WO2018113540A1 - 同步信号发送方法和装置 - Google Patents
同步信号发送方法和装置 Download PDFInfo
- Publication number
- WO2018113540A1 WO2018113540A1 PCT/CN2017/115330 CN2017115330W WO2018113540A1 WO 2018113540 A1 WO2018113540 A1 WO 2018113540A1 CN 2017115330 W CN2017115330 W CN 2017115330W WO 2018113540 A1 WO2018113540 A1 WO 2018113540A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- synchronization
- bandwidth
- sync
- subcarrier
- synchronization signal
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
- H04L27/261—Details of reference signals
- H04L27/2613—Structure of the reference signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
- H04W56/0005—Synchronisation arrangements synchronizing of arrival of multiple uplinks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver only
- H04L27/2655—Synchronisation arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
- H04W56/001—Synchronization between nodes
- H04W56/0015—Synchronization between nodes one node acting as a reference for the others
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/18502—Airborne stations
- H04B7/18506—Communications with or from aircraft, i.e. aeronautical mobile service
- H04B7/18508—Communications with or from aircraft, i.e. aeronautical mobile service with satellite system used as relay, i.e. aeronautical mobile satellite service
Definitions
- the embodiments of the present invention relate to the field of communications technologies, and in particular, to a synchronization signal sending method and apparatus.
- Synchronization technology is one of the key technologies of wireless communication systems.
- the transmitting end inserts specific synchronization information into the transmission signal, and the receiving end acquires synchronization information in the received signal by using a synchronization algorithm, thereby achieving a state synchronized with the transmitting end.
- the narrowband communication system is an important branch of the wireless communication system.
- a narrowband communication system is a bandwidth limited communication system.
- the number of frequency domain subcarriers included in a time domain symbol is limited.
- the transmitting end usually combines multiple consecutively transmitted time domain symbols to transmit synchronization information. Multiple symbols can carry a longer synchronization sequence in the frequency domain, thereby improving the autocorrelation property of the synchronization sequence.
- the spectrum width corresponding to the synchronization sequence does not exceed the bandwidth of the system synchronization channel.
- redundancy is often included in the structure of time domain symbols.
- the Orthogonal Frequency Division Multiplexing (OFDM) symbol includes a Cyclic Prefix (CP), or the transmitting end needs to add redundant information to the time domain symbol, or limit the synchronization signal in the frequency domain.
- CP Cyclic Prefix
- Bandwidth etc.
- the embodiment of the present application provides a synchronization signal sending method and device, which reduces the bandwidth loss of the synchronization signal, and improves the utilization rate and synchronization performance of the system synchronization bandwidth.
- an embodiment of the present application provides a synchronization signal sending method.
- the method includes: acquiring an initial synchronization sequence; dividing the initial synchronization sequence into N sub-synchronization sequences; and carrying N sub-synchronization sequences on N time-domain symbols, wherein each sub-synchronization sequence is carried by one time domain symbol; The time domain symbol is sent to the receiving device.
- the synchronization signal transmission method provided by the first aspect fully utilizes the system synchronization bandwidth and the system protection bandwidth, so that the length of the initial synchronization sequence increases and the correlation is better. After redundant deduction and bandwidth limitation, the bandwidth loss of the synchronization signal can be reduced, and the utilization rate and synchronization performance of the system synchronization bandwidth are improved.
- the length L of the initial synchronization sequence satisfies: (BW sync + M ⁇ BW subcarrier ) ⁇ T sync > L > BW sync ⁇ T sync .
- the BW sync is the bandwidth of the synchronization channel
- the BW subcarrier is the subcarrier bandwidth
- the T sync is the synchronization signal duration
- M BW protect /BW subcarrier
- the BW protect is the system protection bandwidth.
- the synchronization signal transmission method provided by the possible implementation specifically provides a range of values of the length of the initial synchronization sequence. Selecting the initial synchronization sequence within the length range can fully utilize the system synchronization bandwidth and the system protection bandwidth, reduce the bandwidth loss of the synchronization signal, and improve the utilization rate and synchronization performance of the system synchronization bandwidth.
- the length L of the initial synchronization sequence satisfies:
- the synchronization signal transmission method provided by the possible implementation specifically provides another range of values of the length of the initial synchronization sequence. Selecting the initial synchronization sequence within the length range can fully utilize the system synchronization bandwidth and the system protection bandwidth, reduce the bandwidth loss of the synchronization signal, and improve the utilization rate and synchronization performance of the system synchronization bandwidth.
- the maximum value of M is two.
- the method may further include: performing upsampling on the initial synchronization sequence.
- an embodiment of the present application provides a synchronization signal sending apparatus.
- the sync signal transmitting device differs depending on different communication systems.
- the synchronization signal sending device may be: an evolved base station, a base station, a micro base station, a wireless router, a ground station, and the like.
- the device comprises: a processing module and a transceiver module.
- a processing module configured to obtain an initial synchronization sequence; divide the initial synchronization sequence into N sub-synchronization sequences; and carry N sub-synchronization sequences on N time-domain symbols, where each sub-synchronization sequence is carried by one time domain symbol.
- a transceiver module configured to send N time domain symbols to the receiving device.
- the length L of the initial synchronization sequence satisfies: (BW sync + M ⁇ BW subcarrier ) ⁇ T sync > L > BW sync ⁇ T sync .
- the BW sync is the bandwidth of the synchronization channel
- the BW subcarrier is the subcarrier bandwidth
- the T sync is the synchronization signal duration
- M BW protect /BW subcarrier
- the BW protect is the system protection bandwidth.
- the length L of the initial synchronization sequence satisfies:
- the maximum value of M is two.
- the processing module is further configured to: perform upsampling on the initial synchronization sequence.
- an embodiment of the present application provides a synchronization signal sending apparatus.
- the sync signal transmitting device differs depending on different communication systems.
- the synchronization signal sending device may be: an evolved base station, a base station, a micro base station, a wireless router, a ground station, and the like.
- the device includes a processor and a transceiver.
- the processor is configured to obtain an initial synchronization sequence, divide the initial synchronization sequence into N sub-synchronization sequences, and carry N sub-synchronization sequences on N time-domain symbols, where each sub-synchronization sequence is carried by one time domain symbol.
- a transceiver for transmitting N time domain symbols to a receiving device.
- the length L of the initial synchronization sequence satisfies: (BW sync + M ⁇ BW subcarrier ) ⁇ T sync > L > BW sync ⁇ T sync .
- the BW sync is the bandwidth of the synchronization channel
- the BW subcarrier is the subcarrier bandwidth
- the T sync is the synchronization signal duration
- M BW protect /BW subcarrier
- the BW protect is the system protection bandwidth.
- the length L of the initial synchronization sequence satisfies:
- the maximum value of M is two.
- the processor is further configured to: perform upsampling on the initial synchronization sequence.
- the embodiment of the present application provides a computer readable storage medium, where a computer execution instruction is stored, and when at least one processor of the synchronization signal transmitting apparatus executes the computer to execute an instruction, the synchronization signal sending apparatus A synchronization signal transmission method provided by the above first aspect or various possible designs of the first aspect is performed.
- an embodiment of the present application provides a computer program product, the computer program product comprising computer execution instructions, the computer execution instructions being stored in a computer readable storage medium.
- At least one processor of the synchronization signal transmitting device can read the computer execution instructions from a computer readable storage medium, and the at least one processor executes the computer to execute the instructions such that the synchronization signal transmitting device implements the various aspects of the first aspect or the first aspect Designed to provide a method of synchronizing signal transmission.
- the embodiment of the present application provides a communication system, including the synchronization signal sending apparatus and the receiving apparatus provided by various possible designs of the second aspect or the second aspect, or includes various aspects of the third aspect or the third aspect. It is possible to design a synchronization signal transmitting device and a receiving device.
- the fourth aspect, and the fourth aspect of the third aspect Each possible implementation manner of the aspect, the fifth aspect, and the possible implementation manners of the fifth aspect, the sixth aspect, and the possible implementation manner of the sixth aspect, wherein the initial synchronization sequence corresponds to a spectrum width greater than a synchronization channel bandwidth And less than the sum of the bandwidth of the synchronization channel and the system protection bandwidth.
- N is the number of time domain symbols occupied by the synchronization signal, and N is an integer greater than one.
- the embodiment of the present application provides a synchronization signal sending method and apparatus.
- the method includes: obtaining an initial synchronization sequence, where the initial synchronization sequence corresponds to a spectrum width greater than a synchronization channel bandwidth, and is smaller than a sum of a synchronization channel bandwidth and a system protection bandwidth; and dividing the initial synchronization sequence into N sub-synchronization sequences; The N sub-synchronization sequences are carried on N time-domain symbols; the N time-domain symbols are transmitted to the receiving device.
- the synchronization signal sending method provided by the embodiment of the present application reduces the bandwidth loss of the synchronization signal, and improves the utilization ratio and synchronization performance of the system synchronization bandwidth.
- FIG. 1 is a system architecture diagram of a synchronization signal sending method according to an embodiment of the present application
- Embodiment 1 of a synchronization signal sending method according to an embodiment of the present application
- FIG. 3 is a schematic structural diagram of a synchronization signal of an eIoT system in Embodiment 1 of a synchronization signal sending method according to an embodiment of the present disclosure
- FIG. 4 is a synchronization sequence sequence of different lengths in Embodiment 1 of a synchronization signal sending method according to an embodiment of the present disclosure.
- FIG. 5 is a related performance comparison diagram of synchronization sequences of different lengths in Embodiment 1 of a synchronization signal sending method according to an embodiment of the present disclosure
- FIG. 6 is a schematic structural diagram of Embodiment 1 of a synchronization signal sending apparatus according to an embodiment of the present disclosure
- FIG. 7 is a schematic structural diagram of Embodiment 2 of a synchronization signal sending apparatus according to an embodiment of the present disclosure
- FIG. 8 is a schematic structural diagram of Embodiment 1 of a communication system according to an embodiment of the present disclosure.
- FIG. 1 is a system architecture diagram of a synchronization signal sending method according to an embodiment of the present application.
- the method for transmitting a synchronization signal provided by the embodiment of the present application can be applied to a communication system in which a transmitting end and a receiving end need to perform synchronization.
- a typical communication system includes a satellite communication system, a wireless communication system, and a wireless local area network.
- Satellite communication systems usually consist of satellite and terrestrial ends.
- the satellite side acts as a relay station in the air, amplifies the electromagnetic waves sent from the ground station and returns it to another ground station.
- the ground station is the interface between the satellite and the ground public network.
- a wireless communication system usually consists of a transmitting device, a receiving device, and a wireless channel.
- the devices it includes vary.
- devices in the system include: an evolved base station (eNodeB) and a terminal.
- eNodeB evolved base station
- eIoT Industrial Internet of Things
- devices in the system include: a base station and a terminal.
- Wireless Local Area Networks are local area networks that use electromagnetic waves instead of twisted pair copper wires.
- devices include: a wireless router and a terminal.
- the terminal involved in the embodiment of the present application may be a wireless terminal such as a mobile phone or a tablet computer, and the wireless terminal includes a device for providing voice and/or data services to the user, and the terminal may also be a handheld device with a wireless connection function, an in-vehicle device, or
- the embodiment of the present application is not limited to the wearable device, the computing device, and the user equipment UE, the mobile station (MS), and the terminal.
- the base station and the wireless router in the embodiments of the present application may be any device that has the management of the wireless network resource, and is not limited in this embodiment.
- the synchronization signal transmission method is mainly applied to a scenario in which a synchronization signal is carried by a multi-symbol in a narrow-band communication system, and aims to solve the synchronization caused by the redundancy deduction and bandwidth limitation operation of the synchronization signal in the prior art.
- FIG. 2 is a flowchart of Embodiment 1 of a synchronization signal sending method according to an embodiment of the present application.
- the synchronization signal sending method provided by the embodiment of the present application may be a synchronization signal sending apparatus.
- the sync signal transmitting device differs depending on different communication systems.
- the synchronization signal sending device may be: an evolved base station, a base station, a micro base station, a wireless router, a ground station, and the like.
- the method for sending a synchronization signal provided by the embodiment of the present application may include:
- Step 101 Acquire an initial synchronization sequence.
- the spectrum width corresponding to the initial synchronization sequence is greater than the bandwidth of the synchronization channel, and is smaller than the sum of the bandwidth of the synchronization channel and the system protection bandwidth.
- the synchronization signal transmitting apparatus may select an initial synchronization sequence among the preset synchronization sequence candidate sets.
- Step 102 Segment the initial synchronization sequence into N sub-synchronization sequences.
- N is the number of time domain symbols occupied by the synchronization signal, and N is an integer greater than one;
- Step 103 Carry N sub-synchronization sequences on N time-domain symbols.
- each sub-synchronization sequence is carried by a time domain symbol.
- Step 104 Send N time domain symbols to the receiving device.
- the spectrum width corresponding to the initial synchronization sequence is greater than the bandwidth of the synchronization channel, and is smaller than the sum of the bandwidth of the synchronization channel and the system protection bandwidth.
- a margin is reserved for the redundancy deduction of the synchronization signal.
- bandwidth of the synchronization channel and the system protection bandwidth are not specifically limited in the embodiment of the present application, and are different according to different communication systems.
- the specific implementation manner of carrying the N sub-synchronization sequences on the N time-domain symbols in step 103 is not particularly limited, and may be different according to different communication systems. Signal processing methods in different communication systems.
- the specific implementation manner of the synchronization sequence is not limited in the embodiment of the present application, and is set as needed.
- the synchronization sequence can be a ZC sequence.
- the method provided by the embodiment of the present application may further include:
- the initial synchronization sequence is upsampled.
- the length L of the initial synchronization sequence may satisfy: (BW sync + M ⁇ BW subcarrier ) ⁇ T sync > L > BW sync ⁇ T sync .
- BW sync is the bandwidth of the synchronization channel
- BW subcarrier is the subcarrier bandwidth
- T sync is the synchronization signal duration
- M BW protect /BW subcarrier
- BW protect is the system protection bandwidth.
- the length L of the initial synchronization sequence may satisfy:
- the maximum value of M can be 2.
- FIG. 3 is a schematic structural diagram of a synchronization signal of an eIoT system in Embodiment 1 of a synchronization signal sending method according to an embodiment of the present disclosure.
- the time domain symbol used by the eIoT system is an OFDM symbol.
- the total channel bandwidth of the system channel is 180 kHz
- the bandwidth of the synchronization channel is 60 kHz
- the subcarrier bandwidth is 15 kHz.
- the system contains 12 subcarriers.
- the system uses four subcarriers in the middle of the channel to carry synchronization information.
- the continuous 14 OFDM symbols form a synchronization signal with a synchronization signal duration of 1 ms.
- the system protection bandwidth is 30 kHz.
- BW sync 60 kHz
- BW subcarrier 15 kHz
- BW protect 30 kHz
- N 14
- T sync 1 ms
- the initial synchronization sequence is upsampled, it is divided into 14 sub-synchronization sequences and sequentially mapped onto 14 OFDM symbols.
- Each sub-synchronization sequence is first subjected to Fast Fourier Transformation (FFT), and then subjected to Inverse Fast Fourier Transform (IFFT) IFFT, and is retained only in the frequency domain according to the requirements of the OFDM symbol. Synchronize the information on channel frequency F, subtract the data at the CP location and replace it with CP data.
- the base station recombines the 14 sub-synchronization sequences after signal processing to form a synchronization signal to be transmitted.
- the initial synchronization sequence used is a ZC sequence of length 59.
- the length L of the initial synchronization sequence may satisfy 90>L>60. In another implementation, the length L of the initial synchronization sequence may satisfy 84>L>56.
- the initial synchronization sequence is a ZC sequence of length 79.
- FIG. 4 is a diagram showing a comparison of spectrum widths corresponding to different length synchronization sequences in the first embodiment of the method for transmitting a synchronization signal according to an embodiment of the present disclosure.
- FIG. 5 is a related performance comparison diagram of different length synchronization sequences in Embodiment 1 of a synchronization signal sending method according to an embodiment of the present application.
- a ZC sequence of length 59 is used, and the generated synchronous signal actually has a synchronous bandwidth of 51 kHz, and does not fully utilize the synchronization channel bandwidth of 60 kHz provided by the system.
- the ZC sequence of length 79 has better autocorrelation performance than the ZC sequence of length 59, thereby improving the synchronization performance of the system.
- the embodiment of the present application provides a synchronization signal sending method, including: acquiring an initial synchronization sequence, dividing an initial synchronization sequence into N sub-synchronization sequences, and carrying N sub-synchronization sequences on N time-domain symbols, and N time-domains The symbol is sent to the receiving device.
- the synchronization signal sending method provided by the embodiment of the present application makes full use of the system synchronization bandwidth and the system protection bandwidth, so that the length of the initial synchronization sequence increases, and the correlation is better. After redundant deduction and bandwidth limitation, the bandwidth loss of the synchronization signal can be reduced, and the utilization rate and synchronization performance of the system synchronization bandwidth are improved.
- FIG. 6 is a schematic structural diagram of Embodiment 1 of a synchronization signal sending apparatus according to an embodiment of the present disclosure.
- the synchronization signal transmitting apparatus provided in the embodiment of the present application is different according to different communication systems.
- the synchronization signal transmitting apparatus may be: an evolved base station, a base station, a micro base station, a wireless router, a ground station, and the like, and the synchronization signal sending method provided by the embodiment shown in FIG. 2 to FIG. 5 may be executed.
- the synchronization signal sending apparatus provided by the embodiment of the present application may include:
- the processing module 12 is configured to acquire an initial synchronization sequence.
- the spectrum width corresponding to the initial synchronization sequence is greater than the bandwidth of the synchronization channel, and is smaller than the sum of the bandwidth of the synchronization channel and the system protection bandwidth.
- the initial synchronization sequence is segmented into N sub-synchronization sequences. Where N is the number of time domain symbols occupied by the synchronization signal, and N is an integer greater than 1.
- the N subsynchronization sequences are carried on N time domain symbols. Wherein each sub-synchronization sequence is carried by a time domain symbol.
- the transceiver module 11 is configured to send N time domain symbols to the receiving device.
- the length L of the initial synchronization sequence satisfies: (BW sync + M ⁇ BW subcarrier ) ⁇ T sync > L > BW sync ⁇ T sync .
- the BW sync is the bandwidth of the synchronization channel
- the BW subcarrier is the subcarrier bandwidth
- the T sync is the synchronization signal duration
- M BW protect /BW subcarrier
- the BW protect is the system protection bandwidth.
- the length L of the initial synchronization sequence satisfies:
- the maximum value of M is 2.
- the processing module 12 is further configured to: perform upsampling on the initial synchronization sequence before dividing the initial synchronization sequence into N sub-synchronization sequences.
- the synchronization signal sending apparatus provided by the embodiment of the present application is configured to perform the synchronization signal sending method provided by the method embodiment shown in FIG. 2 to FIG. 5, and the technical principle and technical effects thereof are similar, and details are not described herein again.
- FIG. 7 is a schematic structural diagram of Embodiment 2 of a synchronization signal sending apparatus according to an embodiment of the present disclosure.
- the synchronization signal transmitting apparatus provided in the embodiment of the present application is different according to different communication systems.
- the synchronization signal transmitting apparatus may be: an evolved base station, a base station, a micro base station, a wireless router, a ground station, and the like, and the synchronization signal sending method provided by the embodiment shown in FIG. 2 to FIG. 5 may be executed.
- the synchronization signal sending apparatus provided by the embodiment of the present application may include:
- the processor 22 is configured to acquire an initial synchronization sequence.
- the spectrum width corresponding to the initial synchronization sequence is greater than the bandwidth of the synchronization channel, and is smaller than the sum of the bandwidth of the synchronization channel and the system protection bandwidth.
- the initial synchronization sequence is segmented into N sub-synchronization sequences. Where N is the number of time domain symbols occupied by the synchronization signal, and N is an integer greater than 1.
- the N subsynchronization sequences are carried on N time domain symbols. Wherein each sub-synchronization sequence is carried by a time domain symbol.
- the transceiver 21 is configured to send N time domain symbols to the receiving device.
- the length L of the initial synchronization sequence satisfies: (BW sync + M ⁇ BW subcarrier ) ⁇ T sync > L > BW sync ⁇ T sync .
- the BW sync is the bandwidth of the synchronization channel
- the BW subcarrier is the subcarrier bandwidth
- the T sync is the synchronization signal duration
- M BW protect /BW subcarrier
- the BW protect is the system protection bandwidth.
- the length L of the initial synchronization sequence satisfies:
- the maximum value of M is 2.
- the processor 22 is further configured to: perform upsampling on the initial synchronization sequence before dividing the initial synchronization sequence into N sub-synchronization sequences.
- the synchronization signal sending apparatus provided in this embodiment is used to perform the synchronization signal sending method provided by the method embodiment shown in FIG. 2 to FIG. 5, and the technical principle and technical effects thereof are similar, and details are not described herein again.
- an embodiment of the present application provides a computer readable storage medium, where a computer executable instruction is stored in a computer readable storage medium.
- the synchronization signal transmitting apparatus performs the synchronization signal transmitting method provided by the method embodiment shown in FIGS. 2 to 5.
- an embodiment of the present application provides a computer program product, the computer program product comprising computer execution instructions, the computer execution instructions being stored in a computer readable storage medium.
- At least one processor of the synchronization signal transmitting device may read the computer execution instructions from a computer readable storage medium, and the at least one processor executes the computer to execute the instructions such that the synchronization signal transmitting device performs the method illustrated in FIGS. 2-5 The synchronization signal transmission method provided by the embodiment.
- FIG. 8 is a schematic structural diagram of Embodiment 1 of a communication system according to an embodiment of the present disclosure.
- the communication system provided by the embodiment of the present application may include the synchronization signal sending apparatus 31 and the receiving apparatus 32 provided by the embodiment shown in FIG. 6.
- the synchronization signal transmitting apparatus 31 and the receiving apparatus 32 provided in the embodiment shown in FIG.
- the synchronization signal transmitting device 31 and the receiving device 32 differ depending on different communication systems.
- the synchronization signal transmitting device 31 may be: an evolved base station, a base station, a micro base station, a wireless router, a ground station, and the like.
- the receiving device 32 may be: a terminal, a satellite, and the like.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
- Time-Division Multiplex Systems (AREA)
Abstract
本申请实施例提供一种同步信号发送方法和装置。其中,方法包括:获取初始同步序列;其中,所述初始同步序列对应的频谱宽度大于同步信道的带宽,且小于所述同步信道的带宽与系统保护带宽之和;将所述初始同步序列分割成N个子同步序列;将所述N个子同步序列承载在N个时域符号上;将所述N个时域符号发送给接收装置。本申请实施例提供的同步信号发送方法,降低了同步信号的带宽损失,提升了系统同步带宽的利用率和同步性能。
Description
本申请要求于2016年12月19日提交中国专利局、申请号为201611174894.1、申请名称为“同步信号发送方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请实施例涉及通信技术领域,尤其涉及一种同步信号发送方法和装置。
同步技术是无线通信系统的关键技术之一。发送端在发送信号中插入特定的同步信息,接收端利用同步算法获取接收信号中的同步信息,从而达到与发送端同步的状态。
其中,窄带通信系统是无线通信系统的一个重要分支。窄带通信系统是带宽受限的通信系统。一个时域符号中包含的频域子载波的数量有限。为了获得较好的同步性能,发送端通常将多个连续发送的时域符号合并在一起,用来传递同步信息。多符号可以在频域上承载长度较长的同步序列,从而提高同步序列的自相关特性。
目前,窄带通信系统在生成同步序列时,同步序列对应的频谱宽度不会超过系统同步信道的带宽。但是,时域符号的结构中通常包括冗余。例如:正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号包括循环前缀(Cyclic Prefix,CP),或者,发送端需要在时域符号中加入冗余信息,或者,频域上限制同步信号带宽等。同步信号经过冗余扣除和限制带宽等操作后,将会导致同步信号的带宽损失,同步信号的相关特性下降,导致同步性能亏损。
发明内容
本申请实施例提供一种同步信号发送方法和装置,降低了同步信号的带宽损失,提升了系统同步带宽的利用率和同步性能。
第一方面,本申请实施例提供一种同步信号发送方法。该方法包括:获取初始同步序列;将初始同步序列分割成N个子同步序列;将N个子同步序列承载在N个时域符号上,其中,每个子同步序列由一个时域符号承载;将N个时域符号发送给接收装置。
通过第一方面提供的同步信号发送方法,充分利用了系统同步带宽和系统保护带宽,使得初始同步序列的长度增长,相关性更好。在经过冗余扣除和限制带宽等操作后,可以降低同步信号的带宽损失,提升了系统同步带宽的利用率和同步性能。
在第一方面的一种可能的实施方式中,初始同步序列的长度L满足:(BWsync+M·BWsubcarrier)·Tsync>L>BWsync·Tsync。其中,BWsync为同步信道的带宽,BWsubcarrier
为子载波带宽,Tsync为同步信号持续时间,M=BWprotect/BWsubcarrier,BWprotect为系统保护带宽。
通过该可能的实施方式提供的同步信号发送方法,具体提供了初始同步序列的长度的一种取值范围。在该长度范围内选择初始同步序列,可以充分利用系统同步带宽和系统保护带宽,降低同步信号的带宽损失,提升系统同步带宽的利用率和同步性能。
通过该可能的实施方式提供的同步信号发送方法,具体提供了初始同步序列的长度的另一种取值范围。在该长度范围内选择初始同步序列,可以充分利用系统同步带宽和系统保护带宽,降低同步信号的带宽损失,提升系统同步带宽的利用率和同步性能。
在第一方面的一种可能的实施方式中,M的最大值为2。
在第一方面的一种可能的实施方式中,在将初始同步序列分割成N个子同步序列之前,方法还可以包括:对初始同步序列进行上采样。
第二方面,本申请实施例提供一种同步信号发送装置。同步信号发送装置根据不同的通信系统而有所不同。例如:同步信号发送装置可以为:演进型基站、基站、微基站、无线路由器、地面站,等等。该装置包括:处理模块和收发模块。处理模块,用于获取初始同步序列;将初始同步序列分割成N个子同步序列;将N个子同步序列承载在N个时域符号上,其中,每个子同步序列由一个时域符号承载。收发模块,用于将N个时域符号发送给接收装置。
在第二方面的一种可能的实施方式中,初始同步序列的长度L满足:(BWsync+M·BWsubcarrier)·Tsync>L>BWsync·Tsync。其中,BWsync为同步信道的带宽,BWsubcarrier为子载波带宽,Tsync为同步信号持续时间,M=BWprotect/BWsubcarrier,BWprotect为系统保护带宽。
在第二方面的一种可能的实施方式中,M的最大值为2。
在第二方面的一种可能的实施方式中,处理模块还用于:对初始同步序列进行上采样。
第三方面,本申请实施例提供一种同步信号发送装置。同步信号发送装置根据不同的通信系统而有所不同。例如:同步信号发送装置可以为:演进型基站、基站、微基站、无线路由器、地面站,等等。该装置包括:处理器和收发器。处理器,用于获取初始同步序列;将初始同步序列分割成N个子同步序列;将N个子同步序列承载在N个时域符号上,其中,每个子同步序列由一个时域符号承载。收发器,用于将N个时域符号发送给接收装置。
在第三方面的一种可能的实施方式中,初始同步序列的长度L满足:(BWsync+M·BWsubcarrier)·Tsync>L>BWsync·Tsync。其中,BWsync为同步信道的带宽,BWsubcarrier
为子载波带宽,Tsync为同步信号持续时间,M=BWprotect/BWsubcarrier,BWprotect为系统保护带宽。
在第三方面的一种可能的实施方式中,M的最大值为2。
在第三方面的一种可能的实施方式中,处理器还用于:对初始同步序列进行上采样。
第四方面,本申请实施例提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机执行指令,当同步信号发送装置的至少一个处理器执行该计算机执行指令时,同步信号发送装置执行上述第一方面或者第一方面的各种可能设计提供的同步信号发送方法。
第五方面,本申请实施例提供一种计算机程序产品,该计算机程序产品包括计算机执行指令,该计算机执行指令存储在计算机可读存储介质中。同步信号发送装置的至少一个处理器可以从计算机可读存储介质读取该计算机执行指令,至少一个处理器执行该计算机执行指令使得同步信号发送装置实施第一方面或者第一方面的的各种可能设计提供的同步信号发送方法。
第六方面,本申请实施例提供一种通信系统,包括第二方面或者第二方面的各种可能设计提供的同步信号发送装置以及接收装置,或者,包括第三方面或者第三方面的各种可能设计提供的同步信号发送装置以及接收装置。
结合上述第一方面以及第一方面的各可能的实施方式、第二方面以及第二方面的各可能的实施方式,第三方面以及第三方面的各可能的实施方式、第四方面以及第四方面的各可能的实施方式、第五方面以及第五方面的各可能的实施方式、第六方面以及第六方面的各可能的实施方式,其中,初始同步序列对应的频谱宽度大于同步信道的带宽,且小于同步信道的带宽与系统保护带宽之和。N为同步信号占用的时域符号的数目,N为大于1的整数。
本申请实施例提供一种同步信号发送方法和装置。其中,方法包括:获取初始同步序列;其中,初始同步序列对应的频谱宽度大于同步信道的带宽,且小于同步信道的带宽与系统保护带宽之和;将初始同步序列分割成N个子同步序列;将N个子同步序列承载在N个时域符号上;将N个时域符号发送给接收装置。本申请实施例提供的同步信号发送方法,降低了同步信号的带宽损失,提升了系统同步带宽的利用率和同步性能。
图1为本申请实施例提供的同步信号发送方法的系统架构图;
图2为本申请实施例提供的同步信号发送方法的实施例一的流程图;
图3为本申请实施例提供的同步信号发送方法的实施例一中eIoT系统同步信号的结构示意图;
图4为本申请实施例提供的同步信号发送方法的实施例一中不同长度同步序列对
应的频谱宽度比对图;
图5为本申请实施例提供的同步信号发送方法的实施例一中不同长度同步序列的相关性能比对图;
图6为本申请实施例提供的同步信号发送装置的实施例一的结构示意图;
图7为本申请实施例提供的同步信号发送装置的实施例二的结构示意图;
图8为本申请实施例提供的通信系统的实施例一的结构示意图。
图1为本申请实施例提供的同步信号发送方法的系统架构图。本申请实施例提供的同步信号发送方法,可以适用于发送端和接收端需要进行同步的通信系统中。如图1所示,典型的通信系统包括:卫星通信系统、无线通信系统和无线局域网。
卫星通信系统通常由卫星端和地面端组成。卫星端在空中起中继站的作用,把地面站发上来的电磁波放大后再返送回另一地面站。地面站是卫星与地面公众网的接口。
无线通信系统通常由发送设备、接收设备和无线信道三部分组成。根据不同的无线通信系统,其包括的设备有所不同。例如:对于长期演进(Long Term Evolution,LTE)通信系统,系统中的设备包括:演进型基站(eNodeB)和终端。对于工业物联网(Enterprise Internet of Things,eIoT)通信系统,系统中的设备包括:基站和终端。
无线局域网(Wireless Local Area Networks,WLAN)是使用电磁波取代双绞铜线所构成的局域网络。在无线局域网中,设备包括:无线路由器和终端。
本申请实施例涉及的终端,可以是手机、平板电脑等无线终端,该无线终端包括向用户提供语音和/或数据服务的设备,终端还可以是具有无线连接功能的手持设备、车载设备、可穿戴设备、计算设备,以及各种形式的用户设备UE、移动台(Mobile Station,MS)及终端(terminal),本申请实施例并不限定。
本申请实施例涉及的基站和无线路由器,可以为任一具有管理无线网络资源的设备,本申请实施例并不限定。
本申请实施例所涉及的同步信号发送方法,主要应用于窄带通信系统中通过多符号承载同步信号的场景,旨在解决目前现有技术中同步信号经过冗余扣除和限制带宽操作后导致的同步带宽利用不充分、同步性能亏损的技术问题。
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。
图2为本申请实施例提供的同步信号发送方法的实施例一的流程图。本申请实施例提供的同步信号发送方法,执行主体可以为同步信号发送装置。同步信号发送装置根据不同的通信系统而有所不同。例如:同步信号发送装置可以为:演进型基站、基站、微基站、无线路由器、地面站,等等。如图2所示,本申请实施例提供的同步信号发送方法,可以包括:
步骤101、获取初始同步序列。
其中,初始同步序列对应的频谱宽度大于同步信道的带宽,且小于同步信道的带宽与系统保护带宽之和。
其中,本申请实施例对于获取初始同步序列的具体实现方式不做特别限制,根据不同的通信系统可以采用现有的方法实现。例如:对于LTE通信系统或者eIoT通信系统,同步信号发送装置可以在预先设置的同步序列候选集合中选取初始同步序列。
步骤102、将初始同步序列分割成N个子同步序列。
其中,N为同步信号占用的时域符号的数目,N为大于1的整数;
步骤103、将N个子同步序列承载在N个时域符号上。
其中,每个子同步序列由一个时域符号承载。
步骤104、将N个时域符号发送给接收装置。
在本申请实施例中,初始同步序列对应的频谱宽度大于同步信道的带宽,且小于同步信道的带宽与系统保护带宽的和。在系统同步带宽的基础上,为同步信号的冗余扣除预留了余量。相比于现有技术,本申请实施例提供的初始同步序列,充分利用了系统同步带宽和系统保护带宽,使得初始同步序列的长度增长,相关性更好。在经过冗余扣除和限制带宽等操作后,可以降低同步信号的带宽损失,提升了系统同步带宽的利用率和同步性能。
需要说明的是,本申请实施例对于同步信道的带宽和系统保护带宽并不做具体限定,根据不同的通信系统而有所不同。
需要说明的是,本申请实施例对于步骤103中,将N个子同步序列承载在N个时域符号上的具体实现方式不做特别限制,根据不同的通信系统而有所不同,可以采用现有的不同通信系统中的信号处理方法。
需要说明的是,本申请实施例对于同步序列的具体实现方式不做特别限制,根据需要进行设置。例如:同步序列可以为ZC序列。
可选的,在步骤102,将初始同步序列分割成N个子同步序列之前,本申请实施例提供的方法,还可以包括:
对初始同步序列进行上采样。
可选的,作为一种具体的实现方式,初始同步序列的长度L可以满足:(BWsync+M·BWsubcarrier)·Tsync>L>BWsync·Tsync。
其中,BWsync为同步信道的带宽,BWsubcarrier为子载波带宽;Tsync为同步信号持续时间;M=BWprotect/BWsubcarrier;BWprotect为系统保护带宽。
可选的,M的最大值可以为2。
下面以具体的通信系统为例进行详细说明。
假设通信系统为eIoT系统。图3为本申请实施例提供的同步信号发送方法的实施例一中eIoT系统同步信号的结构示意图。如图3所示,eIoT系统使用的时域符号为OFDM符号。系统信道总带宽为180kHz,同步信道的带宽为60kHz,子载波带宽为15kHz。系统包含12个子载波。系统使用信道中间位置的4个子载波承载同步信息。连续的14个OFDM符号构成一个同步信号,同步信号持续时间为1ms。系统保护带宽为30kHz。
可见,在eIoT系统中,BWsync=60kHz,BWsubcarrier=15kHz,BWprotect=30kHz,N=14,Tsync=1ms,M=BWprotect/BWsubcarrier=30kHz/15kHz=2。
在eIoT系统中,将初始同步序列进行上采样后,分割成14个子同步序列,顺序映射到14个OFDM符号上。每个子同步序列先进行快速傅里叶变换(Fast Fourier Transformation,FFT),再进行快速傅里叶逆变换(Inverse Fast Fourier Transform,IFFT)IFFT,并按照OFDM符号的要求,在频域上只保留同步信道频点F上的信息,扣除CP位置上的数据并替换成CP数据。基站将通过信号处理后的14个子同步序列重新合并,构成待发送的同步信号。
现有的eIoT系统,采用的初始同步序列为长度59的ZC序列。
本申请实施例提供的同步信号发送方法,在一种实现方式中,初始同步序列的长度L可以满足90>L>60。在另一种实现方式中,初始同步序列的长度L可以满足84>L>56。
假设,本申请实施例中采用第一种实现方式,初始同步序列为长度79的ZC序列。
图4为本申请实施例提供的同步信号发送方法的实施例一中不同长度同步序列对应的频谱宽度比对图。图5为本申请实施例提供的同步信号发送方法的实施例一中不同长度同步序列的相关性能比对图。
如图4~图5所示,现有技术中采用长度为59的ZC序列,生成的同步信号实际对应的同步带宽为51kHz,并没有充分利用系统提供的同步信道带宽60kHz。而本申请实施例采用长度为79的ZC序列,生成的同步信号实际对应的同步带宽接近60kHz(981kHz-922kHz=59kHz),提高了系统同步带宽的利用率。而且,根据图5,长度为79的ZC序列相比于长度为59的ZC序列,具有更好的自相关性能,因此提升了系统的同步性能。
本申请实施例提供了一种同步信号发送方法,包括:获取初始同步序列,将初始同步序列分割成N个子同步序列,将N个子同步序列承载在N个时域符号上,将N个时域符号发送给接收装置。本申请实施例提供的同步信号发送方法,充分利用了系统同步带宽和系统保护带宽,使得初始同步序列的长度增长,相关性更好。在经过冗余扣除和限制带宽等操作后,可以降低同步信号的带宽损失,提升了系统同步带宽的利用率和同步性能。
图6为本申请实施例提供的同步信号发送装置的实施例一的结构示意图。本申请实施例提供的同步信号发送装置,根据不同的通信系统而有所不同。例如:同步信号发送装置可以为:演进型基站、基站、微基站、无线路由器、地面站,等等,可以执行图2~图5所示实施例提供的同步信号发送方法。如图6所示,本申请实施例提供的同步信号发送装置,可以包括:
处理模块12,用于获取初始同步序列。其中,初始同步序列对应的频谱宽度大于同步信道的带宽,且小于同步信道的带宽与系统保护带宽之和。将初始同步序列分割成N个子同步序列。其中,N为同步信号占用的时域符号的数目,N为大于1的整数。将N个子同步序列承载在N个时域符号上。其中,每个子同步序列由一个时域符号承载。
收发模块11,用于将N个时域符号发送给接收装置。
可选的,初始同步序列的长度L满足:(BWsync+M·BWsubcarrier)·Tsync>L>BWsync·Tsync。
其中,BWsync为同步信道的带宽,BWsubcarrier为子载波带宽,Tsync为同步信号持续时间,M=BWprotect/BWsubcarrier,BWprotect为系统保护带宽。
可选的,M的最大值为2。
可选的,处理模块12还用于:在将初始同步序列分割成N个子同步序列之前,对初始同步序列进行上采样。
本申请实施例提供的同步信号发送装置,用于执行图2~图5所示方法实施例提供的同步信号发送方法,其技术原理和技术效果类似,此处不再赘述。
图7为本申请实施例提供的同步信号发送装置的实施例二的结构示意图。本申请实施例提供的同步信号发送装置,根据不同的通信系统而有所不同。例如:同步信号发送装置可以为:演进型基站、基站、微基站、无线路由器、地面站,等等,可以执行图2~图5所示实施例提供的同步信号发送方法。如图7所示,本申请实施例提供的同步信号发送装置,可以包括:
处理器22,用于获取初始同步序列。其中,初始同步序列对应的频谱宽度大于同步信道的带宽,且小于同步信道的带宽与系统保护带宽之和。将初始同步序列分割成N个子同步序列。其中,N为同步信号占用的时域符号的数目,N为大于1的整数。将N个子同步序列承载在N个时域符号上。其中,每个子同步序列由一个时域符号承载。
收发器21,用于将N个时域符号发送给接收装置。
可选的,初始同步序列的长度L满足:(BWsync+M·BWsubcarrier)·Tsync>L>BWsync·Tsync。
其中,BWsync为同步信道的带宽,BWsubcarrier为子载波带宽,Tsync为同步信号持续时间,M=BWprotect/BWsubcarrier,BWprotect为系统保护带宽。
可选的,M的最大值为2。
可选的,处理器22还用于:在将初始同步序列分割成N个子同步序列之前,对初始同步序列进行上采样。
本实施例提供的同步信号发送装置,用于执行图2~图5所示方法实施例提供的同步信号发送方法,其技术原理和技术效果类似,此处不再赘述。
作为本申请的又一实施例,本申请实施例提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机执行指令。当同步信号发送装置的至少一个处理器执行该计算机执行指令时,同步信号发送装置执行图2~图5所示方法实施例提供的同步信号发送方法。
作为本申请的又一实施例,本申请实施例提供一种计算机程序产品,该计算机程序产品包括计算机执行指令,该计算机执行指令存储在计算机可读存储介质中。同步信号发送装置的至少一个处理器可以从计算机可读存储介质读取该计算机执行指令,至少一个处理器执行该计算机执行指令使得同步信号发送装置执行图2~图5所示方法
实施例提供的同步信号发送方法。
图8为本申请实施例提供的通信系统的实施例一的结构示意图。如图8所示,本申请实施例提供的通信系统,可以包括:图6所示实施例提供的同步信号发送装置31以及接收装置32。或者,图7所示实施例提供的同步信号发送装置31以及接收装置32。
其中,同步信号发送装置31和接收装置32,根据不同的通信系统而有所不同。例如:同步信号发送装置31可以为:演进型基站、基站、微基站、无线路由器、地面站,等等,相应的,接收装置32可以为:终端、卫星端,等等。
本实施例提供的通信系统,其中的同步信号发送装置用于执行图2~图5所示方法实施例提供的同步信号发送方法,其技术原理和技术效果类似,此处不再赘述。
Claims (12)
- 一种同步信号发送方法,其特征在于,包括:获取初始同步序列,其中,所述初始同步序列对应的频谱宽度大于同步信道的带宽,且小于所述同步信道的带宽与系统保护带宽之和;将所述初始同步序列分割成N个子同步序列,其中,N为同步信号占用的时域符号的数目,N为大于1的整数;将所述N个子同步序列承载在N个时域符号上,其中,每个所述子同步序列由一个所述时域符号承载;将所述N个时域符号发送给接收装置。
- 根据权利要求1所述的方法,其特征在于,所述初始同步序列的长度L满足:(BWsync+M·BWsubcarrier)·Tsync>L>BWsync·Tsync;其中,BWsync为所述同步信道的带宽,BWsubcarrier为子载波带宽,Tsync为同步信号持续时间,M=BWprotect/BWsubcarrier,BWprotect为所述系统保护带宽。
- 根据权利要求2或3所述的方法,其特征在于,M的最大值为2。
- 根据权利要求1至3任一项所述的方法,其特征在于,在所述将所述初始同步序列分割成N个子同步序列之前,所述方法还包括:对所述初始同步序列进行上采样。
- 一种同步信号发送装置,其特征在于,包括:处理模块,用于获取初始同步序列,其中,所述初始同步序列对应的频谱宽度大于同步信道的带宽,且小于所述同步信道的带宽与系统保护带宽之和;将所述初始同步序列分割成N个子同步序列,其中,N为同步信号占用的时域符号的数目,N为大于1的整数;将所述N个子同步序列承载在N个时域符号上,其中,每个所述子同步序列由一个所述时域符号承载;收发模块,用于将所述N个时域符号发送给接收装置。
- 根据权利要求6所述的装置,其特征在于,所述初始同步序列的长度L满足:(BWsync+M·BWsubcarrier)·Tsync>L>BWsync·Tsync;其中,BWsync为所述同步信道的带宽,BWsubcarrier为子载波带宽,Tsync为同步信号持续时间,M=BWprotect/BWsubcarrier,BWprotect为所述系统保护带宽。
- 根据权利要求7或8所述的装置,其特征在于,M的最大值为2。
- 根据权利要求6至8任一项所述的装置,其特征在于,所述处理模块还用于:对所述初始同步序列进行上采样。
- 一种计算机可读存储介质,其上存储有计算机执行指令,当所述计算机执行指令被至少一个处理器执行时,实现权利要求1-5任一项所述的方法。
- 一种同步信号发送装置,包含至少一个处理器,当所述至少一个处理器执行计算机可读存储介质中存储的计算机执行指令时,实现权利要求1-5任一项所述的方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019532992A JP2020512709A (ja) | 2016-12-19 | 2017-12-08 | 同期信号送信方法および同期信号送信装置 |
MX2019007195A MX2019007195A (es) | 2016-12-19 | 2017-12-08 | Aparato y método de envío de señal de sincronización. |
EP17885213.3A EP3547767A4 (en) | 2016-12-19 | 2017-12-08 | METHOD AND APPARATUS FOR SENDING SYNCHRONIZATION SIGNAL |
US16/444,859 US10805890B2 (en) | 2016-12-19 | 2019-06-18 | Synchronization signal sending method and apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611174894.1 | 2016-12-19 | ||
CN201611174894.1A CN108207025B (zh) | 2016-12-19 | 2016-12-19 | 同步信号发送方法和装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/444,859 Continuation US10805890B2 (en) | 2016-12-19 | 2019-06-18 | Synchronization signal sending method and apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018113540A1 true WO2018113540A1 (zh) | 2018-06-28 |
Family
ID=62601802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/115330 WO2018113540A1 (zh) | 2016-12-19 | 2017-12-08 | 同步信号发送方法和装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10805890B2 (zh) |
EP (1) | EP3547767A4 (zh) |
JP (1) | JP2020512709A (zh) |
CN (1) | CN108207025B (zh) |
MX (1) | MX2019007195A (zh) |
WO (1) | WO2018113540A1 (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101238666A (zh) * | 2005-08-22 | 2008-08-06 | 松下电器产业株式会社 | 基站装置以及移动台装置 |
US20100080311A1 (en) * | 2008-10-01 | 2010-04-01 | Harris Corporation | Orthogonal frequency division multiplexing (ofdm) communications device and method that incorporates low papr preamble and receiver channel estimate circuit |
CN102098266A (zh) * | 2011-03-25 | 2011-06-15 | 东南大学 | 多输入多输出正交频分复用系统同步序列构造方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7706249B2 (en) * | 2006-02-08 | 2010-04-27 | Motorola, Inc. | Method and apparatus for a synchronization channel in an OFDMA system |
US7911935B2 (en) * | 2006-02-08 | 2011-03-22 | Motorola Mobility, Inc. | Method and apparatus for interleaving sequence elements of an OFDMA synchronization channel |
CN102695226B (zh) * | 2006-09-28 | 2014-12-03 | 富士通株式会社 | 移动站和无线通信系统 |
CN100584104C (zh) * | 2007-01-26 | 2010-01-20 | 华为技术有限公司 | 一种业务调度系统和方法 |
US9344314B2 (en) | 2007-04-24 | 2016-05-17 | Texas Instruments Incorporated | Computer generated sequences for downlink and uplink signals in wireless communication systems |
EP2339761B1 (en) * | 2009-12-22 | 2012-07-11 | Mitsubishi Electric R&D Centre Europe B.V. | Method for synchronizing nodes |
EP2749084B1 (en) * | 2011-08-23 | 2020-03-11 | Nokia Technologies Oy | Method and apparatus for physical cell identification split handling |
US9917616B2 (en) | 2013-01-17 | 2018-03-13 | Telefonaktiebolaget L M Ericsson (Publ) | Synchronization signal design for wireless devices in a long range extension mode |
CN103078825B (zh) * | 2013-01-30 | 2016-08-10 | 清华大学 | 数字通信系统中的帧同步序列生成方法及装置 |
US9350379B1 (en) * | 2015-01-15 | 2016-05-24 | Huawei Technologies Co., Ltd. | System and method for data conversion of signals using noise shaping |
CN107925975A (zh) * | 2015-08-21 | 2018-04-17 | 株式会社Ntt都科摩 | 用户终端、无线基站以及无线通信方法 |
-
2016
- 2016-12-19 CN CN201611174894.1A patent/CN108207025B/zh active Active
-
2017
- 2017-12-08 WO PCT/CN2017/115330 patent/WO2018113540A1/zh unknown
- 2017-12-08 EP EP17885213.3A patent/EP3547767A4/en not_active Withdrawn
- 2017-12-08 MX MX2019007195A patent/MX2019007195A/es unknown
- 2017-12-08 JP JP2019532992A patent/JP2020512709A/ja not_active Withdrawn
-
2019
- 2019-06-18 US US16/444,859 patent/US10805890B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101238666A (zh) * | 2005-08-22 | 2008-08-06 | 松下电器产业株式会社 | 基站装置以及移动台装置 |
US20100080311A1 (en) * | 2008-10-01 | 2010-04-01 | Harris Corporation | Orthogonal frequency division multiplexing (ofdm) communications device and method that incorporates low papr preamble and receiver channel estimate circuit |
CN102098266A (zh) * | 2011-03-25 | 2011-06-15 | 东南大学 | 多输入多输出正交频分复用系统同步序列构造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3547767A4 |
Also Published As
Publication number | Publication date |
---|---|
US20190306818A1 (en) | 2019-10-03 |
CN108207025A (zh) | 2018-06-26 |
CN108207025B (zh) | 2020-12-22 |
JP2020512709A (ja) | 2020-04-23 |
EP3547767A4 (en) | 2019-12-11 |
US10805890B2 (en) | 2020-10-13 |
EP3547767A1 (en) | 2019-10-02 |
MX2019007195A (es) | 2019-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105991257B (zh) | 基于滤波器组的信号生成、发送和接收方法及其装置 | |
US10243763B2 (en) | Apparatus and method for transmitting data with conditional zero padding | |
AU2014403687C1 (en) | FBMC signal transmission method, receiving method, transmitter and receiver | |
CN104125184B (zh) | 一种导频信号的传输方法及设备 | |
EP1826977B1 (en) | Time and frequency synchronization method for ofdma uplink receivers and base stations | |
EP3985891B1 (en) | Transmission apparatus | |
Medjahdi et al. | Wola processing: A useful tool for windowed waveforms in 5G with relaxed synchronicity | |
CN108289069B (zh) | 一种参考信号的传输方法、发送端和接收端 | |
US10491445B2 (en) | Data modulation for use in multi-carrier system, demodulation method, frame generation method, and node | |
WO2017193304A1 (zh) | 一种信号处理方法及发射机 | |
WO2016029482A1 (zh) | 一种发送数据的方法、信道估计方法及装置 | |
CN101123449A (zh) | 干扰消除方法和装置 | |
CN108737306B (zh) | 基于频分复用的通信 | |
WO2018058678A1 (zh) | 一种信号处理方法及设备 | |
WO2012171407A1 (zh) | 一种确定时间同步位置的方法及设备 | |
CN107438041B (zh) | 一种发送信号和接收信号的方法及装置 | |
WO2017114025A1 (zh) | 一种通信处理方法、处理器和通信设备 | |
WO2018113540A1 (zh) | 同步信号发送方法和装置 | |
WO2017190289A1 (zh) | 数据处理方法及装置 | |
WO2017101462A1 (zh) | 一种多载波信号的生成方法和装置 | |
WO2014153726A1 (zh) | 上行导频序列同步的方法、设备及系统 | |
CN112134676A (zh) | 参考信号传输方法、装置、通信节点及存储介质 | |
CN117280660A (zh) | 双色散信道的仿射频分复用波形 | |
WO2017121414A1 (zh) | 一种数据调制、解调方法和数据调制、解调装置 | |
WO2017041273A1 (en) | A data transmission method and apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17885213 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019532992 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017885213 Country of ref document: EP Effective date: 20190627 |