DE102010061780A1 - Mikro-Magnetfeldsensor, Mikro-Magnetfeldsensorvorrichtung sowie Verfahren - Google Patents

Mikro-Magnetfeldsensor, Mikro-Magnetfeldsensorvorrichtung sowie Verfahren Download PDF

Info

Publication number
DE102010061780A1
DE102010061780A1 DE201010061780 DE102010061780A DE102010061780A1 DE 102010061780 A1 DE102010061780 A1 DE 102010061780A1 DE 201010061780 DE201010061780 DE 201010061780 DE 102010061780 A DE102010061780 A DE 102010061780A DE 102010061780 A1 DE102010061780 A1 DE 102010061780A1
Authority
DE
Germany
Prior art keywords
magnetic field
sensor
plane
chip
sensor elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE201010061780
Other languages
English (en)
Inventor
Frank Reichenbach
Christian Patak
Stefan Weiss
Frederic Njikam Njimonzie
Frank Schatz
Paul Farber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE201010061780 priority Critical patent/DE102010061780A1/de
Priority to PCT/EP2011/067889 priority patent/WO2012069251A1/de
Priority to TW100142473A priority patent/TW201237447A/zh
Publication of DE102010061780A1 publication Critical patent/DE102010061780A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0005Geometrical arrangement of magnetic sensor elements; Apparatus combining different magnetic sensor types
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/0206Three-component magnetometers

Abstract

Die Erfindung betrifft einen Mikro-Magnetfeldsensor zur Detektion von dreidimensionalen Magnetfeldern. Der Sensor umfasst zumindest drei Sensorelemente jeweils zur Messung zumindest einer Richtung des in einer ersten Ebene angeordnet sind und wobei zumindest das dritte Sensorselement in einer zweiten Ebene angeordnet ist, die senkrecht zur ersten Ebene angeordnet ist, und wobei zumindest eines der Sensorelemente zu einer dritten Ebene, welche senkrecht zu der ersten und zweiten Ebene angeordnet ist, in einem spitzen oder stumpfen Winkel angeordnet ist. Die Erfindung betrifft ebenfalls eine Mikro-Magnetfeldsensorvorrichtung.

Description

  • Stand der Technik
  • Die Erfindung betrifft einen Mikro-Magnetfeldsensor zur dreidimensionalen Detektion eines Magnetfeldes, eine entsprechende Mikro-Magnetfeldsensorvorrichtung sowie ein entsprechendes Verfahren.
  • Sensoren zur Messung von Magnetfeldern werden auch als Magnetometer bezeichnet. Diese sind bereits in zahllosen Ausführungsformen bekannt. Sie unterscheiden sich im Wesentlichen hinsichtlich ihrer Genauigkeit, ihrer Empfindlichkeit des zu messenden Magnetfeldes, ihrer Baugröße sowie ihrem Herstellungsaufwand.
  • Um derartige Magnetometer auch mobil, das heißt in tragbaren Geräten, einsetzen zu können, beispielsweise um die genaue Richtung des Erdmagnetfeldes zu ermitteln bzw. die genaue Ausrichtung des tragbaren Gerätes oder eines Fahrzeugs gegenüber der Richtung des Erdmagnetfeldes zu bestimmen, sind besonders kompakte Ausführungen derartiger Magnetometer erforderlich. Hierzu ist es bekannt, miniaturisierte Magnetometer auf Substraten ähnlich eines integrierten Schaltkreises in vergleichbaren Dimensionen herzustellen. Derartige Magnetometer können dabei beispielsweise auf dem Hall-Effekt, dem anisotropen magnetoresistiven Effekt, dem Riesen-Magnetowiderstand-Effekt, dem Riesenmagnetoimpedanz-Effekt oder auf der Fluxgate-Technologie beruhen. Diese unterscheiden sich jedoch in den möglichen Messrichtungen für das Magnetfeld, die sie in Bezug auf eine Substratoberfläche realisieren können.
  • So sind Hall-Magnetometer, insbesondere wenn diese in einem elektronischen Schaltkreis integriert sind, lediglich in der Lage, die Magnetfeldkomponente senkrecht zur Substratoberfläche zu messen. Der Anmelderin ist es darüber hinaus bekannt, dass diese auch eine Messung der beiden weiteren Raumrichtungen, das heißt in der Ebene des Substrats, messen können, allerdings mit einer deutlich verschlechterten Genauigkeit.
  • Die auf den AMR-Effekt, dem GMR-Effekt, dem GMI-Effekt sowie der Fluxgate-Technologie beruhenden Magnetometer weisen zwar eine höhere Genauigkeit auf, können aber lediglich eine Richtung des Magnetfeldes in der Substratebene mit hoher Genauigkeit messen.
  • Des Weiteren ist es der Anmelderin bekannt, bei makroskopischen Magnetometern, das heißt Magnetometern, die sich nicht für einen mobilen Einsatz eignen, in jeweils einer Raumrichtung ein entsprechendes Sensorelement anzuordnen. Diese Lösung ist jedoch für miniaturisierte Magnetometer für den mobilen Einsatz nicht praktikabel bzw. nicht umsetzbar, da miniaturisierte Magetometer üblicherweise auf bzw. in integrierten Schaltungen bzw. Chips angeordnet werden und diese parallel zu bzw. auf einer Leiterplatte angeordnet werden.
  • Aus der US 7,095,266 B2 ist ein auf dem AMR-Effekt basierender Sensor bekannt geworden, der senkrecht in einem typischen elektronischen Gehäuse angeordnet wird. Dies ist dadurch möglich, da der aktive Bereich bei AMR-Sensoren in der Ebene eines Substrats im Wesentlichen frei gewählt kann, so dass ein schmaler Chip möglich ist. Dieser kann einem typischen Gehäuse für einen Magnetfeldsensor senkrecht montiert werden, ohne dass dies eine wesentliche Erhöhung der Gehäusehöhe senkrecht zum Substrat erforderlich ist. GMI-, und/oder Fluxgate-Sensorelemente weisen eine langgestreckte im Wesentlichen rechteckförmige Geometrie aufgrund ihres ferromagnetischen Kerns auf. Bei einer entsprechenden Anordnung würde dies zu einer erheblichen Vergrößerung der Höhe des Gehäuses für den Sensor führen. Es wurde deshalb in der WO 2008/016198 vorgeschlagen, die Fluxgate- und/oder GMI-Sensorelemente in Richtung der Gehäusehöhe verkürzt auszubilden, so dass eine Erhöhung der Höhe des Gehäuses für das Magnetometer nicht erforderlich ist. Dabei unterscheiden sich dann die Sensorelemente für die jeweilige Richtung hinsichtlich ihrer Genauigkeit als auch bezüglich unerwünschter Effekte, wie Temperaturabhängigkeiten, Empfindlichkeit gegenüber mechanischen Spannungen, Linearität, etc., was die Messgenauigkeit für das Magnetometer insgesamt vermindert.
  • Offenbarung der Erfindung
  • In Anspruch 1 ist ein Mikro-Magnetfeldsensor zur dreidimensionalen Detektion eines Magnetfeldes definiert, umfassend zumindest drei Sensorelemente jeweils zur Messung zumindest einer Richtung des Magnetfeldes, wobei zumindest zwei Sensorelemente in einer ersten Ebene angeordnet sind und wobei zumindest das dritte Sensorselement in einer zweiten Ebene angeordnet ist, die senkrecht zur ersten Ebene angeordnet ist, und wobei zumindest eines der Sensorelemente zu einer dritten Ebene, welche senkrecht zu der ersten und zweiten Ebene angeordnet ist, in einem spitzen oder stumpfen Winkel angeordnet ist.
  • In Anspruch 6 ist eine Mikro-Magnetfeldsensorvorrichtung zur dreidimensionalen Detektion eines Magnetfeldes definiert, umfassend zumindest einen mikromechanischen Sensor gemäß zumindest einem der Ansprüche 1–5, sowie Auswertemittel, die mit dem zumindest einen Sensor zur Auswertung von Messsignalen des zumindest einen mikromechanischen Sensors zusammenwirken.
  • In Anspruch 8 ein Verfahren zur dreidimensionalen Detektion eines Magnetfeldes definiert, umfassend die Schritte
    Erfassen jeweils zumindest einer Richtung eines Magnetfeldes mittels jeweils zumindest eines Sensorelementes, wobei zumindest zwei Sensorelemente in einer ersten Ebene angeordnet sind und wobei zumindest das dritte Sensorselement in einer zweiten Ebene angeordnet ist, die senkrecht zur ersten Ebene angeordnet ist, und wobei zumindest eines der Sensorelemente zu einer dritten Ebene, welche senkrecht zu der ersten und zweiten Ebene angeordnet ist, in einem spitzen oder stumpfen Winkel angeordnet ist, Übermitteln der erfassten Richtungen des Magnetfeldes in Form von Messdaten der Sensorelemente an zumindest ein Auswertemittel, sowie
    Auswerten der Messdaten durch das Auswertemittel zur dreidimensionalen Detektion des Magnetfeldes.
  • Unter Mikro-Magnetfeldsensor sind in der Beschreibung und insbesondere in den Ansprüchen, vorzugsweise miniaturisierte Magnetometer auf Substraten zu verstehen.
  • Vorteile der Erfindung
  • Der erzielte Vorteil dabei ist, dass durch die Anordnung in einem spitzen oder stumpfen Winkel, also über die zumindest teilweise oder vollständig schräge Anordnung von zumindest einem Sensorelement alle drei Raumrichtungen dieses Magnetfeldes gemessen werden können und damit gleichzeitig ein reduziertes Volumen des Mikro-Magnetfeldsensors, insbesondere seiner Bauhöhe ermöglicht wird.
  • Weitere Merkmale und vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen beschrieben.
  • Gemäß einer vorteilhaften Weiterbildung der Erfindung sind zumindest zwei Sensorelemente in der ersten und/oder zweiten Ebene symmetrisch insbesondere spiegelsymmetrisch zueinander angeordnet. Der erzielte Vorteil dabei ist, dass damit zum einen die Anordnung der Sensorelemente einfach und kostengünstig erfolgen kann, zum anderen wird dadurch ebenfalls sichergestellt, dass aufgrund sich ändernder Umweltbedingungen, die Sensorelemente in gleicher Weise Änderungen bzw. Abweichungen erfahren. Damit kann die Messung eines Magnetfeldes zuverlässiger erfolgen.
  • Die Anordnung der Sensorelemente der ersten und zweiten Ebene zueinander kann weiter, insbesondere in Bezug auf die dritte Ebene im Wesentlichen, gleich sein. Damit kann die Zuverlässigkeit der Messung des Magnetfeldes erhöht und die Anordnung der Sensorelemente noch weiter vereinfacht werden.
  • Gemäß einer weiteren vorteilhaften Weiterbildung der Erfindung ist zumindest ein Sensorelement parallel zu zumindest zwei der drei Ebenen angeordnet. Der erzielte Vorteil dabei ist, dass damit auf äußerst zuverlässige Weise das Sensorelement zumindest eine Richtung des Magnetfeldes messen kann.
  • Gemäß einer weiteren vorteilhaften Weiterbildung der Erfindung ist das zumindest ein Sensorelement als GMI- oder Fluxgate-Sensorelement ausgebildet. Der erzielte Vorteil dabei ist, dass damit eine hohe Genauigkeit bei der Messung des Magnetfeldes durch das Sensorelement ermöglicht wird.
  • Gemäß einer weiteren vorteilhaften Weiterbildung der Mikro-Magnetfeldsensorvorrichtung sind die Auswertemittel in Form eines ASIC und/oder zumindest ein Sensorelement auf einem Chip angeordnet, wobei der ASIC und/oder der zumindest eine Chip im Wesentlichen in der dritten Ebene angeordnet ist. Der erzielte Vorteil dabei ist, dass somit eine äußerst kompakte Mikro-Magnetfeldsensorvorrichtung ermöglicht wird.
  • Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen anhand der Figuren.
  • Dabei zeigt
  • 1 verschiedene Anordnungen von Sensorelementen auf einem Chip in einer Draufsicht gemäß der vorliegenden Erfindung;
  • 2a–d vier Ausführungsformen einer mikromechanischen Sensorvorrichtung gemäß der vorliegenden Erfindung.
  • 3 Schritte eines Verfahren gemäß einer Ausführungsform der vorliegenden Erfindung.
  • 1 zeigt verschiedene Anordnungen von Sensorelementen auf einem Chip in einer Draufsicht gemäß der vorliegenden Erfindung.
  • In 1 bezeichnen Bezugszeichen 1a sowie 1b Fluxgate-Sensorelemente. Die Fluxgate-Sensorelemente 1a, 1b weisen jeweils einen Kern 2 und eine Spule 3 auf, welche um den Kern 2 gewickelt ist. Auf der unteren Seite des Chips C1 sind Anschlüsse respektive Pads 10 angeordnet, die (zur elektrischen Verbindung mit einem Auswertemittel beispielsweise in Form eines ASIC dienen Verbindungen über Leiterplatte 5 sind in 2 nicht abgebildet). Fluxgate-Sensorelemente weisen im Allgemeinen im Wesentlichen jeweils zwei unterschiedliche Wicklungen auf, die in 1a als eine gemeinsame Wicklung 3 dargestellt sind. Für jede Wicklung 3 sind zwei Anschlüsse erforderlich, so dass bei den zwei in 1 dargestellten Fluxgate-Sensorelementen 1a, 1b jeweils vier Anschlüsse resultierend in vier Pads 10 erforderlich sind. Insgesamt weist somit der Chip C1 bzw. C2 insgesamt acht Pads 10 auf. Der Chip C1 ist dabei im Wesentlichen gemäß 1a rechteckförmig ausgebildet. In der Draufsicht gemäß 1a sind die beiden Fluxgate-Sensorelemente 1a, 1b zusammen mit den Pads 10 im Wesentlichen in Form eines gedachten aufrechten Dreiecks angeordnet. Die Fluxgate-Sensorelemente 1a, 1b bilden dabei die schräg nach oben gemäß 1a zulaufenden Seiten des Dreiecks wohingegen die Pads 10 die Grundseite des Dreiecks bilden. Die Pads 10 sind also dabei an der unteren, längeren Seite des rechteckförmigen Chips C1 angeordnet. Die Fluxgate-Sensorelemente 1a, 1b bilden dabei einen Winkel 100, 101 mit der längeren Seitenkante des rechteckförmigen Chips C1 und die Winkel 100, 101, gemäß 1a betragen dabei im Wesentlichen 45°. Darüber hinaus sind ebenfalls andere Winkelwerte für den Winkel 100, 101 möglich: Beispielsweise bei einem spitzen Winkel 100, 101 sind die Werte 15°, 30° oder 50°, 60° oder 75° möglich, bei einem stumpfen Winkel 100, 101 sind Werte 120°, 135°, 140°, etc. möglich. Selbstverständlich ist auch jeder andere beliebige entsprechende Wert für einen stumpfen bzw. spitzen Winkel 100, 101 möglich, beispielsweise 115,36°.
  • In 1b ist ein Chip C2 gezeigt, der im Wesentlichen den gleichen Aufbau wie der Chip C1 gemäß 1a aufweist. Im Unterschied zu 1a ist nun das zweite Fluxgate-Sensorelement 1b parallel zu den Pads 10 als auch parallel zu einer der längeren Seiten des rechteckförmigen Chips C2 angeordnet.
  • In 1c ist wiederum ein Chip C3 gezeigt, der im Wesentlichen denselben Aufbau wie der Chip C1 der 1a aufweist. Im Unterschied zu 1a bzw. ebenfalls 1b weist der Chip C3 lediglich ein Fluxgate-Sensorelement 1a auf, welches in einem Winkel 101 gegenüber einer längeren Kante des rechteckförmigen Chips C3. Der Winkel 101 beträgt ebenfalls im Wesentlichen 45°. Darüber hinaus sind ebenfalls andere Winkelwerte für den Winkel 101 möglich: Beispielsweise bei einem spitzen Winkel 101 sind die Werte 15°, 30° oder 50°, 60° oder 75° möglich, bei einem stumpfen Winkel 101 sind Werte 120°, 135°, 140°, etc. möglich. Selbstverständlich ist auch jeder andere beliebige entsprechende Wert für einen stumpfen bzw. spitzen Winkel 101 möglich, beispielsweise 115,36°.
  • 2a–d zeigt vier Ausführungsformen einer mikromechanischen Sensorvorrichtung gemäß der vorliegenden Erfindung. In 2 sind nun in dreidimensionaler schematischer Ansicht eine Anordnung von Chips C1, C1', C2, C2', C4, C3 gezeigt zusammen mit einer Auswerteeinheit in Form eines ASIC 4. Die jeweiligen Chips C1, C2, C1', C2', C3, C4 sind dabei wie auch der ASIC 4 auf einer Leiterplatte 5 angeordnet.
  • In 2a ist ein quaderförmiger ASIC 4 gezeigt, welcher an seinen Längsseiten jeweils sechs Pads 11 aufweist. Der ASIC 4 ist dabei auf einer Leiterplatte 5 angeordnet. Parallel zu seiner einen Längskante und parallel zu einer Querkante ist jeweils ein quaderförmiger Chip C1, C1' angeordnet, welcher im Wesentlichen den Aufbau gemäß des Chips C1 der 1a aufweist. Die Pads 10 der Chips C1, C1' sind in 2a mit der Leiterplatte 5 verbunden, die Fluxgate-Sensorelemente 1a, 1b sind dabei in einer Ebene des Chips C1, C1' angeordnet, welche senkrecht zur Ebene der Leiterplatte 5 angeordnet ist.
  • In 2b ist eine entsprechende Anordnung gemäß 1a gezeigt, wobei die Chips C1, C1' gemäß 1a durch Chips C2, C2' an den entsprechenden Positionen auf der Leiterplatte 5 angeordnet. Der Aufbau der Chips C2, C2' entspricht dem Chip C2 der 1b.
  • In 2c ist eine weitere Anordnung von Chipelementen C4, C3 gezeigt. Auf der rechten Seite der Leiterplatte 5 ist der ASIC 4 mit Pads 11 gezeigt. An der linken Querkante sind im Bereich seiner unteren Längskante ein Chip C4 mit Fluxgate-Sensorelement 1b gezeigt, welches im Wesentlichen dem Aufbau des Chips C3 gemäß 1c entspricht, wobei des ASIC 4 das Fluxgate-Sensorelement 1b im Unterschied zu dem Fluxgate-Sensorelement der 1c parallel zur Längskante des Chips C4 angeordnet ist. Das Fluxgate-Sensorelement 1b des Chips C4 misst gemäß 2c also in Richtung des Magnetfeldes parallel zur Längskante des ASIC 4 in einer Ebene parallel zur Leiterplatte 5. Auf der linken Seite des Chips C4 ist ein weiterer Chip C4 mit einem Fluxgate-Sensorelement 1a auf der Leiterplatte 5 angeordnet. Es ist gegenüber dem Fluxgate-Sensorelement 1b des Chips C4 um 90° in der Ebene der Leiterplatte 5 gedreht angeordnet und misst daher Änderungen des Magnetfeldes in der Ebene der Leiterplatte 5 parallel zu einer der Querkante des ASIC 4. Parallel zur Längskante des Chips C4 mit Fluxgate-Sensorelement 1b ist in 2c im Hintergrund ein Chip C3 gemäß 1c angeordnet. Die Pads 10 sind dabei wiederum mit der Leiterplatte 5 verbunden. Der Winkel 101 (siehe 1c) ist dabei zwischen dem Fluxgate-Sensorelement 1c und Leiterplatte 5 angeordnet und beträgt im Wesentlichen ca. 45°. Darüber hinaus sind ebenfalls andere Winkelwerte für den Winkel 101 möglich: Beispielsweise bei einem spitzen Winkel 101 sind die Werte 15°, 30° oder 50°, 60° oder 75° möglich, bei einem stumpfen Winkel 101 sind Werte 120°, 135°, 140°, etc. möglich. Selbstverständlich ist auch jeder andere beliebige entsprechende Wert für einen stumpfen bzw. spitzen Winkel 101 möglich, beispielsweise 50,47°.
  • In 2d ist nun im Wesentlichen eine Anordnung gemäß 2c gezeigt. Im Unterschied zur 2c ist auf der rechten Seite der Leiterplatte 5 im Vordergrund der ASIC 4 mit Pads 11 angeordnet und im Hintergrund auf der rechten Seite der Leiterplatte 5 der Chip C3 mit Fluxgate-Sensorelement 1c. Links des ASIC 4 bzw. des Chips C3 ist ein Chip C1 gemäß 1a angeordnet. Die beiden Fluxgate-Sensorelemente 1a, 1b sind dabei im Unterschied beispielsweise zur Ausführungsform der 2a in einer zur Leiterplatte 5 parallelen Ebene angeordnet.
  • Sämtliche Chips der 2a–d sind im Wesentlichen quaderförmig ausgebildet und mit zumindest einer Kante parallel zum jeweiligen anderen Chip bzw. ASIC angeordnet.
  • 3 zeigt Schritte eines Verfahrens gemäß einer Ausführungsform der vorliegenden Erfindung.
  • In 3 bezeichnet Bezugszeichen S1 den Schritt: Erfassen jeweils zumindest einer Richtung eines Magnetfeldes mittels jeweils zumindest eines Sensorelementes, wobei zumindest zwei Sensorelemente in einer ersten Ebene angeordnet sind und wobei zumindest das dritte Sensorselement in einer zweiten Ebene angeordnet ist, die senkrecht zur ersten Ebene angeordnet ist, und wobei zumindest eines der Sensorelemente zu einer dritten Ebene, welche senkrecht zu der ersten und zweiten Ebene angeordnet ist, in einem spitzen oder stumpfen Winkel angeordnet ist, Bezugszeichen S2 den Schritt: Übermitteln der erfassten Richtungen des Magnetfeldes in Form von Messdaten der Sensorelemente an zumindest ein Auswertemittel, sowie Bezugszeichen S3 den Schritt: Auswerten der Messdaten durch das Auswertemittel zur dreidimensionalen Detektion des Magnetfeldes.
  • Obwohl die vorliegende Erfindung vorstehend anhand bevorzugter Ausführungsbeispiele beschrieben wurde, ist sie nicht darauf beschränkt, sondern auf vielfältige Weise modifizierbar.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 7095266 B2 [0007]
    • WO 2008/016198 [0007]

Claims (8)

  1. Mikro-Magnetfeldsensor zur dreidimensionalen Detektion eines Magnetfeldes, umfassend zumindest drei Sensorelemente (1a, 1b, 1c, 1d) jeweils zur Messung zumindest einer Richtung des Magnetfeldes, wobei zumindest zwei Sensorelemente (1a, 1b, 1c, 1d) in einer ersten Ebene angeordnet sind und wobei zumindest das dritte Sensorselement (1a, 1b, 1c, 1d) in einer zweiten Ebene angeordnet ist, die senkrecht zur ersten Ebene angeordnet ist, und wobei zumindest eines der Sensorelemente (1a, 1b, 1c, 1d) zu einer dritten Ebene, welche senkrecht zu der ersten und zweiten Ebene angeordnet ist, in einem spitzen oder stumpfen Winkel (100, 101) angeordnet ist.
  2. Sensor gemäß Anspruch 1, wobei zumindest zwei Sensorelemente (1a, 1b, 1c, 1d) in der ersten und/oder zweiten Ebene symmetrisch, insbesondere spiegelsymmetrisch, zueinander angeordnet sind.
  3. Sensor gemäß zumindest einem der Ansprüche 1–2, wobei zumindest ein Sensorelement (1a, 1b, 1c, 1d) parallel zu zumindest zwei der drei Ebenen angeordnet ist.
  4. Sensor gemäß zumindest einem der Ansprüche 1–3, wobei zumindest ein Sensorelement (1a, 1b, 1c, 1d) als GMI-, oder Fluxgate-Sensorelement ausgebildet ist.
  5. Sensor gemäß zumindest einem der Ansprüche 1–4, wobei die zumindest drei Sensorelemente (1a, 1b, 1c, 1d) alle gleichen Typs und/oder gleichen Aufbau aufweisen.
  6. Mikro-Magnetfeldsensorvorrichtung zur dreidimensionalen Detektion eines Magnetfeldes, umfassend zumindest einen Mikro-Magnetfeldsensor gemäß zumindest einem der Ansprüche 1–5, sowie Auswertemittel (4), die mit dem zumindest einen Sensor zur Auswertung von Messsignalen des zumindest einen mikromechanischen Sensors zusammenwirken.
  7. Vorrichtung gemäß Anspruch 6, wobei die Auswertemittel (4) in Form eines ASIC und/oder zumindest ein Sensorelement (1a, 1b, 1c) auf einem Chip (C1, C2, C3, C4) angeordnet sind, wobei der ASIC (4) und/oder der zumindest eine Chip im Wesentlichen in der dritten Ebene angeordnet sind.
  8. Verfahren zur dreidimensionalen Detektion eines Magnetfeldes, umfassend die Schritte Erfassen (S1) jeweils zumindest einer Richtung eines Magnetfeldes mittels jeweils zumindest eines Sensorelementes, wobei zumindest zwei Sensorelemente (1a, 1b, 1c, 1d) in einer ersten Ebene angeordnet sind und wobei zumindest das dritte Sensorselement (1a, 1b, 1c, 1d) in einer zweiten Ebene angeordnet ist, die senkrecht zur ersten Ebene angeordnet ist, und wobei zumindest eines der Sensorelemente (1a, 1b, 1c, 1d) zu einer dritten Ebene, welche senkrecht zu der ersten und zweiten Ebene angeordnet ist, in einem spitzen oder stumpfen Winkel (100, 101) angeordnet ist, Übermitteln (S2) der erfassten Richtungen des Magnetfeldes in Form von Messdaten der Sensorelemente (1a, 1b, 1c, 1d) an zumindest ein Auswertemittel (4), sowie Auswerten (S3) der Messdaten durch das Auswertemittel zur dreidimensionalen Detektion des Magnetfeldes.
DE201010061780 2010-11-23 2010-11-23 Mikro-Magnetfeldsensor, Mikro-Magnetfeldsensorvorrichtung sowie Verfahren Withdrawn DE102010061780A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE201010061780 DE102010061780A1 (de) 2010-11-23 2010-11-23 Mikro-Magnetfeldsensor, Mikro-Magnetfeldsensorvorrichtung sowie Verfahren
PCT/EP2011/067889 WO2012069251A1 (de) 2010-11-23 2011-10-13 Mikro-magnetfeldsensor, mikro-magnetfeldsensorvorrichtung sowie verfahren
TW100142473A TW201237447A (en) 2010-11-23 2011-11-21 Micro-magnetic field sensor, micro-magnetic field sensor device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201010061780 DE102010061780A1 (de) 2010-11-23 2010-11-23 Mikro-Magnetfeldsensor, Mikro-Magnetfeldsensorvorrichtung sowie Verfahren

Publications (1)

Publication Number Publication Date
DE102010061780A1 true DE102010061780A1 (de) 2012-05-24

Family

ID=44789476

Family Applications (1)

Application Number Title Priority Date Filing Date
DE201010061780 Withdrawn DE102010061780A1 (de) 2010-11-23 2010-11-23 Mikro-Magnetfeldsensor, Mikro-Magnetfeldsensorvorrichtung sowie Verfahren

Country Status (3)

Country Link
DE (1) DE102010061780A1 (de)
TW (1) TW201237447A (de)
WO (1) WO2012069251A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014113657A1 (de) * 2014-09-22 2016-03-24 Hermann Sewerin Gbr (Vertretungsberechtigter Gesellschafter: Dr. Rer. Nat. Swen Sewerin , 33330 Gütersloh) Vorrichtung zur Ortung ferromagnetischer Objekte
DE102016216198A1 (de) 2016-08-29 2018-03-01 Robert Bosch Gmbh Mikromechanische Sensorvorrichtung zum Detektieren eines äußeren Magnetfelds, Sensoranordnung und Verfahren zum Betreiben einer mikromechanischen Sensorvorrichtung
CN109844553A (zh) * 2016-12-15 2019-06-04 朝日英达科株式会社 三维磁场检测元件及三维磁场检测装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104007401B (zh) * 2013-02-21 2017-04-12 赖孟煌 平面化的三维磁感测芯片
DE202017004995U1 (de) 2017-09-26 2017-10-25 Ralf Stöcker Azimutverstelleinrichtung sowie Turmkopfadapter und Windenergieanlage mit einer solchen Azimutverstelleinrichtung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7095266B2 (en) 2004-08-18 2006-08-22 Fairchild Semiconductor Corporation Circuit and method for lowering insertion loss and increasing bandwidth in MOSFET switches
WO2008016198A1 (en) 2006-08-03 2008-02-07 Microgate, Inc. 3 axis thin film fluxgate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10200600A1 (de) * 2002-01-10 2003-08-07 Bosch Gmbh Robert Vorrichtung zur Messung eines Magnetfeldes, Magnetfeldsensor und Strommesser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7095266B2 (en) 2004-08-18 2006-08-22 Fairchild Semiconductor Corporation Circuit and method for lowering insertion loss and increasing bandwidth in MOSFET switches
WO2008016198A1 (en) 2006-08-03 2008-02-07 Microgate, Inc. 3 axis thin film fluxgate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014113657A1 (de) * 2014-09-22 2016-03-24 Hermann Sewerin Gbr (Vertretungsberechtigter Gesellschafter: Dr. Rer. Nat. Swen Sewerin , 33330 Gütersloh) Vorrichtung zur Ortung ferromagnetischer Objekte
DE102016216198A1 (de) 2016-08-29 2018-03-01 Robert Bosch Gmbh Mikromechanische Sensorvorrichtung zum Detektieren eines äußeren Magnetfelds, Sensoranordnung und Verfahren zum Betreiben einer mikromechanischen Sensorvorrichtung
CN109844553A (zh) * 2016-12-15 2019-06-04 朝日英达科株式会社 三维磁场检测元件及三维磁场检测装置

Also Published As

Publication number Publication date
WO2012069251A1 (de) 2012-05-31
TW201237447A (en) 2012-09-16

Similar Documents

Publication Publication Date Title
DE102005047413B4 (de) Magnetoresistives Sensorelement und Verfaheren zum Durchführen eines On-Wafer-Funktionstests, sowie Verfahren zur Herstellung von Magnetfeldsensorelementen und Verfahren zur Herstellung von Magnetfeldsensorelementen mit On-Wafer-Funktionstest
DE102020103432B4 (de) Magnetsensor
DE69532396T2 (de) Magnetfeldmessgerät
DE102015105902A1 (de) Magnetfeldstromsensoren, Sensorsysteme und Verfahren
DE60025146T2 (de) Herstellungsverfahren für eine magnetische fühleranordnung
DE102009028956A1 (de) Magnetfeldsensor
EP2729823B1 (de) Messkopf für einen magnetoelastischen sensor
DE112007003025T5 (de) Magnetsensor und Magnetkodierer, der ihn nutzt
DE102012012759A1 (de) Anordnung zur Strommessung
DE102017121467A1 (de) Magnetsensorbauelement und verfahren zum bestimmen einer rotationsgeschwindigkeit, einer rotationsrichtung und/oder eines rotationswinkels einer magnetischen komponente um eine rotationsachse
DE102009023106A1 (de) Verfahren und System zur Magneterfassung
DE102014103190A1 (de) Sensoren, Systeme und Verfahren zur Erfassung von Fehlerstrom
DE102011088710A1 (de) Magnetorsistive winkelsensoren
DE102008042800A1 (de) Vorrichtung zur Messung von Richtung und/oder Stärke eines Magnetfeldes
DE102010061780A1 (de) Mikro-Magnetfeldsensor, Mikro-Magnetfeldsensorvorrichtung sowie Verfahren
DE102007003830A1 (de) Vorrichtung zur Messung eines durch einen elektrischen Leiter fließenden elektrischen Stroms
DE102018110553A1 (de) Drehmomentsensoranordnung und Wankstabilisator mit Drehmomentsensoranordnung
DE102012209232A1 (de) Magnetfeldsensor
DE102018127119A1 (de) Magnetsensorvorrichtung
DE102020105933A1 (de) Gegenüber einem externen feld robuste winkelerfassung mit differentiellem magnetfeld
DE102010035469A1 (de) Sensor zur Prüfung von Wertdokumenten
WO2012116933A1 (de) Magnetfeld-messanordnung
DE102012209547A1 (de) Winkelmesssystem einschliesslich eines magneten mit im wesentlichen quadratischer fläche für durchgangswellenanwendungen
DE102019115373A1 (de) Sensorvorrichtungen mit testmagneten und zugehörige verfahren
DE102017130075A1 (de) Drehmomentsensoranordnung

Legal Events

Date Code Title Description
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20130601