WO2018110623A1 - 足部判定システム及び方法 - Google Patents

足部判定システム及び方法 Download PDF

Info

Publication number
WO2018110623A1
WO2018110623A1 PCT/JP2017/044824 JP2017044824W WO2018110623A1 WO 2018110623 A1 WO2018110623 A1 WO 2018110623A1 JP 2017044824 W JP2017044824 W JP 2017044824W WO 2018110623 A1 WO2018110623 A1 WO 2018110623A1
Authority
WO
WIPO (PCT)
Prior art keywords
foot
image data
image
subject
function
Prior art date
Application number
PCT/JP2017/044824
Other languages
English (en)
French (fr)
Inventor
山下 和彦
英治 榎本
真澄 篠原
Original Assignee
Aof株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aof株式会社 filed Critical Aof株式会社
Publication of WO2018110623A1 publication Critical patent/WO2018110623A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]

Definitions

  • the present invention relates to a technique for determining the presence / absence of an abnormality in a region above a heel from a human foot.
  • foot part There are various types of parts from the sole of the foot to the upper part of the heel, for example, below the knee (hereinafter referred to as “foot part” in the present specification) depending on age, environment, and other factors.
  • foot part there is a case where there is a deformation to a certain extent that may cause difficulty in walking such as a hallux valgus, a hallux valgus, or a little finger deformation, that is, there may be an abnormality in the foot.
  • conventionally there has been no technique for easily and quantitatively judging such an abnormality.
  • the above-mentioned abnormalities in the foot can be determined from the skeleton in the subject's foot, and the degree of abnormality can be quantified from the skeleton, but it is abnormal in a two-dimensional image such as a so-called X-ray photograph. It is difficult to determine whether or not there is an accurate numerical value.
  • the skeleton of the subject can be grasped even using a CT scanner, the overall size of the CT scanner is large, and the initial cost for installing the apparatus is enormous.
  • analysis based on the movement of the foot is difficult.
  • Patent Document 1 there is a technique for evaluating walking ability using a seat-type pressure sensor (see Patent Document 1).
  • Patent Document 1 cannot determine the presence or absence of an abnormality in the region above the heel from the human foot.
  • the present invention has been proposed in view of the above-described problems of the prior art, and can easily and quantitatively determine an abnormality of the subject's foot, and also considers the movement of the foot.
  • An object of the present invention is to provide a foot determination system and method capable of determining an abnormality.
  • the foot determination system (100, 101) is an imaging device (with subject M mounted) (1: a table, for example) and an imaging device that relatively moves at a constant speed in the circumferential direction of the imaging location (1). 2 and 3) and an analysis device (10, 11) to which image data (still image data, moving image data) from the imaging device (2, 3) is input.
  • the analysis device (10, 11) A function for creating a skeletal model of a determination target (for example, a part from the sole of the subject (M) to the upper part of the heel, for example, a position below the knee: foot) based on the data (still image data), and the skeleton model and image data It has a function of analyzing the motion of the skeleton model based on (moving image data).
  • a determination target for example, a part from the sole of the subject (M) to the upper part of the heel, for example, a position below the knee: foot
  • an object for example, the foot of the subject M
  • a step of repeating the above state a step of photographing the moving object from the entire circumferential direction by the imaging device (2, 3) relatively moving in the circumferential direction of the photographing location (1), and the imaging device Image data (still image data, moving image data) from (2, 3) is input to the analysis device (10, 11), and a determination target (for example, from the sole of subject M) is based on the image data (still image data).
  • the method includes a step of creating a skeleton model above the heel, for example, a position up to the knee: a foot), and a step of analyzing the movement of the skeleton model based on the skeleton model and image data (moving image data). .
  • an imaging location (1: subject) on which the subject M is placed and an imaging device (2, 3) that moves relatively at a constant speed in the circumferential direction of the imaging location (1) are fixed imaging locations.
  • a combination of (1) and an imaging device (2, 3) that moves at a constant speed on a trajectory (4: for example, a rail) arranged concentrically with the imaging location (1) is included.
  • a combination of a fixed imaging device (2, 3) and a shooting location (1: stand, for example) that rotates at a constant speed is also included.
  • the imaging device (2) is preferably an optical device (for example, a camera) having a function of capturing a still image and a function of capturing a moving image.
  • the imaging device (2) can include a combination of an optical device (for example, a camera) having a function of capturing a still image and an optical device (for example, a camera) having a function of capturing a moving image.
  • the analysis device (10) determines a stereoscopic image of a determination target (for example, a position from the sole of the subject (M) to the upper part of the heel, for example, below the knee) based on the image data (still image data). And a function of creating a skeleton model from the created stereoscopic image and skeleton data (for example, various data of the skeleton of the foot).
  • the imaging device (3) includes a device (3A: for example, an X-ray irradiation device) having a function of irradiating light rays having a human body permeability and an image (X-ray photograph: X-ray photograph) having light rays having a human body permeability.
  • the analysis apparatus (11) calculates a skeletal model of the determination target (for example, a position from the sole of the subject (M) to the upper part of the heel, for example, below the knee: foot part) from the image data (X-ray photograph data). It preferably has a direct creation function.
  • the imaging device (2, 3) in order to prevent external light (for example, sunlight) from being reflected and make it difficult to see an image, and to improve measurement accuracy, the imaging device (2, 3) has a specific wavelength of light ( It is preferable to attach a filter that transmits light of a specific color. Then, a new reference point is set by adding information on light of a specific wavelength (light of a specific color) from outside the system, or by attaching a marker to the skin of the subject (M), and performing a new measurement.
  • the system is constructed.
  • the marker for example, a marker that reacts to near infrared light or ultraviolet light can be used.
  • the skeleton model of the foot of the subject (M) (three-dimensional foot A skeleton image) can be created. And while visualizing the skeletal model, the presence / absence and numerical value of the anomaly can be calculated, so it is possible to judge the abnormalities of the foot that could not be determined only by still images and moving images (by using this skeleton model). I can do it. At the same time, it is possible to quantify or quantify the anomaly at the anomalous location (using a skeleton model).
  • the motion in the skeleton model can be analyzed using the skeleton model and the captured moving image.
  • leg can be shown more effectively.
  • the subject is in the middle of growth, such as an elementary school student or a junior high school student, there is a high possibility that various abnormalities will be resolved and a normal state will be obtained by appropriate exercise and equipment.
  • an X-ray photograph taken from the entire circumference of the foot of the subject (M) can be easily acquired.
  • the skeleton model of the subject (M) can be easily created from the X-ray photograph, similarly to the CT scanner.
  • the movement of the skeleton model in the foot of the subject (M) can also be analyzed, so that the presence of an abnormality in the subject (M) and the quantitative analysis of the abnormality become more accurate. It is possible to present equipment and exercises that are well suited to (M).
  • a stereoscopic image is obtained using a still image obtained by photographing the foot of the subject (M) from the entire circumference without using a light beam having a human body permeability (for example, so-called “X-ray”). And the movement of the stereoscopic image can be analyzed from the stereoscopic image and the moving image. As a result, it is possible to more accurately determine the presence or absence of a foot abnormality or a location where a foot abnormality exists, as compared to a diagnosis based on a conventional two-dimensional image. Then, using the stereoscopic image and various skeleton data, a skeleton image of the foot of the subject (M) can be obtained as in the case of using the CT scan technique. Since so-called "X-rays" are not used, there is no risk of operators being exposed to radiation exposure.
  • a foot determination system 100 includes a platform 1 that is an imaging location where both feet of a subject M can be placed, and an imaging device 2 that captures an image of the subject M (for example, a camera: the same applies hereinafter). And an analysis device 10 for analyzing the image data of the subject M photographed by the imaging device 2 (camera).
  • a rail 4 is arranged around the table 1 (photographing location) concentrically with the table 1. The camera 2 is installed on the rail 4 so as to be movable.
  • the camera 2 is provided with a drive mechanism (traveling mechanism), and the camera 2 is moved on the rail 4 as indicated by an arrow AR by the drive mechanism (not shown). Move fast.
  • it may be non-uniform movement or intermittent movement.
  • the camera 2 moves on the rail 4 at a constant speed, for example, every time the camera 2 moves by a distance corresponding to the center angle of the concentric rail 4 of 30 ° (rail) 4 each time the camera 2 moves by a circumferential interval obtained by dividing the top 4 into 12 equally in the circumferential direction), the camera 2 captures a still image at that moment.
  • the camera 2 takes a picture from a position of about 30 ° upward from the horizontal direction, not a position just beside the top surface of the table 1 (horizontal position: the same position in the vertical direction). Is preferred. The same applies to videos. This is because the subject M's eyelids can be easily photographed and the foot feature points can be easily obtained by photographing from the position of about 30 ° upward from the horizontal direction with respect to the top surface of the table 1. Further, the surface (especially the top surface) of the table 1 is preferably provided with a geometric pattern (for example, a so-called “mosaic pattern”) in order to make it difficult to disturb the feature points of the foot.
  • a geometric pattern for example, a so-called “mosaic pattern”
  • the camera 2 has a function of shooting a moving image as well as a function of shooting a still image.
  • the subject M placed on the table 1 has a state in which the sole is in close contact with the table (so-called “solid foot” state) and a state in which the heel is lifted up as much as possible (so-called “toe standing” state). repeat.
  • the camera 2 shoots a still image while moving on the rail 4 around the table 1, while the subject M has his sole in close contact with the table (solid foot), and the heel is lifted up as much as possible ( Take a video of how to repeat the toe.
  • a portion corresponding to the toe of the subject M's foot on the table 1 may be configured to be movable downward, and the motion of the subject M raising and lowering the toe may be captured as a still image and a moving image. Since the action of raising and lowering the toes is not muscle driven, it is preferable for determining skeletal abnormalities.
  • the camera 2 has light of a specific wavelength ( You may attach the filter which permeate
  • a new reference point is set by giving information on light of a specific wavelength (light of a specific color) from outside the system 100 or by attaching a marker to the skin of the subject M.
  • a marker for example, a marker that reacts to near infrared light or ultraviolet light can be used.
  • a plurality of (for example, two) cameras are prepared, and one camera is on the rail 4.
  • the still camera may be photographed at regular intervals while moving the camera, and the other camera may be photographed while moving on the rail 4.
  • the camera 2 is moving around the base 1 (on the rail 4) at a constant speed.
  • the camera 2 is fixed at a predetermined position (fixed point) and the base 1 is fixed. May be rotated at a constant speed (that is, rotating). Also in this case, it may be an inconstant speed movement or an intermittent movement.
  • Still image data and moving image data captured by the camera 2 are transmitted to the analysis device 10.
  • the camera 2 and the analysis device 10 are connected wirelessly.
  • the still image data and the moving image data are transmitted from the camera 2 to the analysis device 10 by radio.
  • the signal line SR is connected to the camera 2 and the analysis device 10, but the signal line SR is intended to include either wireless or wired, and still image data and moving image data are transmitted to the analysis device 10 wirelessly or It is transmitted by wire.
  • the still image data and moving image data are wired (for example, for signal transmission). Cable) to the analysis device 10. Also in this case, it is possible to transmit data wirelessly.
  • the analysis device 10 shown in FIG. 1 will be described with reference to FIGS.
  • the analysis device 10 surrounded by a broken line includes a stereoscopic image creation block 10A, a stereoscopic image motion analysis block 10B, a skeleton model creation block 10C, It has a skeletal model motion analysis block 10D, an abnormal site identification block 10E, an abnormal site quantification block 10F, a storage block 10F, and a comparison block 10H.
  • Reference numerals 10I and 10O denote an input side interface and an output side interface, respectively.
  • the analysis device 10 is connected to the display device 20 arranged outside via the information signal lines IL16 and IL19, and the exercise / apparatus determination device 30 arranged on the outside and the information signal lines IL16 to IL17 and IL19 to 20 Connected through.
  • the type of information exchanged between the blocks via the information signal line IL is indicated by a symbol “A” for still image data, a symbol “B” for moving image data, and a stereoscopic image data by The skeleton model data is indicated by a symbol “D”.
  • the stereoscopic image creation block 10A receives still image data captured by the camera 2 via the input side interface 10I and the information signal line IL1, and based on the still image data, the foot of the subject M (from the sole to the heel) 3, for example, a part reaching the lower knee) (see step S ⁇ b> 3 in FIG. 3).
  • the still image data is, for example, a still image of the foot part of the subject M (location from the sole to the upper part of the heel and below the knee), and is an image related to the state of the solid foot, the state of standing on the toe, and the state therebetween. Includes images while moving the toes up and down.
  • stereoscopic image creation block 10A When creating a stereoscopic image in the stereoscopic image creation block 10A, for example, existing (commercially available) software is used. Then, in consideration of the characteristics of the subject M and the like, it is created while processing on a case-by-case basis. Also in other blocks described later (stereoscopic image motion analysis block 10B, skeleton model creation block 10C, skeleton model motion analysis block 10D, abnormal site identification block 10E, abnormal site quantification block 10F, storage block 10G, comparison block 10H) Similar to the image creation block 10A, the necessary processing is executed while processing on a case-by-case basis using existing (commercially available) software in consideration of the characteristics of the subject M and the like.
  • existing (commercially available) software Similar to the image creation block 10A, the necessary processing is executed while processing on a case-by-case basis using existing (commercially available) software in consideration of the characteristics of the subject M and the like.
  • the stereoscopic image data created by the stereoscopic image creation block 10A is transmitted to the stereoscopic image motion analysis block 10B via the information signal line IL2, and is further transmitted to the skeleton model creation block 10C via the information signal line IL3. It is transmitted to the abnormal part specifying block 10E via the signal line IL4.
  • the stereoscopic image motion analysis block 10B receives the stereoscopic image data from the stereoscopic image creation block 10A via the information signal line IL2, and at the same time, the moving image data captured by the camera 2 via the input interface 10I and the information signal line IL5 (
  • the subject M receives moving image data that repeats the state of a solid foot and a toe standing on the table 1, or moving image data that repeats a motion of raising and lowering the toes), and based on the stereoscopic image data and the moving image data, a stereoscopic image (E.g., whether or not there is an abnormality in the heel raising / lowering and toe raising / lowering exercises) (see step S6 in FIG. 3).
  • the motion analysis data of the stereoscopic image analyzed by the stereoscopic image motion analysis block 10B is transmitted to the comparison block 10H via the information signal line IL6, and the skeleton model motion via the information signal line IL7 branched from the information signal line IL6. It is transmitted to the analysis block 10D.
  • the skeletal model creation block 10C receives the stereoscopic image data from the stereoscopic image creation block 10A via the information signal line IL3, and the skeleton model data (for example, the existing foot part) from the storage block 10G via the information signal line IL8. 3), and has a function of creating a skeleton model of a subject's foot (three-dimensional skeleton image) based on the stereoscopic image data and the skeleton data (FIG. 3). Step S7).
  • the skeletal model data created by the skeletal model creation block 10C is transmitted to the abnormal site specifying block 10E via the information signal line IL9, and is also transmitted to the skeletal model motion analysis block 10D via the information signal line IL10.
  • the skeletal model motion analysis block 10D receives the skeleton model data from the skeleton model creation block 10C via the information signal line IL10, and the moving image data captured by the camera 2 via the input side interface 10I and the information signal line IL11. And the motion of the skeletal model based on the skeletal model data and the moving image data (the moving image in which the subject M repeats the state of the solid foot and the toe standing on the table 1, or the moving image in which the toe moves up and down). It has a function of analyzing (see step S8 in FIG. 3). Since the motion of the skeletal model is analyzed, unlike a CT scanner, it is possible to more accurately determine the presence or absence of a foot abnormality or the location where a foot abnormality exists.
  • a stereoscopic image motion from the stereoscopic image motion analysis block 10B via the information signal lines IL6 and IL7. Analysis data may be acquired.
  • the motion analysis data of the skeleton model analyzed by the skeleton model motion analysis block 10D is transmitted to the comparison block 10H via the information signal line IL12.
  • the abnormal part specifying block 10E is obtained by the image data (still image data and moving image data: moving image data taken by the subject M on the table 1 on the table 1 via the input side interface 10I and the information signal line IL13.
  • the abnormal part specifying block 10E receives the stereoscopic image data from the stereoscopic image creation block 10A via the information signal line IL4, and refers to the stereoscopic image data in addition to the image data (still image data and moving image data) and examinees the subject. It is also possible to specify the presence / absence of an abnormality and the abnormal part in M's foot (see step S5 in FIG. 3).
  • the abnormal part specifying block 10E receives the skeletal model data from the skeletal model creation block 10C via the information signal line IL9, and also specifies the presence / absence and abnormal part of the foot of the subject M with reference to the skeletal model data. You can also By using this skeletal model, it is possible to determine abnormalities in the foot that could not be determined only by still images and moving images. Data relating to the abnormal part specified by the abnormal part specifying block 10E is transmitted to the abnormal part quantifying block 10F via the information signal line IL14.
  • the abnormal part quantification block 10F receives data relating to the abnormal part from the abnormal part specifying block 10E via the information signal line IL14, and quantifies and quantifies the degree of abnormality in the abnormal part based on the data relating to the abnormal part. It has a function.
  • the abnormal part quantification block 10F receives the image data photographed by the camera 2 via the input side interface 10I, the information signal line IL13, and the information signal line IL15 branched from the information signal line IL13.
  • the degree of abnormality in an abnormal part is quantified and quantified based on image data (still image data, moving image).
  • the memory block 10G stores normal foot and skeleton model data (normal value data: for example, moving image data in which a person having a normal skeleton repeats a solid foot state and a toe state).
  • the value data is transmitted to the comparison block 10H via the information signal line IL18 and used for comparison by the comparison block 10H.
  • the storage block 10G stores, for example, various data of the existing foot skeleton.
  • the skeleton data is transmitted to the skeleton model creation block 10C via the information signal line IL8, and the skeleton by the skeleton model creation block 10C. Used when creating models.
  • the comparison block 10H receives the skeletal model motion analysis data from the skeletal model motion analysis block 10D via the information signal line IL12, and the normal foot and skeleton model from the storage block 10G via the information signal line IL18. It has a function of receiving moving image data (normal value data) and comparing motion analysis data of the skeleton model with normal value data (see step S9 in FIG. 3).
  • the comparison block 10H receives the motion analysis data of the stereoscopic image from the stereoscopic image motion analysis block 10B via the information signal line IL6, and normal moving image data of the foot from the storage block 10G via the information signal line IL18. (Normal value data) is received and the motion analysis data of the stereoscopic image is compared with normal value data.
  • the comparison result between the motion analysis data of the skeleton model and the normal value data in the comparison block 10H and the comparison result of the motion analysis data of the stereoscopic image and the normal value data are displayed via the information signal line IL19 and the output side interface 10O. 20 and transmitted to the exercise / appliance determination device 30 via the information signal line IL19 and the output side interface 10O information signal line IL20.
  • the display device 20 has a function of displaying data relating to quantification and quantification of the degree of abnormality in the abnormal part transmitted from the abnormal part quantification block 10F of the analysis apparatus 10.
  • the display device 20 has a function of displaying the comparison result transmitted from the comparison block 10H of the analysis device 10.
  • the image (still image, moving image) analysis result, stereoscopic image analysis by the abnormal part quantification block 10F As a result, the skeleton model analysis result, the stereoscopic image motion analysis result by the comparison block 10H, and the skeleton model motion analysis result are displayed.
  • the exercise / appliance determination device 30 receives the comparison result transmitted from the comparison block 10H of the analysis device 10, and based on the comparison result, implements an appliance or exercise suitable for improving, treating, or suppressing abnormalities in the foot. It has a function to present (see step S10 in FIG. 3). Further, the exercise / appliance determination device 30 receives the data regarding the quantification and quantification of the degree of abnormality in the abnormal part transmitted from the abnormal part quantification block 10F of the analysis device 10, and based on the data, the abnormality of the foot It is also possible to present devices and exercises that are suitable for improving, treating, and suppressing the problem.
  • the motion / appliance determination device 30 improves and treats abnormalities in the foot according to each analysis level (image data analysis level, stereoscopic image analysis level, skeletal model analysis level, stereoscopic image motion analysis level, skeleton model motion analysis level). Can present equipment and exercise to suppress. Although not explicitly shown in FIG. 2, the above presentation in the exercise / appliance determination device 30 can be fed back to the analysis device 10.
  • Various function blocks 10A to 10H of the analysis apparatus 10 shown in FIG. 2 are configured by an information processing apparatus such as a computer.
  • the various functional blocks 10A to 10H can be configured by an operator having specialized knowledge.
  • a device that is suitable for improving, treating, and suppressing foot abnormalities, a motion that presents motion, and the device determination device 30 are configured by an information processing machine such as a computer. It is possible to use the operator having the function as the exercise / appliance determination device 30.
  • step S ⁇ b> 1 the camera 2 captures a still image of the foot of the subject M (location from the sole to the upper part of the heel and below the knee). Then, it is photographed that the subject M is placed on the table 1 (imaging location, FIG. 1) and repeats the state of the solid foot and the state of standing on the toes (or the state of raising and lowering the toes).
  • a moving image is shot in step S4. Step S4 will be described later. Still images and moving images are taken in the manner described above with reference to FIG. After capturing the still image in step S1, the process proceeds to step S2.
  • step S2 it is determined whether or not the shooting of the still image in step S1 has been completed and has been shot 360 degrees or over the entire circumference of the rail 4. If the shooting of the still image is not completed (“No” at step S2), the process returns to step S1 and the shooting of the still image is continued. If the shooting of the still image has been completed (step S2 is “Yes”), the process proceeds to step S3. In step S3, a stereoscopic image is created based on the captured still image (steps S1 and S2) in the stereoscopic image creation block 10A (FIG. 2) of the analysis apparatus 10.
  • step S4 which is executed at the same time as capturing a still image in step S1, a moving image of the foot of the subject M (location from the sole to the upper part of the heel and below the knee) by the camera 2 (the subject M is solid on the table 1). A video that repeats the state of the foot and the state of standing on the toe, or a video that raises and lowers the toes).
  • the moving image shooting is as described above with reference to FIG. Note that step S4 may be temporally mixed with step S1.
  • step S5 in the abnormal part specifying block 10E (FIG. 2), the presence / absence of an abnormality in the foot of the subject M and the abnormal part are specified based on the still image photographed in steps S1 and S2 and the moving picture photographed in step S4. .
  • step S5 in the abnormal part specifying block 10E, in addition to the still image and the moving image, the stereoscopic image created in step S3 can be referenced to specify whether or not there is an abnormality in the foot of the subject M and the abnormal part.
  • the abnormal part quantification block 10F quantifies the degree of abnormality in the abnormal part based on the still image and the moving image based on the data regarding the abnormal part specified by the abnormal part specifying block 10E. Quantification can also be performed.
  • step S6 the stereoscopic image motion analysis block 10B (FIG. 2) performs a motion analysis of the stereoscopic image based on the stereoscopic image created in step S3 and the moving image taken in step S4.
  • the result of the motion analysis of the stereoscopic image in step S6 is compared with a normal foot moving image (normal value) stored in the storage block 10G (FIG. 2) (see step S9). ), It is possible to clarify a device and exercise suitable for improving, treating, and suppressing abnormalities in the foot.
  • step S7 in the skeleton model creation block 10C, from the stereoscopic image created in step S3 and the skeleton data stored in the storage block 10G (for example, various skeleton data of the existing foot), the foot of the subject M A skeleton model (three-dimensional foot skeleton image) is created. Further, in step S7, with reference to the created skeletal model (in addition to the still images taken in steps S1 and S2 and the moving picture taken in step S4), an abnormality in the foot of subject M is detected in abnormal part specifying block 10E. After the presence / absence and the abnormal part are specified, the abnormal part quantification block 10F performs quantification and quantification of the degree of abnormality in the abnormal part of the foot of the subject M.
  • step S8 the skeleton model motion analysis block 10D analyzes the movement of the skeleton model based on the skeleton model created in step S7 and the moving image photographed in step S4.
  • the motion analysis data of the stereoscopic image created in step S6 can be referred to in addition to the skeleton model and the moving image.
  • step S9 in the comparison block 10H, the motion analysis result (analysis data) of the skeleton model analyzed in step S8 is compared with the motion (moving image data, normal value) of the normal skeleton model stored in the storage block 10G.
  • step S10 in the exercise / apparatus determination device 30 (FIG. 2), based on the comparison result between the skeletal model exercise in step S9 and the normal foot movement (normal value), the abnormalities in the foot are improved, treated, Present suitable instruments and exercises to control.
  • the abnormality of the foot is improved and treated based on the result of quantification and quantification of the degree of abnormality in the abnormal part in step S ⁇ b> 5 and step 7. It is also possible to present devices and exercises suitable for suppression.
  • a stereoscopic image of the foot of the subject M is created based on the captured still image, and the stereoscopic image and the data of the existing skeleton model are generated. It is possible to create a foot skeleton model (stereoscopic foot skeleton image) of the subject M. And while visually recognizing the skeletal model, it is possible to specify the presence / absence of abnormality, specify the abnormal part, and digitize it, so it is possible to determine abnormalities in the foot that could not be determined only with still images and movies Become. At the same time, it is possible to quantify or quantify the anomaly at the anomalous location (using a skeleton model). In addition, based on the captured still image and moving image, the presence or absence of an abnormality in the foot of the subject M and the abnormal part can be specified, quantified, and quantified with reference to the stereoscopic image.
  • the skeletal model and the captured moving image (the moving image in which the subject M repeats the state of the solid foot and the toe standing on the table 1, or the moving image in which the toes are raised and lowered), Can be analyzed. And by analyzing the motion of the skeletal model and comparing it with normal motion, it is possible to more accurately determine the presence or absence of foot abnormalities or the location where there are foot abnormalities, similar to the application of CT scan technology I can do it. As a result, devices and exercises suitable for improving, treating, and suppressing foot abnormalities can be presented more effectively than in the case based on conventional two-dimensional data.
  • the first embodiment it is possible to analyze a motion in a stereoscopic image using stereoscopic image data and moving image data.
  • a motion in a stereoscopic image By analyzing the movement of the stereoscopic image and comparing it with a normal motion, it is possible to determine the presence or absence of an abnormality in the foot or the location where the abnormality in the foot exists.
  • the presence / absence of abnormality in the foot of the subject M the abnormal part can be identified, quantified, and quantified based on the skeletal model, the captured still image, the moving image, and the stereoscopic image.
  • the identified abnormal part data, quantified and quantified data in the abnormal part it is possible to present a device and exercise suitable for improving, treating, and suppressing foot abnormalities.
  • a stereoscopic image is obtained using a still image obtained by photographing the foot of the subject M from the entire circumference without using a light beam having a human body permeability (for example, so-called “X-ray”). And the movement of the stereoscopic image can be analyzed from the stereoscopic image and the moving image. As a result, it is possible to more accurately determine the presence or absence of a foot abnormality or a location where a foot abnormality exists, as compared to a diagnosis based on a conventional two-dimensional image. Then, the skeleton image of the foot of the subject M can be obtained using the stereoscopic image, similarly to the case of using the CT scan technique. In this case, unlike the case where so-called “X-rays” are used, there is no need to handle radioactive materials, so there is no problem of exposure to operators and the like.
  • the camera 2 moves around the base 1, or the camera 1 is fixed at a fixed point and the base 1 rotates to thereby provide one or more. Still images and moving images are taken on the entire circumference of the foot of the subject M (for example, 12 places arranged at equal intervals around the center angle by 30 °) with a camera (for example, two cameras). ing.
  • the camera 2 or the table 1 (the foot of the subject M on the table) is fixed without rotating (the position of the table 1 and the camera 2 does not change relative to each other).
  • 4A is a virtual line extending in the circumferential direction, and twelve cameras 2 are arranged at equal intervals on the virtual line 4A.
  • the analysis device 10 see FIG. 1 is not shown.
  • FIGS. 5 to 7 A second embodiment of the present invention will be described with reference to FIGS.
  • the camera 2 used in the first embodiment shown in FIGS. 1 to 4 has the ability to capture a still image or a moving image, but cannot perform imaging using a light beam or the like having a human body permeability.
  • a skeleton photograph of the subject's foot is taken using a light beam having a human body permeability, such as so-called “X-ray”.
  • the second embodiment of FIGS. 5 to 7 will be described mainly with respect to differences from the first embodiment of FIGS. 1 to 4.
  • the same components as those in the first embodiment shown in FIGS. 1 to 4 are denoted by the same reference numerals.
  • the foot determination system 101 includes a table 1 configured to allow the subject M to place both feet, and an imaging device 3 (X-ray irradiation mechanism 3 ⁇ / b> A) that captures an image of the subject M. And an X-ray camera 3B) and an analysis device 11 for analyzing the image data of the subject M photographed by the imaging device 3.
  • the imaging device 3 is a device 3A (X-ray irradiation mechanism) having a function of irradiating a light beam having a human body permeability and a function of taking an image (X-ray photograph: X-ray photograph) by a light beam having a human body permeability.
  • the imaging device 3 ( X-ray camera) which has.
  • the imaging device 3 3 ⁇ / b> A, 3 ⁇ / b> B
  • the imaging device 3 is in a position just beside the top surface of the table 1 (horizontal position: the same position in the vertical direction). It is preferable to take a picture from a position of about 30 ° upward from the horizontal direction.
  • videos This is because the subject M's eyelids can be easily photographed and the foot feature points can be easily obtained by photographing from the position of about 30 ° upward from the horizontal direction with respect to the top surface of the table 1.
  • a rail 4 is disposed concentrically with the base 1 around the base 1, and an X-ray irradiation mechanism 3 ⁇ / b> A and an X-ray camera 3 ⁇ / b> B are movably provided on the rail 4.
  • the X-ray irradiation mechanism 3A and the X-ray camera 3B have a driving mechanism (traveling mechanism), and the X-ray irradiation mechanism 3A and the X-ray camera 3B move on the rail 4 at a constant speed (arrow AR). ). Also in the second embodiment, such movement is not limited to constant speed movement, and may be inconstant speed movement or intermittent movement.
  • the relative positions of the X-ray irradiation mechanism 3 ⁇ / b> A and the X-ray camera 3 ⁇ / b> B are point-symmetric about the stand 1 on the rail 4. Therefore, when X-rays are emitted from the X-ray irradiation mechanism 3A, an X-ray photograph of the foot of the subject M (on the sole from the sole to the upper part of the heel, for example, below the knee) is placed by the X-ray camera 3B. Taken.
  • the X-ray irradiation mechanism 3A and the X-ray camera 3B move by a distance corresponding to the center angle of the concentric rail 4 of 30 °, at predetermined intervals. Every time, that is, every time the X-ray irradiation mechanism 3A and the X-ray camera 3B move by a circumferential interval that divides the rail into 12 equal parts, the X-ray irradiation mechanism 3A and the X-ray camera 3B (Still image) can be taken.
  • the X-ray camera 3B has a function of taking an X-ray photograph as a still image and taking a normal moving image.
  • the subject M placed on the table 1 has a state in which the soles are in close contact with the table (so-called “solid foot” state) and a state in which the heel is lifted up as much as possible (so-called “toe standing” state). repeat.
  • the X-ray irradiation mechanism 3 ⁇ / b> A and the X-ray camera 3 ⁇ / b> B move on the rail 4 around the table 1 to take an X-ray photograph that is a still image, while the subject M is in close contact with the foot (solid foot) ) And a state where the heel is lifted up as much as possible (toe standing) as a video.
  • a part corresponding to the toe of the foot of the subject M on the table 1 is configured to be movable downward, and the operation of the subject M raising and lowering the toe is performed by an X-ray photograph and You may shoot with a video.
  • the X-ray irradiation mechanism 3A and the X-ray camera 3B move on the rail 4 to take X-ray photographs at regular intervals, and the other camera moves on the rail to take a moving image. Composed. Further, in the above description, it is described that the X-ray irradiation mechanism 3A and the X-ray camera 3B (and the moving image capturing camera) are moving around the table 1 at a constant speed.
  • the line camera 3B (and moving image shooting camera) may be fixed at a fixed point, and the table 1 may be rotated at a constant speed (that is, rotated) at the fixed position. Also in this case, it may be an inconstant speed movement or an intermittent movement.
  • X-ray photograph data and moving image data which are still images taken by the imaging device 3 (X-ray irradiation mechanism 3 ⁇ / b> A and X-ray camera 3 ⁇ / b> B), are transmitted to the analysis device 11.
  • the analysis device 11 X-ray photograph data and moving image data, which are still images taken by the imaging device 3 (X-ray irradiation mechanism 3 ⁇ / b> A and X-ray camera 3 ⁇ / b> B), are transmitted to the analysis device 11.
  • the analysis device 11 As shown in FIG. 5, when the X-ray irradiation mechanism 3 ⁇ / b> A and the X-ray camera 3 ⁇ / b> B are installed on the rail 4 and the X-ray photograph and the moving image are taken while moving on the rail 4, the X-ray irradiation is performed.
  • the mechanism 3A, the X-ray camera 3B, and the analysis device 11 are connected wirelessly, and the X-ray photograph data and moving image data are transmitted from the X-ray camera 3B to the analysis device 11 by wireless.
  • FIG. 5 an image in which X-ray photograph data and moving image data are transmitted to the analysis device 11 is indicated by a signal line SR.
  • X-ray photograph data is used. It is also possible to send the moving image data to the analysis device 11 by wire (for example, a signal transmission cable).
  • X-ray photograph data and moving image data can be transmitted to the analysis apparatus 11 by radio.
  • the analysis apparatus 11 shown in FIG. 5 will be described with reference to FIGS.
  • the light ray etc. which have a human body permeability are not used for image
  • the X-ray photograph of a test subject's ankle is image
  • the analysis device 11 of the second embodiment does not have blocks corresponding to the stereoscopic image creation block 10A and the stereoscopic image motion analysis block 10B in the analysis device 10 of the first embodiment.
  • the analysis apparatus 11 (the part surrounded by a broken line) includes a skeletal model creation block 11A, a skeletal model motion analysis block 11B, an abnormal part specifying block 11C, and an abnormal condition. It has a part quantification block 11D, a storage block 11E, and a comparison block 10F. Reference numerals 11I and 11O denote an input side interface and an output side interface, respectively.
  • the analysis device 11 is connected to an external display device 21 via information signal lines IL29 and IL32, and the exercise / appliance determination device 31 and information signal lines IL29 to 30 and IL32 to 33 are connected. It is connected.
  • the information exchanged between each block via the information signal line IL is X-ray photograph data indicated by a symbol “A”, moving image data indicated by a symbol “B”, and skeleton model data indicated by a symbol Indicated by “D”.
  • the skeletal model creation block 11A receives X-ray photograph data taken by the X-ray camera 3B via the input-side interface 11I and the information signal line IL21, and based on the X-ray photograph, the foot of the subject M (sole) To the upper part of the heel, for example, the part extending from below the knee) (see step S13 in FIG. 7).
  • the skeleton model is created in the skeleton model creation block 11A, the skeleton model is created on a case-by-case basis by taking into account the characteristics of the subject M using existing and commercially available software.
  • Various function blocks 11A to 11F of the analysis apparatus 11 shown in FIG. 6 are configured by an information processing apparatus such as a computer. However, the various functional blocks 11A to 11F can be configured by an operator having specialized knowledge.
  • a device that is suitable for improving, treating, and suppressing foot abnormalities, a motion that presents motion, and the device determination device 31 are configured by an information processing machine such as a computer. It is possible for an operator having a function to exercise and function as the instrument determination device 31. Although not clearly shown in FIG. 6, the above presentation in the exercise / appliance determination device 31 can be fed back to the analysis device 11.
  • step S11 an X-ray photograph (still image) of the foot of the subject M (a part from the sole to the upper part of the heel and below the knee) is taken by the X-ray irradiation mechanism 3A and the X-ray camera 3B.
  • step S12 it is determined whether or not X-ray photography has been taken over 360 degrees. If radiography has not been completed for 360 degrees (step S12 is “No”), the process returns to step S11.
  • step S12 If completed 360 degrees (step S12 is “Yes”), the process proceeds to step S13.
  • step S13 based on the X-ray photograph (taken from the entire circumference of the rail 4 concentric with the platform 1 on which the subject M is located) taken in steps S11 and S12 in the skeleton model creation block 11A (FIG. 6) of the analyzer 11. Create a skeletal model.
  • step S14 performed simultaneously with step S11 or with a slight time difference, the X-ray irradiation mechanism 3A and the X-ray camera 3B (and the camera for moving image shooting) use the foot of the subject M (from the sole to the heel). Above, below the knee). Then, the process proceeds to step S15.
  • step S15 in the abnormal part specifying block 11C (FIG. 6), based on the X-ray photograph taken in steps S11 and S12 and the moving picture taken in step S14, or based on the skeleton model created in step S13, Identify the presence or absence of abnormalities in the foot and the abnormal site.
  • step S15 the abnormal part quantification block 11D (FIG.
  • step S16 uses the numerical value of the degree of abnormality in the abnormal part based on the data regarding the abnormal part specified in the abnormal part specifying block 11C or directly based on the X-ray photograph and the moving image. Quantify and quantify. Then, the process proceeds to step S16.
  • step S16 in the skeleton model motion analysis block 11B, the movement of the skeleton model is analyzed based on the skeleton model created in step S13 and the moving image photographed in step S14. Then, the process proceeds to step S17.
  • step S17 in the comparison block 11F, the motion analysis result (analysis data) of the skeleton model analyzed in step S16 is compared with the motion (moving image data, normal value) of the normal skeleton model stored in the storage block 11E. Then, the process proceeds to step S18.
  • step S18 in the exercise / appliance determination device 31 (FIG. 6), based on the comparison result between the skeletal model exercise in step S17 and the normal foot movement (normal value), or in the abnormal part in step S15. Based on the results of quantification and quantification of the degree, a device and exercise suitable for improving, treating, and suppressing foot abnormalities are presented.
  • the X-ray photograph taken from the entire circumference of the foot of the subject M can be easily obtained.
  • the skeleton model of the subject M can be directly and easily created from the X-ray photograph as in the case of using the CT scanner.
  • the movement of the skeleton model in the foot of the subject M can also be analyzed, so the presence of an abnormality in the subject M and the quantitative analysis of the abnormality become more accurate, and the subject M is better.
  • Other configurations and operational effects of the second embodiment shown in FIGS. 5 to 7 are the same as those of the first embodiment shown in FIGS.
  • the illustrated embodiment is merely an example, and is not a description to limit the technical scope of the present invention.
  • a type in which the imaging device (camera or the like) moves on the rail is shown, but a type in which the imaging device does not move on the rail, for example, the imaging device floats or flies from the ground.
  • the moving type is also applicable in the present invention.
  • Abnormal site identification block 11D ... Abnormal site quantification block 11E ... Storage block 11F ... Comparison Block 11I: Input side interface 110: Output side interfaces 20, 21 ... display device 30, 31... Exercise, equipment determining device 100, 101 ... foot determination system IL1 ⁇ IL33 ⁇ information signal line M ⁇ subject SR ⁇ signal line

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Physiology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

本発明は、被験者の足部の異常を簡便且つ定量的に判断することが出来て、且つ、足部の動きをも考慮して異常を判断することが出来る足部判定システム及び方法の提供を目的としている。そのため、本発明の足部判定システム(100、101)は、(被験者Mが載る)撮影箇所(1:例えば台)と、当該撮影箇所(1)の周方向を相対的に等速移動する撮像装置(2、3)と、撮像装置(2、3)からの画像データ(静止画像データ、動画データ)が入力される解析装置(10)を備え、前記解析装置(10)は、画像データ(静止画像データ)に基づいて判断対象(例えば、被験者(M)の足裏から踵の上方、例えば膝下までの箇所:足部)の骨格モデルを作成する機能と、当該骨格モデルと画像データ(動画データ)に基づいて骨格モデルの動きを解析する機能を有している。

Description

足部判定システム及び方法
 本発明は、人間の足裏から踵の上方の部位における異常の有無を判定する技術に関する。
 足裏から踵の上方、例えば膝下までの箇所(以下、本明細書では「足部」と記載する)には、年齢や環境、その他の要因により、多様なタイプが存在している。
 ここで、踵の外反、外反母趾、小指の変形等、歩行に困難を招く恐れがある程度まで変形している場合、すなわち足部に異常が存在する場合がある。
 しかし、従来は、係る異常を簡便且つ定量的に判断する技術は存在しなかった。
 上述した足部の異常は、被験者の足部における骨格から判定することが可能であり、骨格から異常の程度を数値化することが出来るが、いわゆるレントゲン写真の様な二次元的な画像では異常の有無の判断と正確な数値化は困難である。
 CTスキャナーを用いても被験者の骨格を把握することは出来るが、CTスキャナーは全体の寸法が大きく、装置設置の初期費用が莫大である。それに加えて、被験者の足部の動きが制限されてしまうため、足部の動きによる解析が困難である。
 その他の従来技術として、シート式の圧力センサを用いて歩行能力を評価する技術が存在する(特許文献1参照)。しかし、係る従来技術(特許文献1)は、人間の足裏から踵の上方の部位における異常の有無を判定することは出来ない。
特開2014-94070号公報
 本発明は上述した従来技術の問題点に鑑みて提案されたものであり、被験者の足部の異常を簡便且つ定量的に判断することが出来て、且つ、足部の動きをも考慮して異常を判断することが出来る足部判定システム及び方法の提供を目的としている。
 本発明の足部判定システム(100、101)は、(被験者Mが載る)撮影箇所(1:例えば台)と、当該撮影箇所(1)の周方向を相対的に等速移動する撮像装置(2、3)と、撮像装置(2、3)からの画像データ(静止画像データ、動画データ)が入力される解析装置(10、11)を備え、前記解析装置(10、11)は、画像データ(静止画像データ)に基づいて判断対象(例えば、被験者(M)の足裏から踵の上方、例えば膝下までの箇所:足部)の骨格モデルを作成する機能と、当該骨格モデルと画像データ(動画データ)に基づいて骨格モデルの動きを解析する機能を有していることを特徴としている。
 また本発明の足部判定方法は、撮影箇所(1:例えば台)上に対象物(例えば被験者Mの足部)を載置し対象物を動かす(例えば、被験者Mがベタ足の状態とつま先立ちの状態を繰り返す)工程と、当該撮影箇所(1)の周方向を相対的に等速移動する撮像装置(2、3)により動いている対象物を全周方向から撮影する工程と、撮像装置(2、3)からの画像データ(静止画像データ、動画データ)を解析装置(10、11)に入力し、画像データ(静止画像データ)に基づいて判断対象(例えば、被験者Mの足裏から踵の上方、例えば膝下までの箇所:足部)の骨格モデルを作成する工程と、当該骨格モデルと画像データ(動画データ)に基づいて骨格モデルの動きを解析する工程を有することを特徴としている。
 ここで、(被験者Mが載る)撮影箇所(1:例えば台)と、当該撮影箇所(1)の周方向を相対的に等速移動する撮像装置(2、3)は、固定された撮影箇所(1)と、撮影箇所(1)と同心円状に配置された軌道(4:例えばレール)上を等速移動する撮像装置(2、3)との組み合わせを含む。ただし、固定された撮像装置(2、3)と、等速回転する撮影箇所(1:例えば台)との組み合わせも含む。
 また、前記撮像装置(2)は、静止画像を撮影する機能と、動画を撮影する機能を有する光学装置(例えばカメラ)のが好ましい。
 ただし、前記撮像装置(2)は、静止画像を撮影する機能を有する光学装置(例えばカメラ)と、動画を撮影する機能を有する光学装置(例えばカメラ)の組み合わせを含むことが出来る。
 この場合、前記解析装置(10)は、画像データ(静止画像データ)に基づいて判断対象(例えば、被験者(M)の足裏から踵の上方、例えば膝下までの箇所:足部)の立体画像を作成する機能と、作成された立体画像と骨格のデータ(例えば、足部の骨格の各種データ)から骨格モデルを作成する機能を有するのが好ましい。
 或いは、前記撮像装置(3)は、人体透過能を有する光線を照射する機能を有する装置(3A:例えば、X線照射装置)と、人体透過能を有する光線による画像(X線写真:レントゲン写真)を撮影する機能を有する装置(3B:例えばX線カメラ)の組み合わせであるのが好ましい。
 この場合、前記解析装置(11)は、画像データ(X線写真データ)から判断対象(例えば、被験者(M)の足裏から踵の上方、例えば膝下までの箇所:足部)の骨格モデルを直接作成する機能を有しているのが好ましい。
 本発明において、外からの光(例えば太陽光)が反射して画像が見えにくくなることを防止して、計測精度を向上するために、撮像装置(2、3)に特定の波長の光(特定の色の光)を透過するフィルタを付けることが好ましい。そして、系外から特定の波長の光(特定の色の光)の情報を付与するか、或いは、被験者(M)の皮膚にマーカを付けることにより、新たな基準点を設定して、新しい計測系を構成するのが好ましい。前記マーカとしては、例えば、近赤外線光或いは紫外線に反応するマーカを用いることが出来る。
 上述の構成を具備する本発明によれば、撮影された静止画像に基づいて、且つ、既存の骨格モデルのデータを用いて、被験者(M)の足部の骨格モデル(立体的な足部の骨格の画像)を作成することが出来る。
 そして骨格モデルを視認しつつ、異常の有無や数値化を行うことが出来るので、(この骨格モデルを用いることにより)静止画像及び動画のみでは判定することが出来なかった足部の異常を判断することが出来る。それと共に、(骨格モデルを用いて)異常個所における異常を数値化或いは定量化することが出来る。
 さらに、骨格モデル及び撮影された動画を用いて骨格モデルにおける運動を解析することが出来る。
 骨格モデルの動きを解析することにより、CTスキャン技術を適用するのと同様に、足部の異常の有無或いは足部異常の存在する箇所を更に正確に判断することが出来る。そして、足部の異常を改善、治療、抑制するのに好適な器具や運動を、より効果的に提示することが出来る。特に、小学生、中学生等、成長途中の段階の被験者であれば、適正な運動や器具により、各種異常が解消され、正常な状態になる可能性が高い。
 本発明によれば、X線照射機構(3A)及びX線カメラ(3B)を用いることにより、被験者(M)の足部の全周方向から撮影したX線写真を容易に取得することが出来る。そして、当該X線写真により、CTスキャナーと同様に、被験者(M)の骨格モデルを容易に作成することが出来る。
 そして、CTスキャナーとは異なり、被験者(M)の足部における骨格モデルにおける動きも解析することが出来るので、被験者(M)における異常の存在や、当該異常の定量的分析がより正確となり、被験者(M)に良好に適合した器具や運動を提示することが出来る。
 また本発明によれば、人体透過能を有する光線等(例えば、いわゆる「X線」)を使用することなく、被験者(M)の足部を全周方向から撮影した静止画像を用いて立体画像を作成し、当該立体画像と動画により立体画像の動きを解析することが出来る。その結果、従来の二次元画像に基づく診断等に比較して、足部の異常の有無或いは足部異常の存在する箇所を更に正確に判断することが出来る。
 そして、立体画像と各種骨格データとを用いて、CTスキャン技術を用いた場合と同様に、被験者(M)の足部の骨格画像を得ることが出来る。いわゆる「X線」を使用しないので、オペレーター等が放射線による被爆をこうむる恐れがない。
本発明の第1実施形態を示す説明図である。 第1実施形態における解析装置を示す機能ブロック図である。 第1実施形態における制御を示すフローチャートである。 第1実施形態の変形例を示す説明図である。 本発明の第2実施形態の説明図である。 第2実施形態における解析装置を示す機能ブロック図である。 第2実施形態における制御を示すフローチャートである。
 以下、添付図面を参照して、本発明の実施形態について説明する。
 先ず、図1、図2、図3を参照して、本発明の第1実施形態を説明する。
 図1において、第1実施形態に係る足部判定システム100は、被験者Mの両足を載置可能な撮影箇所である台1と、被験者Mの画像を撮影する撮像装置2(例えばカメラ:以下同じ)と、撮像装置2(カメラ)により撮影した被験者Mの画像データを解析する解析装置10を有している。
 台1(撮影箇所)の周囲には、台1と同心円状にレール4が配置されている。このレール4上を、カメラ2が移動可能に設置されている。
 明確には図示されていないが、カメラ2には駆動機構(走行機構)が設けられており、当該駆動機構(図示せず)により、矢印ARで示す様に、カメラ2はレール4上を等速移動する。ここで、不等速移動或いは断続的な移動等であっても良い。
 カメラ2はレール4上を等速移動しながら、所定間隔(或いは所定時間)毎に、例えばカメラ2が同心円状のレール4の中心角が30°に対応する距離だけ移動する度毎に(レール4上を円周方向に12等分した円周方向間隔分だけカメラ2が移動する度毎に)、カメラ2はその瞬間における静止画像を撮影する。
 図示はされていないが、カメラ2は台1の頂面に対して真横の位置(水平な位置:垂直方向について同一の位置)ではなく、水平方向から上方に約30°の位置から撮影するのが好ましい。動画についても同様である。台1の頂面に対して水平方向から上方に約30°の位置から撮影すれば、被験者Mの踝が撮影し易く、足の特徴点が取り易いからである。
 また、台1の表面(特に頂面)は、足の特徴点を乱し難いようにするため、幾何学的な模様(例えば、いわゆる「モザイク模様」)が付されているのが好ましい。
 ここでカメラ2は、静止画像を撮影する機能と共に、動画を撮影する機能を有している。
 例えば、台1に載った被験者Mは、足裏を台に密着させた状態(いわゆる「ベタ足」の状態)と、踵を出来る限り上方に持ち上げた状態(いわゆる「つま先立ち」の状態)とを繰り返す。カメラ2は台1の周囲のレール4上を移動しながら静止画像を撮影しつつ、被験者Mが足裏を台に密着させた状態(ベタ足)と、踵を出来る限り上方に持ち上げた状態(つま先立ち)とを繰り返す様子を動画として撮影する。
 図示はされていないが、台1における被験者Mの足のつま先に相当する部分を下方に移動可能に構成して、被験者Mがつま先を上げ下げする動作を静止画及び動画で撮影しても良い。つま先を上げ下げする動作は筋肉主導ではないので、骨格の異常を判定するのに好ましい。
 明確な図示はされていないが、外からの光(例えば太陽光)が反射して画像が見えにくくなることを防止して、計測精度を向上するために、カメラ2に特定の波長の光(特定の色の光)を透過するフィルタを付けても良い。また、システム100外から特定の波長の光(特定の色の光)の情報を付与するか、或いは、被験者Mの皮膚にマーカを付けることにより、新たな基準点を設定して、新しい計測系を構成することが出来る。前記マーカとしては、例えば、近赤外線光或いは紫外線に反応するマーカを用いることが出来る。
 ここで、静止画像を撮影するのと同時に動画を撮影する機能を有するカメラ2を1台用いることに代えて、複数台(例えば2台)のカメラを用意して、一方のカメラはレール4上を移動しつつ等間隔毎に静止画を撮影し、他方のカメラはレール4上を移動しつつ動画を撮影する様に構成しても良い。
 また、上述の説明では、カメラ2が台1の周囲(のレール4上)を等速移動している旨が記載されているが、カメラ2を所定位置(定点)に固定して、台1を等速回転運動(すなわち、自転)させても良い。この場合も、不等速移動或いは断続的な移動等であっても良い。
 カメラ2が撮影した静止画像データと動画データは、解析装置10に送信される。
 ここで、図1で示す様に、カメラ2がレール4上に設置され、レール4上を移動しながら静止画像及び動画を撮影する場合には、カメラ2と解析装置10は無線で接続される。その場合、前記静止画像データと動画データは、無線によりカメラ2から解析装置10に送信される。図1においては、カメラ2と解析装置10は信号ラインSRが接続されているが、信号ラインSRは無線と有線の何れを含む趣旨であり、静止画像データ及び動画データは解析装置10へ無線或いは有線により送信される。
 図示はされていないが、上記カメラ2を定点に固定して、台1を当該固定位置で等速回転運動(自転)させる場合には、前記静止画像データと動画データは有線(例えば信号伝達用ケーブル)で解析装置10に送ることが出来る。この場合も、無線でデータを送信することが可能である。
 図1で示す解析装置10について、図2、図3を参照して説明する。
 第1実施形態で用いられる解析装置10を示す図2(機能ブロック図)において、破線で囲んで示す解析装置10は、立体画像作成ブロック10A、立体画像運動解析ブロック10B、骨格モデル作成ブロック10C、骨格モデル運動解析ブロック10D、異常部位特定ブロック10E、異常部位定量化ブロック10F、記憶ブロック10F、比較ブロック10Hを有している。なお符号10I、10Oは、それぞれ入力側インターフェース、出力側インターフェースを示している。
 解析装置10は、外部に配置された表示装置20と情報信号ラインIL16、IL19を介して接続されており、外部に配置された運動、器具決定装置30と情報信号ラインIL16~17、IL19~20を介して接続されている。
 なお、図2において、各ブロック間で情報信号ラインILを介して授受される情報の種類を、静止画像データは符号「A」で示し、動画データは符号「B」で示し、立体画像データは符号「C」で示し、骨格モデルデータは符号「D」で示す。
 立体画像作成ブロック10Aは、入力側インターフェース10I及び情報信号ラインIL1を介してカメラ2で撮影された静止画像データを受信し、当該静止画像データに基づいて、被験者Mの足部(足裏から踵の上方、例えば膝下に至る箇所)の立体画像を作成する機能を有している(図3のステップS3参照)。
 静止画像データは、例えば被験者Mの足部(足裏から踵の上方、膝下に至る箇所)の静止画像であって、ベタ足の状態とつま先立ちの状態とその間の状態に係る画像である。つま先を上下動する間の画像をも含む。
 立体画像作成ブロック10Aにおいて立体画像を作成するに際して、例えば、既存の(市販の)ソフトウェアが用いられる。そして、被験者Mの特質等を考慮して、ケース・バイ・ケースで処理しつつ作成する。
 後述するその他のブロック(立体画像運動解析ブロック10B、骨格モデル作成ブロック10C、骨格モデル運動解析ブロック10D、異常部位特定ブロック10E、異常部位定量化ブロック10F、記憶ブロック10G、比較ブロック10H)においても立体画像作成ブロック10Aと同様に、被験者Mの特質等を考慮しつつ、既存の(市販の)ソフトウェアを用いて、ケース・バイ・ケースで処理しつつ、必要な処理を実行する。
 立体画像作成ブロック10Aで作成された立体画像データは、情報信号ラインIL2を介して立体画像運動解析ブロック10Bに送信され、また情報信号ラインIL3を介して骨格モデル作成ブロック10Cに送信され、さらに情報信号ラインIL4を介して異常部位特定ブロック10Eに送信される。
 立体画像運動解析ブロック10Bは、情報信号ラインIL2を介して立体画像作成ブロック10Aから立体画像データを受信すると共に、入力側インターフェース10I及び情報信号ラインIL5を介してカメラ2で撮影された動画データ(被験者Mが台1上でベタ足の状態とつま先立ちの状態を繰り返す動画のデータ、或いはつま先を上げ下げする運動を繰り返す動画のデータ)を受信し、当該立体画像データ、動画データに基づいて、立体画像の運動解析(例えば、かかとの上げ下げ、つま先の上げ下げの運動に異常があるか否かの判断)を行う機能を有している(図3のステップS6参照)。立体画像の動きを解析することにより、足部の異常の有無或いは足部異常の存在する箇所を更に正確に判断することが出来る。
 立体画像運動解析ブロック10Bで解析された立体画像の運動解析データは、情報信号ラインIL6を介して比較ブロック10Hに送信され、また情報信号ラインIL6から分岐した情報信号ラインIL7を介して骨格モデル運動解析ブロック10Dに送信される。
 骨格モデル作成ブロック10Cは、情報信号ラインIL3を介して立体画像作成ブロック10Aから立体画像データを受信すると共に、情報信号ラインIL8を介して記憶ブロック10Gから骨格のデータ(例えば、既存の足部の骨格の各種データ)を受信し、当該立体画像データと骨格のデータに基づいて被験者の足部の骨格モデル(立体的な足部の骨格の画像)を作成する機能を有している(図3のステップS7参照)。
 骨格モデル作成ブロック10Cで作成された骨格モデルデータは、情報信号ラインIL9を介して異常部位特定ブロック10Eに送信され、また情報信号ラインIL10を介して骨格モデル運動解析ブロック10Dに送信される。
 骨格モデル運動解析ブロック10Dは、情報信号ラインIL10を介して骨格モデル作成ブロック10Cから骨格モデルデータを受信すると共に、入力側インターフェース10I及び情報信号ラインIL11を介してカメラ2で撮影された動画データを受信し、当該骨格モデルデータと動画データ(被験者Mが台1上でベタ足の状態とつま先立ちの状態を繰り返す動画、或いは、つま先を上下動するのを繰り返す動画)に基づいて骨格モデルの動きを解析する機能を有している(図3のステップS8参照)。骨格モデルの動きを解析するため、CTスキャナーとは異なり、足部の異常の有無或いは足部異常の存在する箇所を更に正確に判断することが出来る。
 なお、骨格モデル運動解析ブロック10Dが骨格モデルの動きを解析するために、前記骨格モデルデータと動画データに加えて、情報信号ラインIL6、IL7を介して立体画像運動解析ブロック10Bから立体の画像運動解析データを取得する場合がある。
 骨格モデル運動解析ブロック10Dで解析された骨格モデルの運動解析データは、情報信号ラインIL12を介して比較ブロック10Hに送信される。
 異常部位特定ブロック10Eは、入力側インターフェース10I及び情報信号ラインIL13を介して、カメラ2からの撮影された画像データ(静止画像データ及び動画データ:動画データは、被験者Mが台1上でベタ足の状態とつま先立ちの状態を繰り返す動画のデータ、或いはつま先の上下動を繰り返す動画のデータ)を受信し、当該画像データ(静止画像データ及び動画データ)に基づいて被験者Mの足部における異常の有無と異常部位を特定する機能を有している(図3のステップS5参照)。
 異常部位特定ブロック10Eは、情報信号ラインIL4を介して立体画像作成ブロック10Aから立体画像データを受信し、前記画像データ(静止画像データ及び動画データ)に加えて当該立体画像データも参照して被験者Mの足部における異常の有無と異常部位を特定することも出来る(図3のステップS5参照)。
 異常部位特定ブロック10Eは、情報信号ラインIL9を介して骨格モデル作成ブロック10Cから骨格モデルデータを受信し、当該骨格モデルデータも参照して被験者Mの足部における異常の有無と異常部位を特定することも出来る。この骨格モデルを用いることにより、静止画像及び動画のみでは判定することが出来なかった足部の異常を判断することが出来る。
 異常部位特定ブロック10Eで特定された異常部位に関するデータは、情報信号ラインIL14を介して異常部位定量化ブロック10Fに送信される。
 異常部位定量化ブロック10Fは、情報信号ラインIL14を介して異常部位特定ブロック10Eから異常部位に関するデータを受信し、当該異常部位に関するデータに基づいて異常部位における異常の程度を数値化、定量化する機能を有している。
 ここで、異常部位定量化ブロック10Fは、入力側インターフェース10I、情報信号ラインIL13及び情報信号ラインIL13から分岐した情報信号ラインIL15を介して、カメラ2で撮影された画像データを受信して、当該画像データ(静止画像データ、動画)に基づいて異常部位における異常の程度の数値化、定量化を行う場合がある。
 異常部位定量化ブロック10Fで決定された異常の程度の数値化、定量化に関するデータは、情報信号ラインIL16、出力側インターフェース10Oを介して表示装置20に送信されると共に、情報信号ラインIL16、出力側インターフェース10O、情報信号ラインIL17介して、運動、器具決定装置30に送信される。
 記憶ブロック10Gには、正常な足部、骨格モデルのデータ(正常値データ:例えば、正常な骨格を有する者がベタ足の状態とつま先立ちの状態を繰り返す動画データ)が記憶されており、当該正常値データは情報信号ラインIL18を介して比較ブロック10Hに送信され、比較ブロック10Hによる比較に用いられる。
 また記憶ブロック10Gには、例えば、既存の足部骨格の各種データが記憶されており、当該骨格データは情報信号ラインIL8を介して骨格モデル作成ブロック10Cに送信され、骨格モデル作成ブロック10Cによる骨格モデル作成に際して用いられる。
 比較ブロック10Hは、情報信号ラインIL12を介して骨格モデル運動解析ブロック10Dからの骨格モデルの運動解析データを受信すると共に、情報信号ラインIL18を介して記憶ブロック10Gから正常な足部、骨格モデルの動画データ(正常値データ)を受信し、当該骨格モデルの運動解析データと正常値データを比較する機能を有している(図3のステップS9参照)。
 また比較ブロック10Hは、情報信号ラインIL6を介して立体画像運動解析ブロック10Bからの立体画像の運動解析データを受信すると共に、情報信号ラインIL18を介して記憶ブロック10Gから正常な足部の動画データ(正常値データ)を受信し、当該立体画像の運動解析データと正常値データを比較する機能を有している。
 比較ブロック10Hにおける骨格モデルの運動解析データと正常値データとの比較結果と、立体画像の運動解析データと正常値データとの比較結果は、情報信号ラインIL19、出力側インターフェース10Oを介して表示装置20に送信されると共に、情報信号ラインIL19、出力側インターフェース10O情報信号ラインIL20を介して運動、器具決定装置30に送信される。
 表示装置20は、解析装置10の異常部位定量化ブロック10Fから送信された異常部位における異常の程度の数値化、定量化に関するデータを表示する機能を有している。
 また表示装置20は、解析装置10の比較ブロック10Hから送信された比較結果を表示する機能を有している。
 具体的には、「被験者の足部は異常か否か、異常の程度を定量的、数値化した結果」について、異常部位定量化ブロック10Fによる画像(静止画像、動画)解析結果、立体画像解析結果、骨格モデル解析結果と、比較ブロック10Hによる立体画像運動解析結果、骨格モデル運動解析結果が表示される。
 運動、器具決定装置30は、解析装置10の比較ブロック10Hから送信された比較結果を受信し、当該比較結果に基づいて足部の異常を改善、治療、抑制するのに好適な器具や運動を提示する機能を有している(図3のステップS10参照)。
 また運動、器具決定装置30は、解析装置10の異常部位定量化ブロック10Fから送信された異常部位における異常の程度の数値化、定量化に関するデータを受信し、当該データに基づいて足部の異常を改善、治療、抑制するのに好適な器具や運動を提示することも出来る。
 運動、器具決定装置30では、各解析レベル(画像データ解析レベル、立体画像解析レベル、骨格モデル解析レベル、立体画像運動解析レベル、骨格モデル運動解析レベル)に応じて足部の異常を改善、治療、抑制するための器具や運動を提示することが出来る。
 図2では明示されていないが、運動、器具決定装置30における上記提示を解析装置10にフィードバックすることが出来る。
 図2で示す解析装置10の各種機能ブロック10A~10Hは、コンピューター等の情報処理装置により構成される。ただし、各種機能ブロック10A~10Hは、専門知識を有するオペレーターにより構成することも可能である。
 また、足部の異常を改善、治療、抑制するのに好適な器具や運動を提示する運動、器具決定装置30は、例えばコンピューターの様な情報処理機械で構成されているが、専門的な知識を持ったオペレーターを運動、器具決定装置30とすることが可能である。
 次に、図1、図2で示す第1実施形態における制御を、主として図3を参照して説明する。
 図3において、ステップS1では、カメラ2により被験者Mの足部(足裏から踵の上方、膝下に至る箇所)の静止画像を撮影する。そして、被験者Mが台1(撮影箇所、図1)上に載り、ベタ足の状態とつま先立ちで立つ状態(或いは、つま先を上げ下げする状態)を繰り返すのを撮影する。
 ここで、ステップS1で静止画像を撮影するのと同時に、ステップS4で動画を撮影する。ステップS4については後述する。
 静止画像、動画の撮影については、図1を参照して上述した態様で行う。
 ステップS1の静止画像の撮影後、ステップS2に進む。
 ステップS2では、ステップS1の静止画像の撮影が完了して、360度或いはレール4の全周に亘って撮影されたか否かを判断する。
 静止画像の撮影が完了していなければ(ステップS2が「No」)、ステップS1に戻り、静止画像の撮影を続行する。静止画像の撮影が完了していれば(ステップS2が「Yes」)、ステップS3に進む。
 ステップS3では、解析装置10の立体画像作成ブロック10A(図2)において、撮影した静止画像(ステップS1、S2)に基づいて、立体画像を作成する。
 ステップS1で静止画像を撮影するのと同時に実行されるステップS4では、カメラ2により被験者Mの足部(足裏から踵の上方、膝下に至る箇所)の動画(被験者Mが台1上でベタ足の状態とつま先立ちの状態を繰り返す動画、或いは、つま先を上げ下げする動画)を撮影する。
 動画撮影については、図1を参照して上述した通りである。
 なお、ステップS4はステップS1と時間的に前後しても構わない。
 ステップS5では、異常部位特定ブロック10E(図2)において、ステップS1、S2で撮影した静止画像及びステップS4で撮影した動画に基づいて、被験者Mの足部における異常の有無と異常部位を特定する。
 またステップS5において、異常部位特定ブロック10Eにおいて、静止画像、動画に加えて、ステップS3で作成した立体画像を参照して、被験者Mの足部における異常の有無と異常部位を特定することも出来る。
 さらにステップS5において、異常部位定量化ブロック10F(図2)により、異常部位特定ブロック10Eで特定した異常部位に関するデータに基づいて、静止画像と動画に基づいて、異常部位における異常の程度の数値化、定量化を行うことも出来る。
 ステップS6では、立体画像運動解析ブロック10B(図2)において、ステップS3で作成した立体画像とステップS4で撮影した動画に基づいて、立体画像の運動解析を行う。
 図3では明示されてはいないが、ステップS6における立体画像の運動解析の結果を、記憶ブロック10G(図2)に記憶される正常な足部の動画(正常値)と比較する(ステップS9参照)ことにより、足部の異常を改善、治療、抑制するのに好適な器具や運動を明確することが可能である。
 ステップS7では、骨格モデル作成ブロック10Cにおいて、ステップS3で作成された立体画像と記憶ブロック10Gに記憶される骨格のデータ(例えば、既存の足部の骨格の各種データ)より、被験者Mの足部の骨格モデル(立体的な足部の骨格の画像)を作成する。
 またステップS7では、(ステップS1、S2で撮影した静止画像、ステップS4で撮影した動画に加えて)作成された骨格モデルを参照して、異常部位特定ブロック10Eにおいて被験者Mの足部における異常の有無と異常部位を特定した上、異常部位定量化ブロック10Fにおいて被験者Mの足部の異常部位における異常の程度の数値化、定量化を行う。
 ステップS8では、骨格モデル運動解析ブロック10Dにおいて、ステップS7で作成した骨格モデルとステップS4で撮影した動画に基づいて骨格モデルの動きを解析する。なお、骨格モデルの運動解析に際しては、骨格モデルと動画に加えて、ステップS6で作成した立体画像の運動解析データを参照することが出来る。
 ステップS9では、比較ブロック10Hにおいて、ステップS8で解析した骨格モデルの運動解析結果(解析データ)と記憶ブロック10Gに記憶される正常な骨格モデルの運動(動画データ、正常値)を比較する。
 図3には明示されていないが、ステップS9における骨格モデルの運動と正常な骨格モデルの運動(正常値)の比較結果、ステップS5、ステップ7における被験者Mの足部の異常の有無と異常部位、異常部位における異常の程度の数値化、定量化の結果は、表示装置20(図2)に表示される。
 ステップS10では、運動、器具決定装置30(図2)において、ステップS9の骨格モデルの運動と正常な足部の運動(正常値)の比較結果に基づいて、足部の異常を改善、治療、抑制するのに好適な器具や運動を提示する。
 図3には明示されていないが、運動、器具決定装置30において、ステップS5、ステップ7の異常部位における異常の程度の数値化、定量化の結果に基づいて、足部の異常を改善、治療、抑制するのに好適な器具や運動を提示することも出来る。
 図示の第1実施形態に係る足部判定システム100及び方法によれば、撮影された静止画像に基づいて被験者Mの足部の立体画像を作成し、当該立体画像と既存の骨格モデルのデータを用いて、被験者Mの足部の骨格モデル(立体的な足部の骨格の画像)を作成することが出来る。
 そして骨格モデルを視認しつつ、異常の有無、異常部位の特定、数値化を行うことが出来るので、静止画像及び動画のみでは判定することが出来なかった足部の異常を判断することが可能になる。それと共に、(骨格モデルを用いて)異常個所における異常を数値化或いは定量化することが出来る。
 また、撮影された静止画像及び動画に基づいて、立体画像を参照して、被験者Mの足部における異常の有無、異常部位を特定、数値化、定量化することが出来る。
 また第1実施形態によれば、骨格モデル及び撮影された動画(被験者Mが台1上でベタ足の状態とつま先立ちの状態を繰り返す動画、或いは、つま先を上げ下げする動画)に基づいて、骨格モデルにおける運動を解析することが出来る。そして骨格モデルの動きを解析し、正常な運動と比較することにより、CTスキャン技術を適用するのと同様に、足部の異常の有無或いは足部異常の存在する箇所を更に正確に判断することが出来る。
 その結果、足部の異常を改善、治療、抑制するのに好適な器具や運動を、従来の二次元的なデータに基づいた場合に比較してより効果的に提示することが出来る。
 さらに第1実施形態によれば、立体画像データ、動画データを用いて立体画像における運動を解析することが出来る。
 立体画像の動きを解析し、正常な運動と比較することにより、足部の異常の有無或いは足部異常の存在する箇所を判断することが出来る。そして異常が存在する場合には、足部の異常を改善、治療、抑制するのに好適な器具や運動を提示することが出来る。
 また、上述した様に、骨格モデル、撮影された静止画像、動画、立体画像に基づいて被験者Mの足部における異常の有無、異常部位を特定、数値化、定量化することが出来るので、当該特定された異常部位のデータ、異常部位における数値化、定量化されたデータを用いて、足部の異常を改善、治療、抑制するのに好適な器具や運動を、提示することが出来る。
 さらに第1実施形態によれば、人体透過能を有する光線等(例えば、いわゆる「X線」)を使用することなく、被験者Mの足部を全周方向から撮影した静止画像を用いて立体画像を作成し、当該立体画像と動画により立体画像の動きを解析することが出来る。その結果、従来の二次元画像に基づく診断等に比較して、足部の異常の有無或いは足部異常の存在する箇所を更に正確に判断することが出来る。
 そして、立体画像を用いて、CTスキャン技術を用いた場合と同様に、被験者Mの足部の骨格画像を得ることが出来る。この場合、いわゆる「X線」を用いた場合とは異なり、放射性物質を取り扱う必要がないので、オペレーター等の被爆という問題は生じない。
 次に図4を参照して、図1、図2、図3で示す第1実施形態の変形例を説明する。
 図1、図2、図3で示す第1実施形態では、台1周りをカメラ2が移動するか、或いは、カメラ2を定点に固定して、台1が回転することにより、1台或いは複数台(例えば2台)のカメラにより、被験者Mの足部の全周(例えば、中心角30°ずつ変化した円周状の等間隔に配置された12か所)における静止画像と動画を撮影している。
 それに対して、図4の変形例では、カメラ2或いは台1(台上の被験者Mの足部)は回転することなく固定されており(台1とカメラ2の相対的に位置が変化しない状態にされており)、円周状の等間隔に固定して配置された複数のカメラ(例えば、中心角θ=30°ずつ円周方向等間隔に配置された12台のカメラ)を有している。
 換言すれば、図4の変形例では、動いているのは台1上の被験者Mのみであり、被験者Mは、第1実施形態と同様に、足裏を台に密着させた状態と、つま先立ちの状態とを繰り返す(或いは、つま先を上げ下げするのを繰り返す)。
 図4における符号4Aは円周方向に延在する仮想線であり、仮想線4A上を等間隔に12台のカメラ2が配置されている。なお図4では、解析装置10(図1参照)の図示を省略している。
 図4の変形例では、複数台(例えば12台)のカメラの全てが静止画像を撮影し、動画を撮影する。そのため、カメラ2を台1と同心円状に移動させるために配置するレール4(図1)や駆動機構(走行機構)は不要である。
 図4の変形例におけるその他の構成と作用効果については、図1、図2、図3で示す第1実施形態と同様である。
 図5~図7を参照して、本発明の第2実施形態を説明する。
 図1~図4の第1実施形態で使用されるカメラ2は、静止画像或いは動画を撮影する能力を有しているが、人体透過能を有する光線等を用いた撮像は出来ない。
 それに対して図5~図7の第2実施形態では、人体透過能を有する光線等、例えば、いわゆる「X線」等を用いて被験者の足部の骨格写真を撮影している。
 以下、図5~図7の第2実施形態について、主として、図1~図4の第1実施形態とは異なる点を説明する。なお、図5~図7の第2実施形態において、図1~図4の第1実施形態と同様の部品には同一の符号を付して説明する。
 図5において、第2実施形態に係る足部判定システム101は、被験者Mが両足を載せることが出来る様に構成された台1、被験者Mの画像を撮影する撮像装置3(X線照射機構3AとX線カメラ3B)、撮像装置3により撮影した被験者Mの画像データを解析する解析装置11を有している。ここで、撮像装置3は、人体透過能を有する光線を照射する機能を有する装置3A(X線照射機構)と、人体透過能を有する光線による画像(X線写真:レントゲン写真)を撮影する機能を有する装置3B(X線カメラ)の組み合わせで構成されている。
 図示はされていないが、図5の第2実施形態においても、撮像装置3(3A、3B)は台1の頂面に対して真横の位置(水平な位置:垂直方向について同一の位置)ではなく、水平方向から上方に約30°の位置から撮影するのが好ましい。動画についても同様である。台1の頂面に対して水平方向から上方に約30°の位置から撮影すれば、被験者Mの踝が撮影し易く、足の特徴点が取り易いからである。
 第2実施形態では、台1の表面(特に頂面)に幾何学的な模様を付す必要はない。
 台1の周辺には台1と同心円状にレール4が配置されており、レール4上には、X線照射機構3AとX線カメラ3Bが移動可能に設けられている。X線照射機構3AとX線カメラ3Bには駆動機構(走行機構)がついており、当該駆動機構により、X線照射機構3AとX線カメラ3Bはレール4上を等速で移動する(矢印AR)。第2実施形態においても、係る移動は等速移動に限定されるものではなく、不等速移動或いは断続的な移動等であっても良い。
 ここで、X線照射機構3AとX線カメラ3Bの相対位置は、レール4上において、台1を中心として点対称となっている。そのため、X線照射機構3AからX線を照射すると、X線カメラ3Bにより、台1上に載った被験者Mの足部(足裏から踵の上方、例えば膝下に至る箇所)のX線写真が撮影される。
 図1~図4の第1実施形態と同様に、所定間隔毎に、例えばX線照射機構3AとX線カメラ3Bが同心円状のレール4の中心角が30°に対応する距離だけ移動する度毎に、すなわちレール上を12等分する円周方向間隔だけX線照射機構3AとX線カメラ3Bが移動する度毎に、X線照射機構3AとX線カメラ3Bはその瞬間におけるX線写真(静止画像)を撮影することが出来る。
 そしてX線カメラ3Bは静止画像であるX線写真を撮影すると共に、通常の動画を撮影する機能を有している。
 例えば、台1に載った被験者Mは、足裏を台に密着させた状態(いわゆる「ベタ足」の状態)と、踵を出来る限り上方に持ち上げた状態(いわゆる「つま先立ち」の状態)とを繰り返す。
 X線照射機構3AとX線カメラ3Bは台1の周囲のレール4上を移動して静止画像であるX線写真を撮影しつつ、被験者Mが足裏を台に密着させた状態(ベタ足)と、踵を出来る限り上方に持ち上げた状態(つま先立ち)とを繰り返す様子を動画として撮影する。
 図示はされていないが、第2実施形態においても、台1における被験者Mの足のつま先に相当する部分を下方に移動可能に構成して、被験者Mがつま先を上げ下げする動作をX線写真及び動画で撮影しても良い。
 ここで、静止画像であるX線写真を撮影するのと同時に動画を撮影する機能を有するX線カメラ3Bを1台用いることに代えて、X線以外の動画撮影用のカメラをもう1台設けることも出来る。その場合には、X線照射機構3AとX線カメラ3Bがレール4上を移動して等間隔毎にX線写真を撮影し、他方のカメラはレール上を移動しつつ動画を撮影する様に構成される。
 また上述の説明では、X線照射機構3AとX線カメラ3B(及び動画撮影用カメラ)が台1の周囲を等速移動している旨が記載されているが、X線照射機構3AとX線カメラ3B(及び動画撮影用カメラ)を定点に固定して、台1を当該固定位置で等速回転運動(すなわち、自転)させても良い。この場合も、不等速移動或いは断続的な移動等であっても良い。
 撮像装置3(X線照射機構3AとX線カメラ3B)が撮影した静止画像であるX線写真データと動画データは、解析装置11に送信される。
 ここで、図5で示す様に、X線照射機構3AとX線カメラ3Bがレール4上に設置され、レール4上を移動しながらX線写真及び動画を撮影する場合には、X線照射機構3AとX線カメラ3Bと解析装置11は無線で接続され、前記X線写真データと動画データは無線によりX線カメラ3Bから解析装置11に送信される。図5では、X線写真データと動画データが解析装置11に送信されるイメージを信号ラインSRで示している。
 一方、図示はされていないが、上記X線照射機構3AとX線カメラ3Bを定点に固定して、台1を当該固定位置で等速回転運動(自転)させる場合には、X線写真データと動画データは有線(例えば信号伝達用ケーブル)で解析装置11に送ることも可能である。もちろん、無線により解析装置11にX線写真データと動画データを送信することも出来る。
 図5で示す解析装置11について、図6、図7を参照して説明する。
 第1実施形態では、被験者Mの画像を撮影するのに人体透過能を有する光線等は使用していない。それに対して図6、図7の第2実施形態では、X線照射機構3A及びX線カメラ3Bを用いて被験者の足首のX線写真を撮影している。
 そのため第2実施形態では、被験者Mの足部の全周方向から撮影した当該X線写真により、被験者Mの骨格モデルを直接に作成することが出来、さらに当該骨格モデルの運動解析を行うことで、足部の異常の有無或いは足部異常の存在する箇所を正確に判断することが出来る。したがって、第2実施形態の解析装置11では、第1実施形態の解析装置10における立体画像作成ブロック10A、立体画像運動解析ブロック10Bに相当するブロックを有していない。
 第2実施形態における解析装置11の機能ブロックを示す図6において、解析装置11(破線で囲まれた部分)は、骨格モデル作成ブロック11A、骨格モデル運動解析ブロック11B、異常部位特定ブロック11C、異常部位定量化ブロック11D、記憶ブロック11E、比較ブロック10Fを有する。なお符号11I、11Oは、それぞれ入力側インターフェース、出力側インターフェースを示している。
 また、解析装置11は、外部に配置された表示装置21と情報信号ラインIL29、IL32を介して接続されており、運動、器具決定装置31と情報信号ラインIL29~30、IL32~33を介して接続されている。
 なお、図6において、各ブロック間で情報信号ラインILを介して授受される情報は、X線写真データは符号「A」で示し、動画データは符号「B」で示し、骨格モデルデータは符号「D」で示す。
 骨格モデル作成ブロック11Aは、入力側インターフェース11I及び情報信号ラインIL21を介してX線カメラ3Bで撮影されたX線写真データを受信し、当該X線写真に基づいて被験者Mの足部(足裏から踵の上方、例えば膝下に至る箇所)の骨格モデルを作成する機能を有する(図7のステップS13参照)。
 骨格モデル作成ブロック11Aにおいて骨格モデルを作成する際には、既存、市販のソフトウェアを用いて、被験者Mの特質等を考慮して、ケース・バイ・ケースで作成する。
 図6で示す解析装置11の各種機能ブロック11A~11Fは、コンピューター等の情報処理装置により構成される。ただし、各種機能ブロック11A~11Fは、専門知識を有するオペレーターにより構成することも可能である。
 また、足部の異常を改善、治療、抑制するのに好適な器具や運動を提示する運動、器具決定装置31は、例えばコンピューターの様な情報処理機械で構成されているが、専門的な知識を持ったオペレーターが運動、器具決定装置31としての機能を発揮することが可能である。
 図6においても明示されてはいないが、運動、器具決定装置31における上記提示を解析装置11にフィードバックすることが出来る。
 次に、第2実施形態における制御を、主として図7を参照して説明する。
 上述した様に第2実施形態では、立体画像を作成しないので、図3におけるステップS3、S6に相当する処理は実行しない。
 図7において、ステップS11では、X線照射機構3AとX線カメラ3Bにより被験者Mの足部(足裏から踵の上方、膝下に至る箇所)のX線写真(静止画像)を撮影する。
 ステップS12では、X線写真の撮影が360度に亘って撮影されたか否かを判断する。
 X線写真の撮影が360度に亘って完了していなければ(ステップS12が「No」)、ステップS11に戻る。360度に亘って完了していれば(ステップS12が「Yes」)、ステップS13に進む。ステップS13では、解析装置11の骨格モデル作成ブロック11A(図6)において、ステップS11、S12で撮影したX線写真(被験者Mが位置する台1と同心円状のレール4全周から撮影)に基づき、骨格モデルを作成する。
 図7において、ステップS11と同時に、或いは若干の時間差を伴って行われるステップS14では、X線照射機構3AとX線カメラ3B(及び動画撮影用カメラ)により被験者Mの足部(足裏から踵の上方、膝下に至る箇所)の動画を撮影する。そしてステップS15に進む。
 ステップS15では、異常部位特定ブロック11C(図6)において、ステップS11、S12で撮影したX線写真とステップS14で撮影した動画に基づき、或はステップS13で作成した骨格モデルに基づき、被験者Mの足部における異常の有無と異常部位を特定する。
 またステップS15では、異常部位定量化ブロック11D(図6)において、異常部位特定ブロック11Cで特定した異常部位に関するデータに基づき、或いは直接X線写真と動画に基づき、異常部位における異常の程度の数値化、定量化を行う。そしてステップS16に進む。
 ステップS16では、骨格モデル運動解析ブロック11Bにおいて、ステップS13で作成した骨格モデルとステップS14で撮影した動画に基づいて骨格モデルの動きを解析する。そしてステップS17に進む。
 ステップS17では、比較ブロック11Fにおいて、ステップS16で解析した骨格モデルの運動解析結果(解析データ)と記憶ブロック11Eに記憶される正常な骨格モデルの運動(動画データ、正常値)を比較する。そしてステップS18に進む。
 図7には明示されないが、ステップS17における骨格モデルの運動と正常な骨格モデルの運動(正常値)の比較結果、ステップS15における被験者Mの足部の異常の有無と異常部位、異常部位における異常の程度の数値化、定量化の結果は、表示装置21(図6)に表示される。
 ステップS18では、運動、器具決定装置31(図6)において、ステップS17の骨格モデルの運動と正常な足部の運動(正常値)の比較結果に基づき、或いは、ステップS15の異常部位における異常の程度の数値化、定量化の結果に基づき、足部の異常を改善、治療、抑制するのに好適な器具や運動を提示する。
 図示の第2実施形態に係る足部判定システム101及び方法によれば、X線照射機構3A及びX線カメラ3Bを用いているので、被験者Mの足部の全周方向から撮影したX線写真を容易に取得することが出来る。そして、当該X線写真により、CTスキャナーを用いた場合と同様に、被験者Mの骨格モデルを直接、容易に作成することが出来る。
 そして、CTスキャナーとは異なり、被験者Mの足部における骨格モデルにおける動きも解析することが出来るので、被験者Mにおける異常の存在や、当該異常の定量的分析がより正確となり、被験者Mに良好に適合した器具や運動を提示することが出来る。
 図5~図7の第2実施形態におけるその他の構成と作用効果については、図1~図4で示す第1実施形態と同様である。
 図示の実施形態はあくまでも例示であり、本発明の技術的範囲を限定する趣旨の記述ではない旨を付記する。
 例えば、図示の実施形態ではレール上を撮像装置(カメラ等)が移動するタイプが示されているが、レール上を撮像装置が移動しないタイプ、例えば、撮像装置が地上から浮遊し或いは飛行して移動するタイプも、本発明では適用可能である。
1・・・台(撮影箇所)
2・・・カメラ(撮像装置)
3・・・X線照射装置、X線カメラの組合せ(撮像装置)
3A・・・X線照射装置
3B・・・X線カメラ
4・・・レール
10、11・・・解析装置
10A・・・立体画像作成ブロック
10B・・・立体画像運動解析ブロック
10C・・・骨格モデル作成ブロック
10D・・・骨格モデル運動解析ブロック
10E・・・異常部位特定ブロック
10F・・・異常部位定量化ブロック
10G・・・記憶ブロック
10H・・・比較ブロック
10I・・・入力側インターフェース
10O・・・出力側インターフェース
11A・・・骨格モデル作成ブロック
11B・・・骨格モデル運動解析ブロック
11C・・・異常部位特定ブロック
11D・・・異常部位定量化ブロック
11E・・・記憶ブロック
11F・・・比較ブロック
11I・・・入力側インターフェース
11O・・・出力側インターフェース
20、21・・・表示装置
30、31・・・運動、器具決定装置
100、101・・・足部判定システム
IL1~IL33・・・情報信号ライン
M・・・被験者
SR・・・信号ライン

Claims (7)

  1.  撮影箇所と、当該撮影箇所の周方向を相対的に等速移動する撮像装置と、撮像装置からの画像データが入力される解析装置を備え、前記解析装置は、画像データに基づいて判断対象の骨格モデルを作成する機能と、当該骨格モデルと画像データに基づいて骨格モデルの動きを解析する機能を有していることを特徴とする足部判定システム。
  2.  前記撮像装置は、静止画像を撮影する機能と、動画を撮影する機能を有している請求項1の足部判定システム。
  3.  前記解析装置は、画像データに基づいて判断対象の立体画像を作成する機能と、作成された立体画像と骨格のデータから骨格モデルを作成する機能を有する請求項2の足部判定システム。
  4.  前記撮像装置は、人体透過能を有する光線を照射する機能を有する装置と、人体透過能を有する光線による画像を撮影する機能を有する装置の組み合わせである請求項1の足部判定システム。
  5.  撮影箇所上に対象物を載置し対象物を動かす工程と、当該撮影箇所の周方向を相対的に等速移動する撮像装置により動いている対象物を全周方向から撮影する工程と、撮像装置からの画像データを解析装置に入力し、画像データに基づいて判断対象の骨格モデルを作成する工程と、当該骨格モデルと画像データに基づいて骨格モデルの動きを解析する工程を有することを特徴とする足部判定方法。
  6.  前記撮像装置は、静止画像を撮影する機能と動画を撮影する機能を有しており、画像データに基づいて判断対象の立体画像を作成する工程と、作成された立体画像と骨格のデータから骨格モデルを作成する工程を有する請求項5の足部判定方法。
  7.  前記撮像装置は、人体透過能を有する光線を照射する機能を有する装置と、人体透過能を有する光線による画像を撮影する機能を有する装置の組み合わせであり、画像データから判断対象の骨格モデルを直接作成する工程を有している請求項5の足部判定方法。
PCT/JP2017/044824 2016-12-16 2017-12-14 足部判定システム及び方法 WO2018110623A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016244475A JP2020028310A (ja) 2016-12-16 2016-12-16 足部判定システム及び方法
JP2016-244475 2016-12-16

Publications (1)

Publication Number Publication Date
WO2018110623A1 true WO2018110623A1 (ja) 2018-06-21

Family

ID=62558781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044824 WO2018110623A1 (ja) 2016-12-16 2017-12-14 足部判定システム及び方法

Country Status (2)

Country Link
JP (1) JP2020028310A (ja)
WO (1) WO2018110623A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7450255B2 (ja) 2020-06-25 2024-03-15 和彦 山下 足部評価システム及び方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7405010B2 (ja) 2020-06-16 2023-12-26 コニカミノルタ株式会社 診断支援システム、診断支援装置及びプログラム
JP7463923B2 (ja) 2020-09-15 2024-04-09 コニカミノルタ株式会社 X線動態画像表示装置、プログラム、x線動態画像表示方法及びx線動態画像表示システム
CN116524441B (zh) * 2023-07-03 2023-09-01 四川顶圣工程项目管理有限公司 一种用于工程项目管理的施工现场监督方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005304905A (ja) * 2004-04-23 2005-11-04 Fuji Photo Film Co Ltd 放射線撮影装置
JP2011206148A (ja) * 2010-03-29 2011-10-20 Terumo Corp 三次元人体モデル生成装置、三次元人体モデル生成方法及び三次元人体モデル生成プログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005304905A (ja) * 2004-04-23 2005-11-04 Fuji Photo Film Co Ltd 放射線撮影装置
JP2011206148A (ja) * 2010-03-29 2011-10-20 Terumo Corp 三次元人体モデル生成装置、三次元人体モデル生成方法及び三次元人体モデル生成プログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7450255B2 (ja) 2020-06-25 2024-03-15 和彦 山下 足部評価システム及び方法

Also Published As

Publication number Publication date
JP2020028310A (ja) 2020-02-27

Similar Documents

Publication Publication Date Title
JP4484462B2 (ja) 医療用診断または治療装置における患者の位置決め方法および装置
WO2018110623A1 (ja) 足部判定システム及び方法
CN103845067B (zh) X射线成像设备和用于控制该x射线成像设备的方法
US20140303522A1 (en) Scoliosis evaluation system and evaluation apparatus applied to the same system
CN112450952A (zh) 设定x射线放射单元
US11207047B2 (en) Imaging systems and methods
CN106456100A (zh) 用于配置x射线成像系统的方法和系统
CN107405187A (zh) 跟踪颚的运动
US11684330B2 (en) Imaging systems and methods
CN104684479B (zh) 体动检测装置及方法
CN108024776A (zh) 放射断层摄影成像设备和程序
JP2010183976A (ja) 放射線治療装置制御装置および放射線照射方法
KR100967950B1 (ko) 씨티 시뮬레이션 장치 및 방법, 그것을 기록한 기록매체와프로그램
CN103584876A (zh) 用于x射线图像的自动质量控制
WO2011064875A1 (ja) 放射線治療装置制御方法および放射線治療装置制御装置
CN103505237B (zh) 经由计算机断层摄影的定量二维荧光透视
CN109171789A (zh) 一种用于影像诊断设备的校准方法和校准系统
US20230414185A1 (en) Imaging systems and methods
JP5297247B2 (ja) 放射線画像撮影装置
TWI681755B (zh) 脊椎側彎量測系統與方法
CN112716509B (zh) 一种医学设备的运动控制方法及系统
KR101587720B1 (ko) 의료 영상의 분산 이미지 노이즈를 활용한 골밀도 진단 장치 및 이의 골밀도 진단 정보 제공 방법
WO2018110624A1 (ja) 転倒解析システム及び解析方法
TWM579961U (zh) Spine measurement system
JP5547565B2 (ja) 放射線撮影装置および方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17879796

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17879796

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP