WO2018113367A1 - 集成立体显示装置 - Google Patents
集成立体显示装置 Download PDFInfo
- Publication number
- WO2018113367A1 WO2018113367A1 PCT/CN2017/103501 CN2017103501W WO2018113367A1 WO 2018113367 A1 WO2018113367 A1 WO 2018113367A1 CN 2017103501 W CN2017103501 W CN 2017103501W WO 2018113367 A1 WO2018113367 A1 WO 2018113367A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- display
- image
- integrated
- units
- pixels
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B35/00—Stereoscopic photography
- G03B35/08—Stereoscopic photography by simultaneous recording
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
- G09F9/30—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
- G09F9/302—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements characterised by the form or geometrical disposition of the individual elements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/10—Processing, recording or transmission of stereoscopic or multi-view image signals
- H04N13/106—Processing image signals
- H04N13/15—Processing image signals for colour aspects of image signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/20—Image signal generators
- H04N13/204—Image signal generators using stereoscopic image cameras
- H04N13/207—Image signal generators using stereoscopic image cameras using a single 2D image sensor
- H04N13/232—Image signal generators using stereoscopic image cameras using a single 2D image sensor using fly-eye lenses, e.g. arrangements of circular lenses
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/20—Image signal generators
- H04N13/257—Colour aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/302—Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
- H04N13/307—Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using fly-eye lenses, e.g. arrangements of circular lenses
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/324—Colour aspects
Definitions
- the present application relates to the field of display, and in particular to an integrated stereoscopic display device.
- Integral Imaging is a 3D image display technology that captures and virtually reproduces a light field through a two-dimensional microlens array with omnidirectional parallax that varies with observer position and distance.
- each lens 1' acquires an image that the target object 01 looks at from the viewpoint of the position of the lens 1'.
- each lens 1' allows each observation eye to see only a portion of the target object 01, which corresponds to the view from the spatial position of the eye to the target object. For the visible part.
- the integrated stereoscopic display device comprises a capturing device and a reproducing device.
- the capturing device comprises a lens 1' and an image sensor unit 2'.
- the reproducing device comprises a lens 1' and an image display unit 3' .
- the optical paths in the capture device and the reproducing device in the device must be perfectly aligned, that is, the relative positions of the matrix sensor and the microlens array in the capture device are relative to those between the matrix display device and the microlens array in the reproducing device.
- the position is strictly consistent, so that the reconstructed spot can be accurately restored in space, so that the target object 01 is completely consistent with the reconstructed image 02 (including the position).
- the main purpose of the present application is to provide an integrated stereoscopic display device to solve the problem that the optical paths of the capture device and the reproducing device in the prior art are difficult to align.
- an integrated stereoscopic display device including an integrated device of a lens unit and image display and capture, the lens unit including at least one lens; image display and capture
- the integrated device is disposed at one side of the lens unit, and the plane of the lens unit is parallel to the integrated device.
- the integrated device In the capture mode, the integrated device is configured to capture image information of the target object through the lens unit.
- the reproduction mode the integration is performed. The device is used to display image information of the above target object.
- the lens unit includes a two-dimensional lens array, and the two-dimensional lens array includes a plurality of the lenses.
- the integrated device includes a plurality of integrated units, and the lens is in one-to-one correspondence with the integrated unit.
- the plurality of integrated units are configured to capture image information of a target object at different angles, in the above reproduction mode.
- a plurality of the above integrated units for displaying image information of the target object at different angles each of the above integrated unit packages a plurality of image sensor units for capturing image information of a target object by the lens unit; and a plurality of image display units for displaying image information of the target object.
- the plurality of image sensor units and the plurality of image display units form a two-dimensional matrix, and the image sensor unit and the image display unit are alternately disposed in a row direction and a column direction of the two-dimensional matrix.
- each of the image display units includes three display pixels, which are red pixels, blue pixels, and green pixels, and the image sensor unit is adjacent to the display pixels in the middle of the image display unit in the column direction.
- each of the image display units includes three display pixels, which are respectively a red pixel, a blue pixel, and a green pixel.
- at least one of the display pixels is adjacent to the other two display pixels and has a gap.
- the image sensor unit is disposed in each of the gaps.
- any one of the display pixels is adjacent to the other two display pixels and has a gap, and each of the image sensor units is disposed in each of the largest gaps.
- the integrated device includes a display plane, and a line connecting the centers of the display pixels in each of the image display units on the display plane forms a triangle, and the center of each of the image sensor units on the display plane is located in the triangle. center.
- each of the display pixels is the same cylindrical pixel, and the triangle is an equilateral triangle
- the image sensor unit is a cylindrical sensor unit
- the integrated unit includes a display matrix formed by the plurality of image display units, in each row.
- a line connecting the center of each of the two adjacent image display units on the display plane forms a parallelogram
- the image display units of each column are the same.
- each of the image display units includes three display pixels, which are red pixels, blue pixels, and green pixels, and any one of the display pixels is disposed in contact with two other display pixels, and each of the image sensor units is located corresponding to each other.
- the above image shows the central area within the unit.
- the integrated device includes a display plane, each of the display pixels is a same hexagonal prism display pixel, and a line connecting the centers of the display pixels on the display plane in each of the image display units forms an equilateral triangle, each of which forms an equilateral triangle.
- the image sensor units are all the same hexagonal prism sensor unit, and the center point of each of the image sensor units on the display plane is located at the center of the equilateral triangle, and the plurality of display pixels in each of the integrated units form a honeycomb structure.
- each of the image sensor units includes three sensors, which are a red sensor, a blue sensor, and a green sensor
- each of the image display units includes three display pixels, which are red pixels, blue pixels, and green pixels, respectively.
- the display pixels in the image display unit are in one-to-one correspondence with the corresponding sensors of the image sensor unit, and each of the sensors is located in a region surrounded by the corresponding display pixels, and the geometric center of the sensor and the corresponding display are The geometric centers of the pixels coincide.
- the integrated stereoscopic display device in the present application includes an integrated device for image display and capture, and the integrated device integrates image display with image capture, and any plane in the integrated device Any point of the same distance from the plane of the lens unit is the same, no alignment is required, the optical path of the capture and the reproduction optical path are better, and the integrated stereoscopic display device is integrated with the stereoscopic display in the prior art. For the device, the stability is better.
- FIG. 1 is a structural diagram of a capture device and a capture optical path diagram of an integrated stereoscopic display device in the prior art
- FIG. 2 is a structural diagram of a reproducing apparatus and a reproduction optical path diagram in the integrated stereoscopic display device corresponding to FIG. 1;
- FIG. 3 is a schematic structural diagram of an integrated stereoscopic display device according to an embodiment of the present application.
- Embodiment 4 is a schematic structural diagram of an integrated device for image display and capture provided by Embodiment 1 of the present application;
- FIG. 5 is a schematic diagram showing a partial capture optical path of the integrated stereoscopic display device corresponding to FIG. 4;
- FIG. 6 is a schematic diagram showing a partial reproduction optical path of the integrated stereoscopic display device corresponding to FIG. 4;
- FIG. 7 is a schematic structural diagram of an integrated device for image display and capture of Embodiment 2 of the present application.
- FIG. 8 is a schematic structural diagram of an integrated device for image display and capture of Embodiment 3 of the present application.
- FIG. 9 is a schematic structural diagram of an integrated device for image display and capture of Embodiment 4 of the present application.
- FIG. 10 is a block diagram showing the structure of an integrated device for image display and capture of Embodiment 5 of the present application.
- FIG. 11 is a block diagram showing the structure of an integrated device for image display and capture of Embodiment 6 of the present application.
- Fig. 12 is a view showing the configuration of an integrated apparatus for image display and capture of Embodiment 7 of the present application.
- 01 target object; 02, reconstructed image; 1', lens; 2', image sensor unit; 3', image display unit; 1, lens unit; 2, integrated device for image display and capture; 10, lens; , an integrated unit; 21, an image sensor unit; 22, an image display unit.
- the integrated stereoscopic display device in the prior art is a discrete component, including a capture device and a reproduction device, and the optical paths of the two are difficult to align.
- the present application proposes an integrated stereo. Display device.
- the integrated stereoscopic display device comprises an integrated device 2 for lens unit 1 and image display and capture, wherein the lens unit 1 comprises at least one lens 10; an integrated device 2 for image display and capture is provided in the lens unit 1 described above One side, and any point on any one of the above integrated devices is the same distance from the plane in which the lens unit is located.
- the integrated device In the capture mode, the integrated device is configured to capture image information of the target object through the lens unit in the reproduction mode. Next, the above integrated device is used to display image information of the target object.
- an integrated device including image display and capture the integrated device integrates image display and image capture, and any point on any plane in the integrated device and the lens unit
- the plane distances are all the same, and the alignment optical path and the reproduction optical path are better aligned without alignment, and the integrated stereoscopic display device is stable with respect to the separate integrated stereoscopic display device in the prior art. Better sex.
- the lens unit 1 includes a two-dimensional lens array, and the two-dimensional lens array includes a plurality of the lenses 10. An image of the target object at multiple angles can be captured and reproduced by a plurality of lenses.
- the integrated device includes a plurality of integrated units 20, the lens 10 and the integrated unit.
- the plurality of integration units 20 are configured to capture image information of target objects at different angles.
- the plurality of integration units 20 are configured to display the target objects at different angles.
- Image information each of the above integrated units includes a plurality of image sensor units and a plurality of image display units, wherein the image sensor unit is configured to capture image information of the target object through the lens unit; the image sensor unit transmits the captured image information to In the image display unit, the image display unit is configured to display image information of the target object.
- each image sensor unit is turned on (the image display unit can be turned on or off), and each image sensor captures image information of a certain point of the target object at a certain angle through a corresponding lens, in each integrated unit.
- the image sensor can capture two-dimensional image information of the target object at a certain angle; therefore, there is a certain parallax relationship between different two-dimensional image information captured by the plurality of integrated units.
- each image display unit is turned on (the image sensor unit can be turned on or off), and an image corresponding to a certain point of the target object at an angle is displayed, and all the image display units in one integrated unit can display the target.
- the two-dimensional image of the object at an angle is viewed from the side of the integrated device away from the lens unit toward the lens unit, and the image of the target object at the specific angle can be seen at each specific angle, thereby realizing integrated stereoscopic display.
- the image signal is displayed by the image display unit in the vicinity of the image sensor unit to realize the reverse propagation of the approximate optical path, and the same point on the object is reproduced in the same or similar position in the space, thereby realizing the integrated stereo display.
- a plurality of the image sensor units and the plurality of image display units form a two-dimensional matrix in a row direction and a column direction of the two-dimensional matrix.
- the image sensor unit and the image display unit described above are alternately arranged.
- the image sensor unit 21 and the image display unit 22 are alternately arranged in the row direction and the column direction, so that the capturing optical path and the reproducing optical path of the integrated stereoscopic display device are better. Consistency.
- the captured optical path diagram shown in FIG. 5 and the reproduced optical path diagram shown in FIG. 6 are both optical paths of a lens and a corresponding integrated unit.
- each of the image display units 22 includes three display pixels, which are red pixels, blue pixels, and green pixels, and the image sensor unit 21 and the image are in the row direction.
- the display pixels of the edge of the display unit 22 are adjacent to each other, and in the column direction, the image sensor unit is adjacent to the display pixel in the middle of the image display unit.
- the green pixel is the intermediate display pixel, and therefore, the image sensor unit 21 is adjacent to the green pixel in the figure, and the display pixel in the middle of each image display unit 22 When it is another pixel, the image sensor unit 21 is adjacent to other pixels.
- the reason why the image sensor unit is adjacent to the display pixel in the middle of the image display unit in the column direction is to realize the R of each image sensor unit and other rows in the column direction.
- the center of the image display unit composed of three sub-pixels of G and B is aligned, thereby realizing that the image sensor unit and the image display unit are alternately arranged in the direction of the column, thereby realizing the virtual image of the reconstructed target object and the actual target object.
- the location is as much as possible.
- each of the image display units includes three display pixels, which are red pixels, blue pixels, and green pixels, and at least one of the display pixels and the other two of the image display units.
- the display pixels are adjacent and have a gap, and the image sensor unit is disposed in each of the gaps.
- any one of the display pixels is adjacent to the other two display pixels and has a gap, and each of the image sensor units is disposed in each of the largest gaps.
- the line connecting the center points of the three display pixels in each image display unit 22 forms a triangle, and any two display pixels have a gap therebetween, wherein the maximum The gap is between the red pixel and the blue pixel, and therefore, the image sensor unit 21 is disposed in the gap between the two.
- the integrated device includes a display plane, and a line connecting the centers of the display pixels in each of the image display units on the display plane forms a triangle, and each of the image sensor units is on the display plane.
- the center is located at the center of the above triangle.
- the center of the image sensor unit is disposed at the geometric center of the image display unit, which can further ensure that the capture optical path and the reproduction optical path have better consistency.
- each of the display pixels is the same cylindrical pixel, and the triangle is an equilateral triangle, and the image sensor unit 21 is also a cylindrical sensor unit, and its center is located at the same time.
- the integrated unit 20 includes a plurality of display matrices formed by the image display unit 22, and in each of the image display units 22 of each row, each of the two adjacent image display units 22 is The lines on the center of the display plane described above form a parallelogram, and the image display units 22 of each of the columns are identical.
- each of the image display units includes three display pixels, which are red pixels, blue pixels, and green pixels, and any one of the display pixels is in contact with two other display pixels.
- the image sensor unit is located in a central area of the corresponding image display unit, and the image sensor unit is disposed in a central area of the image display unit (ie, a region centered on the geometric center), which can ensure that the capturing optical path and the reproducing optical path are better. consistency.
- the thickness of the image sensor unit is the same as the thickness of the image display unit in order to ensure that the optical path in the capture mode and the reproduction mode are as consistent as possible, that is, the reproduction optical path and the captured optical path are as uniform as possible.
- the integrated device includes a display plane, each of the display pixels is the same hexagonal prism display pixel, and each of the display pixels in each of the image display units 22 is in the display plane.
- the upper center line forms an equilateral triangle
- each of the image sensor units 21 is the same hexagonal prism sensor unit, and the center point of each of the image sensor units 21 on the display plane is located at the center of the equilateral triangle.
- each of the image display units 22 coincides with the geometric center of the corresponding image sensor unit 21, that is, the geometric center of the torus of the image display unit 22 and the image sensor unit 21
- the geometric centers are the same, so that a better alignment between the two can be achieved in a simple manner, thereby ensuring a good consistency between the captured optical path and the reproduced optical path.
- each image display unit when each image display unit includes three display pixels of red, green, and blue (ie, RGB three-color pixels), each image sensor unit should be capable of imaging RGB three-color light.
- RGB three-color pixels ie, RGB three-color pixels
- each image sensor unit S is internally divided into sensors corresponding to three pixels of R, G, and B, and images of three colors of red, green, and blue are respectively imaged.
- each of the image sensor units 21 includes three sensors, which are a red sensor (indicated by S R in the figure), a blue sensor (indicated by S B in the figure), and a green sensor. (indicated by S G in the figure), each of the image display units 22 includes three display pixels, which are respectively a red pixel R, a blue pixel B, and a green pixel G, and the display pixels in the image display unit 22 correspond to the display pixels.
- the sensors of the image sensor unit 21 are in one-to-one correspondence, and each of the sensors is located in the corresponding display pixel, that is, inside the area surrounded by the sensor, and the geometric center of each of the sensors and the corresponding display pixels
- the geometric centers coincide, as shown in Figure 12, the red sensor is a cylinder, which is located in a blank area within the red pixel of the torus, and the geometric centers of the two coincide, the green sensor is a cylinder, which is located in the torus a blank area within the green pixel, and the geometric centers of the two are coincident, the blue sensor is a cylinder, which is located in a blank area within the blue pixel of the torus, and The geometric center coincide.
- an integrated device including image display and capture the integrated device integrates image display and image capture, and any point on any plane in the integrated device and the lens unit
- the plane distances are all the same, and the alignment optical path and the reproduction optical path are better aligned without alignment, and the integrated stereoscopic display device is stable with respect to the separate integrated stereoscopic display device in the prior art. Better sex.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Image Input (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
Abstract
一种集成立体显示装置,包括透镜单元(1)与图像显示和捕获的集成设备(2),透镜单元(1)包括至少一个透镜(10);图像显示和捕获的集成设备(2)设置在透镜单元(1)的一侧,透镜单元(1)所在的平面与集成设备(2)平行。在捕获模式下,集成设备(2)用于通过透镜单元(1)捕获目标物体(01)的图像信息,在再现模式下,集成设备(2)用于显示目标物体(01)的图像信息。这种集成立体显示装置不需要进行对准,捕获光路与再现光路就具有较好的一致性,且这种集成立体显示装置相对于现有技术中的分离集成立体显示装置来说,稳定性更好。
Description
本申请涉及显示领域,具体而言,涉及一种集成立体显示装置。
集成立体显示(Integral Imaging)是一种三维影像显示技术,通过二维微透镜阵列能够捕获和虚拟再现光场,其具有全方向的视差,可随观察者的位置和距离而变化。
在捕获模式下,如图1所示的捕获光路,每个透镜1’获取到目标物体01从该透镜1’的位置的视点(viewpoint)看过去的图像。在再现模式下,如图2所示的再现光路,每个透镜1’允许每个观察眼仅能看到目标物体01的一个部分,该部分对应于从眼睛所在空间位置向目标物体看过去应该为可见的部分。
现有技术中,如图1与图2所示,集成立体显示装置包括捕获设备与再现设备,捕获设备包括透镜1'与图像传感器单元2',再现设备包括透镜1'与图像显示单元3'。并且,该装置中的捕获设备和再现设备中的光路必须完全对准,即在捕获设备中的矩阵传感器和微透镜阵列的相对位置要与再现设备中矩阵显示装置与微透镜阵列之间的相对位置严格一致,这样才能准确在空间中还原重构的光点,使得目标物体01与重构图像02完全一致(包括位置)。
但是,上述集成立体显示装置中,这种相对位置严格一致的要求对工艺和设备的要求都非常高,在实际中很难达到,进而造成最终的立体显示效果不够理想。
发明内容
本申请的主要目的在于提供一种集成立体显示装置,以解决现有技术中的捕获设备和再现设备的光路难以对准的问题。
为了实现上述目的,根据本申请的一个方面,提供了一种集成立体显示装置,该集成立体显示装置包括透镜单元与图像显示和捕获的集成设备,透镜单元包括至少一个透镜;图像显示和捕获的集成设备设置在上述透镜单元的一侧,上述透镜单元所在的平面与上述集成设备平行,在捕获模式下,上述集成设备用于通过透镜单元捕获目标物体的图像信息,在再现模式下,上述集成设备用于显示上述目标物体的图像信息。
进一步地,上述透镜单元包括二维透镜阵列,上述二维透镜阵列包括多个上述透镜。
进一步地,上述集成设备包括多个集成单元,上述透镜与上述集成单元一一对应,在上述捕获模式下,多个上述集成单元用于捕获不同角度的目标物体的图像信息,在上述再现模式下,多个上述集成单元用于显示不同角度的上述目标物体的图像信息,各上述集成单元包
括:多个图像传感器单元,用于通过上述透镜单元捕获目标物体的图像信息;多个图像显示单元,上述图像显示单元用于显示上述目标物体的图像信息。
进一步地,多个上述图像传感器单元与多个上述图像显示单元形成二维矩阵,在上述二维矩阵的行方向与列方向上,上述图像传感器单元与上述图像显示单元均交替设置。
进一步地,各上述图像显示单元包括三个显示像素,分别为红色像素、蓝色像素与绿色像素,在上述列方向上,上述图像传感器单元与上述图像显示单元的中间的上述显示像素相邻。
进一步地,各上述图像显示单元包括三个显示像素,分别为红色像素、蓝色像素与绿色像素,各上述图像显示单元中,至少一个上述显示像素与其他两个上述显示像素相邻且具有间隙,上述图像传感器单元设置在各上述间隙中。
进一步地,各上述图像显示单元中,任意一个上述显示像素与其他两个上述显示像素相邻且具有间隙,各上述图像传感器单元设置在各最大的上述间隙中。
进一步地,上述集成设备包括显示平面,各上述图像显示单元中的各上述显示像素在上述显示平面上的中心的连线形成三角形,各上述图像传感器单元在上述显示平面上的中心位于上述三角形的中心。
进一步地,各上述显示像素均为相同的圆柱像素,且上述三角形为等边三角形,上述图像传感器单元为圆柱形传感器单元,上述集成单元包括多个上述图像显示单元形成的显示矩阵,在每行的上述图像显示单元中,任意相邻的两个上述图像显示单元中的各显示像素在上述显示平面上中心的连线形成平行四边形,每列的上述图像显示单元均相同。
进一步地,各上述图像显示单元包括三个显示像素,分别为红色像素、蓝色像素与绿色像素,任意一个上述显示像素均与其他两个上述显示像素接触设置,各上述图像传感器单元位于对应的上述图像显示单元内的中心区域。
进一步地,上述集成设备包括显示平面,各上述显示像素均为相同的六棱柱显示像素且各上述图像显示单元中的各上述显示像素在上述显示平面上的中心的连线形成等边三角形,各上述图像传感器单元均为相同的六棱柱传感器单元,各上述图像传感器单元在上述显示平面上的中心点位于上述等边三角形的中心,各上述集成单元中的多个上述显示像素形成蜂窝结构。
进一步地,各上述图像传感器单元包括三个传感器,分别为红色传感器、蓝色传感器与绿色传感器,各上述图像显示单元包括三个显示像素,分别为红色像素、蓝色像素与绿色像素,各上述图像显示单元中的上述显示像素与对应的上述图像传感器单元的上述传感器一一对应,且各上述传感器位于对应的上述显示像素围成的区域中,且上述传感器的几何中心与对应的各上述显示像素的几何中心重合。
应用本申请的技术方案,本申请中的集成立体显示装置中,包括图像显示和捕获的集成设备,该集成设备将图像显示与图像捕获集成在一起,并且,该集成设备中的任意一个平面上的任意一点与透镜单元所在的平面的距离均相同,不需要进行对准,捕获光路与再现光路就具有较好的一致性,且该集成立体显示装置相对于现有技术中的分离集成立体显示装置来说,稳定性更好。
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了现有技术中的集成立体显示装置的捕获设备结构图以及捕获光路图;
图2示出了图1对应的集成立体显示装置中的再现设备结构图以及再现光路图;
图3示出了本申请的一种实施例提供的集成立体显示装置的结构示意图;
图4示出了本申请的实施例1提供的图像显示和捕获的集成设备的结构示意图;
图5示出了图4对应的集成立体显示装置的局部捕获光路示意图;
图6示出了图4对应的集成立体显示装置的局部再现光路示意图;
图7示出了本申请的实施例2的图像显示和捕获的集成设备的结构示意图;
图8示出了本申请的实施例3的图像显示和捕获的集成设备的结构示意图;
图9示出了本申请的实施例4的图像显示和捕获的集成设备的结构示意图;
图10示出了本申请的实施例5的图像显示和捕获的集成设备的结构示意图;
图11示出了本申请的实施例6的图像显示和捕获的集成设备的结构示意图;以及
图12示出了本申请的实施例7的图像显示和捕获的集成设备的结构示意图。
其中,上述附图包括以下附图标记:
01、目标物体;02、重构图像;1'、透镜;2'、图像传感器单元;3'、图像显示单元;1、透镜单元;2、图像显示和捕获的集成设备;10、透镜;20、集成单元;21、图像传感器单元;22、图像显示单元。
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
正如背景技术所介绍的,现有技术中的集成立体显示装置为分立元件,包括捕获设备和再现设备,二者的光路难以对准,为了解决如上的技术问题,本申请提出了一种集成立体显示装置。
如图3所示,该集成立体显示装置包括透镜单元1与图像显示和捕获的集成设备2,其中,透镜单元1包括至少一个透镜10;图像显示和捕获的集成设备2设置在上述透镜单元1的一侧,且上述集成设备中任意一个平面上的任意一点与上述透镜单元所在的平面的距离相同,在捕获模式下,上述集成设备用于通过透镜单元捕获目标物体的图像信息,在再现模式下,上述集成设备用于显示上述目标物体的图像信息。
本申请中的集成立体显示装置中,包括图像显示和捕获的集成设备,该集成设备将图像显示与图像捕获集成在一起,并且,该集成设备中的任意一个平面上的任意一点与透镜单元所在的平面的距离均相同,不需要进行对准,就可以使得捕获光路与再现光路具有较好的一致性,且该集成立体显示装置相对于现有技术中的分离集成立体显示装置来说,稳定性更好。
本申请的一种实施例中,如图3所示,上述透镜单元1包括二维透镜阵列,上述二维透镜阵列包括多个上述透镜10。通过多个透镜可以捕获并且重现目标物体在多个角度上的图像。
为了更好地捕获目标物体的三维图像或者重现三维的目标物体,如图3所示,本申请的一种实施例中,上述集成设备包括多个集成单元20,上述透镜10与上述集成单元20一一对应,在上述捕获模式下,多个上述集成单元20用于捕获不同角度的目标物体的图像信息,在上述再现模式下,多个上述集成单元20用于显示不同角度的上述目标物体的图像信息,各上述集成单元包括多个图像传感器单元与多个图像显示单元,其中,图像传感器单元用于通过上述透镜单元捕获目标物体的图像信息;图像传感器单元将其捕获的图像信息传输至图像显示单元中,上述图像显示单元用于显示上述目标物体的图像信息。在捕获模式下,各图像传感器单元开启(图像显示单元可以开启,也可以关闭),各图像传感器通过对应的透镜捕获目标物体的某些点在某个角度时的图像信息,每个集成单元中的图像传感器可以捕获某个角度时的目标物体的二维图像信息;因此,多个集成单元捕获到的不同二维图像信息之间存在一定的视差关系。在再现模式下,各图像显示单元开启(图像传感器单元可以开启,也可以关闭),显示目标物体的某些点在某个角度对应的图像,一个集成单元中的所有的图像显示单元可以显示目标物体在某个角度上的二维图像,从集成设备远离透镜单元一侧朝透镜单元看过去,在每个特定的角度上都可以看到目标物体在该特定角度上的图像,进而实现集成立体显示。
当然也可以利用光线可逆性的原理来解释上述捕获和再现模式:
在捕获模式下,物体上的一个点反射的不同角度的光线被多个透镜单元分别聚焦到对应的集成单元中的图像传感器单元中;
在再现模式下,又通过图像传感器单元附近的图像显示单元将图像信号进行显示,实现近似光路的逆向传播,在空间中相同或相近的位置重现该物体上的同一点,由此实现集成立体显示。
本申请的再一种实施例中,如图4与图7所示,多个上述图像传感器单元与多个上述图像显示单元形成二维矩阵,在上述二维矩阵的行方向与列方向上,上述图像传感器单元与上述图像显示单元均交替设置。
具体地,如图4所示的实施例1中,图像传感器单元21与图像显示单元22在行方向与列方向上均交替设置,这样能够保证集成立体显示装置的捕获光路与再现光路具有较好的一致性。如图5所示的捕获光路图与图6所示的再现光路图,这两个均是一个透镜与对应的集成单元的光路图。
需要说明的是,没有特殊说明的情况下,本申请中的附图中的字母“S”代表图像传感器单元,字母“D”代表图像显示单元。
由图5和图6对比可以看出,虽然严格上讲,再现光路中重构图像02的位置与原目标物体01的位置之间存在细微偏差,但相对于现有技术中需要两个分离的系统(即再现光路和捕获光路)之间实现对准,本发明中的对准难度和精度方面显然要远远优于现有技术中采用两套独立系统的方案。
具体地,如图7所示的实施例2中,各上述图像显示单元22包括三个显示像素,分别为红色像素、蓝色像素与绿色像素,在行方向上,上述图像传感器单元21与上述图像显示单元22的边缘的上述显示像素相邻,在上述列方向上,上述图像传感器单元与上述图像显示单元的中间的上述显示像素相邻。图7中,在列方向上,图像显示单元22中,绿色像素为中间的显示像素,因此,该图中图像传感器单元21与绿色像素相邻,当各图像显示单元22中的中间的显示像素为其他像素时,图像传感器单元21与其他的像素相邻。
图7中的字母“R”代表红色像素,“G”代表绿色像素,“B”代表蓝色像素,并且,如果没有特殊说明的情况下,本申请中的其他附图中的这些字母与图7中的字母的含义相同。
上段的实施例2中,之所以在列方向上,将图像传感器单元与图像显示单元中的中间的显示像素相邻,是为了实现在列方向上,每个图像传感器单元均与其他行的R、G、B三个子像素构成的图像显示单元的中心对齐,进而实现在列的方向上,图像传感器单元与图像显示单元整体上呈交替排列,进而使得重构的目标物体的虚像与实际目标物体的位置尽量相同。
本申请的另一种实施例中,各上述图像显示单元包括三个显示像素,分别为红色像素、蓝色像素与绿色像素,各上述图像显示单元中,至少一个上述显示像素与其他两个上述显示像素相邻且具有间隙,上述图像传感器单元设置在各上述间隙中。
一种具体的实施例中,各上述图像显示单元中,任意一个上述显示像素与其他两个上述显示像素相邻且具有间隙,各上述图像传感器单元设置在各最大的上述间隙中。
更具体地,如图8所示的实施例3中,各图像显示单元22中的三个显示像素的中心点的连线形成一个三角形,任意两个显示像素之间均具有间隙,其中,最大的间隙是红色像素与蓝色像素之间,因此,图像传感器单元21设置在二者的间隙中。
另一种具体的实施例中,上述集成设备包括显示平面,各上述图像显示单元中的各上述显示像素在上述显示平面上的中心的连线形成三角形,各上述图像传感器单元在上述显示平面上的中心位于上述三角形的中心。这样将图像传感器单元的中心设置在图像显示单元的几何中心,能够进一步保证捕获光路与再现光路具有较好的一致性。
更具体地,如图9所示的实施例4中,各上述显示像素均为相同的圆柱像素,且上述三角形为等边三角形,图像传感器单元21也为圆柱形传感器单元,其中心位于在等边三角形的中心,上述集成单元20包括多个上述图像显示单元22形成的显示矩阵,在每行的上述图像显示单元22中,任意相邻的两个上述图像显示单元22中的各显示像素在上述显示平面上中心的连线形成平行四边形,每列的上述图像显示单元22均相同。
本申请的再一种实施例中,各上述图像显示单元包括三个显示像素,分别为红色像素、蓝色像素与绿色像素,任意一个上述显示像素均与其他两个上述显示像素接触设置,各上述图像传感器单元位于对应的上述图像显示单元内的中心区域,将图像传感器单元设置在图像显示单元的中心区域(即以几何中心为中心的区域),能够保证捕获光路与再现光路具有较好的一致性。
且本申请的一种优选实施例中,为了保证捕获模式与再现模式中的光路尽可能一致,即再现光路与捕获光路尽可能一致,上述图像传感器单元的厚度与图像显示单元的厚度相同。
具体地,如图10所示的实施例5中,上述集成设备包括显示平面,各上述显示像素均为相同的六棱柱显示像素且各上述图像显示单元22中的各上述显示像素在上述显示平面上的中心的连线形成等边三角形,各上述图像传感器单元21均为相同的六棱柱传感器单元,各上述图像传感器单元21在上述显示平面上的中心点位于上述等边三角形的中心,这样能够更好地保证图像传感器单元位于图像显示单元的几何中心,进一步保证了该显示装置的捕获光路与再现光路具有较好的一致性,进一步保证目标物体与重构的其的虚像的位置基本重合,各上述集成单元中的多个上述显示像素形成蜂窝结构。
具体地,如图11所示的实施例6中,各上述图像显示单元22与对应的上述图像传感器单元21的几何中心重合,即图像显示单元22的圆环体的几何中心与图像传感器单元21的几何中心相同,这样以简单的方式就能实现二者较好的对准,进而保证捕获光路与再现光路具有较好的一致性。
需要说明的是,上述的实施例中,当各图像显示单元包括红、绿与蓝三个显示像素(即RGB三色像素)时,每个图像传感器单元应该均能够对RGB三色光进行成像,一种具体实现的方式是每个图像传感器单元S在内部划分为与R、G和B三个像素对应的传感器,分别对红、绿与蓝三种颜色的光进行成像。
如图12所示的实施例7中,各上述图像传感器单元21包括三个传感器,分别为红色传感器(图中用SR表示)、蓝色传感器(图中用SB表示))与绿色传感器(图中用SG表示)),各上述图像显示单元22包括三个显示像素,分别为红色像素R、蓝色像素B与绿色像素G,各上述图像显示单元22中的上述显示像素与对应的上述图像传感器单元21的上述传感器一一对应,且各上述传感器位于对应的上述显示像素内,即位于上述传感器围成的区域的内部,且各上述传感器的几何中心与对应的各上述显示像素的几何中心重合,如图12所示,红色传感器为圆柱体,其位于圆环体的红色像素内的空白区域,且二者的几何中心重合,绿色传感器为圆柱体,其位于圆环体的绿色像素内的空白区域,且二者的几何中心重合,蓝色传感器为圆柱体,其位于圆环体的蓝色像素内的空白区域,且二者的几何中心重合。
从以上的描述中,可以看出,本申请上述的实施例实现了如下技术效果:
本申请中的集成立体显示装置中,包括图像显示和捕获的集成设备,该集成设备将图像显示与图像捕获集成在一起,并且,该集成设备中的任意一个平面上的任意一点与透镜单元所在的平面的距离均相同,不需要进行对准,就可以使得捕获光路与再现光路具有较好的一致性,且该集成立体显示装置相对于现有技术中的分离集成立体显示装置来说,稳定性更好。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
Claims (12)
- 一种集成立体显示装置,其特征在于,所述集成立体显示装置包括:透镜单元(1),包括至少一个透镜(10);图像显示和捕获的集成设备(2),设置在所述透镜单元(1)的一侧,所述透镜单元(1)所在的平面与所述集成设备平行,在捕获模式下,所述集成设备用于通过所述透镜单元(1)捕获目标物体的图像信息,在再现模式下,所述集成设备用于显示所述目标物体的图像信息。
- 根据权利要求1所述的集成立体显示装置,其特征在于,所述透镜单元(1)包括二维透镜阵列,所述二维透镜阵列包括多个所述透镜(10)。
- 根据权利要求2所述的集成立体显示装置,其特征在于,所述集成设备包括多个集成单元(20),所述透镜(10)与所述集成单元(20)一一对应,在所述捕获模式下,多个所述集成单元(20)用于捕获不同角度的目标物体的图像信息,在所述再现模式下,多个所述集成单元(20)用于显示不同角度的所述目标物体的图像信息,各所述集成单元(20)包括:多个图像传感器单元(21),用于通过所述透镜单元(1)捕获目标物体的图像信息;以及多个图像显示单元(22),所述图像显示单元(22)用于显示所述目标物体的图像信息。
- 根据权利要求3所述的集成立体显示装置,其特征在于,多个所述图像传感器单元(21)与多个所述图像显示单元(22)形成二维矩阵,在所述二维矩阵的行方向与列方向上,所述图像传感器单元(21)与所述图像显示单元(22)均交替设置。
- 根据权利要求4所述的集成立体显示装置,其特征在于,各所述图像显示单元(22)包括三个显示像素,分别为红色像素、蓝色像素与绿色像素,在所述列方向上,所述图像传感器单元(21)与所述图像显示单元(22)的中间的所述显示像素相邻。
- 根据权利要求3所述的集成立体显示装置,其特征在于,各所述图像显示单元(22)包括三个显示像素,分别为红色像素、蓝色像素与绿色像素,各所述图像显示单元(22)中,至少一个所述显示像素与其他两个所述显示像素相邻且具有间隙,所述图像传感器单元(21)设置在各所述间隙中。
- 根据权利要求6所述的集成立体显示装置,其特征在于,各所述图像显示单元(22)中,任意一个所述显示像素与其他两个所述显示像素相邻且具有间隙,各所述图像传感器单元(21)设置在各最大的所述间隙中。
- 根据权利要求6所述的集成立体显示装置,其特征在于,所述集成设备包括显示平面,各所述图像显示单元(22)中的各所述显示像素在所述显示平面上的中心的连线形成三角形,各所述图像传感器单元(21)在所述显示平面上的中心位于所述三角形的中心。
- 根据权利要求8所述的集成立体显示装置,其特征在于,各所述显示像素均为相同的圆柱像素,且所述三角形为等边三角形,所述图像传感器单元(21)为圆柱形传感器单元,所述集成单元(20)包括多个所述图像显示单元(22)形成的显示矩阵,在每行的所述图像显示单元(22)中,任意相邻的两个所述图像显示单元(22)中的各显示像素在所述显示平面上中心的连线形成平行四边形,每列的所述图像显示单元(22)均相同。
- 根据权利要求3所述的集成立体显示装置,其特征在于,各所述图像显示单元(22)包括三个显示像素,分别为红色像素、蓝色像素与绿色像素,任意一个所述显示像素均与其他两个所述显示像素接触设置,各所述图像传感器单元(21)位于对应的所述图像显示单元(22)内的中心区域。
- 根据权利要求10所述的集成立体显示装置,其特征在于,所述集成设备包括显示平面,各所述显示像素均为相同的六棱柱显示像素且各所述图像显示单元(22)中的各所述显示像素在所述显示平面上的中心的连线形成等边三角形,各所述图像传感器单元(21)均为相同的六棱柱传感器单元,各所述图像传感器单元(21)在所述显示平面上的中心点位于所述等边三角形的中心,各所述集成单元(20)中的多个所述显示像素形成蜂窝结构。
- 根据权利要求3所述的集成立体显示装置,其特征在于,各所述图像传感器单元(21)包括三个传感器,分别为红色传感器、蓝色传感器与绿色传感器,各所述图像显示单元(22)包括三个显示像素,分别为红色像素、蓝色像素与绿色像素,各所述图像显示单元(22)中的所述显示像素与对应的所述图像传感器单元(21)的所述传感器一一对应,且各所述传感器位于对应的所述显示像素围成的区域中,且所述传感器的几何中心与对应的各所述显示像素的几何中心重合。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611213412.9 | 2016-12-23 | ||
CN201611213412.9A CN106842594B (zh) | 2016-12-23 | 2016-12-23 | 集成立体显示装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018113367A1 true WO2018113367A1 (zh) | 2018-06-28 |
Family
ID=59136191
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/103501 WO2018113367A1 (zh) | 2016-12-23 | 2017-09-26 | 集成立体显示装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106842594B (zh) |
WO (1) | WO2018113367A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106842594B (zh) * | 2016-12-23 | 2019-04-23 | 张家港康得新光电材料有限公司 | 集成立体显示装置 |
CN109801946B (zh) | 2019-01-30 | 2021-01-26 | 京东方科技集团股份有限公司 | 显示面板及显示装置 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202720396U (zh) * | 2012-07-17 | 2013-02-06 | Tcl集团股份有限公司 | 一种集成成像拍摄端和显示端及其光学阵列薄膜 |
JP2013142743A (ja) * | 2012-01-10 | 2013-07-22 | Nippon Hoso Kyokai <Nhk> | 立体画像撮影装置および立体画像表示装置 |
CN103582948A (zh) * | 2011-06-01 | 2014-02-12 | 全球Oled科技有限责任公司 | 用于显示和感测图像的设备 |
CN103869486A (zh) * | 2014-03-11 | 2014-06-18 | 深圳市华星光电技术有限公司 | 集成成像三维立体显示装置及显示系统 |
CN103905808A (zh) * | 2012-12-27 | 2014-07-02 | 北京三星通信技术研究有限公司 | 用于三维显示和交互的设备和方法 |
WO2014133481A1 (en) * | 2013-02-26 | 2014-09-04 | Hewlett-Packard Development Company, L.P. | Multiview 3d telepresence |
CN104536145A (zh) * | 2015-01-21 | 2015-04-22 | 深圳市华星光电技术有限公司 | 2d/3d可切换显示装置 |
CN204925517U (zh) * | 2015-06-25 | 2015-12-30 | 高深 | 积分成像记录和再现系统 |
CN105259664A (zh) * | 2015-11-13 | 2016-01-20 | 苏州苏大维格光电科技股份有限公司 | 一种光场成像打印装置及具有三维浮动图像的薄膜 |
CN106842594A (zh) * | 2016-12-23 | 2017-06-13 | 张家港康得新光电材料有限公司 | 集成立体显示装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3394149B2 (ja) * | 1997-02-27 | 2003-04-07 | 科学技術振興事業団 | 立体像再生装置 |
JP3368204B2 (ja) * | 1998-06-04 | 2003-01-20 | キヤノン株式会社 | 画像記録装置及び画像再生装置 |
JP2000092514A (ja) * | 1998-09-11 | 2000-03-31 | Medeiakkusu Kk | 3次元画像の記録/再生システム |
CN101546043B (zh) * | 2008-03-26 | 2011-06-08 | 陈意辉 | 平面立体混合兼容型视差微镜平板与背投自由立体视频显示器 |
US9058780B2 (en) * | 2013-03-08 | 2015-06-16 | Innolux Corporation | 2D/3D switchable and touch sensitive display and method for driving the same |
-
2016
- 2016-12-23 CN CN201611213412.9A patent/CN106842594B/zh active Active
-
2017
- 2017-09-26 WO PCT/CN2017/103501 patent/WO2018113367A1/zh active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103582948A (zh) * | 2011-06-01 | 2014-02-12 | 全球Oled科技有限责任公司 | 用于显示和感测图像的设备 |
JP2013142743A (ja) * | 2012-01-10 | 2013-07-22 | Nippon Hoso Kyokai <Nhk> | 立体画像撮影装置および立体画像表示装置 |
CN202720396U (zh) * | 2012-07-17 | 2013-02-06 | Tcl集团股份有限公司 | 一种集成成像拍摄端和显示端及其光学阵列薄膜 |
CN103905808A (zh) * | 2012-12-27 | 2014-07-02 | 北京三星通信技术研究有限公司 | 用于三维显示和交互的设备和方法 |
WO2014133481A1 (en) * | 2013-02-26 | 2014-09-04 | Hewlett-Packard Development Company, L.P. | Multiview 3d telepresence |
CN103869486A (zh) * | 2014-03-11 | 2014-06-18 | 深圳市华星光电技术有限公司 | 集成成像三维立体显示装置及显示系统 |
CN104536145A (zh) * | 2015-01-21 | 2015-04-22 | 深圳市华星光电技术有限公司 | 2d/3d可切换显示装置 |
CN204925517U (zh) * | 2015-06-25 | 2015-12-30 | 高深 | 积分成像记录和再现系统 |
CN105259664A (zh) * | 2015-11-13 | 2016-01-20 | 苏州苏大维格光电科技股份有限公司 | 一种光场成像打印装置及具有三维浮动图像的薄膜 |
CN106842594A (zh) * | 2016-12-23 | 2017-06-13 | 张家港康得新光电材料有限公司 | 集成立体显示装置 |
Also Published As
Publication number | Publication date |
---|---|
CN106842594B (zh) | 2019-04-23 |
CN106842594A (zh) | 2017-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4860636B2 (ja) | 自動立体表示 | |
CN108663820A (zh) | 一种宽视角和高分辨率双视3d显示装置及方法 | |
US20120154376A1 (en) | Tracing-type stereo display apparatus and tracing-type stereo display method | |
US20120057131A1 (en) | Full parallax three-dimensional display device | |
JP2003185991A (ja) | 2d/3d兼用ディスプレイ | |
CN208432807U (zh) | 一种宽视角和高分辨率双视3d显示装置 | |
CN102736393B (zh) | 用以显示多重视角影像的显示装置 | |
CN101546111A (zh) | 单相机双目宽基线折反射全景立体成像方法及其装置 | |
WO2016065667A1 (zh) | 集成成像3d液晶显示器及其使用的光学设备 | |
CN108594448A (zh) | 高光学效率和均匀分辨率双视3d显示装置及方法 | |
WO2017117973A1 (zh) | 一种3d显示面板、显示装置 | |
CN110045512A (zh) | 基于微透镜的高分辨率集成成像双视3d显示装置及方法 | |
US20230008318A1 (en) | Multi-viewpoint 3d display screen and multi-viewpoint 3d display device | |
WO2018113367A1 (zh) | 集成立体显示装置 | |
CN110045513A (zh) | 基于微透镜阵列的集成成像双视3d显示装置及方法 | |
CN104104939A (zh) | 一种宽视角的集成成像三维显示系统 | |
CN102262346B (zh) | 用以显示多重视角影像的显示装置 | |
CN108627991A (zh) | 基于柱透镜光栅的双视3d显示装置及方法 | |
CN108663819A (zh) | 宽视角和均匀分辨率的双视3d显示装置及方法 | |
WO2018000892A1 (zh) | 一种全景立体影像的成像方法、装置及系统 | |
KR101296688B1 (ko) | 입체 디스플레이 패널 접합 장치 및 방법 | |
CN108761816A (zh) | 均匀分辨率和宽视角双视3d显示装置及方法 | |
US7154528B2 (en) | Apparatus for placing primary image in registration with lenticular lens in system for using binocular fusing to produce secondary 3D image from primary image | |
JPS6238695A (ja) | 立体表示システム | |
CN209327692U (zh) | 无串扰的集成成像双视3d显示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17882368 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17882368 Country of ref document: EP Kind code of ref document: A1 |