WO2018110243A1 - Battery unit, and power supply system - Google Patents

Battery unit, and power supply system Download PDF

Info

Publication number
WO2018110243A1
WO2018110243A1 PCT/JP2017/042123 JP2017042123W WO2018110243A1 WO 2018110243 A1 WO2018110243 A1 WO 2018110243A1 JP 2017042123 W JP2017042123 W JP 2017042123W WO 2018110243 A1 WO2018110243 A1 WO 2018110243A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
opening
power
closing
electrical machine
Prior art date
Application number
PCT/JP2017/042123
Other languages
French (fr)
Japanese (ja)
Inventor
隆之 竹内
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112017006265.9T priority Critical patent/DE112017006265T5/en
Priority to CN201780077110.XA priority patent/CN110167776B/en
Publication of WO2018110243A1 publication Critical patent/WO2018110243A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present disclosure relates to a battery unit and a power supply system applied to a vehicle or the like.
  • Patent Document 1 describes a power supply system including a lead storage battery and a lithium ion storage battery connected in parallel to the ISG.
  • a first switch is provided in the energization path between the ISG and the lead storage battery
  • a second switch is provided in the energization path between the ISG and the lithium ion storage battery.
  • each power supply from each storage battery to ISG and the charge from ISG to each storage battery are controlled by carrying out on-off control of each switch according to the state of each storage battery.
  • power can be applied to the engine output shaft (for example, motor assist) by supplying power from each storage battery to the ISG.
  • the electric power supply from a lead storage battery to ISG and the electric power supply from a lithium ion storage battery to ISG are each possible, and the electric power supply from any storage battery to ISG is performed selectively.
  • ISG driving requirements differ between ISG driving with the power of the lead storage battery and ISG driving with the power of the lithium ion storage battery.
  • the point of properly using the storage batteries connected in parallel to the ISG has not been studied, and it is considered that there is room for improvement.
  • the present disclosure has been made in view of the above circumstances, and a main purpose thereof is to provide a battery unit and a power supply system capable of optimizing the system while considering proper use of storage batteries in power feeding to rotating electrical machines. There is to do.
  • the present invention is applied to a vehicle including an engine, a rotating electrical machine that is drivingly connected to the output shaft of the engine and has functions of power generation and power running, and a first storage battery and a second storage battery that are connected in parallel to the rotating electrical machine
  • a battery unit that includes the second storage battery among the storage batteries and is connected to the first storage battery and the rotating electrical machine, A first terminal to which the first storage battery is connected; A second terminal to which the rotating electrical machine is connected;
  • a first opening / closing part provided in a first electrical path connecting the first terminal and the second terminal, and opening or closing the first electrical path;
  • a first electrical path provided in a second electrical path for connecting the second storage battery to a connection point closer to the second terminal than the first opening / closing portion; and opening or closing the second electrical path.
  • the second opening / closing portion has a larger allowable energization current than the first opening / closing portion, and the maximum allowable current during power feeding from the second storage battery to the rotating electrical machine is from the first storage battery to the rotating electrical machine. Is larger than the maximum allowable current when power is supplied to
  • the rotating electrical machine is connected to the first storage battery via the battery unit, and is also connected to the second storage battery in the battery unit. Therefore, by supplying power from each storage battery to the rotating electrical machine, power can be applied to the engine output shaft by powering driving of the rotating electrical machine. In this case, it is considered desirable to use each storage battery properly according to the driving force of the rotating electrical machine, for example.
  • the second opening / closing portion has a larger allowable energization current than the first opening / closing portion, and the maximum allowable current during power feeding from the second storage battery to the rotating electrical machine rotates from the first storage battery.
  • the maximum allowable current at the time of power feeding to the electric machine was made larger.
  • each storage battery can be used properly according to the driving force of the rotating electrical machine.
  • the power of the second storage battery is preferably used for powering driving of the rotating electrical machine, that is, the first storage battery and the second storage battery are properly used.
  • the opening / closing part can be appropriately set as a system while taking into consideration.
  • the first opening / closing part includes a plurality of switches connected in parallel
  • the second opening / closing part includes a plurality of switches connected in parallel
  • the second opening / closing part includes a plurality of switches connected in parallel
  • the number of parallel switches of the plurality of switches is larger than the number of parallel switches of the plurality of switches in the first opening / closing part.
  • the parallel number of the plurality of switches in the second opening / closing part is made larger than the parallel number of the plurality of switches in the first opening / closing part.
  • the allowable energization current of the second opening / closing part becomes larger than that of the first opening / closing part by making the number of paralleling of the second opening / closing parts larger than the parallel number of the first opening / closing parts.
  • the third means includes a control unit that controls opening and closing of the first opening and closing unit and the second opening and closing unit, the control unit closing the first opening and closing unit when starting the engine by the rotating electrical machine, Opening the second opening / closing part to supply power to the rotating electrical machine from the first storage battery, and opening the first opening / closing part when the driving power is applied to the output shaft by the rotating electrical machine; The second opening / closing part is closed, and power is supplied from the second storage battery to the rotating electrical machine.
  • the control unit in a state where the combustion of the engine is stopped, opens the first opening / closing unit, closes the second opening / closing unit, and applies the driving power.
  • the power supply system may have the following configuration. That is, in the fifth means, the rotary electric machine is applied to a vehicle equipped with an engine and is drive-coupled to the output shaft of the engine and has functions of power generation and power running, and is connected in parallel to the rotary electric machine.
  • a power supply system comprising a first storage battery and a second storage battery and capable of supplying power to the rotating electrical machine from each of the first storage battery and the second storage battery, wherein the rotating electrical machine and the first storage battery are connected to each other. Provided in one electrical path, and provided in a second electrical path connecting the rotating electrical machine and the second storage battery, and opening or closing the second electrical path.
  • a second opening / closing portion that closes, and the second opening / closing portion has a larger allowable energization current than the first opening / closing portion, and is at a maximum allowable when power is supplied from the second storage battery to the rotating electrical machine.
  • the current is It is larger than the maximum allowable current from 1 battery when power supply to the rotary electric machine.
  • FIG. 1 is an electric circuit diagram showing the power supply system of the first embodiment.
  • FIG. 2 is a diagram showing an energized state when the engine is started by ISG.
  • FIG. 3 is a diagram showing an energized state when power for traveling is provided by ISG.
  • FIG. 4 is a timing chart showing an aspect in the first embodiment.
  • FIG. 5 is an electric circuit diagram showing a battery unit of a modification of the first embodiment.
  • FIG. 6 is a diagram for explaining diagnosis of a switch drive signal.
  • FIG. 7 is a configuration diagram of a logic circuit for driving the bypass switch.
  • FIG. 1 is an electric circuit diagram showing the power supply system of the first embodiment.
  • FIG. 2 is a diagram showing an energized state when the engine is started by ISG.
  • FIG. 3 is a diagram showing an energized state when power for traveling is provided by ISG.
  • FIG. 4 is a timing chart showing an aspect in the first embodiment.
  • FIG. 5 is an electric circuit diagram showing a battery unit of a
  • FIG. 8 is a diagram showing a wiring state in a state where the substrate is assembled to the storage battery
  • FIG. 9 is a diagram for explaining means for protecting the IC.
  • FIG. 10 is a diagram for explaining a means for protecting the IC.
  • FIG. 11 is a diagram for explaining means for protecting the IC.
  • an in-vehicle power supply system that supplies power to various devices of the vehicle in a vehicle that runs using an engine (internal combustion engine) as a drive source is embodied.
  • this power supply system is a dual power supply system having a lead storage battery 11 as a first storage battery and a lithium ion storage battery 12 as a second storage battery.
  • an ISG 16 Integrated Starter Generator
  • the storage batteries 11 and 12 can be charged.
  • the ISG 16 functions as an electric motor.
  • each storage battery 11, 12 can supply power to the starter 13 and various electric loads 14, 15, 17.
  • the lead storage battery 11 and the lithium ion storage battery 12 are connected in parallel to the ISG 16, and the lead storage battery 11 and the lithium ion storage battery 12 are connected in parallel to the electric load 15.
  • the lead storage battery 11 is a well-known general-purpose storage battery.
  • the lithium ion storage battery 12 is a high-density storage battery that has less power loss during charging / discharging than the lead storage battery 11, and has a high output density and energy density.
  • the lithium ion storage battery 12 may be a storage battery having higher energy efficiency during charging / discharging than the lead storage battery 11.
  • the lithium ion storage battery 12 is comprised as an assembled battery which has a some single cell, respectively. These storage batteries 11 and 12 have the same rated voltage, for example, 12V.
  • the lithium ion storage battery 12 is housed in a housing case and configured as a battery unit U integrated with a substrate.
  • the battery unit U has output terminals T1, T2, T3, and T0.
  • the lead storage battery 11, the starter 13, and the electric load 14 are connected to the output terminals T1 and T0, and the ISG 16 and the electric load 14 are connected to the output terminal T2.
  • a load 17 is connected, and an electric load 15 is connected to the output terminal T3.
  • the electric loads 14, 15, and 17 have different requirements for the voltage of the supplied power supplied from the storage batteries 11 and 12.
  • the electric load 15 includes a constant voltage required load that is required to be stable so that the voltage of the supplied power is constant or at least fluctuates within a predetermined range.
  • the electric loads 14 and 17 are general electric loads other than the constant voltage request load. It can be said that the electric load 15 is a protected load. In addition, it can be said that the electric load 15 is a load that does not allow a power supply failure, and the electric loads 14 and 17 are loads that allow a power supply failure compared to the electric load 15.
  • the electrical load 15 that is a constant voltage required load include various ECUs such as a navigation device, an audio device, a meter device, and an engine ECU. In this case, by suppressing the voltage fluctuation of the supplied power, it is possible to suppress an unnecessary reset or the like in each of the above devices, and to realize a stable operation.
  • the electric load 15 may include a travel system actuator such as an electric steering device or a brake device.
  • Specific examples of the electric loads 14 and 17 include a seat heater, a rear window defroster heater, a headlight, a windshield wiper, and a blower fan for an air conditioner.
  • the rotating shaft of the ISG 16 is drivingly connected to an engine output shaft (not shown) by a belt or the like, and the rotating shaft of the ISG 16 is rotated by the rotation of the engine output shaft. That is, the ISG 16 generates power (regenerative power generation) by rotating the engine output shaft and the axle.
  • the battery unit U has an energization path L1 that connects the output terminals T1 and T2 and an energization path that connects a connection point N1 on the energization path L1 and the lithium ion storage battery 12 as an in-unit electrical path.
  • L2 is provided.
  • the first switch group SW1 is provided in the energization path L1
  • the second switch group SW2 is provided in the energization path L2.
  • the first switch group SW1 is provided closer to the lead storage battery 11 than the connection point N1, and the lithium ion storage battery 12 is connected to the connection point N1.
  • a second switch group SW2 is provided on the side.
  • Each of the first switch group SW1 and the second switch group SW2 includes a plurality of MOSFETs (semiconductor switches).
  • each switch group SW1, SW2 will be described.
  • semiconductor switches are connected in series so that the directions of the parasitic diodes are opposite to each other.
  • the two semiconductor switches Sa1 and Sa2 are connected in parallel with the parasitic diode cathode facing the output terminal T1
  • the two semiconductor switches Sa3 and Sa4 are oriented with the parasitic diode cathode facing the output terminal T2.
  • the semiconductor switches Sa1 and Sa2 and the semiconductor switches Sa3 and Sa4 have the parasitic diodes connected at the anodes.
  • the second switch group SW2 has the same basic configuration as the first switch group SW1 except for the number of semiconductor switches. Specifically, in the second switch group SW2, semiconductor switches are connected in series so that the directions of the parasitic diodes are opposite to each other. In this case, the three semiconductor switches Sb1, Sb2, Sb3 are connected in parallel with the parasitic diode cathode facing the connection point N1, and the three semiconductor switches Sb4 are oriented with the parasitic diode cathode facing the lithium ion storage battery 12 side. , Sb5, Sb6 are connected in parallel. In other words, the semiconductor switches Sb1, Sb2, and Sb3 and the semiconductor switches Sb4, Sb5, and Sb6 are connected with the parasitic diodes at the anodes.
  • switch groups SW1 and SW2 are configured as described above, for example, when the first switch group SW1 is turned off (opened), that is, when the semiconductor switches Sa1 to Sa4 are turned off.
  • the current flowing through the parasitic diode is completely blocked. That is, unintentional discharge from the lead storage battery 11 to the lithium ion storage battery 12 side and unintentional charging of the lead storage battery 11 from the lithium ion storage battery 12 side can be avoided.
  • the direction of the parasitic diode of the semiconductor switch in the first switch group SW1 may be changed so that the parasitic diode is connected between the cathodes.
  • the two semiconductor switches Sa1 and Sa2 are connected in parallel so that the anode of the parasitic diode is on the output terminal T1 side, and the two semiconductor switches Sa3 are on the orientation where the anode of the parasitic diode is on the output terminal T2 side.
  • Sa4 may be connected in parallel. The same applies to the second switch group SW2.
  • an IGBT or a bipolar transistor can be used instead of the MOSFET.
  • a diode is connected in parallel to each semiconductor switch instead of the parasitic diode.
  • one end of the branch path L3 is connected to the connection point N2 between the output terminal T1 and the first switch group SW1 in the energization path L1, and the lithium ion storage battery 12 and the second switch group SW2 are connected in the energization path L2.
  • One end of the branch path L4 is connected to the connection point N4 between the two, and the other ends of the branch paths L3 and L4 are connected at an intermediate point N3. Further, the intermediate point N3 and the output terminal T3 are connected by the energization path L5.
  • the branch paths L3 and L4 are provided with a third switch group SW3 and a fourth switch group SW4, respectively.
  • the switch groups SW3 and SW4 are each composed of a semiconductor switch such as a MOSFET. Power can be supplied from the storage batteries 11 and 12 to the electric load 15 through the paths L3 to L5.
  • the battery unit U is provided with bypass paths L0 and L6 that allow the lead storage battery 11 to be connected to the electric load 15 without using the switch groups SW1 to SW4 in the unit.
  • the battery unit U is provided with a bypass path L0 that connects the output terminal T0 and the connection point N1 on the energization path L1, and a bypass path L6 that connects the connection point N1 and the output terminal T3. Is provided.
  • a bypass switch 21 is provided on the bypass path L0, and a bypass switch 22 is provided on the bypass path L6.
  • the bypass switches 21 and 22 are, for example, normally closed relay switches.
  • bypass switch 21 By closing the bypass switch 21, the lead storage battery 11 and the electrical load 15 are electrically connected even when the first switch group SW1 is off (open). Further, by closing both bypass switches 21 and 22, the lead storage battery 11 and the electrical load 15 are electrically connected even when all the switch groups SW1 to SW4 are off (open). For example, when the power switch (ignition switch) of the vehicle is turned off, dark current is supplied to the electric load 15 via the bypass switches 21 and 22.
  • the bypass path L0 and the bypass switch 21 can be provided outside the battery unit U.
  • the battery unit U includes a control device 50 that controls on / off (opening / closing) of the switch groups SW1 to SW4 and the bypass switches 21 and 22.
  • the control device 50 is constituted by a microcomputer including a CPU, a ROM, a RAM, an input / output interface, and the like.
  • An ECU 100 outside the battery unit U is connected to the control device 50. That is, the control device 50 and the ECU 100 are connected by a communication network such as CAN and can communicate with each other, and various data stored in the control device 50 and the ECU 100 can be shared with each other.
  • the ECU100 performs engine idling stop control.
  • the idling stop control stops the combustion of the engine when a predetermined automatic stop condition is satisfied, and then restarts the engine when a predetermined restart condition is satisfied.
  • the automatic stop condition includes, for example, that the vehicle speed of the host vehicle is in the engine automatic stop speed range (for example, vehicle speed ⁇ 10 km / h) and the accelerator operation is released or the brake operation is performed. included.
  • the restart condition includes, for example, that an accelerator operation is started and a brake operation is released.
  • the control device 50 controls on / off of each of the switch groups SW1 to SW4 based on the storage state of each of the storage batteries 11 and 12 and a command value from the ECU 100 which is the host control device. Thereby, charging / discharging is implemented using the lead storage battery 11 and the lithium ion storage battery 12 selectively.
  • a voltage sensor (not shown) for detecting the battery voltage Vb of the lead storage battery 11 is connected to the energization path of the lead storage battery 11, and the battery voltage Vb of the lithium ion storage battery 12 is connected to the energization path of the lithium ion storage battery 12.
  • a voltage sensor (not shown) for detection is connected.
  • control device 50 calculates the SOC (remaining capacity: State Of Charge) of the lithium ion storage battery 12 and charges and discharges the lithium ion storage battery 12 so that the SOC is maintained within a predetermined usage range.
  • the control device 50 corresponds to a “control unit”.
  • power can be supplied to the ISG 16 from at least one of the lead storage battery 11 and the lithium ion storage battery 12.
  • the ISG 16 is driven by power and its power is applied to the engine rotation shaft.
  • an excessive current may flow through the second switch group SW2 provided in the energization path L2. Therefore, there is a concern that the second switch group SW2 may be damaged.
  • the allowable energization current of the second switch group SW2 is made larger than that of the first switch group SW1, and the maximum allowable current when power is supplied from the lithium ion storage battery 12 to the ISG 16 is changed from the lead storage battery 11 to the ISG 16. It is set to be larger than the maximum allowable current during power feeding. That is, even when the energization current from the lithium ion storage battery 12 is increased, the second switch group SW2 can withstand a large energization current so as not to be damaged.
  • the parallel number of semiconductor switches in the second switch group SW2 is made larger than the parallel number of semiconductor switches in the first switch group SW1.
  • each of the second switch group SW2 includes three semiconductor switches connected in parallel, whereas each of the first switch group SW1 includes two semiconductor switches connected in parallel. It has become a thing. That is, the parallel number of semiconductor switches in the second switch group SW2 is 3, which is larger than the parallel number 2 of semiconductor switches in the first switch group SW1.
  • the allowable energization current of the second switch group SW2 is larger than that of the first switch group SW1. It is getting bigger.
  • the first switch group SW1 can withstand about 170A and the second switch group SW2 can withstand about 250A.
  • the same semiconductor switches are used for the switch groups SW1 and SW2.
  • the parallel number of the semiconductor switches of the first switch group SW1 and the second switch group SW2 is not limited to the embodiment of FIG. 1, but can be appropriately changed within a range where the magnitude relationship between the two is established.
  • the parallel number of semiconductor switches in the second switch group SW2 may be set to 4
  • the parallel number of semiconductor switches in the first switch group SW1 may be set to 3.
  • the parallel number of semiconductor switches of the second switch group SW2 may be set to 4
  • the parallel number of semiconductor switches of the first switch group SW1 may be set to 2.
  • the storage batteries 11 and 12 can be selectively used according to the magnitude of power (requested torque) required from the vehicle. Specifically, when the ISG 16 requires more power than the predetermined value, power is supplied from the lithium ion storage battery 12 to the ISG 16, and when less than the predetermined driving force is required, power supply from the lead storage battery 11 to the ISG 16 is performed. It is possible to achieve control such as
  • the control device 50 causes the lead storage battery 11 to supply power to the ISG 16 when the engine is started by the ISG 16, and causes the lithium ion storage battery 12 to supply power to the ISG 16 when the ISG 16 applies driving power.
  • the on / off control of the switch groups SW1 to SW4 of the control device 50 in each situation will be described with reference to FIGS.
  • FIG. 2 shows the on / off control of the switch groups SW1 to SW4 at the time of engine start by the ISG 16 and the energization state of the power supply system associated therewith.
  • the ISG 16 is driven when the engine is started to complete the engine start. That is, when an engine start request is generated, the control device 50 performs switch control so as to drive the ISG 16.
  • the control device 50 closes (turns on) the first switch group SW1 and opens (turns off) the second switch group SW2.
  • electric power is supplied from the lead storage battery 11 to the ISG 16 via the first switch group SW1.
  • the starter 13 may be driven together with the ISG 16 when starting the engine. In such a case, power is supplied from the lead storage battery 11 to the starter 13.
  • the control device 50 opens (turns off) the third switch group SW3 and closes (turns on) the fourth switch group SW4. Thereby, electric power is supplied from the lithium ion storage battery 12 to the electric load 15 via the fourth switch group SW4.
  • the energization paths L1 to the respective starters (starter 13 and ISG 16) and the energization paths L3 and L5 to the electric load 15 are separated, so that voltage fluctuations associated with driving of each starter Thus, the electric load 15 can be stably fed without being affected by the above.
  • FIG. 3 shows the on / off control of each of the switch groups SW1 to SW4 when the driving power is applied by the ISG 16, and the energization state of the power supply system associated therewith. Note that it is assumed that when driving power in FIG. 3 is applied, greater power is applied to the engine output shaft than when the engine is started in FIG.
  • the control device 50 performs switch control to drive the ISG 16. In this case, the control device 50 opens (turns off) the first switch group SW1 and closes (turns on) the second switch group SW2. Thereby, electric power is supplied from the lithium ion storage battery 12 to the ISG 16 via the second switch group SW2.
  • control device 50 closes (turns on) the third switch group SW3 and opens (turns off) the fourth switch group SW4. As a result, power is supplied from the lead storage battery 11 to the electric load 15 via the third switch group SW3.
  • the driving power when the driving power is applied, it is assumed that a larger power is required than when the engine is started.
  • the power is supplied from the lithium ion storage battery 12 via the second switch group SW2, thereby Greater power can be applied to the output shaft.
  • the electric load 15 is supplied with power from the lead storage battery 11, thereby reducing the load on the lithium ion storage battery 12.
  • control device 50 performs the same switch control as that in FIG. 3 when the vehicle is driven by applying the driving power by the ISG 16 in a state where the combustion of the engine is stopped, that is, the EV driving.
  • the lithium ion storage battery 12 is connected via the second switch group SW2 having a larger allowable current. Power is supplied to the ISG 16.
  • EV creep running for example, EV creep running can be cited.
  • EV creep travel is low speed travel when the accelerator of the vehicle is off, and the vehicle speed during EV creep travel is approximately 10 km / h.
  • FIGS. 2 and 3 will be described with reference to the timing chart of FIG. FIG. 4 shows a situation in which the engine is restarted during the automatic stop of the engine and then shifts to EV creep running.
  • the engine is automatically stopped before timing t11.
  • the first switch group SW1 is turned on and the fourth switch group SW4 is turned on. That is, power is supplied from the lead storage battery 11 to the electric load 17 while the engine is automatically stopped, and power is supplied from the lithium ion storage battery 12 to the electric load 15.
  • switch control during automatic engine stop may be changed as appropriate.
  • an ISG drive command is generated and switch control by the control device 50 is performed. Specifically, an ON command is transmitted to the first switch group SW1 and the fourth switch group SW4, and the first switch group SW1 is closed so that power is supplied from the lead storage battery 11 to the ISG 16, and the fourth switch Power is supplied from the lithium ion storage battery 12 to the electric load 15 by closing the group SW4.
  • the second switch group SW2 has a larger allowable energization current than the first switch group SW1, and the maximum allowable current during power feeding from the lithium ion storage battery 12 to the ISG 16 is determined from the lead storage battery 11. It was made larger than the maximum allowable current at the time of power feeding to ISG16.
  • the storage batteries 11 and 12 can be used properly according to the driving force of the ISG 16.
  • the power of the lithium ion storage battery 12 is preferably used for powering driving of the ISG 16, that is, the lead storage battery 11 and the lithium ion storage battery 12 are used.
  • Each switch group can be set appropriately as a system while considering proper use.
  • the second switch group SW2 is configured such that Sb1 to Sb3 and Sb4 to Sb6 are connected in parallel in the plurality of semiconductor switches Sb1 to Sb6, they are connected in parallel when power is supplied from the lithium ion storage battery 12 to the ISG 16 Even when any of the plurality of switches has an off failure, it is possible to prevent an event that the ISG 16 immediately causes a power failure.
  • the parallel number of the plurality of semiconductor switches Sb1 to Sb6 in the second switch group SW2 is made larger than the parallel number of the plurality of semiconductor switches Sa1 to Sa4 in the first switch group SW1.
  • the allowable energization current of the second switch group SW2 becomes larger than that of the first switch group SW1 by increasing the parallel number of the second switch group SW2 than the parallel number of the first switch group SW1.
  • the allowable energization current of the second switch group SW2 can be increased without increasing the allowable energization current (maximum rated current) of the switches of the second switch group SW2 in the existing power supply system.
  • the unit U can be easily constructed.
  • Examples of scenes where the ISG 16 is driven by power running include when the engine is started and when driving power is applied (motor assist, etc.). When starting the engine, a roughly fixed torque is required, but when applying driving power such as motor assist, the required torque differs depending on the situation. It is considered that more power may be required for the engine output shaft than sometimes.
  • power is supplied from the lead storage battery 11 to the ISG 16 when the engine is started by the ISG 16, and power is supplied from the lithium ion storage battery 12 to the ISG 16 when driving power is applied.
  • supplying power from the lithium ion storage battery 12 to the ISG 16 when the driving power is applied for example, a larger current can be flowed than when the engine is started.
  • correspond widely with respect to the torque request of a vehicle is realizable.
  • the fifth is also configured such that the allowable energization current of the second switch group SW2 is larger than that of the first switch group SW1. That is, the parallel number of semiconductor switches in the second switch group SW2 is larger than the parallel number of semiconductor switches in the first switch group SW1.
  • the allowable energization current of the second switch group SW2 is increased.
  • the allowable energization current may be increased depending on a difference other than the difference in parallel number.
  • a semiconductor switch having a maximum rated current larger than that of the semiconductor switch of the first switch group SW1 may be used as the semiconductor switch of the second switch group SW2.
  • the parallel number of the first switch group SW1 and the second switch group SW2 may be made equal.
  • the storage batteries 11 and 12 are selectively used when the engine is started by the ISG 16 and when the driving power is applied by the ISG 16, but the present invention is not limited thereto.
  • the storage batteries 11 and 12 may be selectively used according to the magnitude of power (requested torque) required from the vehicle.
  • power supply from the lithium ion storage battery 12 may be performed when a motor assist of a predetermined level or more is required, and power supply from the lead storage battery 11 may be performed when the motor assist is less than a predetermined level.
  • the motor assist of the ISG 16 by the power of the lead storage battery 11 may be enabled, and the motor assist of the ISG 16 by the power of the lithium ion storage battery 12 may be enabled.
  • motor assist is performed by the power of the lithium ion storage battery 12
  • charging / discharging of the lithium ion storage battery 12 is prohibited (second switch group SW2).
  • second switch group SW2 In the state where is opened), motor assistance is performed by the electric power of the lead storage battery 11 instead of the lithium ion storage battery 12.
  • the second switch group SW2 has a larger allowable energization current than the first switch group SW1
  • the ISG drive by the power of the lead storage battery 11 is performed. It is better to increase the allowable upper limit of the motor torque than sometimes.
  • the vehicle is EV creep traveled by feeding power from the lithium ion storage battery 12 to the ISG 16, but EV traveling other than EV creep travel may be performed by feeding power from the lithium ion storage battery 12.
  • the energization current from the lithium ion storage battery 12 to the ISG 16 may be controlled according to the accelerator operation amount.
  • the lead storage battery 11 and the lithium ion storage battery 12 are used as the storage battery, but this may be changed.
  • the lithium ion storage battery 12 instead of the lithium ion storage battery 12, other high-density storage batteries such as nickel-hydrogen batteries may be used.
  • a capacitor can be used as at least one of the storage batteries.
  • the electrical load 15 is a protected load.
  • the electrical load 17 includes the protected load.
  • the power supply system in 2nd Embodiment is the same as 1st Embodiment.
  • the control device 50 controls the charging and discharging of the storage batteries 11 and 12 by performing on / off control of the switch groups SW1 to SW4. For example, when power is supplied from the lead storage battery 11 to the electrical load 17, the control device 50 transmits a drive signal to the first switch group SW1.
  • the drive signal is output to a switch drive circuit (not shown) provided in the first switch group SW1, and the switch drive circuit switches on and off the semiconductor switches of the first switch group SW1.
  • each switch group needs to operate correctly based on the drive signal of the control device 50. Therefore, a diagnosis of the drive signal is appropriately performed to determine whether the drive signal is normally transmitted from the control device 50 to each switch group.
  • the control device 50 switches groups SW1 and SW2 to continuously supply power to the electric load 17 (including the protected load).
  • the drive signal is output so that at least one of the signals is always closed (ON). That is, as a control mode, there is no control in which the switch groups SW1 and SW2 are simultaneously opened (off). For this reason, when the drive signals of the switch groups SW1 and SW2 are both off, it is considered that an abnormality that disables switch switching has occurred in the control device 50.
  • bypass switches 21 and 22 are driven as fail-safe processing. Thereby, the power supply to the electric load 17 is continued, and the power supply failure of the electric load 17 is prevented.
  • the first switch group SW1 and the second switch group SW2 are each configured by connecting semiconductor switches connected in parallel in series so that the directions of the parasitic diodes are opposite to each other.
  • an arbitrary set of semiconductor switches in which the directions of the parasitic diodes are opposite to each other in each switch group SW1, SW2, and a drive signal is transmitted from the control device 50 to these semiconductor switches. Detect whether or not For example, in FIG. 6, the drive signals for the semiconductor switches Sa2 and Sa4 are detected in the first switch group SW1, and the drive signals for the semiconductor switches Sb1 and Sb6 are detected in the second switch group SW2.
  • FIG. 7 shows a logic circuit 60 for determining ON / OFF of the bypass switches 21 and 22 in this embodiment.
  • the logic circuit 60 inputs a driving signal for any one semiconductor switch having the output terminal T1 side as a cathode and a driving signal for any one semiconductor switch having the output terminal T2 side as a cathode.
  • the AND circuit C1 and the drive signal of any one semiconductor switch having the connection point N1 side as a cathode in the second switch group SW2 and the drive signal of any one semiconductor switch having the lithium ion battery 12 side as a cathode are input.
  • the drive signal of the bypass switches 21 and 22 is output as “1” when the ignition switch is turned on regardless of whether the switch groups SW1 and SW2 are turned on or off.
  • the AND circuit C1 outputs “1” when the drive signals of the semiconductor switches whose diodes are opposite to each other in the first switch group SW1 are “1”, and at least one of these drive signals.
  • the AND circuit C2 outputs “1” when the drive signals of the semiconductor switches whose diodes are opposite to each other in the second switch group SW2 are “1”, and at least one of these drive signals is “ When “0”, “0” is output.
  • the OR circuit C3 outputs “0” only when the output signal of the AND circuit C1 is “0” and the output signal of the AND circuit C2 is “0”.
  • At least one of the first switch group SW1 and the second switch group SW2 needs to be on. That is, at least one of the output signal of the AND circuit C1 and the output signal of the AND circuit C2 needs to be “1”, and the output signal of the OR circuit C3 needs to be “1”. Therefore, when the output signal of the OR circuit C3 is “1”, it can be considered that the drive signal is normally transmitted from the control device 50 to each of the switch groups SW1 and SW2. In this case, the bypass switches 21 and 22 are opened.
  • the drive signal diagnosis of the first switch group SW1 and the second switch group SW2 has been shown.
  • the third switch group SW3 and the fourth switch group SW4 are connected in parallel in the same manner as the SW1 and SW2.
  • the drive signals of SW3 and SW4 can be diagnosed. That is, one of the third switch group SW3 and the fourth switch group SW4 needs to be closed (ON) so that power can be continuously supplied to the electrical load 15 (including the protected load). Yes, the drive signal can be diagnosed in consideration of this situation.
  • the battery unit U shown in the first embodiment is constructed by assembling the lithium ion storage battery 12 and the substrate 70 on which the control device 50 is mounted on a housing.
  • FIG. 8 shows a wiring state in a state where the lithium ion storage battery 12 and the substrate 70 are assembled. Note that the fuse 71 provided in the energization path where the negative electrode of the lithium ion storage battery 12 is connected to the ground is attached after the substrate 70 is assembled to the positive electrode and the negative electrode of the lithium ion storage battery 12 when the battery unit U is manufactured. It is like that.
  • the board 70 has a control device 50, and the control device 50 further has an IC 72 for battery monitoring. Moreover, the board
  • substrate 70 has terminal part P1, P2, P3, and among these, the terminal part P1 is connected to the positive electrode of the lithium ion storage battery 12, and the terminal part P2 is connected to the negative electrode of the lithium ion storage battery 12. .
  • the terminal portion P3 is ultimately connected to the ground, but is not connected when the board 70 is assembled.
  • the circuit board 70 has an energization path L11 that connects the terminal portions P1 and P3, a connection point N11 on the energization path L11, and the terminal section P2 as internal electrical paths via the IC 72.
  • An energization path L12 to be connected is provided.
  • condenser 73 is provided in the electricity supply path
  • a diode portion 74 is provided inside the IC 72 on the energization path L12.
  • the diode portion 74 is configured by connecting two diodes in series, and is connected such that the terminal portion P2 side is a cathode and the connection point N11 side is an anode.
  • the diode portion 74 is provided to prevent the IC 72 from being damaged by unintentionally generated static electricity passing through the IC 72.
  • a protective means is provided on the substrate 70 so that excessive current does not flow inside the IC 72. This prevents the IC 72 from being damaged.
  • a bypass path L13 that does not pass through the IC 72 (detours) is provided, and a diode part 75 having a smaller electrical resistance than the diode part 74 is provided in the bypass path L13.
  • FIG. 9 shows an energization state of an inrush current in such a configuration.
  • the bypass path L13 connects the terminal part P2 and the terminal part P3 without going through the IC 72, and the connection point N12 on the terminal part P3 side of the connection point N11 of the energization path L11 and the outside of the IC 72 in the energization path L2. Is connected to a connection point N13 on the terminal part P2 side.
  • a diode portion 75 having an electric resistance smaller than that of the diode portion 74 is provided on the bypass path L13.
  • the diode unit 75 is configured by one diode.
  • the inrush current generated when the substrate 70 is assembled flows preferentially to the diode portion 75 having a smaller electrical resistance than the diode portion 74. That is, an inrush current flows through the bypass path L13, so that an excessive current can be prevented from flowing inside the IC 72.
  • a limiting resistor 76 is provided on the energization path L12 outside the IC 72.
  • FIG. 10 shows an energization state of an inrush current in such a configuration.
  • the resistance value of the limiting resistor 76 is set so that the current flowing through the IC 72 is equal to or less than the allowable current of the IC 72.
  • the inrush current flows to the diode portion 74 inside the IC 72.
  • the inrush current is suppressed to be equal to or less than the allowable energization current of the IC 72 by the limiting resistor 76, the IC 72 can be prevented from being damaged. .
  • the protection means a configuration in which the bypass path L13 and the diode unit 75 described above and the limiting resistor 76 are combined may be employed.
  • the bypass path L13 is provided so that the intermediate point between the limiting resistor 76 and the terminal portion P2 and the connection point N12 are connected in the energization path L12.
  • the lithium ion storage battery 12 is configured as an assembled battery in which a plurality of single cells are connected in series.
  • FIG. 11 shows an example of protection means for the IC 72 in such a case.
  • the lithium ion storage battery 12 is composed of the single cells 12a to 12e, and the positive and negative electrodes of the single cells 12a to 12e are connected to the terminal portions P1, P2a to P2e of the substrate 70, respectively.
  • the energization paths that connect the respective terminal portions P2a to P2e and the energization path L12, and each energization path has a diode portion (not shown) for preventing static electricity.
  • Each is provided. That is, as in FIG. 8, when the substrate 70 is assembled, an excessive current may flow inside the IC 72.
  • the bypass path L13 is provided, and the diode portions 75a to 75e are provided on the bypass path. Further, limiting resistors 76a to 76e are provided on the energization paths connected to the terminal portions P2a to P2e. As a result, it is possible to prevent an excessive current from flowing inside the IC 72 and thus prevent the IC 72 from being damaged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Secondary Cells (AREA)

Abstract

This battery unit (U) is applicable to a vehicle provided with: an engine; a rotating electrical machine (26) which is drivably coupled to an output shaft of the engine, and which is provided with a power generation function and a powering drive function; and a first storage battery (11) and a second storage battery (12) which are connected in parallel to the rotating electrical machine. The battery unit is provided with the second storage battery, and is connected to the first storage battery and the rotating electrical machine. The battery unit is provided with: a first terminal (T1) to which the first storage battery is connected; a second terminal (T2) to which the rotating electrical machine is connected; a first switch unit (SW1) which opens and closes a first electrical path (L1) connecting the first terminal and the second terminal; and a second switch unit (SW2) which opens and closes a second electrical path (L2) connecting the second storage battery and a connection point (N1) further towards the side of the second terminal than the first switch unit in the first electrical path. The second switch unit has a larger allowable energizing current than the first switch unit. The maximum allowable current when supplying power from the second storage battery to the rotating electrical machine is greater than the maximum allowable current when supplying power from the first storage battery to the rotating electrical machine.

Description

電池ユニット、及び電源システムBattery unit and power supply system 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年12月14日に出願された日本出願番号2016-242674号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2016-242675 filed on Dec. 14, 2016, the contents of which are incorporated herein by reference.
 本開示は、車両等に適用される電池ユニット、及び電源システムに関するものである。 The present disclosure relates to a battery unit and a power supply system applied to a vehicle or the like.
 従来、蓄電池と、電動機及び発電機の機能を併せ持つ回転電機(例えば、ISG)とを備える電源システムにおいて、蓄電池の充放電の制御を適正化する技術が各種提案されている。 Conventionally, in a power supply system including a storage battery and a rotating electric machine (for example, ISG) having both functions of an electric motor and a generator, various techniques for optimizing the charge / discharge control of the storage battery have been proposed.
 例えば、特許文献1には、ISGに対して並列に接続される鉛蓄電池及びリチウムイオン蓄電池を備える電源システムが記載されている。この電源システムでは、ISGと鉛蓄電池の間の通電経路に第1スイッチが設けられ、ISGとリチウムイオン蓄電池の間の通電経路に第2スイッチが設けられている。そして、各蓄電池の状態に応じて各スイッチをオンオフ制御することで、各蓄電池からISGへの給電やISGから各蓄電池への充電を制御している。この場合、各蓄電池からISGへ給電を行うことで、エンジン出力軸に動力を付与すること(例えばモータアシスト等)が可能となっている。 For example, Patent Document 1 describes a power supply system including a lead storage battery and a lithium ion storage battery connected in parallel to the ISG. In this power supply system, a first switch is provided in the energization path between the ISG and the lead storage battery, and a second switch is provided in the energization path between the ISG and the lithium ion storage battery. And each power supply from each storage battery to ISG and the charge from ISG to each storage battery are controlled by carrying out on-off control of each switch according to the state of each storage battery. In this case, power can be applied to the engine output shaft (for example, motor assist) by supplying power from each storage battery to the ISG.
特開2015-154618号公報Japanese Patent Laying-Open No. 2015-154618
 ところで、上記の電源システムでは、鉛蓄電池からISGへの電力供給と、リチウムイオン蓄電池からISGへの電力供給とがそれぞれ可能であり、いずれかの蓄電池からISGへの電力供給が選択的に行われる。この場合、鉛蓄電池の電力によるISG駆動時と、リチウムイオン蓄電池の電力によるISG駆動時とでは、ISG駆動の要求が相違することが考えられる。しかしながら、既存の構成では、ISGに対して並列接続された各蓄電池を好適に使い分ける点について検討がなされておらず、改善の余地があると考えられる。例えばISGのモータアシスト量を大きくしようとする場合には、ISGへの通電電流を大きくすることが考えられるが、各通電経路に設けられたスイッチに過剰の電流が流れるおそれがあり、スイッチが故障してしまう等の不都合が生じることが考えられる。 By the way, in said power supply system, the electric power supply from a lead storage battery to ISG and the electric power supply from a lithium ion storage battery to ISG are each possible, and the electric power supply from any storage battery to ISG is performed selectively. . In this case, it is considered that ISG driving requirements differ between ISG driving with the power of the lead storage battery and ISG driving with the power of the lithium ion storage battery. However, in the existing configuration, the point of properly using the storage batteries connected in parallel to the ISG has not been studied, and it is considered that there is room for improvement. For example, when trying to increase the motor assist amount of the ISG, it is conceivable to increase the energization current to the ISG, but there is a possibility that an excessive current flows through the switch provided in each energization path, and the switch breaks down. It is conceivable that inconveniences such as this occur.
 本開示は上記事情を鑑みてなされたものであり、その主たる目的は、回転電機への給電において蓄電池の使い分けを考慮しつつ、システムの適正化を図ることができる電池ユニット、及び電源システムを提供することにある。 The present disclosure has been made in view of the above circumstances, and a main purpose thereof is to provide a battery unit and a power supply system capable of optimizing the system while considering proper use of storage batteries in power feeding to rotating electrical machines. There is to do.
 第1の手段では、
 エンジンと、前記エンジンの出力軸に駆動連結され、発電及び力行駆動の各機能を有する回転電機と、該回転電機に対して並列接続される第1蓄電池及び第2蓄電池とを備える車両に適用され、前記各蓄電池のうち前記第2蓄電池を備えており、前記第1蓄電池及び前記回転電機にそれぞれ接続される電池ユニットであって、
 前記第1蓄電池が接続される第1端子と、
 前記回転電機が接続される第2端子と、
 前記第1端子と前記第2端子とを接続する第1電気経路に設けられ、該第1電気経路を開放又は閉鎖する第1開閉部と、
 前記第1電気経路において前記第1開閉部よりも前記第2端子の側の接続点と前記第2蓄電池とを接続する第2電気経路に設けられ、該第2電気経路を開放又は閉鎖する第2開閉部と、
を備え、
 前記第2開閉部は、前記第1開閉部に比べて許容通電電流が大きいものであり、前記第2蓄電池から前記回転電機への給電時における最大許容電流が、前記第1蓄電池から前記回転電機への給電時における最大許容電流よりも大きくなっている。
In the first means,
The present invention is applied to a vehicle including an engine, a rotating electrical machine that is drivingly connected to the output shaft of the engine and has functions of power generation and power running, and a first storage battery and a second storage battery that are connected in parallel to the rotating electrical machine A battery unit that includes the second storage battery among the storage batteries and is connected to the first storage battery and the rotating electrical machine,
A first terminal to which the first storage battery is connected;
A second terminal to which the rotating electrical machine is connected;
A first opening / closing part provided in a first electrical path connecting the first terminal and the second terminal, and opening or closing the first electrical path;
A first electrical path provided in a second electrical path for connecting the second storage battery to a connection point closer to the second terminal than the first opening / closing portion; and opening or closing the second electrical path. 2 opening and closing parts,
With
The second opening / closing portion has a larger allowable energization current than the first opening / closing portion, and the maximum allowable current during power feeding from the second storage battery to the rotating electrical machine is from the first storage battery to the rotating electrical machine. Is larger than the maximum allowable current when power is supplied to
 上記車両において、回転電機は、電池ユニットを介して第1蓄電池に接続されるとともに、電池ユニット内の第2蓄電池にも接続されている。そのため、各蓄電池から回転電機へ給電することで、回転電機の力行駆動によりエンジン出力軸に動力を付与することができる。この場合、例えば回転電機の駆動力等に応じて各蓄電池を使い分けることが望ましいと考えられる。 In the above vehicle, the rotating electrical machine is connected to the first storage battery via the battery unit, and is also connected to the second storage battery in the battery unit. Therefore, by supplying power from each storage battery to the rotating electrical machine, power can be applied to the engine output shaft by powering driving of the rotating electrical machine. In this case, it is considered desirable to use each storage battery properly according to the driving force of the rotating electrical machine, for example.
 この点、上記構成では、第2開閉部は、第1開閉部に比べて許容通電電流が大きいものであり、第2蓄電池から回転電機への給電時における最大許容電流が、第1蓄電池から回転電機への給電時における最大許容電流よりも大きくなっているようにした。この場合、回転電機への給電時において第2電気経路に第1電気経路に比べより大きな電流を流すことが可能となり、例えば回転電機の駆動力に応じて各蓄電池を使い分けることができる。また、第1開閉部及び第2開閉部のうち一方のみを大きくしたため、第2蓄電池の電力を回転電機の力行駆動に好適に用いること、すなわち、第1蓄電池と第2蓄電池とを使い分けることを考慮しつつ、システムとして適正に開閉部を設定できる。 In this regard, in the above configuration, the second opening / closing portion has a larger allowable energization current than the first opening / closing portion, and the maximum allowable current during power feeding from the second storage battery to the rotating electrical machine rotates from the first storage battery. The maximum allowable current at the time of power feeding to the electric machine was made larger. In this case, at the time of feeding power to the rotating electrical machine, it is possible to cause a larger current to flow through the second electrical path than in the first electrical path. For example, each storage battery can be used properly according to the driving force of the rotating electrical machine. In addition, since only one of the first opening / closing part and the second opening / closing part is enlarged, the power of the second storage battery is preferably used for powering driving of the rotating electrical machine, that is, the first storage battery and the second storage battery are properly used. The opening / closing part can be appropriately set as a system while taking into consideration.
 第2の手段では、前記第1開閉部は、並列接続された複数のスイッチを有し、前記第2開閉部は、並列接続された複数のスイッチを有するものであって、前記第2開閉部における前記複数のスイッチの並列数が、前記第1開閉部における前記複数のスイッチの並列数に比べて多くなっている。 In the second means, the first opening / closing part includes a plurality of switches connected in parallel, and the second opening / closing part includes a plurality of switches connected in parallel, and the second opening / closing part. The number of parallel switches of the plurality of switches is larger than the number of parallel switches of the plurality of switches in the first opening / closing part.
 上記構成では、第2開閉部における複数のスイッチの並列数が、第1開閉部における複数のスイッチの並列数に比べて多くなっているようにした。この場合、第2開閉部の並列数を第1開閉部の並列数よりも多くすることで、第2開閉部の許容通電電流が第1開閉部に比べて大きくなる。これにより、例えば既存の電源システムにおける第2開閉部のスイッチ自体の許容通電電流を大きくすることなく、第2開閉部の許容通電電流を大きくすることができるため、電池ユニットの構築が容易となる。 In the above configuration, the parallel number of the plurality of switches in the second opening / closing part is made larger than the parallel number of the plurality of switches in the first opening / closing part. In this case, the allowable energization current of the second opening / closing part becomes larger than that of the first opening / closing part by making the number of paralleling of the second opening / closing parts larger than the parallel number of the first opening / closing parts. Thereby, for example, since the allowable energization current of the second opening / closing part can be increased without increasing the allowable energization current of the switch of the second opening / closing part in the existing power supply system, the battery unit can be easily constructed. .
 第3の手段では、前記第1開閉部及び前記第2開閉部の開閉を制御する制御部を備え、前記制御部は、前記回転電機によるエンジン始動を行う時に、前記第1開閉部を閉鎖、前記第2開閉部を開放して、前記第1蓄電池から前記回転電機への給電を行わせ、前記回転電機により前記出力軸へ走行用動力を付与する時に、前記第1開閉部を開放、前記第2開閉部を閉鎖して、前記第2蓄電池から前記回転電機への給電を行わせる。 The third means includes a control unit that controls opening and closing of the first opening and closing unit and the second opening and closing unit, the control unit closing the first opening and closing unit when starting the engine by the rotating electrical machine, Opening the second opening / closing part to supply power to the rotating electrical machine from the first storage battery, and opening the first opening / closing part when the driving power is applied to the output shaft by the rotating electrical machine; The second opening / closing part is closed, and power is supplied from the second storage battery to the rotating electrical machine.
 回転電機を力行駆動させる場面としては、例えばエンジン始動時や、走行用動力を付与する時(モータアシスト等)がある。エンジン始動時は、概ね定まったトルクが必要とされるのに対し、モータアシスト等の走行用動力を付与する時には、都度の状況に応じて必要とされるトルクの大きさが異なり、例えばエンジン始動時に比べて、エンジン出力軸に対しより大きな動力が必要になることがあると考えられる。 As a scene where the rotating electric machine is driven by power running, for example, when the engine is started or when traveling power is applied (motor assist, etc.). When starting the engine, a roughly fixed torque is required, but when applying driving power such as motor assist, the required torque differs depending on the situation. It is considered that more power may be required for the engine output shaft than sometimes.
 この点、上記構成では、回転電機によるエンジン始動時には第1蓄電池から回転電機への給電を行わせ、走行用動力を付与する時には第2蓄電池から回転電機への給電を行わせるようにした。この場合、走行用動力付与時には第2蓄電池から回転電機へ給電を行うことで、例えばエンジン始動時に比べより大きな電流を流すことができる。これにより、車両のトルク要求に対して広範に対応可能な構成を実現できる。 In this regard, in the above-described configuration, power is supplied from the first storage battery to the rotating electrical machine when the engine is started by the rotating electrical machine, and power is supplied from the second storage battery to the rotating electrical machine when traveling power is applied. In this case, by supplying power from the second storage battery to the rotating electrical machine when driving power is applied, for example, a larger current can flow than when the engine is started. Thereby, the structure which can respond | correspond widely with respect to the torque request of a vehicle is realizable.
 第4の手段では、前記制御部は、前記エンジンの燃焼が停止された状態で、前記第1開閉部を開放、前記第2開閉部を閉鎖し、前記走行用動力を付与する。 In the fourth means, in a state where the combustion of the engine is stopped, the control unit opens the first opening / closing unit, closes the second opening / closing unit, and applies the driving power.
 エンジンの燃焼が停止された状態において、回転電機から走行用動力を付与することによって車両を走行させるには、エンジン出力軸に対し一層大きな動力が必要となる。上記構成では、かかる状態において第1開閉部を開放、第2開閉部を閉鎖することで、第2蓄電池から回転電機へ給電を行うようにした。この場合、第2蓄電池から回転電機への通電電流を大きくすることができ、第1蓄電池から回転電機への給電時に比べてエンジン出力軸に対し一層大きな動力を付与することができる。これにより、エンジンの燃焼を必要としないEV走行が実現できる。 In the state where the combustion of the engine is stopped, to drive the vehicle by applying the driving power from the rotating electrical machine, a larger power is required for the engine output shaft. In the above configuration, power is supplied from the second storage battery to the rotating electrical machine by opening the first opening / closing part and closing the second opening / closing part in such a state. In this case, the energization current from the second storage battery to the rotating electrical machine can be increased, and more power can be applied to the engine output shaft than when power is supplied from the first storage battery to the rotating electrical machine. Thereby, EV traveling which does not require engine combustion can be realized.
 電源システムとして、以下の構成を備えるものであってもよい。すなわち、第5の手段では、エンジンを備える車両に適用され、前記エンジンの出力軸に駆動連結され、発電及び力行駆動の各機能を有する回転電機と、該回転電機に対して互いに並列接続される第1蓄電池及び第2蓄電池とを備え、前記第1蓄電池及び前記第2蓄電池の各々から前記回転電機への給電が可能な電源システムであって、前記回転電機と前記第1蓄電池を接続する第1電気経路に設けられ、該第1電気経路を開放又は閉鎖する第1開閉部と、前記回転電機と前記第2蓄電池を接続する第2電気経路に設けられ、該第2電気経路を開放又は閉鎖する第2開閉部と、を備え、前記第2開閉部は、前記第1開閉部に比べて許容通電電流が大きいものであり、前記第2蓄電池から前記回転電機への給電時における最大許容電流が、前記第1蓄電池から前記回転電機への給電時における最大許容電流よりも大きくなっている。 The power supply system may have the following configuration. That is, in the fifth means, the rotary electric machine is applied to a vehicle equipped with an engine and is drive-coupled to the output shaft of the engine and has functions of power generation and power running, and is connected in parallel to the rotary electric machine. A power supply system comprising a first storage battery and a second storage battery and capable of supplying power to the rotating electrical machine from each of the first storage battery and the second storage battery, wherein the rotating electrical machine and the first storage battery are connected to each other. Provided in one electrical path, and provided in a second electrical path connecting the rotating electrical machine and the second storage battery, and opening or closing the second electrical path. A second opening / closing portion that closes, and the second opening / closing portion has a larger allowable energization current than the first opening / closing portion, and is at a maximum allowable when power is supplied from the second storage battery to the rotating electrical machine. The current is It is larger than the maximum allowable current from 1 battery when power supply to the rotary electric machine.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態の電源システムを示す電気回路図であり、 図2は、ISGによるエンジン始動時の通電状態を示す図であり、 図3は、ISGによる走行用動力付与時の通電状態を示す図であり、 図4は、第1実施形態における態様を示すタイミングチャートであり、 図5は、第1実施形態の変形例の電池ユニットを示す電気回路図であり、 図6は、スイッチの駆動信号の診断を説明するための図であり、 図7は、バイパススイッチを駆動させるための論理回路の構成図であり、 図8は、蓄電池に基板を組み付けた状態での配線の状態を示す図であり、 図9は、ICを保護するための手段を説明するための図であり、 図10は、ICを保護するための手段を説明するための図であり、 図11は、ICを保護するための手段を説明するための図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is an electric circuit diagram showing the power supply system of the first embodiment. FIG. 2 is a diagram showing an energized state when the engine is started by ISG. FIG. 3 is a diagram showing an energized state when power for traveling is provided by ISG. FIG. 4 is a timing chart showing an aspect in the first embodiment. FIG. 5 is an electric circuit diagram showing a battery unit of a modification of the first embodiment. FIG. 6 is a diagram for explaining diagnosis of a switch drive signal. FIG. 7 is a configuration diagram of a logic circuit for driving the bypass switch. FIG. 8 is a diagram showing a wiring state in a state where the substrate is assembled to the storage battery, FIG. 9 is a diagram for explaining means for protecting the IC. FIG. 10 is a diagram for explaining a means for protecting the IC. FIG. 11 is a diagram for explaining means for protecting the IC.
 (第1実施形態)
 以下、本開示を具体化した実施形態を図面に基づいて説明する。本実施形態では、エンジン(内燃機関)を駆動源として走行する車両において当該車両の各種機器に電力を供給する車載電源システムを具体化するものとしている。
(First embodiment)
Hereinafter, an embodiment embodying the present disclosure will be described with reference to the drawings. In the present embodiment, an in-vehicle power supply system that supplies power to various devices of the vehicle in a vehicle that runs using an engine (internal combustion engine) as a drive source is embodied.
 図1に示すように、本電源システムは、第1蓄電池としての鉛蓄電池11と第2蓄電池としてのリチウムイオン蓄電池12とを有する2電源システムである。各蓄電池11,12に対して、発電機及び電動機として機能するISG16(Integrated Starter Generator)が接続されている。ISG16が発電機として機能する場合には各蓄電池11,12への充電が可能であり、各蓄電池11,12からISG16へ給電する場合にはISG16が電動機として機能する。また、各蓄電池11,12からはスタータ13や、各種の電気負荷14,15、17への給電が可能となっている。本電源システムでは、ISG16に対して並列に鉛蓄電池11及びリチウムイオン蓄電池12が接続されるとともに、電気負荷15に対して並列に鉛蓄電池11及びリチウムイオン蓄電池12が接続されている。 As shown in FIG. 1, this power supply system is a dual power supply system having a lead storage battery 11 as a first storage battery and a lithium ion storage battery 12 as a second storage battery. Connected to each of the storage batteries 11 and 12 is an ISG 16 (Integrated Starter Generator) that functions as a generator and an electric motor. When the ISG 16 functions as a generator, the storage batteries 11 and 12 can be charged. When the power is supplied from the storage batteries 11 and 12 to the ISG 16, the ISG 16 functions as an electric motor. Further, each storage battery 11, 12 can supply power to the starter 13 and various electric loads 14, 15, 17. In this power supply system, the lead storage battery 11 and the lithium ion storage battery 12 are connected in parallel to the ISG 16, and the lead storage battery 11 and the lithium ion storage battery 12 are connected in parallel to the electric load 15.
 鉛蓄電池11は周知の汎用蓄電池である。これに対し、リチウムイオン蓄電池12は、鉛蓄電池11に比べて、充放電における電力損失が少なく、出力密度、及びエネルギ密度の高い高密度蓄電池である。リチウムイオン蓄電池12は、鉛蓄電池11に比べて充放電時のエネルギ効率が高い蓄電池であるとよい。また、リチウムイオン蓄電池12は、それぞれ複数の単電池を有してなる組電池として構成されている。これら各蓄電池11,12の定格電圧はいずれも同じであり、例えば12Vである。 The lead storage battery 11 is a well-known general-purpose storage battery. On the other hand, the lithium ion storage battery 12 is a high-density storage battery that has less power loss during charging / discharging than the lead storage battery 11, and has a high output density and energy density. The lithium ion storage battery 12 may be a storage battery having higher energy efficiency during charging / discharging than the lead storage battery 11. Moreover, the lithium ion storage battery 12 is comprised as an assembled battery which has a some single cell, respectively. These storage batteries 11 and 12 have the same rated voltage, for example, 12V.
 図示による具体的な説明は割愛するが、リチウムイオン蓄電池12は、収容ケースに収容されて基板一体の電池ユニットUとして構成されている。電池ユニットUは、出力端子T1,T2,T3,T0を有しており、このうち出力端子T1,T0に鉛蓄電池11とスタータ13と電気負荷14とが接続され、出力端子T2にISG16と電気負荷17とが接続され、出力端子T3に電気負荷15が接続されている。 Although the detailed description by illustration is omitted, the lithium ion storage battery 12 is housed in a housing case and configured as a battery unit U integrated with a substrate. The battery unit U has output terminals T1, T2, T3, and T0. Among these, the lead storage battery 11, the starter 13, and the electric load 14 are connected to the output terminals T1 and T0, and the ISG 16 and the electric load 14 are connected to the output terminal T2. A load 17 is connected, and an electric load 15 is connected to the output terminal T3.
 各電気負荷14,15,17は、各蓄電池11,12から供給される供給電力の電圧について要求が相違するものである。このうち電気負荷15には、供給電力の電圧が一定又は少なくとも所定範囲内で変動するよう安定であることが要求される定電圧要求負荷が含まれる。これに対し、電気負荷14、17は、定電圧要求負荷以外の一般的な電気負荷である。電気負荷15は被保護負荷とも言える。また、電気負荷15は電源失陥が許容されない負荷であり、電気負荷14,17は、電気負荷15に比べて電源失陥が許容される負荷であるとも言える。 The electric loads 14, 15, and 17 have different requirements for the voltage of the supplied power supplied from the storage batteries 11 and 12. Among these, the electric load 15 includes a constant voltage required load that is required to be stable so that the voltage of the supplied power is constant or at least fluctuates within a predetermined range. On the other hand, the electric loads 14 and 17 are general electric loads other than the constant voltage request load. It can be said that the electric load 15 is a protected load. In addition, it can be said that the electric load 15 is a load that does not allow a power supply failure, and the electric loads 14 and 17 are loads that allow a power supply failure compared to the electric load 15.
 定電圧要求負荷である電気負荷15の具体例としては、ナビゲーション装置やオーディオ装置、メータ装置、エンジンECU等の各種ECUが挙げられる。この場合、供給電力の電圧変動が抑えられることで、上記各装置において不要なリセット等が生じることが抑制され、安定動作が実現可能となっている。電気負荷15として、電動ステアリング装置やブレーキ装置等の走行系アクチュエータが含まれていてもよい。また、電気負荷14,17の具体例としては、シートヒータやリヤウインドウのデフロスタ用ヒータ、ヘッドライト、フロントウインドウのワイパ、空調装置の送風ファン等が挙げられる。 Specific examples of the electrical load 15 that is a constant voltage required load include various ECUs such as a navigation device, an audio device, a meter device, and an engine ECU. In this case, by suppressing the voltage fluctuation of the supplied power, it is possible to suppress an unnecessary reset or the like in each of the above devices, and to realize a stable operation. The electric load 15 may include a travel system actuator such as an electric steering device or a brake device. Specific examples of the electric loads 14 and 17 include a seat heater, a rear window defroster heater, a headlight, a windshield wiper, and a blower fan for an air conditioner.
 ISG16の回転軸は、図示しないエンジン出力軸に対してベルト等により駆動連結されており、エンジン出力軸の回転によってISG16の回転軸が回転する。すなわち、ISG16は、エンジン出力軸や車軸の回転により発電(回生発電)を行う。 The rotating shaft of the ISG 16 is drivingly connected to an engine output shaft (not shown) by a belt or the like, and the rotating shaft of the ISG 16 is rotated by the rotation of the engine output shaft. That is, the ISG 16 generates power (regenerative power generation) by rotating the engine output shaft and the axle.
 次に、電池ユニットUにおける電気的構成を説明する。図1に示すように、電池ユニットUには、ユニット内電気経路として、各出力端子T1,T2を繋ぐ通電経路L1と、通電経路L1上の接続点N1とリチウムイオン蓄電池12とを繋ぐ通電経路L2とが設けられている。このうち通電経路L1に第1スイッチ群SW1が設けられ、通電経路L2に第2スイッチ群SW2が設けられている。なお、鉛蓄電池11とリチウムイオン蓄電池12とを接続する電気経路で言えば、接続点N1よりも鉛蓄電池11の側に第1スイッチ群SW1が設けられ、接続点N1よりもリチウムイオン蓄電池12の側に第2スイッチ群SW2が設けられている。第1スイッチ群SW1及び第2スイッチ群SW2は、いずれも複数のMOSFET(半導体スイッチ)を備えている。 Next, the electrical configuration of the battery unit U will be described. As shown in FIG. 1, the battery unit U has an energization path L1 that connects the output terminals T1 and T2 and an energization path that connects a connection point N1 on the energization path L1 and the lithium ion storage battery 12 as an in-unit electrical path. L2 is provided. Among these, the first switch group SW1 is provided in the energization path L1, and the second switch group SW2 is provided in the energization path L2. In addition, in terms of an electrical path connecting the lead storage battery 11 and the lithium ion storage battery 12, the first switch group SW1 is provided closer to the lead storage battery 11 than the connection point N1, and the lithium ion storage battery 12 is connected to the connection point N1. A second switch group SW2 is provided on the side. Each of the first switch group SW1 and the second switch group SW2 includes a plurality of MOSFETs (semiconductor switches).
 ここで、各スイッチ群SW1,SW2の構成について説明する。第1スイッチ群SW1では、寄生ダイオードの向きが互いに逆向きとなるようにして直列に半導体スイッチが接続されている。この場合、寄生ダイオードのカソードを出力端子T1側とする向きで2つの半導体スイッチSa1,Sa2が並列に接続され、寄生ダイオードのカソードを出力端子T2側とする向きで2つの半導体スイッチSa3,Sa4が並列に接続されている。つまり、半導体スイッチSa1,Sa2と、半導体スイッチSa3,Sa4とは、寄生ダイオードがアノード同士で接続されている。 Here, the configuration of each switch group SW1, SW2 will be described. In the first switch group SW1, semiconductor switches are connected in series so that the directions of the parasitic diodes are opposite to each other. In this case, the two semiconductor switches Sa1 and Sa2 are connected in parallel with the parasitic diode cathode facing the output terminal T1, and the two semiconductor switches Sa3 and Sa4 are oriented with the parasitic diode cathode facing the output terminal T2. Connected in parallel. In other words, the semiconductor switches Sa1 and Sa2 and the semiconductor switches Sa3 and Sa4 have the parasitic diodes connected at the anodes.
 第2スイッチ群SW2は、半導体スイッチの数を除き、第1スイッチ群SW1と基本的な構成は同じである。具体的には、第2スイッチ群SW2では、寄生ダイオードの向きが互いに逆向きとなるようにして直列に半導体スイッチが接続されている。この場合、寄生ダイオードのカソードを接続点N1側とする向きで3つの半導体スイッチSb1,Sb2,Sb3が並列に接続され、寄生ダイオードのカソードをリチウムイオン蓄電池12側とする向きで3つの半導体スイッチSb4,Sb5,Sb6が並列に接続されている。つまり、半導体スイッチSb1,Sb2,Sb3と、半導体スイッチSb4,Sb5,Sb6とは、寄生ダイオードがアノード同士で接続されている。 The second switch group SW2 has the same basic configuration as the first switch group SW1 except for the number of semiconductor switches. Specifically, in the second switch group SW2, semiconductor switches are connected in series so that the directions of the parasitic diodes are opposite to each other. In this case, the three semiconductor switches Sb1, Sb2, Sb3 are connected in parallel with the parasitic diode cathode facing the connection point N1, and the three semiconductor switches Sb4 are oriented with the parasitic diode cathode facing the lithium ion storage battery 12 side. , Sb5, Sb6 are connected in parallel. In other words, the semiconductor switches Sb1, Sb2, and Sb3 and the semiconductor switches Sb4, Sb5, and Sb6 are connected with the parasitic diodes at the anodes.
 上記のようにして、各スイッチ群SW1,SW2が構成されることで、例えば第1スイッチ群SW1がオフ(開放)状態となった場合、つまり半導体スイッチSa1~Sa4がオフ状態となった場合において、寄生ダイオードを通じて電流が流れることが完全に遮断される。つまり、鉛蓄電池11からリチウムイオン蓄電池12の側に意図せず放電されること、及びリチウムイオン蓄電池12の側から鉛蓄電池11に意図せず充電されることを回避できる。 By configuring the switch groups SW1 and SW2 as described above, for example, when the first switch group SW1 is turned off (opened), that is, when the semiconductor switches Sa1 to Sa4 are turned off. The current flowing through the parasitic diode is completely blocked. That is, unintentional discharge from the lead storage battery 11 to the lithium ion storage battery 12 side and unintentional charging of the lead storage battery 11 from the lithium ion storage battery 12 side can be avoided.
 なお、第1スイッチ群SW1における半導体スイッチの寄生ダイオードの向きを互いに変更し、寄生ダイオードがカソード同士で接続されるようにしてもよい。具体的には、寄生ダイオードのアノードを出力端子T1側とする向きで2つの半導体スイッチSa1,Sa2を並列に接続し、寄生ダイオードのアノードを出力端子T2側とする向きで2つの半導体スイッチSa3,Sa4を並列に接続してもよい。なお、第2スイッチ群SW2についても同様である。 In addition, the direction of the parasitic diode of the semiconductor switch in the first switch group SW1 may be changed so that the parasitic diode is connected between the cathodes. Specifically, the two semiconductor switches Sa1 and Sa2 are connected in parallel so that the anode of the parasitic diode is on the output terminal T1 side, and the two semiconductor switches Sa3 are on the orientation where the anode of the parasitic diode is on the output terminal T2 side. Sa4 may be connected in parallel. The same applies to the second switch group SW2.
 また、半導体スイッチとして、MOSFETに代えて、IGBTやバイポーラトランジスタ等を用いることも可能である。IGBTやバイポーラトランジスタを用いた場合には、上記の寄生ダイオードの代わりに各半導体スイッチにそれぞれダイオードを並列に接続させる。 Also, as the semiconductor switch, an IGBT or a bipolar transistor can be used instead of the MOSFET. When an IGBT or a bipolar transistor is used, a diode is connected in parallel to each semiconductor switch instead of the parasitic diode.
 また、通電経路L1において出力端子T1と第1スイッチ群SW1との間の接続点N2には分岐経路L3の一端が接続されるとともに、通電経路L2においてリチウムイオン蓄電池12と第2スイッチ群SW2との間の接続点N4には分岐経路L4の一端が接続されており、これら分岐経路L3,L4の他端同士が中間点N3で接続されている。また、中間点N3と出力端子T3とが通電経路L5により接続されている。分岐経路L3,L4にはそれぞれ第3スイッチ群SW3、第4スイッチ群SW4が設けられている。スイッチ群SW3,SW4はそれぞれMOSFET等の半導体スイッチにより構成されている。そして、各経路L3~L5を通じて、各蓄電池11,12からそれぞれ電気負荷15への給電が可能となっている。 In addition, one end of the branch path L3 is connected to the connection point N2 between the output terminal T1 and the first switch group SW1 in the energization path L1, and the lithium ion storage battery 12 and the second switch group SW2 are connected in the energization path L2. One end of the branch path L4 is connected to the connection point N4 between the two, and the other ends of the branch paths L3 and L4 are connected at an intermediate point N3. Further, the intermediate point N3 and the output terminal T3 are connected by the energization path L5. The branch paths L3 and L4 are provided with a third switch group SW3 and a fourth switch group SW4, respectively. The switch groups SW3 and SW4 are each composed of a semiconductor switch such as a MOSFET. Power can be supplied from the storage batteries 11 and 12 to the electric load 15 through the paths L3 to L5.
 電池ユニットUには、ユニット内のスイッチ群SW1~SW4を介さずに、鉛蓄電池11を電気負荷15に対して接続可能とするバイパス経路L0,L6が設けられている。具体的には、電池ユニットUには、出力端子T0と通電経路L1上の接続点N1とを接続するバイパス経路L0が設けられるとともに、接続点N1と出力端子T3とを接続するバイパス経路L6が設けられている。そして、バイパス経路L0上にはバイパススイッチ21が設けられ、バイパス経路L6上にはバイパススイッチ22が設けられている。各バイパススイッチ21,22は例えば常閉式のリレースイッチである。 The battery unit U is provided with bypass paths L0 and L6 that allow the lead storage battery 11 to be connected to the electric load 15 without using the switch groups SW1 to SW4 in the unit. Specifically, the battery unit U is provided with a bypass path L0 that connects the output terminal T0 and the connection point N1 on the energization path L1, and a bypass path L6 that connects the connection point N1 and the output terminal T3. Is provided. A bypass switch 21 is provided on the bypass path L0, and a bypass switch 22 is provided on the bypass path L6. The bypass switches 21 and 22 are, for example, normally closed relay switches.
 バイパススイッチ21を閉鎖することで、第1スイッチ群SW1がオフ(開放)であっても鉛蓄電池11と電気負荷15とが電気的に接続される。また、両方のバイパススイッチ21,22を閉鎖することで、スイッチ群SW1~SW4が全てオフ(開放)であっても鉛蓄電池11と電気負荷15とが電気的に接続される。例えば、車両の電源スイッチ(イグニッションスイッチ)がオフされている状態では、バイパススイッチ21,22を介して電気負荷15に対して暗電流が供給される。なお、バイパス経路L0及びバイパススイッチ21を、電池ユニットU外に設けることも可能である。 By closing the bypass switch 21, the lead storage battery 11 and the electrical load 15 are electrically connected even when the first switch group SW1 is off (open). Further, by closing both bypass switches 21 and 22, the lead storage battery 11 and the electrical load 15 are electrically connected even when all the switch groups SW1 to SW4 are off (open). For example, when the power switch (ignition switch) of the vehicle is turned off, dark current is supplied to the electric load 15 via the bypass switches 21 and 22. The bypass path L0 and the bypass switch 21 can be provided outside the battery unit U.
 電池ユニットUは、各スイッチ群SW1~SW4、及びバイパススイッチ21,22のオンオフ(開閉)を制御する制御装置50を備えている。制御装置50は、CPU、ROM、RAM、入出力インターフェース等を含むマイコンにより構成されている。制御装置50には、電池ユニットU外のECU100が接続されている。つまり、これら制御装置50及びECU100は、CAN等の通信ネットワークにより接続されて相互に通信可能となっており、制御装置50及びECU100に記憶される各種データが互いに共有できるものとなっている。 The battery unit U includes a control device 50 that controls on / off (opening / closing) of the switch groups SW1 to SW4 and the bypass switches 21 and 22. The control device 50 is constituted by a microcomputer including a CPU, a ROM, a RAM, an input / output interface, and the like. An ECU 100 outside the battery unit U is connected to the control device 50. That is, the control device 50 and the ECU 100 are connected by a communication network such as CAN and can communicate with each other, and various data stored in the control device 50 and the ECU 100 can be shared with each other.
 ECU100は、エンジンのアイドリングストップ制御を行う。アイドリングストップ制御は、概略として、所定の自動停止条件が成立するとエンジンの燃焼が停止されるとともに、その後、所定の再始動条件が成立するとエンジンが再始動される。この場合、自動停止条件には、例えば、自車両の車速がエンジン自動停止速度域(例えば、車速≦10km/h)にあり、かつアクセル操作が解除されたこと又はブレーキ操作が行われたことが含まれる。また、再始動条件としては、例えば、アクセル操作が開始されたことや、ブレーキ操作が解除されたことが含まれる。 ECU100 performs engine idling stop control. In general, the idling stop control stops the combustion of the engine when a predetermined automatic stop condition is satisfied, and then restarts the engine when a predetermined restart condition is satisfied. In this case, the automatic stop condition includes, for example, that the vehicle speed of the host vehicle is in the engine automatic stop speed range (for example, vehicle speed ≦ 10 km / h) and the accelerator operation is released or the brake operation is performed. included. In addition, the restart condition includes, for example, that an accelerator operation is started and a brake operation is released.
 制御装置50は、各蓄電池11,12の蓄電状態や、上位制御装置であるECU100からの指令値に基づいて、各スイッチ群SW1~SW4のオンオフを制御する。これにより、鉛蓄電池11とリチウムイオン蓄電池12とを選択的に用いて充放電が実施される。鉛蓄電池11の通電経路には、鉛蓄電池11のバッテリ電圧Vbを検出する電圧センサ(図示しない)が接続されており、リチウムイオン蓄電池12の通電経路には、リチウムイオン蓄電池12のバッテリ電圧Vbを検出する電圧センサ(図示しない)が接続されている。例えば、制御装置50は、リチウムイオン蓄電池12のSOC(残存容量:State Of Charge)を算出し、そのSOCが所定の使用範囲内に保持されるようにリチウムイオン蓄電池12への充電量及び放電量を制御する。なお、本実施形態において、制御装置50は、「制御部」に相当する。 The control device 50 controls on / off of each of the switch groups SW1 to SW4 based on the storage state of each of the storage batteries 11 and 12 and a command value from the ECU 100 which is the host control device. Thereby, charging / discharging is implemented using the lead storage battery 11 and the lithium ion storage battery 12 selectively. A voltage sensor (not shown) for detecting the battery voltage Vb of the lead storage battery 11 is connected to the energization path of the lead storage battery 11, and the battery voltage Vb of the lithium ion storage battery 12 is connected to the energization path of the lithium ion storage battery 12. A voltage sensor (not shown) for detection is connected. For example, the control device 50 calculates the SOC (remaining capacity: State Of Charge) of the lithium ion storage battery 12 and charges and discharges the lithium ion storage battery 12 so that the SOC is maintained within a predetermined usage range. To control. In the present embodiment, the control device 50 corresponds to a “control unit”.
 以上のように構成される本電源システムでは、鉛蓄電池11及びリチウムイオン蓄電池12の少なくとも一方からISG16へ電力の供給が可能となっている。ISG16へ給電が行われる場合には、ISG16は力行駆動し、その動力がエンジン回転軸に付与されることになる。ここで、ISG16によって一層大きな動力を付与させるためには、蓄電池からISG16への通電電流を大きくする必要がある。この場合、例えば、電池ユニット内のリチウムイオン蓄電池12からの通電電流を大きくすることが考えられる。しかしながら、リチウムイオン蓄電池12の通電電流を大きくすると通電経路L2に設けられた第2スイッチ群SW2に過剰の電流が流れるおそれがある。そのため、第2スイッチ群SW2が破損してしまう懸念がある。 In this power supply system configured as described above, power can be supplied to the ISG 16 from at least one of the lead storage battery 11 and the lithium ion storage battery 12. When power is supplied to the ISG 16, the ISG 16 is driven by power and its power is applied to the engine rotation shaft. Here, in order to apply even greater power to the ISG 16, it is necessary to increase the energization current from the storage battery to the ISG 16. In this case, for example, it is conceivable to increase the energization current from the lithium ion storage battery 12 in the battery unit. However, when the energization current of the lithium ion storage battery 12 is increased, an excessive current may flow through the second switch group SW2 provided in the energization path L2. Therefore, there is a concern that the second switch group SW2 may be damaged.
 そこで、本実施形態では、第2スイッチ群SW2の許容通電電流を第1スイッチ群SW1よりも大きくし、リチウムイオン蓄電池12からISG16への給電時における最大許容電流が、鉛蓄電池11からISG16への給電時における最大許容電流よりも大きくなるようにしている。つまり、リチウムイオン蓄電池12からの通電電流を大きくした場合であっても、第2スイッチ群SW2が破損しないように大きな通電電流に耐え得る構成としている。 Therefore, in the present embodiment, the allowable energization current of the second switch group SW2 is made larger than that of the first switch group SW1, and the maximum allowable current when power is supplied from the lithium ion storage battery 12 to the ISG 16 is changed from the lead storage battery 11 to the ISG 16. It is set to be larger than the maximum allowable current during power feeding. That is, even when the energization current from the lithium ion storage battery 12 is increased, the second switch group SW2 can withstand a large energization current so as not to be damaged.
 具体的な構成としては、第2スイッチ群SW2における半導体スイッチの並列数が、第1スイッチ群SW1における半導体スイッチの並列数に比べて多くなるようにしている。図1を用いて説明すると、第2スイッチ群SW2はそれぞれ3個の半導体スイッチが並列接続されたものであるのに対して、第1スイッチ群SW1はそれぞれ2個の半導体スイッチが並列接続されたものとなっている。つまり、第2スイッチ群SW2における半導体スイッチの並列数は3であり、第1スイッチ群SW1における半導体スイッチの並列数2よりも多くなっている。 As a specific configuration, the parallel number of semiconductor switches in the second switch group SW2 is made larger than the parallel number of semiconductor switches in the first switch group SW1. Referring to FIG. 1, each of the second switch group SW2 includes three semiconductor switches connected in parallel, whereas each of the first switch group SW1 includes two semiconductor switches connected in parallel. It has become a thing. That is, the parallel number of semiconductor switches in the second switch group SW2 is 3, which is larger than the parallel number 2 of semiconductor switches in the first switch group SW1.
 このように、第2スイッチ群SW2における半導体スイッチの並列数を第1スイッチ群SW1の並列数に比べて多くすることで、第2スイッチ群SW2の許容通電電流を第1スイッチ群SW1に比べて大きくしている。本実施形態では、例えば、定常電流で第1スイッチ群SW1が約170A,第2スイッチ群SW2が約250Aの通電に耐え得る構成となっている。なお、スイッチ群SW1,SW2の各半導体スイッチとして同じものを用いている。 Thus, by increasing the parallel number of semiconductor switches in the second switch group SW2 as compared to the parallel number of the first switch group SW1, the allowable energization current of the second switch group SW2 is larger than that of the first switch group SW1. It is getting bigger. In the present embodiment, for example, with a steady current, the first switch group SW1 can withstand about 170A and the second switch group SW2 can withstand about 250A. The same semiconductor switches are used for the switch groups SW1 and SW2.
 また、第1スイッチ群SW1及び第2スイッチ群SW2の半導体スイッチの並列数は、図1の実施形態に限らず、両者の大小関係が成立する範囲内で適宜変更することができる。例えば、第2スイッチ群SW2の半導体スイッチの並列数を4として、第1スイッチ群SW1の半導体スイッチの並列数を3としてもよい。また、第2スイッチ群SW2の半導体スイッチの並列数を4として、第1スイッチ群SW1の半導体スイッチの並列数を2としてもよい。 Further, the parallel number of the semiconductor switches of the first switch group SW1 and the second switch group SW2 is not limited to the embodiment of FIG. 1, but can be appropriately changed within a range where the magnitude relationship between the two is established. For example, the parallel number of semiconductor switches in the second switch group SW2 may be set to 4, and the parallel number of semiconductor switches in the first switch group SW1 may be set to 3. Further, the parallel number of semiconductor switches of the second switch group SW2 may be set to 4, and the parallel number of semiconductor switches of the first switch group SW1 may be set to 2.
 このような本電源システムとすることで、リチウムイオン蓄電池12からISG16への給電時には、鉛蓄電池11からISG16への給電時に比べてエンジン出力軸に対し一層大きな動力を付与することが可能となる。つまり、車両から要求される動力の大きさ(要求トルク)に応じて、各蓄電池11,12の使い分けを行うことができる。具体的には、ISG16により所定以上の動力が必要となる場合は、リチウムイオン蓄電池12からISG16への給電を行い、所定未満の駆動力が必要となる場合は、鉛蓄電池11からISG16への給電を行うといった制御が実現できる。 By adopting such a power supply system as described above, it is possible to apply greater power to the engine output shaft when power is supplied from the lithium ion storage battery 12 to the ISG 16 than when power is supplied from the lead storage battery 11 to the ISG 16. That is, the storage batteries 11 and 12 can be selectively used according to the magnitude of power (requested torque) required from the vehicle. Specifically, when the ISG 16 requires more power than the predetermined value, power is supplied from the lithium ion storage battery 12 to the ISG 16, and when less than the predetermined driving force is required, power supply from the lead storage battery 11 to the ISG 16 is performed. It is possible to achieve control such as
 本実施形態では、制御装置50は、ISG16によるエンジン始動時に、鉛蓄電池11からISG16への給電を行わせ、ISG16により走行用動力を付与する時に、リチウムイオン蓄電池12からISG16への給電を行わせる。ここで、各状況下における制御装置50の各スイッチ群SW1~SW4のオンオフ制御を図2,3を用いて説明する。 In the present embodiment, the control device 50 causes the lead storage battery 11 to supply power to the ISG 16 when the engine is started by the ISG 16, and causes the lithium ion storage battery 12 to supply power to the ISG 16 when the ISG 16 applies driving power. . Here, the on / off control of the switch groups SW1 to SW4 of the control device 50 in each situation will be described with reference to FIGS.
 図2には、ISG16によるエンジン始動時における各スイッチ群SW1~SW4のオンオフ制御と、それに伴う電源システムの通電状態を示す。本実施形態では、エンジン始動時にISG16を駆動させ、エンジン始動を完了させる構成としている。つまり、エンジンの始動要求が生じると、制御装置50はISG16を駆動させるべくスイッチ制御を実施する。この場合、制御装置50は、第1スイッチ群SW1を閉鎖(オン)するとともに第2スイッチ群SW2を開放(オフ)する。これにより、鉛蓄電池11から第1スイッチ群SW1を介してISG16に給電が行われる。なお、エンジンの始動に際しISG16とともにスタータ13を駆動させる構成であってもよく、かかる場合には、鉛蓄電池11からスタータ13に給電が行われる。 FIG. 2 shows the on / off control of the switch groups SW1 to SW4 at the time of engine start by the ISG 16 and the energization state of the power supply system associated therewith. In the present embodiment, the ISG 16 is driven when the engine is started to complete the engine start. That is, when an engine start request is generated, the control device 50 performs switch control so as to drive the ISG 16. In this case, the control device 50 closes (turns on) the first switch group SW1 and opens (turns off) the second switch group SW2. Thereby, electric power is supplied from the lead storage battery 11 to the ISG 16 via the first switch group SW1. The starter 13 may be driven together with the ISG 16 when starting the engine. In such a case, power is supplied from the lead storage battery 11 to the starter 13.
 また、エンジン始動時において、電気負荷15に対しては、リチウムイオン蓄電池12から給電が行われる。すなわち、制御装置50は、第3スイッチ群SW3を開放(オフ)するとともに第4スイッチ群SW4を閉鎖(オン)する。これにより、リチウムイオン蓄電池12から第4スイッチ群SW4を介して電気負荷15に給電が行われる。 In addition, when the engine is started, power is supplied from the lithium ion storage battery 12 to the electric load 15. That is, the control device 50 opens (turns off) the third switch group SW3 and closes (turns on) the fourth switch group SW4. Thereby, electric power is supplied from the lithium ion storage battery 12 to the electric load 15 via the fourth switch group SW4.
 このように、エンジン始動時には、各始動装置(スタータ13及びISG16)への通電経路L1と、電気負荷15への通電経路L3,L5とが分離されるため、各始動装置の駆動に伴う電圧変動の影響を受けることなく、電気負荷15に安定して給電を行うことができる。 In this way, when the engine is started, the energization paths L1 to the respective starters (starter 13 and ISG 16) and the energization paths L3 and L5 to the electric load 15 are separated, so that voltage fluctuations associated with driving of each starter Thus, the electric load 15 can be stably fed without being affected by the above.
 図3には、ISG16により走行用動力を付与する時の各スイッチ群SW1~SW4のオンオフ制御と、それに伴う電源システムの通電状態を示す。なお、図3の走行用動力付与時は、図2のエンジン始動時よりもエンジン出力軸に対し大きな動力を付与することを想定している。走行用動力を付与するためのISG駆動指令が生成されると、制御装置50はISG16を駆動させるべくスイッチ制御を実施する。この場合、制御装置50は、第1スイッチ群SW1を開放(オフ)するとともに第2スイッチ群SW2を閉鎖(オン)する。これにより、リチウムイオン蓄電池12から第2スイッチ群SW2を介してISG16に給電が行われる。 FIG. 3 shows the on / off control of each of the switch groups SW1 to SW4 when the driving power is applied by the ISG 16, and the energization state of the power supply system associated therewith. Note that it is assumed that when driving power in FIG. 3 is applied, greater power is applied to the engine output shaft than when the engine is started in FIG. When the ISG drive command for applying the driving power is generated, the control device 50 performs switch control to drive the ISG 16. In this case, the control device 50 opens (turns off) the first switch group SW1 and closes (turns on) the second switch group SW2. Thereby, electric power is supplied from the lithium ion storage battery 12 to the ISG 16 via the second switch group SW2.
 また、走行用動力付与時において、電気負荷15に対しては、鉛蓄電池11から給電が行われる。すなわち、制御装置50は、第3スイッチ群SW3を閉鎖(オン)するとともに第4スイッチ群SW4を開放(オフ)する。これにより、鉛蓄電池11から第3スイッチ群SW3を介して電気負荷15に給電が行われる。 In addition, when the driving power is applied, power is supplied from the lead storage battery 11 to the electrical load 15. That is, the control device 50 closes (turns on) the third switch group SW3 and opens (turns off) the fourth switch group SW4. As a result, power is supplied from the lead storage battery 11 to the electric load 15 via the third switch group SW3.
 このように、走行用動力を付与する時には、エンジン始動時に比べて大きな動力が要求されると想定され、かかる場合にリチウムイオン蓄電池12から第2スイッチ群SW2を介して給電を行うことで、エンジン出力軸に対しより大きな動力を付与することができる。また、この場合、電気負荷15に対しては鉛蓄電池11から給電を行うことで、リチウムイオン蓄電池12の負担を軽減することができる。 Thus, when the driving power is applied, it is assumed that a larger power is required than when the engine is started. In such a case, the power is supplied from the lithium ion storage battery 12 via the second switch group SW2, thereby Greater power can be applied to the output shaft. In this case, the electric load 15 is supplied with power from the lead storage battery 11, thereby reducing the load on the lithium ion storage battery 12.
 また、制御装置50は、エンジンの燃焼が停止された状態においてISG16で走行用動力を付与することによって車両を走行させる、いわゆるEV走行させる際においても、図3と同様のスイッチ制御を実施する。この場合、ISG16によるEV走行には、ISG16によるエンジン始動時に比べエンジン出力軸に対し一層大きな動力が必要となるため、許容通電電流がより大きな第2スイッチ群SW2を介して、リチウムイオン蓄電池12からISG16へ給電を行うようにする。 Further, the control device 50 performs the same switch control as that in FIG. 3 when the vehicle is driven by applying the driving power by the ISG 16 in a state where the combustion of the engine is stopped, that is, the EV driving. In this case, since EV driving by the ISG 16 requires more power for the engine output shaft than when the engine is started by the ISG 16, the lithium ion storage battery 12 is connected via the second switch group SW2 having a larger allowable current. Power is supplied to the ISG 16.
 なお、EV走行としては、例えばEVクリープ走行が挙げられる。EVクリープ走行は、車両のアクセルオフ時における低速走行であって、EVクリープ走行時の車速は、約10km/hである。 In addition, as EV running, for example, EV creep running can be cited. EV creep travel is low speed travel when the accelerator of the vehicle is off, and the vehicle speed during EV creep travel is approximately 10 km / h.
 続いて、図2及び図3で示したスイッチ制御について、図4のタイミングチャートを用いて説明する。図4では、エンジンの自動停止中にエンジンが再始動され、その後EVクリープ走行に移行する状況が示されている。 Subsequently, the switch control shown in FIGS. 2 and 3 will be described with reference to the timing chart of FIG. FIG. 4 shows a situation in which the engine is restarted during the automatic stop of the engine and then shifts to EV creep running.
 タイミングt11以前はエンジンが自動停止された状態である。なお図4では、かかる状態で第1スイッチ群SW1がオンとされ、第4スイッチ群SW4がオンとされている。つまり、エンジン自動停止中に鉛蓄電池11から電気負荷17へ給電が行われ、リチウムイオン蓄電池12からに電気負荷15へ給電が行われている。なお、エンジン自動停止中のスイッチ制御は適宜変更されてもよい。 The engine is automatically stopped before timing t11. In FIG. 4, in this state, the first switch group SW1 is turned on and the fourth switch group SW4 is turned on. That is, power is supplied from the lead storage battery 11 to the electric load 17 while the engine is automatically stopped, and power is supplied from the lithium ion storage battery 12 to the electric load 15. Note that switch control during automatic engine stop may be changed as appropriate.
 タイミングt11において、運転者によりブレーキ操作が解除されることで、エンジンの再始動要求が生じると、ISG駆動指令が生成され、制御装置50によるスイッチ制御が実施される。具体的には、第1スイッチ群SW1,第4スイッチ群SW4に対してオン指令が送信され、第1スイッチ群SW1が閉鎖されることで鉛蓄電池11からISG16へ給電が行われ、第4スイッチ群SW4が閉鎖されることでリチウムイオン蓄電池12から電気負荷15へ給電が行われる。 At timing t11, when the brake operation is released by the driver and an engine restart request is generated, an ISG drive command is generated and switch control by the control device 50 is performed. Specifically, an ON command is transmitted to the first switch group SW1 and the fourth switch group SW4, and the first switch group SW1 is closed so that power is supplied from the lead storage battery 11 to the ISG 16, and the fourth switch Power is supplied from the lithium ion storage battery 12 to the electric load 15 by closing the group SW4.
 その後、タイミングt12において、エンジン回転速度が所定以上となる等してエンジンの再始動が完了すると、アクセル操作がなされていないことを条件にEVクリープ走行が実施される。このとき、第1スイッチ群SW1,第4スイッチ群SW4に対してはオフ指令が送信され、第2スイッチ群SW2,第3スイッチ群SW3に対してはオン指令が送信される。その結果、第2スイッチ群SW2が閉鎖されることでリチウムイオン蓄電池12からISG16に給電が行われ、第3スイッチ群SW3が閉鎖されることで鉛蓄電池11から電気負荷15に給電が行われる。 Thereafter, at timing t12, when the engine restart is completed because the engine rotational speed becomes equal to or higher than a predetermined value, EV creep running is performed on the condition that the accelerator operation is not performed. At this time, an off command is transmitted to the first switch group SW1 and the fourth switch group SW4, and an on command is transmitted to the second switch group SW2 and the third switch group SW3. As a result, power is supplied from the lithium ion storage battery 12 to the ISG 16 by closing the second switch group SW2, and power is supplied from the lead storage battery 11 to the electrical load 15 by closing the third switch group SW3.
 以上詳述した本実施形態によれば、以下の優れた効果が得られる。 According to the embodiment described above in detail, the following excellent effects can be obtained.
 鉛蓄電池11及びリチウムイオン蓄電池12に対してISG16が接続される構成において、例えばISG16の駆動力等に応じて各蓄電池11,12を使い分けることが望ましいと考えられる。この点を考慮し、第2スイッチ群SW2は、第1スイッチ群SW1に比べて許容通電電流が大きいものであり、リチウムイオン蓄電池12からISG16への給電時における最大許容電流が、鉛蓄電池11からISG16への給電時における最大許容電流よりも大きくなっているようにした。この場合、ISG16への給電時において通電経路L2に通電経路L1に比べより大きな電流を流すことが可能となり、例えばISG16の駆動力に応じて各蓄電池11,12を使い分けることができる。また、第1スイッチ群SW1及び第2スイッチ群SW2のうち一方のみを大きくしたため、リチウムイオン蓄電池12の電力をISG16の力行駆動に好適に用いること、すなわち、鉛蓄電池11とリチウムイオン蓄電池12とを使い分けることを考慮しつつ、システムとして適正に各スイッチ群を設定できる。 In the configuration in which the ISG 16 is connected to the lead storage battery 11 and the lithium ion storage battery 12, it is considered desirable to use the storage batteries 11 and 12 separately according to the driving force of the ISG 16, for example. Considering this point, the second switch group SW2 has a larger allowable energization current than the first switch group SW1, and the maximum allowable current during power feeding from the lithium ion storage battery 12 to the ISG 16 is determined from the lead storage battery 11. It was made larger than the maximum allowable current at the time of power feeding to ISG16. In this case, at the time of power feeding to the ISG 16, a larger current can be passed through the energization path L2 compared to the energization path L1, and for example, the storage batteries 11 and 12 can be used properly according to the driving force of the ISG 16. In addition, since only one of the first switch group SW1 and the second switch group SW2 is increased, the power of the lithium ion storage battery 12 is preferably used for powering driving of the ISG 16, that is, the lead storage battery 11 and the lithium ion storage battery 12 are used. Each switch group can be set appropriately as a system while considering proper use.
 第2スイッチ群SW2の構成として、複数の半導体スイッチSb1~Sb6においてSb1~Sb3とSb4~Sb6とを互いに並列に接続する構成としたため、リチウムイオン蓄電池12からISG16への給電時において並列接続された複数のスイッチのうちいずれかがオフ故障した場合であっても、ISG16が直ちに電源失陥に至る事象を防止することができる。 Since the second switch group SW2 is configured such that Sb1 to Sb3 and Sb4 to Sb6 are connected in parallel in the plurality of semiconductor switches Sb1 to Sb6, they are connected in parallel when power is supplied from the lithium ion storage battery 12 to the ISG 16 Even when any of the plurality of switches has an off failure, it is possible to prevent an event that the ISG 16 immediately causes a power failure.
 第2スイッチ群SW2における複数の半導体スイッチSb1~Sb6の並列数が、第1スイッチ群SW1における複数の半導体スイッチSa1~Sa4の並列数に比べて多くなっているようにした。この場合、第2スイッチ群SW2の並列数を第1スイッチ群SW1の並列数よりも多くすることで、第2スイッチ群SW2の許容通電電流が第1スイッチ群SW1に比べて大きくなる。これにより、例えば既存の電源システムにおける第2スイッチ群SW2のスイッチ自体の許容通電電流(最大定格電流)を大きくすることなく、第2スイッチ群SW2の許容通電電流を大きくすることができるため、電池ユニットUの構築が容易となる。 The parallel number of the plurality of semiconductor switches Sb1 to Sb6 in the second switch group SW2 is made larger than the parallel number of the plurality of semiconductor switches Sa1 to Sa4 in the first switch group SW1. In this case, the allowable energization current of the second switch group SW2 becomes larger than that of the first switch group SW1 by increasing the parallel number of the second switch group SW2 than the parallel number of the first switch group SW1. Thereby, for example, the allowable energization current of the second switch group SW2 can be increased without increasing the allowable energization current (maximum rated current) of the switches of the second switch group SW2 in the existing power supply system. The unit U can be easily constructed.
 ISG16を力行駆動させる場面としては、例えばエンジン始動時や、走行用動力を付与する時(モータアシスト等)がある。エンジン始動時は、概ね定まったトルクが必要とされるのに対し、モータアシスト等の走行用動力を付与する時には、都度の状況に応じて必要とされるトルクの大きさが異なり、例えばエンジン始動時に比べて、エンジン出力軸に対しより大きな動力が必要になることがあると考えられる。この点を考慮し、ISG16によるエンジン始動時には鉛蓄電池11からISG16への給電を行わせ、走行用動力を付与する時にはリチウムイオン蓄電池12からISG16への給電を行わせるようにした。この場合、走行用動力付与時にはリチウムイオン蓄電池12からISG16へ給電を行うことで、例えばエンジン始動時に比べより大きな電流を流すことが可能となる。これにより、車両のトルク要求に対して広範に対応可能な構成を実現できる。 Examples of scenes where the ISG 16 is driven by power running include when the engine is started and when driving power is applied (motor assist, etc.). When starting the engine, a roughly fixed torque is required, but when applying driving power such as motor assist, the required torque differs depending on the situation. It is considered that more power may be required for the engine output shaft than sometimes. Considering this point, power is supplied from the lead storage battery 11 to the ISG 16 when the engine is started by the ISG 16, and power is supplied from the lithium ion storage battery 12 to the ISG 16 when driving power is applied. In this case, by supplying power from the lithium ion storage battery 12 to the ISG 16 when the driving power is applied, for example, a larger current can be flowed than when the engine is started. Thereby, the structure which can respond | correspond widely with respect to the torque request of a vehicle is realizable.
 エンジンの燃焼が停止された状態において、ISG16から走行用動力を付与することによって車両を走行させるには、エンジン出力軸に対し一層大きな動力が必要となる。この点を考慮し、かかる状態において第1スイッチ群SW1を開放、第2スイッチ群SW2を閉鎖することで、リチウムイオン蓄電池12からISG16へ給電を行うようにした。この場合、リチウムイオン蓄電池12からISG16への通電電流を大きくすることができ、鉛蓄電池11からISG16への給電時に比べてエンジン出力軸に対し一層大きな動力を付与することができる。これにより、エンジンの燃焼を必要としないEV走行が実現できる。 In the state where the combustion of the engine is stopped, to drive the vehicle by applying the driving power from the ISG 16, it is necessary to increase the power of the engine output shaft. In consideration of this point, in this state, the first switch group SW1 is opened and the second switch group SW2 is closed, so that power is supplied from the lithium ion storage battery 12 to the ISG 16. In this case, the energization current from the lithium ion storage battery 12 to the ISG 16 can be increased, and more power can be applied to the engine output shaft than when the lead storage battery 11 supplies power to the ISG 16. Thereby, EV traveling which does not require engine combustion can be realized.
 (第1実施形態の変形例)
 ・上記実施形態では、第1スイッチ群SW1及び第2スイッチ群SW2として、並列に接続された半導体スイッチを寄生ダイオードの向きが互いに逆向きになるようにして直列に接続されたものを用いたが、これを変更してもよい。例えば、図5に示すように、第1スイッチ群SW1及び第2スイッチ群SW2として、寄生ダイオードの向きが互いに逆向きとなるようにして直列に接続された直列接続体を並列に接続されたものを用いてもよい。具体的には、第1スイッチ群SW1は、直列接続体31,32が並列に接続された構成となっており、第2スイッチ群SW2は、直列接続体41,42,43が並列に接続された構成となっている。
(Modification of the first embodiment)
In the above embodiment, as the first switch group SW1 and the second switch group SW2, semiconductor switches connected in parallel are connected in series so that the directions of the parasitic diodes are opposite to each other. This may be changed. For example, as shown in FIG. 5, as the first switch group SW1 and the second switch group SW2, series connection bodies connected in series so that the directions of the parasitic diodes are opposite to each other are connected in parallel. May be used. Specifically, the first switch group SW1 has a configuration in which the series connection bodies 31 and 32 are connected in parallel, and the second switch group SW2 has the series connection bodies 41, 42, and 43 connected in parallel. It becomes the composition.
 図5の構成においても、第2スイッチ群SW2の許容通電電流が、第1スイッチ群SW1に比べて大きくなるように構成される。すなわち、第2スイッチ群SW2における半導体スイッチの並列数は、第1スイッチ群SW1における半導体スイッチの並列数に比べて多くなっている。 5 is also configured such that the allowable energization current of the second switch group SW2 is larger than that of the first switch group SW1. That is, the parallel number of semiconductor switches in the second switch group SW2 is larger than the parallel number of semiconductor switches in the first switch group SW1.
 ・上記実施形態では、第2スイッチ群SW2の半導体スイッチの並列数を、第1スイッチ群SW1の半導体スイッチの並列数よりも多くすることで、第2スイッチ群SW2の許容通電電流が大きくなるようにしたが、並列数の差以外によって許容通電電流が大きくなるようにしてもよい。例えば、第2スイッチ群SW2の半導体スイッチとして、第1スイッチ群SW1の半導体スイッチよりも最大定格電流が大きい半導体スイッチを用いるようにしてもよい。この場合、例えば第1スイッチ群SW1と第2スイッチ群SW2の並列数を等しくしてもよい。 In the above embodiment, by increasing the parallel number of the semiconductor switches of the second switch group SW2 more than the parallel number of the semiconductor switches of the first switch group SW1, the allowable energization current of the second switch group SW2 is increased. However, the allowable energization current may be increased depending on a difference other than the difference in parallel number. For example, a semiconductor switch having a maximum rated current larger than that of the semiconductor switch of the first switch group SW1 may be used as the semiconductor switch of the second switch group SW2. In this case, for example, the parallel number of the first switch group SW1 and the second switch group SW2 may be made equal.
 ・上記実施形態では、ISG16によるエンジン始動時と、ISG16により走行用動力を付与する時とで各蓄電池11,12を使い分ける構成としたが、これに限らない。例えば、ISG16による走行用動力付与時において、車両から要求される動力の大きさ(要求トルク)に応じて、各蓄電池11,12を使い分ける構成としてもよい。例えば、所定以上のモータアシストが必要となる場合は、リチウムイオン蓄電池12から給電することとし、所定未満のモータアシストである場合は、鉛蓄電池11から給電するようにしてもよい。また、各蓄電池11,12のバッテリSOC等を加味してもよい。 In the above-described embodiment, the storage batteries 11 and 12 are selectively used when the engine is started by the ISG 16 and when the driving power is applied by the ISG 16, but the present invention is not limited thereto. For example, when the driving power is applied by the ISG 16, the storage batteries 11 and 12 may be selectively used according to the magnitude of power (requested torque) required from the vehicle. For example, power supply from the lithium ion storage battery 12 may be performed when a motor assist of a predetermined level or more is required, and power supply from the lead storage battery 11 may be performed when the motor assist is less than a predetermined level. Moreover, you may consider the battery SOC etc. of each storage battery 11 and 12. FIG.
 ・上記電源システムにおいて、鉛蓄電池11の電力によるISG16のモータアシストを可能にするとともに、リチウムイオン蓄電池12の電力によるISG16のモータアシストを可能にしてもよい。例えば、リチウムイオン蓄電池12の充放電が許可されている状態では、リチウムイオン蓄電池12の電力によりモータアシストを実施する一方、リチウムイオン蓄電池12の充放電が禁止されている状態(第2スイッチ群SW2が開放されている状態)では、リチウムイオン蓄電池12に代えて鉛蓄電池11の電力によりモータアシストを実施する。この場合、第2スイッチ群SW2は、第1スイッチ群SW1に比べて許容通電電流が大きいものである構成を考慮し、リチウムイオン蓄電池12の電力によるISG駆動時には、鉛蓄電池11の電力によるISG駆動時に比べてモータトルクの許容上限を大きくするとよい。 In the above power supply system, the motor assist of the ISG 16 by the power of the lead storage battery 11 may be enabled, and the motor assist of the ISG 16 by the power of the lithium ion storage battery 12 may be enabled. For example, in a state where charging / discharging of the lithium ion storage battery 12 is permitted, motor assist is performed by the power of the lithium ion storage battery 12, while charging / discharging of the lithium ion storage battery 12 is prohibited (second switch group SW2). In the state where is opened), motor assistance is performed by the electric power of the lead storage battery 11 instead of the lithium ion storage battery 12. In this case, considering the configuration in which the second switch group SW2 has a larger allowable energization current than the first switch group SW1, during the ISG drive by the power of the lithium ion storage battery 12, the ISG drive by the power of the lead storage battery 11 is performed. It is better to increase the allowable upper limit of the motor torque than sometimes.
 ・上記実施形態では、リチウムイオン蓄電池12からISG16への給電によって車両をEVクリープ走行させる態様としたが、リチウムイオン蓄電池12からの給電によってEVクリープ走行以外のEV走行を実施させてもよい。つまり、アクセル操作量に応じてリチウムイオン蓄電池12からISG16への通電電流を制御するようにしてもよい。 In the above embodiment, the vehicle is EV creep traveled by feeding power from the lithium ion storage battery 12 to the ISG 16, but EV traveling other than EV creep travel may be performed by feeding power from the lithium ion storage battery 12. In other words, the energization current from the lithium ion storage battery 12 to the ISG 16 may be controlled according to the accelerator operation amount.
 ・上記実施形態では、蓄電池として鉛蓄電池11及びリチウムイオン蓄電池12を用いる構成としたが、これを変更してもよい。例えば、リチウムイオン蓄電池12に代えて、それ以外の高密度蓄電池、例えばニッケル-水素電池を用いてもよい。その他、少なくともいずれかの蓄電池としてキャパシタを用いることも可能である。 In the above embodiment, the lead storage battery 11 and the lithium ion storage battery 12 are used as the storage battery, but this may be changed. For example, instead of the lithium ion storage battery 12, other high-density storage batteries such as nickel-hydrogen batteries may be used. In addition, a capacitor can be used as at least one of the storage batteries.
 (第2実施形態)
 上記第1実施形態では、電気負荷15を被保護負荷とする構成としたが、第2実施形態では、電気負荷17にも被保護負荷が含まれる構成とする。なお、第2実施形態における電源システムは、第1実施形態と同じである。
(Second Embodiment)
In the first embodiment, the electrical load 15 is a protected load. However, in the second embodiment, the electrical load 17 includes the protected load. In addition, the power supply system in 2nd Embodiment is the same as 1st Embodiment.
 上述したように、制御装置50は、各スイッチ群SW1~SW4のオンオフ制御を実施することで、各蓄電池11,12の充放電を制御している。例えば、鉛蓄電池11から電気負荷17へ給電を行う場合には、制御装置50は、第1スイッチ群SW1に駆動信号を送信する。その駆動信号は、第1スイッチ群SW1に設けられるスイッチ駆動回路(図示せず)に出力され、そのスイッチ駆動回路により第1スイッチ群SW1の半導体スイッチのオンオフが切り替えられる。このようなオンオフ制御では、制御装置50の駆動信号に基づいて、各スイッチ群が正しく作動する必要がある。そのため、制御装置50から、各スイッチ群に対して駆動信号が正常に送信されているか駆動信号の診断を適宜実施している。 As described above, the control device 50 controls the charging and discharging of the storage batteries 11 and 12 by performing on / off control of the switch groups SW1 to SW4. For example, when power is supplied from the lead storage battery 11 to the electrical load 17, the control device 50 transmits a drive signal to the first switch group SW1. The drive signal is output to a switch drive circuit (not shown) provided in the first switch group SW1, and the switch drive circuit switches on and off the semiconductor switches of the first switch group SW1. In such on / off control, each switch group needs to operate correctly based on the drive signal of the control device 50. Therefore, a diagnosis of the drive signal is appropriately performed to determine whether the drive signal is normally transmitted from the control device 50 to each switch group.
 ここで、車両の電源スイッチ(イグニッションスイッチ)がオンされている状態では、制御装置50は、電気負荷17(被保護負荷を含む)に対して継続的な電力供給を行うべくスイッチ群SW1,SW2の少なくともいずれかが常に閉鎖(オン)になるように、駆動信号を出力している。つまり、制御態様として、スイッチ群SW1,SW2が同時に開放(オフ)になるような制御は存在しない。そのため、スイッチ群SW1,SW2の駆動信号がいずれもオフの場合には、制御装置50においてスイッチ切替が不能となる異常が生じていると考えられる。 Here, in a state where the power switch (ignition switch) of the vehicle is turned on, the control device 50 switches groups SW1 and SW2 to continuously supply power to the electric load 17 (including the protected load). The drive signal is output so that at least one of the signals is always closed (ON). That is, as a control mode, there is no control in which the switch groups SW1 and SW2 are simultaneously opened (off). For this reason, when the drive signals of the switch groups SW1 and SW2 are both off, it is considered that an abnormality that disables switch switching has occurred in the control device 50.
 そして、このような制御装置50に異常が生じた場合には、フェールセーフ処理として、バイパススイッチ21,22を駆動させるようにする。これにより電気負荷17への給電を継続し、電気負荷17の電源失陥を防止している。 When an abnormality occurs in such a control device 50, the bypass switches 21 and 22 are driven as fail-safe processing. Thereby, the power supply to the electric load 17 is continued, and the power supply failure of the electric load 17 is prevented.
 ここで、本実施形態における第1スイッチ群SW1及び第2スイッチ群SW2の駆動信号の診断について図6を用いて説明する。上述のとおり、第1スイッチ群SW1及び第2スイッチ群SW2はそれぞれ、並列に接続された半導体スイッチを寄生ダイオードの向きが互いに逆向きになるようにして直列に接続されて構成されている。本実施形態における診断では、各スイッチ群SW1,SW2において寄生ダイオードの向きが互いに逆向きとなる任意の一組の半導体スイッチを選択し、それら半導体スイッチに対し制御装置50から駆動信号が送信されているかを検出する。例えば、図6では、第1スイッチ群SW1において半導体スイッチSa2,Sa4の駆動信号を検出し、第2スイッチ群SW2において半導体スイッチSb1,Sb6の駆動信号を検出する。 Here, diagnosis of the drive signals of the first switch group SW1 and the second switch group SW2 in the present embodiment will be described with reference to FIG. As described above, the first switch group SW1 and the second switch group SW2 are each configured by connecting semiconductor switches connected in parallel in series so that the directions of the parasitic diodes are opposite to each other. In the diagnosis in the present embodiment, an arbitrary set of semiconductor switches in which the directions of the parasitic diodes are opposite to each other in each switch group SW1, SW2, and a drive signal is transmitted from the control device 50 to these semiconductor switches. Detect whether or not For example, in FIG. 6, the drive signals for the semiconductor switches Sa2 and Sa4 are detected in the first switch group SW1, and the drive signals for the semiconductor switches Sb1 and Sb6 are detected in the second switch group SW2.
 このように、第1スイッチ群SW1、第2スイッチ群SW2それぞれにおいて、寄生ダイオードの向きが互いに逆向きとなる任意の一組の半導体スイッチの駆動信号を検出する。この構成によれば、各スイッチ群SW1,SW2それぞれにおいて、全ての半導体スイッチの駆動信号を検出する必要がなくなるため、論理回路が少なくて済み、ひいては基板の縮小につながる。 Thus, in each of the first switch group SW1 and the second switch group SW2, a drive signal of an arbitrary set of semiconductor switches in which the directions of the parasitic diodes are opposite to each other is detected. According to this configuration, since it is not necessary to detect the drive signals of all the semiconductor switches in each of the switch groups SW1 and SW2, the number of logic circuits can be reduced, which leads to reduction of the substrate.
 図7には、本実施形態におけるバイパススイッチ21,22のオンオフを決定するための論理回路60を示す。論理回路60は、第1スイッチ群SW1において出力端子T1側をカソードとするいずれか1つの半導体スイッチの駆動信号、及び出力端子T2側をカソードとするいずれか1つの半導体スイッチの駆動信号を入力するAND回路C1と、第2スイッチ群SW2において接続点N1側をカソードとするいずれか1つの半導体スイッチの駆動信号、及びリチウムイオン蓄電池12側をカソードとするいずれか1つの半導体スイッチの駆動信号を入力するAND回路C2と、AND回路C1の出力信号及びAND回路C2の出力信号を入力するOR回路C3と、OR回路C3の出力信号及びバイパススイッチの駆動信号を入力するAND回路C4とを有している。そして、AND回路C4から出力された信号が「1」であればバイパススイッチ21,22が開放され、「0」であればバイパススイッチ21,22が閉鎖される。 FIG. 7 shows a logic circuit 60 for determining ON / OFF of the bypass switches 21 and 22 in this embodiment. In the first switch group SW1, the logic circuit 60 inputs a driving signal for any one semiconductor switch having the output terminal T1 side as a cathode and a driving signal for any one semiconductor switch having the output terminal T2 side as a cathode. The AND circuit C1 and the drive signal of any one semiconductor switch having the connection point N1 side as a cathode in the second switch group SW2 and the drive signal of any one semiconductor switch having the lithium ion battery 12 side as a cathode are input. And an AND circuit C2 that inputs an output signal of the AND circuit C1 and an output signal of the AND circuit C2, and an AND circuit C4 that inputs an output signal of the OR circuit C3 and a drive signal of the bypass switch. Yes. When the signal output from the AND circuit C4 is “1”, the bypass switches 21 and 22 are opened, and when the signal is “0”, the bypass switches 21 and 22 are closed.
 なお、バイパススイッチ21,22の駆動信号は、各スイッチ群SW1,SW2のオンオフによらず、イグニッションスイッチがオンされている状態では「1」が出力される。 The drive signal of the bypass switches 21 and 22 is output as “1” when the ignition switch is turned on regardless of whether the switch groups SW1 and SW2 are turned on or off.
 論理回路60において、AND回路C1は、第1スイッチ群SW1においてダイオードが互いに逆向きの半導体スイッチの駆動信号がいずれも「1」の場合に「1」を出力し、それら駆動信号の少なくともいずれかが「0」の場合に「0」を出力する。同様に、AND回路C2は、第2スイッチ群SW2においてダイオードが互いに逆向きの半導体スイッチの駆動信号がいずれも「1」の場合に「1」を出力し、それら駆動信号の少なくともいずれかが「0」の場合に「0」を出力する。そして、OR回路C3は、AND回路C1の出力信号が「0」であって、かつAND回路C2の出力信号が「0」の場合のみ、「0」を出力する。 In the logic circuit 60, the AND circuit C1 outputs “1” when the drive signals of the semiconductor switches whose diodes are opposite to each other in the first switch group SW1 are “1”, and at least one of these drive signals. When “0” is “0”, “0” is output. Similarly, the AND circuit C2 outputs “1” when the drive signals of the semiconductor switches whose diodes are opposite to each other in the second switch group SW2 are “1”, and at least one of these drive signals is “ When “0”, “0” is output. The OR circuit C3 outputs “0” only when the output signal of the AND circuit C1 is “0” and the output signal of the AND circuit C2 is “0”.
 ここで、電気負荷17への給電を継続するためには、第1スイッチ群SW1及び第2スイッチ群SW2の少なくともいずれかがオンとなっている必要がある。つまり、AND回路C1の出力信号及びAND回路C2の出力信号の少なくともいずれかが「1」となり、OR回路C3の出力信号が「1」となる必要がある。そのため、OR回路C3の出力信号が「1」となる場合には、制御装置50から各スイッチ群SW1,SW2に対して正常に駆動信号が送信されている状態であるとみなすことができ、かかる場合バイパススイッチ21,22は開放される。 Here, in order to continue power supply to the electric load 17, at least one of the first switch group SW1 and the second switch group SW2 needs to be on. That is, at least one of the output signal of the AND circuit C1 and the output signal of the AND circuit C2 needs to be “1”, and the output signal of the OR circuit C3 needs to be “1”. Therefore, when the output signal of the OR circuit C3 is “1”, it can be considered that the drive signal is normally transmitted from the control device 50 to each of the switch groups SW1 and SW2. In this case, the bypass switches 21 and 22 are opened.
 一方、第1スイッチ群SW1及び第2スイッチ群SW2のいずれもオフとなる異常時には、AND回路C1の出力信号及びAND回路C2の出力信号がいずれも「0」となり、OR回路C3の出力信号が「0」となる。つまりこの場合、OR回路C3の「0」の出力信号はフェール信号であるといえる。そして、OR回路C3の出力信号が「0」となると、AND回路C4の出力信号が「0」となる。そのため、異常時には、フェールセーフ処理としてバイパススイッチ21,22が閉鎖されるようになっている。 On the other hand, when both the first switch group SW1 and the second switch group SW2 are off, the output signal of the AND circuit C1 and the output signal of the AND circuit C2 are both “0”, and the output signal of the OR circuit C3 is “0”. That is, in this case, it can be said that the output signal “0” of the OR circuit C3 is a fail signal. When the output signal of the OR circuit C3 becomes “0”, the output signal of the AND circuit C4 becomes “0”. Therefore, the bypass switches 21 and 22 are closed as a fail-safe process when an abnormality occurs.
 (変形例)
 ・上記実施形態では、図6に示される第1スイッチ群SW1及び第2スイッチ群SW2での診断を示したが、第1スイッチ群SW1及び第2スイッチ群SW2の構成はこれに限らない。例えば、各スイッチ群の並列数をそれぞれ変更してもよい。なお、かかる場合であっても、ダイオードの向きが逆向きとなる任意の一組の半導体スイッチの駆動信号をそれぞれ検出すればよい。
(Modification)
In the above-described embodiment, the diagnosis using the first switch group SW1 and the second switch group SW2 illustrated in FIG. 6 has been described, but the configurations of the first switch group SW1 and the second switch group SW2 are not limited thereto. For example, the parallel number of each switch group may be changed. Even in such a case, it is only necessary to detect drive signals of an arbitrary set of semiconductor switches in which the directions of the diodes are reversed.
 ・上記実施形態では、第1スイッチ群SW1及び第2スイッチ群SW2の駆動信号の診断を示したが、例えば第3スイッチ群SW3及び第4スイッチ群SW4が、SW1及びSW2と同様に並列接続された構成を有する場合には、SW3及びSW4の駆動信号の診断を実施することができる。つまり、電気負荷15(被保護負荷を含む)に対しては給電が継続的に行われるべく、第3スイッチ群SW3及び第4スイッチ群SW4のいずれかが閉鎖(オン)となっている必要があり、この状況を考慮して駆動信号の診断を実施することができる。 In the above embodiment, the drive signal diagnosis of the first switch group SW1 and the second switch group SW2 has been shown. For example, the third switch group SW3 and the fourth switch group SW4 are connected in parallel in the same manner as the SW1 and SW2. In the case of having the configuration described above, the drive signals of SW3 and SW4 can be diagnosed. That is, one of the third switch group SW3 and the fourth switch group SW4 needs to be closed (ON) so that power can be continuously supplied to the electrical load 15 (including the protected load). Yes, the drive signal can be diagnosed in consideration of this situation.
 (第3実施形態)
 上記第1実施形態で示した電池ユニットUは、リチウムイオン蓄電池12と、制御装置50を実装した基板70とを筐体に組み付けることで構築される。図8には、リチウムイオン蓄電池12と基板70を組み付けた状態での配線の状態を示している。なお、リチウムイオン蓄電池12の負極とグランドが接続される通電経路に設けられるヒューズ71は、電池ユニットUの製造時において、リチウムイオン蓄電池12の正極及び負極に対して基板70を組み付けた後に取り付けられるようになっている。
(Third embodiment)
The battery unit U shown in the first embodiment is constructed by assembling the lithium ion storage battery 12 and the substrate 70 on which the control device 50 is mounted on a housing. FIG. 8 shows a wiring state in a state where the lithium ion storage battery 12 and the substrate 70 are assembled. Note that the fuse 71 provided in the energization path where the negative electrode of the lithium ion storage battery 12 is connected to the ground is attached after the substrate 70 is assembled to the positive electrode and the negative electrode of the lithium ion storage battery 12 when the battery unit U is manufactured. It is like that.
 基板70は、制御装置50を有しており、さらに制御装置50は、バッテリ監視用のIC72を有している。また、基板70は、端子部P1,P2,P3を有しており、このうち端子部P1はリチウムイオン蓄電池12の正極に接続され、端子部P2はリチウムイオン蓄電池12の負極に接続されている。また、端子部P3は、最終的にはグランドに接続されることになるが、基板70の組み付け時には、非接続状態となっている。 The board 70 has a control device 50, and the control device 50 further has an IC 72 for battery monitoring. Moreover, the board | substrate 70 has terminal part P1, P2, P3, and among these, the terminal part P1 is connected to the positive electrode of the lithium ion storage battery 12, and the terminal part P2 is connected to the negative electrode of the lithium ion storage battery 12. . The terminal portion P3 is ultimately connected to the ground, but is not connected when the board 70 is assembled.
 基板70における電気的構成を説明する。図8に示すように、基板70には、基板内電気経路として、端子部P1,P3を繋ぐ通電経路L11と、通電経路L11上の接続点N11と端子部P2とをIC72内部を経由して繋ぐ通電経路L12とが設けられている。このうち通電経路L11において接続点N11よりも端子部P1側にコンデンサ73が設けられている。また、通電経路L12上のIC72内部にはダイオード部74が設けられている。ダイオード部74は、2個のダイオードが直列に接続されて構成されており、端子部P2側がカソード、接続点N11側がアノードとなるように接続されている。なお、ダイオード部74は、意図せず発生した静電気がIC72内を通電することによってIC72が破損することを防ぐために設けられている。 The electrical configuration of the substrate 70 will be described. As shown in FIG. 8, the circuit board 70 has an energization path L11 that connects the terminal portions P1 and P3, a connection point N11 on the energization path L11, and the terminal section P2 as internal electrical paths via the IC 72. An energization path L12 to be connected is provided. Among these, the capacitor | condenser 73 is provided in the electricity supply path | route L11 at the terminal part P1 side rather than the connection point N11. In addition, a diode portion 74 is provided inside the IC 72 on the energization path L12. The diode portion 74 is configured by connecting two diodes in series, and is connected such that the terminal portion P2 side is a cathode and the connection point N11 side is an anode. The diode portion 74 is provided to prevent the IC 72 from being damaged by unintentionally generated static electricity passing through the IC 72.
 かかる構成において、基板70を組み付ける際に、リチウムイオン蓄電池12の正極及び負極に基板70の各端子部P1,P2が接続されると、端子部P1から端子部P2に向かって突入電流が発生する。この場合、突入電流は、コンデンサ73を経由して、IC72内部のダイオード部74を介してリチウムイオン蓄電池12の負極へと流れる。このとき、IC72内部に過剰の電流が流れることで、IC72が破損するおそれがある。 In this configuration, when the board 70 is assembled, if each terminal part P1, P2 of the board 70 is connected to the positive electrode and the negative electrode of the lithium ion storage battery 12, an inrush current is generated from the terminal part P1 toward the terminal part P2. . In this case, the inrush current flows to the negative electrode of the lithium ion storage battery 12 via the capacitor 73 and the diode part 74 inside the IC 72. At this time, there is a possibility that the IC 72 may be damaged by excessive current flowing inside the IC 72.
 そこで、本実施形態では、リチウムイオン蓄電池12に基板70を取り付ける際に、IC72内部に過剰の電流が流れないようにすべく基板70に保護手段を設けている。これにより、IC72の破損を防止するようにしている。 Therefore, in the present embodiment, when the substrate 70 is attached to the lithium ion storage battery 12, a protective means is provided on the substrate 70 so that excessive current does not flow inside the IC 72. This prevents the IC 72 from being damaged.
 保護手段として、具体的には、IC72内部を経由しない(迂回する)バイパス経路L13を設けるとともに、そのバイパス経路L13にダイオード部74よりも電気抵抗が小さいダイオード部75を設ける構成とした。図9は、かかる構成における突入電流の通電状態を示している。バイパス経路L13は、IC72を経由せずに端子部P2と端子部P3とを接続するように、通電経路L11の接続点N11よりも端子部P3側の接続点N12と、通電経路L2においてIC72外部となる端子部P2側の接続点N13とを接続している。そして、バイパス経路L13上にダイオード部74よりも電気抵抗が小さいダイオード部75を設けている。具体的には、ダイオード部75は、1個のダイオードで構成されている。 Specifically, as a protection means, a bypass path L13 that does not pass through the IC 72 (detours) is provided, and a diode part 75 having a smaller electrical resistance than the diode part 74 is provided in the bypass path L13. FIG. 9 shows an energization state of an inrush current in such a configuration. The bypass path L13 connects the terminal part P2 and the terminal part P3 without going through the IC 72, and the connection point N12 on the terminal part P3 side of the connection point N11 of the energization path L11 and the outside of the IC 72 in the energization path L2. Is connected to a connection point N13 on the terminal part P2 side. A diode portion 75 having an electric resistance smaller than that of the diode portion 74 is provided on the bypass path L13. Specifically, the diode unit 75 is configured by one diode.
 この構成によれば、基板70の組み付け時に発生する突入電流は、ダイオード部74よりも電気抵抗が小さいダイオード部75に優先して流れることになる。つまり、突入電流がバイパス経路L13に流れることで、IC72内部に過剰の電流が流れることを防ぐことができる。 According to this configuration, the inrush current generated when the substrate 70 is assembled flows preferentially to the diode portion 75 having a smaller electrical resistance than the diode portion 74. That is, an inrush current flows through the bypass path L13, so that an excessive current can be prevented from flowing inside the IC 72.
 その他の保護手段として、IC72外部の通電経路L12上に制限抵抗76を設ける構成とした。図10は、かかる構成における突入電流の通電状態を示している。この場合、制限抵抗76の抵抗値は、IC72内部を流れる電流がIC72の許容電流以下となるように設定される。この構成によれば、突入電流は、IC72内部のダイオード部74に流れることになるが、制限抵抗76によって、突入電流がIC72の許容通電電流以下に抑えられるため、IC72の破損を防ぐことができる。 As another protection means, a limiting resistor 76 is provided on the energization path L12 outside the IC 72. FIG. 10 shows an energization state of an inrush current in such a configuration. In this case, the resistance value of the limiting resistor 76 is set so that the current flowing through the IC 72 is equal to or less than the allowable current of the IC 72. According to this configuration, the inrush current flows to the diode portion 74 inside the IC 72. However, since the inrush current is suppressed to be equal to or less than the allowable energization current of the IC 72 by the limiting resistor 76, the IC 72 can be prevented from being damaged. .
 また、保護手段の別の構成として、上述のバイパス経路L13及びダイオード部75と、制限抵抗76を組み合わせる構成としてもよい。かかる構成では、通電経路L12において制限抵抗76と端子部P2との間の中間点と、接続点N12が接続されるようにバイパス経路L13を設ける。このように各保護手段を組み合わせることで、IC72内部へ過剰の電流が流れることをより好適に防ぐことができる。 Further, as another configuration of the protection means, a configuration in which the bypass path L13 and the diode unit 75 described above and the limiting resistor 76 are combined may be employed. In such a configuration, the bypass path L13 is provided so that the intermediate point between the limiting resistor 76 and the terminal portion P2 and the connection point N12 are connected in the energization path L12. By combining the protection means in this way, it is possible to more suitably prevent an excessive current from flowing into the IC 72.
 一方、リチウムイオン蓄電池12は、複数の単電池が直列に接続された組電池として構成されており、かかる場合におけるIC72の保護手段の一例を図11に示す。 On the other hand, the lithium ion storage battery 12 is configured as an assembled battery in which a plurality of single cells are connected in series. FIG. 11 shows an example of protection means for the IC 72 in such a case.
 この場合、リチウムイオン蓄電池12は、単電池12a~12eから構成されており、各単電池12a~12eの正極及び負極がそれぞれ、基板70の端子部P1,P2a~P2eに接続される。基板70上のIC72内部には、各端子部P2a~P2eと通電経路L12とを接続する通電経路がそれぞれ設けられており、各通電経路には、静電気対策用のダイオード部(図示せず)がそれぞれ設けられている。つまり、図8と同様、基板70を組み付ける際に、IC72内部に過剰の電流が流れるおそれがある。 In this case, the lithium ion storage battery 12 is composed of the single cells 12a to 12e, and the positive and negative electrodes of the single cells 12a to 12e are connected to the terminal portions P1, P2a to P2e of the substrate 70, respectively. Inside the IC 72 on the substrate 70, there are provided energization paths that connect the respective terminal portions P2a to P2e and the energization path L12, and each energization path has a diode portion (not shown) for preventing static electricity. Each is provided. That is, as in FIG. 8, when the substrate 70 is assembled, an excessive current may flow inside the IC 72.
 そこで、図11では、バイパス経路L13を設けるとともに、そのバイパス経路上にダイオード部75a~75eを設けた。さらに、各端子部P2a~P2eに接続される各通電経路上に制限抵抗76a~76eを設けた。これにより、IC72内部に過剰の電流が流れることを防止でき、ひいてはIC72の破損を防ぐことができる。 Therefore, in FIG. 11, the bypass path L13 is provided, and the diode portions 75a to 75e are provided on the bypass path. Further, limiting resistors 76a to 76e are provided on the energization paths connected to the terminal portions P2a to P2e. As a result, it is possible to prevent an excessive current from flowing inside the IC 72 and thus prevent the IC 72 from being damaged.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (5)

  1.  エンジンと、前記エンジンの出力軸に駆動連結され、発電及び力行駆動の各機能を有する回転電機(16)と、該回転電機に対して並列接続される第1蓄電池(11)及び第2蓄電池(12)とを備える車両に適用され、前記各蓄電池のうち前記第2蓄電池を備えており、前記第1蓄電池及び前記回転電機にそれぞれ接続される電池ユニット(U)であって、
     前記第1蓄電池が接続される第1端子(T1)と、
     前記回転電機が接続される第2端子(T2)と、
     前記第1端子と前記第2端子とを接続する第1電気経路(L1)に設けられ、該第1電気経路を開放又は閉鎖する第1開閉部(SW1)と、
     前記第1電気経路において前記第1開閉部よりも前記第2端子の側の接続点(N1)と前記第2蓄電池とを接続する第2電気経路(L2)に設けられ、該第2電気経路を開放又は閉鎖する第2開閉部(SW2)と、
    を備え、
     前記第2開閉部は、前記第1開閉部に比べて許容通電電流が大きいものであり、前記第2蓄電池から前記回転電機への給電時における最大許容電流が、前記第1蓄電池から前記回転電機への給電時における最大許容電流よりも大きくなっている電池ユニット。
    An engine, a rotating electrical machine (16) that is drivingly connected to the output shaft of the engine and has functions of power generation and power running, and a first storage battery (11) and a second storage battery (parallelly connected to the rotating electrical machine) 12), a battery unit (U) that includes the second storage battery among the storage batteries, and is connected to the first storage battery and the rotating electrical machine,
    A first terminal (T1) to which the first storage battery is connected;
    A second terminal (T2) to which the rotating electrical machine is connected;
    A first opening / closing part (SW1) provided in a first electrical path (L1) connecting the first terminal and the second terminal, and opening or closing the first electrical path;
    In the first electric path, the second electric path is provided in a second electric path (L2) connecting the connection point (N1) closer to the second terminal than the first opening / closing portion and the second storage battery. A second opening / closing part (SW2) that opens or closes;
    With
    The second opening / closing portion has a larger allowable energization current than the first opening / closing portion, and the maximum allowable current during power feeding from the second storage battery to the rotating electrical machine is from the first storage battery to the rotating electrical machine. A battery unit that is larger than the maximum allowable current when power is supplied.
  2.  前記第1開閉部は、並列接続された複数のスイッチ(Sa1~Sa4)を有し、
     前記第2開閉部は、並列接続された複数のスイッチ(Sb1~Sb6)を有するものであって、
     前記第2開閉部における前記複数のスイッチの並列数が、前記第1開閉部における前記複数のスイッチの並列数に比べて多くなっている請求項1に記載の電池ユニット。
    The first opening / closing unit includes a plurality of switches (Sa1 to Sa4) connected in parallel,
    The second opening / closing unit includes a plurality of switches (Sb1 to Sb6) connected in parallel,
    2. The battery unit according to claim 1, wherein the parallel number of the plurality of switches in the second opening / closing part is larger than the parallel number of the plurality of switches in the first opening / closing part.
  3.  前記第1開閉部及び前記第2開閉部の開閉を制御する制御部(50)を備え、
     前記制御部は、前記回転電機によるエンジン始動を行う時に、前記第1開閉部を閉鎖、前記第2開閉部を開放して、前記第1蓄電池から前記回転電機への給電を行わせ、
     前記回転電機により前記出力軸へ走行用動力を付与する時に、前記第1開閉部を開放、前記第2開閉部を閉鎖して、前記第2蓄電池から前記回転電機への給電を行わせる請求項1又は2に記載の電池ユニット。
    A controller (50) for controlling opening and closing of the first opening and closing unit and the second opening and closing unit;
    When the engine is started by the rotating electrical machine, the control unit closes the first opening / closing part, opens the second opening / closing part, and feeds power from the first storage battery to the rotating electrical machine,
    The power supply from the second storage battery to the rotating electrical machine is performed by opening the first opening / closing part and closing the second opening / closing part when driving power is applied to the output shaft by the rotating electrical machine. The battery unit according to 1 or 2.
  4.  前記制御部は、前記エンジンの燃焼が停止された状態で、前記第1開閉部を開放、前記第2開閉部を閉鎖し、前記走行用動力を付与する請求項3に記載の電池ユニット。 4. The battery unit according to claim 3, wherein the control section opens the first opening / closing section, closes the second opening / closing section, and applies the driving power in a state where combustion of the engine is stopped.
  5.  エンジンを備える車両に適用され、
     前記エンジンの出力軸に駆動連結され、発電及び力行駆動の各機能を有する回転電機(16)と、該回転電機に対して互いに並列接続される第1蓄電池(11)及び第2蓄電池(12)とを備え、前記第1蓄電池及び前記第2蓄電池の各々から前記回転電機への給電が可能な電源システムであって、
     前記回転電機と前記第1蓄電池を接続する第1電気経路(L1)に設けられ、該第1電気経路を開放又は閉鎖する第1開閉部(SW1)と、
     前記回転電機と前記第2蓄電池を接続する第2電気経路(L2)に設けられ、該第2電気経路を開放又は閉鎖する第2開閉部(SW2)と、
    を備え、
     前記第2開閉部は、前記第1開閉部に比べて許容通電電流が大きいものであり、前記第2蓄電池から前記回転電機への給電時における最大許容電流が、前記第1蓄電池から前記回転電機への給電時における最大許容電流よりも大きくなっている電源システム。
    Applied to vehicles with engine,
    A rotating electrical machine (16) connected to the output shaft of the engine and having functions of power generation and power running, and a first storage battery (11) and a second storage battery (12) connected in parallel to the rotating electrical machine. A power supply system capable of supplying power to the rotating electrical machine from each of the first storage battery and the second storage battery,
    A first opening / closing portion (SW1) provided in a first electrical path (L1) connecting the rotating electrical machine and the first storage battery, and opening or closing the first electrical path;
    A second opening / closing portion (SW2) provided in a second electrical path (L2) connecting the rotating electrical machine and the second storage battery, and opening or closing the second electrical path;
    With
    The second opening / closing portion has a larger allowable energization current than the first opening / closing portion, and the maximum allowable current during power feeding from the second storage battery to the rotating electrical machine is from the first storage battery to the rotating electrical machine. Power system that is larger than the maximum allowable current when power is supplied to
PCT/JP2017/042123 2016-12-14 2017-11-23 Battery unit, and power supply system WO2018110243A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112017006265.9T DE112017006265T5 (en) 2016-12-14 2017-11-23 Battery unit and power system
CN201780077110.XA CN110167776B (en) 2016-12-14 2017-11-23 Battery unit and power supply system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-242674 2016-12-14
JP2016242674A JP6834448B2 (en) 2016-12-14 2016-12-14 Battery unit and power supply system

Publications (1)

Publication Number Publication Date
WO2018110243A1 true WO2018110243A1 (en) 2018-06-21

Family

ID=62558590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042123 WO2018110243A1 (en) 2016-12-14 2017-11-23 Battery unit, and power supply system

Country Status (4)

Country Link
JP (1) JP6834448B2 (en)
CN (1) CN110167776B (en)
DE (1) DE112017006265T5 (en)
WO (1) WO2018110243A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7014237B2 (en) * 2020-02-17 2022-02-01 トヨタ自動車株式会社 Battery controls, methods, programs, and vehicles
DE102022200872A1 (en) 2022-01-26 2023-07-27 Robert Bosch Gesellschaft mit beschränkter Haftung Diagnostic circuit for a battery disconnect unit, method for diagnosing the battery disconnect unit, battery disconnect unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015079522A1 (en) * 2013-11-27 2015-06-04 日産自動車株式会社 Electric circuit
JP2015154618A (en) * 2014-02-14 2015-08-24 株式会社デンソー battery unit
JP2016032251A (en) * 2014-07-30 2016-03-07 株式会社豊田自動織機 Feeder line cut-off circuit and feeder line cut-off method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5234052B2 (en) * 2010-04-27 2013-07-10 株式会社デンソー Power supply
FR2961972B1 (en) * 2010-06-25 2012-07-13 Valeo Sys Controle Moteur Sas ELECTRIC DEVICE FOR DRIVING A MECHANICAL EQUIPMENT AND ASSOCIATED METHOD
JP2012186877A (en) * 2011-03-03 2012-09-27 Panasonic Corp Battery state detector for photovoltaic generation battery system
JP5342583B2 (en) * 2011-03-08 2013-11-13 三菱重工業株式会社 Battery cell control device and battery cell
WO2012136180A2 (en) * 2011-04-04 2012-10-11 Schaeffler Technologies AG & Co. KG Method for controlling a hybrid drivetrain and battery device in said hybrid drivetrain
JP6260422B2 (en) * 2014-04-15 2018-01-17 株式会社デンソー Battery unit
JP6380171B2 (en) * 2015-03-06 2018-08-29 株式会社デンソー Power system
JP6082420B2 (en) * 2015-03-31 2017-02-15 富士重工業株式会社 Vehicle power supply
JP6613997B2 (en) * 2015-04-22 2019-12-04 株式会社デンソー Power supply

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015079522A1 (en) * 2013-11-27 2015-06-04 日産自動車株式会社 Electric circuit
JP2015154618A (en) * 2014-02-14 2015-08-24 株式会社デンソー battery unit
JP2016032251A (en) * 2014-07-30 2016-03-07 株式会社豊田自動織機 Feeder line cut-off circuit and feeder line cut-off method

Also Published As

Publication number Publication date
CN110167776A (en) 2019-08-23
DE112017006265T5 (en) 2019-09-26
CN110167776B (en) 2022-05-03
JP2018098950A (en) 2018-06-21
JP6834448B2 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
US10855100B2 (en) Power supply control apparatus and battery unit
JP6221796B2 (en) Battery unit and power supply system
JP6090199B2 (en) Battery unit
JP6244987B2 (en) Power system
JP6260422B2 (en) Battery unit
JP5039437B2 (en) Vehicle power supply
JP6627732B2 (en) Power supply circuit device
JP6642496B2 (en) Power supply and power supply system
WO2017043641A1 (en) Power source apparatus
WO2018110243A1 (en) Battery unit, and power supply system
JP6794944B2 (en) Power control unit and battery unit
WO2018061681A1 (en) Power supply system and battery unit
JP6673179B2 (en) Battery unit and power supply system
JP2018139462A (en) Power unit
WO2018074545A1 (en) Power supply device
WO2018193782A1 (en) Dynamo-electric machine control device, and power supply system
JP6724675B2 (en) Switch control device, power supply unit and power supply system
WO2020209132A1 (en) Control device for power supply device
WO2020189220A1 (en) Control device for in-vehicle power supply device
JP7069765B2 (en) Power system
WO2018066441A1 (en) Control device for rotary electric machine
WO2020153162A1 (en) Temperature detection device
WO2021125193A1 (en) Control device for in-vehicle power source device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881129

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17881129

Country of ref document: EP

Kind code of ref document: A1