WO2018066441A1 - Control device for rotary electric machine - Google Patents

Control device for rotary electric machine Download PDF

Info

Publication number
WO2018066441A1
WO2018066441A1 PCT/JP2017/035070 JP2017035070W WO2018066441A1 WO 2018066441 A1 WO2018066441 A1 WO 2018066441A1 JP 2017035070 W JP2017035070 W JP 2017035070W WO 2018066441 A1 WO2018066441 A1 WO 2018066441A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical machine
rotating electrical
unit
current
switch
Prior art date
Application number
PCT/JP2017/035070
Other languages
French (fr)
Japanese (ja)
Inventor
拓人 鈴木
洋 稲村
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2018066441A1 publication Critical patent/WO2018066441A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present disclosure relates to a rotating electrical machine control device applied to a power supply system mounted on a vehicle or the like.
  • a switch provided between the inverter and the storage battery is forcibly opened to stop the power supply from the storage battery to the inverter.
  • the present disclosure has been made in view of the above problems, and a main purpose thereof is to provide a rotating electrical machine control device that can appropriately determine the occurrence of overcurrent.
  • a rotating electrical machine that enables operation of power generation and power running;
  • a switching circuit unit for energizing each phase in the rotating electrical machine by turning on and off a plurality of switching elements;
  • a power storage unit connected to the switching circuit unit;
  • a rotating electrical machine control device applied to a power supply system comprising a switch provided in an electrical path between the switching circuit unit and the power storage unit,
  • a determination unit that determines that an overcurrent has flowed into at least one of the rotating electrical machine and the switching circuit unit, based on the fact that the energization current flowing through the switching circuit unit has increased to a predetermined overcurrent threshold;
  • a switch control unit that opens the switch based on a determination result of the determination unit;
  • a current limiting unit that limits an inrush current generated at the start of powering driving of the rotating electrical machine; and Is provided.
  • an overcurrent flows due to a short circuit between the power supply line and the ground line.
  • a large current flows as an inrush current.
  • a short circuit abnormality ie, an overcurrent abnormality
  • the inrush current generated at the start of powering driving of the rotating electrical machine is limited, the inrush current is suppressed from being regarded as an overcurrent, and as a result, a short circuit abnormality (that is, an overcurrent abnormality) ) Erroneous determination is suppressed.
  • the second means includes an energization control unit that sets a target value of the energization current in the switching circuit unit and controls on / off of the switching element based on an on / off ratio of the switching element determined according to the target value.
  • the current limiting unit limits the inrush current by limiting the target value at the start of powering driving of the rotating electrical machine.
  • the on / off ratio (for example, duty ratio) of the switching element determined according to the target value can be reduced. Therefore, the inrush current can be suitably limited at the start of the power running drive of the rotating electrical machine.
  • the current limiting unit sets the target value as a value smaller than the overcurrent threshold.
  • the target value of the energization current in the switching circuit unit is set as a value smaller than the overcurrent threshold, a configuration suitable for distinguishing the inrush current from the overcurrent can be realized.
  • the fourth means includes a limit changing unit that changes a degree of limitation of the inrush current by the current limiting unit in accordance with an increase in rotation of the rotating electrical machine after the start of powering driving of the rotating electrical machine.
  • the neutral point voltage increases due to the motor electromotive force as the rotational speed of the rotating electrical machine increases. Therefore, the inrush current is gradually reduced.
  • the degree of restriction of the inrush current is changed according to the rotation increase of the rotating electrical machine, so that the current limitation can be appropriately performed according to the state of the rotating electrical machine.
  • the fifth means includes a limit release unit that releases the limit of the inrush current by the current limiting unit in accordance with the rotation increase of the rotating electrical machine after the start of powering drive of the rotating electrical machine.
  • the sixth means has an idling stop control function of automatically stopping the engine with establishment of a predetermined automatic stop condition and restarting the engine with establishment of a predetermined restart condition after the automatic stop,
  • the present invention is applied to a vehicle in which the restart is performed by the power running drive of the rotating electrical machine, and the current limiting unit limits the inrush current at the start of the power running drive of the rotating electrical machine in response to the restart request.
  • the power when the rotating electric machine is power-driven in the vehicle is used, for example, when the engine is restarted in idling stop control or when power is assisted for vehicle acceleration.
  • the rotating electrical machine is driven by power running from the engine stopped state, so it is considered that the inrush current tends to increase.
  • the inrush current and the overcurrent are preferably set during the engine restart. Can be distinguished.
  • a blocking unit that blocks the path as the overcurrent flows is provided in a path connecting the power storage unit and the rotating electrical machine.
  • the blocking unit In a configuration in which a blocking unit is provided in a path connecting the power storage unit and the rotating electrical machine, and the blocking unit performs path blocking when an overcurrent flows, the blocking unit is unintentionally caused by inrush current flowing. There is concern about being blocked. In this respect, since the inrush current is limited at the start of the power running drive of the rotating electrical machine as described above, it is possible to suppress the inconvenience that the interrupting section is interrupted unintentionally.
  • the power storage unit includes a first power storage unit and a second power storage unit connected in parallel to the switching circuit unit, while the switch includes the switching circuit unit and the first power storage unit.
  • the switch includes the switching circuit unit and the first power storage unit.
  • the switch control unit includes a limit release unit that releases the limit of the inrush current by the current limiting unit in response to an increase in rotation of the rotating electrical machine after the start of powering drive of the rotating electrical machine.
  • the first power storage unit is connected from the state in which one of the first power storage unit and the second power storage unit is connected to the switching circuit unit. And controlling the opening and closing of the first switch and the second switch so as to shift both the power storage unit and the second power storage unit to a state of being connected to the switching circuit unit.
  • FIG. 1 is an electric circuit diagram showing a power supply system of an embodiment.
  • FIG. 2 is a circuit diagram showing an electrical configuration of the rotating electrical machine unit.
  • FIG. 3 is a perspective view showing a part of the switch module;
  • FIG. 4 is a flowchart illustrating a processing procedure of overcurrent abnormality determination by the rotating electrical machine ECU.
  • FIG. 5 is a flowchart showing a processing procedure of abnormality monitoring by the engine ECU.
  • FIG. 6 is a flowchart showing a processing procedure of fail-safe control by the battery ECU.
  • FIG. 7 is a time chart for specifically explaining processing when an overcurrent occurs in the inverter.
  • FIG. 8 is a flowchart showing a processing procedure of powering drive control of the rotating electrical machine.
  • FIG. 9 is a time chart showing more specifically current control at the beginning of powering drive of the rotating electrical machine
  • FIG. 10 is a diagram showing the relationship between the rotational speed of the rotating electrical machine and the limit value of the target energization current
  • FIG. 11 is a flowchart showing a processing procedure of powering drive control of a rotating electrical machine in another example.
  • FIG. 12 is a flowchart showing a processing procedure of powering drive control of a rotating electrical machine in another example
  • FIG. 13A is a diagram showing the relationship between the inverter voltage and the maximum duty ratio
  • FIG. 13B is a diagram showing the relationship between the stator temperature and the maximum duty ratio.
  • an in-vehicle power supply system that supplies power to various devices of the vehicle in a vehicle that runs using an engine (internal combustion engine) as a drive source is embodied.
  • this power supply system is a dual power supply system having a lead storage battery 11 as a first power storage unit and a lithium ion storage battery 12 as a second power storage unit.
  • power can be supplied to the various electric loads 14 and 15 and the rotating electrical machine unit 20.
  • each of the storage batteries 11 and 12 can be charged by the rotating electrical machine unit 20.
  • the lead storage battery 11 and the lithium ion storage battery 12 are connected in parallel to the rotating electrical machine unit 20, and the lead storage battery 11 and the lithium ion storage battery 12 are connected in parallel to the electrical loads 14 and 15. .
  • the lead storage battery 11 is a well-known general-purpose storage battery.
  • the lithium ion storage battery 12 is a high-density storage battery that has less power loss during charging / discharging than the lead storage battery 11, and has a high output density and energy density.
  • the lithium ion storage battery 12 may be a storage battery having higher energy efficiency during charging / discharging than the lead storage battery 11.
  • the lithium ion storage battery 12 is comprised as an assembled battery which has a some single cell, respectively. These storage batteries 11 and 12 have the same rated voltage, for example, 12V.
  • the lithium ion storage battery 12 is housed in a housing case and configured as a battery unit U integrated with a substrate.
  • the battery unit U has output terminals P1, P2 and P0, of which the lead storage battery 11, the starter 13 and the electric load 14 are connected to the output terminals P1 and P0, and the electric load 15 and the rotation are connected to the output terminal P2.
  • the electric unit 20 is connected.
  • the electric loads 14 and 15 have different requirements for the voltage of the power supplied from the storage batteries 11 and 12.
  • the electric load 14 includes a constant voltage required load that is required to be stable so that the voltage of the supplied power is constant or at least fluctuates within a predetermined range.
  • the electric load 15 is a general electric load other than the constant voltage required load. It can be said that the electric load 14 is a protected load.
  • the electric load 14 is a load that does not allow a power supply failure
  • the electric load 15 is a load that allows a power supply failure compared to the electric load 14.
  • the electric load 14 that is a constant voltage required load include various ECUs such as a navigation device, an audio device, a meter device, and an engine ECU. In this case, by suppressing the voltage fluctuation of the supplied power, it is possible to suppress an unnecessary reset or the like in each of the above devices, and to realize a stable operation.
  • the electric load 14 may include a travel system actuator such as an electric steering device or a brake device.
  • Specific examples of the electric load 15 include a seat heater, a heater for a defroster for a rear window, a headlight, a wiper for a front window, and a blower fan for an air conditioner.
  • the rotating electrical machine unit 20 includes a rotating electrical machine 21 as a three-phase AC motor, an inverter 22 as a power conversion device (switching circuit unit), and a rotating electrical machine ECU 23 that controls the operation of the rotating electrical machine 21.
  • the rotating electrical machine unit 20 is a generator with a motor function, and is configured as an electromechanically integrated ISG (Integrated / Starter / Generator).
  • the rotating electrical machine 21 includes U-phase, V-phase, and W-phase phase windings 24U, 24V, and 24W as three-phase armature windings, and a field winding 25.
  • the phase windings 24U, 24V, 24W are star-connected and are connected to each other at a neutral point.
  • the rotating shaft of the rotating electrical machine 21 is drivingly connected to an engine output shaft (not shown) by a belt, and the rotating shaft of the rotating electrical machine 21 is rotated by the rotation of the engine output shaft.
  • the engine output shaft rotates.
  • the rotating electrical machine 21 has a power generation function that generates power (regenerative power generation) by rotating the engine output shaft and the axle, and a power running function that applies rotational force to the engine output shaft.
  • the rotating electrical machine 21 is driven by powering at the time of engine restart in idling stop control or power assist for vehicle acceleration.
  • the inverter 22 converts the AC voltage output from each phase winding 24U, 24V, 24W into a DC voltage and outputs it to the battery unit U.
  • the inverter 22 converts the DC voltage input from the battery unit U into an AC voltage and outputs the AC voltage to the phase windings 24U, 24V, and 24W.
  • the inverter 22 is a bridge circuit having the same number of upper and lower arms as the number of phases of the phase winding, and constitutes a three-phase full-wave rectifier circuit.
  • the inverter 22 constitutes a drive circuit that drives the rotating electrical machine 21 by adjusting the electric power supplied to the rotating electrical machine 21.
  • the inverter 22 includes an upper arm switch Sp and a lower arm switch Sn for each phase, and energization is performed for each phase by turning on and off the switches Sp and Sn.
  • a voltage-controlled semiconductor switching element is used as each of the switches Sp and Sn.
  • an N-channel MOSFET is used.
  • An upper arm diode Dp is connected in antiparallel to the upper arm switch Sp, and a lower arm diode Dn is connected in antiparallel to the lower arm switch Sn.
  • the body diodes of the switches Sp and Sn are used as the diodes Dp and Dn.
  • the diodes Dp and Dn are not limited to body diodes, and may be diodes that are separate parts from the switches Sp and Sn, for example.
  • FIG. 3 is a perspective view showing a part of the switch module 50 constituting each of the switches Sp and Sn.
  • the switch module 50 includes a main body 51 formed by resin-molding a semiconductor switching element and a peripheral circuit, and a lead 52 (bus bar) connected to the semiconductor switching element and the like and protruding from the side of the main body 51. have.
  • the lead portion 52 is mounted by welding or the like on the substrate or a mounting position that is a predetermined portion at the tip portion.
  • a narrow part 52a is provided in a part thereof. For this reason, when an excessive current (overcurrent) flows to the switch module 50 through the lead portion 52, the narrow portion 52a is melted by heat generation.
  • the intermediate connection point of the series connection body of the switches Sp and Sn in each phase is connected to one end of each phase winding 24U, 24V, 24W.
  • a voltage sensor 26 that detects the input / output voltage of the inverter 22 is provided between the high-voltage side path and the low-voltage side path of the inverter 22.
  • the rotating electrical machine unit 20 is provided with, for example, a current sensor 27 that detects a current flowing through an energization path of the inverter 22 and a current sensor 28 that detects a current flowing through the field winding 25.
  • the current sensor 27 may be provided between the inverter 22 and each phase winding 24U, 24V, 24W (symbol 27a in the figure), and each phase between the lower arm switch Sn and the ground line. (Reference numeral 27b in the figure).
  • the rotating electrical machine 21 is provided with a temperature sensor 29 for detecting the temperature of the stator. Detection signals from the sensors 26 to 29 are appropriately input to the rotating electrical machine ECU 23.
  • the rotating electrical machine 21 is provided with a rotation angle sensor that detects angle information of the rotor, and the inverter 22 is provided with a signal processing circuit that processes a signal from the rotation angle sensor. Yes.
  • the rotating electrical machine ECU 23 is constituted by a microcomputer including a CPU, a ROM, a RAM, an input / output interface, and the like.
  • the rotating electrical machine ECU 23 adjusts the excitation current flowing through the field winding 25 by an IC regulator (not shown) inside. Thereby, the power generation voltage (output voltage with respect to the battery unit U) of the rotary electric machine unit 20 is controlled.
  • the rotating electrical machine ECU 23 controls on / off of the switches Sp and Sn of each phase according to the energization phase, and controls the energization current by adjusting an on / off ratio (for example, duty ratio) when energizing each phase.
  • an on / off ratio for example, duty ratio
  • the rotating electrical machine ECU 23 assists the driving force of the engine by controlling the inverter 22 to drive the rotating electrical machine 21 after the vehicle starts running.
  • the rotating electrical machine 21 can apply initial rotation to the crankshaft when starting the engine, and also has a function as an engine starting device.
  • an electric path L1 that connects the output terminals P1 and P2, and an electric path L2 that connects a point N0 on the electric path L1 and the lithium ion storage battery 12 And are provided in the battery unit U.
  • the switch 31 is provided in the electrical path L1
  • the switch 32 is provided in the electrical path L2.
  • a switch 31 is provided on the lead storage battery 11 side of the connection point N0 with the rotating electrical machine unit 20 in the electrical path, and the connection point N0.
  • the switch 32 is provided on the lithium ion storage battery 12 side.
  • Each of the switches 31 and 32 includes, for example, 2 ⁇ n MOSFETs (semiconductor switching elements), and the parasitic diodes of the two sets of MOSFETs are connected in series so as to be opposite to each other. When the switches 31 and 32 are turned off, the parasitic diode completely cuts off the current flowing through the path where the switches are provided.
  • IGBTs or bipolar transistors can be used instead of MOSFETs.
  • diodes in opposite directions may be connected in parallel to the switches 31 and 32, respectively, instead of the parasitic diode.
  • the battery unit U is provided with a bypass path L0 that bypasses the switch 31.
  • the bypass path L0 is provided so as to connect the output terminal P0 and the point N0 on the electrical path L1.
  • the output terminal P0 is connected to the lead storage battery 11 through the fuse 35.
  • a bypass switch 36 made of a normally closed mechanical relay is provided in the bypass path L0. By turning on (closing) the bypass switch 36, the lead storage battery 11, the electric load 15, and the rotating electrical machine unit 20 are electrically connected even if the switch 31 is turned off (opened).
  • the battery unit U includes a battery ECU 37 that controls on / off (opening / closing) of the switches 31 and 32.
  • the battery ECU 37 is constituted by a microcomputer including a CPU, a ROM, a RAM, an input / output interface, and the like.
  • the battery ECU 37 controls the on / off of the switches 31 and 32 based on the storage state of each of the storage batteries 11 and 12 and the command value from the engine ECU 40 that is the host controller. Thereby, charging / discharging is implemented using the lead storage battery 11 and the lithium ion storage battery 12 selectively.
  • the battery ECU 37 calculates the SOC (remaining capacity: State Of Charge) of the lithium ion storage battery 12, and sets the charge amount and discharge amount to the lithium ion storage battery 12 so that the SOC is maintained within a predetermined use range. Control.
  • SOC main capacity: State Of Charge
  • the rotating electrical machine ECU 23 of the rotating electrical machine unit 20 and the battery ECU 37 of the battery unit U are connected to an engine ECU 40 as a host controller that manages these ECUs 23 and 37 in an integrated manner.
  • the engine ECU 40 is configured by a microcomputer including a CPU, a ROM, a RAM, an input / output interface, and the like, and controls the operation of the engine 42 based on each engine operation state and vehicle running state.
  • the engine ECU 40 has a function of performing idling stop control. As is well known, the idling stop control automatically stops the engine when a predetermined automatic stop condition is satisfied, and restarts the engine when the predetermined restart condition is satisfied under the automatic stop state.
  • ECUs 23, 37, 40 and other various in-vehicle ECUs are connected to each other via a communication line 41 that constructs a communication network such as a CAN, and can communicate with each other at predetermined intervals.
  • a communication network such as a CAN
  • the inverter 22 and the rotating electrical machine ECU 23 correspond to a “first control device”
  • the battery ECU 37 corresponds to a “second control device”
  • the engine ECU 40 corresponds to a “third control device”.
  • the communication line 41 corresponds to a “signal transmission unit”.
  • a short circuit may occur in the rotating electrical machine 21 in addition to the short circuit in the inverter 22. For example, if a short circuit occurs in any part of each phase winding 24U, 24V, 24W, Overcurrent flows through the switches Sp and Sn of the inverter 22.
  • the failure of the battery unit U in a state where the current is reduced is focused on the fact that the current in the energization path suddenly drops from a large current due to the blow.
  • the switches 31 and 32 are forcibly opened. In this case, the power supply from the lead storage battery 11 or the lithium ion storage battery 12 to the inverter 22 is stopped by opening the switches 31 and 32.
  • the rotating electrical machine ECU 23 is based on the results of the first determination that the energization current flowing through the inverter 22 has increased to a predetermined overcurrent threshold and the second determination that the current has subsequently decreased. It is determined that an overcurrent has passed through (corresponding to an overcurrent determination unit). Further, the battery ECU 37 opens the switches 31 and 32 (corresponding to a switch control unit) based on the result of the overcurrent determination in the rotating electrical machine ECU 23.
  • the engine ECU 40 of the ECUs 23, 37, and 40 serves as a host ECU. Based on a command from the engine ECU 40, the rotating electrical machine 21 is controlled by the rotating electrical machine ECU 23 and the battery ECU 37. Charge / discharge control and the like are performed. Under such circumstances, when an overcurrent abnormality of the inverter 22 occurs, first, the rotating electrical machine ECU 23 determines that an overcurrent abnormality has occurred, and then an abnormality signal is transmitted to the engine ECU 40 via the communication line 41. From the engine ECU 40, a fail safe signal corresponding to the abnormal signal is transmitted to the battery ECU 37 via the communication line 41.
  • the battery unit U performs switch opening (fail-safe processing). Therefore, it takes time until the switch is opened, and there is a concern that a secondary malfunction may occur. Assuming that communication is performed discretely between the ECUs, there is a concern that the time required to open the switch will be prolonged.
  • the following characteristic configuration is adopted on the assumption that the ECUs 23, 37, and 40 can communicate with each other via the communication line 41. That is, (1) The rotating electrical machine ECU 23 transmits an overcurrent abnormality signal indicating that an overcurrent has flown in the inverter 22 to the battery ECU 37 and the engine ECU 40. (2) Based on the overcurrent abnormality signal received from the rotating electrical machine ECU 23, the engine ECU 40 transmits a forced opening signal for forcibly opening the switches 31 and 32 to the battery ECU 37. (3) The battery ECU 37 forcibly opens the switches 31 and 32 based on the earlier of the reception of the overcurrent abnormality signal from the rotating electrical machine ECU 23 and the reception of the forcible opening signal from the engine ECU 40.
  • the battery ECU 37 can directly receive the overcurrent abnormality signal from the rotating electrical machine ECU 23 without waiting for the reception of the forced release signal from the engine ECU 40, and can perform an emergency treatment based on the overcurrent abnormality signal. it can.
  • an overcurrent flows due to a short circuit as described above, while a large current flows as an inrush current at the beginning of powering driving of the rotating electrical machine 21.
  • a large current as an inrush current is detected, it is regarded as an overcurrent, and there is a concern that it may be erroneously determined that a short circuit abnormality (ie, an overcurrent abnormality) has occurred as a result.
  • the rotating electrical machine ECU 23 limits the inrush current generated when the rotating electrical machine 21 starts the power running drive (corresponding to a current limiting unit). In this case, by limiting the inrush current to a current smaller than the overcurrent determination value, it is possible to clearly identify whether the current is an inrush current or an overcurrent.
  • the rotating electrical machine ECU 23 limits the current target value by a predetermined limit value at the beginning of the power running drive of the rotating electrical machine 21, and based on the limited target value, feedback of the energization current of the inverter 22 is performed.
  • the overcurrent determination value is 400A and the limit value is 300A.
  • a large current exceeding the overcurrent determination value may flow as an inrush current.
  • the inrush current is suppressed to a smaller current than the overcurrent determination value due to the current limitation.
  • the rotating electrical machine ECU 23 releases the restriction on the current target value based on the fact that the rotational speed of the rotating electrical machine 21 has increased to a predetermined rotational speed after the start of powering drive of the rotating electrical machine 21.
  • FIG. 4 is a flowchart showing a processing procedure of overcurrent abnormality determination, and this processing is repeatedly performed by the rotating electrical machine ECU 23 at a predetermined cycle.
  • step S11 the detection current Ia detected by the current sensor 27 is acquired.
  • step S12 is denied and the process proceeds to step S15.
  • step S15 it is determined whether or not the detected current Ia is less than a predetermined second threshold value TH2.
  • step S16 an overcurrent abnormality signal is transmitted to the battery ECU 37 and the engine ECU 40 using the communication line 41, and then this process ends.
  • FIG. 5 is a flowchart showing an abnormality monitoring processing procedure, and this processing is repeatedly performed by the engine ECU 40 at a predetermined cycle.
  • step S ⁇ b> 21 it is determined whether an overcurrent abnormality signal is received from the rotating electrical machine ECU 23. If an overcurrent abnormality signal has been received, the process proceeds to step S 22, and a forced opening signal for the switches 31 and 32 is transmitted to the battery ECU 37 using the communication line 41.
  • FIG. 6 is a flowchart showing a processing procedure of fail-safe control in the battery unit U, and this processing is repeatedly performed by the battery ECU 37 at a predetermined cycle.
  • step S31 it is determined whether or not an overcurrent abnormality signal is received from the rotating electrical machine ECU. If an overcurrent abnormality signal has been received, the process proceeds to step S32 to instruct to turn off (open) the switches 31 and 32 as fail-safe processing. Note that the bypass switch 36 remains open.
  • step S33 it is determined whether or not a forced release signal has been received from the engine ECU 40. If the forced release signal has been received, the process proceeds to step S32, and a fail safe process is performed. In this case, according to steps S31 to S33, the fail-safe process is performed based on the first received signal among the overcurrent abnormality signal from the rotating electrical machine ECU 23 and the forced release signal from the engine ECU 40.
  • the rotating electric machine ECU 23 outputs an overcurrent abnormality signal.
  • the battery ECU 37 of the battery unit U recognizes that an overcurrent has occurred in the rotating electrical machine unit 20 based on the reception of the overcurrent abnormality signal, and accordingly, the fail safe process, that is, the switches 31 and 32 are switched. Forced release is performed.
  • the energization current is suppressed to a small current, and the switches 31 and 32 can be preferably opened while protecting the switch. That is, if the switches 31 and 32 of the energization path are opened under an overcurrent condition, a surge current is generated in the energization path, and the switches 31 and 32 may be damaged due to the surge current. Is done.
  • the switches 31 and 32 are opened in a state where the overcurrent has been temporarily stopped. Therefore, the surge current when the switch is opened is suppressed, and further, the switch breakage due to the surge current is suppressed.
  • the switches 31 and 32 are forcibly opened as fail-safe processing, and the bypass switch 36 is kept open, but instead, the switches 31 and 32 are forcibly opened as fail-safe processing.
  • the bypass switch 36 may be closed.
  • the bypass switch 36 is kept open, the lead storage battery 11 and the inverter 22 are completely cut off by opening the switches 31 and 32.
  • the bypass switch 36 is closed, the lead storage battery 11 and the inverter 22 are connected via the fuse 35.
  • the engine ECU 40 recognizes that an overcurrent has occurred based on the reception of the overcurrent abnormality signal at timing t4 (possibly before and after that), and accordingly, a forced release signal is transmitted to the battery ECU 37. Therefore, in the configuration in which the fail safe process is performed in the battery unit U after waiting for a command from the engine ECU 30 as the host ECU, the fail safe process is performed at a timing later than the timing t4. Since the battery ECU 37 performs the fail-safe process based on the overcurrent abnormality signal from the rotating electrical machine ECU 23 without waiting for the reception of the forcible opening signal from the engine ECU 40, it is possible to perform an early treatment.
  • FIG. 8 is a flowchart showing a processing procedure of powering drive control of the rotating electrical machine 21, and this process is repeatedly performed by the rotating electrical machine ECU 23 at a predetermined cycle.
  • step S41 it is determined whether or not there is a request for powering drive. For example, it is determined that there is a request for powering drive at the time of engine restart or power assist. If there is a request for power running, the process proceeds to the subsequent step S42, and if there is no request, the process is terminated.
  • step S42 the target value of the inverter energization current is set according to the drive mode required for the rotating electrical machine 21. At this time, if the engine is restarted, for example, the target value of the inverter energization current is set based on the initial rotation speed (cranking speed) for engine restart. In addition, during power assist, a target value for the inverter energization current is set based on the assist amount corresponding to the accelerator operation amount.
  • step S43 it is determined whether or not the rotational speed Nm of the rotating electrical machine 21 is less than a predetermined rotational speed Nth.
  • the pulley ratio between the engine output shaft and the output shaft of the rotating electrical machine 21 is, for example, 2.3. Then, the process proceeds to step S44 on condition that Nm ⁇ Nth.
  • the target value of the inverter energization current is limited by a predetermined limit value Ix in order to limit the inrush current at the beginning of the power running drive of the rotating electrical machine 21.
  • the limit value Ix can also be set according to whether the current powering drive request is an engine restart request or a power assist request. For example, if it is an engine restart request, the limit value Ix is set to a smaller value than in the case of a power assist request.
  • step S45 the restriction of the inrush current is released.
  • step S46 feedback control is performed on the inverter energization current.
  • the control duty is calculated based on the deviation between the target value of the inverter energization current and the actual value (detected current Ia), and the switching control is performed on each of the switches Sp and Sn of the inverter 22 based on the control duty.
  • the detection current Ia of the inverter energization current may be other than the detection current of the current sensor 27 provided in the power line of the inverter 22, and is provided between the inverter 22 and each phase winding 24U, 24V, 24W.
  • the detected current of the current sensor 27a or the detected current of the current sensor 27b provided for each phase between the lower arm switch Sn and the ground line may be used (see FIG. 2).
  • FIG. 9 is a time chart showing more specifically current control at the beginning of powering drive of the rotating electrical machine 21. Here, the engine restart will be described.
  • a request for powering driving of the rotating electrical machine 21 occurs, and energization of the inverter 22 is started accordingly.
  • the target value of the inverter energization current is limited by the limit value Ix, and feedback control of the inverter energization current is performed using the Ix as the target value.
  • the inverter energization current is limited to a value smaller than the first threshold value TH1 for overcurrent determination, erroneous determination that an overcurrent has flowed due to an inrush current is suppressed. If feedback control is performed without limiting the current, the switches Sp and Sn are energized with 100% duty, and a large inrush current flows at that time.
  • the inrush current is limited by limiting the target value of the energization current at the start of powering driving of the rotating electrical machine 21.
  • the duty ratio of the switches Sp and Sn can be reduced by limiting the target value of the inverter energization current. Therefore, the inrush current can be suitably limited at the start of powering drive of the rotating electrical machine 21.
  • the target value of the energizing current is set as a value smaller than the overcurrent threshold (TH1). As a result, a configuration suitable for distinguishing between inrush current and overcurrent can be realized.
  • the restriction of the inrush current is released according to the rotation increase of the rotating electrical machine 21 after the start of the power running drive of the rotating electrical machine 21. Thereby, after starting the power running drive of the rotating electrical machine 21, the limitation of the inrush current can be released in accordance with the increase of the neutral point voltage due to the motor electromotive force, and the current limitation can be appropriately performed according to necessity. .
  • the rotating electrical machine 21 When the engine is restarted with the idling stop control, the rotating electrical machine 21 is driven by power running from the engine stopped state, so it is considered that the inrush current tends to increase. In this respect, since the inrush current is limited at the time of starting the power running drive of the rotating electrical machine 21 in response to the engine restart request, the inrush current and the overcurrent can be suitably distinguished at the time of the engine restart. .
  • the interrupting part (the narrow part 52a) is provided in the switch module 50 in the inverter 22 in the inverter 22
  • the interrupting part may be interrupted unintentionally due to the inrush current flowing.
  • the inrush current is limited at the time of starting the power running drive of the rotating electrical machine 21 as described above, it is possible to suppress the inconvenience that the interrupting part is interrupted unintentionally.
  • the narrow portion 52a of the lead portion 52 in the switch module 50 is blown when an overcurrent flows through the rotating electrical machine 21 or the inverter 22, the narrow portion after the energizing current once rises when an overcurrent abnormality occurs. It decreases at once due to the interruption of the route by fusing 52a.
  • an overcurrent has flowed based on the results of the first determination that the inverter energization current has increased to the first threshold value TH1 and the second determination that the current has subsequently decreased.
  • the switches 31 and 32 are opened based on the determination result.
  • the energization current can be suitably cut off while suppressing the surge current generated when the switches 31 and 32 are opened. As a result, it is possible to optimize the treatment when an overcurrent occurs.
  • the second determination that the current has decreased after the inverter energization current has increased to the first threshold TH1 it is determined that the energization current has decreased to the second threshold TH2 that is smaller than the first threshold TH1.
  • the rotating electrical machine ECU 23 transmits a determination signal (overcurrent abnormality signal) indicating the result of the overcurrent determination to the battery ECU 37, and the battery ECU 37 opens the switches 31 and 32 based on the determination signal from the rotating electrical machine ECU 23. It was. In this case, the battery ECU 37 directly receives the determination signal from the rotating electrical machine ECU 23, so that emergency treatment based on the determination signal can be performed.
  • a determination signal overcurrent abnormality signal
  • the rotating electrical machine ECU 23 transmits a determination signal (overcurrent abnormality signal) indicating the result of the overcurrent determination to the battery ECU 37 and the engine ECU 40, (2) Based on the determination signal received from the rotating electrical machine ECU 23, the engine ECU 40 transmits a forced opening signal for forcibly opening the switches 31 and 32 to the battery ECU 37, (3)
  • the battery ECU 37 is configured to forcibly open the switches 31 and 32 based on the earlier one of reception of the determination signal from the rotating electrical machine ECU 23 and reception of the forced opening signal from the engine ECU 40.
  • the battery ECU 37 can directly receive the determination signal from the rotating electrical machine ECU 23 without waiting for the reception of the forced release signal from the engine ECU 40 which is the host ECU, and can perform an emergency treatment based on the determination signal. .
  • the engine ECU 40 In addition to being able to respond quickly by the battery ECU 37, it is possible to respond with high reliability by the engine ECU 40.
  • the battery ECU 37 performs local arithmetic processing that controls charging / discharging of the storage batteries 11 and 12, whereas the engine ECU 40 comprehensively manages other ECUs. Therefore, according to the engine ECU 40, it is possible to implement a response with high certainty (also referred to as reliability).
  • the narrow portion 52 a of the lead portion 52 in the switch module 50 is used as a “blocking portion”. Therefore, when an overcurrent flows through the inverter 22, a rapid overcurrent treatment can be performed.
  • the degree of restriction of the inrush current may be changed in accordance with the rotation increase of the rotating electrical machine 21.
  • the rotating electrical machine ECU 23 sets a limit value of the target energization current using the relationship of FIG. 10 in step S44 of FIG. In FIG. 10, a relationship is set such that the limit value increases as the rotational speed Nm of the rotating electrical machine 21 increases (that is, a large target energization current is allowed).
  • the relationship between the rotational speed Nm and the limit value may be other than that shown in FIG. According to this configuration, it is possible to appropriately limit the current according to the state of the rotating electrical machine 21.
  • both the switches 31 and 32 may be turned on (closed).
  • the rotating electrical machine ECU 23 performs powering drive control of the rotating electrical machine 21 based on FIG. Note that the processing in FIG. 11 is performed in place of FIG. 8, and the same processing as in FIG. 8 is given the same step number and description thereof is omitted as appropriate.
  • step S44 when it is determined that there is a request for powering drive and the rotational speed Nm of the rotating electrical machine 21 is less than the predetermined rotational speed Nth (when steps S41 and S43 are YES), the rotating electrical machine is determined in step S44.
  • the inrush current at the beginning of the 21 power running drive is limited, and both the switches 31 and 32 are turned on in the subsequent step S51. Thus, both the switches 31 and 32 are turned on under the situation where the inrush current is limited.
  • Nm ⁇ Nth the inrush current restriction is released (step S45).
  • the switches 31 and 32 may be returned to the normal on / off state based on, for example, the rotation of the rotating electrical machine 21 being in a steady state. At the time of engine start, the switches 31 and 32 may be returned to the normal on / off state based on the determination of completion of engine start (engine speed has reached a predetermined speed).
  • step S61 when it is determined that there is a request for powering drive (when step S41 is YES), in step S61, it is determined whether or not the rotational speed Nm of the rotating electrical machine 21 is less than the first rotational speed Nth1. In step S62, it is determined whether or not the rotational speed Nm of the rotating electrical machine 21 is less than the second rotational speed Nth2.
  • the switches 31 and 32 are turned on in step S63, and when the rotational speed Nm becomes Nth1, the limit of the inrush current is released in step S45.
  • the switches 31 and 32 may be returned to the normal on / off state based on, for example, the rotation of the rotating electrical machine 21 being in a steady state (similar to FIG. 11). .
  • both storage batteries 11 and 12 shift to a state where power is supplied to the inverter 22 (a state where two power supplies are supplied).
  • the torque decreases as the rotational speed increases at the beginning of driving, but torque compensation by both the storage batteries 11 and 12 is possible even if the torque decreases.
  • the maximum duty ratio may be set as follows.
  • the maximum duty ratio is set based on the inverter voltage that is the input / output voltage of the inverter 22.
  • the maximum duty ratio is set based on the inverter voltage using the relationship shown in FIG.
  • the inverter voltage is a voltage detected by the voltage sensor 26, for example. Since the inrush current tends to increase when the inverter voltage is high, the maximum duty ratio is decreased. Conversely, when the inverter voltage is low, if the inrush current is limited too much, the engine may not be restarted, so the maximum duty ratio is increased.
  • the maximum duty ratio is set based on the temperature of the rotating electrical machine unit 20.
  • the temperature of the rotating electrical machine unit 20 is, for example, a stator temperature detected by the temperature sensor 29.
  • the maximum duty ratio is set based on the stator temperature using the relationship shown in FIG. When the stator temperature is low, the inrush current tends to increase, so the maximum duty ratio is decreased. Note that the switch temperature of the inverter 22 may be used instead of the stator temperature. If the switch temperature is high, the possibility of failure increases, so the maximum duty ratio should be reduced.
  • the inverter energization current increases to the first threshold value TH1 as the second determination. Then, a second determination that the current has decreased may be performed when a predetermined time (for example, about 0.5 to 1 second) elapses.
  • a configuration other than the narrow portion 52a of the lead portion 52 in the switch module 50 may be used as a cutoff portion that cuts off the energization path as an overcurrent flows.
  • a fusing part such as a fuse may be provided in the energization path of the inverter 22, the energization path in the battery unit U, and other energization paths.
  • a blocking portion is provided in a path connecting the storage batteries 11 and 12 and the rotating electrical machine 21.
  • a configuration may be provided that does not include a blocking unit that blocks the energization path as an overcurrent flows.
  • a blocking unit that blocks the energization path as an overcurrent flows.
  • an electric load 14 that is a constant voltage required load is connected to the output terminal P1 side of the battery unit U, that is, the lead storage battery 11 side, and the output terminal P2 side, that is, the rotating electrical machine unit 20 side.
  • the electric load 15 which is a general load is connected to the above, this may be changed.
  • the electric load 15 (general load) may be connected to the output terminal P1 side of the battery unit U, and the electric load 14 (constant voltage required load) may be connected to the output terminal P2 side.
  • the lead storage battery 11 is provided as the first power storage unit and the lithium ion storage battery 12 is provided as the second power storage unit, but this may be changed.
  • a high-density storage battery other than the lithium ion storage battery 12 for example, a nickel-hydrogen battery may be used.
  • a capacitor can be used as at least one of the power storage units.
  • the power supply system to which the present disclosure is applied can be used for purposes other than vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Inverter Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

In the present invention a power supply system is equipped with: a rotary electric machine (21) capable of power generation and power running operations; a switching circuit unit (22) for energizing each phase of the rotary electric machine by turning on/off a plurality of switching elements (Sp, Sn); power storage units (11, 12) connected to the switching circuit unit; and switches (31, 32) provided in an electrical path between the switching circuit unit and the power storage units. A rotary electric machine control device (23) is equipped with: a determination unit for determining that overcurrent has flowed in the rotary electric machine and/or the switching circuit unit, on the basis of an increase, to a prescribed threshold overcurrent value (TH1), of an energization current flowing in the switching circuit unit; a switch control unit for opening the switches on the basis of a determination result from the determination unit; and a current-limiting unit for limiting inrush current generated in conjunction with the start of driving when power-running driving of the rotary electric machine begins.

Description

回転電機制御装置Rotating electrical machine control device 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年10月7日に出願された日本出願番号2016-199044号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2016-199044 filed on Oct. 7, 2016, and the description is incorporated herein.
 本開示は、車載等に搭載される電源システムに適用される回転電機制御装置に関するものである。 The present disclosure relates to a rotating electrical machine control device applied to a power supply system mounted on a vehicle or the like.
 従来、例えば車両用の動力源として発電機能と力行機能とを併せ持つ回転電機を用いる技術が実用化されている。回転電機を駆動する技術としては、蓄電池と、蓄電池からの直流電力を交流電力に変換するインバータとを備える構成が用いられている(例えば特許文献1参照)。 Conventionally, for example, a technique using a rotating electric machine having both a power generation function and a power running function as a power source for vehicles has been put into practical use. As a technique for driving a rotating electrical machine, a configuration including a storage battery and an inverter that converts DC power from the storage battery into AC power is used (see, for example, Patent Document 1).
 ここで、例えばインバータにおいて電源ラインとグランドラインとが短絡すると、インバータに過電流が流れるため、それに起因する不具合の発生が懸念される。この場合、フェイルセーフ処理として、蓄電池からインバータへの電力供給を停止させるべく、インバータと蓄電池との間に設けられたスイッチが強制開放される。 Here, for example, when a power supply line and a ground line are short-circuited in an inverter, an overcurrent flows through the inverter, and there is a concern that a malfunction caused by the current may occur. In this case, as a fail-safe process, a switch provided between the inverter and the storage battery is forcibly opened to stop the power supply from the storage battery to the inverter.
特許第5837229号公報Japanese Patent No. 5837229
 ところで、インバータにおいては短絡に起因して過電流が流れる一方、回転電機の力行駆動の開始当初においては突入電流として大電流が流れる。この場合、突入電流としての大電流が検出されると、それが過電流とみなされ、結果として短絡異常(すなわち過電流異常)が生じたと誤判定されることが懸念される。こうした実情を踏まえると、既存技術について改善の余地があると考えられる。 By the way, while an overcurrent flows in the inverter due to a short circuit, a large current flows as an inrush current at the beginning of powering driving of the rotating electrical machine. In this case, if a large current as an inrush current is detected, it is regarded as an overcurrent, and there is a concern that it may be erroneously determined that a short circuit abnormality (ie, an overcurrent abnormality) has occurred as a result. In light of these circumstances, there is room for improvement in existing technology.
 本開示は、上記課題に鑑みてなされたものであり、その主たる目的は、過電流の発生を適正に判定することができる回転電機制御装置を提供することにある。 The present disclosure has been made in view of the above problems, and a main purpose thereof is to provide a rotating electrical machine control device that can appropriately determine the occurrence of overcurrent.
 以下、上記課題を解決するための手段、及びその作用効果について説明する。なお以下においては、理解の容易のため、開示の実施の形態において対応する構成の符号を括弧書き等で適宜示すが、この括弧書き等で示した具体的構成に限定されるものではない。 Hereinafter, the means for solving the above-mentioned problems and the effects thereof will be described. In the following, for ease of understanding, the reference numerals of the corresponding components in the embodiment of the disclosure are appropriately shown in parentheses, but are not limited to the specific configurations shown in parentheses.
 第1の手段では、
 発電及び力行の作動を可能とする回転電機と、
 複数のスイッチング素子のオンオフにより前記回転電機において相ごとの通電を行わせるスイッチング回路部と、
 前記スイッチング回路部に接続される蓄電部と、
 前記スイッチング回路部と前記蓄電部との間の電気経路に設けられるスイッチと、を備える電源システムに適用される回転電機制御装置であって、
 前記スイッチング回路部に流れる通電電流が所定の過電流閾値まで上昇したことに基づいて、前記回転電機及び前記スイッチング回路部の少なくともいずれかに過電流が流れたことを判定する判定部と、
 前記判定部の判定結果に基づいて、前記スイッチを開放させるスイッチ制御部と、
 前記回転電機の力行駆動の開始時においてその駆動開始に伴い生じる突入電流を制限する電流制限部と、
を備える。
In the first means,
A rotating electrical machine that enables operation of power generation and power running;
A switching circuit unit for energizing each phase in the rotating electrical machine by turning on and off a plurality of switching elements;
A power storage unit connected to the switching circuit unit;
A rotating electrical machine control device applied to a power supply system comprising a switch provided in an electrical path between the switching circuit unit and the power storage unit,
A determination unit that determines that an overcurrent has flowed into at least one of the rotating electrical machine and the switching circuit unit, based on the fact that the energization current flowing through the switching circuit unit has increased to a predetermined overcurrent threshold;
A switch control unit that opens the switch based on a determination result of the determination unit;
A current limiting unit that limits an inrush current generated at the start of powering driving of the rotating electrical machine; and
Is provided.
 スイッチング回路部では、例えば電源ラインとグランドラインとの短絡に起因して過電流が流れる。また一方で、回転電機の力行駆動の開始当初においては突入電流として大電流が流れる。この場合、突入電流としての大電流が検出されると、それが過電流とみなされ、結果として短絡異常(すなわち過電流異常)が生じたと誤判定されることが懸念される。この点、上記構成では、回転電機の力行駆動の開始時においてその駆動開始に伴い生じる突入電流を制限するため、突入電流が過電流とみなされることが抑制され、ひいては短絡異常(すなわち過電流異常)の誤判定が抑制される。 In the switching circuit section, for example, an overcurrent flows due to a short circuit between the power supply line and the ground line. On the other hand, at the beginning of the power running drive of the rotating electrical machine, a large current flows as an inrush current. In this case, if a large current as an inrush current is detected, it is regarded as an overcurrent, and there is a concern that it may be erroneously determined that a short circuit abnormality (ie, an overcurrent abnormality) has occurred as a result. In this respect, in the above configuration, since the inrush current generated at the start of powering driving of the rotating electrical machine is limited, the inrush current is suppressed from being regarded as an overcurrent, and as a result, a short circuit abnormality (that is, an overcurrent abnormality) ) Erroneous determination is suppressed.
 第2の手段では、前記スイッチング回路部における通電電流の目標値を設定し、その目標値に応じて定められる前記スイッチング素子のオンオフ比率に基づいて当該スイッチング素子のオンオフを制御する通電制御部を備え、前記電流制限部は、前記回転電機の力行駆動の開始時において、前記目標値を制限することで、前記突入電流の制限を実施する。 The second means includes an energization control unit that sets a target value of the energization current in the switching circuit unit and controls on / off of the switching element based on an on / off ratio of the switching element determined according to the target value. The current limiting unit limits the inrush current by limiting the target value at the start of powering driving of the rotating electrical machine.
 この場合、スイッチング回路部における通電電流の目標値を制限すれば、その目標値に応じて定められるスイッチング素子のオンオフ比率(例えばデューティ比)を小さくすることができる。そのため、回転電機の力行駆動の開始時において、突入電流を好適に制限することができる。 In this case, if the target value of the energization current in the switching circuit unit is limited, the on / off ratio (for example, duty ratio) of the switching element determined according to the target value can be reduced. Therefore, the inrush current can be suitably limited at the start of the power running drive of the rotating electrical machine.
 第3の手段では、前記電流制限部は、前記目標値を、前記過電流閾値よりも小さい値として設定する。 In the third means, the current limiting unit sets the target value as a value smaller than the overcurrent threshold.
 上記構成によれば、スイッチング回路部における通電電流の目標値が、過電流閾値よりも小さい値として設定されるため、突入電流と過電流とを区別する上で好適なる構成を実現できる。 According to the above configuration, since the target value of the energization current in the switching circuit unit is set as a value smaller than the overcurrent threshold, a configuration suitable for distinguishing the inrush current from the overcurrent can be realized.
 第4の手段では、前記回転電機の力行駆動の開始後における当該回転電機の回転上昇に応じて、前記電流制限部による前記突入電流の制限の程度を変更する制限変更部を備える。 The fourth means includes a limit changing unit that changes a degree of limitation of the inrush current by the current limiting unit in accordance with an increase in rotation of the rotating electrical machine after the start of powering driving of the rotating electrical machine.
 回転電機の力行駆動の開始後においては、回転電機の回転速度が上昇することに伴いモータ起電力により中性点電圧が上昇する。そのため、突入電流が次第に低減される。この点、上記構成によれば、回転電機の回転上昇に応じて突入電流の制限の程度が変更されるため、回転電機の状態に応じて適正に電流制限を実施することができる。 After the start of powering drive of the rotating electrical machine, the neutral point voltage increases due to the motor electromotive force as the rotational speed of the rotating electrical machine increases. Therefore, the inrush current is gradually reduced. In this respect, according to the above-described configuration, the degree of restriction of the inrush current is changed according to the rotation increase of the rotating electrical machine, so that the current limitation can be appropriately performed according to the state of the rotating electrical machine.
 第5の手段では、前記回転電機の力行駆動の開始後における当該回転電機の回転上昇に応じて、前記電流制限部による前記突入電流の制限を解除する制限解除部を備える。 The fifth means includes a limit release unit that releases the limit of the inrush current by the current limiting unit in accordance with the rotation increase of the rotating electrical machine after the start of powering drive of the rotating electrical machine.
 上記構成によれば、回転電機の回転上昇に応じて突入電流の制限が解除されるため、要否に応じて適正に電流制限を実施することができる。 According to the above configuration, since the limit of the inrush current is released according to the rotation increase of the rotating electrical machine, it is possible to appropriately limit the current according to necessity.
 第6の手段では、所定の自動停止条件の成立に伴いエンジンを自動停止させるとともに、その自動停止後に所定の再始動条件の成立に伴い前記エンジンを再始動させるアイドリングストップ制御機能を有し、前記回転電機の力行駆動により前記再始動が行われる車両に適用され、前記電流制限部は、前記再始動の要求に伴う前記回転電機の力行駆動の開始時において前記突入電流の制限を実施する。 The sixth means has an idling stop control function of automatically stopping the engine with establishment of a predetermined automatic stop condition and restarting the engine with establishment of a predetermined restart condition after the automatic stop, The present invention is applied to a vehicle in which the restart is performed by the power running drive of the rotating electrical machine, and the current limiting unit limits the inrush current at the start of the power running drive of the rotating electrical machine in response to the restart request.
 車両において回転電機が力行駆動される際の動力は、例えばアイドリングストップ制御でのエンジン再始動時や車両加速のための動力アシスト時に用いられる。この場合特に、エンジン再始動時には、エンジン停止状態から回転電機が力行駆動されるため、突入電流が大きくなる傾向にあると考えられる。この点、上記構成によれば、エンジン再始動の要求に伴う回転電機の力行駆動の開始時において突入電流の制限が実施されるため、そのエンジン再始動時において突入電流と過電流とを好適に区別することができる。 The power when the rotating electric machine is power-driven in the vehicle is used, for example, when the engine is restarted in idling stop control or when power is assisted for vehicle acceleration. In this case, in particular, when the engine is restarted, the rotating electrical machine is driven by power running from the engine stopped state, so it is considered that the inrush current tends to increase. In this regard, according to the above configuration, since the inrush current is limited at the time of starting the power running drive of the rotating electrical machine in response to the engine restart request, the inrush current and the overcurrent are preferably set during the engine restart. Can be distinguished.
 第7の手段では、前記電源システムにおいて、前記蓄電部と前記回転電機とを繋ぐ経路に、前記過電流が流れることに伴い当該経路を遮断する遮断部が設けられている。 According to a seventh means, in the power supply system, a blocking unit that blocks the path as the overcurrent flows is provided in a path connecting the power storage unit and the rotating electrical machine.
 蓄電部と回転電機とを繋ぐ経路に遮断部が設けられ、その遮断部により、過電流が流れる際の経路遮断が行われる構成では、突入電流が流れることに起因して意図せず遮断部が遮断されることが懸念される。この点、上記のとおり回転電機の力行駆動の開始時において突入電流が制限されるため、意図せず遮断部が遮断されるといった不都合を抑制できる。 In a configuration in which a blocking unit is provided in a path connecting the power storage unit and the rotating electrical machine, and the blocking unit performs path blocking when an overcurrent flows, the blocking unit is unintentionally caused by inrush current flowing. There is concern about being blocked. In this respect, since the inrush current is limited at the start of the power running drive of the rotating electrical machine as described above, it is possible to suppress the inconvenience that the interrupting section is interrupted unintentionally.
 第8の手段では、前記蓄電部として、前記スイッチング回路部に並列に接続される第1蓄電部と第2蓄電部とを備える一方、前記スイッチとして、前記スイッチング回路部と前記第1蓄電部との間の経路を開閉する第1スイッチと、前記スイッチング回路部と前記第2蓄電部との間の経路を開閉する第2スイッチとが設けられる電源システムに適用され、前記スイッチ制御部は、前記回転電機の力行駆動の開始時に前記電流制限部による電流制限が実施される場合において、前記第1スイッチ及び前記第2スイッチを共に閉鎖させる。 In an eighth means, the power storage unit includes a first power storage unit and a second power storage unit connected in parallel to the switching circuit unit, while the switch includes the switching circuit unit and the first power storage unit. Applied to a power supply system provided with a first switch that opens and closes a path between and a second switch that opens and closes a path between the switching circuit unit and the second power storage unit, In the case where current limiting by the current limiting unit is performed at the start of powering driving of the rotating electrical machine, both the first switch and the second switch are closed.
 回転電機の力行駆動の開始時に突入電流を制限する場合には、回転電機に対する供給電力が制限されるため、その分回転電機のトルクが低下する。この点、上記構成によれば、回転電機の力行駆動の開始時に電流制限が実施される一方で、各スイッチのオンにより、第1蓄電部及び第2蓄電部による回転電機に対する電力供給が行われる。そのため、回転電機のトルク補償が可能となり、ひいては電流制限状態での回転電機の力行駆動の好適化が可能となる。 When the inrush current is limited at the start of the power running drive of the rotating electrical machine, the power supplied to the rotating electrical machine is limited, so the torque of the rotating electrical machine decreases accordingly. In this regard, according to the above-described configuration, current limitation is performed at the start of powering drive of the rotating electrical machine, while power is supplied to the rotating electrical machine by the first power storage unit and the second power storage unit by turning on each switch. . Therefore, torque compensation of the rotating electrical machine is possible, and consequently, powering driving of the rotating electrical machine in a current limited state can be optimized.
 第9の手段では、前記回転電機の力行駆動の開始後における当該回転電機の回転上昇に応じて、前記電流制限部による前記突入電流の制限を解除する制限解除部を備え、前記スイッチ制御部は、前記回転電機の力行駆動の開始後において、前記制限解除部による制限解除の前に、前記第1蓄電部及び前記第2蓄電部の一方を前記スイッチング回路部に接続する状態から前記第1蓄電部及び前記第2蓄電部の両方を前記スイッチング回路部に接続する状態に移行させるよう前記第1スイッチ及び前記第2スイッチの開閉を制御する。 In a ninth means, the switch control unit includes a limit release unit that releases the limit of the inrush current by the current limiting unit in response to an increase in rotation of the rotating electrical machine after the start of powering drive of the rotating electrical machine. After the start of powering driving of the rotating electrical machine, before the restriction release by the restriction release unit, the first power storage unit is connected from the state in which one of the first power storage unit and the second power storage unit is connected to the switching circuit unit. And controlling the opening and closing of the first switch and the second switch so as to shift both the power storage unit and the second power storage unit to a state of being connected to the switching circuit unit.
 上記構成によれば、回転電機の力行駆動の開始後において、電流制限が実施される状態でその解除前に、第1蓄電部及び第2蓄電部の一方によりスイッチング回路部に電力が供給される状態(1電源供給の状態)から、第1蓄電部及び第2蓄電部の両方によりスイッチング回路部に電力に供給される状態(2電源供給の状態)への移行が行われる。この場合、回転電機では、駆動開始当初において回転速度の上昇に伴いトルクが減少することが考えられるが、そのトルク減少があっても両蓄電部によるトルク補償が可能となる。また、電流制限が解除された後に、1電源供給の状態から2電源供給の状態に移行すると、電圧変動のおそれがあるが、電流制限が解除される前に1電源供給の状態から2電源供給の状態への移行が行われることで、電圧変動による不都合を回避できる。 According to the above configuration, after starting the power running drive of the rotating electrical machine, power is supplied to the switching circuit unit by one of the first power storage unit and the second power storage unit in a state where the current limitation is performed and before the release. Transition from the state (one power supply state) to the state where both the first power storage unit and the second power storage unit supply power to the switching circuit unit (two power supply states) is performed. In this case, in the rotating electrical machine, it is conceivable that the torque decreases as the rotational speed increases at the beginning of driving, but torque compensation by both power storage units is possible even if the torque decreases. In addition, when the current limit is released, if there is a transition from the one power supply state to the two power supply state, there is a risk of voltage fluctuation, but before the current limit is released, the two power supplies are supplied from the one power supply state. By performing the transition to the state, it is possible to avoid inconvenience due to voltage fluctuation.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、実施形態の電源システムを示す電気回路図であり、 図2は、回転電機ユニットの電気的構成を示す回路図であり、 図3は、スイッチモジュールの一部を示す斜視図であり、 図4は、回転電機ECUによる過電流異常判定の処理手順を示すフローチャートであり、 図5は、エンジンECUによる異常監視の処理手順を示すフローチャートであり、 図6は、電池ECUによるフェイルセーフ制御の処理手順を示すフローチャートであり、 図7は、インバータでの過電流発生時の処理を具体的に説明するためのタイムチャートであり、 図8は、回転電機の力行駆動制御の処理手順を示すフローチャートであり、 図9は、回転電機の力行駆動の開始当初における電流制御をより具体的に示すタイムチャートであり、 図10は、回転電機の回転速度と目標通電電流の制限値との関係を示す図であり、 図11は、別例において回転電機の力行駆動制御の処理手順を示すフローチャートであり、 図12は、別例において回転電機の力行駆動制御の処理手順を示すフローチャートであり、 図13は、(a)はインバータ電圧と最大デューティ比との関係を示す図、(b)はステータ温度と最大デューティ比との関係を示す図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is an electric circuit diagram showing a power supply system of an embodiment. FIG. 2 is a circuit diagram showing an electrical configuration of the rotating electrical machine unit. FIG. 3 is a perspective view showing a part of the switch module; FIG. 4 is a flowchart illustrating a processing procedure of overcurrent abnormality determination by the rotating electrical machine ECU. FIG. 5 is a flowchart showing a processing procedure of abnormality monitoring by the engine ECU. FIG. 6 is a flowchart showing a processing procedure of fail-safe control by the battery ECU. FIG. 7 is a time chart for specifically explaining processing when an overcurrent occurs in the inverter. FIG. 8 is a flowchart showing a processing procedure of powering drive control of the rotating electrical machine. FIG. 9 is a time chart showing more specifically current control at the beginning of powering drive of the rotating electrical machine, FIG. 10 is a diagram showing the relationship between the rotational speed of the rotating electrical machine and the limit value of the target energization current, FIG. 11 is a flowchart showing a processing procedure of powering drive control of a rotating electrical machine in another example. FIG. 12 is a flowchart showing a processing procedure of powering drive control of a rotating electrical machine in another example, FIG. 13A is a diagram showing the relationship between the inverter voltage and the maximum duty ratio, and FIG. 13B is a diagram showing the relationship between the stator temperature and the maximum duty ratio.
 以下、本開示を具体化した実施形態を図面に基づいて説明する。本実施形態では、エンジン(内燃機関)を駆動源として走行する車両において当該車両の各種機器に電力を供給する車載電源システムを具体化するものとしている。 Hereinafter, embodiments embodying the present disclosure will be described with reference to the drawings. In the present embodiment, an in-vehicle power supply system that supplies power to various devices of the vehicle in a vehicle that runs using an engine (internal combustion engine) as a drive source is embodied.
 図1に示すように、本電源システムは、第1蓄電部としての鉛蓄電池11と第2蓄電部としてのリチウムイオン蓄電池12とを有する2電源システムであり、各蓄電池11,12からはスタータ13や、各種の電気負荷14,15、回転電機ユニット20への給電が可能となっている。また、各蓄電池11,12に対しては回転電機ユニット20による充電が可能となっている。本システムでは、回転電機ユニット20に対して並列に鉛蓄電池11及びリチウムイオン蓄電池12が接続されるとともに、電気負荷14,15に対して並列に鉛蓄電池11及びリチウムイオン蓄電池12が接続されている。 As shown in FIG. 1, this power supply system is a dual power supply system having a lead storage battery 11 as a first power storage unit and a lithium ion storage battery 12 as a second power storage unit. In addition, power can be supplied to the various electric loads 14 and 15 and the rotating electrical machine unit 20. Further, each of the storage batteries 11 and 12 can be charged by the rotating electrical machine unit 20. In this system, the lead storage battery 11 and the lithium ion storage battery 12 are connected in parallel to the rotating electrical machine unit 20, and the lead storage battery 11 and the lithium ion storage battery 12 are connected in parallel to the electrical loads 14 and 15. .
 鉛蓄電池11は周知の汎用蓄電池である。これに対し、リチウムイオン蓄電池12は、鉛蓄電池11に比べて、充放電における電力損失が少なく、出力密度、及びエネルギ密度の高い高密度蓄電池である。リチウムイオン蓄電池12は、鉛蓄電池11に比べて充放電時のエネルギ効率が高い蓄電池であるとよい。また、リチウムイオン蓄電池12は、それぞれ複数の単電池を有してなる組電池として構成されている。これら各蓄電池11,12の定格電圧はいずれも同じであり、例えば12Vである。 The lead storage battery 11 is a well-known general-purpose storage battery. On the other hand, the lithium ion storage battery 12 is a high-density storage battery that has less power loss during charging / discharging than the lead storage battery 11, and has a high output density and energy density. The lithium ion storage battery 12 may be a storage battery having higher energy efficiency during charging / discharging than the lead storage battery 11. Moreover, the lithium ion storage battery 12 is comprised as an assembled battery which has a some single cell, respectively. These storage batteries 11 and 12 have the same rated voltage, for example, 12V.
 図示による具体的な説明は割愛するが、リチウムイオン蓄電池12は、収容ケースに収容されて基板一体の電池ユニットUとして構成されている。電池ユニットUは、出力端子P1,P2,P0を有しており、このうち出力端子P1,P0に鉛蓄電池11とスタータ13と電気負荷14とが接続され、出力端子P2に電気負荷15と回転電機ユニット20とが接続されている。 Although the detailed description by illustration is omitted, the lithium ion storage battery 12 is housed in a housing case and configured as a battery unit U integrated with a substrate. The battery unit U has output terminals P1, P2 and P0, of which the lead storage battery 11, the starter 13 and the electric load 14 are connected to the output terminals P1 and P0, and the electric load 15 and the rotation are connected to the output terminal P2. The electric unit 20 is connected.
 各電気負荷14,15は、各蓄電池11,12から供給される供給電力の電圧について要求が相違するものである。このうち電気負荷14には、供給電力の電圧が一定又は少なくとも所定範囲内で変動するよう安定であることが要求される定電圧要求負荷が含まれる。これに対し、電気負荷15は、定電圧要求負荷以外の一般的な電気負荷である。電気負荷14は被保護負荷とも言える。また、電気負荷14は電源失陥が許容されない負荷であり、電気負荷15は、電気負荷14に比べて電源失陥が許容される負荷であるとも言える。 The electric loads 14 and 15 have different requirements for the voltage of the power supplied from the storage batteries 11 and 12. Among these, the electric load 14 includes a constant voltage required load that is required to be stable so that the voltage of the supplied power is constant or at least fluctuates within a predetermined range. On the other hand, the electric load 15 is a general electric load other than the constant voltage required load. It can be said that the electric load 14 is a protected load. In addition, it can be said that the electric load 14 is a load that does not allow a power supply failure, and the electric load 15 is a load that allows a power supply failure compared to the electric load 14.
 定電圧要求負荷である電気負荷14の具体例としては、ナビゲーション装置やオーディオ装置、メータ装置、エンジンECU等の各種ECUが挙げられる。この場合、供給電力の電圧変動が抑えられることで、上記各装置において不要なリセット等が生じることが抑制され、安定動作が実現可能となっている。電気負荷14として、電動ステアリング装置やブレーキ装置等の走行系アクチュエータが含まれていてもよい。また、電気負荷15の具体例としては、シートヒータやリヤウインドウのデフロスタ用ヒータ、ヘッドライト、フロントウインドウのワイパ、空調装置の送風ファン等が挙げられる。 Specific examples of the electric load 14 that is a constant voltage required load include various ECUs such as a navigation device, an audio device, a meter device, and an engine ECU. In this case, by suppressing the voltage fluctuation of the supplied power, it is possible to suppress an unnecessary reset or the like in each of the above devices, and to realize a stable operation. The electric load 14 may include a travel system actuator such as an electric steering device or a brake device. Specific examples of the electric load 15 include a seat heater, a heater for a defroster for a rear window, a headlight, a wiper for a front window, and a blower fan for an air conditioner.
 回転電機ユニット20は、3相交流モータとしての回転電機21と、電力変換装置(スイッチング回路部)としてのインバータ22と、回転電機21の作動を制御する回転電機ECU23とを備えている。回転電機ユニット20は、モータ機能付き発電機であり、機電一体型のISG(Integrated Starter Generator)として構成されている。 The rotating electrical machine unit 20 includes a rotating electrical machine 21 as a three-phase AC motor, an inverter 22 as a power conversion device (switching circuit unit), and a rotating electrical machine ECU 23 that controls the operation of the rotating electrical machine 21. The rotating electrical machine unit 20 is a generator with a motor function, and is configured as an electromechanically integrated ISG (Integrated / Starter / Generator).
 ここで、回転電機ユニット20の電気的構成について図2を用いて説明する。回転電機21は、3相電機子巻線としてのU相、V相、W相の相巻線24U,24V,24Wと、界磁巻線25とを備えている。各相巻線24U,24V,24Wは星形結線され、中性点にて互いに接続されている。回転電機21の回転軸は、図示しないエンジン出力軸に対してベルトにより駆動連結されており、エンジン出力軸の回転によって回転電機21の回転軸が回転する一方、回転電機21の回転軸の回転によってエンジン出力軸が回転する。つまり、回転電機21は、エンジン出力軸や車軸の回転により発電(回生発電)を行う発電機能と、エンジン出力軸に回転力を付与する力行機能とを備えている。例えば、アイドリングストップ制御でのエンジン再始動時や車両加速のための動力アシスト時に、回転電機21が力行駆動される。 Here, the electrical configuration of the rotating electrical machine unit 20 will be described with reference to FIG. The rotating electrical machine 21 includes U-phase, V-phase, and W- phase phase windings 24U, 24V, and 24W as three-phase armature windings, and a field winding 25. The phase windings 24U, 24V, 24W are star-connected and are connected to each other at a neutral point. The rotating shaft of the rotating electrical machine 21 is drivingly connected to an engine output shaft (not shown) by a belt, and the rotating shaft of the rotating electrical machine 21 is rotated by the rotation of the engine output shaft. The engine output shaft rotates. That is, the rotating electrical machine 21 has a power generation function that generates power (regenerative power generation) by rotating the engine output shaft and the axle, and a power running function that applies rotational force to the engine output shaft. For example, the rotating electrical machine 21 is driven by powering at the time of engine restart in idling stop control or power assist for vehicle acceleration.
 インバータ22は、各相巻線24U,24V,24Wから出力される交流電圧を直流電圧に変換して電池ユニットUに対して出力する。また、インバータ22は、電池ユニットUから入力される直流電圧を交流電圧に変換して各相巻線24U,24V,24Wへ出力する。インバータ22は、相巻線の相数と同数の上下アームを有するブリッジ回路であり、3相全波整流回路を構成している。また、インバータ22は、回転電機21に供給される電力を調節することで回転電機21を駆動する駆動回路を構成している。 The inverter 22 converts the AC voltage output from each phase winding 24U, 24V, 24W into a DC voltage and outputs it to the battery unit U. The inverter 22 converts the DC voltage input from the battery unit U into an AC voltage and outputs the AC voltage to the phase windings 24U, 24V, and 24W. The inverter 22 is a bridge circuit having the same number of upper and lower arms as the number of phases of the phase winding, and constitutes a three-phase full-wave rectifier circuit. The inverter 22 constitutes a drive circuit that drives the rotating electrical machine 21 by adjusting the electric power supplied to the rotating electrical machine 21.
 インバータ22は、相ごとに上アームスイッチSp及び下アームスイッチSnを備えており、これら各スイッチSp,Snのオンオフにより相ごとに通電が行われる。本実施形態では、各スイッチSp,Snとして、電圧制御形の半導体スイッチング素子を用いる構成としており、具体的には、NチャネルMOSFETを用いている。上アームスイッチSpには、上アームダイオードDpが逆並列に接続され、下アームスイッチSnには、下アームダイオードDnが逆並列に接続されている。本実施形態では、各ダイオードDp,Dnとして、各スイッチSp,Snのボディダイオードを用いている。なお、各ダイオードDp,Dnとしては、ボディダイオードに限らず、例えば各スイッチSp,Snとは別部品のダイオードであってもよい。 The inverter 22 includes an upper arm switch Sp and a lower arm switch Sn for each phase, and energization is performed for each phase by turning on and off the switches Sp and Sn. In the present embodiment, a voltage-controlled semiconductor switching element is used as each of the switches Sp and Sn. Specifically, an N-channel MOSFET is used. An upper arm diode Dp is connected in antiparallel to the upper arm switch Sp, and a lower arm diode Dn is connected in antiparallel to the lower arm switch Sn. In the present embodiment, the body diodes of the switches Sp and Sn are used as the diodes Dp and Dn. The diodes Dp and Dn are not limited to body diodes, and may be diodes that are separate parts from the switches Sp and Sn, for example.
 各スイッチSp,Snの構成について補足説明をしておく。図3は、各スイッチSp,Snを構成するスイッチモジュール50の一部を示す斜視図である。スイッチモジュール50は、半導体スイッチング素子や周辺回路を樹脂モールドして構成された本体部51と、その半導体スイッチング素子等に接続され、かつ本体部51の側部から突出するリード部52(バスバー)とを有している。リード部52は、その先端部において基板やその所定部位である実装位置に溶接等により実装される。リード部52においては、その一部に幅狭部52aが設けられている。そのため、リード部52を通じてスイッチモジュール50に過大な電流(過電流)が流れる場合には、発熱により幅狭部52aが溶断されるようになっている。 Supplementary explanation will be given for the configuration of each switch Sp, Sn. FIG. 3 is a perspective view showing a part of the switch module 50 constituting each of the switches Sp and Sn. The switch module 50 includes a main body 51 formed by resin-molding a semiconductor switching element and a peripheral circuit, and a lead 52 (bus bar) connected to the semiconductor switching element and the like and protruding from the side of the main body 51. have. The lead portion 52 is mounted by welding or the like on the substrate or a mounting position that is a predetermined portion at the tip portion. In the lead part 52, a narrow part 52a is provided in a part thereof. For this reason, when an excessive current (overcurrent) flows to the switch module 50 through the lead portion 52, the narrow portion 52a is melted by heat generation.
 各相におけるスイッチSp,Snの直列接続体の中間接続点は、各相巻線24U,24V,24Wの一端にそれぞれ接続されている。また、インバータ22の高圧側経路と低圧側経路との間には、インバータ22の入出力の電圧を検出する電圧センサ26が設けられている。その他、回転電機ユニット20には、例えばインバータ22の通電経路を流れる電流を検出する電流センサ27や、界磁巻線25に流れる電流を検出する電流センサ28が設けられている。なお、電流センサ27は、インバータ22と各相巻線24U,24V,24Wとの間に設けられていてもよいし(図の符号27a)、下アームスイッチSnとグランドラインとの間に相ごとに設けられていてもよい(図の符号27b)。回転電機21にはステータの温度を検出する温度センサ29が設けられている。上記各センサ26~29の検出信号は回転電機ECU23に適宜入力される。また、図示は略すが、回転電機21には、回転子の角度情報を検出する回転角度センサが設けられ、インバータ22には、その回転角度センサからの信号を処理する信号処理回路が設けられている。 The intermediate connection point of the series connection body of the switches Sp and Sn in each phase is connected to one end of each phase winding 24U, 24V, 24W. Further, a voltage sensor 26 that detects the input / output voltage of the inverter 22 is provided between the high-voltage side path and the low-voltage side path of the inverter 22. In addition, the rotating electrical machine unit 20 is provided with, for example, a current sensor 27 that detects a current flowing through an energization path of the inverter 22 and a current sensor 28 that detects a current flowing through the field winding 25. The current sensor 27 may be provided between the inverter 22 and each phase winding 24U, 24V, 24W (symbol 27a in the figure), and each phase between the lower arm switch Sn and the ground line. (Reference numeral 27b in the figure). The rotating electrical machine 21 is provided with a temperature sensor 29 for detecting the temperature of the stator. Detection signals from the sensors 26 to 29 are appropriately input to the rotating electrical machine ECU 23. Although not shown, the rotating electrical machine 21 is provided with a rotation angle sensor that detects angle information of the rotor, and the inverter 22 is provided with a signal processing circuit that processes a signal from the rotation angle sensor. Yes.
 回転電機ECU23は、CPU、ROM、RAM、入出力インターフェース等を含むマイコンにより構成されている。回転電機ECU23は、その内部の図示しないICレギュレータにより、界磁巻線25に流す励磁電流を調整する。これにより、回転電機ユニット20の発電電圧(電池ユニットUに対する出力電圧)が制御される。また、回転電機ECU23は、通電位相に応じて各相のスイッチSp,Snのオンオフを制御するとともに、各相の通電時にオンオフ比率(例えばデューティ比)を調整することで通電電流を制御する。ここで、回転電機ECU23は、車両の走行開始後にインバータ22を制御して回転電機21を駆動させて、エンジンの駆動力をアシストする。回転電機21は、エンジン始動時にクランク軸に初期回転を付与することが可能であり、エンジン始動装置としての機能も有している。 The rotating electrical machine ECU 23 is constituted by a microcomputer including a CPU, a ROM, a RAM, an input / output interface, and the like. The rotating electrical machine ECU 23 adjusts the excitation current flowing through the field winding 25 by an IC regulator (not shown) inside. Thereby, the power generation voltage (output voltage with respect to the battery unit U) of the rotary electric machine unit 20 is controlled. The rotating electrical machine ECU 23 controls on / off of the switches Sp and Sn of each phase according to the energization phase, and controls the energization current by adjusting an on / off ratio (for example, duty ratio) when energizing each phase. Here, the rotating electrical machine ECU 23 assists the driving force of the engine by controlling the inverter 22 to drive the rotating electrical machine 21 after the vehicle starts running. The rotating electrical machine 21 can apply initial rotation to the crankshaft when starting the engine, and also has a function as an engine starting device.
 次に、電池ユニットUにおける電気的構成を説明する。図1に示すように、電池ユニットUには、ユニット内電気経路として、各出力端子P1,P2を繋ぐ電気経路L1と、電気経路L1上の点N0とリチウムイオン蓄電池12とを繋ぐ電気経路L2とが設けられている。このうち電気経路L1にスイッチ31が設けられ、電気経路L2にスイッチ32が設けられている。なお、鉛蓄電池11とリチウムイオン蓄電池12とを接続する電気経路で言えば、当該電気経路における回転電機ユニット20との接続点N0よりも鉛蓄電池11の側にスイッチ31が設けられ、接続点N0よりもリチウムイオン蓄電池12の側にスイッチ32が設けられている。 Next, the electrical configuration of the battery unit U will be described. As shown in FIG. 1, in the battery unit U, as an in-unit electric path, an electric path L1 that connects the output terminals P1 and P2, and an electric path L2 that connects a point N0 on the electric path L1 and the lithium ion storage battery 12 And are provided. Among these, the switch 31 is provided in the electrical path L1, and the switch 32 is provided in the electrical path L2. In addition, in terms of an electrical path connecting the lead storage battery 11 and the lithium ion storage battery 12, a switch 31 is provided on the lead storage battery 11 side of the connection point N0 with the rotating electrical machine unit 20 in the electrical path, and the connection point N0. The switch 32 is provided on the lithium ion storage battery 12 side.
 これら各スイッチ31,32は、例えば2×n個のMOSFET(半導体スイッチング素子)を備え、その2つ一組のMOSFETの寄生ダイオードが互いに逆向きになるように直列に接続されている。この寄生ダイオードによって、各スイッチ31,32をオフ状態とした場合にそのスイッチが設けられた経路に流れる電流が完全に遮断される。なお、スイッチ31,32として、MOSFETに代えて、IGBTやバイポーラトランジスタ等を用いることも可能である。スイッチ31,32としてIGBTやバイポーラトランジスタを用いた場合、上記の寄生ダイオードの代わりに、スイッチ31,32それぞれに逆向きのダイオードを並列接続させてもよい。 Each of the switches 31 and 32 includes, for example, 2 × n MOSFETs (semiconductor switching elements), and the parasitic diodes of the two sets of MOSFETs are connected in series so as to be opposite to each other. When the switches 31 and 32 are turned off, the parasitic diode completely cuts off the current flowing through the path where the switches are provided. As the switches 31 and 32, IGBTs or bipolar transistors can be used instead of MOSFETs. When IGBTs or bipolar transistors are used as the switches 31 and 32, diodes in opposite directions may be connected in parallel to the switches 31 and 32, respectively, instead of the parasitic diode.
 また、電池ユニットUには、スイッチ31を迂回するバイパス経路L0が設けられている。バイパス経路L0は、出力端子P0と電気経路L1上の点N0とを接続するようにして設けられている。出力端子P0はヒューズ35を介して鉛蓄電池11に接続されている。バイパス経路L0によって、スイッチ31を介さずに、鉛蓄電池11と電気負荷15及び回転電機ユニット20との接続が可能となっている。バイパス経路L0には、例えば常閉式の機械式リレーからなるバイパススイッチ36が設けられている。バイパススイッチ36をオン(閉鎖)することで、スイッチ31がオフ(開放)されていても鉛蓄電池11と電気負荷15及び回転電機ユニット20とが電気的に接続される。 Further, the battery unit U is provided with a bypass path L0 that bypasses the switch 31. The bypass path L0 is provided so as to connect the output terminal P0 and the point N0 on the electrical path L1. The output terminal P0 is connected to the lead storage battery 11 through the fuse 35. By the bypass path L0, the lead storage battery 11, the electrical load 15, and the rotating electrical machine unit 20 can be connected without using the switch 31. In the bypass path L0, for example, a bypass switch 36 made of a normally closed mechanical relay is provided. By turning on (closing) the bypass switch 36, the lead storage battery 11, the electric load 15, and the rotating electrical machine unit 20 are electrically connected even if the switch 31 is turned off (opened).
 電池ユニットUは、各スイッチ31,32のオンオフ(開閉)を制御する電池ECU37を備えている。電池ECU37は、CPU、ROM、RAM、入出力インターフェース等を含むマイコンにより構成されている。電池ECU37は、各蓄電池11,12の蓄電状態や、上位制御装置であるエンジンECU40からの指令値に基づいて、各スイッチ31,32のオンオフを制御する。これにより、鉛蓄電池11とリチウムイオン蓄電池12とを選択的に用いて充放電が実施される。例えば、電池ECU37は、リチウムイオン蓄電池12のSOC(残存容量:State Of Charge)を算出し、そのSOCが所定の使用範囲内に保持されるようにリチウムイオン蓄電池12への充電量及び放電量を制御する。 The battery unit U includes a battery ECU 37 that controls on / off (opening / closing) of the switches 31 and 32. The battery ECU 37 is constituted by a microcomputer including a CPU, a ROM, a RAM, an input / output interface, and the like. The battery ECU 37 controls the on / off of the switches 31 and 32 based on the storage state of each of the storage batteries 11 and 12 and the command value from the engine ECU 40 that is the host controller. Thereby, charging / discharging is implemented using the lead storage battery 11 and the lithium ion storage battery 12 selectively. For example, the battery ECU 37 calculates the SOC (remaining capacity: State Of Charge) of the lithium ion storage battery 12, and sets the charge amount and discharge amount to the lithium ion storage battery 12 so that the SOC is maintained within a predetermined use range. Control.
 回転電機ユニット20の回転電機ECU23や電池ユニットUの電池ECU37には、これら各ECU23,37を統括的に管理する上位制御装置としてのエンジンECU40が接続されている。エンジンECU40は、CPU、ROM、RAM、入出力インターフェース等を含むマイコンにより構成されており、都度のエンジン運転状態や車両走行状態に基づいて、エンジン42の運転を制御する。エンジンECU40は、アイドリングストップ制御を実施する機能を有している。アイドリングストップ制御は、周知のとおり所定の自動停止条件の成立によりエンジンを自動停止させ、かつその自動停止状態下で所定の再始動条件の成立によりエンジンを再始動させるものである。 The rotating electrical machine ECU 23 of the rotating electrical machine unit 20 and the battery ECU 37 of the battery unit U are connected to an engine ECU 40 as a host controller that manages these ECUs 23 and 37 in an integrated manner. The engine ECU 40 is configured by a microcomputer including a CPU, a ROM, a RAM, an input / output interface, and the like, and controls the operation of the engine 42 based on each engine operation state and vehicle running state. The engine ECU 40 has a function of performing idling stop control. As is well known, the idling stop control automatically stops the engine when a predetermined automatic stop condition is satisfied, and restarts the engine when the predetermined restart condition is satisfied under the automatic stop state.
 これら各ECU23,37,40や、その他図示しない各種の車載ECUは、CAN等の通信ネットワークを構築する通信線41により接続されて相互に通信可能となっており、所定周期で双方向の通信が実施される。これにより、各ECU23,37,40に記憶される各種データが互いに共有できるものとなっている。なお、インバータ22及び回転電機ECU23が「第1制御装置」に相当し、電池ECU37が「第2制御装置」に相当し、エンジンECU40が「第3制御装置」に相当する。また、通信線41が「信号伝達部」に相当する。 These ECUs 23, 37, 40 and other various in-vehicle ECUs (not shown) are connected to each other via a communication line 41 that constructs a communication network such as a CAN, and can communicate with each other at predetermined intervals. To be implemented. Thereby, the various data memorize | stored in each ECU23,37,40 can mutually be shared. The inverter 22 and the rotating electrical machine ECU 23 correspond to a “first control device”, the battery ECU 37 corresponds to a “second control device”, and the engine ECU 40 corresponds to a “third control device”. The communication line 41 corresponds to a “signal transmission unit”.
 ところで、インバータ22では、各スイッチSp,Snにおいて閉故障が生じるおそれがあり、万が一同じ相において上アームスイッチSpの閉故障と下アームスイッチSnの閉故障とが生じると、電源ラインとグランドラインとの短絡により各スイッチSp,Snに過電流が流れることが懸念される。この場合、仮に各スイッチSp,Snに過電流が流れると、スイッチモジュール50におけるリード部52の幅狭部52aが溶断され、それに伴い、過電流が継続的に流れることが抑制される。 By the way, in the inverter 22, there is a possibility that a closing failure may occur in each of the switches Sp and Sn. If a closing failure of the upper arm switch Sp and a closing failure of the lower arm switch Sn occur in the same phase, the power line and the ground line There is a concern that an overcurrent may flow through the switches Sp and Sn due to the short circuit. In this case, if an overcurrent flows through each of the switches Sp and Sn, the narrow portion 52a of the lead portion 52 in the switch module 50 is melted, and accordingly, the overcurrent is suppressed from flowing continuously.
 なお、回転電機ユニット20においては、インバータ22での短絡以外に、回転電機21で短絡が生じるおそれがあり、例えば各相巻線24U,24V,24Wのいずれかの部位で短絡が生じると、やはりインバータ22の各スイッチSp,Snに過電流が流れることとなる。 In the rotating electrical machine unit 20, there is a possibility that a short circuit may occur in the rotating electrical machine 21 in addition to the short circuit in the inverter 22. For example, if a short circuit occurs in any part of each phase winding 24U, 24V, 24W, Overcurrent flows through the switches Sp and Sn of the inverter 22.
 本実施形態では、過電流に伴いリード部52が溶断される場合に、その溶断により、通電経路における電流が大電流から急低下する点に着目し、電流低下した状態で、電池ユニットUのフェイルセーフ処理としてスイッチ31,32を強制開放させるようにしている。この場合、スイッチ31,32の開放により、鉛蓄電池11やリチウムイオン蓄電池12からインバータ22への電力供給が停止される。本実施形態では、回転電機ECU23が、インバータ22に流れる通電電流が所定の過電流閾値まで上昇したことの第1判定と、その後電流低下したことの第2判定との結果に基づいて、インバータ22に過電流が流れたことを判定する(過電流判定部に相当)。また、電池ECU37が、回転電機ECU23における過電流判定の結果に基づいて、スイッチ31,32を開放させる(スイッチ制御部に相当)。 In the present embodiment, when the lead portion 52 is blown due to an overcurrent, the failure of the battery unit U in a state where the current is reduced is focused on the fact that the current in the energization path suddenly drops from a large current due to the blow. As a safe process, the switches 31 and 32 are forcibly opened. In this case, the power supply from the lead storage battery 11 or the lithium ion storage battery 12 to the inverter 22 is stopped by opening the switches 31 and 32. In the present embodiment, the rotating electrical machine ECU 23 is based on the results of the first determination that the energization current flowing through the inverter 22 has increased to a predetermined overcurrent threshold and the second determination that the current has subsequently decreased. It is determined that an overcurrent has passed through (corresponding to an overcurrent determination unit). Further, the battery ECU 37 opens the switches 31 and 32 (corresponding to a switch control unit) based on the result of the overcurrent determination in the rotating electrical machine ECU 23.
 また、本システムにおいては、各ECU23,37,40のうちエンジンECU40が上位ECUとしての役目を担っており、エンジンECU40からの指令に基づいて、回転電機ECU23による回転電機21の制御や電池ECU37による充放電制御等が実施される。こうした事情から、インバータ22の過電流異常が生じた場合には、まず回転電機ECU23で過電流異常発生の旨が判定された後、通信線41を介して異常信号がエンジンECU40に送信され、その後、エンジンECU40から、異常信号に対応するフェイルセーフ信号が通信線41を介して電池ECU37に送信される。ただしこの場合、異常発生後において、回転電機ECU23からエンジンECU40への通信、及びエンジンECU40から電池ECU37への通信が行われた後に、電池ユニットUでスイッチ開放(フェイルセーフ処理)が行われることになるため、スイッチ開放までに時間を要し、二次的な不具合が生じることも懸念される。各ECU間では離散的に通信が行われることを想定すると、やはりスイッチ開放までの所要時間が長引くことが懸念される。 In this system, the engine ECU 40 of the ECUs 23, 37, and 40 serves as a host ECU. Based on a command from the engine ECU 40, the rotating electrical machine 21 is controlled by the rotating electrical machine ECU 23 and the battery ECU 37. Charge / discharge control and the like are performed. Under such circumstances, when an overcurrent abnormality of the inverter 22 occurs, first, the rotating electrical machine ECU 23 determines that an overcurrent abnormality has occurred, and then an abnormality signal is transmitted to the engine ECU 40 via the communication line 41. From the engine ECU 40, a fail safe signal corresponding to the abnormal signal is transmitted to the battery ECU 37 via the communication line 41. However, in this case, after the occurrence of an abnormality, after the communication from the rotating electrical machine ECU 23 to the engine ECU 40 and the communication from the engine ECU 40 to the battery ECU 37 are performed, the battery unit U performs switch opening (fail-safe processing). Therefore, it takes time until the switch is opened, and there is a concern that a secondary malfunction may occur. Assuming that communication is performed discretely between the ECUs, there is a concern that the time required to open the switch will be prolonged.
 そこで本実施形態では、各ECU23,37,40が通信線41により相互に通信可能となっている構成を前提として、以下の特徴的な構成を採用している。すなわち、
(1)回転電機ECU23は、インバータ22において過電流が流れたことを示す過電流異常信号を電池ECU37及びエンジンECU40に対して送信する。
(2)エンジンECU40は、回転電機ECU23から受信した過電流異常信号に基づいて、電池ECU37に対して,スイッチ31,32を強制開放させる旨の強制開放信号を送信する。
(3)電池ECU37は、回転電機ECU23からの過電流異常信号の受信、及びエンジンECU40からの強制開放信号の受信のうち早い方に基づいて、スイッチ31,32を強制開放させる。
Therefore, in the present embodiment, the following characteristic configuration is adopted on the assumption that the ECUs 23, 37, and 40 can communicate with each other via the communication line 41. That is,
(1) The rotating electrical machine ECU 23 transmits an overcurrent abnormality signal indicating that an overcurrent has flown in the inverter 22 to the battery ECU 37 and the engine ECU 40.
(2) Based on the overcurrent abnormality signal received from the rotating electrical machine ECU 23, the engine ECU 40 transmits a forced opening signal for forcibly opening the switches 31 and 32 to the battery ECU 37.
(3) The battery ECU 37 forcibly opens the switches 31 and 32 based on the earlier of the reception of the overcurrent abnormality signal from the rotating electrical machine ECU 23 and the reception of the forcible opening signal from the engine ECU 40.
 この場合、電池ECU37では、エンジンECU40からの強制開放信号の受信を待たずとも、回転電機ECU23から過電流異常信号を直接受け取り、その過電流異常信号に基づいて応急的な処置を実施することができる。 In this case, the battery ECU 37 can directly receive the overcurrent abnormality signal from the rotating electrical machine ECU 23 without waiting for the reception of the forced release signal from the engine ECU 40, and can perform an emergency treatment based on the overcurrent abnormality signal. it can.
 また、インバータ22では上記のとおり短絡に起因して過電流が流れる一方、回転電機21の力行駆動の開始当初においては突入電流として大電流が流れる。この場合、突入電流としての大電流が検出されると、それが過電流とみなされ、結果として短絡異常(すなわち過電流異常)が生じたと誤判定されることが懸念される。 In the inverter 22, an overcurrent flows due to a short circuit as described above, while a large current flows as an inrush current at the beginning of powering driving of the rotating electrical machine 21. In this case, if a large current as an inrush current is detected, it is regarded as an overcurrent, and there is a concern that it may be erroneously determined that a short circuit abnormality (ie, an overcurrent abnormality) has occurred as a result.
 そこで本実施形態では、回転電機ECU23が、回転電機21の力行駆動の開始時においてその駆動開始に伴い生じる突入電流を制限する(電流制限部に相当)。この場合、突入電流を、過電流判定値よりも小さい電流に制限することにより、突入電流なのか過電流なのかを明確に特定できるようにしている。 Therefore, in the present embodiment, the rotating electrical machine ECU 23 limits the inrush current generated when the rotating electrical machine 21 starts the power running drive (corresponding to a current limiting unit). In this case, by limiting the inrush current to a current smaller than the overcurrent determination value, it is possible to clearly identify whether the current is an inrush current or an overcurrent.
 より具体的には、回転電機ECU23は、回転電機21の力行駆動の開始当初において電流目標値を所定の制限値により制限し、その制限された目標値に基づいて、インバータ22の通電電流のフィードバック制御を実施する。例えば過電流判定値を400A、制限値を300Aとする。この場合、電流制限を実施しないと、突入電流として過電流判定値を超える大電流が流れることが考えられるが、電流制限により、突入電流が過電流判定値よりも小電流に抑えられる。 More specifically, the rotating electrical machine ECU 23 limits the current target value by a predetermined limit value at the beginning of the power running drive of the rotating electrical machine 21, and based on the limited target value, feedback of the energization current of the inverter 22 is performed. Implement control. For example, the overcurrent determination value is 400A and the limit value is 300A. In this case, if current limitation is not performed, a large current exceeding the overcurrent determination value may flow as an inrush current. However, the inrush current is suppressed to a smaller current than the overcurrent determination value due to the current limitation.
 また、回転電機21の力行駆動の開始後においては、回転電機21の回転速度が上昇することに伴いモータ起電力により中性点電圧が上昇する。そのため、突入電流が次第に低減される。そこで、回転電機ECU23は、回転電機21の力行駆動の開始後において、回転電機21の回転速度が所定回転速度まで上昇したことに基づいて、電流目標値の制限を解除する。 Further, after starting the power running drive of the rotating electrical machine 21, the neutral point voltage increases due to the motor electromotive force as the rotational speed of the rotating electrical machine 21 increases. Therefore, the inrush current is gradually reduced. Therefore, the rotating electrical machine ECU 23 releases the restriction on the current target value based on the fact that the rotational speed of the rotating electrical machine 21 has increased to a predetermined rotational speed after the start of powering drive of the rotating electrical machine 21.
 次に、各ECU23,37,40により実施される演算処理をフローチャート等を用いて具体的に説明する。 Next, the arithmetic processing performed by each ECU 23, 37, 40 will be specifically described using a flowchart or the like.
 図4は、過電流異常判定の処理手順を示すフローチャートであり、本処理は回転電機ECU23により所定周期で繰り返し実施される。 FIG. 4 is a flowchart showing a processing procedure of overcurrent abnormality determination, and this processing is repeatedly performed by the rotating electrical machine ECU 23 at a predetermined cycle.
 図4において、ステップS11では、電流センサ27により検出された検出電流Iaを取得する。続くステップS12では、インバータ22での過電流発生を示すフラグが0であるか否かを判定する。そして、フラグ=0であればステップS13に進み、検出電流Iaが所定の第1閾値TH1以上であるか否かを判定する。第1閾値TH1が「過電流閾値」に相当し、例えばTH1=400Aである。検出電流Iaが第1閾値TH1未満であれば、そのまま本処理を終了する。また、検出電流Iaが第1閾値TH1以上であれば、ステップS14に進んでフラグに1をセットした後、本処理を終了する。 In FIG. 4, in step S11, the detection current Ia detected by the current sensor 27 is acquired. In a succeeding step S12, it is determined whether or not a flag indicating occurrence of overcurrent in the inverter 22 is zero. If the flag = 0, the process proceeds to step S13 to determine whether or not the detected current Ia is equal to or greater than a predetermined first threshold value TH1. The first threshold value TH1 corresponds to an “overcurrent threshold value”, for example, TH1 = 400A. If the detected current Ia is less than the first threshold value TH1, this process is terminated as it is. If the detected current Ia is greater than or equal to the first threshold value TH1, the process proceeds to step S14, where the flag is set to 1, and the process is terminated.
 フラグに1がセットされた後は、ステップS12を否定してステップS15に進む。ステップS15では、検出電流Iaが所定の第2閾値TH2未満であるか否かを判定する。第2閾値TH2は、第1閾値TH1よりも小さい電流値として定められており、例えばTH2=200Aである。 After 1 is set in the flag, step S12 is denied and the process proceeds to step S15. In step S15, it is determined whether or not the detected current Ia is less than a predetermined second threshold value TH2. The second threshold value TH2 is determined as a current value smaller than the first threshold value TH1, for example, TH2 = 200A.
 検出電流Iaが第2閾値TH2以上であれば、そのまま本処理を終了する。また、検出電流Iaが第2閾値TH2未満であれば、ステップS16に進み、通信線41を用いて過電流異常信号を電池ECU37とエンジンECU40に対して送信した後、本処理を終了する。 If the detected current Ia is greater than or equal to the second threshold value TH2, this process is terminated. On the other hand, if the detected current Ia is less than the second threshold value TH2, the process proceeds to step S16, an overcurrent abnormality signal is transmitted to the battery ECU 37 and the engine ECU 40 using the communication line 41, and then this process ends.
 図5は、異常監視の処理手順を示すフローチャートであり、本処理はエンジンECU40により所定周期で繰り返し実施される。 FIG. 5 is a flowchart showing an abnormality monitoring processing procedure, and this processing is repeatedly performed by the engine ECU 40 at a predetermined cycle.
 図5において、ステップS21では、回転電機ECU23から過電流異常信号を受信したか否かを判定する。そして、過電流異常信号を受信していれば、ステップS22に進み、通信線41を用い、スイッチ31,32の強制開放信号を電池ECU37に対して送信する。 In FIG. 5, in step S <b> 21, it is determined whether an overcurrent abnormality signal is received from the rotating electrical machine ECU 23. If an overcurrent abnormality signal has been received, the process proceeds to step S 22, and a forced opening signal for the switches 31 and 32 is transmitted to the battery ECU 37 using the communication line 41.
 図6は、電池ユニットUにおけるフェイルセーフ制御の処理手順を示すフローチャートであり、本処理は電池ECU37により所定周期で繰り返し実施される。 FIG. 6 is a flowchart showing a processing procedure of fail-safe control in the battery unit U, and this processing is repeatedly performed by the battery ECU 37 at a predetermined cycle.
 図6において、ステップS31では、回転電機ECU23から過電流異常信号を受信したか否かを判定する。そして、過電流異常信号を受信していれば、ステップS32に進み、フェイルセーフ処理として、スイッチ31,32をオフ(開放)する旨を指令する。なお、バイパススイッチ36については開放状態のままとする。 In FIG. 6, in step S31, it is determined whether or not an overcurrent abnormality signal is received from the rotating electrical machine ECU. If an overcurrent abnormality signal has been received, the process proceeds to step S32 to instruct to turn off (open) the switches 31 and 32 as fail-safe processing. Note that the bypass switch 36 remains open.
 また、過電流異常信号を受信していなければ、ステップS33に進み、エンジンECU40から強制開放信号を受信したか否かを判定する。そして、強制開放信号を受信していれば、ステップS32に進み、フェイルセーフ処理を実施する。この場合、ステップS31~S33によれば、回転電機ECU23からの過電流異常信号とエンジンECU40からの強制開放信号とのうち先に受信した信号に基づいて、フェイルセーフ処理が実施される。 If the overcurrent abnormality signal has not been received, the process proceeds to step S33, and it is determined whether or not a forced release signal has been received from the engine ECU 40. If the forced release signal has been received, the process proceeds to step S32, and a fail safe process is performed. In this case, according to steps S31 to S33, the fail-safe process is performed based on the first received signal among the overcurrent abnormality signal from the rotating electrical machine ECU 23 and the forced release signal from the engine ECU 40.
 次に、図7のタイムチャートを用い、インバータ22での過電流発生時の処理を具体的に説明する。 Next, the processing when an overcurrent occurs in the inverter 22 will be specifically described with reference to the time chart of FIG.
 図7において、タイミングt1以前は、インバータ22の各スイッチSp,Snが回転電機21の作動要求に応じてオンオフされており、回転電機21の作動状態に応じた通電電流がインバータ22に流れている。つまり、回転電機ユニット20が正常動作している。この状態では、インバータ22の通電電流(電流センサ27の検出電流Ia)が第1閾値TH1未満となっている。このとき、電池ユニットUでは、スイッチ31,32が閉鎖(状況によっては一方のみが開放)の状態となっている。 In FIG. 7, before the timing t <b> 1, the switches Sp and Sn of the inverter 22 are turned on / off in response to an operation request of the rotating electrical machine 21, and an energization current corresponding to the operating state of the rotating electrical machine 21 flows to the inverter 22. . That is, the rotating electrical machine unit 20 is operating normally. In this state, the energization current of the inverter 22 (the detection current Ia of the current sensor 27) is less than the first threshold value TH1. At this time, in the battery unit U, the switches 31 and 32 are in a closed state (only one is open depending on the situation).
 そして、タイミングt1で、例えばインバータ22での短絡発生によりインバータ22の通電電流が急増すると、タイミングt2で、通電電流が第1閾値TH1を超える。これにより、フラグに1がセットされる。このとき、各スイッチSp,Snに過電流が流れることにより、スイッチモジュール50におけるリード部52の幅狭部52aが溶断され、それに伴い通電電流が急減する。 Then, at timing t1, for example, when the energizing current of the inverter 22 increases rapidly due to the occurrence of a short circuit in the inverter 22, the energizing current exceeds the first threshold value TH1 at timing t2. As a result, 1 is set in the flag. At this time, when an overcurrent flows through each of the switches Sp and Sn, the narrow portion 52a of the lead portion 52 in the switch module 50 is melted, and the energization current is suddenly reduced accordingly.
 その後、タイミングt3で通電電流が第2閾値TH2未満となることにより、回転電機ECU23から過電流異常信号が出力される。そして、タイミングt4では、電池ユニットUの電池ECU37において、過電流異常信号の受信に基づいて回転電機ユニット20での過電流発生の旨が認識され、それに伴いフェイルセーフ処理、すなわちスイッチ31,32の強制開放が実施される。 Thereafter, when the energization current becomes less than the second threshold value TH2 at timing t3, the rotating electric machine ECU 23 outputs an overcurrent abnormality signal. At timing t4, the battery ECU 37 of the battery unit U recognizes that an overcurrent has occurred in the rotating electrical machine unit 20 based on the reception of the overcurrent abnormality signal, and accordingly, the fail safe process, that is, the switches 31 and 32 are switched. Forced release is performed.
 この場合、タイミングt4の時点では、通電電流が小電流に抑えられており、スイッチ保護を図りつつ好適にスイッチ31,32を開放させることができる。つまり、過電流が流れている状況下で、その通電経路のスイッチ31,32を開放すると、通電経路にサージ電流が発生し、そのサージ電流に起因してスイッチ31,32が破損することが懸念される。この点、上記構成によれば、過電流が一旦治まった状態でスイッチ31,32が開放されるため、スイッチ開放時のサージ電流が抑制され、ひいてはサージ電流に起因するスイッチ破壊が抑制される。 In this case, at time t4, the energization current is suppressed to a small current, and the switches 31 and 32 can be preferably opened while protecting the switch. That is, if the switches 31 and 32 of the energization path are opened under an overcurrent condition, a surge current is generated in the energization path, and the switches 31 and 32 may be damaged due to the surge current. Is done. In this respect, according to the above-described configuration, the switches 31 and 32 are opened in a state where the overcurrent has been temporarily stopped. Therefore, the surge current when the switch is opened is suppressed, and further, the switch breakage due to the surge current is suppressed.
 なお本実施形態では、フェイルセーフ処理としてスイッチ31,32が強制開放され、バイパススイッチ36については開放状態のまま保持されるが、これに代えて、フェイルセーフ処理として、スイッチ31,32の強制開放と、バイパススイッチ36の閉鎖とが実施される構成であってもよい。バイパススイッチ36が開放状態のまま保持される場合、スイッチ31,32の開放により鉛蓄電池11とインバータ22とが完全に遮断される。これに対して、バイパススイッチ36が閉鎖される場合、ヒューズ35を介して鉛蓄電池11とインバータ22とが接続される。 In the present embodiment, the switches 31 and 32 are forcibly opened as fail-safe processing, and the bypass switch 36 is kept open, but instead, the switches 31 and 32 are forcibly opened as fail-safe processing. In addition, the bypass switch 36 may be closed. When the bypass switch 36 is kept open, the lead storage battery 11 and the inverter 22 are completely cut off by opening the switches 31 and 32. On the other hand, when the bypass switch 36 is closed, the lead storage battery 11 and the inverter 22 are connected via the fuse 35.
 ここで、エンジンECU40では、タイミングt4(場合によってはその前後)で過電流異常信号の受信に基づいて過電流発生の旨が認識され、それに伴い強制開放信号が電池ECU37に対して送信される。そのため、上位ECUであるエンジンECU30からの指令を待って電池ユニットUでのフェイルセーフ処理を実施する構成では、タイミングt4よりも後のタイミングでフェイルセーフ処理が実施されるが、本実施形態では、エンジンECU40からの強制開放信号の受信を待たず、回転電機ECU23からの過電流異常信号に基づいて電池ECU37がフェイルセーフ処理を実施するため、いち早い処置の実施が可能となっている。 Here, the engine ECU 40 recognizes that an overcurrent has occurred based on the reception of the overcurrent abnormality signal at timing t4 (possibly before and after that), and accordingly, a forced release signal is transmitted to the battery ECU 37. Therefore, in the configuration in which the fail safe process is performed in the battery unit U after waiting for a command from the engine ECU 30 as the host ECU, the fail safe process is performed at a timing later than the timing t4. Since the battery ECU 37 performs the fail-safe process based on the overcurrent abnormality signal from the rotating electrical machine ECU 23 without waiting for the reception of the forcible opening signal from the engine ECU 40, it is possible to perform an early treatment.
 次に、回転電機21の力行駆動の開始時における突入電流の制限処理について説明する。図8は、回転電機21の力行駆動制御の処理手順を示すフローチャートであり、本処理は回転電機ECU23により所定周期で繰り返し実施される。 Next, inrush current limiting processing at the start of powering drive of the rotating electrical machine 21 will be described. FIG. 8 is a flowchart showing a processing procedure of powering drive control of the rotating electrical machine 21, and this process is repeatedly performed by the rotating electrical machine ECU 23 at a predetermined cycle.
 図8において、ステップS41では、力行駆動の要求があるか否かを判定する。例えば、エンジン再始動時や動力アシスト時において力行駆動の要求があると判定される。力行駆動の要求があれば後続のステップS42に進み、要求が無ければそのまま本処理を終了する。 In FIG. 8, in step S41, it is determined whether or not there is a request for powering drive. For example, it is determined that there is a request for powering drive at the time of engine restart or power assist. If there is a request for power running, the process proceeds to the subsequent step S42, and if there is no request, the process is terminated.
 ステップS42では、回転電機21に対して要求される駆動態様に応じて、インバータ通電電流の目標値を設定する。このとき、例えばエンジン再始動時であれば、エンジン再始動のための初期回転速度(クランキング速度)に基づいて、インバータ通電電流の目標値を設定する。また、動力アシスト時であれば、アクセル操作量に応じたアシスト量に基づいて、インバータ通電電流の目標値を設定する。 In step S42, the target value of the inverter energization current is set according to the drive mode required for the rotating electrical machine 21. At this time, if the engine is restarted, for example, the target value of the inverter energization current is set based on the initial rotation speed (cranking speed) for engine restart. In addition, during power assist, a target value for the inverter energization current is set based on the assist amount corresponding to the accelerator operation amount.
 ステップS43では、回転電機21の回転速度Nmが所定回転速度Nth未満であるか否かを判定する。所定回転速度Nthは、回転電機21においてモータ起電力により中性点電圧が所定以上に上昇したことを判定するための判定値であり、例えばNth=600rpmである。なお、エンジン出力軸と回転電機21の出力軸とのプーリ比は例えば2.3である。そして、Nm<Nthであることを条件に、ステップS44に進む。 In step S43, it is determined whether or not the rotational speed Nm of the rotating electrical machine 21 is less than a predetermined rotational speed Nth. The predetermined rotation speed Nth is a determination value for determining that the neutral point voltage has risen above a predetermined level by the motor electromotive force in the rotating electrical machine 21, and is, for example, Nth = 600 rpm. The pulley ratio between the engine output shaft and the output shaft of the rotating electrical machine 21 is, for example, 2.3. Then, the process proceeds to step S44 on condition that Nm <Nth.
 ステップS44では、回転電機21の力行駆動の開始当初における突入電流を制限すべく、インバータ通電電流の目標値を所定の制限値Ixで制限する。制限値Ixは、インバータ22での過電流判定のための第1閾値TH1よりも小さい値であり、例えばIx=300Aである。この場合、今回の力行駆動要求がエンジン再始動要求なのか動力アシスト要求なのかに応じて、制限値Ixを設定することも可能である。例えば、エンジン再始動要求であれば、動力アシスト要求である場合よりも制限値Ixを小さい値とする。 In step S44, the target value of the inverter energization current is limited by a predetermined limit value Ix in order to limit the inrush current at the beginning of the power running drive of the rotating electrical machine 21. The limit value Ix is a value smaller than the first threshold value TH1 for overcurrent determination in the inverter 22, and is, for example, Ix = 300A. In this case, the limit value Ix can also be set according to whether the current powering drive request is an engine restart request or a power assist request. For example, if it is an engine restart request, the limit value Ix is set to a smaller value than in the case of a power assist request.
 また、回転電機21の駆動開始後に回転速度Nmが上昇し、Nm<Nthになると、ステップS45に進む。ステップS45では、突入電流の制限を解除する。 Further, when the rotational speed Nm increases after the start of the driving of the rotating electrical machine 21 and Nm <Nth, the process proceeds to step S45. In step S45, the restriction of the inrush current is released.
 ステップS44,S45の処理において、ステップS46では、インバータ通電電流についてフィードバック制御を実施する。このとき、インバータ通電電流の目標値と実際値(検出電流Ia)との偏差に基づいて制御デューティを算出し、その制御デューティによりインバータ22の各スイッチSp,Snについてスイッチング制御を実施する。 In steps S44 and S45, in step S46, feedback control is performed on the inverter energization current. At this time, the control duty is calculated based on the deviation between the target value of the inverter energization current and the actual value (detected current Ia), and the switching control is performed on each of the switches Sp and Sn of the inverter 22 based on the control duty.
 なお、インバータ通電電流の検出電流Iaは、インバータ22の電源ラインに設けられた電流センサ27の検出電流以外であってもよく、インバータ22と各相巻線24U,24V,24Wとの間に設けられた電流センサ27aの検出電流や、下アームスイッチSnとグランドラインとの間に相ごとに設けられた電流センサ27bの検出電流であってもよい(図2参照)。 The detection current Ia of the inverter energization current may be other than the detection current of the current sensor 27 provided in the power line of the inverter 22, and is provided between the inverter 22 and each phase winding 24U, 24V, 24W. The detected current of the current sensor 27a or the detected current of the current sensor 27b provided for each phase between the lower arm switch Sn and the ground line may be used (see FIG. 2).
 図9は、回転電機21の力行駆動の開始当初における電流制御をより具体的に示すタイムチャートである。ここでは、エンジン再始動時について説明する。 FIG. 9 is a time chart showing more specifically current control at the beginning of powering drive of the rotating electrical machine 21. Here, the engine restart will be described.
 図9において、タイミングt11では、回転電機21の力行駆動の要求(エンジン再始動要求)が生じ、それに伴いインバータ22の通電が開始される。ここではまず、インバータ通電電流の目標値が制限値Ixで制限され、そのIxを目標値としてインバータ通電電流のフィードバック制御が実施される。このとき、インバータ通電電流が、過電流判定のための第1閾値TH1よりも小さい値で制限されるため、突入電流によって過電流が流れたと誤判定されることが抑制される。なお、仮に電流制限を行わずにフィードバック制御を実施すると、100%デューティで各スイッチSp,Snが通電され、その際に大きな突入電流が流れることとなる。 In FIG. 9, at timing t11, a request for powering driving of the rotating electrical machine 21 (engine restart request) occurs, and energization of the inverter 22 is started accordingly. Here, first, the target value of the inverter energization current is limited by the limit value Ix, and feedback control of the inverter energization current is performed using the Ix as the target value. At this time, since the inverter energization current is limited to a value smaller than the first threshold value TH1 for overcurrent determination, erroneous determination that an overcurrent has flowed due to an inrush current is suppressed. If feedback control is performed without limiting the current, the switches Sp and Sn are energized with 100% duty, and a large inrush current flows at that time.
 その後、回転電機21の回転速度Nmが次第に上昇し、タイミングt12で回転速度Nmが所定回転速度Nthに達すると、インバータ22における電流制限が解除される。タイミングt12の時点では、突入電流の発生要因がなくなっており、過電流の誤判定要因も解消されている。つまり、図示のように100%デューティで各スイッチSp,Snが通電されても、過電流が誤判定されることが生じないものとなっている。タイミングt2以降、回転電機21に対して要求される駆動態様に応じて、インバータ通電電流のフィードバック制御が実施される。 Thereafter, when the rotational speed Nm of the rotating electrical machine 21 gradually increases and the rotational speed Nm reaches the predetermined rotational speed Nth at timing t12, the current limitation in the inverter 22 is released. At the timing t12, the cause of the inrush current disappears, and the cause of erroneous determination of overcurrent is also eliminated. That is, as shown in the figure, even if the switches Sp and Sn are energized with 100% duty, the overcurrent is not erroneously determined. After timing t2, feedback control of the inverter energization current is performed according to the drive mode required for the rotating electrical machine 21.
 以上詳述した本実施形態によれば、以下の優れた効果が得られる。 According to the embodiment described above in detail, the following excellent effects can be obtained.
 回転電機21の力行駆動の開始当初において突入電流として大電流が流れると、それが過電流とみなされ、短絡異常の誤判定が懸念される。この点、上記構成では、回転電機21の力行駆動の開始時においてその駆動開始に伴い生じる突入電流を制限するため、突入電流が過電流とみなされることが抑制され、ひいては短絡異常(すなわち過電流異常)の誤判定が抑制される。 When a large current flows as an inrush current at the beginning of powering drive of the rotating electrical machine 21, it is regarded as an overcurrent, and there is a concern that a short circuit abnormality may be erroneously determined. In this regard, in the above configuration, since the inrush current generated at the start of powering driving of the rotating electrical machine 21 is limited, the inrush current is suppressed from being regarded as an overcurrent, and as a result, a short circuit abnormality (that is, an overcurrent) An erroneous determination of (abnormal) is suppressed.
 インバータ22の通電電流をフィードバック制御する構成において、回転電機21の力行駆動の開始時に、通電電流の目標値を制限することで突入電流の制限を実施するようにした。この場合、インバータ通電電流の目標値を制限することにより、スイッチSp,Snのデューティ比を小さくすることができる。そのため、回転電機21の力行駆動の開始時において、突入電流を好適に制限することができる。 In the configuration in which the energization current of the inverter 22 is feedback-controlled, the inrush current is limited by limiting the target value of the energization current at the start of powering driving of the rotating electrical machine 21. In this case, the duty ratio of the switches Sp and Sn can be reduced by limiting the target value of the inverter energization current. Therefore, the inrush current can be suitably limited at the start of powering drive of the rotating electrical machine 21.
 通電電流の目標値を、過電流閾値(TH1)よりも小さい値として設定するようにした。これにより、突入電流と過電流とを区別する上で好適なる構成を実現できる。 The target value of the energizing current is set as a value smaller than the overcurrent threshold (TH1). As a result, a configuration suitable for distinguishing between inrush current and overcurrent can be realized.
 回転電機21の力行駆動の開始後における当該回転電機21の回転上昇に応じて、突入電流の制限を解除するようにした。これにより、回転電機21の力行駆動の開始後において、モータ起電力による中性点電圧の上昇に合わせて突入電流の制限を解除でき、要否に応じて適正に電流制限を実施することができる。 The restriction of the inrush current is released according to the rotation increase of the rotating electrical machine 21 after the start of the power running drive of the rotating electrical machine 21. Thereby, after starting the power running drive of the rotating electrical machine 21, the limitation of the inrush current can be released in accordance with the increase of the neutral point voltage due to the motor electromotive force, and the current limitation can be appropriately performed according to necessity. .
 アイドリングストップ制御でのエンジン再始動時には、エンジン停止状態から回転電機21が力行駆動されるため、突入電流が大きくなる傾向にあると考えられる。この点、エンジン再始動の要求に伴う回転電機21の力行駆動の開始時において突入電流の制限が実施されるため、そのエンジン再始動時において突入電流と過電流とを好適に区別することができる。 When the engine is restarted with the idling stop control, the rotating electrical machine 21 is driven by power running from the engine stopped state, so it is considered that the inrush current tends to increase. In this respect, since the inrush current is limited at the time of starting the power running drive of the rotating electrical machine 21 in response to the engine restart request, the inrush current and the overcurrent can be suitably distinguished at the time of the engine restart. .
 インバータ22においてスイッチモジュール50に遮断部(幅狭部52a)を設けた構成では、突入電流が流れることに起因して意図せず遮断部が遮断されることが懸念される。この点、上記のとおり回転電機21の力行駆動の開始時において突入電流が制限されるため、意図せず遮断部が遮断されるといった不都合を抑制できる。 In the configuration in which the interrupting part (the narrow part 52a) is provided in the switch module 50 in the inverter 22, there is a concern that the interrupting part may be interrupted unintentionally due to the inrush current flowing. In this respect, since the inrush current is limited at the time of starting the power running drive of the rotating electrical machine 21 as described above, it is possible to suppress the inconvenience that the interrupting part is interrupted unintentionally.
 回転電機21又はインバータ22に過電流が流れる場合にスイッチモジュール50におけるリード部52の幅狭部52aが溶断される構成では、過電流異常の発生時において通電電流が一旦上昇した後に、幅狭部52aの溶断による経路遮断により一気に低下する。こうした様相を考慮し、上記構成では、インバータ通電電流が第1閾値TH1まで上昇したことの第1判定と、その後電流低下したことの第2判定との結果に基づいて、過電流が流れたことを判定するとともに、その判定結果に基づいてスイッチ31,32を開放させるようにした。この場合、スイッチ31,32の開放に伴い生じるサージ電流を抑えつつ、好適に通電電流を遮断できる。その結果、過電流の発生時における処置の適正化を図ることができる。 In the configuration in which the narrow portion 52a of the lead portion 52 in the switch module 50 is blown when an overcurrent flows through the rotating electrical machine 21 or the inverter 22, the narrow portion after the energizing current once rises when an overcurrent abnormality occurs. It decreases at once due to the interruption of the route by fusing 52a. Considering such an aspect, in the above configuration, an overcurrent has flowed based on the results of the first determination that the inverter energization current has increased to the first threshold value TH1 and the second determination that the current has subsequently decreased. And the switches 31 and 32 are opened based on the determination result. In this case, the energization current can be suitably cut off while suppressing the surge current generated when the switches 31 and 32 are opened. As a result, it is possible to optimize the treatment when an overcurrent occurs.
 インバータ通電電流が第1閾値TH1まで上昇した後に電流低下したことの第2判定として、通電電流が第1閾値TH1よりも小さい第2閾値TH2まで低下したことを判定する構成とした。これにより、回転電機21又はインバータ22で短絡異常が生じた場合において、過電流の発生に伴う電流上昇と、経路遮断に伴う電流低下とを確実に判定できる。これにより、適正にスイッチ開放処置を実施できる。 As the second determination that the current has decreased after the inverter energization current has increased to the first threshold TH1, it is determined that the energization current has decreased to the second threshold TH2 that is smaller than the first threshold TH1. Thereby, when short circuit abnormality arises in the rotary electric machine 21 or the inverter 22, the current rise accompanying generation | occurrence | production of overcurrent and the current fall accompanying path | route interruption | blocking can be determined reliably. Thereby, switch opening treatment can be implemented appropriately.
 回転電機ECU23が、過電流判定の結果を示す判定信号(過電流異常信号)を電池ECU37に送信し、電池ECU37が、回転電機ECU23からの判定信号に基づいて、スイッチ31,32を開放させる構成とした。この場合、電池ECU37では、回転電機ECU23から判定信号を直接受け取ることで、その判定信号に基づく応急的な処置を実施が可能となる。 The rotating electrical machine ECU 23 transmits a determination signal (overcurrent abnormality signal) indicating the result of the overcurrent determination to the battery ECU 37, and the battery ECU 37 opens the switches 31 and 32 based on the determination signal from the rotating electrical machine ECU 23. It was. In this case, the battery ECU 37 directly receives the determination signal from the rotating electrical machine ECU 23, so that emergency treatment based on the determination signal can be performed.
 また特に、
(1)回転電機ECU23が、過電流判定の結果を示す判定信号(過電流異常信号)を電池ECU37及びエンジンECU40に対して送信し、
(2)エンジンECU40が、回転電機ECU23から受信した判定信号に基づいて、電池ECU37に対して、スイッチ31,32を強制開放させる旨の強制開放信号を送信し、
(3)電池ECU37が、回転電機ECU23からの判定信号の受信、及びエンジンECU40からの強制開放信号の受信のうち早い方に基づいて、スイッチ31,32を強制開放させる、ように構成した。
In particular,
(1) The rotating electrical machine ECU 23 transmits a determination signal (overcurrent abnormality signal) indicating the result of the overcurrent determination to the battery ECU 37 and the engine ECU 40,
(2) Based on the determination signal received from the rotating electrical machine ECU 23, the engine ECU 40 transmits a forced opening signal for forcibly opening the switches 31 and 32 to the battery ECU 37,
(3) The battery ECU 37 is configured to forcibly open the switches 31 and 32 based on the earlier one of reception of the determination signal from the rotating electrical machine ECU 23 and reception of the forced opening signal from the engine ECU 40.
 したがって、電池ECU37では、上位ECUであるエンジンECU40からの強制開放信号の受信を待たずとも、回転電機ECU23から判定信号を直接受け取り、その判定信号に基づいて応急的な処置を実施することができる。また、電池ECU37によりいち早い対応が可能になることに加え、エンジンECU40による確実性の高い対応が可能となっている。なお、電池ECU37は、各蓄電池11,12の充放電を制御対象とする局所的な演算処理を実施するものであるのに対し、エンジンECU40は、他のECUを統括的に管理するものであるため、エンジンECU40によれば、確実性(信頼性とも言える)の高い対応を実施できる。 Therefore, the battery ECU 37 can directly receive the determination signal from the rotating electrical machine ECU 23 without waiting for the reception of the forced release signal from the engine ECU 40 which is the host ECU, and can perform an emergency treatment based on the determination signal. . In addition to being able to respond quickly by the battery ECU 37, it is possible to respond with high reliability by the engine ECU 40. The battery ECU 37 performs local arithmetic processing that controls charging / discharging of the storage batteries 11 and 12, whereas the engine ECU 40 comprehensively manages other ECUs. Therefore, according to the engine ECU 40, it is possible to implement a response with high certainty (also referred to as reliability).
 インバータ22において、スイッチモジュール50におけるリード部52の幅狭部52aを「遮断部」として用いる構成とした。したがって、インバータ22に過電流が流れる場合に、迅速なる過電流処置を実施できる。 In the inverter 22, the narrow portion 52 a of the lead portion 52 in the switch module 50 is used as a “blocking portion”. Therefore, when an overcurrent flows through the inverter 22, a rapid overcurrent treatment can be performed.
 (他の実施形態)
 上記実施形態を例えば次のように変更してもよい。
(Other embodiments)
You may change the said embodiment as follows, for example.
 ・回転電機21の力行駆動の開始後において、回転電機21の回転上昇に応じて、突入電流の制限の程度を変更する構成としてもよい。例えば、回転電機ECU23は、図8のステップS44において、図10の関係を用いて目標通電電流の制限値を設定する。図10では、回転電機21の回転速度Nmが大きくなるほど制限値が大きくなる(すなわち大きい目標通電電流が許容される)ような関係が定められている。ただし回転速度Nmと制限値との関係は図10以外のものであってもよい。本構成によれば、回転電機21の状態に応じて適正に電流制限を実施することができる。 -After the start of the power running drive of the rotating electrical machine 21, the degree of restriction of the inrush current may be changed in accordance with the rotation increase of the rotating electrical machine 21. For example, the rotating electrical machine ECU 23 sets a limit value of the target energization current using the relationship of FIG. 10 in step S44 of FIG. In FIG. 10, a relationship is set such that the limit value increases as the rotational speed Nm of the rotating electrical machine 21 increases (that is, a large target energization current is allowed). However, the relationship between the rotational speed Nm and the limit value may be other than that shown in FIG. According to this configuration, it is possible to appropriately limit the current according to the state of the rotating electrical machine 21.
 ・回転電機21の力行駆動の開始時に突入電流の制限が実施される場合において、スイッチ31,32を共にオン(閉鎖)させる構成としてもよい。この場合、回転電機ECU23は、図11に基づいて回転電機21の力行駆動制御を実施する。なお、図11の処理は、図8に置き換えて実施されるものであり、図8と同じ処理については同じステップ番号を付すとともに説明を適宜割愛する。 When the inrush current is limited at the time of starting the power running drive of the rotating electrical machine 21, both the switches 31 and 32 may be turned on (closed). In this case, the rotating electrical machine ECU 23 performs powering drive control of the rotating electrical machine 21 based on FIG. Note that the processing in FIG. 11 is performed in place of FIG. 8, and the same processing as in FIG. 8 is given the same step number and description thereof is omitted as appropriate.
 図11では、力行駆動の要求があり、かつ回転電機21の回転速度Nmが所定回転速度Nth未満であると判定された場合(ステップS41,S43がYESの場合)に、ステップS44で、回転電機21の力行駆動の開始当初における突入電流を制限するともに、続くステップS51でスイッチ31,32を共にオンにする。これにより、突入電流の制限が実施される状況下において、スイッチ31,32が共にオンになる。そして、Nm≧Nthになると、突入電流の制限が解除される(ステップS45)。なお、スイッチ31,32がオンされた後には、例えば回転電機21の回転が定常状態になったことに基づいて、各スイッチ31,32が通常のオンオフ状態に戻されるとよい。エンジン始動時であれば、エンジンの始動完了判定(エンジン回転速度が所定回転速度になったこと)に基づいて、各スイッチ31,32が通常のオンオフ状態に戻されるとよい。 In FIG. 11, when it is determined that there is a request for powering drive and the rotational speed Nm of the rotating electrical machine 21 is less than the predetermined rotational speed Nth (when steps S41 and S43 are YES), the rotating electrical machine is determined in step S44. The inrush current at the beginning of the 21 power running drive is limited, and both the switches 31 and 32 are turned on in the subsequent step S51. Thus, both the switches 31 and 32 are turned on under the situation where the inrush current is limited. When Nm ≧ Nth, the inrush current restriction is released (step S45). In addition, after the switches 31 and 32 are turned on, the switches 31 and 32 may be returned to the normal on / off state based on, for example, the rotation of the rotating electrical machine 21 being in a steady state. At the time of engine start, the switches 31 and 32 may be returned to the normal on / off state based on the determination of completion of engine start (engine speed has reached a predetermined speed).
 回転電機21の力行駆動の開始時に突入電流を制限する場合には、回転電機21に対する供給電力が制限されるため、その分回転電機21のトルクが低下する。この点、上記構成によれば、回転電機21の力行駆動の開始時に電流制限が実施される一方で、各スイッチ31,32のオンにより、各蓄電池11,12による回転電機21に対する電力供給が行われる。そのため、回転電機21のトルク補償が可能となり、ひいては電流制限状態での回転電機21の力行駆動の好適化が可能となる。 When the inrush current is limited at the start of the power running drive of the rotating electrical machine 21, the power supplied to the rotating electrical machine 21 is limited, so the torque of the rotating electrical machine 21 is reduced accordingly. In this regard, according to the above configuration, current limitation is performed at the time of starting the power running drive of the rotating electrical machine 21, while power is supplied to the rotating electrical machine 21 by the storage batteries 11 and 12 by turning on the switches 31 and 32. Is called. Therefore, it is possible to compensate the torque of the rotating electrical machine 21, and thus it is possible to optimize the power running drive of the rotating electrical machine 21 in the current limited state.
 また、回転電機21の力行駆動の開始後において、電流制限が実施される状態でその解除前に、蓄電池11,12の一方(本実施形態ではリチウムイオン蓄電池12)をインバータ22に接続する状態から蓄電池11,12の両方をインバータ22に接続する状態に移行させるよう各スイッチ31,32の開閉を制御するようにしてもよい。この場合、回転電機ECU23は、図12に基づいて回転電機21の力行駆動制御を実施する。なお、図12の処理は、図8に置き換えて実施されるものであり、図8と同じ処理については同じステップ番号を付すとともに説明を適宜割愛する。 In addition, after starting the power running drive of the rotating electrical machine 21, from the state in which one of the storage batteries 11 and 12 (the lithium ion storage battery 12 in this embodiment) is connected to the inverter 22 before the release in the state where the current limitation is performed. You may make it control opening / closing of each switch 31 and 32 to make it transfer to the state which connects both the storage batteries 11 and 12 to the inverter 22. FIG. In this case, the rotating electrical machine ECU 23 performs powering drive control of the rotating electrical machine 21 based on FIG. Note that the processing in FIG. 12 is performed in place of FIG. 8, and the same processing as in FIG. 8 is given the same step number and description thereof is omitted as appropriate.
 図12において、力行駆動の要求があると判定された場合(ステップS41がYESの場合)に、ステップS61では、回転電機21の回転速度Nmが第1回転速度Nth1未満であるか否かを判定し、ステップS62では、回転電機21の回転速度Nmが第2回転速度Nth2未満であるか否かを判定する。Nth1及びNth2は、Nth1>Nth2の関係にある。例えばNth1=600rpm、Nth2=400rpmである。そして、回転速度NmがNth2未満であれば、ステップS44で突入電流の制限を開始する。また、回転速度NmがNth2になると、ステップS63でスイッチ31,32をオンし、回転速度NmがNth1になると、ステップS45で突入電流の制限を解除する。なお、スイッチ31,32がオンされた後、例えば回転電機21の回転が定常状態になったことに基づいて、各スイッチ31,32が通常のオンオフ状態に戻されるとよい(図11と同様)。 In FIG. 12, when it is determined that there is a request for powering drive (when step S41 is YES), in step S61, it is determined whether or not the rotational speed Nm of the rotating electrical machine 21 is less than the first rotational speed Nth1. In step S62, it is determined whether or not the rotational speed Nm of the rotating electrical machine 21 is less than the second rotational speed Nth2. Nth1 and Nth2 have a relationship of Nth1> Nth2. For example, Nth1 = 600 rpm and Nth2 = 400 rpm. If the rotational speed Nm is less than Nth2, inrush current limiting is started in step S44. When the rotational speed Nm becomes Nth2, the switches 31 and 32 are turned on in step S63, and when the rotational speed Nm becomes Nth1, the limit of the inrush current is released in step S45. After the switches 31 and 32 are turned on, the switches 31 and 32 may be returned to the normal on / off state based on, for example, the rotation of the rotating electrical machine 21 being in a steady state (similar to FIG. 11). .
 回転電機21の力行駆動の開始後において、電流制限が実施される状態でその解除前に、リチウムイオン蓄電池12のみによりインバータ22に電力が供給される状態(1電源供給の状態)から、両蓄電池11,12によりインバータ22に電力に供給される状態(2電源供給の状態)への移行が行われる。この場合、回転電機21では、駆動開始当初において回転速度の上昇に伴いトルクが減少することが考えられるが、そのトルク減少があっても両蓄電池11,12によるトルク補償が可能となる。また、電流制限が解除された後に、1電源供給の状態から2電源供給の状態に移行すると、電圧変動のおそれがあるが、電流制限が解除される前に1電源供給の状態から2電源供給の状態への移行が行われることで、電圧変動による不都合を回避できる。 From the state in which electric power is supplied to the inverter 22 only by the lithium ion storage battery 12 (one power supply state) before the release in the state where the current limitation is performed after the power running drive of the rotating electrical machine 21 is started, both storage batteries 11 and 12 shift to a state where power is supplied to the inverter 22 (a state where two power supplies are supplied). In this case, in the rotating electrical machine 21, it is conceivable that the torque decreases as the rotational speed increases at the beginning of driving, but torque compensation by both the storage batteries 11 and 12 is possible even if the torque decreases. In addition, when the current limit is released, if there is a transition from the one power supply state to the two power supply state, there is a risk of voltage fluctuation, but before the current limit is released, the two power supplies are supplied from the one power supply state. By performing the transition to the state, it is possible to avoid inconvenience due to voltage fluctuation.
 エンジン始動時で言えば、エンジンのアイドル回転速度よりも低回転側には共振域が存在しているが、回転電機21のトルク補償により共振域をいち早く通過させることができる。また、回転電機21のトルクを確保できるため、早期始動を図りつつも初爆時期を遅らせることができ、燃費向上を図ることができる。 When the engine is started, a resonance region exists on the lower rotation side than the idle rotation speed of the engine, but the resonance region can be quickly passed by the torque compensation of the rotating electrical machine 21. Moreover, since the torque of the rotating electrical machine 21 can be ensured, the initial explosion timing can be delayed while achieving early start, and fuel efficiency can be improved.
 ・突入電流を制限する場合において、最大デューティ比を以下のように設定してもよい。 ・ When limiting the inrush current, the maximum duty ratio may be set as follows.
 (1)インバータ22の入出力電圧であるインバータ電圧に基づいて、最大デューティ比を設定する。例えば図13(a)の関係を用い、インバータ電圧に基づいて最大デューティ比を設定する。インバータ電圧は例えば電圧センサ26による検出電圧である。インバータ電圧が高い場合には、突入電流が増える傾向にあるため、最大デューティ比を減少させる。逆にインバータ電圧が低い場合には、突入電流を制限しすぎるとエンジン再始動が不可となるおそれがあるため、最大デューティ比を増加させる。 (1) The maximum duty ratio is set based on the inverter voltage that is the input / output voltage of the inverter 22. For example, the maximum duty ratio is set based on the inverter voltage using the relationship shown in FIG. The inverter voltage is a voltage detected by the voltage sensor 26, for example. Since the inrush current tends to increase when the inverter voltage is high, the maximum duty ratio is decreased. Conversely, when the inverter voltage is low, if the inrush current is limited too much, the engine may not be restarted, so the maximum duty ratio is increased.
 (2)回転電機ユニット20の温度に基づいて、最大デューティ比を設定する。回転電機ユニット20の温度は例えば温度センサ29により検出されるステータ温度である。例えば図13(b)の関係を用い、ステータ温度に基づいて最大デューティ比を設定する。ステータ温度が低い場合は、突入電流が増える傾向にあるため、最大デューティ比を減少させる。なお、ステータ温度に代えて、インバータ22のスイッチ温度を用いてもよい。スイッチ温度が高い場合、故障の可能性が高くなるため、最大デューティ比を減少させるとよい。 (2) The maximum duty ratio is set based on the temperature of the rotating electrical machine unit 20. The temperature of the rotating electrical machine unit 20 is, for example, a stator temperature detected by the temperature sensor 29. For example, the maximum duty ratio is set based on the stator temperature using the relationship shown in FIG. When the stator temperature is low, the inrush current tends to increase, so the maximum duty ratio is decreased. Note that the switch temperature of the inverter 22 may be used instead of the stator temperature. If the switch temperature is high, the possibility of failure increases, so the maximum duty ratio should be reduced.
 上記によれば、回転電機ユニット20が通常備える装備範囲で電流制限を実施できる。そのため、コストアップを招くことなく好適なる電流制限を実施できる。 According to the above, it is possible to limit the current within the equipment range that the rotating electrical machine unit 20 normally has. Therefore, a suitable current limit can be implemented without increasing the cost.
 ・インバータ通電電流が第1閾値TH1まで上昇したことの第1判定と、その後電流低下したことの第2判定とを実施する場合において、第2判定として、インバータ通電電流が第1閾値TH1まで上昇してから所定時間(例えば0.5~1秒程度)が経過した時点で電流低下した旨の第2判定を実施するようにしてもよい。 In the case where the first determination that the inverter energization current has increased to the first threshold value TH1 and the second determination that the current has decreased thereafter are performed, the inverter energization current increases to the first threshold value TH1 as the second determination. Then, a second determination that the current has decreased may be performed when a predetermined time (for example, about 0.5 to 1 second) elapses.
 ・過電流が流れることに伴い通電経路を遮断する遮断部として、スイッチモジュール50におけるリード部52の幅狭部52a以外の構成を用いてもよい。例えば、インバータ22の通電経路や、電池ユニットU内の通電経路、その他の通電経路にヒューズ等の溶断部を設けてもよい。要は、蓄電池11,12と回転電機21とを繋ぐ経路に遮断部が設けられていればよい。 A configuration other than the narrow portion 52a of the lead portion 52 in the switch module 50 may be used as a cutoff portion that cuts off the energization path as an overcurrent flows. For example, a fusing part such as a fuse may be provided in the energization path of the inverter 22, the energization path in the battery unit U, and other energization paths. In short, it is only necessary that a blocking portion is provided in a path connecting the storage batteries 11 and 12 and the rotating electrical machine 21.
 ・回転電機21の力行駆動の開始当初において、インバータ通電電流の目標値を制限することに代えて、インバータ22の各スイッチSp,Snに対する駆動デューティに制限を付加し、それに伴い突入電流の制限を図るようにしてもよい。 In place of limiting the target value of the inverter energization current at the beginning of powering drive of the rotating electrical machine 21, a limit is added to the drive duty for each of the switches Sp and Sn of the inverter 22, and the inrush current is limited accordingly. You may make it show.
 ・過電流が流れることに伴い通電経路を遮断する遮断部を具備しない構成であってもよい。この場合、インバータ通電電流が第1閾値TH1まで上昇したと判定された時点で、過電流異常が生じた旨を判定するとよい。 · A configuration may be provided that does not include a blocking unit that blocks the energization path as an overcurrent flows. In this case, when it is determined that the inverter energization current has increased to the first threshold value TH1, it may be determined that an overcurrent abnormality has occurred.
 ・図1の構成では、電池ユニットUの出力端子P1の側、すなわち鉛蓄電池11の側に定電圧要求負荷である電気負荷14を接続し、出力端子P2の側、すなわち回転電機ユニット20の側に一般負荷である電気負荷15を接続する構成としたが、これを変更してもよい。例えば、電池ユニットUの出力端子P1の側に電気負荷15(一般負荷)を接続し、出力端子P2の側に電気負荷14(定電圧要求負荷)を接続する構成としてもよい。 In the configuration of FIG. 1, an electric load 14 that is a constant voltage required load is connected to the output terminal P1 side of the battery unit U, that is, the lead storage battery 11 side, and the output terminal P2 side, that is, the rotating electrical machine unit 20 side. Although the electric load 15 which is a general load is connected to the above, this may be changed. For example, the electric load 15 (general load) may be connected to the output terminal P1 side of the battery unit U, and the electric load 14 (constant voltage required load) may be connected to the output terminal P2 side.
 ・上記実施形態では、第1蓄電部として鉛蓄電池11を設けるとともに、第2蓄電部としてリチウムイオン蓄電池12を設ける構成としたが、これを変更してもよい。第2蓄電部として、リチウムイオン蓄電池12以外の高密度蓄電池、例えばニッケル-水素電池を用いてもよい。その他、少なくともいずれかの蓄電部としてキャパシタを用いることも可能である。 In the above embodiment, the lead storage battery 11 is provided as the first power storage unit and the lithium ion storage battery 12 is provided as the second power storage unit, but this may be changed. As the second power storage unit, a high-density storage battery other than the lithium ion storage battery 12, for example, a nickel-hydrogen battery may be used. In addition, a capacitor can be used as at least one of the power storage units.
 ・2つの蓄電部を有する電源システム以外への適用も可能である。例えば蓄電部として、鉛蓄電池11のみを有する構成、又はリチウムイオン蓄電池12のみを有する構成であってもよい。 ・ Applications other than power supply systems with two power storage units are also possible. For example, the configuration having only the lead storage battery 11 or the configuration having only the lithium ion storage battery 12 may be used as the power storage unit.
 ・本開示が適用される電源システムを、車両以外の用途で用いることも可能である。 · The power supply system to which the present disclosure is applied can be used for purposes other than vehicles.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (9)

  1.  発電及び力行の作動を可能とする回転電機(21)と、
     複数のスイッチング素子(Sp,Sn)のオンオフにより前記回転電機において相ごとの通電を行わせるスイッチング回路部(22)と、
     前記スイッチング回路部に接続される蓄電部(11,12)と、
     前記スイッチング回路部と前記蓄電部との間の電気経路に設けられるスイッチ(31,32)と、を備える電源システムに適用される回転電機制御装置(23)であって、
     前記スイッチング回路部に流れる通電電流が所定の過電流閾値(TH1)まで上昇したことに基づいて、前記回転電機及び前記スイッチング回路部の少なくともいずれかに過電流が流れたことを判定する判定部と、
     前記判定部の判定結果に基づいて、前記スイッチを開放させるスイッチ制御部と、
     前記回転電機の力行駆動の開始時においてその駆動開始に伴い生じる突入電流を制限する電流制限部と、
    を備える回転電機制御装置。
    A rotating electrical machine (21) that enables operation of power generation and power running;
    A switching circuit section (22) for energizing each phase in the rotating electrical machine by turning on and off a plurality of switching elements (Sp, Sn);
    A power storage unit (11, 12) connected to the switching circuit unit;
    A rotating electrical machine control device (23) applied to a power supply system comprising a switch (31, 32) provided in an electrical path between the switching circuit unit and the power storage unit,
    A determination unit that determines that an overcurrent has flowed in at least one of the rotating electrical machine and the switching circuit unit, based on an increase in an energization current flowing through the switching circuit unit to a predetermined overcurrent threshold (TH1); ,
    A switch control unit that opens the switch based on a determination result of the determination unit;
    A current limiting unit that limits an inrush current generated at the start of powering driving of the rotating electrical machine; and
    A rotating electrical machine control device comprising:
  2.  前記スイッチング回路部における通電電流の目標値を設定し、その目標値に応じて定められる前記スイッチング素子のオンオフ比率に基づいて当該スイッチング素子のオンオフを制御する通電制御部を備え、
     前記電流制限部は、前記回転電機の力行駆動の開始時において、前記目標値を制限することで、前記突入電流の制限を実施する請求項1に記載の回転電機制御装置。
    An energization control unit configured to set a target value of an energization current in the switching circuit unit, and to control on / off of the switching element based on an on / off ratio of the switching element determined according to the target value;
    2. The rotating electrical machine control device according to claim 1, wherein the current limiting unit limits the inrush current by limiting the target value at the start of powering driving of the rotating electrical machine.
  3.  前記電流制限部は、前記目標値を、前記過電流閾値よりも小さい値として設定する請求項2に記載の回転電機制御装置。 The rotating electrical machine control device according to claim 2, wherein the current limiter sets the target value as a value smaller than the overcurrent threshold.
  4.  前記回転電機の力行駆動の開始後における当該回転電機の回転上昇に応じて、前記電流制限部による前記突入電流の制限の程度を変更する制限変更部を備える請求項1乃至3のいずれか1項に記載の回転電機制御装置。 4. The apparatus according to claim 1, further comprising: a limit changing unit that changes a degree of limitation of the inrush current by the current limiting unit in accordance with an increase in rotation of the rotating electrical machine after the start of powering driving of the rotating electrical machine. The rotating electrical machine control device according to 1.
  5.  前記回転電機の力行駆動の開始後における当該回転電機の回転上昇に応じて、前記電流制限部による前記突入電流の制限を解除する制限解除部を備える請求項1乃至4のいずれか1項に記載の回転電機制御装置。 5. The device according to claim 1, further comprising: a restriction releasing unit that releases the restriction of the inrush current by the current limiting unit in response to an increase in rotation of the rotating electric machine after starting the power running drive of the rotating electric machine. Rotating electrical machine control device.
  6.  所定の自動停止条件の成立に伴いエンジンを自動停止させるとともに、その自動停止後に所定の再始動条件の成立に伴い前記エンジンを再始動させるアイドリングストップ制御機能を有し、前記回転電機の力行駆動により前記再始動が行われる車両に適用され、
     前記電流制限部は、前記再始動の要求に伴う前記回転電機の力行駆動の開始時において前記突入電流の制限を実施する請求項1乃至5のいずれか1項に記載の回転電機制御装置。
    The engine is automatically stopped when a predetermined automatic stop condition is satisfied, and has an idling stop control function for restarting the engine when the predetermined restart condition is satisfied after the automatic stop. Applied to the vehicle to be restarted,
    6. The rotating electrical machine control device according to claim 1, wherein the current limiting unit limits the inrush current at the start of powering driving of the rotating electrical machine in response to the restart request.
  7.  前記電源システムにおいて、前記蓄電部と前記回転電機とを繋ぐ経路に、前記過電流が流れることに伴い当該経路を遮断する遮断部(52a)が設けられている請求項1乃至6のいずれか1項に記載の回転電機制御装置。 7. The power supply system according to claim 1, wherein a blocking unit (52a) is provided in a path connecting the power storage unit and the rotating electrical machine to block the path as the overcurrent flows. The rotating electrical machine control device according to item.
  8.  前記蓄電部として、前記スイッチング回路部に並列に接続される第1蓄電部(11)と第2蓄電部(12)とを備える一方、前記スイッチとして、前記スイッチング回路部と前記第1蓄電部との間の経路を開閉する第1スイッチ(31)と、前記スイッチング回路部と前記第2蓄電部との間の経路を開閉する第2スイッチ(32)とが設けられる電源システムに適用され、
     前記スイッチ制御部は、前記回転電機の力行駆動の開始時に前記電流制限部による電流制限が実施される場合において、前記第1スイッチ及び前記第2スイッチを共に閉鎖させる請求項1乃至7のいずれか1項に記載の回転電機制御装置。
    The power storage unit includes a first power storage unit (11) and a second power storage unit (12) connected in parallel to the switching circuit unit, while the switch includes the switching circuit unit and the first power storage unit. Applied to a power supply system provided with a first switch (31) for opening and closing a path between and a second switch (32) for opening and closing a path between the switching circuit unit and the second power storage unit,
    8. The switch controller according to claim 1, wherein the first switch and the second switch are both closed when the current limiting is performed by the current limiting unit at the start of powering driving of the rotating electrical machine. The rotating electrical machine control device according to item 1.
  9.  前記回転電機の力行駆動の開始後における当該回転電機の回転上昇に応じて、前記電流制限部による前記突入電流の制限を解除する制限解除部を備え、
     前記スイッチ制御部は、前記回転電機の力行駆動の開始後において、前記制限解除部による制限解除の前に、前記第1蓄電部及び前記第2蓄電部の一方を前記スイッチング回路部に接続する状態から前記第1蓄電部及び前記第2蓄電部の両方を前記スイッチング回路部に接続する状態に移行させるよう前記第1スイッチ及び前記第2スイッチの開閉を制御する請求項8に記載の回転電機制御装置。
    In accordance with the increase in rotation of the rotating electrical machine after the start of powering drive of the rotating electrical machine, a limit release unit that releases the restriction of the inrush current by the current limiting unit,
    The switch control unit connects one of the first power storage unit and the second power storage unit to the switching circuit unit after the start of powering driving of the rotating electrical machine and before the restriction release by the limit release unit. The rotating electrical machine control according to claim 8, wherein opening and closing of the first switch and the second switch is controlled so as to shift both the first power storage unit and the second power storage unit to a state of connecting to the switching circuit unit. apparatus.
PCT/JP2017/035070 2016-10-07 2017-09-27 Control device for rotary electric machine WO2018066441A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016199044A JP6589803B2 (en) 2016-10-07 2016-10-07 Rotating electrical machine control device
JP2016-199044 2016-10-07

Publications (1)

Publication Number Publication Date
WO2018066441A1 true WO2018066441A1 (en) 2018-04-12

Family

ID=61831435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035070 WO2018066441A1 (en) 2016-10-07 2017-09-27 Control device for rotary electric machine

Country Status (2)

Country Link
JP (1) JP6589803B2 (en)
WO (1) WO2018066441A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112018999A (en) * 2019-05-28 2020-12-01 本田技研工业株式会社 Power supply system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010183679A (en) * 2009-02-03 2010-08-19 Sanyo Electric Co Ltd Battery system
JP2015172997A (en) * 2012-07-13 2015-10-01 三洋電機株式会社 Battery system, and vehicle and power storage device comprising battery system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010183679A (en) * 2009-02-03 2010-08-19 Sanyo Electric Co Ltd Battery system
JP2015172997A (en) * 2012-07-13 2015-10-01 三洋電機株式会社 Battery system, and vehicle and power storage device comprising battery system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112018999A (en) * 2019-05-28 2020-12-01 本田技研工业株式会社 Power supply system
CN112018999B (en) * 2019-05-28 2023-11-14 本田技研工业株式会社 Power supply system

Also Published As

Publication number Publication date
JP6589803B2 (en) 2019-10-16
JP2018061398A (en) 2018-04-12

Similar Documents

Publication Publication Date Title
JP6638616B2 (en) Power control device
US10608575B2 (en) Abnormality diagnosis apparatus
JP6272291B2 (en) Vehicle power supply
CN109716614B (en) Control system
JP6543069B2 (en) Power supply for vehicles
JP6553916B2 (en) Vehicle power supply
WO2018143046A1 (en) Rotating electrical machine unit, and vehicle
JP6589803B2 (en) Rotating electrical machine control device
WO2018193782A1 (en) Dynamo-electric machine control device, and power supply system
JP2018121495A (en) Rotary electric machine control device
CN110167776A (en) Battery unit and power-supply system
JP6549876B2 (en) Power supply for vehicles
JP6620769B2 (en) Control system
JP6708165B2 (en) Controller for rotating electrical machine
CN110574285B (en) Rotating electric machine control device and control system
US10742156B2 (en) Control apparatus of rotating electrical machine
WO2018105407A1 (en) Dynamo-electric machine control device
JP5269567B2 (en) Electric motor control device and vehicle
WO2018021032A1 (en) Control system
WO2018142867A1 (en) Switch control device
JP2020178522A (en) Rotary electric machine system
WO2018047866A1 (en) Control device for rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858279

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17858279

Country of ref document: EP

Kind code of ref document: A1