WO2018110665A1 - 3次元磁界検出素子および3次元磁界検出装置 - Google Patents

3次元磁界検出素子および3次元磁界検出装置 Download PDF

Info

Publication number
WO2018110665A1
WO2018110665A1 PCT/JP2017/044968 JP2017044968W WO2018110665A1 WO 2018110665 A1 WO2018110665 A1 WO 2018110665A1 JP 2017044968 W JP2017044968 W JP 2017044968W WO 2018110665 A1 WO2018110665 A1 WO 2018110665A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
field detection
axis
axis direction
dimensional
Prior art date
Application number
PCT/JP2017/044968
Other languages
English (en)
French (fr)
Inventor
本蔵 義信
Original Assignee
朝日インテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to MYPI2019003004A priority Critical patent/MY195772A/en
Priority to CA3045788A priority patent/CA3045788C/en
Priority to EP17881228.5A priority patent/EP3557271B1/en
Priority to KR1020197010278A priority patent/KR102312092B1/ko
Priority to BR112019011986-8A priority patent/BR112019011986B1/pt
Priority to RU2019116351A priority patent/RU2737782C1/ru
Application filed by 朝日インテック株式会社 filed Critical 朝日インテック株式会社
Priority to MX2019007059A priority patent/MX2019007059A/es
Priority to AU2017375137A priority patent/AU2017375137B2/en
Priority to CN201780063138.8A priority patent/CN109844553B/zh
Publication of WO2018110665A1 publication Critical patent/WO2018110665A1/ja
Priority to IL267259A priority patent/IL267259B2/en
Priority to US16/439,699 priority patent/US11009566B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/0206Three-component magnetometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0011Arrangements or instruments for measuring magnetic variables comprising means, e.g. flux concentrators, flux guides, for guiding or concentrating the magnetic flux, e.g. to the magnetic sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0127Magnetic means; Magnetic markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/063Magneto-impedance sensors; Nanocristallin sensors

Definitions

  • the present invention provides a three-axis magnetic sensor used in an azimuth sensor or the like by realizing a three-dimensional magnetic field detection element having a magnetic detection function in three directions in the X-axis, Y-axis, and Z-axis directions on one substrate.
  • the present invention relates to a three-dimensional magnetic field detection apparatus in which the height of a three-dimensional magnetic field detection element is reduced and the cross-sectional area size is reduced while maintaining basic performance such as high sensitivity, low noise, and a wide measurement range.
  • the triaxial magnetic sensor measures the geomagnetic vector by combining three magnetic sensor elements of the X axis, the Y axis, and the Z axis and an integrated circuit, and calculates the azimuth from the measured value. It is widely used as a three-dimensional azimuth meter in combination with an acceleration sensor and a vibration gyro sensor in electronic compass, smart phone, tablet, remote control of Internet TV, motion game, motion capture and the like. In recent years, there has been a strong demand for downsizing and thinning of these apparatuses with higher sensitivity, lower noise, and wider measurement range.
  • the orientation sensor height has been reduced from 40 mm to 40 mm or more, from 1.0 mm to 0.6 mm, and the size has been reduced from conventional 2.0 mm square to 1.5 mm square by 50% or more. Miniaturization is required. In addition, with respect to noise, a 10-fold increase in performance from the conventional 10 mG or less to 1 mG or less is required.
  • a Hall element In the azimuth sensor, a Hall element, MR element, MI (abbreviation of Magneto-Impedance) element, GSR (abbreviation of GHz-Spin-Rotation) element, or the like is used as a magnetic field detection element.
  • MI abbreviation of Magneto-Impedance
  • GSR abbreviation of GHz-Spin-Rotation
  • Patent Document 1 discloses an assembly-type three-axis magnetic sensor using an MI sensor. Since the Hall element has a large noise and it is difficult to improve the performance, it was decided to focus on the MI element and the GSR element hereinafter.
  • Patent Document 2 discloses an integrated three-dimensional magnetic detection element having an X-axis element function and a Z-axis element function arranged on a single substrate.
  • a pair of X1-axis elements, X2-axis elements, Y1-axis elements, and Y2-axis elements are arranged in a cross shape on the substrate surface in the X-axis direction and Y-axis direction, respectively, and a permalloy mandrel is arranged below the center point.
  • This three-dimensional magnetic detection element detects a three-dimensional magnetic field vector.
  • the magnetic field in the X-axis direction is detected by adding the outputs of the X1-axis element and the X2-axis element, and the magnetic field in the Y-axis direction is detected by the Y1-axis element and Y2. Detecting by adding the output of the axis element, and the magnetic field in the Z-axis direction causes a Z-axis direction magnetic field to generate a diverting component in the plane direction by the permalloy mandrel, and this is the difference between the output of the X1-axis element and the X2-axis element And the difference between the outputs of the Y1-axis element and the Y2-axis element.
  • the force that changes the Z-axis direction magnetic field in the plane direction by the permalloy mandrel is extremely weak. Therefore, a long and large-diameter permalloy is required, and the thickness of the three-dimensional magnetic detection element is 0.5 mm or more, which is not practical.
  • Patent Document 3 in which the size is further improved to the MI element type, two soft magnetic bodies are provided by providing a soft magnetic body at one upper portion and a soft magnetic body at the other lower portion at both ends of the MI element.
  • a three-dimensional magnetic field detection element capable of effectively detecting a magnetic field in the Z-axis direction by forming a crank-shaped magnetic circuit using the element and the element.
  • MI elements are arranged on the substrate plane in the X-axis direction centering on the origin of the substrate, two on the Y-axis intersecting the X-axis, and in the substrate below the origin and the four MI elements.
  • a magnetic circuit composed of a magnetic field detecting element and a soft magnetic material is formed by arranging a soft magnetic material on the upper end of the MI element opposite to the element origin. As a result, a three-dimensional magnetic field detection element having a width of 0.7 mm, a length of 0.7 mm, and a thickness of 0.3 mm is obtained.
  • the tip of a guide wire of a medical catheter, etc. further downsizing and thinning are required.
  • the X-axis magnetic field component and the Y-axis magnetic field component are obtained by adding the measured values from the left and right magnetic field detection elements, and the Z-axis magnetic field component is obtained by subtraction, the left and right magnetic field detection elements are the same in the same direction. It is necessary to have the same value that is positive and negative with respect to the reverse magnetic field, and structural symmetry is extremely important. The smaller the difference between the two, the greater the accuracy.
  • the present invention pays attention to a recently developed GSR sensor, It was made as a result of examining the size of the three-dimensional magnetic field detecting element while improving the magnetic field detecting power by examining the arrangement of the magnetic field detecting element on the substrate surface, the magnetic collecting structure of the Z-axis direction magnetic field and the arrangement of the soft magnetic material. Is.
  • the present inventor changed the four magnetic detection elements to three magnetic detection elements, and at the origin, which is the central point of measurement.
  • the first axis direction magnetic field is measured by the two elements 12 and 13, and in the second axis direction, one element 14 is placed at the origin position and the second axis direction is measured.
  • the magnetic field is measured, and the third axis direction is measured by combining two elements in the first axis direction and three soft magnetic bodies to form two crank-shaped magnetic circuits in point symmetry.
  • the X-axis direction magnetic field Hx was obtained from the average value of the measured values of the elements 12 and 13.
  • the magnetic field Hy in the Y-axis direction was obtained from the measurement of the element 14.
  • the magnetic field Hz in the Z-axis direction was obtained from the average value of the difference between the measured values of the element 12 and the element 13.
  • the elements 12 and 13 are small in length so that the total output sensitivity of the two elements is the same as that of the element 14 based on the sensitivity of the element 14.
  • An element was adopted to reduce the length in the longitudinal direction.
  • the magnetic resistance of the magnetic circuit is reduced and the size of the soft magnetic material is adjusted so that the detection sensitivity in the Z-axis direction matches the sensitivity of the element 14. At the same time, the size in the thickness direction could be reduced. Furthermore, the GSR element with excellent sensitivity was adopted, the length of the element was shortened, and the size of the entire element could be reduced.
  • the GSR element by using the GSR element, it is possible to further reduce the size and thickness of the three-dimensional magnetic field detection element that maintains basic performance such as high sensitivity, low noise, and a wide measurement range.
  • the number of magnetic field detecting elements is reduced and the cost is reduced.
  • the three-dimensional magnetic field detection device can be made small and thin.
  • FIG. 3 is a plan view of a three-dimensional magnetic field detection element according to Embodiment 1.
  • FIG. 3 is a cross-sectional view taken along the line A-A ′ of the plan view (FIG. 1) of the three-dimensional magnetic field detection element according to the first embodiment.
  • 1 is a conceptual plan view showing a basic structure of a GSR element according to Example 1.
  • FIG. 1 is a conceptual diagram illustrating a crank-shaped magnetic circuit according to Embodiment 1.
  • FIG. 1 is an electronic circuit diagram of a magnetic field detection element according to Example 1.
  • FIG. 3 is an electronic circuit diagram of a three-dimensional magnetic field detection element according to Example 1.
  • FIG. FIG. 6 is a cross-sectional view taken along line B-B ′ of the plan view (FIG. 1) of the three-dimensional magnetic field detection element according to the second embodiment.
  • the three-dimensional magnetic field detection element of the present invention comprises a magnetic field detection element for detecting a magnetic field in a direction parallel to the substrate surface and a soft magnetic material that collects and releases a magnetic field orthogonal to the substrate surface, and measures the magnetic field on the substrate surface.
  • a magnetic field detection element for detecting a magnetic field in a direction parallel to the substrate surface and a soft magnetic material that collects and releases a magnetic field orthogonal to the substrate surface, and measures the magnetic field on the substrate surface.
  • the magnetic field detection element has two magnetic field detection elements in the first axis direction and one magnetic field detection element in the second axis direction that are point-symmetrically arranged on the substrate, respectively, with respect to the origin.
  • the magnetic body is arranged at the upper part of the origin and at the lower part of the ends opposite to the origin of the two magnetic field detection elements in the first axis direction, and the two magnetic field detection elements in the first axis direction. And a magnetic circuit composed of three soft magnetic materials.
  • the three-dimensional magnetic field detection element includes three magnetic field detection elements that detect a magnetic field in a direction parallel to the substrate surface and three soft magnetic materials.
  • the magnetic field detection element includes an amorphous wire that is a magnetic sensing body, a detection coil that circulates around the amorphous wire, terminals at both ends of the amorphous wire and the detection coil, terminals at both ends, and electrode pads that join these terminals to an external integrated circuit, and It is comprised from the wiring of a terminal and an electrode.
  • the diameter of the amorphous wire is 15 ⁇ m or less, preferably 10 ⁇ m or less.
  • the outer periphery is preferably coated with an insulating material, such as glass. Insulation between the amorphous wire and the detection coil is easy, and the gap can be reduced to reduce the inner diameter of the coil.
  • the detection coil has an inner diameter of 30 ⁇ m or less, preferably 20 ⁇ m or less. Sensitivity is improved by reducing the inner diameter of the coil.
  • the coil pitch is 5 ⁇ m or less, preferably 3 ⁇ m or less. This can increase the number of coil turns per unit length, The sensitivity can be improved, and the magnetic field detection element can be shortened to make it smaller.
  • the three magnetic field detecting elements are arranged on the substrate surface as follows.
  • the origin is the center point of the measurement of the magnetic field parallel to the substrate surface.
  • the three axes (X axis, Y axis, and Z axis) in the third axis direction (Z axis direction) intersect.
  • the magnetic field detection element 12 and the magnetic field detection element 13 are arranged point-symmetrically around the origin with the length direction of the substrate as the X axis.
  • the magnetic field detection elements 14 are arranged point-symmetrically around the origin with the width direction as the Y-axis. Furthermore, as a result of having one magnetic field detection element in the Y-axis direction and being arranged point-symmetrically, the size in the width direction of the three-dimensional magnetic field detection element can be reduced to about 1/3.
  • the soft magnetic material forms two crank-like magnetic circuits with the elements 12 and 13 arranged on the substrate, collects the magnetic flux in the Z-axis direction, and flows it to the magnetic wire inside the element, and further on both sides By demagnetizing from the soft magnetic material, it is possible to detect the strength of the magnetic field in the Z-axis direction.
  • the material and form of the soft magnetic material are not limited.
  • a soft magnetic material having a high magnetic permeability is preferable because it has a large magnetic flux collecting effect.
  • the shape of the soft magnetic material is preferably a shape that can be effectively magnetized by a magnetic field in the Z-axis direction with a small demagnetizing factor.
  • the aspect ratio (H / D) required by the height H with respect to the diameter D of the soft magnetic material is preferably 1 or less.
  • the above magnetic circuit can be formed and a magnetic field in the Z-axis direction can be detected, one soft magnetic body above the origin is placed below the origin and below the end opposite to the origin. It is also possible to place the two soft magnetic bodies arranged on top.
  • the arrangement of the soft magnetic material is preferably arranged at a position where the magnetic circuit is easily formed effectively.
  • the magnetic circuit resistance is reduced by bringing the magnetic pole surface of the soft magnetic material and the end of the amorphous wire as close as possible.
  • the size of the soft magnetic body expressed by the cross-sectional area and the thickness has a relative relationship with the length and diameter of the magnetic field detection element, and it is preferable that the thickness of the soft magnetic body is increased as the magnetic field detection element is longer.
  • the arrangement of the X-axis element and the Y-axis element or the soft magnetic material is preferably such that both axes are perpendicular to each other. Processing can be performed by performing an appropriate correction calculation according to the angular deviation.
  • the three-dimensional magnetic field detection element of the present invention has a processed end surface in which two soft magnetic bodies arranged at the lower part of the end portion of the magnetic field detection element in the first axial direction are processed at right angles to the substrate surface. It is located on the surface.
  • the end not including the magnetic field detecting element is removed.
  • the soft magnetic material becomes the surface of the processed end face.
  • the length of the three-dimensional magnetic field detecting element can be shortened. It should be noted that removing about half of the magnetic material leads to a decrease in the magnetic flux collecting function, so that the cross-sectional area of the soft magnetic material is increased. In this case, there is little influence on shortening the length of the three-dimensional magnetic field detection element by using an elliptical shape in which the width direction is increased.
  • the three-dimensional magnetic field detection element of the present invention is characterized by comprising a length of 0.6 mm or less, a width of 0.3 mm or less, and a thickness of 0.15 mm or less.
  • the three-dimensional magnetic field detection apparatus of the present invention is characterized in that the magnetic field detection element of the present invention and an integrated circuit chip are joined.
  • the three-dimensional magnetic field detection device of the present invention detects a three-axis magnetic field by forming a magnetic circuit composed of an X-axis element, a Y-axis element, and an X-axis element and a soft magnetic material in which a magnetic field in the Z-axis direction is placed on a substrate.
  • an integrated circuit chip is further joined to reduce the overall size or thickness. That is, the three-dimensional magnetic field detection element of the present invention and the integrated circuit can be joined using wire bonding, but an extra area and height for wire bonding are required. Therefore, it is desirable to stack the three-dimensional magnetic field detection element and the integrated circuit and to bond them together by pad bonding in order to further reduce the overall size or thickness.
  • FIG. 1 is a plan view of a three-dimensional magnetic field detection element
  • FIG. 2 is a cross-sectional view taken along line AA ′ shown in FIG.
  • FIG. 3 is a plan view showing the basic structure of the GSR element.
  • the three-dimensional magnetic field detection element 1 includes three GSR elements 3 capable of detecting a minute magnetic field such as geomagnetism, and three soft magnetic bodies 21 and 22 having a magnetism collecting and demagnetizing function. That is, two GSR elements are an X1 element 12 and an X2 element 13 on the X axis on the substrate surface, and one is a Y element 14 on the Y axis.
  • the X, Y, and Z axes are orthogonal to each other at the origin, the X1 element 12 and the X2 element 13 are point-symmetric about the origin, and one Y element 14 is point-symmetric about the origin. It is in.
  • One soft magnetic body 22 is formed in a button shape at the upper part of the origin (corresponding to the upper part of the Y element 14), and the two soft magnetic bodies 22 are the element X1 and the element X2 that are both outer edges in the longitudinal direction of the substrate 11. Are formed in a button shape in the substrate 11 at each end.
  • the basic structure of the GSR element 3 (hereinafter referred to as element structure) will be described with reference to FIG.
  • the three elements 3 have a diameter of 10 ⁇ m
  • the X-axis elements 12 and 13 use 120 ⁇ m-long amorphous wires (hereinafter referred to as wires)
  • the Y-axis elements 14 have a 200 ⁇ m-length wire. Is used.
  • a wire 31 is disposed in the center
  • a detection coil (hereinafter referred to as a coil) 32 having an inner diameter of 20 ⁇ m, a coil pitch of 3 ⁇ m, and a number of turns of 30 is disposed around the wire 31.
  • a terminal 33 and a coil terminal 35 are attached.
  • a wire electrode pad 34 from the wire terminal 33 and a coil electrode pad 36 from the detection coil terminal 35 are used to correspond to an integrated circuit terminal (not shown).
  • Each terminal of each element 3 and each terminal of the integrated circuit are electrically joined by an electrode pad.
  • the soft magnetic bodies 21 and 22 will be described.
  • the soft magnetic body 21 is formed in the shape of a button having a diameter of 30 ⁇ m and a thickness of 30 ⁇ m with the Z axis as an axis, with an insulating film sandwiched between the element 14 and the element 14 above the origin of the substrate 11.
  • Its composition is a permalloy alloy formed by a plating method of 45 at% Ni—Fe.
  • the soft magnetic material 22 is formed by providing a hole of 40 ⁇ m depth with an elliptical shape having a major axis of 80 ⁇ m and a minor axis of 40 ⁇ m in the substrate 11 and embedding a permalloy alloy of 45 at% -Fe composition by plating.
  • the soft magnetic materials 21 and 22 may be made of a known soft magnetic material such as pure Ni, pure iron, other composition permalloy alloy, sendust, permendur, and the formation method may be sputtering. it can.
  • crank-shaped magnetic circuits are formed in the X-axis direction of the substrate 1.
  • One is composed of a left X1 element 12 disposed on the substrate 1, a left soft magnetic body 22 disposed at the lower portion of the end portion thereof, and a soft magnetic body 21 disposed above the origin.
  • the other is composed of a right X2 element 13, a right soft magnetic body 22 disposed at the lower portion of the end portion thereof, and a soft magnetic body 21 at the upper portion of the origin.
  • crank-shaped magnetic circuit The function of the crank-shaped magnetic circuit will be described with reference to FIG. 2 (cross-sectional view taken along the line AA ′ in FIG. 1).
  • the magnetic field Hz in the Z-axis direction magnetizes the soft magnetic body 22 at both ends of the X1 element 12 and the X2 element 13.
  • the magnetic pole on the lower surface of the soft magnetic body 22 is an S pole
  • the magnetic pole on the upper surface of the soft magnetic body 21 above the origin is an N pole
  • a crank-shaped magnetic circuit is interposed via the wire 31 of the element in between. 4 is formed.
  • a strong magnetic field proportional to the magnetic field Hz in the Z-axis direction flows through the wire 31. Since a large output can be obtained effectively by forming this magnetic circuit, the thickness of the soft magnetic body 21 above the origin can be reduced to 0.03 mm. As a result, the height 16 of the three-dimensional magnetic field detection element 1 can be set to 0.13 mm.
  • the strength of the magnetic field in the X-axis direction can be obtained from the sum of the outputs of both the X1 element 12 and the X2 element 13. This is because the magnetic circuit is formed symmetrically with respect to the magnetic field component in the X-axis direction, the size of which is proportional to the strength in the X-axis direction, and the sign thereof is the same.
  • the strength of the magnetic field in the Y-axis direction is one output of the Y element 14 and thus becomes the strength in the Y-axis direction as it is.
  • the strength of the magnetic field in the Z-axis direction can be obtained from the difference between the outputs of both the X1 element 12 and the X2 element 13. This is because the X1 element 12 and the X2 element 13 form a crank-shaped magnetic circuit 6 antisymmetrically, and the outputs of both elements are proportional to the strength of the magnetic field in the Z-axis direction and opposite in sign. It depends.
  • the electronic circuit of the three-dimensional magnetic field detection element used in this embodiment will be described with reference to FIGS.
  • the electronic circuit 5 ⁇ / b> A includes a pulse transmission circuit (pulse transmitter) 51 and a signal processing circuit 52.
  • the signal processing circuit 52 includes a buffer circuit 53, a detection timing adjustment circuit 54, an electronic switch 55, a sample hold circuit 56, and an amplifier 57.
  • a high-frequency pulse current corresponding to 2 GHz generated by the pulse oscillation circuit 51 is supplied to the wire 31 of the GSR element 2.
  • the pulse frequency here is defined as the pulse frequency for convenience, with the period being four times the “falling” time ⁇ t of the pulse current.
  • the output voltage of the coil 32 is input to the buffer circuit 53.
  • the output voltage of the buffer circuit 53 is used as the capacitor voltage of the sample and hold circuit 56 by switching the electronic switch 55 in a short time (on-off) at a predetermined timing from the fall of the pulse current by the detection timing adjustment circuit 54.
  • This sampling voltage is amplified by the amplifier 57 and output.
  • the electronic circuit 5B includes a pulse oscillation circuit (pulse transmitter) 51, a signal processing circuit 51, and a digital circuit 58.
  • Pulse transmitter There is one pulse oscillation circuit (pulse transmitter) 51, and the signal processing circuit 52 has three in order to simultaneously measure the output of each element.
  • the size of the rectangular three-dimensional magnetic field detecting element according to the present embodiment is 540 ⁇ m in length, 250 ⁇ m in width, and 120 ⁇ m in thickness including the thickness of the soft magnetic material above the origin. This is a small size of about 1 ⁇ 4 of a square three-dimensional magnetic field detection element comprising four magnetic field detection elements and three soft magnetic bodies.
  • FIG. 7 shows a cross-sectional view of the three-dimensional magnetic field detection element according to the second embodiment.
  • both ends of the three-dimensional magnetic field detection element 1 (FIG. 1) in the first embodiment are cut along the line BB ′, and the state of the cut surface is shown in FIG. Is shown as a cross-sectional view along the line AA ′ shown in FIG.
  • the soft magnetic bodies at both ends have an inverted conical cylindrical shape and are cut.
  • the size of the three-dimensional magnetic field detection element according to the present embodiment is 440 ⁇ m in length because both ends are 50 ⁇ m shorter in the length direction than in the first embodiment.
  • the width 250 ⁇ m and the thickness 120 ⁇ m are the same. Therefore, the size can be further reduced by about 20%.
  • the three-dimensional magnetic field detection element of the present invention is necessary for a three-dimensional azimuth meter that requires a three-dimensional geomagnetic sensor such as an electronic compass, a motion sensor, and a smartphone. It is suitable for a device that needs to be reduced in size and thickness in a direction perpendicular to the substrate to be placed (so-called Z-axis direction). Further, in the future, an ultra-compact three-dimensional magnetic field detection device is expected to be attached to the distal end of a guide wire of a medical catheter and the distal end portion determines a three-dimensional position in a magnetic field space.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nanotechnology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

【課題】 方位センサのウェラブルコンピュータ、医療用カテーテルのワイヤガイドの先端などへの用途拡大のため、3次元磁界検出素子の磁界検出力の改善と一層の小型化・薄型化が求められている。 【解決手段】 3つのGSR素子からなる磁界検出素子と3つの軟磁性体からなり、測定の中心点である原点でお互いに直交する3軸方向において、第1軸方向は原点を挟んで2つの素子により第1軸方向磁界を測定し、第2軸方向は1つの素子を原点位置に配置して第2軸方向の磁界を測定し、第3軸方向は第1軸方向の2つの素子と3つの軟磁性体を組み合せて点対称に2つのクランク状の磁気回路を形成して第3軸方向の磁界を測定する。

Description

3次元磁界検出素子および3次元磁界検出装置
本発明は、方位センサなどに用いられる3軸磁気センサにおいて、X軸Y軸Z軸方向の3方向の磁気検出機能を有する3次元磁界検出素子を一つの基板上に実現することにより、磁気センサの高い感度、低いノイズ、広い測定レンジなどの基本性能を維持した状態で、3次元磁界検出素子の高さを薄くし、断面積サイズを小さくした3次元磁界検出装置に関するものである。
 3軸磁気センサは、X軸、Y軸およびZ軸の3つの磁気センサ素子と集積回路を組み合わせて地磁気ベクトルを測定し、その値から方位を計算するものである。電子コンパス、スマートフォン、タブレット、インターネットTVのリモコン、モーションゲーム、モーションキャプチャなどで、加速度センサ、振動式ジャイロセンサと組合せて3次元方位計として広く使用されている。
近年、これらの装置の一層の高感度化、低ノイズ化、測定レンジのワイドレンジ化とともに小型化、薄型化が強く要求されている。特にスマートホンの薄型化に伴い、方位センサの高さを従来の1.0mmから0.6mmと40%以上の薄型化、サイズを従来の2.0mm角から1.5mm角と50%以上の小型化が求められている。またノイズに関しても、従来の10mG以下から1mG以下と10倍の性能アップが求められている。
方位センサには、磁界検出用素子としてホール素子、MR素子、MI(Magneto-Impedanceの略)素子およびGSR(GHz-Spin-Rotationの略)素子等が用いられる。
通常、X軸、Y軸およびZ軸の磁界ベクトル成分Hx、Hy、Hzの強さを測定するために、X軸素子、Y軸素子およびZ軸素子の3つの素子を用いて行なう。ホール素子の場合は、素子面と垂直方向に磁界を検出するので、Z軸素子を面上に配置し、X軸素子、Y軸素子をセンサ基板に立てて組みつける必要がある。一方、MR素子やMI素子などは素子面と平行な磁界を検知するので、X軸素子とY軸素子は面上に配置してZ軸素子をセンサ基板(Z軸方向)に立て、組み付ける必要がある。3つの素子を組み立てて使う限り、センサの高さが大きくなるという問題があった。例えば、特許文献1にはMIセンサを使った組み立て式の3軸磁気センサが開示されている。
なお、ホール素子についてはノイズが大きく、性能アップを図ることが困難であることから、以下MI素子、GSR素子について絞ることにした。
 この問題に対して、特許文献2には、一つの基板上にX軸素子とY軸素子を配置してZ軸素子機能を備えた一体型の3次元磁気検出素子が開示されている。
基板面上にX軸方向とY軸方向にそれぞれ一対のX1軸素子とX2軸素子およびY1軸素子とY2軸素子をクロス状に配置しその中心点下部にパーマロイ心棒を配置したものである。
この3次元磁気検出素子は、3次元の磁界ベクトルを、まずX軸方向の磁界はX1軸素子とX2軸素子の出力を加算することによって検知し、Y軸方向の磁界はY1軸素子とY2軸素子の出力を加算することによって検知し、さらにZ軸方向の磁界はZ軸方向磁界をパーマロイ心棒によって平面方向に変向成分を発生させ、それをX1軸素子とX2軸素子の出力の差分とY1軸素子とY2軸素子の出力の差分とを加算することで検知するものである。
 しかし、パーマロイ心棒によるZ軸方向磁界を平面方向に変向する力はきわめて弱い。そのため長くて直径の大きなパーマロイを必要とし、3次元磁気検出素子の厚みは0.5mm以上必要で実用的でなかった。
 そこで、MI素子タイプにサイズを一層改善した特許文献3には、MI素子の両端部に、一方の上部に軟磁性体を設けるとともに他方の下部に軟磁性体を設けて、二つの軟磁性体と素子とを使ってクランク状の磁気回路を形成してZ軸方向の磁界を効果的に検出できる3次元磁界検出素子が開示されている。
 基板平面上に4つのMI素子を、基板の原点を中心にしてX軸方向に2つ配置し、X軸と交差するY軸に2つ配置し、さらに原点の下部の基板内と4つのMI素子の原点と反対側のMI素子の端部の上部に軟磁性体を配置することにより、磁界検出素子と軟磁性体とからなる磁気回路を形成するものである。これにより幅0.7mm、長さ0.7mm、厚さ0.3mmの3次元磁界検出素子が得られている。
 しかし、近年の方位センサをウェラブルコンピュータ、医療用カテーテルのガイドワイヤの先端などに用いられるためには一層の小型化、薄型化が求められている。
 また、左右の磁界検出素子からの測定値を加算してX軸磁界成分とY軸磁界成分を求め、減算してZ軸磁界成分を求めるので、左右の磁界検出素子は同一方向に対して同じ値になり、逆方向磁界に対して正負反対の同一値となる必要があり、構造上の対称性が極めて重要である。高精度になるほど両者のわずかな差異も大きな問題となる。
WO2005/008268 WO2010/110456 特開2014-153309
 本発明は、以上のような技術的背景に鑑みて、最近開発されたGSRセンサに着目し、
基板面上の磁界検出素子の配置、Z軸方向磁界の集磁界構造と軟磁性体の配置を検討して磁界検出力を改善する同時に3次元磁界検出素子の大きさを検討した結果、なされたものである。
 本発明者は、特許文献3に記載された3次元磁界検出素子のさらなる小型化を検討した結果、4つの磁気検出素子を3つの磁気検出素子に変更し、測定の中心点である原点でお互いに直交する3軸方向において第1軸方向は2つの素子12と素子13により第1軸方向磁界を測定し、第2軸方向は1つの素子14を原点位置に配置して第2軸方向の磁界を測定し、第3軸方向は第1軸方向の2つの素子と3つの軟磁性体と組合せて点対称に2つのクランク状の磁気回路を形成して第3軸方向の磁界を測定する構造を考案した。
 X軸方向磁界Hxは、素子12と素子13の測定値の平均値から求めた。Y軸方向の磁界Hyは素子14の測定から求めた。Z軸方向の磁界Hzは、素子12と素子13の測定値の差分の平均値から求めた。小型化を実現するために、素子14の感度を基準に、素子12と素子13は2つの素子の出力合計の感度が素子14と同じになるように、素子12と素子13は長さの小さな素子を採用し、長手方向の長さを小さくした。また素子12と素子13の長さを短くすることで、磁気回路の磁気抵抗を小さくしかつ軟磁性体の大きさを調整することでZ軸方向の検出感度も素子14の感度と一致させると同時に厚み方向の大きさも小さくすることができた。
さらに感度の優れたGSR素子を採用し素子の長さを短くして、素子全体の大きさを小さくすることができた。
 本発明により、GSR素子を用いることにより高い感度、低いノイズ、広い測定レンジなどの基本性能を維持する3次元磁界検出素子のサイズの一層の小型化、薄型化を図ることができる。また、磁界検出素子の数の減少により安価となる。さらに、3次元磁界検出装置を小さく、薄くすることができる。
実施例1に係る3次元磁界検出素子の平面図である。 実施例1に係る3次元磁界検出素子の平面図(図1)のA-A’線に沿う断面図である。 実施例1に係るGSR素子の基本構造を示す平面の概念図である。 実施例1に係るクランク状の磁気回路を示す概念図である。 実施例1に係る磁界検出素子の電子回路図である。 実施例1に係る3次元磁界検出素子の電子回路図である。 実施例2に係る3次元磁界検出素子の平面図(図1)のB-B’線に沿う断面図である。
本発明の3次元磁界検出素子は、基板面と平行方向の磁界を検出する磁界検出素子と基板面と直交する磁界を集磁・放磁する軟磁性体からなり、基板面上における磁界の測定の中心点を原点として、その原点において、基板面上の第1軸方向、第1軸方向と直交する第2軸方向および基板面と直交する第3軸方向からなる3軸が交差してなり、磁界検出素子は、原点を中心にして第1軸方向には2つの磁界検出素子と第2軸方向には1つの磁界検出素子を前記基板上にてそれぞれ点対称に配置し、かつ、軟磁性体は、原点の上部よび前記第1軸方向の2つの前記磁界検出素子の前記原点に対して反対側の端部の下部に配置してなり、第1軸方向おいて2つの磁界検出素子と3つの軟磁性体とからなる磁気回路を形成することを特徴とする。
3次元磁界検出素子は、基板面と平行方向の磁界を検出する3つの磁界検出素子と3つの軟磁性体からなる。
磁界検出素子は、感磁体であるアモルファスワイヤ、アモルファスワイヤに周回する検出コイル、アモルファスワイヤおよび検出コイルのそれぞれの両端の端子、両端の端子およびそれらの端子と外部の集積回路と接合する電極パッドおよび端子と電極との配線から構成されている。
アモルファスワイヤの直径は15μm以下、好ましくは10μm以下である。その外周は絶縁性材料で被覆、例えばガラス被覆されていることが好ましい。アモルファスワイヤと検出コイルとの間の絶縁が容易であり、また間隙を小さくしてコイル内径の小径化を図ることができる。
検出コイルは、コイル内径は30μm以下で好ましくは20μm以下である。コイル内径を小さくすることにより感度の向上になる。コイルピッチは5μm以下で好ましくは3μm以下である。これにより単位長さ当たりのコイル巻数の増加を図ることができ、
感度の向上、ひいては磁界検出素子を短くして小型にすることができる。
 基板面上における3つの磁界検出素子の配置は次のように行う。
 基板面上において、基板面と平行な磁界の測定の中心点を原点とする。その原点を通過する基板面上の第1軸方向(X軸方向)、第1軸方向(X軸方向)と直交する第2軸方向(Y軸方向)および基板面に対して垂直方向に直交する第3軸方向(Z軸方向)の3軸(X軸、Y軸およびZ軸)が交差している。
 基板の長さ方向をX軸として、原点を中心にして磁界検出素子12および磁界検出素子13を点対称に配置する。幅方向をY軸として、原点を中心にして磁界検出素子14を点対称に配置する。
 さらに、Y軸方向の磁界検出素子を1つとし、点対称に配置した結果、3次元磁界検出素子の幅方向のサイズは1/3程度に小さくすることができる。
軟磁性体は、基板上に配置された素子12および素子13と2つのクランク状の磁気回路を形成して、Z軸方向の磁束を集磁し、それを素子内部の磁性ワイヤに流しさらに両側の軟磁性体から放磁することで、Z軸方向の磁界の強さを検出することを可能とするものである。ただし、このような軟磁性体による磁気回路形成が可能である限り、軟磁性体の材質、形態は問わない。軟磁性体は、高透磁率であるほど、磁場の集磁効果が大きくて好ましい。軟磁性体の形状は、反磁界係数を小さくしてZ軸方向の磁界によって効果的に磁化し得る形状であることが好ましい。
また製造容易性を考慮すると軟磁性体の直径D(楕円形状の場合には直径相当径とする。)に対して高さHにより求められるアスペクト比(H/D)は1以下が好ましい。
なお、上述の磁気回路を形成してZ軸方向の磁界を検出することができる限り、原点の上部の1つ軟磁性体を原点の下部に配置し、原点と反対側の端部の下部に配置している2つの軟磁性体を上部にすることも可能である。
 軟磁性体の配置は、磁気回路を効果的に形成されやすい位置に配置されると好ましい。
 例えば、軟磁性体の磁極面とアモルファスワイヤ端部とをできるだけ近づけて磁気回路抵抗を小さくするようにする。断面積と厚みで表現される軟磁性体の大きさは、磁界検出素子の長さや直径に相対的関係があり、磁界検出素子が長いほど軟磁性体の厚みを厚くすることが好ましい。
 本発明の趣旨に沿う限り、X軸素子とY軸素子または軟磁性体の配置は、両軸が直角であることが好ましいが、直角からある角度ずれている場合は磁界検出素子の出力にその角度ずれに応じた適切な補正演算を行うことによって処理することができる。
また、本発明の3次元磁界検出素子は、第1軸方向の磁界検出素子の端部の下部に配置されている2つの軟磁性体が基板面に対して直角に加工されている加工端面の表面に位置することを特徴とする。
長さ方向にあるX軸方向の磁界検出素子の端部にある軟磁性体を含む基板を、基板面に対して下方に加工することによって、磁界検出素子を含まない端部が除去されるので
軟磁性体が加工端面の表面になる。これにより3次元磁界検出素子の長さを短くすることができる。なお、磁性体の半分程度が除去されると集磁機能の低下につながるので軟磁性体の断面積を大きくすることである。この場合には幅方向を大きくする楕円形状にすることにより3次元磁界検出素子の長さを短くすることへの影響は少ない。
また、本発明の3次元磁界検出素子は、長さ0.6mm以下、幅0.3mm以下および厚み0.15mm以下からなることを特徴とする。
これにより、スマートフォンやウェラブルコンピュータの期待に応えるのみでなく、例えば医療用カテーテルのガイドケーブルの先端に内蔵することも可能となる。
さらに、本発明の3次元磁界検出装置は、本発明の磁界検出素子と集積回路チップとを接合していること特徴とする。
本発明の3次元磁界検出装置は、Z軸方向の磁場を基板上に設置したX軸素子とY軸素子およびX軸素子と軟磁性体による磁気回路を形成することによって3軸の磁界を検出する磁界検出素子の小型化・薄型化を図ることに加えてさらに集積回路チップを接合して総合的な小型化または薄型化を図るものである。
すなわち、本発明の3次元磁界検出素子と集積回路との接合は、ワイヤボンディングを使って行うこともできるが、ワイヤボンディングのための余分な面積や高さが必要となる。そこで3次元磁界検出素子と集積回路とを積層してパッド接合することによって両者を電気的に接合することが、全体的な小型化または薄型化をより進めるために望ましい。
 図面を参照しつつ以下に挙げる実施例を説明する。
[実施例1]
 実施例1に係る3次元磁界検出素子1を図1に示す。図1は3次元磁界検出素子の平面図であり、図2は図1中に示すA-A’線における断面図である。図3はGSR素子の基本構造を示す平面図である。
 3次元磁界検出素子1は、地磁気などの微小磁界を検出することができる3つのGSR素子3と集磁・放磁機能を有する3つの軟磁性体21、22からなる。
 すなわち、GSR素子の2つは基板面上のX軸におけるX1素子12とX2素子13であり、1つはY軸におけるY素子14である。X軸、Y軸およびZ軸は原点でお互いに直交しており、X1素子12とX2素子13は原点を中心にして点対称にあり、Y素子14は1つで原点を中心にして点対称にある。
 1つの軟磁性体22は原点の上部(Y素子14の上部に相当する。)にボタン状に形成され、2つの軟磁性体22は基板11の長手方向の両外縁である素子X1および素子X2の各端部の基板11の中にボタン状に形成されている。
 GSR素子3の基本構造(以下、素子の構造という。)を、図3により説明する。
 3つの素子3の構造は直径10μmにて、X軸用の素子12および素子13は長さ120μmのアモルファスワイヤ(以下、ワイヤという。)を用い、Y軸用の素子14は長さ200μmのワイヤを用いる。ワイヤ31を中心部に配置し、その周囲を内径20μm、コイルピッチ3μm、巻数30回の検出コイル(以下、コイルという。)32を配置し、さらにワイヤ31と検出コイル32の両端にはそれぞれワイヤ用端子33、コイル用端子35が取り付けられている。ワイヤ用端子33からのワイヤ用電極パッド34、検出コイル用端子35からのコイル用電極パッド36をそれぞれ使って集積回路端子(図示せず)に対応している。各素子3の上記各端子と集積回路の各端子とは、電極パッドで電気的に接合される。
 軟磁性体21、22について説明する。
 軟磁性体21は、基板11の原点の上部に素子14とは絶縁被膜を挟んで、Z軸線を軸として直径30μm、厚み30μmのボタン状に形成されている。その組成は45at%Ni-Feのメッキ法で形成したパーマロイ合金である。
 軟磁性体22は、基板11に長径80μm、短径40μmの楕円形状にて深さ40μmの穴を設け、そこにメッキ法で45at%-Fe組成のパーマロイ合金を埋め込んだもので、素子12および素子13とは絶縁されている。
 なお、軟磁性体21、22には、純Ni、純鉄、他組成のパーマロイ合金、センダスト、パーメンジュール等の公知軟磁性材料を用いることができ、また形成方法もスパッタリング等を用いることができる。
 本実施例において、基板1のX軸方向に2つのクランク状の磁気回路が形成されている。1つは基板1上に配置された左側のX1素子12とその端部の下部に配置されている左側の軟磁性体22および原点の上部の軟磁性体21から構成されている。他の一つは右側のX2素子13とその端部の下部に配置されている右側の軟磁性体22および原点の上部の軟磁性体21から構成されている。
 これらの2つのクランク状の磁気回路は原点を対称にして形成されることにより、Z軸方向の磁界の強さを効果的に検出することができる。
 クランク状の磁気回路の機能について、図2(図1のA-A’線の断面図)により説明する。
 Z軸方向の磁界HzはX1素子12およびX2素子13の両端にある軟磁性体22を磁化する。軟磁性体22の下面の磁極をS極とすると、原点の上部にある軟磁性体21の上面の磁極はN極となっており、その間にある素子のワイヤ31を介してクランク状の磁気回路4を形成する。この時、ワイヤ31にはZ軸方向の磁界Hzに比例した強い磁界が流れることになる。この磁気回路の形成によって効果的に大きな出力を得ることができるので、原点の上部にある軟磁性体21の厚みを0.03mmと薄くすることができる。その結果、3次元磁界検出素子1の高さ16を0.13mmとすることができる。
 3つのGSR素子の出力は個別に測定され、X1素子12およびX2素子13の磁界の強さをHx1、Hx2とし、Y素子14の磁界の強さをHy1としたとき式(1)、式(2)および式(3)によって演算処理され、X軸、Y軸およびZ軸の磁界の強さHx、HyおよびHzが算出される。なお、式(3)のKは係数である。
 Hx=(Hx1+Hx2)     (1)
 Hy=Hy1           (2)
 Hz=K(Hx1-Hx2)    (3)
 X軸方向の磁界の強さは、X1素子12とX2素子13の両者の出力の加算値から求めることができる。これは、X軸方向の磁界成分に対して対称的に磁気回路を形成しており、その大きさはX軸方向の強さに比例した値で、その符号は同符号であることによる。
 Y軸方向の磁界の強さは、Y素子14の1つの出力であるのでそのままY軸方向の強さとなる。
 Z軸方向の磁界の強さは、X1素子12とX2素子13の両者の出力の差分から求めることができる。これは、X1素子12とX2素子13は反対称的にクランク状の磁気回路6を形成しており、両者の素子の出力は、Z軸方向の磁界の強さに比例し符号は反対であることによる。
 本実施例で用いる3次元磁界検出素子の電子回路を図5および図6により説明する。
 まず、GSRセンサの電子回5Aの基本動作を図5により説明する。
電子回路5Aは、パルス発信回路(パルス発信器)51および信号処理回路52を有する。信号処理回路52は、バッファ回路53、検波タイミング調整回路54、電子スイッチ55、サンプルホールド回路56および増幅器57からなる。パルス発振回路51により発生した2GHz相当の高周波のパルス電流をGSR素子2のワイヤ31へ供給する。そうすると、パルス電流によりワイヤ31の表面に生じた磁場と外部磁場とが作用して、その外部磁場に対応した電圧がコイル32に発生する。なお、ここでいうパルス周波数は、パルス電流の「立ち下がり」時間Δtの4倍をその周期としてその逆数をパルス周波数と便宜上定義した。
 コイル32の出力電圧はバッファ回路53に入力される。バッファ回路53の出力電圧は、検波タイミング調整回路54により、パルス電流の立ち下がりから所定のタイミングで、電子スイッチ55を短時間にスイッチング(オン-オフ)することでサンプルホールド回路56のコンデンサ電圧としてホールドされ、このサンプリング電圧は増幅器57により増幅されて出力される。
 次に、3つのGSR素子3を有する本実施例の電子回路5Bの機能を図6により説明する。
 本電子回路5Bは、パルス発振回路(パルス発信器)51、信号処理回路51およびデジタル回路58からなる。パルス発振回路(パルス発信器)51は1つで、信号処理回路52は各素子の出力を同時に測定しるために3つを備えている。3つのGSR素子(X1、X2およびY1)からの出力は、デジタル回路58に入り、切替スイッチ581を使って順番にADコンバータ582でデジタルデータに変換された後、演算回路583に転送され、適当な演算処理がなされる。そこで3次元ベクトルの強さに換算される。その後、スマートフォンなどのシステムを制御している中央演算装置にデータ通信回路584を介して転送される。
 本実施例による矩形状の3次元磁界検出素子の大きさは、長さ540μm、幅250μm、厚みは原点の上部の軟磁性体の厚みを含んで120μmである。これは、正方形状で4つの磁界検出素子と3つの軟磁性体からなる3次元磁界検出素子に対して1/4程度の小型である。
[実施例2]
実施例2に係る3次元磁界検出素子の断面図を図7に示す。
本実施例の3次元磁界検出素子は、実施例1における3次元磁界検出素子1(図1)の両端部をB-B’線に沿って切断加工し、その切断面の状態を図1中に示すA-A’線における断面図として示す。なお、両端部の軟磁性体は逆円錐筒状からなり、切断加工したものである。
X1素子12の端部の軟磁性体32の中央部のB-B’線およびX2素子13の端部の軟磁性体22の中央部のB-B’線に沿って加工されることによって軟磁性体22の端面が3次元磁界検出素子の左右に表れている。
この加工によって、3次元磁界検出素子の長さを短くすることができる。なお、軟磁性体22を切断加工により基板11の一部とともに取り除いているが、十分に残存する軟磁性体によるクランク状の磁気回路は保存されているので磁界検出力には何らの影響を与えるものではない。
本実施例による3次元磁界検出素子の大きさは、実施例1に対して長さ方向で両端がそれぞれ50μm短くなることから、長さ440μmとなる。なお、幅250μmと厚み120μmは同じである。よって、さらに約20%の小型化が可能となる。
 本発明の3次元磁界検出素子は、電子コンパス、モーションセンサ、スマートフォン等の3次元の地磁気そくていを必要とする3次元方位計に必要なもので、特に本発明の3次元磁界検出装置は載置する基板に垂直な方向(いわゆるZ軸方向)に小型化、薄型化が必要なものに好適である。
 さらに将来的には超小型の3次元磁界検出装置は、医療用カテーテルのガイドワイヤの先端に取り付け、その先端部分が磁界空間における3次元的な位置を確定するセンサとしての期待がなされている。
1:3次元磁界検出素子
11:基板
12:X軸におけるX1素子、13:X軸におけるX2素子、14:Y軸におけるY素子
21:原点の上部の軟磁性体
22:X1素子およびX2素子の原点とは反対側の端部の下部の軟磁性体
16:3次元磁界検出素子の厚み
3:GSR素子
31:アモルファスワイヤ、32:検出コイル、33:ワイヤ用端子、34:電極パッド、35:コイル用端子、36:電極パッド
4:クランク状の磁気回路
5A:GSRセンサの電子回路
51:パルス発振回路(パルス発信器)、52:信号処理回路、53:バッファ回路、54:検波タイミング調整回路、55:電子スイッチ、56:サンプルホールド回路、57:増幅器
5B:三次元磁界検出装置の電子回路
58:デジタル回路、581:切替スイッチ、582:ADコンバータ、583:演算回路、584:データ通信回路

Claims (5)

  1.  基板面と平行方向の磁界を検出する磁界検出素子と基板面と直交する磁界を集磁・放磁する軟磁性体からなる3次元磁界検出素子において、
     前記基板面上における前記磁界の測定の中心点を原点として、
     前記原点において、前記基板面上の第1軸方向、第1軸方向と直交する第2軸方向および前記基板面に垂直に直交する第3軸方向からなる3軸が交差してなり、
     前記磁界検出素子は、前記原点を中心にして前記第1軸方向には2つの前記磁界検出素子と前記第2軸方向には1つの前記磁界検出素子を前記基板上にそれぞれ点対称に配置し、
     かつ、
     前記軟磁性体は、前記原点の上部および前記第1軸方向の2つの前記磁界検出素子の前記原点に対して反対側の端部の下部に配置してなり、
     前記第1軸方向において2つの前記磁界検出素子と3つの前記軟磁性体とからなる磁気回路を形成することを特徴とする3次元磁界検出素子。
  2.  請求項1に記載されている3次元磁界検出素子において、
     前記磁界検出素子の端部の下部に配置されている2つの軟磁性体は、前記基板面に対して垂直方向に加工されている加工端面の表面に位置することを特徴とする3次元磁界検出素子。
  3.  請求項1または請求項2に記載されている3次元磁界検出素子において、
     前記3次元磁界検出素子は、長さ0.6mm以下、幅0.3mm以下および厚み0.15mm以下からなることを特徴とする3次元磁界検出素子。
  4. 請求項1から請求項3のいずれか1項に記載されている3次元磁界検出素子と集積回路チップとを接合していることを特徴とする3次元磁界検出装置。
  5. 請求項1から請求項3のいずれか1項に記載されている3次元磁界検出素子と集積回路チップとを積層してパッド接合することによって両者を電気的に接合していることを特徴とする3次元磁界検出装置。
     
PCT/JP2017/044968 2016-12-15 2017-12-14 3次元磁界検出素子および3次元磁界検出装置 WO2018110665A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
CA3045788A CA3045788C (en) 2016-12-15 2017-12-14 Three-dimensional magnetic field detection element and three-dimensional magnetic field detection device
EP17881228.5A EP3557271B1 (en) 2016-12-15 2017-12-14 Three-dimensional magnetic field detection element and three-dimensional magnetic field detection device
KR1020197010278A KR102312092B1 (ko) 2016-12-15 2017-12-14 3차원 자계 검출 소자 및 3차원 자계 검출 장치
BR112019011986-8A BR112019011986B1 (pt) 2016-12-15 2017-12-14 Dispositivo de detecção de campo magnético tridimensional, e, detector de campo magnético tridimensional.
RU2019116351A RU2737782C1 (ru) 2016-12-15 2017-12-14 Элемент для обнаружения трехмерного магнитного поля и устройство для обнаружения трехмерного магнитного поля
MYPI2019003004A MY195772A (en) 2016-12-15 2017-12-14 Three-Dimensional Magnetic Field Detection Element And Three-Dimensional Magnetic Field Detection Device
MX2019007059A MX2019007059A (es) 2016-12-15 2017-12-14 Elemento de deteccion de campo magnetico tridimensional y dispositivo de deteccion de campo magnetico tridimensional.
AU2017375137A AU2017375137B2 (en) 2016-12-15 2017-12-14 Three-dimensional magnetic field detection element and three-dimensional magnetic field detection device
CN201780063138.8A CN109844553B (zh) 2016-12-15 2017-12-14 三维磁场检测元件及三维磁场检测装置
IL267259A IL267259B2 (en) 2016-12-15 2019-06-12 3D magnetic field detection element and 3D magnetic field detection device
US16/439,699 US11009566B2 (en) 2016-12-15 2019-06-13 Three-dimensional magnetic field detection element and three-dimensional magnetic field detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016242816A JP6240994B1 (ja) 2016-12-15 2016-12-15 3次元磁界検出素子および3次元磁界検出装置
JP2016-242816 2016-12-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/439,699 Continuation US11009566B2 (en) 2016-12-15 2019-06-13 Three-dimensional magnetic field detection element and three-dimensional magnetic field detection device

Publications (1)

Publication Number Publication Date
WO2018110665A1 true WO2018110665A1 (ja) 2018-06-21

Family

ID=60570390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044968 WO2018110665A1 (ja) 2016-12-15 2017-12-14 3次元磁界検出素子および3次元磁界検出装置

Country Status (12)

Country Link
US (1) US11009566B2 (ja)
EP (1) EP3557271B1 (ja)
JP (1) JP6240994B1 (ja)
KR (1) KR102312092B1 (ja)
CN (1) CN109844553B (ja)
AU (1) AU2017375137B2 (ja)
CA (1) CA3045788C (ja)
IL (1) IL267259B2 (ja)
MX (1) MX2019007059A (ja)
MY (1) MY195772A (ja)
RU (1) RU2737782C1 (ja)
WO (1) WO2018110665A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020003370A (ja) * 2018-06-28 2020-01-09 マグネデザイン株式会社 小型3次元磁界検出装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6800456B2 (ja) * 2018-09-17 2020-12-16 マグネデザイン株式会社 3次元磁界検出素子および3次元磁界検出装置
CN110426057B (zh) * 2019-06-27 2021-08-20 华为技术有限公司 一种磁力计数据校准的方法及磁力计数据校准装置
CN111308399B (zh) * 2020-02-03 2021-06-01 电子科技大学 一种基于COMSOL Multiphysics的3维十字型霍尔器灵敏度计算方法
JP6800458B2 (ja) * 2020-06-20 2020-12-16 マグネデザイン株式会社 3次元磁界検出装置
CN116034648A (zh) * 2020-09-30 2023-04-28 爱知制钢株式会社 磁阻抗传感器元件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005008268A1 (ja) 2003-07-18 2005-01-27 Aichi Steel Corporation 3次元磁気方位センサおよびマグネト・インピーダンス・センサ素子
JP2009216390A (ja) * 2008-03-06 2009-09-24 Ricoh Co Ltd 3軸磁気センシング装置およびその製造方法
WO2010110456A1 (ja) 2009-03-26 2010-09-30 愛知製鋼株式会社 磁気検出装置
JP2014153309A (ja) 2013-02-13 2014-08-25 Magne Design Corp 磁界検出素子
US20160054352A1 (en) * 2014-08-25 2016-02-25 Samsung Electro-Mechanics Co., Ltd. Multi-axis sensor and method for manufacturing the same
JP2016151413A (ja) * 2015-02-16 2016-08-22 マグネデザイン株式会社 超高感度マイクロ磁気センサ

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036938B2 (ja) * 1979-10-09 1985-08-23 東洋化学株式会社 複合フイルム及び該複合フイルムを用いて製造した包装用袋体
RU2007134110A (ru) * 2005-03-17 2009-03-20 Ямаха Корпорейшн (Jp) Трехосевой магнитный датчик и способ его изготовления
US7535221B2 (en) * 2006-03-17 2009-05-19 Citizen Holdings Co., Ltd. Magnetic sensor element and electronic directional measuring device
WO2007126164A1 (en) * 2006-04-28 2007-11-08 Microgate, Inc. Thin film 3 axis fluxgate and the implementation method thereof
US7509748B2 (en) * 2006-09-01 2009-03-31 Seagate Technology Llc Magnetic MEMS sensors
JP2008197089A (ja) * 2007-01-17 2008-08-28 Fujikura Ltd 磁気センサ素子及びその製造方法
JP4725600B2 (ja) * 2008-06-10 2011-07-13 愛知製鋼株式会社 マグネトインピーダンスセンサ素子
TWI438460B (zh) * 2009-05-21 2014-05-21 Fujikura Ltd 磁通閘感測器及使用該感測器之電子羅盤
JP5518661B2 (ja) * 2010-09-30 2014-06-11 株式会社フジクラ 半導体集積回路、磁気検出装置、電子方位計
DE102010061780A1 (de) * 2010-11-23 2012-05-24 Robert Bosch Gmbh Mikro-Magnetfeldsensor, Mikro-Magnetfeldsensorvorrichtung sowie Verfahren
US9000763B2 (en) * 2011-02-28 2015-04-07 Infineon Technologies Ag 3-D magnetic sensor
EP2813860B1 (en) * 2012-02-07 2017-10-18 Asahi Kasei Microdevices Corporation Magnetic sensor and magnetic detection method of the same
JP6312686B2 (ja) * 2012-10-12 2018-04-18 メムシック,インコーポレイテッドMemsic,Inc. モノリシック3軸磁場センサ
CN105929345A (zh) 2013-03-26 2016-09-07 旭化成微电子株式会社 磁传感器及其磁检测方法
CN103323795B (zh) * 2013-06-21 2015-04-08 中国人民解放军国防科学技术大学 一体式三轴磁传感器
JP2015075465A (ja) 2013-10-11 2015-04-20 旭化成エレクトロニクス株式会社 3次元磁界測定装置及び3次元磁界測定方法
CN103913709B (zh) * 2014-03-28 2017-05-17 江苏多维科技有限公司 一种单芯片三轴磁场传感器及其制备方法
US10048329B2 (en) * 2014-05-09 2018-08-14 Aichi Steel Corporation Magnetic detection device and method of manufacturing same
JP6452355B2 (ja) 2014-09-02 2019-01-16 キヤノン株式会社 撮影装置及びその制御方法、並びに、プログラム
JP6609947B2 (ja) 2015-03-18 2019-11-27 愛知製鋼株式会社 磁気検出装置
JP6036938B1 (ja) * 2015-08-05 2016-11-30 愛知製鋼株式会社 磁気検出装置
JP6256962B1 (ja) * 2017-06-21 2018-01-10 朝日インテック株式会社 磁気式の方位・位置測定装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005008268A1 (ja) 2003-07-18 2005-01-27 Aichi Steel Corporation 3次元磁気方位センサおよびマグネト・インピーダンス・センサ素子
JP2009216390A (ja) * 2008-03-06 2009-09-24 Ricoh Co Ltd 3軸磁気センシング装置およびその製造方法
WO2010110456A1 (ja) 2009-03-26 2010-09-30 愛知製鋼株式会社 磁気検出装置
JP2014153309A (ja) 2013-02-13 2014-08-25 Magne Design Corp 磁界検出素子
US20160054352A1 (en) * 2014-08-25 2016-02-25 Samsung Electro-Mechanics Co., Ltd. Multi-axis sensor and method for manufacturing the same
JP2016151413A (ja) * 2015-02-16 2016-08-22 マグネデザイン株式会社 超高感度マイクロ磁気センサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MAENAKA, KAZUSUKE ET AL.: "Integrated three-dimensional magnetic sensor", THE TRANSACTIONS OF THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN, vol. 109, no. 7, 1 July 1989 (1989-07-01), pages 483 - 490, XP009109908, ISSN: 0020-2878 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020003370A (ja) * 2018-06-28 2020-01-09 マグネデザイン株式会社 小型3次元磁界検出装置

Also Published As

Publication number Publication date
CA3045788A1 (en) 2018-06-21
IL267259B1 (en) 2023-01-01
US11009566B2 (en) 2021-05-18
AU2017375137A1 (en) 2019-07-04
CN109844553B (zh) 2022-02-25
IL267259B2 (en) 2023-05-01
KR20190095250A (ko) 2019-08-14
BR112019011986A2 (pt) 2019-11-05
MX2019007059A (es) 2020-02-07
JP2018096885A (ja) 2018-06-21
EP3557271A1 (en) 2019-10-23
CN109844553A (zh) 2019-06-04
MY195772A (en) 2023-02-10
IL267259A (ja) 2019-07-31
US20190310324A1 (en) 2019-10-10
CA3045788C (en) 2023-09-19
AU2017375137A2 (en) 2019-07-18
EP3557271A4 (en) 2020-08-05
KR102312092B1 (ko) 2021-10-14
JP6240994B1 (ja) 2017-12-06
EP3557271B1 (en) 2022-11-23
RU2737782C1 (ru) 2020-12-02
AU2017375137B2 (en) 2023-02-02

Similar Documents

Publication Publication Date Title
JP6240994B1 (ja) 3次元磁界検出素子および3次元磁界検出装置
JP6222351B2 (ja) 磁気検出装置およびその製造方法
JP6021239B2 (ja) 3次元磁界検出素子および3次元磁界検出装置
JP4626728B2 (ja) 磁気検出装置
JP2014153309A5 (ja)
CN107850647B (zh) 磁检测装置
JP6800458B2 (ja) 3次元磁界検出装置
JP6800456B2 (ja) 3次元磁界検出素子および3次元磁界検出装置
JP6609947B2 (ja) 磁気検出装置
JP2016003866A (ja) Z軸用gmi素子および超薄型3次元gmiセンサ
JP2019015550A (ja) 3次元磁界検出素子
KR100649781B1 (ko) 교류자기저항 센서를 이용한 3축 자기센서와, 이를 이용한전방위 자기센서
JPH07248365A (ja) 磁気・磁気方位センサ及び磁気・磁気方位測定方法
KR20050111683A (ko) 자기센서를 이용한 비접촉식 조이스틱형 포인팅 장치 및그의 좌표발생방법
BR112019011986B1 (pt) Dispositivo de detecção de campo magnético tridimensional, e, detector de campo magnético tridimensional.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881228

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197010278

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3045788

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019011986

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017375137

Country of ref document: AU

Date of ref document: 20171214

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017881228

Country of ref document: EP

Effective date: 20190715

ENP Entry into the national phase

Ref document number: 112019011986

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190612