WO2018113194A1 - 一种高压脉冲轨道电路系统 - Google Patents

一种高压脉冲轨道电路系统 Download PDF

Info

Publication number
WO2018113194A1
WO2018113194A1 PCT/CN2017/086938 CN2017086938W WO2018113194A1 WO 2018113194 A1 WO2018113194 A1 WO 2018113194A1 CN 2017086938 W CN2017086938 W CN 2017086938W WO 2018113194 A1 WO2018113194 A1 WO 2018113194A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiving module
rail
voltage pulse
module
transformer
Prior art date
Application number
PCT/CN2017/086938
Other languages
English (en)
French (fr)
Inventor
乔志超
徐宗奇
谢文磊
张璐
Original Assignee
北京全路通信信号研究设计院集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京全路通信信号研究设计院集团有限公司 filed Critical 北京全路通信信号研究设计院集团有限公司
Publication of WO2018113194A1 publication Critical patent/WO2018113194A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L1/00Devices along the route controlled by interaction with the vehicle or vehicle train, e.g. pedals
    • B61L1/02Electric devices associated with track, e.g. rail contacts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L1/00Devices along the route controlled by interaction with the vehicle or vehicle train, e.g. pedals
    • B61L1/18Railway track circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning, or like safety means along the route or between vehicles or vehicle trains
    • B61L23/04Control, warning, or like safety means along the route or between vehicles or vehicle trains for monitoring the mechanical state of the route

Definitions

  • the present application relates to the field of power electronics, and in particular to a high voltage pulse track circuit system.
  • the high-voltage pulse track circuit is derived from France and consists of transmitting equipment, receiving equipment, cable and choke transformer or rail transformer. It is mainly divided into two types: differential relay type and electronic receiver type. This system has the unique advantage of being able to penetrate the rail rust layer and facilitate the splitting of the train. Since the technical appraisal of the former Ministry of Railways in 1984, it has been used in the bad section of the station in China.
  • the industry standard "TJ/DW146-2012 Asymmetric High-Voltage Pulse Track Circuit Interim Technical Conditions" of the product stipulates that under the track bed condition of 0.6 ⁇ km, the ultimate transmission length of the track circuit is 900 meters.
  • the existing high-voltage pulse track circuit structure encounters a contradiction between the transmission length and the off-track inspection function when facing a long section with a length of nearly 900 meters.
  • the existing high-voltage pulse track circuit cannot check whether the rail breaks in the long section, which may cause accidents such as train derailment, and there is a safety hazard.
  • the present application provides a high-voltage pulse track circuit system capable of solving the problem in the prior art that it is impossible to detect whether or not a rail break occurs in a long track section.
  • the high voltage pulse track circuit system includes: a rail, a transmitting module, a first receiving module, and a second receiving module;
  • the transmitting module, the first receiving module and the second receiving module are both connected to the rail, and the first receiving module and the second receiving module are respectively located at two ends of the rail, and the sending a module is located in the middle of the first receiving module and the second receiving module;
  • the sending module is configured to send a high voltage pulse signal to the first receiving module and the second receiving module.
  • L 1 is the distance between the transmitting module and the first receiving module
  • L 2 is the distance between the transmitting module and the second receiving module.
  • the length of the rail is less than or equal to 1200 meters.
  • the sending module includes: a first transformer and a transmitting device;
  • the first winding of the first transformer is connected to the transmitting device via a cable or a first resistor, and the second winding of the first transformer is connected to the rail;
  • the first transformer is configured to generate the high voltage pulse signal according to a pulse signal sent by the sending device, and send the high voltage pulse signal to the rail.
  • the first receiving module includes: a second transformer and a first receiving device;
  • the first winding of the second transformer is connected to the first receiving device via a cable or a second resistor, and the second winding of the second transformer is connected to the rail;
  • the second transformer is configured to obtain a first signal according to the received high voltage pulse signal, and send the first signal to the first receiving device.
  • the second receiving module includes: a third transformer and a second receiving device;
  • the first winding of the third transformer is connected to the second receiving device via a cable or a third resistor, and the second winding of the third transformer is connected to the rail;
  • the third transformer is configured to obtain a second signal according to the received high voltage pulse signal, and send the second signal to the second receiving device.
  • both ends of the rail are provided with insulating segments.
  • a receiving module that is, a first receiving module and a second receiving module, is disposed at each end of each section of the rail, and a transmitting module is disposed in the middle of the rail.
  • the transmitting module is configured to send the high voltage pulse signal to the rail, and the first receiving module and the second receiving module detect whether there is a train occupancy on the rail in the interval between the transmitting module and the transmitting module by receiving the high voltage pulse signal and the interval in the interval Whether the rail is broken or not.
  • the high-voltage pulse circuit system reduces the distance between the transmitting module and the receiving module, and the rail surface voltage is greatly increased, which improves the breakdown capability of the rail rust layer, and can still achieve the breakage within the limit transmission length range of the high-voltage pulse circuit.
  • the monitoring of the rail conditions greatly improves the safety of train operation and saves the equipment and cost of laying.
  • Embodiment 1 is a schematic structural diagram of Embodiment 1 of a high voltage pulse circuit system provided by the present application;
  • FIG. 2 is a schematic structural diagram of Embodiment 2 of a high voltage pulse circuit system provided by the present application.
  • the high-voltage pulse track circuit the asymmetric high-voltage pulse track circuit, which breaks the rust layer of the rail by generating positive and negative asymmetric high-voltage pulses, solves the problem of poor branching of the track circuit in the station, and is used to check the idleness or occupation of the track.
  • Broken rail inspection refers to the track circuit can be displayed as the train occupancy status when the rail is electrically disconnected (train occupancy, rail breakage or removal, etc.), which is one of the functions to ensure driving safety.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 1 the figure is a schematic structural diagram of Embodiment 1 of a high voltage pulse track circuit system provided by the present application.
  • the high voltage pulse track circuit system includes: a rail 300, a transmitting module 100, a first receiving module 201, and a second receiving module 202.
  • the transmitting module 100, the first receiving module 201, and the second receiving module 202 are all connected to the rail 300, and the first receiving module 201 and the second receiving module 202 are respectively located on the rail 300.
  • the transmitting module 100 is located at the two ends of the first receiving module 201 and the second receiving module 202.
  • the railway track is composed of two parallel rails, each of which is cut into different sections.
  • a high-voltage pulse track circuit system is provided on the track of each section to check whether the rails in the section are electrically disconnected.
  • the transmitting module 100, the first receiving module 201 and the second receiving module 202 need to respectively connect the two rails 300 in the section.
  • the sending module 100 is configured to send a high voltage pulse signal to the first receiving module 201 and the second receiving module 202.
  • the high voltage pulse signal transmitted by the transmitting module 100 is transmitted along the rail 300 to both ends of the rail 300.
  • the first receiving module 201 receives the high voltage pulse signal, it indicates that the rail between the transmitting module and the transmitting module 100 has no train occupancy, and no rail breakage or removal occurs; otherwise, when the first receiving module 201 does not receive
  • the high-voltage pulse signal is reached, it indicates that the rail between the transmission module 100 and the transmission module 100 is occupied by a train, or the rail is broken or removed.
  • the second receiving module 202 when the second receiving module 202 receives the high voltage pulse signal, it indicates that the rail between the transmitting module and the transmitting module 100 has no train occupancy, and no rail breakage or removal occurs; otherwise, when the second receiving module When the high voltage pulse signal is not received by 202, it indicates that the rail between the transmission module 100 and the transmission module 100 is occupied by a train, or the rail is broken or removed.
  • first receiving module 201 and the second receiving module 202 are respectively disposed at the two top ends of the rail 300, so that the electrical disconnection of the entire section of the rail 300 can be detected, and the driving safety can be ensured. all.
  • the two receiving modules namely the first receiving module 201 and the second receiving module 202, respectively detect the electrical disconnection of the rails on both sides of the transmitting module 100.
  • the rail surface voltage is greatly increased, the breakdown ability of the rail rust layer is improved, the break rail inspection function within the limit transmission length range is also ensured, and the train operation is improved. Security.
  • the high-voltage pulse signal is attenuated by factors such as the environment and the state of the rail. If the distance between the first receiving module 201 and the second receiving module 202 and the transmitting module 100 is too long, it may result in The first receiving module 201 and the second receiving module 202 cannot receive the high voltage pulse signal, affecting the scheduling of the train and the checking of the broken track.
  • the length of the rail 300 should be less than or equal to 1200 meters, taking into account the environmental factors affecting the conditions of transmission on the rail 300.
  • the attenuation of the high-voltage pulse signal on the rail affects the detection of the high-voltage pulse signal sent by the receiving module by the receiving module, which affects the judgment of the electrical disconnection. Therefore, in order to ensure the transmission quality of the high voltage pulse signal, the distance between the transmitting module 100 and the first receiving module 201 should be less than or equal to 600 meters, and the distance between the transmitting module 100 and the second receiving module 202 is less than or equal to 600 meters.
  • a receiving module that is, a first receiving module and a second receiving module, is disposed at each end of each section of the rail, and a transmitting module is disposed in the middle of the rail.
  • the transmitting module is configured to send the high voltage pulse signal to the rail, and the first receiving module and the second receiving module detect whether there is a train occupancy on the rail in the interval between the transmitting module and the transmitting module by receiving the high voltage pulse signal and the interval in the interval Whether the rail is broken or not.
  • the high-voltage pulse circuit system reduces the distance between the transmitting module and the receiving module, and the rail surface voltage is greatly increased, which improves the breakdown capability of the rail rust layer, and can still achieve the breakage within the limit transmission length range of the high-voltage pulse circuit.
  • the monitoring of the track conditions greatly improves the safety of train operation and saves equipment and costs.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • FIG. 2 the figure is a schematic structural diagram of Embodiment 2 of a high voltage pulse track circuit system provided by the present application. Compared to FIG. 1, this embodiment provides a more specific high voltage pulse track circuit system.
  • the sending module includes: a first transformer 101 and a transmitting device 102;
  • the first winding of the first transformer 101 is connected to the transmitting device 102 via a cable or a first resistor R1, and the second winding of the first transformer 101 is connected to the rail 300;
  • the first transformer 101 is configured to generate the high voltage pulse signal according to a pulse signal sent by the sending device 102, and send the high voltage pulse signal to the rail 300.
  • the first resistor R1 is used to adjust the pulse signal sent by the transmitting device 102 to meet the transmission requirements obtained in advance when transmitted to the rail 300.
  • the first receiving module includes: a second transformer 201a and a first receiving device 201b;
  • the first winding of the second transformer 201a is connected to the first receiving device 201b via a cable or a second resistor R2, and the second winding of the second transformer 201a is connected to the rail 300;
  • the second transformer 201a is configured to obtain a first signal according to the received high voltage pulse signal, and send the first signal to the first receiving device 201b.
  • the second resistor R2 is used to adjust the first signal sent to the first receiving device 201b, preventing the voltage of the first signal from being too high and causing the first receiving device 201b to be damaged.
  • the second receiving module includes: a third transformer 202a and a second receiving device 202b;
  • the first winding of the third transformer 202a is connected to the second receiving device 202b via a cable or a third resistor R3, and the second winding of the third transformer 202a is connected to the rail 300;
  • the third transformer 202a is configured to obtain a second signal according to the received high voltage pulse signal, and send the second signal to the second receiving device 202b.
  • the third resistor R3 is used to adjust the second signal sent to the second receiving device 202b to prevent The voltage of the second signal is too high to cause damage to the second receiving device 202b.
  • first receiving module and the second receiving module are the same.
  • the high-voltage pulse track circuit system provided by the embodiment of the present invention can be applied to an electrified section, a non-electrified section, and an electrified section (such as ZPW-2000 (UM) two-wire power generation coded, ZPW-2000 ( UM) Four-wire system coded, ZPW-2000 (UM) closed-loop coded and domestic frequency-shifted coded) and non-coded segments.
  • the transmitting devices 102 may be arranged in a centralized manner indoors or may be distributed outdoors.
  • the first transformer 101, the second transformer 201a, and the third transformer 202a are both choke transformers; when the high voltage pulse track circuit system provided by the embodiment is applied In the non-electrified section, the first transformer 101, the second transformer 201a, and the third transformer 202a are both rail transformers.

Abstract

一种高压脉冲轨道电路系统,包括:钢轨(300)、发送模块(100)、第一接收模块(201)和第二接收模块(202);发送模块(100)、第一接收模块(201)和第二接收模块(202)均与钢轨(300)连接,第一接收模块(201)和第二接收模块(202)分别位于钢轨(300)的两端,发送模块(100)位于第一接收模块(201)和第二接收模块(202)的中间;发送模块(100)用于发送高压脉冲信号至第一接收模块(201)和第二接收模块(202)。高压脉冲电路系统减小了发送模块(100)和接收模块(201、202)间的距离,轨面电压大幅升高,提高了钢轨(300)锈层击穿能力,并且在高压脉冲电路的极限传输长度范围内仍然能够实现对断轨情况的监测,大大提升了列车运行的安全性,节约了铺设的设备和成本。

Description

一种高压脉冲轨道电路系统
本申请要求于2016年12月22日提交中国专利局,申请号为201621424595.4,发明名称为“一种高压脉冲轨道电路系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电力电子技术领域,尤其涉及一种高压脉冲轨道电路系统。
背景技术
高压脉冲轨道电路源自法国,由发送设备、接收设备、电缆和扼流变压器或轨道变压器组成,主要分为差动继电器型和电子接收器型两种类型。该制式具有能击穿钢轨锈层、有利于列车分路的独特优势。自1984年通过原铁道部技术鉴定后,在我国站内分路不良区段开始使用。
目前该产品的行业标准《TJ/DW146-2012不对称高压脉冲轨道电路暂行技术条件》中规定,在0.6Ω·km的道床条件下,轨道电路的极限传输长度为900米。而现有的高压脉冲轨道电路结构,在面临长度接近900米的长区段传输时,会遇到传输长度和断轨检查功能不能兼顾的矛盾。现有的高压脉冲轨道电路无法检查该长区段中是否出现钢轨断轨的情况,这可能造成列车脱轨等事故,存在安全隐患。
发明内容
有鉴于此,本申请提供了一种高压脉冲轨道电路系统,能够解决现有技术中无法检查出较长的轨道区段中是否出现钢轨断轨的问题。
本申请实施例提供的高压脉冲轨道电路系统,包括:钢轨、发送模块、第一接收模块和第二接收模块;
所述发送模块、所述第一接收模块和所述第二接收模块均与所述钢轨连接,所述第一接收模块和所述第二接收模块分别位于所述钢轨的两端,所述发送模块位于所述第一接收模块和所述第二接收模块的中间;
所述发送模块用于发送高压脉冲信号至所述第一接收模块和所述第二接收模块。
优选的,
|L1-L2|≤100m,L1为所述发送模块与所述第一接收模块之间的距离,L2为所述发送模块与所述第二接收模块之间的距离。
优选的,
所述钢轨的长度小于或等于1200米。
优选的,所述发送模块,包括:第一变压器和发送设备;
所述第一变压器的第一绕组经电缆或者第一电阻连接所述发送设备,所述第一变压器的第二绕组连接所述钢轨;
所述第一变压器,用于根据所述发送设备发送的脉冲信号生成所述高压脉冲信号,并将所述高压脉冲信号发送至所述钢轨。
优选的,所述第一接收模块,包括:第二变压器和第一接收设备;
所述第二变压器的第一绕组经电缆或者第二电阻连接所述第一接收设备,所述第二变压器的第二绕组连接所述钢轨;
所述第二变压器,用于根据接收到的所述高压脉冲信号得到第一信号,并将所述第一信号发送给所述第一接收设备。
优选的,所述第二接收模块,包括:第三变压器和第二接收设备;
所述第三变压器的第一绕组经电缆或者第三电阻连接所述第二接收设备,所述第三变压器的第二绕组连接所述钢轨;
所述第三变压器,用于根据接收到的所述高压脉冲信号得到第二信号,并将所述第二信号发送给所述第二接收设备。
优选的,所述钢轨的两端均设置有绝缘节。
与现有技术相比,本申请至少具有以下优点:
本申请实施例提供的高压脉冲电路系统,在每段钢轨的两端各设置一个接收模块,即第一接收模块和第二接收模块,并在钢轨的中间设置一个发送模块。发送模块用于将高压脉冲信号发送至钢轨,第一接收模块和第二接收模块通过接收高压脉冲信号,来检测其与发送模块之间的区间内的钢轨上是否有列车占用以及该区间内的钢轨是否出现断轨的情况。本申请实施例提供 的高压脉冲电路系统,减小了发送模块和接收模块间的距离,轨面电压大幅升高,提高了钢轨锈层击穿能力,并且在高压脉冲电路的极限传输长度范围内仍然能够实现对断轨情况的监测,大大提升了列车运行的安全性,节约了铺设的设备和成本。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本申请提供的高压脉冲电路系统实施例一的结构示意图;
图2为本申请提供的高压脉冲电路系统实施例二的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在介绍本申请的具体实施方式之前,首先介绍与本申请的具体实施方式相关的多个技术术语。
高压脉冲轨道电路:即不对称高压脉冲轨道电路,通过产生正负不对称的高压脉冲来击穿钢轨的锈层,解决站内轨道电路的分路不良问题,用来检查轨道的空闲或占用。
断轨检查:是指在钢轨发生电气断离(列车占用、钢轨断裂或移除等)时,轨道电路能够显示为列车占用状态,是保证行车安全的功能之一。
实施例一:
参见图1,该图为本申请提供的高压脉冲轨道电路系统实施例一的结构示意图。
本实施例提供的高压脉冲轨道电路系统,包括:钢轨300、发送模块100、第一接收模块201和第二接收模块202。
所述发送模块100、所述第一接收模块201和所述第二接收模块202均与所述钢轨300连接,所述第一接收模块201和所述第二接收模块202分别位于所述钢轨300的两端,所述发送模块100位于所述第一接收模块201和所述第二接收模块202的中间。
可以理解的是,铁路轨道均为两条并行的钢轨组成,每条钢轨均被截断为不同的区段。实际应用中,每个区段的轨道上均设置有一个高压脉冲轨道电路系统来检查该区段内的钢轨是否发生电气断离。
基于此,为了检测出某一区段内的轨道是否发生电气断离,发送模块100、第一接收模块201和第二接收模块202需分别连接该区段内的两条钢轨300。
还需说明的是,为了防止每区段钢轨间的信号干扰,两个相邻的区段之间需在钢轨之间设置绝缘设施。即,所述钢轨300的两端均设置有绝缘节301,以防止与其相邻的两段钢轨上的信号对其检测结果的干扰。
所述发送模块100用于发送高压脉冲信号至所述第一接收模块201和所述第二接收模块202。
发送模块100发送的高压脉冲信号沿钢轨300向钢轨300的两端传输。当第一接收模块201接收到所述高压脉冲信号时,则说明其与发送模块100间的钢轨没有列车占用,也没有出现钢轨断裂或移除等情况;反之,当第一接收模块201未接收到所述高压脉冲信号时,则说明其与发送模块100间的钢轨有列车占用,或出现钢轨断裂或移除等情况。同理,当第二接收模块202接收到所述高压脉冲信号时,则说明其与发送模块100间的钢轨没有列车占用,也没有出现钢轨断裂或移除等情况;反之,当第二接收模块202未接收到所述高压脉冲信号时,则说明其与发送模块100间的钢轨有列车占用,或出现钢轨断裂或移除等情况。
可以理解的是,将第一接收模块201和第二接收模块202分别设置在钢轨300的两个顶端,就能保证检测到整段钢轨300的电气断离情况,保证行车安 全。
简单的说,就是通过两个接收模块,即第一接收模块201和第二接收模块202,分别检测发送模块100两侧钢轨的电气断离情况。这样,不仅减小了发送模块和接收模块间的距离,轨面电压大幅升高,提高了钢轨锈层击穿能力,还可保证在极限传输长度范围内的断轨检查功能,提升了列车运行的安全性。
在传输的过程中,高压脉冲信号受环境以及钢轨状态等因素的影响会有一定的衰减,如果第一接收模块201以及第二接收模块202与发送模块100之间的距离过远,就会导致第一接收模块201和第二接收模块202无法接收到该高压脉冲信号,影响对列车的调度以及对断轨的检查。
在本实施例优选的实施方案中,考虑到环境因素对钢轨300上传输条件的影响,所述钢轨300的长度应该小于或等于1200米。
可以理解的是,将发送模块100设置在第一接收模块201和第二接收模块202的正中间时,高压脉冲信号向两端传输的平均效果最好,即|L1-L2|≤100m,其中,L1为发送模块100与第二接收模块202之间的距离,L2为发送模块100与第二接收模块202之间的距离。然而,在实际铺设时,考虑到现场实际安装位置的偏差以及现有已铺设完成的铁路轨道中每段钢轨的长度,在|L1-L2|≤100m的情况下,就能够保证在不切断钢轨的情况下,检测出整段钢轨300的电气断离情况,节约了施工所需的人力物力,减少了所需的设备数量和电缆长度,节约了成本。
一般来说,当发送模块与接收模块的间隔超过600米时,高压脉冲信号在钢轨上的衰减会影响到接收模块对发送模块发出的高压脉冲信号的检测,影响对电气断离的判断。因此,为保证高压脉冲信号的传输质量,发送模块100与第一接收模块201之间的距离应小于或等于600米,发送模块100与第二接收模块202之间的距离小于或等于600米。
本申请实施例提供的高压脉冲电路系统,在每段钢轨的两端各设置一个接收模块,即第一接收模块和第二接收模块,并在钢轨的中间设置一个发送模块。发送模块用于将高压脉冲信号发送至钢轨,第一接收模块和第二接收模块通过接收高压脉冲信号,来检测其与发送模块之间的区间内的钢轨上是否有列车占用以及该区间内的钢轨是否出现断轨的情况。本申请实施例提供 的高压脉冲电路系统,减小了发送模块和接收模块间的距离,轨面电压大幅升高,提高了钢轨锈层击穿能力,并且在高压脉冲电路的极限传输长度范围内仍然能够实现对断轨情况的监测,大大提升了列车运行的安全性,节约了设备和成本。
实施例二:
参见图2,该图为本申请提供的高压脉冲轨道电路系统实施例二的结构示意图。相较于图1,本实施例提供了一种更加具体的高压脉冲轨道电路系统。
本实施例提供的高压脉冲轨道电路系统,所述发送模块,包括:第一变压器101和发送设备102;
所述第一变压器101的第一绕组经电缆或者第一电阻R1连接所述发送设备102,所述第一变压器101的第二绕组连接所述钢轨300;
所述第一变压器101,用于根据所述发送设备102发送的脉冲信号生成所述高压脉冲信号,并将所述高压脉冲信号发送至所述钢轨300。
可以理解的是,第一电阻R1用于调整发送设备102发送的脉冲信号,使之在传输至钢轨300时,可以满足预先得到的传输要求。
所述第一接收模块,包括:第二变压器201a和第一接收设备201b;
所述第二变压器201a的第一绕组经电缆或者第二电阻R2连接所述第一接收设备201b,所述第二变压器201a的第二绕组连接所述钢轨300;
所述第二变压器201a,用于根据接收到的所述高压脉冲信号得到第一信号,并将所述第一信号发送给所述第一接收设备201b。
可以理解的是,第二电阻R2用于调整发送至第一接收设备201b的第一信号,防止第一信号的电压过高而导致第一接收设备201b损坏。
所述第二接收模块,包括:第三变压器202a和第二接收设备202b;
所述第三变压器202a的第一绕组经电缆或者第三电阻R3连接所述第二接收设备202b,所述第三变压器202a的第二绕组连接所述钢轨300;
所述第三变压器202a,用于根据接收到的所述高压脉冲信号得到第二信号,并将所述第二信号发送给所述第二接收设备202b。
同理,第三电阻R3用于调整发送至第二接收设备202b的第二信号,防止 第二信号的电压过高而导致第二接收设备202b损坏。
可以理解的是,第一接收模块和第二接收模块的结构及功能相同。
需要说明的是,本发明实施例提供的高压脉冲轨道电路系统可以应用于电气化区段、非电气化区段、电码化区段(如ZPW-2000(UM)两线制电码化、ZPW-2000(UM)四线制电码化、ZPW-2000(UM)闭环电码化和国产移频电码化等)和非电码化区段。此外,发送设备102可以在室内集中布置,也可以在室外分散布置。
当本实施例提供的高压脉冲轨道电路系统应用于电气化区段时,第一变压器101、第二变压器201a和第三变压器202a均为扼流变压器;当本实施例提供的高压脉冲轨道电路系统应用于非电气化区段时,第一变压器101、第二变压器201a和第三变压器202a均为轨道变压器。
以上所述,仅是本申请的较佳实施例而已,并非对本申请作任何形式上的限制。虽然本申请已以较佳实施例揭露如上,然而并非用以限定本申请。任何熟悉本领域的技术人员,在不脱离本申请技术方案范围情况下,都可利用上述揭示的方法和技术内容对本申请技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本申请技术方案的内容,依据本申请的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本申请技术方案保护的范围内。

Claims (7)

  1. 一种高压脉冲轨道电路系统,其特征在于,包括:钢轨、发送模块、第一接收模块和第二接收模块;
    所述发送模块、所述第一接收模块和所述第二接收模块均与所述钢轨连接,所述第一接收模块和所述第二接收模块分别位于所述钢轨的两端,所述发送模块位于所述第一接收模块和所述第二接收模块的中间;
    所述发送模块用于发送高压脉冲信号至所述第一接收模块和所述第二接收模块。
  2. 根据权利要求1所述的高压脉冲轨道电路系统,其特征在于,
    |L1-L2|≤100m,L1为所述发送模块与所述第一接收模块之间的距离,L2为所述发送模块与所述第二接收模块之间的距离。
  3. 根据权利要求1所述的高压脉冲轨道电路系统,其特征在于,
    所述钢轨的长度小于或等于1200米。
  4. 根据权利要求1所述的高压脉冲轨道电路系统,其特征在于,所述发送模块,包括:第一变压器和发送设备;
    所述第一变压器的第一绕组经电缆或者第一电阻连接所述发送设备,所述第一变压器的第二绕组连接所述钢轨;
    所述第一变压器,用于根据所述发送设备发送的脉冲信号生成所述高压脉冲信号,并将所述高压脉冲信号发送至所述钢轨。
  5. 根据权利要求1所述的高压脉冲轨道电路系统,其特征在于,所述第一接收模块,包括:第二变压器和第一接收设备;
    所述第二变压器的第一绕组经电缆或者第二电阻连接所述第一接收设备,所述第二变压器的第二绕组连接所述钢轨;
    所述第二变压器,用于根据接收到的所述高压脉冲信号得到第一信号,并将所述第一信号发送给所述第一接收设备。
  6. 根据权利要求1所述的高压脉冲轨道电路系统,其特征在于,所述第二接收模块,包括:第三变压器和第二接收设备;
    所述第三变压器的第一绕组经电缆或者第三电阻连接所述第二接收设备,所述第三变压器的第二绕组连接所述钢轨;
    所述第三变压器,用于根据接收到的所述高压脉冲信号得到第二信号,并将所述第二信号发送给所述第二接收设备。
  7. 根据权利要求1所述的高压脉冲轨道电路系统,其特征在于,所述钢轨的两端均设置有绝缘节。
PCT/CN2017/086938 2016-12-22 2017-06-02 一种高压脉冲轨道电路系统 WO2018113194A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201621424595.4U CN206255024U (zh) 2016-12-22 2016-12-22 一种高压脉冲轨道电路系统
CN201621424595.4 2016-12-22

Publications (1)

Publication Number Publication Date
WO2018113194A1 true WO2018113194A1 (zh) 2018-06-28

Family

ID=59030378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/086938 WO2018113194A1 (zh) 2016-12-22 2017-06-02 一种高压脉冲轨道电路系统

Country Status (2)

Country Link
CN (1) CN206255024U (zh)
WO (1) WO2018113194A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115352497A (zh) * 2022-08-17 2022-11-18 交控科技股份有限公司 分路不良检测方法、装置、设备和介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109398415A (zh) * 2018-11-05 2019-03-01 北京全路通信信号研究设计院集团有限公司 一种不对称高压脉冲轨道电路用棒板放电防护器件
CN112550352B (zh) * 2020-08-19 2022-09-23 中铁第四勘察设计院集团有限公司 一种能自适应道砟电阻的轨道电路及其调整方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3974991A (en) * 1975-08-27 1976-08-17 Erico Rail Products Company Railroad motion detecting and signalling system with repeater receiver
US5769364A (en) * 1997-05-14 1998-06-23 Harmon Industries, Inc. Coded track circuit with diagnostic capability
CN2601909Y (zh) * 2002-05-24 2004-02-04 北京全路通信信号研究设计院 等间距补偿电容调谐式无绝缘轨道电路
CN101973287A (zh) * 2010-09-30 2011-02-16 北京全路通信信号研究设计院 一种无绝缘轨道电路
CN102107667A (zh) * 2010-12-15 2011-06-29 佟元江 解决轨道电路分路不良的方法和装置
CN102341290A (zh) * 2009-03-02 2012-02-01 西门子公司 用于探测轨道段的占用或空闲状态的装置以及用于运行这样的装置的方法
CN103217475A (zh) * 2013-03-18 2013-07-24 北京交通大学 一种无缝线路钢轨的检测装置
CN103552486A (zh) * 2013-11-13 2014-02-05 北京全路通信信号研究设计院有限公司 一种轨道电路

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3974991A (en) * 1975-08-27 1976-08-17 Erico Rail Products Company Railroad motion detecting and signalling system with repeater receiver
US5769364A (en) * 1997-05-14 1998-06-23 Harmon Industries, Inc. Coded track circuit with diagnostic capability
CN2601909Y (zh) * 2002-05-24 2004-02-04 北京全路通信信号研究设计院 等间距补偿电容调谐式无绝缘轨道电路
CN102341290A (zh) * 2009-03-02 2012-02-01 西门子公司 用于探测轨道段的占用或空闲状态的装置以及用于运行这样的装置的方法
CN101973287A (zh) * 2010-09-30 2011-02-16 北京全路通信信号研究设计院 一种无绝缘轨道电路
CN102107667A (zh) * 2010-12-15 2011-06-29 佟元江 解决轨道电路分路不良的方法和装置
CN103217475A (zh) * 2013-03-18 2013-07-24 北京交通大学 一种无缝线路钢轨的检测装置
CN103552486A (zh) * 2013-11-13 2014-02-05 北京全路通信信号研究设计院有限公司 一种轨道电路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115352497A (zh) * 2022-08-17 2022-11-18 交控科技股份有限公司 分路不良检测方法、装置、设备和介质
CN115352497B (zh) * 2022-08-17 2024-04-26 交控科技股份有限公司 分路不良检测方法、装置、设备和介质

Also Published As

Publication number Publication date
CN206255024U (zh) 2017-06-16

Similar Documents

Publication Publication Date Title
CN103552486B (zh) 一种轨道电路
WO2018113194A1 (zh) 一种高压脉冲轨道电路系统
US10093329B2 (en) Track circuit mechanical joint integrity checker
KR20130121461A (ko) 레일 손상 검지 장치 및 그 방법
CN108819986B (zh) 一种用于对轨道线路进行故障检测的系统及方法
CN103963801A (zh) 基于测距传感器解决站内轨道电路区段分路不良的系统
CN100441460C (zh) 检测铁轨断裂的方法和设备
CN110356432B (zh) 一种可用于轨道电路故障检查的方法及系统
KR20110061479A (ko) 전력선 통신 신호 결합기용 절연체 및 전력선 통신을 이용하는 전기 철도 관리 시스템
CN102404364A (zh) 机车信号无线传输系统及方法
CN102963395B (zh) 一种实时监控的铁路半自动闭塞信息系统及其工作方法
US10293840B2 (en) Wayside communication system using power grid lines
US10773738B2 (en) System and method for detecting the presence of a train on a railway track
CN108169632B (zh) 一种绝缘破损检测方法、装置及计算机程序
CN203294127U (zh) 一种监测铁路导轨折断的报警装置
CN214451011U (zh) 一种移频电码化计轴系统
CN210337928U (zh) 一种光栅计轴轨道电路系统
CN207559988U (zh) 铁路钢轨断轨监测系统的载波设备
CN205087737U (zh) 钢带检测装置
CN212556288U (zh) 铁路断轨监测装置
CN104176093A (zh) 一种用于计轴系统的继电器安全驱动及检测方法
RU2726458C1 (ru) Способ контроля состояний разветвленной рельсовой цепи
CN202608806U (zh) 无绝缘移频自动闭塞系统调谐区状态的检查装置
US3897921A (en) Interlocking track circuits
CN106828199B (zh) 一种铁路电气化区段电缆防干扰系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17883050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17883050

Country of ref document: EP

Kind code of ref document: A1