WO2017117973A1 - 一种3d显示面板、显示装置 - Google Patents

一种3d显示面板、显示装置 Download PDF

Info

Publication number
WO2017117973A1
WO2017117973A1 PCT/CN2016/091038 CN2016091038W WO2017117973A1 WO 2017117973 A1 WO2017117973 A1 WO 2017117973A1 CN 2016091038 W CN2016091038 W CN 2016091038W WO 2017117973 A1 WO2017117973 A1 WO 2017117973A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
display panel
pixels
lens group
light shielding
Prior art date
Application number
PCT/CN2016/091038
Other languages
English (en)
French (fr)
Inventor
王俊伟
于海峰
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/506,144 priority Critical patent/US10365496B2/en
Publication of WO2017117973A1 publication Critical patent/WO2017117973A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • G02B30/29Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays characterised by the geometry of the lenticular array, e.g. slanted arrays, irregular arrays or arrays of varying shape or size

Definitions

  • the present disclosure relates to a 3D display panel and a display device.
  • 3D display technology mainly includes glasses-type and non-glasses-type naked-eye type, and the development of glasses-type 3D display technology is very mature, but it cannot make us get rid of the restraint of special glasses, which makes the application range and comfortable use. The degree has been discounted.
  • the naked-eye 3D display technology has attracted more and more people's attention because it does not need to wear glasses, and has become the development direction of 3D display technology in the future. Therefore, the naked-eye 3D display technology has become a hot spot of current research.
  • Some embodiments of the present disclosure provide a 3D display panel including a 2D display panel, an image separating device, a polarizing structure, an image isolation structure, a lens group, and a shielding member, wherein: the 2D display panel includes rows and columns Arrayed pixels are configured to play a 2D source; the image separation device is configured to separate each of the pixels into two adjacent image pixels, the image pixels being in the same plane, adjacent images There is no gap between the pixels or no light transmission at the gap; the polarizing structure is configured to form adjacent two image pixels separated by the same pixel before the image pixels form an image through the lens An image pixel of an eye image and an image pixel of a right eye image; the image isolation structure being configured to form the image pixel through the lens Forming a disparity between the left eye image and the right eye image as before; the lens group is configured to form the image pixels into a 3D image pair; the occlusion component is configured to separate the left eye image and the The right eye image.
  • the image separation device includes a plurality of columnar prisms that are parallel to each other and are sequentially arranged, and each of the prisms is disposed corresponding to a pixel in a section perpendicular to an extending direction of the prism.
  • the direction in which the columnar prisms extend is parallel to the column direction.
  • the prism when the gap between adjacent image pixels is opaque, the prism is provided with a light shielding layer, and the light shielding layer is between the orthographic projection area on the plane of the image pixel and the adjacent image pixel.
  • the gap areas coincide.
  • the 3D display panel further includes an imaging surface for presenting the image pixels, the polarizing structure including: a polarizing layer disposed on a side of the 2D display panel facing the image separating device, disposed at a phase retardation film on the image plane and an analyzer layer disposed on a side of the lens group facing the image plane; or respectively disposed on two adjacent faces of the prism facing the image isolation structure a polarizing layer having polarization directions perpendicular to each other, and an analyzer layer disposed on the image plane; or respectively disposed on two adjacent faces of the prism facing the image isolation structure a vertical polarizing layer, and an analyzer layer disposed on a side of the lens group facing the imaging surface.
  • the polarizing structure including: a polarizing layer disposed on a side of the 2D display panel facing the image separating device, disposed at a phase retardation film on the image plane and an analyzer layer disposed on a side of the lens group facing the image plane; or respectively disposed on two adjacent faces of the prism
  • the image isolation structure includes a first light shielding layer and a second light shielding layer disposed on the imaging surface, the first light shielding layer and the second light shielding layer being respectively located at the imaging surface Two side portions in the row direction, a first light shielding layer on one side of the imaging surface is used to block a portion of image pixels for forming a right eye image, and a second light shielding layer on the other side of the imaging surface is used for The same number of image pixels used to form the left eye image are occluded.
  • the light shielding layer is a strip extending parallel to a column direction of the array, and the first light shielding layer blocks a plurality of columns of image pixels of a right eye image located at one edge of the imaging surface, The second light shielding layer blocks the plurality of columns of image pixels of the left eye image located at the other edge of the imaging surface.
  • the lens group includes a first lens group and a second lens group, the first lens group and the second lens group being symmetric with respect to a normal at a center point position of a plane in which the 2D display panel is located .
  • a distance between an axis of a focus of each lens in the first lens group and a normal at a center point position of a plane in which the 2D display panel is located is an integer multiple of a width of the pixel in the X direction;
  • the distance between the axis of the focus of each lens in the second lens group and the normal at the position of the center point of the plane in which the 2D display panel is located is an integral multiple of the width of the pixel in the X direction.
  • the obscuring member is a grating or cylindrical lens.
  • the 3D display panel further includes a projection surface for presenting the 3D image pair, and a light valve controller disposed on the projection surface, the light valve controller for controlling the 3D image The brightness of the pair.
  • the 3D display panel further includes a housing that integrates the 2D display panel, the image separation device, the image isolation structure, the polarizing structure, the lens group, and the shutter member.
  • the lens group is configured to form the image pixels into a 3D image pair that is equally inverted.
  • the polarized structure forms image light of the left eye image and the right eye image having different polarization directions.
  • the lens group is configured such that an edge of a left eye image and an edge of the right eye image of the pair of 3D images coincide with each other.
  • Some embodiments of the present disclosure also provide a display device including the above-described 3D display panel.
  • FIG. 1 is a schematic structural diagram of a 3D display panel according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a polarizing structure in a 3D display panel according to an embodiment of the present disclosure
  • FIG. 3 is another schematic diagram of a polarizing structure in a 3D display panel according to an embodiment of the present disclosure
  • FIG. 4 is still another schematic diagram of a polarizing structure in a 3D display panel according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of another 3D display panel according to an embodiment of the present disclosure.
  • Embodiments of the present disclosure provide a 3D display panel and a display device for implementing a naked-eye 3D display without processing a 3D source and processing the 2D source.
  • a specific embodiment of the present disclosure provides a 3D display panel including a 2D display panel 11, an image separating device 12, a polarizing structure (not shown), an image isolation structure 13, a lens group 14, and an occlusion.
  • Component 15 is a 3D display panel including a 2D display panel 11, an image separating device 12, a polarizing structure (not shown), an image isolation structure 13, a lens group 14, and an occlusion.
  • the 2D display panel 11 includes a plurality of arrays of pixels, such as pixel 1, pixel 2, pixel 3, pixel 4, pixel 5, pixel 6, pixel 7, pixel 8, pixel 9, and pixel 10, for playing a 2D slice. source.
  • the image separating device 12 is configured to separate each pixel into two adjacent image pixels.
  • the image pixels are adjacent to each other and are located on the same plane, and no gaps or gaps between adjacent image pixels are opaque.
  • FIG. 1 only shows There is no gap between adjacent image pixels.
  • the polarizing structure is configured to form a left eye image (image pixel of the left eye image) and a right eye image (image of the right eye image) by respectively forming two adjacent image pixels separated by the same pixel before the image pixels are imaged by the lens group 14 .
  • the image pixel L1 formed by separating the pixels 1 forms a left eye image
  • the image pixel R1 formed by separating the pixels 1 forms a right eye image
  • the image pixel L2 formed by separating the pixels 2 forms a left eye image
  • the pixel 2 is formed.
  • the image pixel L3 formed by separating the pixels 3 forms a left eye image
  • the image pixel R3 formed by separating the pixels 3 forms a right eye image.
  • the image isolation structure 13 is used to form a parallax between the left eye image and the right eye image before the image pixels are imaged by the lens group 14.
  • the lens group 14 is configured to form image pixels into a 3D image pair with a large inverted intersection
  • the occlusion member 15 is for separating the left and right eye images such that the formed 3D image pair, the left eye image can only enter the left eye 101, and the right eye image can only enter the right eye 102.
  • L1 is the left eye image
  • R4 is the right eye image
  • L1 can only enter the left eye 101
  • R4 can only enter the right eye 102.
  • the pixel spacing in the 2D display panel in the specific embodiment of the present disclosure is large, so as to ensure that the two image pixels formed by each pixel after the pixel separation device are not overlapped, and the specific setting values of the pixel spacing are set according to actual needs.
  • the 2D display panel can adopt the liquid crystal display panel of the prior art, but the interval between the pixels in the liquid crystal display panel is small, so that some pixels in the liquid crystal display panel can be shade-masked in actual use.
  • the image separation device 12 in a particular embodiment of the present disclosure includes a plurality of prisms 121 arranged in an array, each prism 121 being disposed corresponding to a pixel.
  • the prism in the specific embodiment of the present disclosure may adopt a columnar prism, and the role of the columnar prism is to separate each pixel into two identical image pixels, and the pixel of the image pixels are adjacent or spaced apart by parameter design, for example, By setting the inclination angle between each plane of the columnar prism and the horizontal plane, and setting the appropriate refractive index of the columnar prism, the image pixels are adjacent to each other or have a small gap.
  • each column of pixels may correspond to one columnar prism. That is, each of the prisms is disposed corresponding to one of the pixels in a section perpendicular to the extending direction of the prism.
  • the columnar prisms can be arranged in order in the row direction.
  • the gap position When the adjacent image pixels are separated by a small gap, the gap position must be opaque.
  • a light shielding layer is disposed on the columnar prism, and the light shielding layer is projected on the plane of the image pixel and the adjacent image pixel.
  • the gaps between the areas coincide.
  • a light shielding layer is disposed on a corresponding area of the top of the columnar prism, so that the orthographic projection area of the light shielding layer on the plane of the image pixel coincides with the gap area between adjacent image pixels to ensure that the gap area between adjacent image pixels is black. Dark areas can effectively avoid light leakage.
  • the 3D display panel in the specific embodiment of the present disclosure further includes an imaging surface 130 for presenting image pixels
  • the isolation structure 13 includes a first light shielding layer 131 disposed on the imaging surface 130.
  • the second light shielding layer 132, the first light shielding layer 131 and the second light shielding layer 132 are respectively located at two sides of the imaging surface 130, and the first light shielding layer 131 on the side of the imaging surface 130 is used to block a portion at the edge position for forming
  • the image pixels of the right eye image, and the second light shielding layer 132 on the other side of the imaging surface 130 are used to block the same number of image pixels used to form the left eye image at the edge position.
  • the first light shielding layer 131 is located on one side in the row direction of the imaging plane 130, and the second light shielding layer 132 is located on the other side of the imaging plane 130 in the row direction.
  • the light shielding layer is a strip shape extending parallel to the column direction of the array, and the first light shielding layer 131 blocks a plurality of columns of image pixels of a right eye image located at one edge of the imaging surface, the second The light shielding layer 132 blocks a plurality of columns of image pixels of a left eye image located at the other edge of the imaging surface.
  • the left side of the imaging surface 130 in the specific embodiment of the present disclosure is provided with a first light shielding layer 131, and the right side is provided with a second light shielding layer 132 for blocking image pixels for forming a right eye image.
  • R1, R2, and R3; the second light shielding layer 132 is for shielding the image pixels L8, L9, and L10 for forming a left eye image.
  • the pixels forming the left-eye image are rounded off by three columns of pixels, and the left side of the pixels forming the right-eye image is rounded off by three columns of pixels, thereby realizing an image having parallax in 3D display.
  • the number of image pixels forming the right eye image blocked by the first light shielding layer may be set according to actual conditions, and is not limited to blocking three columns of image pixels; similarly, the number of image pixels forming the left eye image blocked by the second light shielding layer It can also be set according to the actual situation, and is not limited to occluding three columns of image pixels.
  • the number of image pixels blocked by the first light shielding layer may be different from the number of image pixels blocked by the second light shielding layer.
  • the lens group 14 in the specific embodiment of the present disclosure includes a first lens group 141 and a second lens group 142, and the first lens group 141 and the second lens group 142 are related to the 2D display panel 11
  • the normal 10 at the center point of the plane is symmetrical.
  • the first lens group 141 in the specific embodiment of the present disclosure includes a plurality of convex lenses
  • the second lens group 142 includes a plurality of convex lenses.
  • the distance between the axis of the focus of each lens in the first lens group 141 and the normal line 10 at the center point position of the plane in which the 2D display panel 11 is located in the specific embodiment of the present disclosure is An integer multiple of the width of the pixel in the X direction; the distance between the axis of the focus of each lens in the second lens group 142 and the normal 10 at the center point position of the plane in which the 2D display panel 11 is located is the pixel in the X direction An integer multiple of the width.
  • the width of the pixel in the X direction in the specific embodiment of the present disclosure refers to the width of the pixel in the horizontal direction.
  • the occlusion member 15 in the specific embodiment of the present disclosure is a grating or a cylindrical lens
  • the grating in the specific embodiment of the present disclosure has the same effect as the prior art 3D grating, and finally realizes the naked eye through the grating. 3D effect.
  • the cylindrical lens in the specific embodiment of the present disclosure is the same as the cylindrical lens of the prior art that realizes the 3D effect, and the naked eye 3D display or the non-naked eye 3D display is realized by the cylindrical lens.
  • the polarizing structure in the 3D display panel of the embodiment of the present disclosure includes:
  • a polarizing layer disposed on a side of the 2D display panel facing the image separating device, a phase retardation film disposed on the image forming surface, and an analyzer layer disposed on a side of the lens group facing the image forming surface;
  • a polarizing layer having polarization directions perpendicular to each other on the left and right sides of the prism (for example, facing two adjacent faces of the image isolation structure), and an analyzer layer disposed on the imaging surface;
  • the polarizing structure in the specific embodiment of the present disclosure includes a polarizing layer 21 disposed on a side of the 2D display panel 11 facing the image separating device 12, a phase retardation film 22 disposed on the imaging surface 130, and a lens group disposed on the lens group. 14 is directed toward the analyzer layer 23 on the side of the imaging surface 130.
  • the polarizing layer 21 is disposed such that the emitted light is polarized light;
  • the phase retardation film 22 is disposed such that the odd-numbered image pixels L1, L2, L3, L4, L5, L6, L7, L8, L9, and L10 and the even-numbered image pixels R1 R2, R3, R4, R5, R6, R7, R8, R9, and R10 exhibit mutually perpendicular polarization states after passing through the phase retardation film 22;
  • the alignment layer 23 is disposed such that the first lens group 141 can only be used for odd columns Image pixel imaging, the second lens group 142 can only image image pixels of even columns.
  • the 2D film source played by the display panel 11 is subjected to the first lens group 141 of the specific embodiment of the present disclosure, and the image pixels of the odd-numbered columns form a large inverted image, because the second light shielding layer 132 is blocked.
  • 3 sets of image pixels of the odd-numbered columns so that the formed equal-sized inverted image is shifted to the right by 3 columns of pixels, and after passing through the second lens group 142 of the specific embodiment of the present disclosure, the even-numbered columns of image pixels form a large inverted image. Since the first light shielding layer 131 blocks the image pixels of the three columns of even columns, the formed equal inverted image is shifted to the left by three columns of pixels.
  • the occlusion effect of the three columns of pixels at the edge of the odd-numbered column and the even-numbered column disappears, forming a re-paired interlaced image, which is a complete 3D image pair.
  • the source of the left and right eyes needs to be adjusted according to actual conditions.
  • the polarizing structure in the specific embodiment of the present disclosure includes a polarizing layer 31 disposed perpendicular to each other in a polarization direction to the left and right sides of the prism, and an analyzer layer 32 disposed on the imaging surface 130.
  • the light entering the prism after passing through the 2D display panel 11 is ordinary light, since the prism is leftward.
  • the polarizing layer 31 perpendicular to each other is disposed on the surface and the right side, and the ordinary light passing through the prism becomes polarized light.
  • polarizing layers 31 perpendicular to each other are disposed on the left and right sides of the prism.
  • the function of the polarizing layer 31 is the same as that of the phase retarding film provided in the above manner, and the image pixels L1 and L2 of the odd columns can be made.
  • L3, L4, L5, L6, L7, L8, L9, and L10 and even-numbered image pixels R1, R2, R3, R4, R5, R6, R7, R8, R9, and R10 are perpendicular to each other after passing through the polarizing layer 31.
  • Polarization state for example, the polarizing film or the polyimide (Polyimide, PI) layer may be vapor-deposited on the left and right sides of the prism, respectively, and the light-induced orientation is formed by different light directions. Partial function.
  • the setting of the analyzer layer 32 enables the first lens group 141 to image only the image pixels of the odd columns, and the second lens group 142 can only image the image pixels of the even columns.
  • the polarizing structure in the specific embodiment of the present disclosure includes a polarizing layer 31 disposed perpendicular to each other in a polarization direction of the prism to the left and right, and an analyzer layer 41 disposed on a side of the lens group toward the imaging surface.
  • the setting of the analyzer layer 41 enables the first lens group 141 to image only the image pixels of the odd columns, and the second lens group 142 can only image the image pixels of the even columns.
  • the specific embodiment of the present disclosure relates to the arrangement of the polarizing structure, which can be flexible and varied, and can be set at different positions as long as it can separate the left and right images, and is not limited to the above three setting modes.
  • the optical parameter design of the specific embodiment of the present disclosure satisfies the general geometric optical principle, and details are not described herein again.
  • the imaging process of the specific embodiment of the present disclosure is: first, image polarization is achieved by a polarizing layer disposed on a side of the 2D display panel toward the image separating device; Image separation by image separation means; then, mutually perpendicular polarization states are formed by phase retardation films disposed on the imaging surface; then, edge image isolation is achieved by a light shielding layer disposed on the imaging surface; and then, by lens placement
  • the detection layer on the group and the set lens group realize image shift, image detection, and form a double-fold image, that is, form a 3D film source; finally, the left and right eyes are separated by the shielding member to form a 3D effect.
  • the 3D display panel in a particular embodiment of the present disclosure further includes a projection surface 16 disposed between the lens group 14 and the shutter member 15 for presenting a 3D image pair.
  • the light valve controller 17 may be further disposed on the projection surface 16, and the light valve controller 17 is configured to control the brightness of the 3D image pair, so that the pixels of different regions in the 3D image pair have different brightness and darkness. Can increase the effect of depth difference and depth rendering of 3D images. Further enhance the 3D experience.
  • the 3D display panel in the specific embodiment of the present disclosure further includes integrating the 2D display panel 11, the image separating device 12, the image isolation structure 13, the polarizing structure, the lens group 14, and the shielding member 15.
  • a specific embodiment of the present disclosure may also fill an optical refractive index medium between the prism and the lens group, and between the lens group and the grating such that the medium is used in conjunction with the prism and the lens to form the optical path shown in FIG.
  • the optical components in the 3D display panel in the specific embodiment of the present disclosure can be adjusted according to the position of the observer to achieve a better matching effect.
  • the left eye image and the right eye image are equal, and the edges of the left eye image and the edges of the right eye image of the 3D image pair coincide with each other.
  • the 3D image pair actually fuses the left eye image and the right eye image in which the parallax exists.
  • the polarized light forms image light of the left eye image and the right eye image having different polarization directions to facilitate separation of the left eye image and the right eye image.
  • a specific embodiment of the present disclosure further provides a display device, which includes the above-mentioned 3D display panel, which may be a liquid crystal display, a liquid crystal television, an organic light emitting diode (OLED) display, an OLED television, or the like. Display device.
  • the above-mentioned 3D display panel which may be a liquid crystal display, a liquid crystal television, an organic light emitting diode (OLED) display, an OLED television, or the like.
  • OLED organic light emitting diode
  • a specific embodiment of the present disclosure provides a 3D display panel, including a 2D display panel, an image separating device, an image isolation structure, a polarizing structure, a lens group, and a shielding component, wherein: the 2D display panel includes a plurality of arrays of pixels.
  • the image separating device is configured to separate each pixel into two adjacent image pixels, the image pixels are adjacent to each other and located on the same plane, and there is no gap or gap between adjacent image pixels.
  • the light-transmitting structure is configured to form adjacent image pixels formed by the same pixel to form a left-eye image and a right-eye image respectively before the image pixels form an image through the lens; the image isolation structure is used to form the image pixel through the lens.
  • the left eye image and the right eye image are formed into a parallax; the lens group is used to form image pixels into a large inverted 3D image pair; the occlusion component is used to separate the left and right eye images.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Liquid Crystal (AREA)

Abstract

一种3D显示面板、显示装置。3D显示面板包括2D显示面板(11)、像分离装置(12)、偏光结构、像隔离结构(13)、透镜组(14)和遮挡部件(15)。2D显示面板(11)包括若干阵列排列的像素(1, 2, 3, …, 10);像分离装置(12)用于将每一像素(1, 2, 3, …, 10)分离为相邻的两个影像像素(L1, R1, L2, R2, …, L10, R10);偏光结构用于在影像像素(L1, R1, L2, R2, …, L10, R10)通过透镜组(14)成像之前,将由同一个像素(1, 2, 3, …, 10)分离形成的相邻两个影像像素(L1, R1, L2, R2, …, L10, R10)分别形成左眼图像(L1, L2, L3, …, L10)和右眼图像(R1, R2, R3, …, R10);像隔离结构(13)用于将左眼图像(L1, L2, L3, …, L10)和右眼图像(R1, R2, R3, …, R10)形成视差;透镜组(14)用于使影像像素(L1, R1, L2, R2, …, L10, R10)形成等大倒立交叉的3D图像对(R10, L7, R9, L6, R8, L5, R7, L4, R6, L3, R5, L2, R4, L1);遮挡部件(15)用于分离左眼图像(L1, L2, L3, …, L7)和右眼图像(R4, R5, R6, …, R10)。所述3D显示面板和显示装置在不需要拍摄3D片源,以及不需要对2D片源进行处理的情况下即可实现裸眼3D显示。

Description

一种3D显示面板、显示装置 技术领域
本公开涉及一种3D显示面板、显示装置。
背景技术
日常生活中,人们都是利用双眼来辨认三维空间的物体,在辨认某个物体时,由于双眼之间具有一定的距离,这段距离使得左右两眼在观察物体时分别进入左右眼的画面是不同的,包括角度、透视都具有区别,反映在大脑中就会产生“立体视觉”,两个画面组合在一起,便产生立体感,从而能够判断物体的前后关系。
目前,3D显示技术主要包括戴眼镜式与不戴眼镜式的裸眼式,戴眼镜式的3D显示技术发展的已经很成熟,但不能使我们摆脱特制眼镜的束缚,这使得其应用范围以及使用舒适度都打了折扣。裸眼式的3D显示技术由于不用戴眼镜,受到越来越多人们的关注,成为未来3D显示技术的发展方向,因而裸眼式的3D显示技术成为当前研究的热点。
现有技术实现裸眼3D显示时需要拍摄3D片源,而目前的3D片源匮乏。另外,现有技术实现3D效果需要经过计算机对2D片源进行处理,并需要显示器图像芯片支持运算才能实现。
发明内容
本公开的一些实施例提供一种3D显示面板,包括2D显示面板、像分离装置、偏光结构、像隔离结构、透镜组和遮挡部件,其中:所述2D显示面板包括沿行方向和列方向排列成阵列的多个像素,被配置为播放2D片源;所述像分离装置被配置为将每一个所述像素分离为相邻的两个影像像素,所述影像像素位于同一平面,相邻影像像素之间无间隙或间隙处不透光;所述偏光结构被配置为在所述影像像素通过所述透镜组成像之前,将由同一个所述像素分离形成的相邻两个影像像素分别形成左眼图像的影像像素和右眼图像的影像像素;所述像隔离结构被配置为在所述影像像素通过所述透镜组成 像之前,将所述左眼图像和所述右眼图像形成视差;所述透镜组被配置为使所述影像像素形成3D图像对;所述遮挡部件被配置为分离所述左眼图像和所述右眼图像。
在一些示例中,所述像分离装置包括若干彼此平行且依次排列的柱状棱镜,在垂直于所述棱镜的延伸方向的截面上,每一所述棱镜与一所述像素对应设置。
在一些示例中,所述柱状棱镜的延伸方向平行于所述列方向。
在一些示例中,当相邻影像像素间隙处不透光时,所述棱镜上设置有遮光层,所述遮光层在所述影像像素所在平面上的正投影区域与相邻影像像素之间的间隙区域重合。
在一些示例中,所述3D显示面板还包括用于呈现所述影像像素的成像面,所述偏光结构包括:设置在所述2D显示面板朝向所述像分离装置一侧的偏光层、设置在所述成像面上的相位延迟膜和设置在所述透镜组朝向所述成像面一侧的检偏层;或,分别设置在所述棱镜的面向所述像隔离结构的两个相邻的面上的偏振方向互相垂直的偏光层,以及设置在所述成像面上的检偏层;或,分别设置在所述棱镜的面向所述像隔离结构的两个相邻的面上的偏振方向互相垂直的偏光层,以及设置在所述透镜组朝向所述成像面一侧的检偏层。
在一些示例中,所述像隔离结构包括设置在所述成像面上的第一遮光层和第二遮光层,所述第一遮光层和所述第二遮光层分别位于所述成像面的位于所述行方向上的两侧部分,位于所述成像面一侧的第一遮光层用于遮挡部分用于形成右眼图像的影像像素,位于所述成像面另一侧的第二遮光层用于遮挡相同数目的用于形成左眼图像的影像像素。
在一些示例中,所述遮光层为平行于所述阵列的列方向延伸的条形,且所述第一遮光层遮挡位于所述成像面一个边缘的右眼图像的多列影像像素,所述第二遮光层遮挡位于所述成像面的另一个边缘的左眼图像的多列影像像素。
在一些示例中,所述透镜组包括第一透镜组和第二透镜组,所述第一透镜组与所述第二透镜组关于所述2D显示面板所在平面的中心点位置处的法线对称。
在一些示例中,所述第一透镜组中的每一透镜的焦点所在轴线与2D显示面板所在平面的中心点位置处的法线之间的距离为像素在X方向上的宽度的整数倍;所述第二透镜组中的每一透镜的焦点所在轴线与2D显示面板所在平面的中心点位置处的法线之间的距离为像素在X方向上的宽度的整数倍。
在一些示例中,所述遮挡部件为光栅或柱透镜。
在一些示例中,所述3D显示面板还包括用于呈现所述3D图像对的投影面,以及设置在所述投影面上的光阀控制器,所述光阀控制器用于控制所述3D图像对的亮度。
在一些示例中,所述3D显示面板还包括使所述2D显示面板、所述像分离装置、所述像隔离结构、所述偏光结构、所述透镜组和所述遮挡部件一体化的外壳。
在一些示例中,所述透镜组被配置为使所述影像像素形成等大倒立交叉的3D图像对。
在一些示例中,所述偏光结构形成所述左眼图像和所述右眼图像的图像光具有不同的偏振方向。
在一些示例中,所述透镜组被配置为使得所述3D图像对中的左眼图像的边缘和所述右眼图像的边缘彼此重合。
本公开的一些实施例还提供了一种显示装置,该显示装置包括上述的3D显示面板。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为本公开实施例提供的一种3D显示面板的结构示意图;
图2为本公开实施例提供的3D显示面板中的偏光结构的示意图;
图3为本公开实施例提供的3D显示面板中的偏光结构的另一示意图;
图4为本公开实施例提供的3D显示面板中的偏光结构的又一示意图;
图5为本公开实施例提供的另一3D显示面板的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本公开实施例提供了一种3D显示面板、显示装置,用以在不需要拍摄3D片源,以及不需要对2D片源进行处理即可实现裸眼3D显示。
下面结合附图详细介绍本公开具体实施例提供的3D显示面板。
如图1所示,本公开具体实施例提供了一种3D显示面板,包括2D显示面板11、像分离装置12、偏光结构(图中未示出)、像隔离结构13、透镜组14和遮挡部件15。
2D显示面板11包括若干阵列排列的像素,如图中的像素1、像素2、像素3、像素4、像素5、像素6、像素7、像素8、像素9和像素10,用于播放2D片源。
像分离装置12用于将每一个像素分离为相邻的两个影像像素,影像像素一一相邻且位于同一平面,相邻影像像素之间无间隙或间隙处不透光,图1仅示出了相邻影像像素之间无间隙的情况。
偏光结构用于在影像像素通过透镜组14成像之前,将由同一个像素分离形成的相邻两个影像像素分别形成左眼图像(左眼图像的影像像素)和右眼图像(右眼图像的影像像素),如:将像素1分离形成的影像像素L1形成左眼图像,将像素1分离形成的影像像素R1形成右眼图像;将像素2分离形成的影像像素L2形成左眼图像,将像素2分离形成的影像像素R2形成右眼图像;将像素3分离形成的影像像素L3形成左眼图像,将像素3分离形成的影像像素R3形成右眼图像。
像隔离结构13用于在影像像素通过透镜组14成像之前,将左眼图像和右眼图像形成视差。
透镜组14用于使影像像素形成等大倒立交叉的3D图像对;
遮挡部件15用于分离左、右眼图像,使得形成的3D图像对中,左眼图像只能进入左眼101,右眼图像只能进入右眼102。例如,对于形成的3D图 像对L1和R4,该3D图像对中,L1为左眼图像,R4为右眼图像,L1只能进入左眼101,R4只能进入右眼102。
本公开具体实施例中的2D显示面板中的像素间隔较大,以保证后续每一个像素通过像素分离装置后形成的两个影像像素不重叠,像素间隔具体设置值根据实际需要进行设置。如:该2D显示面板可以采用现有技术中的液晶显示面板,不过液晶显示面板中像素之间的间隔较小,因此在实际使用时可以将液晶显示面板中的部分像素进行遮光处理。
在一些示例中,如图1所示,本公开具体实施例中的像分离装置12包括若干阵列排列的棱镜121,每一棱镜121与一像素对应设置。本公开具体实施例中的棱镜可以采用柱状棱镜,柱状棱镜的作用是将每一个像素分离成两个相同的影像像素,并且通过参数设计使得影像像素一一相邻或间隔较小的间隙,例如,可以通过设置柱状棱镜中每一个平面与水平面之间的倾斜角、以及设置合适的柱状棱镜折射率使得影像像素一一相邻或间隔较小的间隙。
例如,所述柱状棱镜的延伸方向平行于2D显示面板的像素阵列的列方向。此外,每列像素可以对应于一个柱状棱镜。也就是说,在垂直于所述棱镜的延伸方向的截面上,每一所述棱镜与一所述像素对应设置。柱状棱镜可以沿行方向依次排列。
当相邻的影像像素间隔较小的间隙时,该间隙位置处必须不透光,例如,在柱状棱镜上设置遮光层,该遮光层在影像像素所在平面上的正投影区域与相邻影像像素之间的间隙区域重合。例如,在柱状棱镜顶部相应区域设置遮光层,使得遮光层在影像像素所在平面上的正投影区域与相邻影像像素之间的间隙区域重合,以保证相邻影像像素之间的间隙区域为黑色暗区,能够有效的避免漏光的发生。
在一些示例中,如图1所示,本公开具体实施例中的3D显示面板还包括用于呈现影像像素的成像面130,像隔离结构13包括设置在成像面130上的第一遮光层131和第二遮光层132,第一遮光层131和第二遮光层132分别位于成像面130的两侧,位于成像面130一侧的第一遮光层131用于遮挡边缘位置处的部分用于形成右眼图像的影像像素,位于成像面130另一侧的第二遮光层132用于遮挡边缘位置处相同数目的用于形成左眼图像的影像像素。
例如,第一遮光层131位于成像面130的行方向上的一侧,第二遮光层132位于成像面130的行方向的另一侧。例如,所述遮光层为平行于所述阵列的列方向延伸的条形,且所述第一遮光层131遮挡位于所述成像面一个边缘的右眼图像的多列影像像素,所述第二遮光层132遮挡位于所述成像面的另一个边缘的左眼图像的多列影像像素。
例如,本公开具体实施例中的成像面130的左侧设置有第一遮光层131,右侧设置有第二遮光层132,第一遮光层131用于遮挡用于形成右眼图像的影像像素R1、R2和R3;第二遮光层132用于遮挡用于形成左眼图像的影像像素L8、L9和L10。这样,形成左眼图像的像素右侧舍去3列像素,形成右眼图像的像素左侧舍去3列像素,实现了3D显示时具有视差的图像。当然,第一遮光层遮挡的形成右眼图像的影像像素的数目可以根据实际情况设置,并不限于遮挡三列影像像素;同样地,第二遮光层遮挡的形成左眼图像的影像像素的数目也可以根据实际情况设置,并不限于遮挡三列影像像素。另外,在实际设计时,第一遮光层遮挡的影像像素的个数也可以与第二遮光层遮挡的影像像素的个数不同。
在一些示例中,如图1所示,本公开具体实施例中的透镜组14包括第一透镜组141和第二透镜组142,第一透镜组141与第二透镜组142关于2D显示面板11所在平面的中心点位置处的法线10对称。例如,本公开具体实施例中的第一透镜组141包括多个凸透镜,第二透镜组142包括多个凸透镜。
例如,如图1所示,本公开具体实施例中的第一透镜组141中的每一透镜的焦点所在轴线与2D显示面板11所在平面的中心点位置处的法线10之间的距离为像素在X方向上的宽度的整数倍;第二透镜组142中的每一透镜的焦点所在轴线与2D显示面板11所在平面的中心点位置处的法线10之间的距离为像素在X方向上的宽度的整数倍。本公开具体实施例中像素在X方向上的宽度指像素在水平方向上的宽度。
在一些示例中,如图1所示,本公开具体实施例中的遮挡部件15为光栅或柱透镜,本公开具体实施例中的光栅与现有技术的3D光栅效果相同,通过光栅最终实现裸眼3D的效果。本公开具体实施例中的柱透镜与现有技术实现3D效果的柱透镜相同,通过柱透镜实现裸眼3D显示或非裸眼3D显示。
在一些示例中,本公开具体实施例的3D显示面板中的偏光结构包括:
设置在2D显示面板朝向像分离装置一侧的偏光层、设置在成像面上的相位延迟膜和设置在透镜组朝向成像面一侧的检偏层;或,
设置在棱镜向左面和向右面(例如,面向所述像隔离结构的两个相邻的面)上偏振方向互相垂直的偏光层,以及设置在成像面上的检偏层;或,
设置在棱镜向左面和向右面(例如,面向所述像隔离结构的两个相邻的面)上偏振方向互相垂直的偏光层,以及设置在透镜组朝向成像面一侧的检偏层。
下面结合附图具体介绍本公开具体实施例中的偏光结构的设计方式。
方式一:
如图2所示,本公开具体实施例中的偏光结构包括设置在2D显示面板11朝向像分离装置12一侧的偏光层21、设置在成像面130上的相位延迟膜22和设置在透镜组14朝向成像面130一侧的检偏层23。偏光层21的设置使得出射光为偏振光;相位延迟膜22的设置使得奇数列的影像像素L1、L2、L3、L4、L5、L6、L7、L8、L9和L10与偶数列的影像像素R1、R2、R3、R4、R5、R6、R7、R8、R9和R10经过该相位延迟膜22后呈现互相垂直的偏振态;检偏层23的设置使得第一透镜组141只能对奇数列的影像像素成像,第二透镜组142只能对偶数列的影像像素成像。
例如,本公开具体实施例2D显示面板11播放的2D片源,经过本公开具体实施例的第一透镜组141后,奇数列的影像像素形成等大倒立像,由于第二遮光层132遮挡了3列奇数列的影像像素,因此形成的等大倒立像向右侧偏移3列像素,而经过本公开具体实施例的第二透镜组142后,偶数列的影像像素形成等大倒立像,由于第一遮光层131遮挡了3列偶数列的影像像素,因此形成的等大倒立像向左侧偏移3列像素。从图中可以看到,此时奇数列与偶数列边缘的3列像素的遮挡效果消失,形成重新配对相互交错的影像,此影像即为完整的3D图像对。在实际设计时,由于经过透镜组形成的是倒立的像,因此左右眼的片源需要根据实际情况进行调整。
方式二:
如图3所示,本公开具体实施例中的偏光结构包括设置在棱镜向左面和向右面上偏振方向互相垂直的偏光层31,以及设置在成像面130上的检偏层32。此时,经过2D显示面板11后进入棱镜的光为普通光,由于在棱镜向左 面和向右面上设置互相垂直的偏光层31,经过棱镜后的普通光变为偏振光。
本公开具体实施例在棱镜向左面和向右面上设置互相垂直的偏光层31,偏光层31的作用与上述方式一设置的相位延迟膜的作用相同,能够使得奇数列的影像像素L1、L2、L3、L4、L5、L6、L7、L8、L9和L10与偶数列的影像像素R1、R2、R3、R4、R5、R6、R7、R8、R9和R10经过该偏光层31后呈现互相垂直的偏振态;例如,可以在棱镜的向左面和向右面分别蒸镀互相垂直的起偏膜或涂覆聚酰亚胺(Polyimide,PI)层后光诱导定向,通过不同的光照方向形成不同的起偏功能。检偏层32的设置能够使得第一透镜组141只能对奇数列的影像像素成像,第二透镜组142只能对偶数列的影像像素成像。
方式三:
如图4所示,本公开具体实施例中的偏光结构包括设置在棱镜向左面和向右面上偏振方向互相垂直的偏光层31,以及设置在透镜组朝向成像面一侧的检偏层41。检偏层41的设置能够使得第一透镜组141只能对奇数列的影像像素成像,第二透镜组142只能对偶数列的影像像素成像。
本公开具体实施例关于偏光结构的设置,可以灵活多变,只要能起到分离左右图像的目的,可以设置在不同的位置,不限于上述的三种设置方式。本公开具体实施例光学参数设计满足一般几何光学原理,这里不再赘述。
以本公开具体实施例的偏光结构为上述的方式一为例,本公开具体实施例的成像过程为:首先,通过设置在2D显示面板朝向像分离装置一侧的偏光层实现像起偏;接着,通过像分离装置实现像分离;接着,通过设置在成像面上的相位延迟膜形成互相垂直的偏振态;接着,通过设置在成像面上的遮光层实现边缘像隔离;接着,通过设置在透镜组上的检偏层,以及设置的透镜组实现像移位,像检偏,形成二次成叠像,即形成3D片源;最后,通过遮挡部件实现左右眼分离,形成3D效果。
在一些示例中,如图5所示,本公开具体实施例中的3D显示面板还包括设置在透镜组14与遮挡部件15之间的投影面16,投影面16用于呈现3D图像对。设置投影面16后,可以进一步在该投影面16上设置光阀控制器17,光阀控制器17用于控制3D图像对的亮度,能够使得3D图像对中的不同区域的像素明暗程度不同,可增加景深差异的效果,对3D图像进行深度渲染, 进一步提升3D感受。
在一些示例中,如图5所示,本公开具体实施例中的3D显示面板还包括使2D显示面板11、像分离装置12、像隔离结构13、偏光结构、透镜组14和遮挡部件15一体化的外壳18。
例如,本公开具体实施例还可以在棱镜与透镜组之间,以及透镜组与光栅之间填充光学折射率介质,使得该介质与棱镜以及透镜配合使用后形成图5所示的光路。另外,本公开具体实施例中的3D显示面板中的光学组件可根据观察者位置进行调节,以达到更好的匹配效果。
对于上述的3D图像对,其中的左眼图像和右眼图像是等大的,所述3D图像对中的左眼图像的边缘和所述右眼图像的边缘彼此重合。这样,3D图像对实际上是熔合了存在视差的左眼图像和右眼图像。例如,所述偏光结构形成所述左眼图像和所述右眼图像的图像光具有不同的偏振方向,以便于左眼图像和右眼图像的分离。
本公开具体实施例还提供了一种显示装置,该显示装置包括上述的3D显示面板,该显示装置可以为液晶显示器、液晶电视、有机发光二极管(Organic Light Emitting Diode,OLED)显示器、OLED电视等显示装置。
综上所述,本公开具体实施例提供一种3D显示面板,包括2D显示面板、像分离装置、像隔离结构、偏光结构、透镜组和遮挡部件,其中:2D显示面板包括若干阵列排列的像素,用于播放2D片源;像分离装置用于将每一个像素分离为相邻的两个影像像素,影像像素一一相邻且位于同一平面,相邻影像像素之间无间隙或间隙处不透光;偏光结构用于在影像像素通过透镜组成像之前,将由同一个像素分离形成的相邻两个影像像素分别形成左眼图像和右眼图像;像隔离结构用于在影像像素通过透镜组成像之前,将左眼图像和右眼图像形成视差;透镜组用于使影像像素形成等大倒立交叉的3D图像对;遮挡部件用于分离左、右眼图像。通过上述设置,在不需要拍摄3D片源,以及不需要对2D片源进行处理即可实现裸眼3D显示。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。
本申请要求于2016年1月7日递交的中国专利申请No.201610009261.9的优先权,在此全文引用该中国专利申请公开的内容以作为本申请的一部分。

Claims (16)

  1. 一种3D显示面板,包括2D显示面板、像分离装置、偏光结构、像隔离结构、透镜组和遮挡部件,其中:
    所述2D显示面板包括沿行方向和列方向排列成阵列的多个像素,被配置为播放2D片源;
    所述像分离装置被配置为将每一个所述像素分离为相邻的两个影像像素,所述影像像素位于同一平面,相邻影像像素之间无间隙或间隙处不透光;
    所述偏光结构被配置为在所述影像像素通过所述透镜组成像之前,将由同一个所述像素分离形成的相邻两个影像像素分别形成左眼图像的影像像素和右眼图像的影像像素;
    所述像隔离结构被配置为在所述影像像素通过所述透镜组成像之前,将所述左眼图像和所述右眼图像形成视差;
    所述透镜组被配置为使所述影像像素形成等大的3D图像对;
    所述遮挡部件被配置为分离所述左眼图像和所述右眼图像。
  2. 根据权利要求1所述的3D显示面板,其中,所述像分离装置包括若干彼此平行且依次排列的柱状棱镜,在垂直于所述棱镜的延伸方向的截面上,每一所述棱镜与一所述像素对应设置。
  3. 根据权利要求2所述的3D显示面板,其中,所述柱状棱镜的延伸方向平行于所述列方向。
  4. 根据权利要求2或3所述的3D显示面板,其中,当相邻影像像素间隙处不透光时,所述棱镜上设置有遮光层,所述遮光层在所述影像像素所在平面上的正投影区域与相邻影像像素之间的间隙区域重合。
  5. 根据权利要求1-4任一项所述的3D显示面板,还包括用于呈现所述影像像素的成像面,所述偏光结构包括:
    设置在所述2D显示面板朝向所述像分离装置一侧的偏光层、设置在所述成像面上的相位延迟膜和设置在所述透镜组朝向所述成像面一侧的检偏层;或,
    分别设置在所述棱镜的面向所述像隔离结构的两个相邻的面上的偏振方向互相垂直的偏光层,以及设置在所述成像面上的检偏层;或,
    分别设置在所述棱镜的面向所述像隔离结构的两个相邻的面上的偏振方向互相垂直的偏光层,以及设置在所述透镜组朝向所述成像面一侧的检偏层。
  6. 根据权利要求1-5任一项所述的3D显示面板,其中,所述像隔离结构包括设置在所述成像面上的第一遮光层和第二遮光层,所述第一遮光层和所述第二遮光层分别位于所述成像面的位于所述行方向上的两侧部分,位于所述成像面一侧的第一遮光层用于遮挡部分用于形成右眼图像的影像像素,位于所述成像面另一侧的第二遮光层用于遮挡相同数目的用于形成左眼图像的影像像素。
  7. 根据权利要求6所述的3D显示面板,其中,所述遮光层为平行于所述阵列的列方向延伸的条形,且所述第一遮光层遮挡位于所述成像面一个边缘的右眼图像的多列影像像素,所述第二遮光层遮挡位于所述成像面的另一个边缘的左眼图像的多列影像像素。
  8. 根据权利要求1-7任一项所述的3D显示面板,其中,所述透镜组包括第一透镜组和第二透镜组,所述第一透镜组与所述第二透镜组关于所述2D显示面板所在平面的中心点位置处的法线对称。
  9. 根据权利要求8所述的3D显示面板,其中,所述第一透镜组中的每一透镜的焦点所在轴线与2D显示面板所在平面的中心点位置处的法线之间的距离为像素在X方向上的宽度的整数倍;
    所述第二透镜组中的每一透镜的焦点所在轴线与2D显示面板所在平面的中心点位置处的法线之间的距离为像素在X方向上的宽度的整数倍。
  10. 根据权利要求1-9任一项所述的3D显示面板,其中,所述遮挡部件为光栅或柱透镜。
  11. 根据权利要求1-10任一项所述的3D显示面板,还包括用于呈现所述3D图像对的投影面,以及设置在所述投影面上的光阀控制器,所述光阀控制器用于控制所述3D图像对的亮度。
  12. 根据权利要求1-11任一项所述的3D显示面板,还包括使所述2D显示面板、所述像分离装置、所述像隔离结构、所述偏光结构、所述透镜组和所述遮挡部件一体化的外壳。
  13. 根据权利要求1所述的3D显示面板,其中,所述透镜组被配置为使所述影像像素形成倒立且彼此交叉的3D图像对。
  14. 根据权利要求1所述的3D显示面板,其中,所述偏光结构形成所述左眼图像和所述右眼图像的图像光具有不同的偏振方向。
  15. 根据权利要求1所述的3D显示面板,其中,所述透镜组被配置为使得所述3D图像对中的左眼图像的边缘和所述右眼图像的边缘彼此重合。
  16. 一种显示装置,包括权利要求1-15任一权利要求所述的3D显示面板。
PCT/CN2016/091038 2016-01-07 2016-07-22 一种3d显示面板、显示装置 WO2017117973A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/506,144 US10365496B2 (en) 2016-01-07 2016-07-22 Three dimensional display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610009261.9 2016-01-07
CN201610009261.9A CN105676466B (zh) 2016-01-07 2016-01-07 一种3d显示面板、显示装置

Publications (1)

Publication Number Publication Date
WO2017117973A1 true WO2017117973A1 (zh) 2017-07-13

Family

ID=56234677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/091038 WO2017117973A1 (zh) 2016-01-07 2016-07-22 一种3d显示面板、显示装置

Country Status (3)

Country Link
US (1) US10365496B2 (zh)
CN (1) CN105676466B (zh)
WO (1) WO2017117973A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105676466B (zh) * 2016-01-07 2017-12-15 京东方科技集团股份有限公司 一种3d显示面板、显示装置
CN110392861A (zh) * 2016-02-22 2019-10-29 宋杰 用于裸眼观看的光学立体显示屏幕
US10725316B2 (en) * 2016-02-22 2020-07-28 Jay Song Optical stereoscopic display screen for naked eye viewing
CN111175990B (zh) * 2020-02-19 2022-07-15 京东方科技集团股份有限公司 光场显示系统
TWI763488B (zh) * 2021-05-18 2022-05-01 幻景啟動股份有限公司 立體影像顯示裝置
CN114545647A (zh) * 2022-02-22 2022-05-27 四川大学 视区分离的集成成像双视3d显示方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5465175A (en) * 1992-11-11 1995-11-07 Sharp Kabushiki Kaisha Autostereoscopic display device
CN1797068A (zh) * 2004-12-29 2006-07-05 三星电子株式会社 三维图像显示装置
US20060244918A1 (en) * 2005-04-27 2006-11-02 Actuality Systems, Inc. Minimized-thickness angular scanner of electromagnetic radiation
CN201917718U (zh) * 2011-01-10 2011-08-03 冠捷显示科技(厦门)有限公司 新型裸眼立体显示器
CN102300105A (zh) * 2010-06-25 2011-12-28 深圳Tcl新技术有限公司 一种将2d内容转换成3d内容的方法
CN202149995U (zh) * 2011-07-30 2012-02-22 李军 一种裸眼3d屏装置
CN105676466A (zh) * 2016-01-07 2016-06-15 京东方科技集团股份有限公司 一种3d显示面板、显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09503594A (ja) * 1993-10-07 1997-04-08 バーチャル ビジョン,インコーポレイティド 双眼鏡用ヘッド装着ディスプレーシステム
GB2398130A (en) * 2003-02-05 2004-08-11 Ocuity Ltd Switchable active lens for display apparatus
JP4196889B2 (ja) * 2004-06-30 2008-12-17 日本電気株式会社 画像表示装置及び携帯端末装置
KR101600818B1 (ko) * 2009-11-06 2016-03-09 삼성디스플레이 주식회사 3차원 광학 모듈 및 이를 포함하는 디스플레이 장치
TWI428632B (zh) * 2010-11-30 2014-03-01 Benq Materials Corp 立體影像顯示器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5465175A (en) * 1992-11-11 1995-11-07 Sharp Kabushiki Kaisha Autostereoscopic display device
CN1797068A (zh) * 2004-12-29 2006-07-05 三星电子株式会社 三维图像显示装置
US20060244918A1 (en) * 2005-04-27 2006-11-02 Actuality Systems, Inc. Minimized-thickness angular scanner of electromagnetic radiation
CN102300105A (zh) * 2010-06-25 2011-12-28 深圳Tcl新技术有限公司 一种将2d内容转换成3d内容的方法
CN201917718U (zh) * 2011-01-10 2011-08-03 冠捷显示科技(厦门)有限公司 新型裸眼立体显示器
CN202149995U (zh) * 2011-07-30 2012-02-22 李军 一种裸眼3d屏装置
CN105676466A (zh) * 2016-01-07 2016-06-15 京东方科技集团股份有限公司 一种3d显示面板、显示装置

Also Published As

Publication number Publication date
CN105676466B (zh) 2017-12-15
US10365496B2 (en) 2019-07-30
CN105676466A (zh) 2016-06-15
US20180107010A1 (en) 2018-04-19

Similar Documents

Publication Publication Date Title
WO2017117973A1 (zh) 一种3d显示面板、显示装置
JP4560869B2 (ja) メガネなし表示システムおよびバックライトシステム
JP5669726B2 (ja) 位置許容性自動立体表示システム
US8740387B2 (en) Autostereoscopic display apparatus
JP4404146B2 (ja) 投影型三次元画像再生装置
US9857603B2 (en) 2D/3D switchable display device
US7230759B2 (en) Autostereoscopic projection screen
JP2009169142A (ja) 三次元画像再生装置
US9778556B2 (en) Imaging system having a polarization element
TW200933195A (en) Autostereoscopic display
WO2017202059A1 (zh) 液晶透镜、3d显示面板及它们的控制方法
KR20180076541A (ko) 플로팅 홀로그램 장치
US9377676B2 (en) Autostereoscopic display device
TWI495904B (zh) 配合軟體光柵來產生立體影像的場色序法液晶顯示器及配合軟體光柵來產生立體影像的方法
KR102016054B1 (ko) 2d/3d 영상표시장치
KR20180033376A (ko) 렌즈 패널 및 이를 포함하는 표시 장치
KR102172408B1 (ko) 공간 영상 투영 장치
KR20120125001A (ko) 영상 표시장치
KR101792577B1 (ko) 액정표시장치
KR101324060B1 (ko) 무안경 입체 영상 디스플레이 장치
KR20130114376A (ko) 입체 영상 표시 장치
KR101940763B1 (ko) 하이브리드 입체 영상 표시장치
KR102530284B1 (ko) 공간 영상 투영 장치
KR102157273B1 (ko) 공간 영상 투영 장치
KR101754979B1 (ko) 3차원 영상 표시 장치 및 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15506144

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883107

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 14/06/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16883107

Country of ref document: EP

Kind code of ref document: A1