加剤。
  22.  さらに酸性ガスの排出量を低減するための請求項16ないし22のいずれかに記載の燃料油添加剤。
  23.  さらに燃料油の燃焼を促進するための、燃焼室を洗浄するための、またはオイルスラッジを分散させるための請求項16ないし22のいずれかに記載の燃料油添加剤。
  24.  請求項16ないし23のいずれかに記載の燃料油添加剤が添加された燃料油。
  25.  請求項16ないし23のいずれかに記載の燃料油添加剤を燃料油に添加することで、オイルスラッジを抑制するオイルスラッジ抑制方法。
  26.  さらに燃費を向上させるための方法である請求項25に記載のオイルスラッジ抑制方法。
  27.  さらに酸性ガスの排出量を低減するための方法である請求項25または26に記載のオイルスラッジ抑制方法。
  28.  さらに燃料油の燃焼を促進するための、燃焼室を洗浄するための、またはオイルスラッジを分散させるための請求項25ないし27のいずれかに記載のオイルスラッジ抑制方法。
     
PCT/JP2017/014381 2016-12-19 2017-04-06 潤滑油添加剤、潤滑油、グリース組成物、燃料油添加剤、燃料油およびオイルスラッジ抑制方法 WO2018116495A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017531645A JP6327658B1 (ja) 2016-12-19 2017-04-06 潤滑油添加剤、潤滑油、グリース組成物、燃料油添加剤、燃料油およびオイルスラッジ抑制方法
CN201780016215.4A CN108779407A (zh) 2016-12-19 2017-04-06 润滑油添加剂、润滑油、润滑脂组合物、燃料油添加剂、燃料油及油泥抑制方法
US16/470,966 US20200024540A1 (en) 2016-12-19 2017-04-06 Lubricating oil additive, lubricating oil, grease composition, fuel oil additive, fuel oil, and oil sludge suppression method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-245194 2016-12-19
JP2016245194 2016-12-19

Publications (1)

Publication Number Publication Date
WO2018116495A1 true WO2018116495A1 (ja) 2018-06-28

Family

ID=62626184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014381 WO2018116495A1 (ja) 2016-12-19 2017-04-06 潤滑油添加剤、潤滑油、グリース組成物、燃料油添加剤、燃料油およびオイルスラッジ抑制方法

Country Status (4)

Country Link
US (1) US20200024540A1 (ja)
CN (1) CN108779407A (ja)
TW (1) TWI650413B (ja)
WO (1) WO2018116495A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7560858B2 (ja) 2020-10-08 2024-10-03 株式会社Vab 非石油系潤滑油添加剤、非石油系潤滑油、グリース組成物、非石油系燃料油添加剤および非石油系燃料油

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11413734B2 (en) * 2018-10-17 2022-08-16 Kyocera Senco Industrial Tools, Inc. Working cylinder for power tool with piston lubricating system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH102338A (ja) * 1996-03-07 1998-01-06 Skf Nova Ab 潤滑ころがり接触装置、潤滑法、潤滑組成物及びセラミック転動要素
JP2004182829A (ja) * 2002-12-02 2004-07-02 Kensaku Hoshiba 潤滑油添加剤
JP2006241443A (ja) * 2005-02-02 2006-09-14 Nissan Motor Co Ltd ナノ粒子含有潤滑油組成物
JP2008534744A (ja) * 2005-03-28 2008-08-28 ザ ルブリゾル コーポレイション 潤滑剤中の添加剤としてのチタン化合物およびチタン錯体
JP2008214540A (ja) * 2007-03-06 2008-09-18 Yoshio Ichikawa エンジンオイル改質用組成物、エンジン排気ガス浄化用オイルタンク、およびエンジン排気ガスの浄化方法
JP2011038591A (ja) * 2009-08-11 2011-02-24 Nsk Ltd 転動装置
JP2017019910A (ja) * 2015-07-09 2017-01-26 日本精工株式会社 酸価抑制触媒配合潤滑剤組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003869A (ja) * 2000-06-23 2002-01-09 Kawasaki Heavy Ind Ltd 廃棄物及びその貯蔵容器
US7772167B2 (en) * 2006-12-06 2010-08-10 Afton Chemical Corporation Titanium-containing lubricating oil composition
GB201218005D0 (en) * 2012-10-08 2012-11-21 Mentum As Treatment of combustion emissions
JP5452744B1 (ja) * 2013-02-26 2014-03-26 株式会社昭和 表面処理された金属チタン材料又はチタン合金材料の製造方法、及び表面処理材。

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH102338A (ja) * 1996-03-07 1998-01-06 Skf Nova Ab 潤滑ころがり接触装置、潤滑法、潤滑組成物及びセラミック転動要素
JP2004182829A (ja) * 2002-12-02 2004-07-02 Kensaku Hoshiba 潤滑油添加剤
JP2006241443A (ja) * 2005-02-02 2006-09-14 Nissan Motor Co Ltd ナノ粒子含有潤滑油組成物
JP2008534744A (ja) * 2005-03-28 2008-08-28 ザ ルブリゾル コーポレイション 潤滑剤中の添加剤としてのチタン化合物およびチタン錯体
JP2008214540A (ja) * 2007-03-06 2008-09-18 Yoshio Ichikawa エンジンオイル改質用組成物、エンジン排気ガス浄化用オイルタンク、およびエンジン排気ガスの浄化方法
JP2011038591A (ja) * 2009-08-11 2011-02-24 Nsk Ltd 転動装置
JP2017019910A (ja) * 2015-07-09 2017-01-26 日本精工株式会社 酸価抑制触媒配合潤滑剤組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XUE,QUNJI ET AL.: "Friction and wear properties of a surface-modified Ti2 nanoparticles as an additive in liquid paraffin", WEAR, vol. 213, 27 August 1997 (1997-08-27), pages 29 - 32, XP002387990, DOI: doi:10.1016/S0043-1648(97)00200-7 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7560858B2 (ja) 2020-10-08 2024-10-03 株式会社Vab 非石油系潤滑油添加剤、非石油系潤滑油、グリース組成物、非石油系燃料油添加剤および非石油系燃料油

Also Published As

Publication number Publication date
TWI650413B (zh) 2019-02-11
US20200024540A1 (en) 2020-01-23
CN108779407A (zh) 2018-11-09
TW201829756A (zh) 2018-08-16

Similar Documents

Publication Publication Date Title
Ali et al. Novel approach of the graphene nanolubricant for energy saving via anti-friction/wear in automobile engines
Sgroi et al. Engine bench and road testing of an engine oil containing MoS2 particles as nano-additive for friction reduction
George et al. Effect of diesel soot contaminated oil on engine wear
Dandu et al. Tribological aspects of biofuels–A review
WO2012060026A1 (ja) 潤滑油および内燃機関用燃料
WO2018116495A1 (ja) 潤滑油添加剤、潤滑油、グリース組成物、燃料油添加剤、燃料油およびオイルスラッジ抑制方法
CN105733782A (zh) 一种双燃料发动机油及其制备方法
JP6327658B1 (ja) 潤滑油添加剤、潤滑油、グリース組成物、燃料油添加剤、燃料油およびオイルスラッジ抑制方法
CN103429716B (zh) 含有铁颗粒的分散体和铵聚酯洗涤剂的燃料添加剂
US7547330B2 (en) Methods to improve lubricity of fuels and lubricants
Cui et al. A viscosity modifier solution to reconcile fuel economy and durability in diesel engines
CN108949325A (zh) 一种具有同时降低机油和燃油消耗功能的汽车发动机润滑油及其制备方法
JP6535906B1 (ja) 潤滑油添加剤、潤滑油、グリース組成物、燃料油添加剤、燃料油およびオイルスラッジ抑制方法
JP2009503194A (ja) 燃料及び潤滑剤の添加剤、並びに燃料経済性及び車両の排出を改善する方法
Parenago et al. Synthesis of environmentally safe antiwear additives to lubricating materials: State of the art and prospects
Abere Improved performance of bio-lubricant by nanoparticles additives
US4204968A (en) Lubricant additive
Van Rensselar PC-11 and GF-6: New engines drive change in oil specs.
KR20120134675A (ko) 내연기관 세정윤활제 조성물
Wozniak et al. Changes in Total Friction in the Engine, Friction in Timing Chain Transmissions and Engine Emissions Due to Adding TiO 2 Nanoparticles to Engine Oil
RU2299232C1 (ru) Способ оптимизации горения жидких углеводородных топлив
Kiovsky et al. Fuel efficient lubricants and the effect of special base oils
EP2288676B1 (en) Use of fuel compositions
Haiday et al. Increasing surface wear resistance of engines by nanosized carbohydrate clusters when using ethanol motor fuels
Chhabra et al. REVIEW OF PHYSICAL AND CHEMICAL PROPERTIES OF HEAVY-DUTY ENGINE OIL 5W50

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017531645

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17882658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17882658

Country of ref document: EP

Kind code of ref document: A1