WO2018113474A1 - 一种有机、无机量子点杂化的全彩显示器件及其制备方法 - Google Patents

一种有机、无机量子点杂化的全彩显示器件及其制备方法 Download PDF

Info

Publication number
WO2018113474A1
WO2018113474A1 PCT/CN2017/112633 CN2017112633W WO2018113474A1 WO 2018113474 A1 WO2018113474 A1 WO 2018113474A1 CN 2017112633 W CN2017112633 W CN 2017112633W WO 2018113474 A1 WO2018113474 A1 WO 2018113474A1
Authority
WO
WIPO (PCT)
Prior art keywords
photonic unit
layer
blue
green
red
Prior art date
Application number
PCT/CN2017/112633
Other languages
English (en)
French (fr)
Inventor
彭俊彪
王磊
邹建华
徐苗
江从彪
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2018113474A1 publication Critical patent/WO2018113474A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass

Definitions

  • the invention belongs to the field of display technology, and in particular relates to an organic and inorganic quantum dot hybrid full color display device and a preparation method thereof.
  • the quantum dots have the characteristics of narrow emission peak (30 nm), high color stability and color purity, and can be used to greatly improve the display color gamut in color display, and NTSC is up to 110%. However, the lifetime and efficiency of blue quantum dots cannot meet the requirements for use.
  • Another object of the present invention is to provide a method for preparing the above-described organic and inorganic quantum dot hybrid full color display device.
  • An organic-inorganic quantum dot hybrid full-color display device comprising a light-emitting unit fixedly mounted on a substrate, the light-emitting unit comprising a blue light-emitting sub-unit, a green light-emitting sub-unit and a red light-emitting sub-unit; blue light emission
  • the subunits sequentially include a blue photonic unit cathode, a blue photonic unit electron transport layer, a blue photonic unit light emitting layer, a blue photonic unit hole transport layer, a blue photonic unit hole injection layer, and a blue photonic unit anode.
  • the blue photonic unit light emitting layer is an organic material;
  • the red light emitting subunit comprises a red photonic unit cathode, a red photonic unit electron transport layer, a red photon unit light emitting layer, a red photonic unit hole transport layer, and a red photonic unit hole injection.
  • Layer and red photonic unit anode The red photonic unit light emitting layer is an inorganic quantum dot material;
  • the green light emitting subunit comprises a green photonic unit cathode, a green photonic unit electron transport layer, a green photonic unit emitting layer, a green photonic unit hole transport layer, and a green photonic unit hole.
  • the injection layer and the green photonic unit anode, and the green photonic unit light emitting layer is an inorganic quantum dot material.
  • the materials of the blue photonic unit electron transport layer, the red photonic unit electron transport layer and the green photonic unit electron transport layer are all metal oxide nanoparticles, and the metal oxide nanoparticles have a mobility of 10 - Above 3 cm 2 V -1 S -1 , the conduction band of the metal oxide nanoparticles is between -4.3 eV and -3.9 eV.
  • the nanoparticles of the metal oxide are preferably nano zinc oxide, nano titanium oxide or nano zinc aluminum oxide.
  • the material of the blue photonic unit light-emitting layer is the same as the material of the blue photonic unit hole transport layer, and both are polyfluorene (PFO), polysulfide (PFSO) or TPA (triphenylamine).
  • PFO polyfluorene
  • PFSO polysulfide
  • TPA triphenylamine
  • the blue photonic unit luminescent layer has a thickness of 20 to 100 nm.
  • the material of the green photonic unit emitting layer and the material of the red photonic unit emitting layer are both CdSe/ZnS, CdSe/CdS/ZnS, CdSe/CdS/ZnS, CIZS or CIZS/ZnS quantum dot materials.
  • the material of the green photonic unit hole transport layer and the material of the red photonic unit hole transport layer are the same as those of the blue photonic unit hole transport layer.
  • the blue photonic unit hole injection layer, the red photonic unit hole injection layer, and the green photonic unit hole injection layer are metal oxides or water-soluble conductive polymers having a LUMO level greater than 5.5 eV.
  • the thickness of the interface modification layer is less than 10 nm.
  • the material of the interface modifying layer is preferably polyetherimide (PEI), polyethyleneimine (PEIE) or poly[9,9-bis(3'-(N,N-dimethylamino)propyl). -2,7- ⁇ ]-cross-2,7-(9,9-dioctylfluorene)] (PFN).
  • the blue photonic unit cathode, the green photonic unit cathode and the red photonic unit cathode are integrally formed; the blue photonic unit electron transport layer, the green photonic unit electron transport layer and the red photonic unit electron transport layer are integrally formed; The blue photonic unit hole transport layer, the green photonic unit hole transport layer and the red photonic unit hole transport layer are integrally formed; the blue photonic unit hole injection layer, the green photonic unit hole injection layer and the red photonic unit The hole injection layer is integrally formed; the blue photonic unit anode, the green photonic unit anode and the red photonic unit anode are integrally formed.
  • the material of the blue photonic unit anode, the green photonic unit anode and the red photonic unit anode is silver, Al, ITO, ZnO, carbon nanotube or graphene.
  • the preparation method of the above organic and inorganic quantum dot hybrid full color display device comprises the following steps:
  • the electron transport layer material solution is spin-coated, coated or ink-jet printed on the upper surface of the cathode of the blue photonic unit, the cathode of the green photonic unit and the cathode of the red photonic unit, and heat-treated at 90 to 150 °C. 10 to 30 minutes;
  • the interface modification layer material solution is printed on the blue photonic unit electron transport layer, the green photonic unit electron transport layer, and the red photonic unit electron transport layer by spin coating, coating or inkjet printing;
  • the hole injection layer material solution is spin-coated, coated or ink-jet printed on the blue photonic unit light-emitting layer, the green photonic unit light-emitting layer and the red photonic unit light-emitting layer upper surface;
  • the solvent of the electron transport layer material solution is one or a mixture of two or more of methanol, ethanol, isopropanol or ethylene glycol; the stabilizer is further added to the electron transport layer material solution;
  • the viscosity of the transport layer material solution is 2 to 15 cp.
  • the solvent used for the interface modifying layer material solution is water, alcohol or a mixed solvent of the two.
  • the solvent used in the green photonic unit light-emitting layer material solution and the red photonic unit light-emitting layer material solution is one or a mixture of two or more kinds of alkanes, esters, and phenyl solvents; green photonic unit emits light.
  • the layer material solution and the red photonic unit light-emitting layer material solution have a viscosity of 2 to 10 cp.
  • the solvent used for the blue photonic unit light-emitting layer material solution is a non-polar solvent having a boiling point of 150 to 200 °C.
  • the solvent used for the solution of the hole injecting layer material is a mixed solvent of deionized water, ethylene glycol monoethyl ether and ethylene glycol; and the viscosity of the solution of the hole injecting layer material is 4 to 15 cp.
  • the present invention has the following advantages and beneficial effects:
  • the device structure of the present invention hybridized by organic blue light and red-green quantum dots, in particular, a blue photonic unit light-emitting layer, a blue photonic unit hole transport layer, a green photonic unit hole transport layer, and a red photonic unit cavity
  • the materials of the transmission layer are all made of the same organic material, which realizes the full color display of the high color gamut of organic and quantum dot hybridization, and utilizes the characteristics of high efficiency and long life of the blue organic material to improve the obtained display device. Service life.
  • the preparation method of the invention adopts full solution processing, has fewer process steps and low processing cost; the obtained display device has the advantages of high performance, long life and high display color gamut.
  • FIG. 1 is a schematic structural view of an organic-inorganic quantum dot hybrid full color display device according to Embodiment 1 of the present invention.
  • Example 2 is a graph showing the results of photoelectric performance test of the organic-inorganic quantum dot hybrid full-color display device obtained in Example 1 of the present invention; wherein (a) is an electroluminescence spectrum diagram, and (b) is a color coordinate diagram;
  • Embodiment 3 is a schematic structural view of an inverted quantum dot LED device according to Embodiment 3 of the present invention.
  • An organic and inorganic quantum dot hybrid full color display device of the present embodiment has a schematic structure as shown in FIG. 1 , including a light emitting unit, and the light emitting unit is fixedly mounted on the substrate, and the light emitting unit includes a blue light emitting subunit.
  • the blue illuminating subunit sequentially includes a blue photonic unit cathode, a blue photonic unit electron transport layer, a blue photonic unit luminescent layer, a blue photonic unit hole transport layer, and a blue a color photocell unit hole injection layer and a blue photonic unit anode, and the blue photonic unit light emitting layer is an organic material;
  • the red light emitting subunit comprises a red photonic unit cathode, a red photonic unit electron transport layer, a red photonic unit emitting layer, a red photonic unit hole transport layer, a red photonic unit hole injection layer and a red photonic unit anode, and the red photonic unit light emitting layer is an inorganic quantum dot material;
  • the green light emitting subunit sequentially includes a green photonic unit cathode and a green photonic unit electronic transmission Layer, green photonic unit emitting layer, green photonic unit hole transport layer, green light The sub-cell hole
  • the material of the blue photonic unit light-emitting layer is the same as that of the blue photonic unit hole transport layer, both of which are PFO, and the emission peak is between 410 and 490 nm, and the hole mobility is between 10 -3 and 10 -4 cm 2 V. -1 S -1 with a deep HOMO level (between 5.6 and 6.0 eV) and a blue photonic unit emitting layer thickness of 20 nm.
  • the material of the green photonic unit hole transport layer and the material of the red photonic unit hole transport layer are the same as those of the blue photonic unit hole transport layer, and its hole carrier mobility>electron carrier mobility .
  • the material of the green photonic unit luminescent layer and the red photonic unit luminescent layer are all CdSe/ZnS quantum dot materials, and the illuminating peaks are between 510-540 nm and 610-640 nm, respectively, and the surface of the green photonic unit luminescent layer and red photons.
  • the surface of the unit light-emitting layer is passivated with an organic layer having a thickness of 10 nm. Body, improve photoluminescence efficiency and dispersion.
  • the material of the green photonic unit light-emitting layer and the material of the red photonic unit light-emitting layer are not limited to the above-mentioned CdSe/ZnS, and may also be CdSe/ZnS, CdSe/CdS/ZnS, CdSe/CdS/ZnS, CIZS or CIZS/ZnS quantum dot material.
  • the blue photonic unit electron transport layer, the red photonic unit electron transport layer, and the green photonic unit electron transport layer are metal oxide nanoparticles, and the mobility of the metal oxide nanoparticles is 10 -3 cm 2 V -1 S - 1 or more, the conduction band of the metal oxide nanoparticles is between -4.3 eV and -3.9 eV, and the material of the metal oxide nanoparticles is specifically nano zinc oxide.
  • the layer and the interface modification layer have a thickness of 8 nm, and the material of the interface modification layer is polyetherimide (PEI).
  • PEI polyetherimide
  • the blue photonic unit hole injection layer, the red photonic unit hole injection layer, and the green photonic unit hole injection layer are materials having a LUMO level greater than 5.5 eV, specifically a water-soluble conductive polymer.
  • the blue photonic unit cathode, the green photonic unit cathode and the red photonic unit cathode are integrally formed; the blue photonic unit electron transport layer, the green photonic unit electron transport layer and the red photonic unit electron transport layer are integrally formed; the blue photonic unit hole transport layer The green photonic unit hole transport layer and the red photonic unit hole transport layer are integrally formed; the blue photonic unit hole injection layer, the green photonic unit hole injection layer and the red photonic unit hole injection layer are integrally formed; the blue photonic unit The anode, the green photonic unit anode and the red photonic unit anode are integrally formed; the material of the blue photonic unit anode, the green photonic unit anode and the red photonic unit anode is silver.
  • interface modification layer material solution with alcohol as solvent is spin-coated on the blue photonic unit electron transport layer, the green photonic unit electron transport layer and the red photonic unit electron transport layer.
  • preparing a blue photonic unit hole injection layer, a green photonic unit hole injection layer, and a red photonic unit hole injection layer the hole injection material being a metal oxide or a conductive polymer, and a solution having a viscosity of 6 cp of deionized water
  • a solution of a mixed solvent of ethylene glycol monoethyl ether and ethylene glycol is spin-coated, coated or ink-jet printed on the upper surfaces of the blue photonic unit light-emitting layer, the green photonic unit light-emitting layer and the red photonic unit light-emitting layer, respectively.
  • FIG. 2 The organic and inorganic quantum dot hybrid full color display device obtained in this example was tested, and the results are shown in FIG. 2 .
  • Figure 2 (a) is an electroluminescence spectrum containing blue, green and red wavelengths of 450 nm, 520 nm and 625 nm. It can be concluded that the obtained hybrid device can simultaneously emit red, green and blue light without driving; (b) is a color coordinate map, including the color gamut specified by NTSC and the color gamut implemented in the present invention, and it can be concluded that the obtained organic and inorganic quantum dot hybrid full color display device can greatly improve the display color gamut.
  • the interface modification layer can reduce the electron injection barrier and improve device performance.
  • the test results are shown in Table 1.
  • the structure of the device in Table 1 is: cathode/electron transport layer/PEI or no PEI/luminescent layer/hole injection layer/anode.
  • the experiment also found that the red, green and blue spectra of the device with and without the interface modification layer are unchanged.
  • An organic and inorganic quantum dot hybrid full color display device of the present embodiment has a schematic structure as shown in FIG. 1 , including a light emitting unit, and the light emitting unit is fixedly mounted on the substrate, and the light emitting unit includes a blue light emitting subunit.
  • the blue illuminating subunit sequentially includes a blue photonic unit cathode, a blue photonic unit electron transport layer, a blue photonic unit luminescent layer, a blue photonic unit hole transport layer, and a blue a color photocell unit hole injection layer and a blue photonic unit anode, and the blue photonic unit light emitting layer is an organic material;
  • the red light emitting subunit comprises a red photonic unit cathode, a red photonic unit electron transport layer, a red photonic unit emitting layer, a red photonic unit hole transport layer, a red photonic unit hole injection layer and a red photonic unit anode, and the red photonic unit light emitting layer is an inorganic quantum dot material;
  • the green light emitting subunit sequentially includes a green photonic unit cathode and a green photonic unit electronic transmission Layer, green photonic unit emitting layer, green photonic unit hole transport layer, green light The sub-cell hole
  • the material of the blue photonic unit light-emitting layer is the same as that of the blue photonic unit hole transport layer, and both are TPA polyfluorenes, and the emission peak is between 410 and 490 nm, and the hole mobility is between 10 and 3 to 10 -4 .
  • Cm 2 V -1 S -1 has a deep HOMO level (between 5.6 and 6.0 eV) and a blue photonic unit emitting layer thickness of 70 nm.
  • the material of the green photonic unit hole transport layer and the material of the red photonic unit hole transport layer are the same as those of the blue photonic unit hole transport layer, and its hole carrier mobility>electron carrier mobility .
  • the material of the green photonic unit emitting layer and the material of the red photonic unit emitting layer are both The CdSe/CdS/ZnS quantum dot material has a luminescence peak between 510-540 nm and 610-640 nm, respectively.
  • the blue photonic unit electron transport layer, the red photonic unit electron transport layer, and the green photonic unit electron transport layer are metal oxide nanoparticles, and the mobility of the metal oxide nanoparticles is 10 -3 cm 2 V -1 S - 1 or more, the conduction band of the metal oxide nanoparticles is between -4.3 eV and -3.9 eV, and the material of the metal oxide nanoparticles is specifically nano titanium oxide.
  • the layer and the interface modification layer have a thickness of 5 nm, and the material of the interface modification layer is polyethyleneimine (PEIE).
  • PEIE polyethyleneimine
  • the blue photonic unit hole injection layer, the red photonic unit hole injection layer, and the green photonic unit hole injection layer are metal oxides having a LUMO level greater than 5.5 eV, such as molybdenum oxide, tungsten oxide or vanadium oxide.
  • the blue photonic unit cathode, the green photonic unit cathode and the red photonic unit cathode are integrally formed; the blue photonic unit electron transport layer, the green photonic unit electron transport layer and the red photonic unit electron transport layer are integrally formed; the blue photonic unit hole transport layer The green photonic unit hole transport layer and the red photonic unit hole transport layer are integrally formed; the blue photonic unit hole injection layer, the green photonic unit hole injection layer and the red photonic unit hole injection layer are integrally formed; the blue photonic unit The anode, the green photonic unit anode and the red photonic unit anode are integrally formed; the material of the blue photonic unit anode, the green photonic unit anode and the red photonic unit anode is graphene.
  • interface modification layer material solution in which hydroalcohol is mixed as a solvent is ink-jet printed on the blue photonic unit electron transport layer, the green photonic unit electron transport layer, and the red photonic unit electron transport layer.
  • preparing a blue photonic unit hole injection layer, a green photonic unit hole injection layer, and a red photonic unit hole injection layer the hole injection material being a metal oxide or a conductive polymer, and a solution having a viscosity of 10 cp of deionized water
  • a solution of a mixed solvent of ethylene glycol monoethyl ether and ethylene glycol is spin-coated, coated or ink-jet printed on the upper surfaces of the blue photonic unit light-emitting layer, the green photonic unit light-emitting layer and the red photonic unit light-emitting layer, respectively.
  • An organic and inorganic quantum dot hybrid full color display device of the embodiment is specifically an inverted quantum dot LED device structure, and the structure diagram thereof is shown in FIG. 3, including a cathode, an electron transport layer, an interface modification layer, and red and green.
  • the device uses the organic polymer PFSO as the blue light-emitting layer material and serves as the hole transport layer of the quantum dot LED.
  • the remaining materials are the same as in the first embodiment.
  • the whole device preparation process is: (1) spin coating processing electron transport layer; (2) spin coating processing interface modification layer; (3) inkjet printing to prepare red light emitting layer; (4) inkjet printing to prepare green light emitting (5) inkjet printing (or spin coating) to prepare a blue light emitting layer and a hole transporting layer of red and green light emitting units (the blue light emitting layer material is the same as the hole transport layer material of the red and green light emitting units) (6) inkjet printing (or spin coating) processing of the hole injecting layer; (7) inkjet printing (or spin coating) to prepare the anode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机、无机量子点杂化的全彩显示器件及其制备方法。显示器件包括固定安装于基板上的发光单元,发光单元包含有蓝色、绿色和红色三种发光子单元;各发光子单元依次包含有阴极、电子传输层、发光层、空穴传输层、空穴注入层和阳极,其中蓝色发光子单元发光层为有机材料,红色和绿色发光子单元发光层为量子点材料,三种发光子单元中电子传输层为无机材料。利用蓝光有机聚合物材料具有较高的效率与稳定性和绿色/红色量子点发光层材料的高色纯度以及加工工艺简单的特点,结合无机电子传输层材料,采用溶液加工的方法实现低成本、高性能与高显示色域的全彩色显示屏。

Description

一种有机、无机量子点杂化的全彩显示器件及其制备方法 技术领域
本发明属于显示技术领域,具体涉及一种有机、无机量子点杂化的全彩显示器件及其制备方法。
背景技术
量子点具有发光波峰窄(30nm),高色稳定性和色纯度等特点,用于彩色显示中可大幅度提高显示色域,NTSC高达110%。但是蓝光量子点的寿命和效率均无法达到使用要求。
发明内容
为了解决以上现有技术的缺点和不足之处,本发明的首要目的在于提供一种有机、无机量子点杂化的全彩显示器件。
本发明的另一目的在于提供上述有机、无机量子点杂化的全彩显示器件的制备方法。
本发明目的通过以下技术方案实现:
一种有机、无机量子点杂化的全彩显示器件,包括固定安装于基板上的发光单元,所述发光单元包含有蓝色发光子单元、绿色发光子单元和红色发光子单元;蓝色发光子单元依次包含有蓝色光子单元阴极、蓝色光子单元电子传输层、蓝色光子单元发光层、蓝色光子单元空穴传输层、蓝色光子单元空穴注入层和蓝色光子单元阳极,且蓝色光子单元发光层为有机材料;红色发光子单元依次包含有红色光子单元阴极、红色光子单元电子传输层、红色光子单元发光层、红色光子单元空穴传输层、红色光子单元空穴注入层和红色光子单元阳极, 且红色光子单元发光层为无机量子点材料;绿色发光子单元依次包含有绿色光子单元阴极、绿色光子单元电子传输层、绿色光子单元发光层、绿色光子单元空穴传输层、绿色光子单元空穴注入层和绿色光子单元阳极,且绿色光子单元发光层为无机量子点材料。
优选地,所述蓝色光子单元电子传输层、红色光子单元电子传输层和绿色光子单元电子传输层的材料均为金属氧化物的纳米颗粒,且金属氧化物的纳米颗粒的迁移率在10-3cm2V-1S-1以上,金属氧化物的纳米颗粒的导带在-4.3eV至-3.9eV之间。所述金属氧化物的纳米颗粒优选为纳米氧化锌、纳米氧化钛或纳米氧化锌铝。
优选地,所述蓝色光子单元发光层的材料与所述蓝色光子单元空穴传输层的材料相同,均为聚芴(PFO)、聚硫氧芴(PFSO)或TPA(三苯胺)聚芴类有机材料,所述蓝色光子单元发光层厚度为20~100nm。
优选地,所述绿色光子单元发光层的材料和所述红色光子单元发光层的材料均为CdSe/ZnS、CdSe/CdS/ZnS、CdSe/CdS/ZnS、CIZS或者CIZS/ZnS量子点材料。
优选地,所述绿色光子单元空穴传输层的材料和所述红色光子单元空穴传输层的材料均与所述蓝色光子单元空穴传输层的材料相同。
优选地,所述蓝色光子单元空穴注入层、红色光子单元空穴注入层和绿色光子单元空穴注入层是LUMO能级大于5.5eV的金属氧化物或水溶性的导电聚合物。
优选地,所述蓝色光子单元电子传输层与所述蓝色光子单元发光层之间、红色光子单元电子传输层与所述红色光子单元发光层之间、绿色光子单元电子传输层与所述绿色光子单元发光层之间均可增加界面修饰层,且界面修饰层的厚度小于10nm。所述界面修饰层的材料优选为聚醚酰亚胺(PEI)、聚乙烯亚胺(PEIE)或聚[9,9-二(3'-(N,N-二甲胺基)丙基)-2,7-芴]-交-2,7-(9,9-二辛基芴)](PFN)。
优选地,所述蓝色光子单元阴极、绿色光子单元阴极与红色光子单元阴极一体成型;所述蓝色光子单元电子传输层、绿色光子单元电子传输层与红色光子单元电子传输层一体成型;所述蓝色光子单元空穴传输层、绿色光子单元空穴传输层与红色光子单元空穴传输层一体成型;所述蓝色光子单元空穴注入层、绿色光子单元空穴注入层与红色光子单元空穴注入层一体成型;所述蓝色光子单元阳极、绿色光子单元阳极与红色光子单元阳极一体成型。
优选地,所述蓝色光子单元阳极、绿色光子单元阳极和红色光子单元阳极的材料为银、Al、ITO、ZnO、碳纳米管或石墨烯。
上述有机、无机量子点杂化的全彩显示器件的制备方法,包括如下步骤:
(1)制备电子传输层:将电子传输层材料溶液通过旋涂、涂布或喷墨打印于蓝色光子单元阴极、绿色光子单元阴极和红色光子单元阴极上表面,在90~150℃下热处理10~30min;
(2)制备界面修饰层:将界面修饰层材料溶液通过旋涂、涂布或喷墨打印于蓝色光子单元电子传输层、绿色光子单元电子传输层和红色光子单元电子传输层;
(3)制备绿色光子单元发光层和红色光子单元发光层:将绿色光子单元发光层材料溶液和红色光子单元发光层材料溶液喷墨打印于相应界面修饰层上表面,之后在80~160℃下热处理10~30min;
(4)制备蓝色光子单元发光层:将蓝色光子单元发光层材料溶液涂布或喷墨打印于相应界面修饰层上表面;
(5)制备空穴注入层:将空穴注入层材料溶液通过旋涂、涂布或喷墨打印于蓝色光子单元发光层、绿色光子单元发光层和红色光子单元发光层上表面;
(6)制备金属阳极:通过蒸度、溅射一层银、铝、ITO或喷墨打印银浆、碳纳米管、石墨烯于蓝色光子单元空穴注入层、绿色光子单元空穴注入层和红色光子单元空穴注入层的上表面作为阳极;
(7)封装,得到所述有机、无机量子点杂化的全彩显示器件。
优选地,所述电子传输层材料溶液的溶剂为甲醇、乙醇、异丙醇或乙二醇中的一种或两种以上的混合;所述电子传输层材料溶液中还加入稳定剂乙醇胺;电子传输层材料溶液的粘度为2~15cp。
优选地,所述界面修饰层材料溶液所使用的溶剂为水、醇或两者混合溶剂。
优选地,所述绿色光子单元发光层材料溶液和红色光子单元发光层材料溶液所使用的溶剂为烷烃类、酯类、苯基类溶剂中的一种或两种以上的混合;绿色光子单元发光层材料溶液和红色光子单元发光层材料溶液的粘度为2~10cp。
优选地,所述蓝色光子单元发光层材料溶液所使用的溶剂为沸点150~200℃的非极性溶剂。
优选地,所述空穴注入层材料溶液所使用的溶剂为去离子水、乙二醇单乙醚和乙二醇的混合溶剂;所述空穴注入层材料溶液的粘度为4~15cp。
相对于现有技术,本发明具有如下优点及有益效果:
(1)本发明通过有机蓝光与红绿量子点杂化的器件结构,特别是蓝色光子单元发光层、蓝色光子单元空穴传输层、绿色光子单元空穴传输层和红色光子单元空穴传输层的材料均采用相同有机材料,实现有机与量子点杂化的高色域的全彩显示,同时利用蓝光有机材料具有较高的效率和较长的寿命的特点,提高了所得显示器件的使用寿命。
(2)本发明的制备方法采用全溶液加工,工艺步骤少,加工成本低;所得显示器件具有性能高、寿命长和显示色域高的优点。
附图说明
图1为本发明实施例1的一种有机、无机量子点杂化的全彩显示器件的结构示意图;
图2为本发明实施例1所得有机、无机量子点杂化的全彩显示器件的光电性能测试结果图;其中(a)是电致发光光谱图,(b)是色坐标图;
图3为本发明实施例3中倒置量子点LED器件的结构示意图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
本实施例的一种有机、无机量子点杂化的全彩显示器件,其结构示意图如图1所示,包括发光单元,且发光单元固定安装于基板上,发光单元包含有蓝色发光子单元、绿色发光子单元和红色发光子单元;蓝色发光子单元依次包含有蓝色光子单元阴极、蓝色光子单元电子传输层、蓝色光子单元发光层、蓝色光子单元空穴传输层、蓝色光子单元空穴注入层和蓝色光子单元阳极,且蓝色光子单元发光层为有机材料;红色发光子单元依次包含有红色光子单元阴极、红色光子单元电子传输层、红色光子单元发光层、红色光子单元空穴传输层、红色光子单元空穴注入层和红色光子单元阳极,且红色光子单元发光层为无机量子点材料;绿色发光子单元依次包含有绿色光子单元阴极、绿色光子单元电子传输层、绿色光子单元发光层、绿色光子单元空穴传输层、绿色光子单元空穴注入层和绿色光子单元阳极,且绿色光子单元发光层为无机量子点材料。
蓝色光子单元发光层的材料与蓝色光子单元空穴传输层的材料相同,均为PFO,其发射波峰在410~490nm之间,空穴迁移率在10-3~10-4cm2V-1S-1,具有较深的HOMO能级(5.6~6.0eV之间),蓝色光子单元发光层厚度为20nm。
绿色光子单元空穴传输层的材料和红色光子单元空穴传输层的材料均与蓝色光子单元空穴传输层的材料相同,此时其空穴载流子迁移率>电子载流子迁移率。
绿色光子单元发光层的材料和红色光子单元发光层的材料均为CdSe/ZnS量子点材料,其发光波峰分别在510~540nm与610~640nm之间,且绿色光子单元发光层的表面和红色光子单元发光层的表面均钝化一层厚度为10nm的有机配 体,提高光致发光效率和分散性。
需要说明的是,绿色光子单元发光层的材料和红色光子单元发光层的材料不局限于上述CdSe/ZnS,也可以均为CdSe/ZnS、CdSe/CdS/ZnS、CdSe/CdS/ZnS、CIZS或者CIZS/ZnS量子点材料。
蓝色光子单元电子传输层、红色光子单元电子传输层和绿色光子单元电子传输层为金属氧化物的纳米颗粒,且金属氧化物的纳米颗粒的迁移率在10-3cm2V-1S-1以上,金属氧化物的纳米颗粒的导带在-4.3eV至-3.9eV之间,金属氧化物的纳米颗粒的材料具体为纳米氧化锌。
蓝色光子单元电子传输层与蓝色光子单元发光层之间、红色光子单元电子传输层与红色光子单元发光层之间、绿色光子单元电子传输层与绿色光子单元发光层之间均增加界面修饰层,且界面修饰层的厚度8nm,所述界面修饰层的材料为聚醚酰亚胺(PEI)。
蓝色光子单元空穴注入层、红色光子单元空穴注入层和绿色光子单元空穴注入层是LUMO能级大于5.5eV的材料,具体为水溶性的导电聚合物。
蓝色光子单元阴极、绿色光子单元阴极和红色光子单元阴极一体成型;蓝色光子单元电子传输层、绿色光子单元电子传输层和红色光子单元电子传输层一体成型;蓝色光子单元空穴传输层、绿色光子单元空穴传输层和红色光子单元空穴传输层一体成型;蓝色光子单元空穴注入层、绿色光子单元空穴注入层和红色光子单元空穴注入层一体成型;蓝色光子单元阳极、绿色光子单元阳极和红色光子单元阳极一体成型;蓝色光子单元阳极、绿色光子单元阳极和红色光子单元阳极的材料为银。
本实施例的有机、无机量子点杂化的全彩显示器件的具体制备步骤:
(1)制备蓝色光子单元电子传输层、绿色光子单元电子传输层和红色光子单元电子传输层:溶液粘度为8cp的乙醇、甲醇、异丙醇和乙二醇的混合溶剂的溶液中加入稳定剂乙醇胺,并将调制好的溶液分别旋涂、涂布或喷墨打印于蓝色光子单元阴极、绿色光子单元阴极和红色光子单元阴极上表面,在120℃ 下热处理10min。
(2)制备界面修饰层:以醇为溶剂的界面修饰层材料溶液旋涂于蓝色光子单元电子传输层、绿色光子单元电子传输层和红色光子单元电子传输层。
(3)制备绿色光子单元发光层和红色光子单元发光层:溶液粘度为8cp的烷烃类、酯类、苯基类混合溶剂的溶液喷墨打印于相应界面修饰层上表面,之后在160℃下热处理20min。
(4)制备蓝色发光子单元发光层:将溶剂为沸点150~200℃的非极性溶剂的溶液涂布或喷墨打印于相应界面修饰层上表面。
(5)制备蓝色光子单元空穴注入层、绿色光子单元空穴注入层和红色光子单元空穴注入层,空穴注入材料为金属氧化物或导电聚合物,溶液粘度为6cp的去离子水、乙二醇单乙醚和乙二醇混合溶剂的溶液分别旋涂、涂布或喷墨打印于蓝色光子单元发光层、绿色光子单元发光层和红色光子单元发光层上表面。
(6)制备金属阳极:将银浆喷墨打印于蓝色:光子单元空穴注入层、绿色光子单元空穴注入层和红色光子单元空穴注入层的上表面。
(7)封装,得到所述有机、无机量子点杂化的全彩显示器件。
对本实施例所得有机、无机量子点杂化的全彩显示器件进行测试,结果如图2所示。其中图2(a)是电致发光光谱图,包含450nm、520nm和625nm的蓝光、绿光和红光波段,可以得出所得杂化器件可以在无驱动下实现红绿蓝光同时发射;图2(b)是色坐标图,包括NTSC规定的色域和本发明中实现的色域,可以得出所得有机、无机量子点杂化全彩显示器件可以大幅度提高显示色域。
界面修饰层可以降低电子注入势垒,提高器件性能。根据对本发明的具有不同界面修饰层和不具有界面修饰层的器件性能进行测试,测试结果如表1所示。表1中器件的结构为:阴极/电子传输层/PEI或者无PEI/发光层/空穴注入层/阳极。此外实验还发现,有、无界面修饰层的器件,红绿蓝光谱均不变。
表1
Figure PCTCN2017112633-appb-000001
实施例2
本实施例的一种有机、无机量子点杂化的全彩显示器件,其结构示意图如图1所示,包括发光单元,且发光单元固定安装于基板上,发光单元包含有蓝色发光子单元、绿色发光子单元和红色发光子单元;蓝色发光子单元依次包含有蓝色光子单元阴极、蓝色光子单元电子传输层、蓝色光子单元发光层、蓝色光子单元空穴传输层、蓝色光子单元空穴注入层和蓝色光子单元阳极,且蓝色光子单元发光层为有机材料;红色发光子单元依次包含有红色光子单元阴极、红色光子单元电子传输层、红色光子单元发光层、红色光子单元空穴传输层、红色光子单元空穴注入层和红色光子单元阳极,且红色光子单元发光层为无机量子点材料;绿色发光子单元依次包含有绿色光子单元阴极、绿色光子单元电子传输层、绿色光子单元发光层、绿色光子单元空穴传输层、绿色光子单元空穴注入层和绿色光子单元阳极,且绿色光子单元发光层为无机量子点材料。
蓝色光子单元发光层的材料与蓝色光子单元空穴传输层的材料相同,均为TPA聚芴类,其发射波峰在410~490nm之间,空穴迁移率在10-3~10-4cm2V-1S-1,具有较深的HOMO能级(5.6~6.0eV之间),蓝色光子单元发光层厚度为70nm。
绿色光子单元空穴传输层的材料和红色光子单元空穴传输层的材料均与蓝色光子单元空穴传输层的材料相同,此时其空穴载流子迁移率>电子载流子迁移率。
绿色光子单元发光层的材料和红色光子单元发光层的材料均为 CdSe/CdS/ZnS量子点材料,其发光波峰分别在510~540nm与610~640nm之间。
蓝色光子单元电子传输层、红色光子单元电子传输层和绿色光子单元电子传输层为金属氧化物的纳米颗粒,且金属氧化物的纳米颗粒的迁移率在10-3cm2V-1S-1以上,金属氧化物的纳米颗粒的导带在-4.3eV至-3.9eV之间,金属氧化物的纳米颗粒的材料具体为纳米氧化钛。
蓝色光子单元电子传输层与蓝色光子单元发光层之间、红色光子单元电子传输层与红色光子单元发光层之间、绿色光子单元电子传输层与绿色光子单元发光层之间均增加界面修饰层,且界面修饰层的厚度5nm,所述界面修饰层的材料为聚乙烯亚胺(PEIE)。
蓝色光子单元空穴注入层、红色光子单元空穴注入层和绿色光子单元空穴注入层是LUMO能级大于5.5eV的金属氧化物,例如氧化钼、氧化钨或氧化钒。
蓝色光子单元阴极、绿色光子单元阴极和红色光子单元阴极一体成型;蓝色光子单元电子传输层、绿色光子单元电子传输层和红色光子单元电子传输层一体成型;蓝色光子单元空穴传输层、绿色光子单元空穴传输层和红色光子单元空穴传输层一体成型;蓝色光子单元空穴注入层、绿色光子单元空穴注入层和红色光子单元空穴注入层一体成型;蓝色光子单元阳极、绿色光子单元阳极和红色光子单元阳极一体成型;蓝色光子单元阳极、绿色光子单元阳极和红色光子单元阳极的材料为石墨烯。
本实施例的有机、无机量子点杂化的全彩显示器件的具体制备步骤:
(1)制备蓝色光子单元电子传输层、绿色光子单元电子传输层和红色光子单元电子传输层:溶液粘度为8cp的乙醇、甲醇、异丙醇和乙二醇的混合溶剂的溶液中加入稳定剂乙醇胺,并将调制好的溶液分别喷墨打印于蓝色光子单元阴极、绿色光子单元阴极和红色光子单元阴极上表面,在120℃下热处理10min。
(2)制备界面修饰层:以水醇混合为溶剂的界面修饰层材料溶液喷墨打印于蓝色光子单元电子传输层、绿色光子单元电子传输层和红色光子单元电子传输层。
(3)制备绿色光子单元发光层和红色光子单元发光层:溶液粘度为8cp的烷烃类、酯类、苯基类混合溶剂的溶液喷墨打印于相应界面修饰层上表面,之后在160℃下热处理20min。
(4)制备蓝色发光子单元发光层:将溶剂为沸点150~200℃的非极性溶剂的溶液喷墨打印于相应界面修饰层上表面。
(5)制备蓝色光子单元空穴注入层、绿色光子单元空穴注入层和红色光子单元空穴注入层,空穴注入材料为金属氧化物或导电聚合物,溶液粘度为10cp的去离子水、乙二醇单乙醚和乙二醇混合溶剂的溶液分别旋涂、涂布或喷墨打印于蓝色光子单元发光层、绿色光子单元发光层和红色光子单元发光层上表面。
(6)制备金属阳极:将石墨烯喷墨打印于蓝色:光子单元空穴注入层、绿色光子单元空穴注入层和红色光子单元空穴注入层的上表面。
(7)封装,得到所述有机、无机量子点杂化的全彩显示器件。
实施例3
本实施例的一种有机、无机量子点杂化的全彩显示器件,具体为倒置量子点LED器件结构,其结构示意图如图3所示,包括阴极、电子传输层、界面修饰层、红绿蓝光发射单元、空穴传输层(小分子)、空穴注入层和阳极。
该器件采用有机聚合物PFSO作为蓝光发光层材料,同时作为量子点LED的空穴传输层,其余材料同实施例1。整个器件制备过程为:(1)旋转涂布加工电子传输层;(2)旋转涂布加工界面修饰层;(3)喷墨打印制备红光发光层;(4)喷墨打印制备绿光发光层;(5)喷墨打印(或者旋转涂布)制备蓝光发光层和红、绿发光单元的空穴传输层(蓝光发光层材料与红、绿发发光单元的的空穴传输层材料相同);(6)喷墨打印(或者旋转涂布)加工空穴注入层;(7)喷墨打印(或者旋转涂布)制备阳极。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实 施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种有机、无机量子点杂化的全彩显示器件,其特征在于:所述显示器件包括固定安装于基板上的发光单元,所述发光单元包含有蓝色发光子单元、绿色发光子单元和红色发光子单元;蓝色发光子单元依次包含有蓝色光子单元阴极、蓝色光子单元电子传输层、蓝色光子单元发光层、蓝色光子单元空穴传输层、蓝色光子单元空穴注入层和蓝色光子单元阳极,且蓝色光子单元发光层为有机材料;红色发光子单元依次包含有红色光子单元阴极、红色光子单元电子传输层、红色光子单元发光层、红色光子单元空穴传输层、红色光子单元空穴注入层和红色光子单元阳极,且红色光子单元发光层为无机量子点材料;绿色发光子单元依次包含有绿色光子单元阴极、绿色光子单元电子传输层、绿色光子单元发光层、绿色光子单元空穴传输层、绿色光子单元空穴注入层和绿色光子单元阳极,且绿色光子单元发光层为无机量子点材料。
  2. 根据权利要求1所述的一种有机、无机量子点杂化的全彩显示器件,其特征在于:所述蓝色光子单元电子传输层、红色光子单元电子传输层和绿色光子单元电子传输层的材料均为金属氧化物的纳米颗粒,且金属氧化物的纳米颗粒的迁移率在10-3cm2V-1S-1以上,金属氧化物的纳米颗粒的导带在-4.3eV至-3.9eV之间。
  3. 根据权利要求2所述的一种有机、无机量子点杂化的全彩显示器件,其特征在于:所述金属氧化物的纳米颗粒为纳米氧化锌、纳米氧化钛或纳米氧化锌铝。
  4. 根据权利要求1所述的一种有机、无机量子点杂化的全彩显示器件,其特征在于:所述蓝色光子单元发光层的材料与所述蓝色光子单元空穴传输层的材料相同,均为PFO、PFSO或TPA聚芴类有机材料,所述蓝色光子单元发光层厚度为20~100nm;所述绿色光子单元发光层的材料和所述红色光子单元发光层的材料均为CdSe/ZnS、CdSe/CdS/ZnS、CdSe/CdS/ZnS、CIZS或者CIZS/ZnS 量子点材料。
  5. 根据权利要求4所述的一种有机、无机量子点杂化的全彩显示器件,其特征在于:所述绿色光子单元空穴传输层的材料和所述红色光子单元空穴传输层的材料均与所述蓝色光子单元空穴传输层的材料相同;所述蓝色光子单元空穴注入层、红色光子单元空穴注入层和绿色光子单元空穴注入层是LUMO能级大于5.5eV的金属氧化物或水溶性的导电聚合物。
  6. 根据权利要求1所述的一种有机、无机量子点杂化的全彩显示器件,其特征在于:所述蓝色光子单元电子传输层与所述蓝色光子单元发光层之间、红色光子单元电子传输层与所述红色光子单元发光层之间、绿色光子单元电子传输层与所述绿色光子单元发光层之间均增加界面修饰层,且界面修饰层的厚度小于10nm;所述界面修饰层的材料为聚醚酰亚胺、聚乙烯亚胺或聚[9,9-二(3'-(N,N-二甲胺基)丙基)-2,7-芴]-交-2,7-(9,9-二辛基芴)]。
  7. 根据权利要求1所述的一种有机、无机量子点杂化的全彩显示器件,其特征在于:所述蓝色光子单元阴极、绿色光子单元阴极与红色光子单元阴极一体成型;所述蓝色光子单元电子传输层、绿色光子单元电子传输层与红色光子单元电子传输层一体成型;所述蓝色光子单元空穴传输层、绿色光子单元空穴传输层与红色光子单元空穴传输层一体成型;所述蓝色光子单元空穴注入层、绿色光子单元空穴注入层与红色光子单元空穴注入层一体成型;所述蓝色光子单元阳极、绿色光子单元阳极与红色光子单元阳极一体成型。
  8. 根据权利要求1所述的一种有机、无机量子点杂化的全彩显示器件,其特征在于:所述蓝色光子单元阳极、绿色光子单元阳极和红色光子单元阳极的材料为银、Al、ITO、ZnO、碳纳米管或石墨烯。
  9. 权利要求6所述的一种有机、无机量子点杂化的全彩显示器件的制备方法,其特征在于包括如下步骤:
    (1)制备电子传输层:将电子传输层材料溶液通过旋涂、涂布或喷墨打印于蓝色光子单元阴极、绿色光子单元阴极和红色光子单元阴极上表面,在 90~150℃下热处理10~30min;
    (2)制备界面修饰层:将界面修饰层材料溶液通过旋涂、涂布或喷墨打印于蓝色光子单元电子传输层、绿色光子单元电子传输层和红色光子单元电子传输层;
    (3)制备绿色光子单元发光层和红色光子单元发光层:将绿色光子单元发光层材料溶液和红色光子单元发光层材料溶液喷墨打印于相应界面修饰层上表面,之后在80~160℃下热处理10~30min;
    (4)制备蓝色光子单元发光层:将蓝色光子单元发光层材料溶液涂布或喷墨打印于相应界面修饰层上表面;
    (5)制备空穴注入层:将空穴注入层材料溶液通过旋涂、涂布或喷墨打印于蓝色光子单元发光层、绿色光子单元发光层和红色光子单元发光层上表面;
    (6)制备金属阳极:通过蒸度、溅射一层银、铝、ITO或喷墨打印银浆、碳纳米管或石墨烯于蓝色光子单元空穴注入层、绿色光子单元空穴注入层和红色光子单元空穴注入层的上表面作为阳极;
    (7)封装,得到所述有机、无机量子点杂化的全彩显示器件。
  10. 根据权利要求9所述的一种有机、无机量子点杂化的全彩显示器件的制备方法,其特征在于:所述电子传输层材料溶液的溶剂为甲醇、乙醇、异丙醇或乙二醇中的一种或两种以上的混合,所述电子传输层材料溶液中还加入稳定剂乙醇胺,电子传输层材料溶液的粘度为2~15cp;所述界面修饰层材料溶液所使用的溶剂为水、醇或水醇混合溶剂;所述绿色光子单元发光层材料溶液和红色光子单元发光层材料溶液所使用的溶剂为烷烃类、酯类、苯基类溶剂中的一种或两种以上的混合,绿色光子单元发光层材料溶液和红色光子单元发光层材料溶液的粘度为2~10cp;所述蓝色光子单元发光层材料溶液所使用的溶剂为沸点150~200℃的非极性溶剂;所述空穴注入层材料溶液所使用的溶剂为去离子水、乙二醇单乙醚和乙二醇的混合溶剂,空穴注入层材料溶液的粘度为4~15cp。
PCT/CN2017/112633 2016-12-19 2017-11-23 一种有机、无机量子点杂化的全彩显示器件及其制备方法 WO2018113474A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611174651.8 2016-12-19
CN201611174651.8A CN106601923A (zh) 2016-12-19 2016-12-19 一种有机、无机量子点杂化的全彩显示器件及其制备方法

Publications (1)

Publication Number Publication Date
WO2018113474A1 true WO2018113474A1 (zh) 2018-06-28

Family

ID=58601372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112633 WO2018113474A1 (zh) 2016-12-19 2017-11-23 一种有机、无机量子点杂化的全彩显示器件及其制备方法

Country Status (2)

Country Link
CN (1) CN106601923A (zh)
WO (1) WO2018113474A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114342560A (zh) * 2019-09-04 2022-04-12 夏普株式会社 发光元件、发光装置、发光元件的制造方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106601923A (zh) * 2016-12-19 2017-04-26 华南理工大学 一种有机、无机量子点杂化的全彩显示器件及其制备方法
CN109841647A (zh) * 2017-11-24 2019-06-04 上海和辉光电有限公司 一种oled显示模组及显示器
CN109962133B (zh) * 2017-12-26 2020-11-17 Tcl科技集团股份有限公司 一种qled器件及其制备方法
CN109994627B (zh) * 2017-12-29 2021-04-09 Tcl科技集团股份有限公司 一种复合材料及其制备方法、应用
CN110277499A (zh) * 2018-03-14 2019-09-24 Tcl集团股份有限公司 发光显示器件及其制备方法
CN110556483A (zh) * 2018-06-04 2019-12-10 Tcl集团股份有限公司 电致发光器件及其制备方法和应用
CN110600623B (zh) * 2018-06-13 2021-08-27 Tcl科技集团股份有限公司 电致发光器件及其制备方法
CN112567526A (zh) * 2018-08-29 2021-03-26 华为技术有限公司 一种采用混合型发光二极管的显示屏幕及其制备方法
CN111146347A (zh) * 2018-11-02 2020-05-12 Tcl集团股份有限公司 电致发光器件及其制备方法
CN111864086A (zh) * 2019-04-26 2020-10-30 京东方科技集团股份有限公司 发光结构、显示面板和显示装置
CN110148676A (zh) * 2019-05-17 2019-08-20 华南理工大学 一种喷墨打印有机、钙钛矿杂化全彩显示屏及其制备方法
CN112054127A (zh) * 2019-06-05 2020-12-08 Tcl集团股份有限公司 一种量子点发光二极管及其制备方法
CN111883675B (zh) * 2019-09-24 2022-12-06 广东聚华印刷显示技术有限公司 混合型电致发光器件及其制备方法和显示装置
CN112331785B (zh) * 2019-12-27 2022-08-30 广东聚华印刷显示技术有限公司 发光器件及其制作方法
JP7329080B2 (ja) 2020-01-27 2023-08-17 シャープ株式会社 表示装置
CN112103406B (zh) * 2020-10-20 2023-04-18 合肥福纳科技有限公司 一种量子点发光器件及其制备方法
CN114695752A (zh) * 2020-12-31 2022-07-01 Tcl科技集团股份有限公司 一种显示器件及其制备方法
CN114649491A (zh) * 2022-03-17 2022-06-21 福州大学 基于光刻工艺的倒置结构钙钛矿qled器件及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150364523A1 (en) * 2014-06-12 2015-12-17 Japan Display Inc. Display device
CN105304681A (zh) * 2015-10-19 2016-02-03 Tcl集团股份有限公司 含有机/无机混合发光层的电致发光显示器及制备方法
CN105810851A (zh) * 2016-05-03 2016-07-27 深圳市华星光电技术有限公司 量子点发光二极管显示器的制作方法及量子点发光二极管显示器
CN106601923A (zh) * 2016-12-19 2017-04-26 华南理工大学 一种有机、无机量子点杂化的全彩显示器件及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5515661B2 (ja) * 2009-11-16 2014-06-11 ソニー株式会社 有機el表示装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150364523A1 (en) * 2014-06-12 2015-12-17 Japan Display Inc. Display device
CN105304681A (zh) * 2015-10-19 2016-02-03 Tcl集团股份有限公司 含有机/无机混合发光层的电致发光显示器及制备方法
CN105810851A (zh) * 2016-05-03 2016-07-27 深圳市华星光电技术有限公司 量子点发光二极管显示器的制作方法及量子点发光二极管显示器
CN106601923A (zh) * 2016-12-19 2017-04-26 华南理工大学 一种有机、无机量子点杂化的全彩显示器件及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114342560A (zh) * 2019-09-04 2022-04-12 夏普株式会社 发光元件、发光装置、发光元件的制造方法

Also Published As

Publication number Publication date
CN106601923A (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
WO2018113474A1 (zh) 一种有机、无机量子点杂化的全彩显示器件及其制备方法
US11245076B2 (en) Perovskite optoelectronic device, preparation method therefor and perovskite material
Xiong et al. Realizing 17.0% external quantum efficiency in red quantum dot light-emitting diodes by pursuing the ideal inkjet-printed film and interface
US10497890B2 (en) Quantum-dot electroluminescent device, method for preparing the same, and display device
Do et al. N, S‐Induced Electronic States of Carbon Nanodots Toward White Electroluminescence
Peng et al. Efficient vacuum-free-processed quantum dot light-emitting diodes with printable liquid metal cathodes
CN110041758B (zh) 钙钛矿纳米晶墨水、电致发光器件及制备方法
CN100466332C (zh) 一种发光颜色可调控的有机发光二极管的制备方法
CN106997927A (zh) 一种量子点电致发光器件
CN110459689A (zh) 一种喷墨打印有机、钙钛矿杂化全彩显示屏及其制备方法
CN111509142B (zh) 核壳量子点、量子点发光二极管、量子点组合物、显示器件
CN111384268B (zh) 量子点发光二极管的制备方法及量子点墨水
Al-Asbahi et al. Influence of TiO2 Nanoparticles on Enhancement of Optoelectronic Properties of PFO‐Based Light Emitting Diode
Zhu et al. All-solution-processed high-performance quantum dot light emitting devices employing an inorganic thiocyanate as hole injection layer
CN106997890A (zh) 一种基于量子点电致发光器件的彩色显示器件
Mude et al. An efficient organic and inorganic hybrid interlayer for high performance inverted red cadmium-free quantum dot light-emitting diodes
TWI740209B (zh) 量子點發光二極體及其製造方法
Chang et al. Highly efficient trilayered white quantum dot light emitting diodes based on organic buffer layers
CN210607334U (zh) 一种喷墨打印有机、钙钛矿杂化全彩显示屏
TW200415935A (en) Electroluminescent device with a color filter
CN112341606B (zh) 化合物及其制备方法和量子点发光二极管
Zhao et al. Single-component electroluminescent white light-emitting diodes based on zinc oxide quantum dots with high color rendition and tunable correlated color temperature
CN110660923B (zh) 一种基于AIE材料的荧光/磷光混合型白光OLEDs及其制备方法
CN111276623B (zh) 一种改性空穴传输层及基于其的蓝光钙钛矿发光二极管
WO2020134207A1 (zh) 量子点发光二极管的后处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17885196

Country of ref document: EP

Kind code of ref document: A1