WO2018115554A1 - Balastro electrónico auto-oscilante con atenuación de luz para una lámpara y sistema que lo incluye - Google Patents

Balastro electrónico auto-oscilante con atenuación de luz para una lámpara y sistema que lo incluye Download PDF

Info

Publication number
WO2018115554A1
WO2018115554A1 PCT/ES2017/070826 ES2017070826W WO2018115554A1 WO 2018115554 A1 WO2018115554 A1 WO 2018115554A1 ES 2017070826 W ES2017070826 W ES 2017070826W WO 2018115554 A1 WO2018115554 A1 WO 2018115554A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
circuit
ballast
current
input
Prior art date
Application number
PCT/ES2017/070826
Other languages
English (en)
French (fr)
Inventor
Carlos OLALLA MARTÍNEZ
Luís MARTÍNEZ SALAMERO
Ricardo BONACHE SAMANIEGO
Original Assignee
Universitat Rovira I Virgili
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Rovira I Virgili filed Critical Universitat Rovira I Virgili
Publication of WO2018115554A1 publication Critical patent/WO2018115554A1/es

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/16Circuit arrangements in which the lamp is fed by dc or by low-frequency ac, e.g. by 50 cycles/sec ac, or with network frequencies
    • H05B41/18Circuit arrangements in which the lamp is fed by dc or by low-frequency ac, e.g. by 50 cycles/sec ac, or with network frequencies having a starting switch
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention generally concerns, in a first aspect, a self-oscillating electronic ballast with light attenuation for a lamp, applicable to electrode-free fluorescent lamps (IEFL) and other types of lamps, such as discharge lamps of high intensity (HID), and more particularly to a ballast that allows to perform both attenuation and auto-start functions without the need to use auxiliary circuits.
  • IEFL electrode-free fluorescent lamps
  • HID discharge lamps of high intensity
  • a second aspect of the present invention concerns a system comprising the ballast of the first aspect and a remote control device adapted to control it.
  • Self-oscillating electronic ballasts with light attenuation for a lamp comprising:
  • a power inverter comprising at least one switching device
  • a resonant tank comprising a tank inductance and a tank capacitor electrically connected in series to the output of the current inverter;
  • Y a current detection circuit that includes at least one current sensor configured and arranged to detect the current flowing through said resonant tank
  • ballasts need an auxiliary circuit to carry out the auto-start, which includes additional magnetic elements and, in general, a DIAC or equivalent device, in order to generate an initial pulse that allows the auto-start .
  • auxiliary circuit to carry out the auto-start, which includes additional magnetic elements and, in general, a DIAC or equivalent device, in order to generate an initial pulse that allows the auto-start .
  • the circuit proposed in US5545955 patent implements, at the input of said logic circuitry, an additional oscillator, formed by an RT resistor and a CT capacitor (both external), depending on whose values an oscillation will be generated, different and additional to that of the resonant tank, which will provide the switching of the transistors that will cause the resonant circuit to oscillate close to the resonant frequency and, therefore, that the start-up will occur.
  • the choice of the RT and CT values is critical so that the ballast auto-start may or may not occur, since they must provide a time constant that is slower than that associated with the resonance frequency of the tank but not much slower, since otherwise the start of the ballast will not occur.
  • the present invention concerns, in a first aspect, a self-oscillating electronic ballast with light attenuation for a lamp, comprising, in a manner known per se:
  • a power inverter comprising at least one switching device
  • a resonant tank comprising a tank inductance and a tank capacitor electrically connected in series to the output of the current inverter;
  • Y a current detection circuit that includes at least one current sensor configured and arranged to detect the current flowing through said resonant tank
  • control circuit connected to said current detection circuit to receive detection signals provided by it, and with at least one output connected to said at least one switching device, the control circuit being configured and arranged to carry Carry out a dimming control in relation to the light emitted by a lamp connected to the output of said resonant tank, by generating first switching control signals based on the detection signals received, and then sending them to the device commutation.
  • the control circuit is also configured and arranged to carry out a control of the self-starting of the ballast by the oscillation itself provided by the Resonant tank, by generating a second switching control signal based on an enabling signal received by the control circuit, and then sending it to the switching device, which is at least one.
  • the lamp is also included in the ballast proposed by the first aspect of the invention.
  • said current sensor is a current transformer with a primary constituting said tank inductance and a secondary that constitutes a detection inductance.
  • the inverter is half wave and comprises two switching devices electrically connected in series with each other, the resonant tank being connected between an intermediate connection point of both switching devices and a ground connection.
  • the current detection circuit comprises a first and a second resistor connected to the current sensor so that a first current directly proportional to the current flows through one of them. current flowing through the resonant tank, and on the other a second current of equal magnitude but of the opposite sign to the first current.
  • the first resistor is connected between a first end of the detection inductance and a ground connection
  • the second resistor is connected between a second end of the Detectance inductance and ground connection.
  • the control circuit comprises a logic circuit with at least a first and a second output, each connected to a respective of the two switching devices for control by sending the first and second switching control signals, and an enabling input for the reception of the enabling signal, the logic circuit being adapted to, upon receiving the enabling signal, generate the second switching control signals so that one of the two devices Switching adopt a driving state.
  • said logic circuit can be implemented in various ways, for a preferred implementation it comprises:
  • flip-flop comprising said first and second outputs, said enablement input, and a first and second control inputs
  • a first comparator with a first input connected to the first resistor so that the voltage drop existing in the first resistor is applied in said first input, a second input connected to a reference point of a variable reference voltage circuit , and an output connected to the first bistable control input;
  • Y - a second comparator with a first input connected to the second resistor so that the voltage drop existing in the second resistor is applied in said first input, a second input connected to said reference point of the variable reference voltage circuit, and an output connected to the second bistable control input.
  • the two switching devices are two N-channel MOSFET transistors, with their gate terminals connected, respectively, to the first and second outputs of the flip-flop.
  • the variable reference voltage circuit also comprises a resistor connected between the reference point and a terminal with a variable reference voltage in a voltage range equal to or greater than zero to carry out the control of the dimming, so that by increasing the reference voltage the light emitted by the lamp is dimmed by decreasing the output power supplied by the resonant tank.
  • the ballast of the first aspect of the present invention is applicable to IEFL lamps and other types of lamps, such as HID lamps, simply by adapting the resonant tank to the lamp to which it is connected.
  • variable reference voltage circuit further comprises a low-pass filter that includes a capacitor and an auxiliary switching device connected in parallel between a ground connection and said reference point, the enable input being of the flip-flop electrically connected to the auxiliary switching device to receive the enable signal and control its switching based on it.
  • variable reference voltage circuit further comprises, according to one embodiment, a Zener diode with its cathode electrically connected to the reference point and its anode electrically connected to the ground connection.
  • the auxiliary switching device is a P-channel MOSFET transistor with its drain terminal electrically connected to the ground connection point, its source terminal electrically connected to the reference point and its connected door terminal. electrically to the bistable enable input.
  • the control circuit comprises communication means (wireless and / or via cable) adapted to receive control signals from a remote control device that include at least the variable reference voltage signal, where, for example, the control signals include a message that can be transformed into a voltage signal that constitutes the reference voltage.
  • the control signals also include the enable signal, although the latter (alternatively or in a complementary manner) can be applied locally by acting on input means (such as a push button or keyboard) of the ballast control circuit itself.
  • control circuit comprises:
  • a first control sub-circuit configured and arranged to carry out the dimming control in relation to the light emitted by the lamp, by generating the first switching control signals based on the detection signals received, and its subsequent shipment to the switching device or devices;
  • a second control sub-circuit configured and arranged to carry out the self-start control of the ballast by the oscillation itself provided by the resonant tank, by generating the second switching control signals based on the above-mentioned signal of enabling received by the control circuit and of the detection signals received from the current detection circuit, and its subsequent sending to the switching device or devices.
  • the ballast control circuit of the first aspect of the present invention is implemented in an integrated circuit, manufactured for example by conventional CMOS manufacturing procedures.
  • CMOS manufacturing procedures By means of the first aspect of the invention it is possible to provide a lighter, smaller and cheaper electronic ballast than those known in the state of the art.
  • a second aspect of the present invention concerns a system, comprising:
  • the control circuit comprises communication means; and - a remote control device that is adapted for the generation of at least the variable reference voltage signal (and optionally also the enable signal) and that includes communication means for sending (wireless and / or via cable) ) of at least the variable generated reference voltage signal (and optionally also of the enable signal) to the respective communication means of the ballast control circuit.
  • FIG 1 illustrates, schematically, the ballast of the first aspect of the invention, for an exemplary embodiment that allows a zero current switching (ZCS, acronym of the English terms: "Zero-Current Switching") and for which the inverter operates below the resonant frequency.
  • ZCS zero current switching
  • Zero-Current Switching Zero current switching
  • FIG. 1 shows waveforms associated with the operation of the ballast of Figure 1, during an initial self-start stage thereof followed by an attenuation stage.
  • Figure 3 shows waveforms associated with the operation of the ballast of Figure 1, during an attenuation stage.
  • FIG 4 schematically illustrates the ballast of the first aspect of the invention, for another exemplary embodiment, which allows a voltage zero crossing (ZVS, acronym for the English terms: “Zero-Voltage Switching”) and for which the inverter operates above the resonant frequency.
  • ZVS voltage zero crossing
  • Zero-Voltage Switching Zinc-Voltage Switching
  • FIG. 5 shows waveforms associated with the operation of the ballast of Figure 4, during an initial self-start stage thereof followed by an attenuation stage.
  • FIG. 6 illustrates, schematically, the ballast of the first aspect of the invention, for another embodiment, for which the control circuit is divided into two sections, A and B, and which allows 100% attenuation to be achieved. and maintain attenuation for a wide range of different loads.
  • Figure 8 shows waveforms associated with the operation of the ballast of Figure 6, during an auto-start stage followed by an attenuation stage, with Vth ⁇ 0 and where Section B is responsible for controlling the flip-flop.
  • FIG. 1 An illustrated exemplary embodiment of the self-oscillating electronic ballast with light attenuation for a lamp proposed by the first aspect of the present invention is illustrated in Figure 1, for which it comprises, among other elements, a medium current inverter wave with its input connected to a continuous voltage Vg, and which includes two switching devices Q1, Q2, in particular two MOSFET transistors of channel N.
  • the ballast also comprises a resonant tank comprising a tank inductance Lr and a tank capacitor Cr electrically connected in series to the output of the current inverter, in particular between an intermediate connection point of both transistors Q1, Q2 (through a capacitor Cb) and the free end of transistor Q2.
  • the ballast comprises a current detection circuit that includes a current sensor configured and arranged to detect the current flowing through said resonant tank, and which is constituted by a current transformer with a primary which constitutes the inductance of tank Lr and a secondary that constitutes an inductance of detection Ls.
  • the current detection circuit comprises a first resistor Rb connected between a first end of the detection inductance Ls and a ground connection, and a second resistance Ra connected between a second end of the detection inductance Ls and the ground connection, so that the first resistance Rb circulates a first current directly proportional to the current flowing through the resonant tank, and the second resistance Ra circulates a second current of equal magnitude but of the opposite sign to the first current.
  • the ballast illustrated by Figure 1 further comprises a control circuit comprising a logic circuit which in turn comprises:
  • flip-flop Be comprising first Q and second Q outputs, an enable input E, and a first S and a second R control inputs;
  • a first comparator A1 in the form of an operational amplifier
  • a first input A1 + connected to the second resistor Ra (at its end connected to Ls) so that the voltage drop existing in the second resistor Ra is applied in the first input A1 +
  • a second input A1- connected to a reference point Pr of a variable reference voltage circuit, and an output C- connected to the first control input S of the flip-flop
  • Y a first comparator A1 (in the form of an operational amplifier) with a first input A1 + connected to the second resistor Ra (at its end connected to Ls) so that the voltage drop existing in the second resistor Ra is applied in the first input A1 +, a second input A1- connected to a reference point Pr of a variable reference voltage circuit, and an output C- connected to the first control input S of the flip-flop
  • each of the first Q and second Q outputs of the flip-flop Be is connected to the gate terminal of a respective of the two transistors Q1, Q2 for control by sending first and second signals switching control, and an enable input E for the reception of an enable signal In.
  • variable reference voltage circuit comprises a resistor Rf connected between the reference point Pr and a terminal Tth with a variable reference voltage Vth (manually or automatically, locally or remotely ) in a voltage range equal to or greater than zero to carry out the attenuation control.
  • the variable reference voltage circuit further comprises a low-pass filter that includes a capacitor Cf and an auxiliary switching device Qf connected in parallel between a ground connection and the reference point Pr.
  • the auxiliary switching device Qf is a P-channel MOSFET transistor with its drain terminal electrically connected to the ground connection point, its source terminal electrically connected to the reference point Pr and its electrically connected door terminal to the enable input E of the flip-flop Be to receive the enable signal En and its switching controlled according to it.
  • the variable reference voltage circuit comprises a Zener Z diode with its cathode electrically connected to the reference point Pr and its anode electrically connected to the ground connection.
  • control circuit is configured and arranged as described above and as illustrated in Figure 1, for an exemplary embodiment, in order to carry out both an attenuation control in relation to the light emitted by the lamp F as the start of the ballast.
  • ballast of the first aspect of the present invention is described below, for the exemplary embodiment illustrated in Figure 1.
  • the current transformer detects the input current Is and by circulating the circulating current through the detection inductance Ls by the resistors Ra and Rb, it generates in these corresponding voltage drops associated with electrical signals that have inverted waveforms in Ra, and not inverted in Rb.
  • the non-inverted signal is compared in comparator A2 with a threshold reference voltage Vth filtered through a low-pass filter.
  • the inverted signal is compared in comparator A1 with the threshold reference voltage Vth also filtered by the low pass filter.
  • their C- and C + outputs are complementary. When the current is positive, the C + output is active and the C- output is inactive.
  • the enable signal En is activated, that is to say it has a high state (at time ta). While in a low state, transistor Qf allows the damper Cf of the low pass filter to be completely discharged. Once En enters a high state, Qf stops conducting current and capacitor charging Cf is allowed.
  • the low pass filter formed by Rf and Cf has a slow time constant in order to deactivate the attenuation during the lighting of the lamp F, that is during the self-start.
  • the enable signal En supplies the auxiliary transistor Qf, which ensures that the capacitor Cf is completely discharged before commissioning, as explained in the previous paragraph.
  • the Zener diode between Vth and ground prevents excessive values of Vth from disabling circuit self-oscillation, limiting the voltage value in Pr to be compared in A1 and A2, that is Vc f , to be equal to or less than VR 3 and VF *.
  • the attenuation function can be carried out, which happens naturally and consecutively to the start-up, when the comparison described above in comparators A1, A2 is carried out, which causes the corresponding switching of transistors Q1, Q2 due to the oscillation of the circuit itself, that is, of the resonant tank.
  • Such attenuation function is illustrated both in Figure 2 (after the start-up) and in Figure 3.
  • the attenuation is provided with the phase forward current in the voltage, which allows the inverter to operate under a current zero-pass switching (ZCS) and below the frequency Resonance
  • ZCS current zero-pass switching
  • the attenuation achieved according to this embodiment is below 50%.
  • FIG 4 An alternative embodiment is illustrated in Figure 4, for which the attenuation is provided with the current delayed in phase with respect to the voltage, which allows the inverter to operate under a zero voltage switching (ZVS) and above the resonant frequency.
  • ZVS zero voltage switching
  • the attenuation achieved according to this embodiment example reaches up to 50%.
  • the components included in the circuit of the embodiment of Figure 4 are the same as those of Figure 1, but connected and arranged differently, generally inverted with respect to the position occupied in Figure 1, being in this If the output Q of the flip-flop Be is connected to transistor Q1 and output Q to transistor Q2.
  • the waveforms illustrated in Figure 5 are similar to that of Figure 2, but associated with the operation of the ballast of Figure 4, and also show an initial stage of auto-start followed by an attenuation.
  • the bridge of the inverter is represented according to a type of half bridge, but for alternative embodiments (not illustrated), it is of the complete bridge type, whereby it incorporates four similarly controlled transistors by the output signals of the flip-flop Be.
  • the ballast of the present invention has a number of limitations.
  • One such limitation is related to the need to include a voltage limiting element, which in this case is implemented by the Zener Z diode, in order to limit the attenuation input, that is V th , so that it does not exceed the one associated to the detected current, since if V th had a too high value, the comparators would not be activated and the inverter would stop switching. Because such a limit depends on the load, the value of the Zener diode must be adapted for each lamp / load.
  • Another such limitation is that already mentioned above regarding the limitation of the attenuation that can be obtained, to a maximum of 50%.
  • ballast of the present invention is proposed, which is illustrated in Figure 6, and which extends the attenuation range achieved up to 100% and maintains the self-oscillation for a Very wide range of loads without the need for a Zener diode, because it uses additional circuitry that decouples the auto-oscillation control signals that switch the inverter to the resonant frequency of the control signals that induce attenuation.
  • the attenuation limit can be set as a constant because it does not depend on the load.
  • This exemplary embodiment ensures the correct self-start of the ballast with indifference of the dimming configuration, being possible a complete attenuation in the start in lamps that do not require ignition.
  • the circuit maintains the same basic structure that includes a current transformer Lr / Ls, comparators, in this case four: A1 a, A1 b, A2a, A2b, and a flip-flop Be, in this case one of type JK with the inputs J and K to ground, and the inputs PRE ("preset") and CLR ("Clear") connected to the outputs of the comparators (grouped according to two symmetrical arrangements whose operation is analogous to that of the Figures 1 and 4) through the illustrated logic circuitry, which includes a series of summers C + a, Ca, C + b, Cb and NAND and NOT doors.
  • the control circuit is divided into two parts or sections A and B, one (Section A) responsible for self-oscillation and the other (Section B) for attenuation.
  • the outputs Q and Q of the flip-flop provide, respectively, the switching signals a yu that are activated by the inverter bridge transistors, either Q1 and Q2 as in Figures 1 and 4, for the case of half bridge, or four corresponding transistors, in the case of full bridge.
  • Section A maintains auto-oscillation at the resonance frequency of the inverter, while section B produces a signal with a sawtooth waveform at the frequency of the oscillation, which changes with different loads.
  • two resettable integrators are arranged with one input connected to ground and the other to a respective comparator with its positive input connected to one of the ends of the detection inductance Ls, thus creating a sawtooth-shaped signal to the Output of each resettable integrator (A1 b + and A2b + in Figures 7 and 8), that is, one for the positive cycle and the other for the negative cycle, being reset the rest of the time.
  • a peak detector connected to the integrator output finds the maximum value of the sawtooth waveform signal (understood as the combination of the two signals) at the output of two resettable integrators, and a voltage V t h it is subtracted from said maximum (voltage) value to produce a secondary waveform Sp r (i.e. at the reference point Pr) that is compared with the original sawtooth waveform in A1 by A2b, to cause inverter bridge switching.
  • a specific circuit for the peak detector has been represented, any other circuit (not illustrated) that allows to fulfill the function assigned to it is also covered by the present invention, for other embodiments.
  • the peak detector provides an "offset" (continuous displacement) from which the attenuation signal V th can be subtracted. If Vt h is zero, then the peak signal plus the "offset" (indicated at the bottom of the circuit in Figure 6) will never cross the sawtooth waveforms. When V th is greater than zero, then the peak signal will cross the saw teeth 'before' the zero crossings produced in Section A (ie in the VR 3 and VF * signals, as indicated by the indicators in ring shape in Figure 7), as can be seen in Figure 8 (crosses indicated by the ring-shaped indicators). This provides an attenuation above the resonant frequency and, therefore, in ZVS.
  • both sections, A and B can control the switching of the inverter.
  • Section B will change the status of the flip flop before section A can do so, by operating the inverter above the resonant frequency.
  • section B will remain inactive and section A will perform the inverter switching exactly at the resonant frequency.
  • NAND logic gates effectively provide the required interface between the A / B sections and the flip-flop.
  • the operation of the flip-flop Be of Figure 6 is similar to that of Figures 1 and 4.
  • the NAND gates receive a signal, which is delayed (by the corresponding NOT gate) in a complementary manner.
  • circuit of Figure 6 operates in ZVS mode, which is preferred for the present invention.
  • modifications of the circuit of Figure 6 that would cause it to operate in ZCS mode would also be covered by the present invention, although less preferably.
  • a person skilled in the art could introduce changes and modifications in the described embodiments without departing from the scope of the invention as defined in the appended claims.
  • variations of the circuit diagrams illustrated in Figures 1, 4 and 6, in terms of the type, number, and connection of the components illustrated flip-flops, logic circuitry, comparators, integrators, adders, peak detectors, etc.
  • they are covered by the present invention, provided that they allow to implement the functions performed by such functional schemes, or equivalent functions, and that do not involve making an inventive effort.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

El balastro comprende: - un inversor de corriente con unos dispositivos de conmutación (Q1, Q2); - un tanque resonante conectado a la salida del inversor de corriente; - un circuito de detección de corriente para detectar la corriente que circula por el tanque resonante; y - un circuito de control para un control de atenuación y un control del autoarranque del balastro por la propia oscilación proporcionada por el tanque resonante. El sistema comprende: - al menos un balastro según la presente invención; y - un dispositivo de control remoto que está adaptado para la generación una señal de tensión de referencia variable y su envío al circuito de control del balastro.

Description

BALASTRO ELECTRÓNICO AUTO-OSCILANTE CON ATENUACIÓN DE LUZ PARA UNA
LÁMPARA Y SISTEMA QUE LO INCLUYE
Sector de la técnica
La presente invención concierne en general, en un primer aspecto, a un balastro electrónico auto-oscilante con atenuación de luz para una lámpara, aplicable a lámparas fluorescentes por inducción sin electrodos (IEFL) y a otro tipo de lámparas, tales como las lámparas de descarga de alta intensidad (HID), y más particularmente a un balastro que permite realizar tanto funciones de atenuación como de autoarranque sin la necesidad de utilizar circuitos auxiliares.
Un segundo aspecto de la presente invención concierne a un sistema que comprende al balastro del primer aspecto y a un dispositivo de control remoto adaptado para controlarlo.
Estado de la técnica anterior
En el estado de la técnica son conocidos balastros electrónicos auto-oscilantes con atenuación de luz para una lámpara que comprenden:
- un inversor de corriente que comprende por lo menos un dispositivo de conmutación;
- un tanque resonante que comprende una inductancia de tanque y un condensador de tanque conectados eléctricamente en serie a la salida del inversor de corriente;
- un circuito de detección de corriente que incluye por lo menos un sensor de corriente configurado y dispuesto para detectar la corriente que circula por dicho tanque resonante; y
- un circuito de control conectado a dicho circuito de detección de corriente para recibir unas señales de detección proporcionadas por éste, y con al menos una salida conectada al dispositivo o dispositivos de conmutación, estando el circuito de control configurado y dispuesto para llevar a cabo un control de atenuación en relación a la luz emitida por una lámpara conectada a la salida de dicho tanque resonante, mediante la generación de unas primeras señales de control de conmutación en función de las señales de detección recibidas, y su posterior envío al dispositivo o dispositivos de conmutación. En general, los balastros del estado de la técnica necesitan de un circuito auxiliar para poder llevar a cabo el autoarranque, que incluye elementos magnéticos adicionales y, en general un DIAC o dispositivo equivalente, con el fin de generar un pulso inicial que permita el autoarranque. Tal es el caso del balastro descrito en US6696803.
Por otra parte, por la patente US5545955 se conoce un balastro electrónico que prescinde del mencionado circuito auxiliar de elementos magnéticos adicionales y DIAC, para llevar a cabo el autoarranque del balastro, y en su lugar propone realizar una detección de cruce por cero de la corriente circulante por el tanque resonante, mediante una disposición de dos diodos en inversa, y una circuitería lógica que actúa directamente sobre los transistores del inversor, en función de la citada detección de cruce por cero, realizando así el autoarranque del balastro.
El circuito propuesto en la patente US5545955 implementa, a la entrada de la mencionada circuitería lógica, un oscilador adicional, formado por una resistencia RT y un condensador CT (ambos externos), en función de cuyos valores se generará una oscilación, diferente y adicional a la del tanque resonante, que proporcionará la conmutación de los transistores que hará que el circuito resonante oscile cerca de la frecuencia de resonancia y, por tanto, que se produzca el autoarranque. La elección de los valores de RT y CT resulta crítica para que pueda o no producirse el autoarranque del balastro, ya que deben proporcionar una constante de tiempo que sea más lenta que la asociada a la frecuencia de resonancia del tanque pero no mucho más lenta, ya que sino no se producirá el autoarranque del balastro. En este sentido, si bien en la descripción de US5545955 se indica que el circuito está preparado para proporcionar también funciones de atenuación, sin describir cómo hacerlo, resulta evidente que ello solamente sería posible actuando sobre los valores de RT y CT, O sobre algún elemento adicional conectado a RT y CT, con lo cual el riesgo de salirse del rango de valores de RT y CT mencionado arriba que permite el autoarranque es muy alto.
Aparece, por tanto, necesario ofrecer una alternativa al estado de la técnica que cubra las lagunas halladas en el mismo, proporcionando un balastro electrónico que realmente permita realizar tanto el autoarranque del mismo como funciones de atenuación sin la necesidad ni de circuitos magnéticos ni de osciladores auxiliares.
Explicación de la invención Con tal fin, la presente invención concierne, en un primer aspecto, a un balastro electrónico auto-oscilante con atenuación de luz para una lámpara, que comprende, de manera en sí conocida:
- un inversor de corriente que comprende por lo menos un dispositivo de conmutación;
- un tanque resonante que comprende una inductancia de tanque y un condensador de tanque conectados eléctricamente en serie a la salida del inversor de corriente;
- un circuito de detección de corriente que incluye por lo menos un sensor de corriente configurado y dispuesto para detectar la corriente que circula por dicho tanque resonante; y
- un circuito de control conectado a dicho circuito de detección de corriente para recibir unas señales de detección proporcionadas por éste, y con al menos una salida conectada a dicho al menos un dispositivo de conmutación, estando el circuito de control configurado y dispuesto para llevar a cabo un control de atenuación en relación a la luz emitida por una lámpara conectada a la salida de dicho tanque resonante, mediante la generación de unas primeras señales de control de conmutación en función de las señales de detección recibidas, y su posterior envío al dispositivo de conmutación.
A diferencia de los balastros electrónicos del estado de la técnica, en el propuesto por la presente invención, de manera característica, el circuito de control está configurado y dispuesto también para llevar a cabo un control del autoarranque del balastro por la propia oscilación proporcionada por el tanque resonante, mediante la generación de unas segundas señales de control de conmutación en función de una señal de habilitación recibida por el circuito de control, y su posterior envío al dispositivo de conmutación, que es al menos uno.
Para un ejemplo de realización, la lámpara también está incluida en el balastro propuesto por el primer aspecto de la invención.
De acuerdo a un ejemplo de realización preferido del balastro del primer aspecto de la presente invención el citado sensor de corriente es un transformador de corriente con un primario que constituye la citada inductancia de tanque y un secundario que constituye una inductancia de detección. Según un ejemplo de realización, el inversor es de media onda y comprende dos dispositivos de conmutación conectados eléctricamente en serie entre sí, estando el tanque resonante conectado entre un punto intermedio de conexión de ambos dispositivos de conmutación y una conexión a masa.
En el balastro del primer aspecto de la presente invención, según un ejemplo de realización, el circuito de detección de corriente comprende una primera y una segunda resistencias conectadas al sensor de corriente de manera que por una de ellas circule una primera corriente directamente proporcional a la corriente circulante por el tanque resonante, y por la otra una segunda corriente de igual magnitud pero de signo inverso a la primera corriente.
Preferentemente, para el caso preferido en que le sensor de corriente es un transformador de corriente, la primera resistencia está conectada entre un primer extremo de la inductancia de detección y una conexión a masa, y la segunda resistencia está conectada entre un segundo extremo de la inductancia de detección y la conexión a masa.
De acuerdo a un ejemplo de realización, el circuito de control comprende un circuito lógico con por menos una primera y una segunda salidas, cada una de ellas conectada a un respectivo de los dos dispositivos de conmutación para su control mediante el envío de las primeras y segundas señales de control de conmutación, y una entrada de habilitación para la recepción de la señal de habilitación, estando el circuito lógico adaptado para, al recibir la señal de habilitación, generar las segundas señales de control de conmutación para que uno de los dos dispositivos de conmutación adopte un estado de conducción. Aunque el referido circuito lógico puede implementarse de diversas formas, para una implementación preferida éste comprende:
- un biestable que comprende las citadas primera y segunda salidas, la mencionada entrada de habilitación, y una primera y una segunda entradas de control;
- un primer comparador con una primera entrada conectada a la primera resistencia de manera que la caída de tensión existente en la primera resistencia es aplicada en la citada primera entrada, una segunda entrada conectada a un punto de referencia de un circuito de tensión de referencia variable, y una salida conectada a la primera entrada de control del biestable; y - un segundo comparador con una primera entrada conectada a la segunda resistencia de manera que la caída de tensión existente en la segunda resistencia es aplicada en la citada primera entrada, una segunda entrada conectada al mencionado punto de referencia del circuito de tensión de referencia variable, y una salida conectada a la segunda entrada de control del biestable.
Ventajosamente, los dos dispositivos de conmutación son sendos transistores MOSFET de canal N, con sus terminales de puerta conectados, respectivamente, a la primera y la segunda salidas del biestable.
Las anteriormente llamadas primeras y segundas señales de control de conmutación son, para el ejemplo de realización descrito justo arriba, las señales digitales proporcionada a las salidas del biestable, por lo que tales señales son señales binarias, es decir en forma de pulso. De acuerdo a un ejemplo de realización, el circuito de tensión de referencia variable comprende también una resistencia conectada entre el punto de referencia y un terminal con una tensión de referencia variable en un rango de tensión igual o mayor que cero para llevar a cabo el control de la atenuación, de manera que al aumentar la tensión de referencia se atenúe la luz emitida por la lámpara al disminuir la potencia de salida suministrada por el tanque resonante.
El balastro del primer aspecto de la presente invención es aplicable a lámparas IEFL y a otro tipo de lámparas, tales como las lámparas HID, simplemente adaptando el tanque resonante a la lámpara a la que conectarlo.
Según un ejemplo de realización, el circuito de tensión de referencia variable comprende además un filtro pasa-bajos que incluye un condensador y un dispositivo de conmutación auxiliar conectados en paralelo entre una conexión a masa y el citado punto de referencia, estando la entrada de habilitación del biestable conectada eléctricamente al dispositivo de conmutación auxiliar para recibir la señal de habilitación y controlarse su conmutación en función de la misma.
El circuito de tensión de referencia variable comprende además, de acuerdo a una realización, un diodo Zener con su cátodo conectado eléctricamente al punto de referencia y su ánodo conectado eléctricamente a la conexión a masa. De acuerdo a un ejemplo de realización, el dispositivo de conmutación auxiliar es un transistor MOSFET de canal P con su terminal de drenador conectado eléctricamente al punto de conexión a masa, su terminal de fuente conectado eléctricamente al punto de referencia y su terminal de puerta conectado eléctricamente a la entrada de habilitación del biestable.
Según un ejemplo de realización, el circuito de control comprende medios de comunicación (inalámbricos y/o vía cable) adaptados para recibir unas señales de control desde un dispositivo de control remoto que incluyan como mínimo a la señal de tensión de referencia variable, donde, por ejemplo, las señales de control incluyen un mensaje que pueda ser transformado en una señal de tensión que constituya la tensión de referencia. Opcionalmente, las señales de control incluyen también a la señal de habilitación, aunque esta última (alternativamente o de manera complementaria) puede aplicarse localmente actuando sobre unos medios de entrada (tal como un pulsador o teclado) del propio circuito de control del balastro.
Según un ejemplo de realización del balastro propuesto por la presente invención, el circuito de control comprende:
- un primer sub-circuito de control, configurado y dispuesto para llevar a cabo el control de atenuación en relación a la luz emitida por la lámpara, mediante la generación de las primeras señales de control de conmutación en función de las señales de detección recibidas, y su posterior envío al dispositivo o dispositivos de conmutación; y
- un segundo sub-circuito de control, configurado y dispuesto para llevar a cabo el control del autoarranque del balastro por la propia oscilación proporcionada por el tanque resonante, mediante la generación de las segundas señales de control de conmutación en función de la arriba mencionada señal de habilitación recibida por el circuito de control y de las señales de detección recibidas desde el circuito de detección de corriente, y su posterior envío al dispositivo o dispositivos de conmutación.
De acuerdo a un ejemplo de realización preferido, el circuito de control del balastro del primer aspecto de la presente invención está implementado en un circuito integrado, fabricado por ejemplo mediante procedimientos convencionales de fabricación CMOS. Mediante el primer aspecto de la invención se consigue proporcionar un balastro electrónico más ligero, pequeño y barato que los conocidos en el estado de la técnica.
Un segundo aspecto de la presente invención concierne a un sistema, que comprende:
- por lo menos un balastro según el primer aspecto de la presente invención, en particular según el ejemplo de realización descrito arriba para el que el circuito de control comprende medios de comunicación; y - un dispositivo de control remoto que está adaptado para la generación de por lo menos la señal de tensión de referencia variable (y opcionalmente también de la señal de habilitación) y que incluye medios de comunicación para el envío (inalámbricos y/o vía cable) de por lo menos la señal de tensión de referencia generada variable (y opcionalmente también de la señal de habilitación) a los respectivos medios de comunicación del circuito de control del balastro.
Breve descripción de los dibujos
Las anteriores y otras ventajas y características se comprenderán más plenamente a partir de la siguiente descripción detallada de unos ejemplos de realización con referencia a los dibujos adjuntos, que deben tomarse a título ilustrativo y no limitativo, en los que:
La Figura 1 ilustra, de manera esquemática, al balastro del primer aspecto de la invención, para un ejemplo de realización que permite una conmutación de paso por cero de corriente (ZCS, acrónimo de los términos en inglés: "Zero-Current Switching") y para el que el inversor opera por debajo de la frecuencia de resonancia.
La Figura 2 muestra unas formas de onda asociadas al funcionamiento del balastro de la Figura 1 , durante una etapa inicial de autoarranque del mismo seguida de una de atenuación.
La Figura 3 muestra unas formas de onda asociadas al funcionamiento del balastro de la Figura 1 , durante una etapa de atenuación.
La Figura 4 ilustra, de manera esquemática, al balastro del primer aspecto de la invención, para otro ejemplo de realización, el cual permite una conmutación de paso por cero de tensión (ZVS, acrónimo de los términos en inglés: "Zero-Voltage Switching") y para el que el inversor opera por encima de la frecuencia de resonancia.
La Figura 5 muestra unas formas de onda asociadas al funcionamiento del balastro de la Figura 4, durante una etapa inicial de autoarranque del mismo seguida de una de atenuación.
La Figura 6 ilustra, de manera esquemática, al balastro del primer aspecto de la invención, para otro ejemplo de realización, para el cual el circuito de control está dividido en dos secciones, A y B, y que permite conseguir un 100% de atenuación y mantener la atenuación para un gran rango de cargas diferentes.
La Figura 7 muestra unas formas de onda asociadas al funcionamiento del balastro de la Figura 6, durante una etapa de autoarranque sin atenuación, con Vth = 0 y donde la Sección A se encarga de controlar al biestable.
La Figura 8 muestra unas formas de onda asociadas al funcionamiento del balastro de la Figura 6, durante una etapa de autoarranque seguida de una de atenuación, con Vth≠ 0 y donde la Sección B se encarga de controlar al biestable. Descripción detallada de unos ejemplos de realización
En la Figura 1 se ilustra un ejemplo de realización ilustrado del balastro electrónico auto- oscilante con atenuación de luz para una lámpara propuesto por el primer aspecto de la presente invención, para el que éste comprende, entre otros elementos, un inversor de corriente de media onda con su entrada conectada a una tensión continua Vg, y que incluye dos dispositivos de conmutación Q1 , Q2, en particular dos transistores MOSFET de canal N.
El balastro también comprende un tanque resonante que comprende una inductancia de tanque Lr y un condensador de tanque Cr conectados eléctricamente en serie a la salida del inversor de corriente, en particular entre un punto intermedio de conexión de ambos transistores Q1 , Q2 (a través de un condensador Cb) y el extremo libre del transistor Q2.
En paralelo con el condensador de tanque Cr se conecta una lámpara F (por ejemplo una lámpara IEFL o una lámpara HID). Según se aprecia en la Figura 1 , el balastro comprende un circuito de detección de corriente que incluye un sensor de corriente configurado y dispuesto para detectar la corriente que circula por dicho tanque resonante, y que está constituido por un transformador de corriente con un primario que constituye la inductancia de tanque Lr y un secundario que constituye una inductancia de detección Ls.
El circuito de detección de corriente comprende una primera resistencia Rb conectada entre un primer extremo de la inductancia de detección Ls y una conexión a masa, y una segunda resistencia Ra conectada entre un segundo extremo de la inductancia de detección Ls y la conexión a masa, de manera que por la primera resistencia Rb circule una primera corriente directamente proporcional a la corriente circulante por el tanque resonante, y por la segunda resistencia Ra circule una segunda corriente de igual magnitud pero de signo inverso a la primera corriente. Asimismo, el balastro ilustrado por la Figura 1 comprende además un circuito de control que comprende un circuito lógico que a su vez comprende:
- un biestable Be que comprende unas primera Q y segunda Q salidas, una entrada de habilitación E, y una primera S y una segunda R entradas de control;
- un primer comparador A1 (en la forma de un amplificador operacional) con una primera entrada A1 + conectada a la segunda resistencia Ra (a su extremo conectado a Ls) de manera que la caída de tensión existente en la segunda resistencia Ra es aplicada en la primera entrada A1 +, una segunda entrada A1- conectada a un punto de referencia Pr de un circuito de tensión de referencia variable, y una salida C- conectada a la primera entrada de control S del biestable; y
- un segundo comparador A2 con una primera entrada A2+ conectada a la primera resistencia Rb (a su extremo conectado a Ls) de manera que la caída de tensión existente en la segunda resistencia Rb es aplicada en la primera entrada A2+, una segunda entrada A2- conectada al punto de referencia Pr del circuito de tensión de referencia variable, y una salida C+ conectada a la segunda entrada de control R del biestable Be.
Tal y como puede apreciarse en la Figura 1 , cada una de las primera Q y segunda Q salidas del biestable Be se encuentra conectada al terminal de puerta de un respectivo de los dos transistores Q1 , Q2 para su control mediante el envío de unas primeras y segundas señales de control de conmutación, y una entrada de habilitación E para la recepción de una señal de habilitación En.
Para el ejemplo de realización ilustrado en la Figura 1 , el circuito de tensión de referencia variable comprende una resistencia Rf conectada entre el punto de referencia Pr y un terminal Tth con una tensión de referencia Vth variable (manual o automáticamente, de forma local o remota) en un rango de tensión igual o mayor que cero para llevar a cabo el control de la atenuación. El circuito de tensión de referencia variable comprende además un filtro pasa-bajos que incluye un condensador Cf y un dispositivo de conmutación auxiliar Qf conectados en paralelo entre una conexión a masa y el punto de referencia Pr.
Para la realización ilustrada, el dispositivo de conmutación auxiliar Qf es un transistor MOSFET de canal P con su terminal de drenador conectado eléctricamente al punto de conexión a masa, su terminal de fuente conectado eléctricamente al punto de referencia Pr y su terminal de puerta conectado eléctricamente a la entrada de habilitación E del biestable Be para recibir la señal de habilitación En y controlarse su conmutación en función de la misma. Adicionalmente, el circuito de tensión de referencia variable comprende un diodo Zener Z con su cátodo conectado eléctricamente al punto de referencia Pr y su ánodo conectado eléctricamente a la conexión a masa.
El circuito de control está configurado y dispuesto tal y como se ha descrito anteriormente y según se ilustra en la Figura 1 , para un ejemplo de realización, con el fin de llevar a cabo tanto un control de atenuación en relación a la luz emitida por la lámpara F como el autoarranque del balastro.
El funcionamiento del balastro del primer aspecto de la presente invención se describe a continuación, para el ejemplo de realización ilustrado en la Figura 1.
El transformador de corriente detecta la corriente de entrada Is y al hacer circular la corriente circulante por la inductancia de detección Ls por las resistencias Ra y Rb, genera en éstas unas correspondientes caídas de tensión asociada a unas señales eléctricas que tienen unas formas de onda invertida en Ra, y no invertida en Rb. La señal no invertida se compara en el comparador A2 con una tensión de referencia umbral Vth filtrada a través de un filtro pasa-bajos. De forma similar, la señal invertida se compara en el comparador A1 con la tensión de referencia umbral Vth también filtrada por el filtro pasa- bajos. Como resultado de las comparaciones llevadas a cabo en A1 y A2, sus salidas C- y C+ son complementarias. Cuando la corriente es positiva, la salida C+ está activa y la salida C- está inactiva. Cuando la corriente es negativa, la salida C- está activa y la salida C+ está inactiva. Las salidas C- y C+ están conectadas a un biestable Be que controla la activación de los transistores Q1 y Q2. La descripción anterior proporciona los fundamentos de la auto-oscilación del balastro electrónico de la presente invención.
Para llevar a cabo el auto-arranque del balastro, según se ilustra en la Figura 2, se activa la señal de habilitación En, es decir pasa a tener un estado alto (en el tiempo ta). Mientras se encuentra en estado bajo, el transistor Qf permite que el condenador Cf del filtro pasa-bajos se descargue por completo. Una vez En pasa a un estado alto, Qf deja de conducir corriente y se permite la carga del condensador Cf.
El filtro de paso bajo formado por Rf y Cf tiene una constante de tiempo lenta con el fin de desactivar la atenuación durante el encendido de la lámpara F, es decir durante el auto- arranque. La señal de habilitación En alimenta el transistor auxiliar Qf, lo que asegura que el condensador Cf esté completamente descargado antes de la puesta en marcha, tal y como se ha explicado en el párrafo anterior. El diodo Zener entre Vth y masa impide que valores excesivos de Vth puedan deshabilitar la auto-oscilación del circuito, limitando el valor de tensión en Pr a comparar en A1 y A2, es decir Vcf, a que sea igual o menor que VR3 y VF*.
Como se observa en la Figura 2, en el tiempo ta, es decir al activarse la señal de habilitación En, Q adopta un estado alto, por lo Q1 pasa a un estado de conducción, lo que hace que el balastro arranque, es decir se inicie la oscilación del tanque resonante.
A partir de ese momento, es decir una vez el balastro ha arrancado, puede llevarse a cabo la función de atenuación, lo cual sucede de manera natural y consecutiva al autoarranque, al realizarse la comparación descrita anteriormente en los comparadores A1 , A2, lo que provoca la correspondiente conmutación de los transistores Q1 , Q2 por la propia oscilación del circuito, es decir del tanque resonante. Tal función de atenuación se ilustra tanto en la Figura 2 (tras el autoarranque) como en la Figura 3. En esta última puede apreciarse cómo, para una tensión Vth de valor positivo (adoptada en el tiempo td), el condensador Cf se va cargando hasta como máximo la tensión Vth (o la del diodo Zener Z, si Vth fuese demasiado alta), y comparándose con VR3 y VF*, es decir con las caídas de tensión provocadas por la circulación de Is por Ra y Rb, de manera que cuando VR3 supera el valor de Vcf la salida Q pasa a un estado activo, haciendo que Q2 adopte un estado de conducción, y en cambio cuando es VF* la que supera el valor de Vcf es la salida Q la que pasa a un estado activo, haciendo que Q1 adopte un estado de conducción. Como puede apreciarse en las Figuras 2 y 3, os instantes de conmutación ocurren en los cruces entre un valor positivo creciente de Is (o decreciente de -Is) y Vcf (o -Vcf). Por tanto, un aumento en Vth da lugar a un cruce posterior de las dos formas de onda, en un ángulo negativo entre las componentes fundamentales de la tensión de entrada y la corriente de entrada del balastro, incrementándose la fase de la impedancia de entrada, y en una consiguiente reducción de la frecuencia de conmutación, lo que disminuye la potencia de salida suministrada a la lámpara. Se consigue así, por tanto, controlar la atenuación mediante la variación del valor de Vth.
Para el ejemplo de realización del balastro de la Figura 1 la atenuación se proporciona con la corriente adelantada en fase a la tensión, lo que permite que el inversor opere bajo una conmutación de paso por cero de corriente (ZCS) y por debajo de la frecuencia de resonancia. La atenuación conseguida según este ejemplo de realización está por debajo el 50%.
Un ejemplo de realización alternativo se ilustra en la Figura 4, para el cual la atenuación se proporciona con la corriente retrasada en fase respecto a la tensión, lo que permite que el inversor opere bajo una conmutación de paso por cero de tensión (ZVS) y por encima de la frecuencia de resonancia. La atenuación conseguida según este ejemplo de realización llega hasta el 50%. Los componentes incluidos en el circuito del ejemplo de realización de la Figura 4 son los mismos que los del de la Figura 1 , pero conexionados y dispuestos de manera diferente, en general invertidos con respecto a la posición ocupada en la Figura 1 , estando en este caso conectada la salida Q del biestable Be al transistor Q1 y la salida Q al transistor Q2. Las formas de onda ilustradas en la Figura 5 son similares a la de la Figura 2, pero asociadas al funcionamiento del balastro de la Figura 4, y muestran también una etapa inicial de autoarranque seguida de una de atenuación. En las realizaciones de las Figuras 1 y 4, se ha representado el puente del inversor según un tipo de medio puente, pero para realizaciones alternativas (no ilustradas), éste es de tipo puente completo, por lo que incorpora cuatro transistores controlados de manera análoga por las señales de salida del biestable Be. Tanto para el ejemplo de realización de la Figura 1 como para el de la Figura 4, el balastro de la presente invención tiene una serie de limitaciones.
Una de tales limitaciones es la relativa a la necesidad de incluir un elemento limitador de tensión, que en este caso está implementado mediante el diodo Zener Z, con el fin de limitar la entrada de atenuación, es decir Vth, para que no supere a la asociada a la corriente detectada, ya que si Vth tuviese un valor demasiado alto los comparadores no se activarían y el inversor dejaría de conmutar. Debido a que tal límite depende de la carga, el valor del diodo Zener debe ser adaptado para cada lámpara/carga. Otra de tales limitaciones es la ya apuntada arriba relativa a la limitación de la atenuación que es posible obtener, a un máximo de un 50%.
Finalmente, otra de las mencionadas limitaciones es la relativa a que como la atenuación podría impedir la auto-oscilación del balastro durante el arranque, se incluye el filtro pasa- pajos arriba descrito, formado por Rf y Cf, con el fin de asegurar la operación del balastro sin el mencionado impedimento.
Con el fin de superar las mencionadas limitaciones, se propone otro ejemplo de realización del balastro de la presente invención, que se ilustra en la Figura 6, y que extiende el rango de atenuación conseguida hasta un 100% y mantiene la auto-oscilación para un muy amplio rango de cargas sin necesidad de un diodo Zener, debido a que utiliza circuitería adicional que desacopla las señales de control de la auto-oscilación que conmutan el inversor a la frecuencia de resonancia de las señales de control que inducen la atenuación. En este caso el límite de atenuación puede establecerse como una constante debido a que no depende de la carga. Este ejemplo de realización asegura el correcto auto-arranque del balastro con indiferencia de la configuración de atenuación, siendo posible una atenuación completa en el arranque en lámparas que no requieran de ignición.
Según se aprecia en la Figura 6, el circuito mantiene la misma estructura básica que incluye un transformador de corriente Lr/Ls, unos comparadores, en este caso cuatro: A1 a, A1 b, A2a, A2b, y un biestable Be, en este caso uno de tipo JK con las entradas J y K a masa, y las entradas PRE ("preset") y CLR ("Clear") conectadas a las salidas de los comparadores (agrupados según dos disposiciones simétricas cuyo funcionamiento es análogo al de las Figuras 1 y 4) a través de la circuitería lógica ilustrada, que incluye una serie de sumadores C+a, C-a, C+b, C-b y unas puertas NAND y NOT. Sin embrago, para este ejemplo de realización, el circuito de control se encuentra dividido en dos partes o secciones A y B, una (Sección A) encargada de la auto-oscilación y la otra (Sección B) de la atenuación.
Las salidas Q y Q del biestable proporcionan, respectivamente, las señales de conmutación un y u que se activan los transistores del puente del inversor, ya sean los Q1 y Q2 como en las Figuras 1 y 4, para el caso de medio puente, o cuatro correspondientes transistores, para el caso de puente completo.
La sección A mantiene la auto-oscilación a la frecuencia de resonancia del inversor, mientras que la sección B produce una señal con una forma de onda de diente de sierra a la frecuencia de la oscilación, la cual cambia con cargas diferentes. Específicamente, se disponen dos integradores reiniciables con una entrada conectada a masa y la otra a un respectivo comparador con su entrada positiva conectada a uno de los extremos de la inductancia de detección Ls, creándose por tanto una señal con forma de diente de sierra a la salida de cada integrador reiniciable (A1 b+ y A2b+ en las Figuras 7 y 8), es decir una para el ciclo positivo y la otra para el ciclo negativo, estando reiniciados el resto del tiempo.
Un detector de pico conectado a la salida de los integradores encuentra el valor máximo de la señal con forma de onda de diente de sierra (entendida como la combinación de las dos señales) a la salida de sendos integradores reiniciables, y una tensión Vth es sustraída de dicho valor máximo (de tensión) para producir una forma de onda secundaria Spr (es decir en el punto de referencia Pr) que se compara con la forma de onda de diente de sierra original en A1 b y A2b, para provocar la conmutación del puente del inversor. Aunque se ha representado un circuito específico para el detector de pico, cualquier otro circuito (no ilustrado) que permita cumplir la función asignada al mismo también está cubierto por la presente invención, para otros ejemplos de realización. Específicamente, según se aprecia en la Figura 6, el detector de pico proporciona un "offset" (desplazamiento en continua) a partir del cual puede restarse la señal de atenuación Vth. Si Vth es cero, entonces la señal de pico más el "offset" (indicado en la parte inferior del circuito de la Figura 6) nunca cruzará las formas de onda de diente de sierra. Cuando Vth es mayor que cero, entonces la señal de pico cruzará los dientes de sierra 'antes' de los cruces por cero producidos en la Sección A (es decir en las señales VR3 y VF*, según se señala mediante los indicadores en forma de anillo en la Figura 7), según puede apreciarse en la Figura 8 (cruces indicados por los indicadores en forma de anillo). Esto proporciona una atenuación por encima de la frecuencia de resonancia y, por lo tanto, en ZVS. Por tanto, ambas secciones, A y B, pueden controlar la conmutación del inversor. Cuando se produzca atenuación, la Sección B cambiará el estado del biestable antes de que la sección A pueda hacerlo, haciendo funcionar al inversor por encima de la frecuencia de resonancia. En caso de que no haya atenuación, la sección B permanecerá inactiva y la sección A llevará a cabo la conmutación del inversor exactamente a la frecuencia de resonancia. Finalmente, unas puertas lógicas NAND proporcionan de manera efectiva la interfaz requerida entre las secciones A/B y el biestable.
El funcionamiento del biestable Be de la Figura 6 es similar al de las Figuras 1 y 4. La diferencias en que en los de las Figuras 1 y 4, se asume que se opera en modo flanco, es decir se asume que cambian su estado solamente durante el flanco anterior de sus entradas C+ y C-, mientras que en el de la Figura 6, incluyendo la circuitería lógica asociada, se corresponde a un diseño circuital más realista y por tanto preferido (por lo que también puede aplicarse en las realizaciones de las Figuras 1 y 4, incluyendo la circuitería lógica asociada, sustituyendo al allí ilustrado), las puertas NAND reciben una señal, la cual es retardada (por la puerta NOT correspondiente) de manera complementaria.
Finalmente, debe indicarse que el circuito de la Figura 6 opera en modo ZVS, el cual es preferido para la presente invención. No obstante, modificaciones del circuito de la Figura 6 que hiciesen que éste operase en modo ZCS también estarían cubiertas por la presente invención, aunque de manera menos preferida. Un experto en la materia podría introducir cambios y modificaciones en los ejemplos de realización descritos sin salirse del alcance de la invención según está definido en las reivindicaciones adjuntas. Por ejemplo, variaciones de los esquemas circuitales ilustrados en las Figuras 1 , 4 y 6, en cuanto al tipo, número, y conexionado de los componentes ilustrados (biestables, circuitería lógica, comparadores, integradores, sumadores, detectores de pico, etc.) están cubiertas por la presente invención, siempre que permitan implementar las funciones realizadas por tales esquemas funcionales, o funciones equivalentes, y que no supongan realizar un esfuerzo inventivo.

Claims

REIVINDICACIONES
1. - Balastro electrónico auto-oscilante con atenuación de luz para una lámpara, que comprende:
- un inversor de corriente que comprende al menos un dispositivo de conmutación (Q1 , Q2);
- un tanque resonante que comprende una inductancia de tanque (Lr) y un condensador de tanque (Cr) conectados eléctricamente en serie a la salida del inversor de corriente;
- un circuito de detección de corriente que incluye al menos un sensor de corriente configurado y dispuesto para detectar la corriente que circula por dicho tanque resonante; y
- un circuito de control conectado a dicho circuito de detección de corriente para recibir unas señales de detección proporcionadas por éste, y con al menos una salida conectada a dicho al menos un dispositivo de conmutación (Q1 , Q2), estando dicho circuito de control configurado y dispuesto para llevar a cabo un control de atenuación en relación a la luz emitida por una lámpara (F) conectada a la salida de dicho tanque resonante, mediante la generación de unas primeras señales de control de conmutación en función de las señales de detección recibidas, y su posterior envío a dicho dispositivo de conmutación (Q1 , Q2), que es al menos uno; caracterizado porque dicho circuito de control está configurado y dispuesto también para llevar a cabo un control del autoarranque del balastro por la propia oscilación proporcionada por el tanque resonante, mediante la generación de unas segundas señales de control de conmutación en función de una señal de habilitación (En) recibida por el circuito de control, y su posterior envío al dispositivo de conmutación (Q1 , Q2), que es al menos uno.
2. - Balastro de acuerdo con la reivindicación 1 , en el que dicho sensor de corriente es un transformador de corriente con un primario que constituye dicha inductancia de tanque (Lr) y un secundario que constituye una inductancia de detección (Ls).
3. - Balastro de acuerdo con una cualquiera de las reivindicaciones anteriores, en el que dicho inversor es de media onda y comprende dos de dichos dispositivos de conmutación (Q1 , Q2) conectados eléctricamente en serie entre sí, estando el tanque resonante conectado entre un punto intermedio de conexión de ambos dispositivos de conmutación (Q1 , Q2) y una conexión a masa.
4. - Balastro de acuerdo con una cualquiera de las reivindicaciones anteriores, en el que dicho circuito de detección de corriente comprende una primera (Rb) y una segunda (Ra) resistencias conectadas a dicho sensor de corriente de manera que por una (Rb) de ellas circule una primera corriente directamente proporcional a la corriente circulante por el tanque resonante, y por la otra (Ra) una segunda corriente de igual magnitud pero de signo inverso a dicha primera corriente.
5. - Balastro de acuerdo con la reivindicación 4 cuando depende de la 2, en el que dicha primera resistencia (Rb) está conectada entre un primer extremo de dicha inductancia de detección (Ls) y una conexión a masa, y dicha segunda resistencia (Ra) está conectada entre un segundo extremo de la inductancia de detección (Ls) y dicha conexión a masa.
6. - Balastro de acuerdo con la reivindicación 3 o con una cualquiera de las reivindicaciones anteriores cuando depende de la 3, en el que dicho circuito de control comprende un circuito lógico con al menos una primera (Q) y una segunda (Q) salidas, cada una de ellas conectada a un respectivo de dichos dos dispositivos de conmutación (Q1 , Q2) para su control mediante el envío de dichas primeras y segundas señales de control de conmutación, y una entrada de habilitación (E) para la recepción de dicha señal de habilitación (En), estando dicho circuito lógico adaptado para, al recibir la señal de habilitación (En), generar dichas segundas señales de control de conmutación para que uno de los dos dispositivos de conmutación (Q1 , Q2) adopte un estado de conducción.
7. - Balastro de acuerdo con la reivindicación 6 cuando depende de la 5 o de la 4 o, en el que dicho circuito lógico comprende:
- un biestable (Be) que comprende dichas primera (Q) y segunda (Q) salidas, dicha entrada de habilitación, y una primera (S) y una segunda (R) entradas de control;
- un primer comparador (A1) con una primera entrada (A1+) conectada a dicha segunda resistencia (Ra) de manera que la caída de tensión existente en la segunda resistencia (Ra) es aplicada en dicha primera entrada (A1+), una segunda entrada (A1-) conectada a un punto de referencia (Pr) de un circuito de tensión de referencia variable, y una salida (C-) conectada a dicha primera entrada de control (S) de dicho biestable (Be); y - un segundo comparador (A2) con una primera entrada (A2+ o A2-) conectada a dicha primera resistencia (Rb) de manera que la caída de tensión existente en la primera resistencia (Rb) es aplicada en dicha primera entrada (A2+ o A2-), una segunda entrada (A2- o A2+) conectada a dicho punto de referencia (Pr) de dicho circuito de tensión de referencia variable, y una salida (C+) conectada a dicha segunda entrada de control (R) del biestable (Be).
8. - Balastro de acuerdo con la reivindicación 7, en el que el circuito de tensión de referencia variable comprende una resistencia (Rf) conectada entre dicho punto de referencia (Pr) y un terminal (Tth) con una tensión de referencia (Vth) variable en un rango de tensión igual o mayor que cero para llevar a cabo el control de la atenuación.
9. - Balastro de acuerdo con la reivindicación 8, en el que el circuito de tensión de referencia variable comprende además un filtro pasa-bajos que incluye un condensador (Cf) y un dispositivo de conmutación auxiliar (Qf) conectados en paralelo entre una conexión a masa y dicho punto de referencia (Pr), estando la entrada de habilitación (E) del biestable conectada eléctricamente a dicho dispositivo de conmutación auxiliar (Qf) para recibir la señal de habilitación (En) y controlarse su conmutación en función de la misma.
10.- Balastro de acuerdo con la reivindicación 9, en el que el circuito de tensión de referencia variable comprende además un diodo Zener (Z) con su cátodo conectado eléctricamente al punto de referencia (Pr) y su ánodo conectado eléctricamente a dicha conexión a masa.
1 1.- Balastro de acuerdo con la reivindicación 9 o 10, en el que el dispositivo de conmutación auxiliar (QF) es un transistor MOSFET de canal P con su terminal de drenador conectado eléctricamente al punto de conexión a masa, su terminal de fuente conectado eléctricamente al punto de referencia (Pr) y su terminal de puerta conectado eléctricamente a la entrada de habilitación (E) del biestable (Be).
12.- Balastro de acuerdo con una cualquiera de las reivindicaciones 7 a 11 , en el que los dos dispositivos de conmutación (Q1 , Q2) son sendos transistores MOSFET de canal N, con sus terminales de puerta conectados, respectivamente, a la primera (Q) y la segunda (Q) salidas del biestable (Be).
13.- Balastro de acuerdo con la reivindicación 8 o una cualquiera de las reivindicaciones 9 a 12 cuando dependen de la 8, en el que el circuito de control comprende medios de comunicación adaptados para recibir unas señales de control desde un dispositivo de control remoto que incluyan al menos dicha señal de tensión de referencia variable (Vth) y enviársela a dicho terminal (Tth).
14.- Balastro de acuerdo con la reivindicación 1 , en el que el circuito de control comprende:
- un primer sub-circuito de control (sección B), configurado y dispuesto para llevar a cabo dicho control de atenuación en relación a la luz emitida por dicha lámpara (F), mediante la generación de dichas primeras señales de control de conmutación en función de las señales de detección recibidas, y su posterior envío a dicho dispositivo de conmutación (Q1 , Q2), que es al menos uno; y
- un segundo sub-circuito de control (sección A), configurado y dispuesto para llevar a cabo dicho control del autoarranque del balastro por la propia oscilación proporcionada por el tanque resonante, mediante la generación de dichas segundas señales de control de conmutación en función de dicha señal de habilitación (En) recibida por el circuito de control y de las señales de detección recibidas desde dicho circuito de detección de corriente, y su posterior envío al dispositivo de conmutación (Q1 , Q2), que es al menos uno.
15.- Balastro de acuerdo con una cualquiera de las reivindicaciones anteriores, en el que el circuito de control está implementado en un circuito integrado.
16.- Sistema, que comprende: - al menos un balastro según la reivindicación 13; y
- un dispositivo de control remoto que está adaptado para la generación de al menos dicha señal de tensión de referencia variable (Vth) y que incluye medios de comunicación para el envío de al menos la señal de tensión de referencia variable (Vth) generada a los respectivos medios de comunicación del circuito de control del balastro.
PCT/ES2017/070826 2016-12-19 2017-12-18 Balastro electrónico auto-oscilante con atenuación de luz para una lámpara y sistema que lo incluye WO2018115554A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201631618 2016-12-19
ES201631618A ES2693583B1 (es) 2016-12-19 2016-12-19 Balastro electronico auto-oscilante con atenuacion de luz para una lampara y sistema que lo incluye.

Publications (1)

Publication Number Publication Date
WO2018115554A1 true WO2018115554A1 (es) 2018-06-28

Family

ID=62624673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2017/070826 WO2018115554A1 (es) 2016-12-19 2017-12-18 Balastro electrónico auto-oscilante con atenuación de luz para una lámpara y sistema que lo incluye

Country Status (2)

Country Link
ES (1) ES2693583B1 (es)
WO (1) WO2018115554A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022041589A1 (zh) * 2020-08-31 2022-03-03 杭州中恒电气股份有限公司 全桥型llc谐振变换器及其谐振电流检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2079298A2 (es) * 1993-10-13 1996-01-01 Univ Oviedo Sistema de control para un circuito resonante de alimentacion de lamparas de descarga con aprovechamiento energetico y perdidas en conmutacion optimizadas.
ES2156741A1 (es) * 1999-06-21 2001-07-01 Univeraidad De Oviedo Balasto electronico de una sola etapa y alto factor de potencia basadoen un convertidor reductor y un inversor resonante.
US20140320033A1 (en) * 2011-05-10 2014-10-30 Lutron Electronics Co., Inc. Dimmable screw-in compact fluorescent lamp having integral electronic ballast circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2079298A2 (es) * 1993-10-13 1996-01-01 Univ Oviedo Sistema de control para un circuito resonante de alimentacion de lamparas de descarga con aprovechamiento energetico y perdidas en conmutacion optimizadas.
ES2156741A1 (es) * 1999-06-21 2001-07-01 Univeraidad De Oviedo Balasto electronico de una sola etapa y alto factor de potencia basadoen un convertidor reductor y un inversor resonante.
US20140320033A1 (en) * 2011-05-10 2014-10-30 Lutron Electronics Co., Inc. Dimmable screw-in compact fluorescent lamp having integral electronic ballast circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YIN Y ET AL.: "Digital Phase Control for Resonant Inverters", IEEE POWER ELECTRONICS LETTERS, vol. 2, no. 2, 1 June 2004 (2004-06-01), NEW YORK, NY, US, XP011117209, ISSN: 1540-7985, [retrieved on 20180510] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022041589A1 (zh) * 2020-08-31 2022-03-03 杭州中恒电气股份有限公司 全桥型llc谐振变换器及其谐振电流检测方法

Also Published As

Publication number Publication date
ES2693583B1 (es) 2019-09-19
ES2693583A1 (es) 2018-12-12

Similar Documents

Publication Publication Date Title
KR102271078B1 (ko) 스위치 제어 회로 및 이를 포함하는 전력 공급 장치
EP2523532B1 (en) Lighting device for lighting solid-state light source and illumination apparatus using same
ES2318014T3 (es) Modulo de pwm programable para controlar un balasto.
TWI504315B (zh) 使用可調式振盪器之高解析度脈衝寬度調變(pwm)頻率控制
EP0818127A1 (en) Lamp protective, electronic ballast
WO2016090959A1 (zh) 开关电源双脉冲脉宽限制电路及其实现方法
ES2663078T3 (es) Dispositivo de accionamiento y método de accionamiento para accionar una carga, y que tiene un circuito de purga dependiente de la polaridad
JP2010283998A (ja) ゼロ電流スイッチングおよび任意周波数のパルス幅変調を利用した共振インバータの駆動方法
US20150366029A1 (en) Power efficient line synchronized dimmer
JPH0336963A (ja) インバータ装置
ES2942568T3 (es) Sistema RF para lámpara de radiofrecuencia
TWI634814B (zh) 雙載子電源控制技術
KR101025173B1 (ko) 가스 방전 램프를 위한 드라이버와 전류를 감지하고 출력 신호를 생성하기 위한 검출기
JP2933077B1 (ja) 放電灯点灯装置
WO2018115554A1 (es) Balastro electrónico auto-oscilante con atenuación de luz para una lámpara y sistema que lo incluye
JP2004505593A (ja) インタフェース回路及び方法
WO2009107057A1 (en) Dimming circuit and electronic ballast for a lamp
JP2007228799A (ja) コンバータ装置
JP2006196437A (ja) 放電灯点灯装置並びに照明器具
JP2008091304A (ja) 放電管点灯装置の同期運転システム及び放電管点灯装置並びに半導体集積回路
JPH10149888A (ja) 照明用点灯装置及びその制御方法
ES2748394T3 (es) Dispositivo de alimentación eléctrica
US7187244B2 (en) Digital light ballast oscillator
WO2009047174A1 (en) Circuit and method for double peak current control
RU161998U1 (ru) Схема защиты каскада управления выходным ключом модулятора

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17884656

Country of ref document: EP

Kind code of ref document: A1