WO2018047866A1 - Control device for rotary electric machine - Google Patents

Control device for rotary electric machine Download PDF

Info

Publication number
WO2018047866A1
WO2018047866A1 PCT/JP2017/032126 JP2017032126W WO2018047866A1 WO 2018047866 A1 WO2018047866 A1 WO 2018047866A1 JP 2017032126 W JP2017032126 W JP 2017032126W WO 2018047866 A1 WO2018047866 A1 WO 2018047866A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
electrical machine
rotating electrical
arms
pair
Prior art date
Application number
PCT/JP2017/032126
Other languages
French (fr)
Japanese (ja)
Inventor
拓人 鈴木
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017160310A external-priority patent/JP6565983B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112017004581.9T priority Critical patent/DE112017004581T5/en
Priority to US16/332,578 priority patent/US10742156B2/en
Priority to CN201780055713.XA priority patent/CN109819687B/en
Publication of WO2018047866A1 publication Critical patent/WO2018047866A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • H02P9/26Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices
    • H02P9/30Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present disclosure relates to a control device that controls a rotating electrical machine having a power generation function.
  • this type of control device includes a transistor chopper type excitation circuit that supplies an excitation current of a vehicle generator, and regenerates a current that excites a rotor in a battery (see Patent Document 1).
  • the power transistor connected to the ground side is turned on on condition that the key switch of the engine is off and the rotational speed of the engine is 200 rpm or less.
  • the power transistor connected to the output terminal side is turned off.
  • the present disclosure has been made to solve the above-described problems, and has as its main object to provide a control device for a rotating electrical machine that can prevent the rotor from corroding during an automatic engine stop.
  • the first means for solving the above problems is as follows. This is applied to a vehicle that automatically stops the engine when a predetermined automatic stop condition is satisfied, and then automatically restarts the engine when a predetermined restart condition is satisfied.
  • An excitation current is supplied from a transistor chopper type excitation circuit in which arms are configured by power transistors and a second pair of arms are configured by diodes, and the rotating electrical machine having a power generation function based on the rotational force of the engine is controlled.
  • a control device During the automatic stop of the engine, among the first pair of arms, the power transistor connected to the ground side of the rotating electrical machine is turned on, and the power connected to the output terminal side of the rotating electrical machine First ground control is performed to turn off the transistor.
  • the engine in the vehicle, the engine is automatically stopped when a predetermined automatic stop condition is satisfied, and the engine is automatically restarted when a predetermined restart condition is satisfied thereafter.
  • a rotating electrical machine having a power generation function is supplied with an excitation current from a transistor chopper type excitation circuit and generates power based on the rotational force of the engine.
  • the power transistor connected to the grounding side of the rotating electrical machine is turned on and the power transistor connected to the output terminal side of the rotating electrical machine is turned off.
  • the first ground control is executed. For this reason, even if the rotating electrical machine stops during the automatic stop of the engine, it is possible to prevent the rotor in the stopped state from being floated in terms of potential. Therefore, even if a leak current occurs, it can be passed to the ground via the power transistor on the ground side, and corrosion of the rotor during the automatic engine stop can be suppressed.
  • the automatic engine stop includes idling stop for stopping engine idling, engine stop during deceleration for stopping the engine when the vehicle decelerates, engine stop during coasting for stopping the engine during vehicle coasting, and the like. Further, during the automatic stop of the engine, the automatic stop includes from the time when the combustion of fuel in the engine is stopped to the time after the engine stops.
  • the rotating electrical machine has a power running function for applying a rotational force to the engine in a state where an excitation current is supplied from the excitation circuit, and the first grounding is performed during the automatic stop of the engine.
  • the first pair of arms is provided with a first diagnosis unit that turns on both the power transistors and diagnoses whether the excitation current flows.
  • the rotating electrical machine has a power running function for applying a rotational force to the engine in a state where an excitation current is supplied from the excitation circuit. For this reason, when the engine is restarted, a rotational force can be applied to the engine by the rotating electrical machine.
  • the power transistor of the excitation circuit is out of order, the excitation current cannot be supplied to the rotating electrical machine when the engine is restarted, and the rotational power cannot be applied to the engine by the rotating electrical machine.
  • both the power transistors are turned on in the first pair of arms to diagnose whether the excitation current flows.
  • the first diagnosis is executed. For this reason, it is possible to execute the first grounding control after diagnosing whether or not the rotating electrical machine can apply the rotational force to the engine.
  • each of the diodes constituting the second pair of arms utilizes a body diode of a power transistor, and during the automatic stop of the engine, of the second pair of arms, Second grounding control is performed to turn on the power transistor connected to the ground side of the rotating electrical machine and turn off the power transistor connected to the output terminal side of the rotating electrical machine.
  • each of the diodes constituting the second pair of arms uses a power transistor body diode.
  • the power transistors in the second pair of arms are controlled, and the second grounding control is executed in the same manner as the first grounding control. For this reason, even if the rotating electrical machine stops during the automatic stop of the engine, it is possible to prevent the rotor in the stopped state from being floated in terms of potential.
  • the rotating electrical machine has a power running function for applying a rotational force to the engine in a state where an excitation current is supplied from the excitation circuit, and the second grounding is performed during the automatic stop of the engine.
  • a second diagnosis unit is provided that executes a second diagnosis for turning on both the power transistors in the second pair of arms and diagnosing whether the excitation current flows.
  • the power transistors in the second pair of arms are controlled, and the second diagnosis is executed in the same manner as the first diagnosis. For this reason, it is possible to execute the second grounding control after diagnosing whether or not the rotating electrical machine can apply the rotational force to the engine.
  • each of the diodes constituting the second pair of arms uses a body diode of a power transistor, and before the first diagnosis is executed during the automatic stop of the engine, A second diagnostic unit for performing a second diagnostic for diagnosing whether or not the excitation current flows by turning on both of the power transistors in the second pair of arms; and An off control unit is provided that performs off control for turning off both the power transistors in the second pair of arms after both of the power transistors are turned on in the pair of arms.
  • the second diagnosis is executed before the first diagnosis is executed while the engine is automatically stopped. For this reason, it is possible to diagnose whether or not the rotating electric machine can apply the rotational force to the engine by flowing an exciting current through the second pair of arms.
  • the off control unit when the off control unit turns off both of the power transistors in the second pair of arms in the off control, the rotation of the second pair of arms is rotated. After the power transistor connected to the output terminal side of the electric machine is turned off, the power transistor connected to the ground side of the rotating electric machine is turned off.
  • the vehicle includes a starter that applies a rotational force to the engine when the engine is started, and when the first diagnosis unit diagnoses that the excitation current does not flow, When the engine is restarted, a rotational force is applied to the engine by the starter.
  • the vehicle since the vehicle includes the starter that applies the rotational force to the engine when the engine is started, the rotational force can be applied to the engine by the starter when the engine is restarted. Therefore, when it is diagnosed that the exciting current does not flow in the first diagnosis, a rotational force is applied to the engine by the starter at the time of automatic restart. Therefore, the failure of the excitation circuit is diagnosed, and when the excitation circuit is broken, the engine can be restarted by the starter.
  • the vehicle includes a starter that applies a rotational force to the engine when the engine is started, and the first diagnosis unit or the second diagnosis unit diagnoses that the excitation current does not flow.
  • a rotational force is applied to the engine by the starter during the automatic restart.
  • the failure of the excitation circuit is diagnosed in the first diagnosis and the second diagnosis, and the engine is restarted by the starter when it is diagnosed that the excitation current does not flow in the first diagnosis or the second diagnosis. Can do.
  • the first ground contact control is executed on the condition that the rotational speed of the engine is lower than a predetermined rotational speed.
  • the power transistor connected to the ground side of the rotating electrical machine is turned on in the first pair of arms, so that a closed circuit for flowing an exciting current is formed in the exciting circuit. The For this reason, when the rotational speed of the engine is high, electric power is generated in the rotating electrical machine, and an excessive braking torque may act on the engine.
  • the first ground contact control is executed on the condition that the rotational speed of the engine is lower than the predetermined rotational speed. Therefore, during the automatic stop of the engine, the first grounding control is executed when the rotational speed of the engine is lower than the predetermined rotational speed, and the first grounding control is performed when the rotational speed of the engine is higher than the predetermined rotational speed. Not executed. Therefore, when the first ground contact control is executed, it is possible to suppress an excessive braking torque from acting on the engine.
  • the second grounding control is executed on the condition that the rotational speed of the engine is lower than a predetermined rotational speed.
  • the leakage current flowing through the rotor is larger than when the voltage supplied to the excitation circuit is 12V, and the rotor is more easily corroded.
  • a voltage of 48 V is supplied to the excitation circuit on the premise of any one of the first to tenth means. Therefore, corrosion of the rotor can be suppressed with respect to a configuration in which corrosion of the rotor easily proceeds.
  • FIG. 1 is an electric circuit diagram showing an electrical configuration of a vehicle.
  • FIG. 2 is an electric circuit diagram showing an electrical configuration of the rotating electrical machine unit
  • FIG. 3 is a flowchart showing procedures of diagnosis and ground control
  • FIG. 4 is an electric circuit diagram showing a modification example of the electrical configuration of the rotating electrical machine unit
  • FIG. 5 is an electric circuit diagram showing a modification of the electrical configuration of the vehicle.
  • the vehicle 10 includes an engine 42, a starter 13, a lead storage battery 11, a lithium ion storage battery 12, electric loads 14 and 15, a rotating electrical machine unit 16, and the like.
  • the engine 42 is a gasoline engine, a diesel engine, or the like, and generates driving force by burning fuel.
  • the starter 13 (starting device) applies an initial rotational force to the output shaft (crankshaft) of the engine 42 when the engine 42 is started.
  • the power supply system of the vehicle 10 is a dual power supply system having a lead storage battery 11 and a lithium ion storage battery 12 as a power storage unit.
  • Each storage battery 11, 12 can supply power to the starter 13, various electric loads 14, 15, and the rotating electrical machine unit 16. Further, each of the storage batteries 11 and 12 can be charged by the rotating electrical machine unit 16.
  • a lead storage battery 11 and a lithium ion storage battery 12 are connected in parallel to the rotating electrical machine unit 16 and the electrical loads 14 and 15, respectively.
  • the lead storage battery 11 is a well-known general-purpose storage battery.
  • the lithium ion storage battery 12 is a high-density storage battery that has less power loss during charging / discharging and higher output density and energy density than the lead storage battery 11.
  • the lithium ion storage battery 12 is desirably a storage battery having higher energy efficiency during charging / discharging than the lead storage battery 11.
  • the lithium ion storage battery 12 is configured as an assembled battery having a plurality of single cells. These storage batteries 11 and 12 have the same rated voltage, for example, 12V.
  • the lithium ion storage battery 12 is housed in a housing case and configured as a battery unit U integrated with a substrate.
  • the battery unit U has two output terminals P1 and P2, among which the lead storage battery 11, the starter 13 and the electric load 14 are connected to the output terminal P1, and the electric load 15 and the rotating electrical machine unit are connected to the output terminal P2. 16 is connected.
  • the electric loads 14 and 15 have different requirements for the voltage of power supplied from the storage batteries 11 and 12.
  • the electric load 14 includes a constant voltage required load that is required to be stable so that the voltage of the supplied power is constant or at least varies within a predetermined range.
  • the electric load 15 is a general electric load other than the constant voltage required load.
  • the electric load 14 that is a constant voltage required load include various ECUs such as a navigation device, an audio device, a meter device, and an engine ECU. In this case, by suppressing the voltage fluctuation of the supplied power, it is possible to suppress the occurrence of unnecessary reset and the like in each of the above devices, and ensure stable operation.
  • the electric load 14 may include a travel system actuator such as an electric steering device or a brake device.
  • Specific examples of the electric load 15 include a seat heater, a heater for a defroster for a rear window, a headlight, a wiper for a front window, and a blower fan for an air conditioner.
  • the rotating electrical machine unit 16 includes a rotating electrical machine 21, an inverter 22, a field circuit 23, and a rotating electrical machine ECU 24 that controls the operation of the rotating electrical machine 21.
  • the rotating electrical machine unit 16 is a generator with a motor function, and is configured as an electromechanically integrated ISG (Integrated / Starter / Generator). Details of the rotating electrical machine unit 16 will be described later.
  • the battery unit U is provided with an electrical path L1 that connects the output terminals P1 and P2 and an electrical path L2 that connects the point N1 on the electrical path L1 and the lithium ion storage battery 12 as an in-unit electrical path.
  • the switch 31 is provided in the electrical path L1
  • the switch 32 is provided in the electrical path L2.
  • the battery unit U is provided with a bypass path L3 that bypasses the switch 31.
  • the bypass path L3 is provided so as to connect the output terminal P3 and the point N1 on the electrical path L1.
  • the output terminal P3 is connected to the lead storage battery 11 via the fuse 35.
  • a bypass switch 36 composed of a normally closed mechanical relay is provided in the bypass path L3, for example. By turning on (closing) the bypass switch 36, the lead storage battery 11, the electrical load 15, and the rotating electrical machine unit 16 are electrically connected even when the switch 31 is turned off (opened).
  • the battery unit U includes a battery ECU 37 that controls on / off (opening / closing) of the switches 31 and 32.
  • the battery ECU 37 is constituted by a microcomputer including a CPU, a ROM, a RAM, an input / output interface, and the like.
  • the battery ECU 37 controls on / off of the switches 31 and 32 based on the traveling state of the vehicle 10 and the storage states of the storage batteries 11 and 12. Thereby, charging / discharging is implemented using the lead storage battery 11 and the lithium ion storage battery 12 selectively.
  • the battery ECU 37 calculates the charging rate SOC (State Of Charge) of the lithium ion storage battery 12, and sets the charging amount and discharging amount to the lithium ion storage battery 12 so that the charging rate SOC is maintained within a predetermined use range. Control.
  • SOC State Of Charge
  • the rotating electrical machine ECU 24 of the rotating electrical machine unit 16 and the battery ECU 37 of the battery unit U are connected to an engine ECU 40 as a host controller that manages the ECUs 24 and 37 in an integrated manner.
  • the engine ECU 40 is composed of a microcomputer including a CPU, ROM, RAM, input / output interface, and the like, and controls the operation of the engine 42 based on the engine operating state and the vehicle traveling state each time.
  • the ECUs 24, 37, and 40 are connected by a communication line 41 that constructs a communication network such as CAN and can communicate with each other, and bidirectional communication is performed at a predetermined cycle. Thereby, the various data memorize
  • the engine ECU 40 automatically stops the engine 42 when a predetermined automatic stop condition is satisfied, and automatically restarts the engine 42 when a predetermined restart condition is satisfied thereafter.
  • the combustion of fuel in the engine 42 is stopped. Specifically, fuel injection and ignition are stopped for a gasoline engine, and fuel injection is stopped for a diesel engine.
  • the automatic stop the period from when the combustion of the fuel in the engine 42 is stopped until the time when the rotation of the engine 42 is stopped (a state where the rotation of the engine 42 is stopped) is included in the automatic stop of the engine 42.
  • the operation amount of the accelerator operation member of the vehicle 10 is 0 (smaller than the predetermined operation amount), the operation amount of the brake operation member is not 0 (larger than the predetermined operation amount), and the vehicle 10 At least one of the speeds is lower than a predetermined speed. That is, the automatic stop of the engine 42 includes idling stop for stopping idling of the engine 42, engine stop during deceleration for stopping the engine 42 when the vehicle 10 is decelerated, and coasting engine for stopping the engine 42 when coasting the vehicle 10. Including stoppages.
  • the operation amount of the accelerator operation member of the vehicle 10 is not 0 (larger than the predetermined operation amount), the operation amount of the brake operation member is 0 (smaller than the predetermined operation amount), and the vehicle The speed of 10 includes at least one of higher than the predetermined speed.
  • the rotating electrical machine 21 is a three-phase AC motor and includes U-phase, V-phase, and W-phase windings 25U, 25V, and 25W as three-phase armature windings, and a field winding 26 as a rotor winding. ing.
  • the rotating electrical machine unit 16 includes a power generation function that generates power (regenerative power generation) by rotating the engine output shaft and the axle, and a power running function that applies rotational force to the engine output shaft.
  • the rotating shaft of the rotating electrical machine 21 is connected to an engine output shaft (not shown) via a belt so that driving force can be transmitted. Electricity is generated by rotating the rotating shaft of the rotating electrical machine 21 with the rotation of the engine output shaft through the belt, and power is generated by rotating the engine output shaft with the rotating shaft of the rotating electrical machine 21.
  • the inverter 22 converts the AC voltage output from each phase winding 25U, 25V, 25W into a DC voltage and outputs it to the battery unit U.
  • the inverter 22 converts the DC voltage input from the battery unit U into an AC voltage and outputs the AC voltage to the phase windings 25U, 25V, and 25W.
  • the inverter 22 is a bridge circuit having the same number of upper and lower arms as the number of phases of the phase winding, and constitutes a three-phase full-wave rectifier circuit.
  • the inverter 22 adjusts the power supplied to the armature winding of the rotating electrical machine 21 in a state where the field current (excitation current) is supplied from the field circuit 23 to the field winding 26, thereby rotating the rotating electrical machine.
  • the drive circuit which drives 21 is comprised.
  • the inverter 22 includes an upper arm switch Sp and a lower arm switch Sn for each phase.
  • voltage controlled semiconductor switching elements are used as the switches Sp and Sn (power transistors), specifically, N-channel MOSFETs are used.
  • An upper arm diode Dp is connected in antiparallel to the upper arm switch Sp, and a lower arm diode Dn is connected in antiparallel to the lower arm switch Sn.
  • the body diodes of the switches Sp and Sn are used as the diodes Dp and Dn.
  • the diodes Dp and Dn are not limited to body diodes, and may be diodes that are separate parts from the switches Sp and Sn, for example.
  • An intermediate connection point of the series connection body of the switches Sp and Sn in each phase is connected to one end of each phase winding 25U, 25V, and 25W.
  • the field circuit 23 is a bidirectional switch, and a DC voltage can be applied to the field winding 26.
  • the field circuit 23 (transistor chopper-type excitation circuit) constitutes an H-bridge rectifier circuit in which four switches Spa, Sna, Spb, and Snb are combined. Since the basic configuration of each switch Spa, Sna, Spb, Snb (power transistor) is the same as each switch of the inverter 22, the description thereof is omitted here.
  • the DC voltage applied to the field winding 26 by switching control of each switch Spa, Sna, Spb, Snb, the direction and current amount of the field current flowing through the field winding 26 are adjusted. Control.
  • the power transistors of the first pair of arms facing each other are configured by the switches Spa and Snb, and the diodes of the second pair of arms are configured by the diodes Dna and Dpb.
  • the switches Sp, Sn, Spa, Sna, Spb, Snb constituting the inverter 22 and the field circuit 23 are independently switched on / off via the driver 27.
  • a current detection unit 29A for detecting each phase current iu, iv, iw and a current detection unit 29B for detecting the field current if are provided.
  • the current detection units 29A and 29B for example, those including a current transformer and a resistor are used.
  • the rotating electrical machine ECU 24 (control device for the rotating electrical machine) is constituted by a microcomputer including a CPU, a ROM, a RAM, an input / output interface, and the like.
  • the rotating electrical machine ECU 24 controls the generated voltage (output voltage to the battery unit U) of the rotating electrical machine unit 16 by adjusting the field current flowing through the field winding 26. Further, the rotary electric machine ECU 24 assists the driving force of the engine 42 by controlling the inverter 22 to drive the rotary electric machine 21 after the vehicle 10 starts traveling.
  • the rotating electrical machine 21 can give an initial rotation to the output shaft when starting the engine, and also has a function as an engine starting device.
  • the rotating electrical machine 21 is stopped during the automatic stop of the engine 42, and a leak current flows through the stopped rotor, so that the rotor may be corroded.
  • the switches Spa, Sna, Spb, and Snb are turned off.
  • the rotor field winding 26 is in a state of floating in potential.
  • the rotating electrical machine 21 may be covered with water containing a snow melting agent. In such a case, a leakage current may occur between the exposed connection terminal P4 (P6) of the upper arm switch Spa (Spb) and the exposed connection terminal P5 (P7).
  • the rotor potential becomes the same as the potential of the output terminal P2 of the battery unit U, a current flows between the rotor and the armature core (stator core) that is the ground potential, and a very narrow air gap is present. There is a risk of rusting (corrosion).
  • the rotating electrical machine ECU 24 (first diagnosis unit, second diagnosis unit, off control unit) performs the following first diagnosis, first ground control, 2 Diagnosis and off control (second grounding control) are executed. Specifically, the rotating electrical machine ECU 24 executes the diagnosis and the grounding control in the order of the second diagnosis, the off control (second grounding control), the first diagnosis, and the first grounding control.
  • FIG. 3 is a flowchart showing a procedure for the diagnosis and grounding control.
  • This series of processing is executed by the rotating electrical machine ECU 24 when the engine 42 shifts from the operating state to automatic stop. Whether or not the engine 42 is automatically stopped is determined based on the fact that the fuel injection or ignition of the engine 42 is stopped, the automatic stop condition is satisfied, or the like. Further, the condition for executing this series of processing is that the rotational speed of the engine 42 is lower than a predetermined rotational speed (for example, 200 rpm). That is, even if the engine 42 is being automatically stopped, if the rotational speed of the engine 42 is higher than the predetermined rotational speed, this series of processing is not executed.
  • the rotational speed of the engine 42 can be calculated based on the detection value of the crank angle sensor or the like.
  • both switches Spb and Sna are turned on to diagnose whether or not a field current flows in the field winding 26 (S11). Specifically, it is determined whether or not the field current flows through the field winding 26 based on the detection value of the current detection unit 29B that detects the field current if.
  • both switches Spb and Sna are turned off in the second pair of arms as an off control.
  • S12 the switch Spb connected to the output terminal side of the rotating electrical machine 21 is turned off, and then the switch Sna connected to the ground side of the rotating electrical machine 21 is turned off. That is, when the switch Spb connected to the output terminal side of the rotating electrical machine 21 is turned off, the switch Sna connected to the ground side of the rotating electrical machine 21 is turned on.
  • the control that forms this state corresponds to the second ground control.
  • both switches Spa and Snb are turned on in the first pair of arms to diagnose whether or not a field current flows through the field winding 26 (S13). Specifically, it is determined whether or not the field current flows through the field winding 26 based on the detection value of the current detection unit 29B that detects the field current if.
  • process of S11 corresponds to the process as a 2nd diagnostic part
  • process of S12 corresponds to the process as an OFF control part
  • process of S13 corresponds to the process as a 1st diagnostic part.
  • the engine ECU 40 applies a rotational force to the engine 42 by the starter 13 during the automatic restart.
  • the switch Snb connected to the ground side of the rotating electrical machine 21 is turned on and the switch Spa connected to the output terminal side of the rotating electrical machine 21 is turned off.
  • the first ground control for setting the state is executed. For this reason, even if the rotary electric machine 21 stops during the automatic stop of the engine 42, it is possible to prevent the rotor in the stopped state from being in a potential floating state. Therefore, even if a leak current occurs, it can flow to the ground via the switch Snb on the ground side, and the rotor can be prevented from corroding during the automatic stop of the engine 42.
  • the second diagnosis is executed before the first diagnosis is executed while the engine 42 is automatically stopped. For this reason, it is possible to diagnose whether or not the rotating electric machine 21 can apply a rotational force to the engine 42 by causing a field current to flow through the second pair of arms. Then, after both switches Spb and Sna are turned on in the second pair of arms, an off control is performed to turn off both switches Spb and Sna in the second pair of arms. For this reason, it is possible to shift to the first diagnosis while avoiding a short circuit between the second pair of arms and the first pair of arms.
  • a failure of the field circuit 23 is diagnosed in the first diagnosis and the second diagnosis, and the engine 42 is restarted by the starter 13 when it is diagnosed that the field current does not flow in the first diagnosis or the second diagnosis. Can do.
  • the switch Snb or the switch Sna connected to the ground side of the rotating electrical machine 21 is turned on in the first pair of arms.
  • a closed circuit for flowing a field current is formed.
  • the first grounding control and the second grounding control are executed on the condition that the rotational speed of the engine 42 is lower than the predetermined rotational speed. Accordingly, it is possible to suppress an excessive braking torque from acting on the engine 42 when the first ground contact control is executed.
  • the rotational speed of the engine 42 is lower than the predetermined rotational speed. In this case, it is desirable to disconnect the connection between the output shaft of the engine 42 and the axle of the vehicle 10 when executing the first ground control and the second ground control. Moreover, since the engine 42 stops rapidly, the time until it can be restarted can be shortened.
  • the automatic stop of the engine 42 can be interrupted. According to such a configuration, when there is a possibility that the engine 42 cannot be automatically restarted by the rotating electrical machine unit 16, the engine 42 can be prevented from being automatically stopped.
  • both the switches Spb and Sna when both the switches Spb and Sna are turned off in the second pair of arms, both the switches Spb and Sna can be turned off simultaneously in the second pair of arms.
  • the second diagnosis of S11 can be omitted, and the first diagnosis of S13 can be omitted.
  • the rotating electrical machine ECU 24 (control device) turns on a switch Sna (power transistor) connected to the ground side of the rotating electrical machine 21 among the second pair of arms while the engine 42 is automatically stopped. Only the second ground control for turning off the switch Spb (power transistor) connected to the output terminal side of the electric machine 21 can be executed.
  • a vehicle 10 that does not include the starter 13 may be employed.
  • a generator unit 116 may be employed as shown in FIG.
  • the diode rectifier circuit 122 of FIG. 4 can be used instead of the inverter 22 of FIG. 1, and the switches Spb and Sna of the second pair of arms can be omitted in the field circuit 23.
  • the rotating electrical machine ECU 24 can execute the first diagnosis and the first ground control.
  • the rated voltage of the lithium ion storage battery 12 may be 48V
  • the rotating electrical machine 21 may be driven by a voltage of 48V
  • the vehicle 10 may include a bidirectional DCDC converter 50.
  • a voltage of 48 V is supplied from the lithium ion storage battery 12 to the field circuit 23 (the rotating electrical machine unit 16).
  • the voltage supplied from the battery unit U to the lead storage battery 11 is stepped down by the DCDC converter 50, and the voltage supplied from the lead storage battery 11 to the battery unit U is boosted by the DCDC converter 50.
  • the rotating electrical machine unit 16 uses a voltage of 48 V to apply a negative torque so that the rotational speed of the engine 42 quickly passes through a resonance region (for example, 200 to 400 rpm), or reset the piston stop position of the engine 42.
  • a resonance region for example, 200 to 400 rpm
  • control is performed to stop at a position suitable for starting. When these controls are performed, a current flows through the field winding 26 until immediately before the engine 42 stops, so that electric charges easily remain in the field winding 26 when the engine 42 stops.
  • connection terminal P5 (P7) and the armature core at the ground potential are short-circuited with water or the like containing a snow melting agent in a state where electric charges remain in the field winding 26, the space between the rotor and the armature core is reduced. Leakage current flows through the rotor and corrosion of the rotor easily proceeds.
  • the rotor corrosion can be suppressed as compared with the configuration in which the rotor corrosion easily proceeds.
  • the engine ECU 40 can instruct the rotating electrical machine ECU 24 to execute the first diagnosis, the first grounding control, the second diagnosis, and the off control (second grounding control). That is, the engine ECU 40 can constitute a first diagnosis unit, a second diagnosis unit, and an off control unit, that is, a control device for a rotating electrical machine.

Abstract

A control device (24) applied to a vehicle wherein an engine is automatically stopped when a prescribed automatic stopping condition is satisfied, and the engine is automatically restarted when a prescribed restarting condition subsequently is satisfied, said control device controlling a rotary electric machine (21) which has a power generation function based on the rotational force of the engine, and to which excitation current is supplied from a transistor chopper excitation circuit (23) wherein a first pair of opposing arms in a bridge circuit are configured from power transistors (Spa, Snb), and a second pair of arms are configured from diodes (Dna, Dpb). During automatic stopping of the engine the control device (24) executes a first grounding control wherein, among the first pair of arms, the power transistor (Snb) connected to the earth-side of the rotary electric machine is turned on, and the power transistor (Spa) connected to the output terminal side of the rotary electric machine is turned off.

Description

回転電機の制御装置Control device for rotating electrical machine 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年9月12日に出願された日本出願番号2016-177956号と、2017年8月23日に出願された日本出願番号2017-160310号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2016-177956 filed on September 12, 2016 and Japanese Application No. 2017-160310 filed on August 23, 2017, the contents of which are described herein. Is used.
 本開示は、発電機能を有する回転電機を制御する制御装置に関する。 The present disclosure relates to a control device that controls a rotating electrical machine having a power generation function.
 従来、この種の制御装置において、車両用発電機の励磁電流を供給するトランジスタチョッパ式の励磁回路を備え、回転子を励磁する電流をバッテリに回生するものがある(特許文献1参照)。特許文献1に記載のものでは、エンジンのキースイッチがオフであり、且つエンジンの回転速度が200rpm以下であることを条件として、上記励磁回路において、アース側に接続されたパワートランジスタをオン状態にし、出力端子側に接続されたパワートランジスタをオフ状態にしている。これにより、車両の走行終了後のエンジンが非稼動状態のときに、回転子の励磁巻線が電位的に浮いた状態になることを防止して、リーク電流による回転子の腐食を抑制することができる。 Conventionally, this type of control device includes a transistor chopper type excitation circuit that supplies an excitation current of a vehicle generator, and regenerates a current that excites a rotor in a battery (see Patent Document 1). In the one described in Patent Document 1, in the excitation circuit, the power transistor connected to the ground side is turned on on condition that the key switch of the engine is off and the rotational speed of the engine is 200 rpm or less. The power transistor connected to the output terminal side is turned off. As a result, when the engine after running of the vehicle is in a non-operating state, the exciting winding of the rotor is prevented from being floated in potential, and the corrosion of the rotor due to leakage current is suppressed. Can do.
特許第4442582号公報Japanese Patent No. 4442582
 ところで、所定の自動停止条件が成立した場合にエンジンを自動停止させ、その後に所定の再始動条件が成立した場合にエンジンを自動再始動させる車両がある。こうした車両では、エンジンの自動停止中に発電機が停止し、停止した状態の回転子にリーク電流が流れることで、回転子が腐食するおそれがある。特許文献1に記載のものは、エンジンの自動停止中に回転子が腐食することを考慮しておらず、未だ改善の余地を残すものとなっている。 By the way, there is a vehicle that automatically stops the engine when a predetermined automatic stop condition is satisfied, and then automatically restarts the engine when a predetermined restart condition is satisfied. In such a vehicle, the generator stops while the engine is automatically stopped, and leakage current flows through the stopped rotor, which may cause corrosion of the rotor. The thing of patent document 1 does not consider that a rotor corrodes during an engine automatic stop, and still leaves the room for improvement.
 なお、こうした実情は、発電機に限らず、発電機能を有する回転電機においても、概ね共通している。 Note that this situation is not limited to generators but is also common in rotating electrical machines having a power generation function.
 本開示は、上記課題を解決するためになされたものであり、エンジンの自動停止中に回転子が腐食することを抑制することのできる回転電機の制御装置を提供することを主たる目的とする。 The present disclosure has been made to solve the above-described problems, and has as its main object to provide a control device for a rotating electrical machine that can prevent the rotor from corroding during an automatic engine stop.
 上記課題を解決するための第1の手段は、
 所定の自動停止条件が成立した場合にエンジンを自動停止させ、その後に所定の再始動条件が成立した場合に前記エンジンを自動再始動させる車両に適用され、ブリッジ回路の対向する第1の一対のアームがパワートランジスタで構成され、第2の一対のアームがダイオードで構成されたトランジスタチョッパ式の励磁回路から励磁電流が供給され、前記エンジンの回転力に基づく発電機能を有する回転電機を、制御する制御装置であって、
 前記エンジンの前記自動停止中に、前記第1の一対のアームのうち、前記回転電機のアース側に接続された前記パワートランジスタをオン状態とし、前記回転電機の出力端子側に接続された前記パワートランジスタをオフ状態とする第1接地制御を実行する。
The first means for solving the above problems is as follows.
This is applied to a vehicle that automatically stops the engine when a predetermined automatic stop condition is satisfied, and then automatically restarts the engine when a predetermined restart condition is satisfied. An excitation current is supplied from a transistor chopper type excitation circuit in which arms are configured by power transistors and a second pair of arms are configured by diodes, and the rotating electrical machine having a power generation function based on the rotational force of the engine is controlled. A control device,
During the automatic stop of the engine, among the first pair of arms, the power transistor connected to the ground side of the rotating electrical machine is turned on, and the power connected to the output terminal side of the rotating electrical machine First ground control is performed to turn off the transistor.
 上記構成によれば、車両において、所定の自動停止条件が成立した場合にエンジンが自動停止させられ、その後に所定の再始動条件が成立した場合にエンジンが自動再始動させられる。発電機能を有する回転電機は、トランジスタチョッパ式の励磁回路から励磁電流が供給され、エンジンの回転力に基づき発電を実行する。 According to the above configuration, in the vehicle, the engine is automatically stopped when a predetermined automatic stop condition is satisfied, and the engine is automatically restarted when a predetermined restart condition is satisfied thereafter. A rotating electrical machine having a power generation function is supplied with an excitation current from a transistor chopper type excitation circuit and generates power based on the rotational force of the engine.
 ここで、エンジンの自動停止中に、第1の一対のアームのうち、回転電機のアース側に接続されたパワートランジスタをオン状態とし、回転電機の出力端子側に接続されたパワートランジスタをオフ状態とする第1接地制御が実行される。このため、エンジンの自動停止中に回転電機が停止したとしても、停止した状態の回転子が電位的に浮いた状態になることを抑制することができる。したがって、リーク電流が発生してもアース側のパワートランジスタを介してアースに流すことができ、エンジンの自動停止中に回転子が腐食することを抑制することができる。 Here, during the automatic engine stop, the power transistor connected to the grounding side of the rotating electrical machine is turned on and the power transistor connected to the output terminal side of the rotating electrical machine is turned off. The first ground control is executed. For this reason, even if the rotating electrical machine stops during the automatic stop of the engine, it is possible to prevent the rotor in the stopped state from being floated in terms of potential. Therefore, even if a leak current occurs, it can be passed to the ground via the power transistor on the ground side, and corrosion of the rotor during the automatic engine stop can be suppressed.
 なお、エンジンの自動停止は、エンジンのアイドリングを停止するアイドリングストップ、車両の減速時にエンジンを停止させる減速時エンジン停止、車両のコースティング時にエンジンを停止させるコースティング時エンジン停止等を含む。また、エンジンの自動停止中は、上記自動停止において、エンジンにおける燃料の燃焼を停止した時から、エンジンの回転が停止した時以降までを含む。 The automatic engine stop includes idling stop for stopping engine idling, engine stop during deceleration for stopping the engine when the vehicle decelerates, engine stop during coasting for stopping the engine during vehicle coasting, and the like. Further, during the automatic stop of the engine, the automatic stop includes from the time when the combustion of fuel in the engine is stopped to the time after the engine stops.
 第2の手段では、前記回転電機は、前記励磁回路から励磁電流が供給された状態で、前記エンジンに回転力を付与する力行機能を有し、前記エンジンの前記自動停止中において前記第1接地制御が実行される前に、前記第1の一対のアームにおいて双方の前記パワートランジスタをオン状態として、前記励磁電流が流れるか否か診断する第1診断を実行する第1診断部を備える。 In the second means, the rotating electrical machine has a power running function for applying a rotational force to the engine in a state where an excitation current is supplied from the excitation circuit, and the first grounding is performed during the automatic stop of the engine. Before the control is executed, the first pair of arms is provided with a first diagnosis unit that turns on both the power transistors and diagnoses whether the excitation current flows.
 上記構成によれば、回転電機は、励磁回路から励磁電流が供給された状態で、エンジンに回転力を付与する力行機能を有している。このため、エンジンの再始動の際に、回転電機によりエンジンに回転力を付与することができる。しかしながら、励磁回路のパワートランジスタが故障している場合は、エンジンの再始動の際に回転電機に励磁電流を流すことができず、回転電機によりエンジンに回転力を付与することができない。 According to the above configuration, the rotating electrical machine has a power running function for applying a rotational force to the engine in a state where an excitation current is supplied from the excitation circuit. For this reason, when the engine is restarted, a rotational force can be applied to the engine by the rotating electrical machine. However, when the power transistor of the excitation circuit is out of order, the excitation current cannot be supplied to the rotating electrical machine when the engine is restarted, and the rotational power cannot be applied to the engine by the rotating electrical machine.
 この点、上記構成によれば、エンジンの自動停止中において第1接地制御が実行される前に、第1の一対のアームにおいて双方のパワートランジスタをオン状態として、励磁電流が流れるか否か診断する第1診断が実行される。このため、回転電機によりエンジンに回転力を付与することができるか否か診断した上で、第1接地制御を実行することができる。 In this regard, according to the above configuration, before the first ground control is executed during the automatic engine stop, both the power transistors are turned on in the first pair of arms to diagnose whether the excitation current flows. The first diagnosis is executed. For this reason, it is possible to execute the first grounding control after diagnosing whether or not the rotating electrical machine can apply the rotational force to the engine.
 第3の手段では、前記第2の一対のアームを構成するダイオードは、それぞれパワートランジスタのボディダイオードを利用しており、前記エンジンの前記自動停止中に、前記第2の一対のアームのうち、前記回転電機のアース側に接続された前記パワートランジスタをオン状態とし、前記回転電機の出力端子側に接続された前記パワートランジスタをオフ状態とする第2接地制御を実行する。 In the third means, each of the diodes constituting the second pair of arms utilizes a body diode of a power transistor, and during the automatic stop of the engine, of the second pair of arms, Second grounding control is performed to turn on the power transistor connected to the ground side of the rotating electrical machine and turn off the power transistor connected to the output terminal side of the rotating electrical machine.
 上記構成によれば、第2の一対のアームを構成するダイオードは、それぞれパワートランジスタのボディダイオードを利用している。そして、エンジンの自動停止中に、第2の一対のアームにおけるパワートランジスタが制御されて、第1接地制御と同様に第2接地制御が実行される。このため、エンジンの自動停止中に回転電機が停止したとしても、停止した状態の回転子が電位的に浮いた状態になることを抑制することができる。 According to the above configuration, each of the diodes constituting the second pair of arms uses a power transistor body diode. During the automatic engine stop, the power transistors in the second pair of arms are controlled, and the second grounding control is executed in the same manner as the first grounding control. For this reason, even if the rotating electrical machine stops during the automatic stop of the engine, it is possible to prevent the rotor in the stopped state from being floated in terms of potential.
 第4の手段では、前記回転電機は、前記励磁回路から励磁電流が供給された状態で、前記エンジンに回転力を付与する力行機能を有し、前記エンジンの前記自動停止中において前記第2接地制御が実行される前に、前記第2の一対のアームにおいて双方の前記パワートランジスタをオン状態として、前記励磁電流が流れるか否か診断する第2診断を実行する第2診断部を備える。 In a fourth means, the rotating electrical machine has a power running function for applying a rotational force to the engine in a state where an excitation current is supplied from the excitation circuit, and the second grounding is performed during the automatic stop of the engine. Before the control is executed, a second diagnosis unit is provided that executes a second diagnosis for turning on both the power transistors in the second pair of arms and diagnosing whether the excitation current flows.
 上記構成によれば、第2の一対のアームにおけるパワートランジスタが制御されて、第1診断と同様に第2診断が実行される。このため、回転電機によりエンジンに回転力を付与することができるか否か診断した上で、第2接地制御を実行することができる。 According to the above configuration, the power transistors in the second pair of arms are controlled, and the second diagnosis is executed in the same manner as the first diagnosis. For this reason, it is possible to execute the second grounding control after diagnosing whether or not the rotating electrical machine can apply the rotational force to the engine.
 第5の手段では、前記第2の一対のアームを構成するダイオードは、それぞれパワートランジスタのボディダイオードを利用しており、前記エンジンの前記自動停止中において前記第1診断が実行される前に、前記第2の一対のアームにおいて双方の前記パワートランジスタをオン状態として、前記励磁電流が流れるか否か診断する第2診断を実行する第2診断部と、前記第2診断部により前記第2の一対のアームにおいて双方の前記パワートランジスタがオン状態とされた後、前記第2の一対のアームにおいて双方の前記パワートランジスタをオフ状態とするオフ制御を実行するオフ制御部を備える。 In the fifth means, each of the diodes constituting the second pair of arms uses a body diode of a power transistor, and before the first diagnosis is executed during the automatic stop of the engine, A second diagnostic unit for performing a second diagnostic for diagnosing whether or not the excitation current flows by turning on both of the power transistors in the second pair of arms; and An off control unit is provided that performs off control for turning off both the power transistors in the second pair of arms after both of the power transistors are turned on in the pair of arms.
 上記構成によれば、エンジンの自動停止中において第1診断が実行される前に、第2診断が実行される。このため、第2の一対のアームにより励磁電流を流して、回転電機によりエンジンに回転力を付与することができるか否か診断することができる。 According to the above configuration, the second diagnosis is executed before the first diagnosis is executed while the engine is automatically stopped. For this reason, it is possible to diagnose whether or not the rotating electric machine can apply the rotational force to the engine by flowing an exciting current through the second pair of arms.
 そして、第2の一対のアームにおいて双方のパワートランジスタがオン状態とされた後、第2の一対のアームにおいて双方のパワートランジスタをオフ状態とするオフ制御が実行される。このため、第2の一対のアームと第1の一対のアームとが短絡することを避けつつ、第1診断に移行することができる。そして、第1診断が実行されることにより、第1の一対のアームにより励磁電流を流して、エンジンの再始動の際に回転電機によりエンジンに回転力を付与することができるか否か診断することができる。 Then, after both power transistors are turned on in the second pair of arms, off control is performed to turn off both power transistors in the second pair of arms. For this reason, it is possible to shift to the first diagnosis while avoiding a short circuit between the second pair of arms and the first pair of arms. Then, by executing the first diagnosis, it is diagnosed whether or not the rotating electric machine can apply the rotational force to the engine when the engine is restarted by flowing an exciting current through the first pair of arms. be able to.
 第6の手段では、前記オフ制御部は、前記オフ制御において、前記第2の一対のアームにおいて双方の前記パワートランジスタをオフ状態とする際に、前記第2の一対のアームのうち、前記回転電機の出力端子側に接続された前記パワートランジスタをオフ状態とした後、前記回転電機のアース側に接続された前記パワートランジスタをオフ状態とする。 In the sixth means, when the off control unit turns off both of the power transistors in the second pair of arms in the off control, the rotation of the second pair of arms is rotated. After the power transistor connected to the output terminal side of the electric machine is turned off, the power transistor connected to the ground side of the rotating electric machine is turned off.
 上記構成によれば、オフ制御において、第2の一対のアームにおいて双方のパワートランジスタがオフ状態とされる際に、第2の一対のアームのうち、回転電機の出力端子側に接続されたパワートランジスタがオフ状態とされた後、回転電機のアース側に接続されたパワートランジスタがオフ状態とされる。このため、回転電機の出力端子側に接続されたパワートランジスタがオフ状態とされた時に、第2接地制御を実行した状態と同じ状態を形成することができる。したがって、停止した状態の回転子が電位的に浮いた状態になることを抑制した上で、第1診断に移行することができる。 According to the above configuration, when both power transistors in the second pair of arms are turned off in the off control, the power connected to the output terminal side of the rotating electrical machine in the second pair of arms. After the transistor is turned off, the power transistor connected to the ground side of the rotating electrical machine is turned off. For this reason, when the power transistor connected to the output terminal side of the rotating electrical machine is turned off, the same state as the state in which the second ground control is executed can be formed. Therefore, it is possible to shift to the first diagnosis after suppressing the rotor in the stopped state from floating in potential.
 第7の手段では、前記車両は、前記エンジンの始動の際に前記エンジンに回転力を付与するスタータを備え、前記第1診断部により前記励磁電流が流れないと診断された場合に、前記自動再始動の際に前記スタータにより前記エンジンに回転力を付与する。 In the seventh means, the vehicle includes a starter that applies a rotational force to the engine when the engine is started, and when the first diagnosis unit diagnoses that the excitation current does not flow, When the engine is restarted, a rotational force is applied to the engine by the starter.
 上記構成によれば、車両は、エンジンの始動の際にエンジンに回転力を付与するスタータを備えているため、エンジンの再始動の際に、スタータによりエンジンに回転力を付与することができる。そこで、第1診断において励磁電流が流れないと診断された場合に、自動再始動の際にスタータによりエンジンに回転力が付与される。したがって、励磁回路の故障を診断し、励磁回路が故障している場合には、スタータによりエンジンを再始動することができる。 According to the above configuration, since the vehicle includes the starter that applies the rotational force to the engine when the engine is started, the rotational force can be applied to the engine by the starter when the engine is restarted. Therefore, when it is diagnosed that the exciting current does not flow in the first diagnosis, a rotational force is applied to the engine by the starter at the time of automatic restart. Therefore, the failure of the excitation circuit is diagnosed, and when the excitation circuit is broken, the engine can be restarted by the starter.
 第8の手段では、前記車両は、前記エンジンの始動の際に前記エンジンに回転力を付与するスタータを備え、前記第1診断部又は前記第2診断部により前記励磁電流が流れないと診断された場合に、前記自動再始動の際に前記スタータにより前記エンジンに回転力を付与する。 According to an eighth means, the vehicle includes a starter that applies a rotational force to the engine when the engine is started, and the first diagnosis unit or the second diagnosis unit diagnoses that the excitation current does not flow. In this case, a rotational force is applied to the engine by the starter during the automatic restart.
 上記構成によれば、第1診断及び第2診断において励磁回路の故障を診断し、第1診断又は第2診断において励磁電流が流れないと診断された場合に、スタータによりエンジンを再始動することができる。 According to the above configuration, the failure of the excitation circuit is diagnosed in the first diagnosis and the second diagnosis, and the engine is restarted by the starter when it is diagnosed that the excitation current does not flow in the first diagnosis or the second diagnosis. Can do.
 第9の手段では、前記エンジンの回転速度が所定回転速度よりも低いことを更に条件として、前記第1接地制御を実行する。 In the ninth means, the first ground contact control is executed on the condition that the rotational speed of the engine is lower than a predetermined rotational speed.
 第1接地制御が実行された場合、第1の一対のアームのうち、回転電機のアース側に接続されたパワートランジスタがオン状態とされるため、励磁回路において励磁電流を流す閉回路が形成される。このため、エンジンの回転速度が高い場合には、回転電機において発電が実行され、エンジンに過剰な制動トルクが作用するおそれがある。 When the first grounding control is executed, the power transistor connected to the ground side of the rotating electrical machine is turned on in the first pair of arms, so that a closed circuit for flowing an exciting current is formed in the exciting circuit. The For this reason, when the rotational speed of the engine is high, electric power is generated in the rotating electrical machine, and an excessive braking torque may act on the engine.
 この点、上記構成によれば、エンジンの回転速度が所定回転速度よりも低いことを更に条件として、第1接地制御が実行される。このため、エンジンの自動停止中に、エンジンの回転速度が所定回転速度よりも低い場合に第1接地制御が実行され、エンジンの回転速度が所定回転速度よりも高い場合には第1接地制御が実行されない。したがって、第1接地制御を実行する際に、エンジンに過剰な制動トルクが作用することを抑制することができる。 In this respect, according to the above-described configuration, the first ground contact control is executed on the condition that the rotational speed of the engine is lower than the predetermined rotational speed. Therefore, during the automatic stop of the engine, the first grounding control is executed when the rotational speed of the engine is lower than the predetermined rotational speed, and the first grounding control is performed when the rotational speed of the engine is higher than the predetermined rotational speed. Not executed. Therefore, when the first ground contact control is executed, it is possible to suppress an excessive braking torque from acting on the engine.
 第10の手段では、前記エンジンの回転速度が所定回転速度よりも低いことを更に条件として、前記第2接地制御を実行する。 In the tenth means, the second grounding control is executed on the condition that the rotational speed of the engine is lower than a predetermined rotational speed.
 上記構成によれば、第2接地制御を実行する際に、エンジンに過剰な制動トルクが作用することを抑制することができる。 According to the above configuration, it is possible to suppress an excessive braking torque from acting on the engine when executing the second ground contact control.
 励磁回路に供給される電圧が48Vである場合は、励磁回路に供給される電圧が12Vである場合よりも、回転子に流れるリーク電流が大きくなり、回転子の腐食が進み易くなる。 When the voltage supplied to the excitation circuit is 48V, the leakage current flowing through the rotor is larger than when the voltage supplied to the excitation circuit is 12V, and the rotor is more easily corroded.
 この点、第11の手段では、第1~第10のいずれか1つの手段を前提として、前記励磁回路には、48Vの電圧が供給されている。したがって、回転子の腐食が進み易い構成に対して、回転子の腐食を抑制することができる。 In this regard, in the eleventh means, a voltage of 48 V is supplied to the excitation circuit on the premise of any one of the first to tenth means. Therefore, corrosion of the rotor can be suppressed with respect to a configuration in which corrosion of the rotor easily proceeds.
 具体的には、第12の手段のように、前記励磁回路から前記回転電機の回転子巻線に前記励磁電流が供給されるといった構成を採用することができる。 Specifically, as in the twelfth means, a configuration in which the excitation current is supplied from the excitation circuit to the rotor winding of the rotating electrical machine can be adopted.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、車両の電気的構成を示す電気回路図であり、 図2は、回転電機ユニットの電気的構成を示す電気回路図であり、 図3は、診断及び接地制御の手順を示すフローチャートであり、 図4は、回転電機ユニットの電気的構成の変更例を示す電気回路図であり、 図5は、車両の電気的構成の変更例を示す電気回路図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is an electric circuit diagram showing an electrical configuration of a vehicle. FIG. 2 is an electric circuit diagram showing an electrical configuration of the rotating electrical machine unit, FIG. 3 is a flowchart showing procedures of diagnosis and ground control, FIG. 4 is an electric circuit diagram showing a modification example of the electrical configuration of the rotating electrical machine unit, FIG. 5 is an electric circuit diagram showing a modification of the electrical configuration of the vehicle.
 以下、エンジン(内燃機関)を駆動源として回転電機により駆動力をアシスト(補助)して走行する車両に具現化した一実施形態について、図面に基づいて説明する。 Hereinafter, an embodiment embodied in a vehicle that travels by assisting (assisting) driving force by a rotating electrical machine using an engine (internal combustion engine) as a driving source will be described with reference to the drawings.
 図1に示すように、車両10は、エンジン42、スタータ13、鉛蓄電池11、リチウムイオン蓄電池12、電気負荷14,15、回転電機ユニット16等を備えている。 As shown in FIG. 1, the vehicle 10 includes an engine 42, a starter 13, a lead storage battery 11, a lithium ion storage battery 12, electric loads 14 and 15, a rotating electrical machine unit 16, and the like.
 エンジン42は、ガソリンエンジンやディーゼルエンジン等であり、燃料の燃焼により駆動力を発生する。スタータ13(始動装置)は、エンジン42の始動の際に、エンジン42の出力軸(クランク軸)に初期回転力を付与する。 The engine 42 is a gasoline engine, a diesel engine, or the like, and generates driving force by burning fuel. The starter 13 (starting device) applies an initial rotational force to the output shaft (crankshaft) of the engine 42 when the engine 42 is started.
 車両10の電源システムは、蓄電部として鉛蓄電池11とリチウムイオン蓄電池12とを有する2電源システムである。各蓄電池11,12からは、スタータ13や、各種の電気負荷14,15、回転電機ユニット16への給電が可能となっている。また、各蓄電池11,12に対しては、回転電機ユニット16による充電が可能となっている。本システムでは、回転電機ユニット16及び電気負荷14,15のそれぞれに対して、鉛蓄電池11及びリチウムイオン蓄電池12が並列に接続されている。 The power supply system of the vehicle 10 is a dual power supply system having a lead storage battery 11 and a lithium ion storage battery 12 as a power storage unit. Each storage battery 11, 12 can supply power to the starter 13, various electric loads 14, 15, and the rotating electrical machine unit 16. Further, each of the storage batteries 11 and 12 can be charged by the rotating electrical machine unit 16. In this system, a lead storage battery 11 and a lithium ion storage battery 12 are connected in parallel to the rotating electrical machine unit 16 and the electrical loads 14 and 15, respectively.
 鉛蓄電池11は周知の汎用蓄電池である。リチウムイオン蓄電池12は、鉛蓄電池11に比べて、充放電における電力損失が少なく、出力密度、及びエネルギ密度の高い高密度蓄電池である。リチウムイオン蓄電池12は、鉛蓄電池11に比べて充放電時のエネルギ効率が高い蓄電池であることが望ましい。このリチウムイオン蓄電池12は、それぞれ複数の単電池を有してなる組電池として構成されている。これら各蓄電池11,12の定格電圧はいずれも同じであり、例えば12Vである。 The lead storage battery 11 is a well-known general-purpose storage battery. The lithium ion storage battery 12 is a high-density storage battery that has less power loss during charging / discharging and higher output density and energy density than the lead storage battery 11. The lithium ion storage battery 12 is desirably a storage battery having higher energy efficiency during charging / discharging than the lead storage battery 11. The lithium ion storage battery 12 is configured as an assembled battery having a plurality of single cells. These storage batteries 11 and 12 have the same rated voltage, for example, 12V.
 リチウムイオン蓄電池12は、収容ケースに収容されて基板一体の電池ユニットUとして構成されている。電池ユニットUは、2つの出力端子P1,P2を有しており、このうち出力端子P1に鉛蓄電池11とスタータ13と電気負荷14とが接続され、出力端子P2に電気負荷15と回転電機ユニット16とが接続されている。 The lithium ion storage battery 12 is housed in a housing case and configured as a battery unit U integrated with a substrate. The battery unit U has two output terminals P1 and P2, among which the lead storage battery 11, the starter 13 and the electric load 14 are connected to the output terminal P1, and the electric load 15 and the rotating electrical machine unit are connected to the output terminal P2. 16 is connected.
 各電気負荷14,15は、各蓄電池11,12からの供給電力の電圧に対する要求が相違するものである。具体的には、電気負荷14には、供給電力の電圧が一定又は少なくとも所定範囲内で変動するよう安定であることが要求される定電圧要求負荷が含まれる。これに対し、電気負荷15は、定電圧要求負荷以外の一般的な電気負荷である。 The electric loads 14 and 15 have different requirements for the voltage of power supplied from the storage batteries 11 and 12. Specifically, the electric load 14 includes a constant voltage required load that is required to be stable so that the voltage of the supplied power is constant or at least varies within a predetermined range. On the other hand, the electric load 15 is a general electric load other than the constant voltage required load.
 定電圧要求負荷である電気負荷14の具体例としては、ナビゲーション装置やオーディオ装置、メータ装置、エンジンECU等の各種ECUが挙げられる。この場合、供給電力の電圧変動が抑えられることで、上記各装置において不要なリセット等が生じることが抑制され、安定動作が確保される。電気負荷14として、電動ステアリング装置やブレーキ装置等の走行系アクチュエータが含まれていてもよい。電気負荷15の具体例としては、シートヒータやリヤウインドウのデフロスタ用ヒータ、ヘッドライト、フロントウインドウのワイパ、空調装置の送風ファン等が挙げられる。 Specific examples of the electric load 14 that is a constant voltage required load include various ECUs such as a navigation device, an audio device, a meter device, and an engine ECU. In this case, by suppressing the voltage fluctuation of the supplied power, it is possible to suppress the occurrence of unnecessary reset and the like in each of the above devices, and ensure stable operation. The electric load 14 may include a travel system actuator such as an electric steering device or a brake device. Specific examples of the electric load 15 include a seat heater, a heater for a defroster for a rear window, a headlight, a wiper for a front window, and a blower fan for an air conditioner.
 回転電機ユニット16は、回転電機21と、インバータ22と、界磁回路23と、回転電機21の作動を制御する回転電機ECU24とを備えている。回転電機ユニット16は、モータ機能付き発電機であり、機電一体型のISG(Integrated Starter Generator)として構成されている。回転電機ユニット16の詳細については後述する。 The rotating electrical machine unit 16 includes a rotating electrical machine 21, an inverter 22, a field circuit 23, and a rotating electrical machine ECU 24 that controls the operation of the rotating electrical machine 21. The rotating electrical machine unit 16 is a generator with a motor function, and is configured as an electromechanically integrated ISG (Integrated / Starter / Generator). Details of the rotating electrical machine unit 16 will be described later.
 電池ユニットUには、ユニット内電気経路として、各出力端子P1,P2を繋ぐ電気経路L1と、電気経路L1上の点N1とリチウムイオン蓄電池12とを繋ぐ電気経路L2とが設けられている。このうち電気経路L1にスイッチ31が設けられ、電気経路L2にスイッチ32が設けられている。 The battery unit U is provided with an electrical path L1 that connects the output terminals P1 and P2 and an electrical path L2 that connects the point N1 on the electrical path L1 and the lithium ion storage battery 12 as an in-unit electrical path. Among these, the switch 31 is provided in the electrical path L1, and the switch 32 is provided in the electrical path L2.
 また、電池ユニットUには、スイッチ31を迂回するバイパス経路L3が設けられている。バイパス経路L3は、出力端子P3と電気経路L1上の点N1とを接続するようにして設けられている。出力端子P3は、ヒューズ35を介して鉛蓄電池11に接続されている。このバイパス経路L3によって、スイッチ31を介さずに、鉛蓄電池11と電気負荷15及び回転電機ユニット16との接続が可能となっている。バイパス経路L3には、例えば常閉式の機械式リレーからなるバイパススイッチ36が設けられている。バイパススイッチ36をオン(閉鎖)することで、スイッチ31がオフ(開放)されていても鉛蓄電池11と電気負荷15及び回転電機ユニット16とが電気的に接続される。 The battery unit U is provided with a bypass path L3 that bypasses the switch 31. The bypass path L3 is provided so as to connect the output terminal P3 and the point N1 on the electrical path L1. The output terminal P3 is connected to the lead storage battery 11 via the fuse 35. By this bypass path L3, the lead storage battery 11, the electric load 15, and the rotating electrical machine unit 16 can be connected without using the switch 31. In the bypass path L3, for example, a bypass switch 36 composed of a normally closed mechanical relay is provided. By turning on (closing) the bypass switch 36, the lead storage battery 11, the electrical load 15, and the rotating electrical machine unit 16 are electrically connected even when the switch 31 is turned off (opened).
 電池ユニットUは、各スイッチ31,32のオンオフ(開閉)を制御する電池ECU37を備えている。電池ECU37は、CPU、ROM、RAM、入出力インターフェース等を含むマイコンにより構成されている。電池ECU37は、車両10の走行状態や各蓄電池11,12の蓄電状態に基づいて、各スイッチ31,32のオンオフを制御する。これにより、鉛蓄電池11とリチウムイオン蓄電池12とを選択的に用いて充放電が実施される。例えば、電池ECU37は、リチウムイオン蓄電池12の充電率SOC(State Of Charge)を算出し、充電率SOCが所定の使用範囲内に保持されるようにリチウムイオン蓄電池12への充電量及び放電量を制御する。 The battery unit U includes a battery ECU 37 that controls on / off (opening / closing) of the switches 31 and 32. The battery ECU 37 is constituted by a microcomputer including a CPU, a ROM, a RAM, an input / output interface, and the like. The battery ECU 37 controls on / off of the switches 31 and 32 based on the traveling state of the vehicle 10 and the storage states of the storage batteries 11 and 12. Thereby, charging / discharging is implemented using the lead storage battery 11 and the lithium ion storage battery 12 selectively. For example, the battery ECU 37 calculates the charging rate SOC (State Of Charge) of the lithium ion storage battery 12, and sets the charging amount and discharging amount to the lithium ion storage battery 12 so that the charging rate SOC is maintained within a predetermined use range. Control.
 回転電機ユニット16の回転電機ECU24や、電池ユニットUの電池ECU37には、各ECU24,37を統括的に管理する上位制御装置としてのエンジンECU40が接続されている。エンジンECU40は、CPU、ROM、RAM、入出力インターフェース等を含むマイコンにより構成されており、都度のエンジン運転状態や車両走行状態に基づいてエンジン42の運転を制御する。各ECU24,37,40は、CAN等の通信ネットワークを構築する通信線41により接続されて相互に通信可能となっており、所定周期で双方向の通信が実施される。これにより、各ECU24,37,40に記憶される各種データを互いに共有している。 The rotating electrical machine ECU 24 of the rotating electrical machine unit 16 and the battery ECU 37 of the battery unit U are connected to an engine ECU 40 as a host controller that manages the ECUs 24 and 37 in an integrated manner. The engine ECU 40 is composed of a microcomputer including a CPU, ROM, RAM, input / output interface, and the like, and controls the operation of the engine 42 based on the engine operating state and the vehicle traveling state each time. The ECUs 24, 37, and 40 are connected by a communication line 41 that constructs a communication network such as CAN and can communicate with each other, and bidirectional communication is performed at a predetermined cycle. Thereby, the various data memorize | stored in each ECU24,37,40 are mutually shared.
 エンジンECU40は、所定の自動停止条件が成立した場合にエンジン42を自動停止させ、その後に所定の再始動条件が成立した場合にエンジン42を自動再始動させる。エンジン42を自動停止させるためには、エンジン42における燃料の燃焼を停止させる。具体的には、ガソリンエンジンであれば燃料の噴射及び点火を停止させ、ディーゼルエンジンであれば燃料の噴射を停止させる。そして、自動停止において、エンジン42における燃料の燃焼を停止した時から、エンジン42の回転が停止した時以降(エンジン42の回転が停止した状態)までを、エンジン42の自動停止中に含むものとする。 The engine ECU 40 automatically stops the engine 42 when a predetermined automatic stop condition is satisfied, and automatically restarts the engine 42 when a predetermined restart condition is satisfied thereafter. In order to automatically stop the engine 42, the combustion of fuel in the engine 42 is stopped. Specifically, fuel injection and ignition are stopped for a gasoline engine, and fuel injection is stopped for a diesel engine. In the automatic stop, the period from when the combustion of the fuel in the engine 42 is stopped until the time when the rotation of the engine 42 is stopped (a state where the rotation of the engine 42 is stopped) is included in the automatic stop of the engine 42.
 自動停止条件として、車両10のアクセル操作部材の操作量が0である(所定操作量よりも小さい)こと、ブレーキ操作部材の操作量が0でない(所定操作量よりも大きい)こと、及び車両10の速度が所定速度よりも低いことの少なくとも1つを含む。すなわち、エンジン42の自動停止は、エンジン42のアイドリングを停止するアイドリングストップ、車両10の減速時にエンジン42を停止させる減速時エンジン停止、及び車両10のコースティング時にエンジン42を停止させるコースティング時エンジン停止を含むものとする。自動再始動条件として、車両10のアクセル操作部材の操作量が0でない(所定操作量よりも大きい)こと、ブレーキ操作部材の操作量が0である(所定操作量よりも小さい)こと、及び車両10の速度が所定速度よりも高いことの少なくとも1つを含む。 As the automatic stop condition, the operation amount of the accelerator operation member of the vehicle 10 is 0 (smaller than the predetermined operation amount), the operation amount of the brake operation member is not 0 (larger than the predetermined operation amount), and the vehicle 10 At least one of the speeds is lower than a predetermined speed. That is, the automatic stop of the engine 42 includes idling stop for stopping idling of the engine 42, engine stop during deceleration for stopping the engine 42 when the vehicle 10 is decelerated, and coasting engine for stopping the engine 42 when coasting the vehicle 10. Including stoppages. As the automatic restart condition, the operation amount of the accelerator operation member of the vehicle 10 is not 0 (larger than the predetermined operation amount), the operation amount of the brake operation member is 0 (smaller than the predetermined operation amount), and the vehicle The speed of 10 includes at least one of higher than the predetermined speed.
 次に、回転電機ユニット16の電気的構成について図2を用いて説明する。回転電機21は3相交流モータであり、3相電機子巻線としてU相、V相、W相の相巻線25U,25V,25Wと、回転子巻線として界磁巻線26とを備えている。回転電機ユニット16は、エンジン出力軸や車軸の回転により発電(回生発電)を行う発電機能と、エンジン出力軸に回転力を付与する力行機能とを備えるものとなっている。具体的には、回転電機21の回転軸は、ベルトを介して図示しないエンジン出力軸に駆動力を伝達可能に連結されている。このベルトを介して、エンジン出力軸の回転に伴い回転電機21の回転軸が回転することによって発電し、回転電機21の回転軸の回転に伴いエンジン出力軸が回転することによって力行する。 Next, the electrical configuration of the rotating electrical machine unit 16 will be described with reference to FIG. The rotating electrical machine 21 is a three-phase AC motor and includes U-phase, V-phase, and W- phase windings 25U, 25V, and 25W as three-phase armature windings, and a field winding 26 as a rotor winding. ing. The rotating electrical machine unit 16 includes a power generation function that generates power (regenerative power generation) by rotating the engine output shaft and the axle, and a power running function that applies rotational force to the engine output shaft. Specifically, the rotating shaft of the rotating electrical machine 21 is connected to an engine output shaft (not shown) via a belt so that driving force can be transmitted. Electricity is generated by rotating the rotating shaft of the rotating electrical machine 21 with the rotation of the engine output shaft through the belt, and power is generated by rotating the engine output shaft with the rotating shaft of the rotating electrical machine 21.
 インバータ22は、各相巻線25U,25V,25Wから出力される交流電圧を直流電圧に変換して電池ユニットUに対して出力する。また、インバータ22は、電池ユニットUから入力される直流電圧を交流電圧に変換して各相巻線25U,25V,25Wへ出力する。インバータ22は、相巻線の相数と同数の上下アームを有するブリッジ回路であり、3相全波整流回路を構成している。インバータ22は、界磁回路23から界磁巻線26に界磁電流(励磁電流)が供給された状態で、回転電機21の電機子巻線に供給される電力を調節することで、回転電機21を駆動する駆動回路を構成している。 The inverter 22 converts the AC voltage output from each phase winding 25U, 25V, 25W into a DC voltage and outputs it to the battery unit U. The inverter 22 converts the DC voltage input from the battery unit U into an AC voltage and outputs the AC voltage to the phase windings 25U, 25V, and 25W. The inverter 22 is a bridge circuit having the same number of upper and lower arms as the number of phases of the phase winding, and constitutes a three-phase full-wave rectifier circuit. The inverter 22 adjusts the power supplied to the armature winding of the rotating electrical machine 21 in a state where the field current (excitation current) is supplied from the field circuit 23 to the field winding 26, thereby rotating the rotating electrical machine. The drive circuit which drives 21 is comprised.
 インバータ22は、相ごとに上アームスイッチSp及び下アームスイッチSnを備えている。本実施形態では、各スイッチSp,Sn(パワートランジスタ)として、電圧制御形の半導体スイッチング素子を用いており、具体的には、NチャネルMOSFETを用いている。上アームスイッチSpには、上アームダイオードDpが逆並列に接続され、下アームスイッチSnには、下アームダイオードDnが逆並列に接続されている。本実施形態では、各ダイオードDp,Dnとして、各スイッチSp,Snのボディダイオードを用いている。なお、各ダイオードDp,Dnとしては、ボディダイオードに限らず、例えば各スイッチSp,Snとは別部品のダイオードであってもよい。各相におけるスイッチSp,Snの直列接続体の中間接続点は、各相巻線25U,25V,25Wの一端にそれぞれ接続されている。 The inverter 22 includes an upper arm switch Sp and a lower arm switch Sn for each phase. In the present embodiment, voltage controlled semiconductor switching elements are used as the switches Sp and Sn (power transistors), specifically, N-channel MOSFETs are used. An upper arm diode Dp is connected in antiparallel to the upper arm switch Sp, and a lower arm diode Dn is connected in antiparallel to the lower arm switch Sn. In the present embodiment, the body diodes of the switches Sp and Sn are used as the diodes Dp and Dn. The diodes Dp and Dn are not limited to body diodes, and may be diodes that are separate parts from the switches Sp and Sn, for example. An intermediate connection point of the series connection body of the switches Sp and Sn in each phase is connected to one end of each phase winding 25U, 25V, and 25W.
 界磁回路23は双方向スイッチであり、界磁巻線26に直流電圧を印加可能とされている。本実施形態において界磁回路23(トランジスタチョッパ式の励磁回路)は、4個のスイッチSpa,Sna,Spb,Snbを組み合わせたHブリッジ整流回路を構成している。各スイッチSpa,Sna,Spb,Snb(パワートランジスタ)の基本構成はインバータ22の各スイッチと同じであるため、ここでは説明を省略する。本実施形態では、各スイッチSpa,Sna,Spb,Snbのスイッチング制御によって界磁巻線26に印加する直流電圧を調整することにより、界磁巻線26に流れる界磁電流の向き及び電流量を制御する。なお、スイッチSpa,Snbにより対向する第1の一対のアームのパワートランジスタが構成され、ダイオードDna,Dpbにより第2の一対のアームのダイオードが構成されている。 The field circuit 23 is a bidirectional switch, and a DC voltage can be applied to the field winding 26. In the present embodiment, the field circuit 23 (transistor chopper-type excitation circuit) constitutes an H-bridge rectifier circuit in which four switches Spa, Sna, Spb, and Snb are combined. Since the basic configuration of each switch Spa, Sna, Spb, Snb (power transistor) is the same as each switch of the inverter 22, the description thereof is omitted here. In the present embodiment, by adjusting the DC voltage applied to the field winding 26 by switching control of each switch Spa, Sna, Spb, Snb, the direction and current amount of the field current flowing through the field winding 26 are adjusted. Control. The power transistors of the first pair of arms facing each other are configured by the switches Spa and Snb, and the diodes of the second pair of arms are configured by the diodes Dna and Dpb.
 インバータ22及び界磁回路23を構成する各スイッチSp,Sn,Spa,Sna,Spb,Snbは、ドライバ27を介してそれぞれ独立にオン/オフ駆動が切り替えられる。本システムには、各相電流iu,iv,iwを検出する電流検出部29A、及び界磁電流ifを検出する電流検出部29Bがそれぞれ設けられている。電流検出部29A,29Bは、例えばカレントトランスや抵抗器を備えるものが用いられる。 The switches Sp, Sn, Spa, Sna, Spb, Snb constituting the inverter 22 and the field circuit 23 are independently switched on / off via the driver 27. In the present system, a current detection unit 29A for detecting each phase current iu, iv, iw and a current detection unit 29B for detecting the field current if are provided. As the current detection units 29A and 29B, for example, those including a current transformer and a resistor are used.
 回転電機ECU24(回転電機の制御装置)は、CPU、ROM、RAM、入出力インターフェース等を含むマイコンにより構成されている。回転電機ECU24は、界磁巻線26に流す界磁電流を調整することにより、回転電機ユニット16の発電電圧(電池ユニットUに対する出力電圧)を制御する。また、回転電機ECU24は、車両10の走行開始後にインバータ22を制御して回転電機21を駆動させて、エンジン42の駆動力をアシストする。回転電機21は、エンジン始動時に出力軸に初期回転を付与することが可能であり、エンジン始動装置としての機能も有している。 The rotating electrical machine ECU 24 (control device for the rotating electrical machine) is constituted by a microcomputer including a CPU, a ROM, a RAM, an input / output interface, and the like. The rotating electrical machine ECU 24 controls the generated voltage (output voltage to the battery unit U) of the rotating electrical machine unit 16 by adjusting the field current flowing through the field winding 26. Further, the rotary electric machine ECU 24 assists the driving force of the engine 42 by controlling the inverter 22 to drive the rotary electric machine 21 after the vehicle 10 starts traveling. The rotating electrical machine 21 can give an initial rotation to the output shaft when starting the engine, and also has a function as an engine starting device.
 ところで、エンジン42の自動停止中に回転電機21が停止し、停止した状態の回転子にリーク電流が流れることで、回転子が腐食するおそれがある。詳しくは、車両10のエンジン42が停止状態のときに、各スイッチSpa,Sna,Spb,Snbがオフするので、このとき回転子の界磁巻線26は電位的に浮いた状態になる。寒冷地などにおいて、回転電機21は、融雪剤を含む水を被った状態となるケースがある。このような場合に、上アームのスイッチSpa(Spb)の露出した接続端子P4(P6)と、露出した接続端子P5(P7)との間でリーク電流が発生することがある。その結果、回転子電位が電池ユニットUの出力端子P2の電位と同じになり、回転子とアース電位である電機子鉄心(固定子鉄心)との間に電流が流れ、非常に狭いエアギャップ間に錆びが発生(腐食)するおそれがある。 Incidentally, the rotating electrical machine 21 is stopped during the automatic stop of the engine 42, and a leak current flows through the stopped rotor, so that the rotor may be corroded. Specifically, when the engine 42 of the vehicle 10 is in a stopped state, the switches Spa, Sna, Spb, and Snb are turned off. At this time, the rotor field winding 26 is in a state of floating in potential. In cold districts and the like, the rotating electrical machine 21 may be covered with water containing a snow melting agent. In such a case, a leakage current may occur between the exposed connection terminal P4 (P6) of the upper arm switch Spa (Spb) and the exposed connection terminal P5 (P7). As a result, the rotor potential becomes the same as the potential of the output terminal P2 of the battery unit U, a current flows between the rotor and the armature core (stator core) that is the ground potential, and a very narrow air gap is present. There is a risk of rusting (corrosion).
 これに対して、本実施形態では、回転電機ECU24(第1診断部、第2診断部、オフ制御部)は、エンジン42の自動停止中に、以下の第1診断、第1接地制御、第2診断、及びオフ制御(第2接地制御)を実行する。具体的には、回転電機ECU24は、第2診断、オフ制御(第2接地制御)、第1診断、第1接地制御の順で、これらの診断及び接地制御を実行する。 In contrast, in the present embodiment, the rotating electrical machine ECU 24 (first diagnosis unit, second diagnosis unit, off control unit) performs the following first diagnosis, first ground control, 2 Diagnosis and off control (second grounding control) are executed. Specifically, the rotating electrical machine ECU 24 executes the diagnosis and the grounding control in the order of the second diagnosis, the off control (second grounding control), the first diagnosis, and the first grounding control.
 図3は、上記診断及び接地制御の手順を示すフローチャートである。この一連の処理は、エンジン42が運転状態から自動停止中に移行した時に、回転電機ECU24により実行される。エンジン42が自動停止中であることは、エンジン42の燃料の噴射や点火が停止されていること、自動停止条件が成立していること等に基づいて判断する。更に、エンジン42の回転速度が所定回転速度(例えば200rpm)よりも低いことを、この一連の処理を実行する条件としている。すなわち、エンジン42の自動停止中であっても、エンジン42の回転速度が所定回転速度よりも高い場合は、この一連の処理を実行しない。なお、エンジン42の回転速度は、クランク角センサの検出値等に基づいて算出することができる。 FIG. 3 is a flowchart showing a procedure for the diagnosis and grounding control. This series of processing is executed by the rotating electrical machine ECU 24 when the engine 42 shifts from the operating state to automatic stop. Whether or not the engine 42 is automatically stopped is determined based on the fact that the fuel injection or ignition of the engine 42 is stopped, the automatic stop condition is satisfied, or the like. Further, the condition for executing this series of processing is that the rotational speed of the engine 42 is lower than a predetermined rotational speed (for example, 200 rpm). That is, even if the engine 42 is being automatically stopped, if the rotational speed of the engine 42 is higher than the predetermined rotational speed, this series of processing is not executed. The rotational speed of the engine 42 can be calculated based on the detection value of the crank angle sensor or the like.
 まず、第2診断として、上記第2の一対のアームにおいて双方のスイッチSpb,Snaをオン状態として、界磁巻線26に界磁電流が流れるか否か診断する(S11)。具体的には、界磁電流ifを検出する電流検出部29Bの検出値に基づいて、界磁巻線26に界磁電流が流れるか否か判断する。 First, as a second diagnosis, in the second pair of arms, both switches Spb and Sna are turned on to diagnose whether or not a field current flows in the field winding 26 (S11). Specifically, it is determined whether or not the field current flows through the field winding 26 based on the detection value of the current detection unit 29B that detects the field current if.
 続いて、上記第2診断において第2の一対のアームにおいて双方のスイッチSpb,Snaがオン状態とされた後、オフ制御として、第2の一対のアームにおいて双方のスイッチSpb,Snaをオフ状態とする(S12)。詳しくは、第2の一対のアームのうち、回転電機21の出力端子側に接続されたスイッチSpbをオフ状態とした後、回転電機21のアース側に接続されたスイッチSnaをオフ状態とする。すなわち、回転電機21の出力端子側に接続されたスイッチSpbがオフ状態とされた時に、回転電機21のアース側に接続されたスイッチSnaはオン状態となっている。この状態を形成する制御が第2接地制御に相当する。 Subsequently, after both switches Spb and Sna are turned on in the second pair of arms in the second diagnosis, both switches Spb and Sna are turned off in the second pair of arms as an off control. (S12). Specifically, in the second pair of arms, the switch Spb connected to the output terminal side of the rotating electrical machine 21 is turned off, and then the switch Sna connected to the ground side of the rotating electrical machine 21 is turned off. That is, when the switch Spb connected to the output terminal side of the rotating electrical machine 21 is turned off, the switch Sna connected to the ground side of the rotating electrical machine 21 is turned on. The control that forms this state corresponds to the second ground control.
 続いて、第1診断として、上記第1の一対のアームにおいて双方のスイッチSpa,Snbをオン状態として、界磁巻線26に界磁電流が流れるか否か診断する(S13)。具体的には、界磁電流ifを検出する電流検出部29Bの検出値に基づいて、界磁巻線26に界磁電流が流れるか否か判断する。 Subsequently, as a first diagnosis, both switches Spa and Snb are turned on in the first pair of arms to diagnose whether or not a field current flows through the field winding 26 (S13). Specifically, it is determined whether or not the field current flows through the field winding 26 based on the detection value of the current detection unit 29B that detects the field current if.
 続いて、第1接地制御として、第1の一対のアームのうち、回転電機21の出力端子側に接続されたスイッチSpaをオフ状態とする(S14)。このとき、第1の一対のアームのうち、回転電機21のアース側に接続されたスイッチSnbはオン状態とされている。その後、この一連の処理を終了する(END)。 Subsequently, as the first ground control, the switch Spa connected to the output terminal side of the rotating electrical machine 21 in the first pair of arms is turned off (S14). At this time, among the first pair of arms, the switch Snb connected to the ground side of the rotating electrical machine 21 is turned on. Thereafter, this series of processing ends (END).
 なお、S11の処理が第2診断部としての処理に相当し、S12の処理がオフ制御部としての処理に相当し、S13の処理が第1診断部としての処理に相当する。 In addition, the process of S11 corresponds to the process as a 2nd diagnostic part, the process of S12 corresponds to the process as an OFF control part, and the process of S13 corresponds to the process as a 1st diagnostic part.
 そして、エンジンECU40は、上記第1診断又は上記第2診断において界磁巻線26に界磁電流が流れないと診断された場合に、自動再始動の際にスタータ13によりエンジン42に回転力を付与する。 Then, when it is diagnosed that the field current does not flow through the field winding 26 in the first diagnosis or the second diagnosis, the engine ECU 40 applies a rotational force to the engine 42 by the starter 13 during the automatic restart. Give.
 以上詳述した本実施形態は、以下の利点を有する。 The embodiment described above has the following advantages.
 ・エンジン42の自動停止中に、第1の一対のアームのうち、回転電機21のアース側に接続されたスイッチSnbをオン状態とし、回転電機21の出力端子側に接続されたスイッチSpaをオフ状態とする第1接地制御が実行される。このため、エンジン42の自動停止中に回転電機21が停止したとしても、停止した状態の回転子が電位的に浮いた状態になることを抑制することができる。したがって、リーク電流が発生してもアース側のスイッチSnbを介してアースに流すことができ、エンジン42の自動停止中に回転子が腐食することを抑制することができる。 During the automatic stop of the engine 42, the switch Snb connected to the ground side of the rotating electrical machine 21 is turned on and the switch Spa connected to the output terminal side of the rotating electrical machine 21 is turned off. The first ground control for setting the state is executed. For this reason, even if the rotary electric machine 21 stops during the automatic stop of the engine 42, it is possible to prevent the rotor in the stopped state from being in a potential floating state. Therefore, even if a leak current occurs, it can flow to the ground via the switch Snb on the ground side, and the rotor can be prevented from corroding during the automatic stop of the engine 42.
 ・界磁回路23のスイッチSpa,Sna,Spb,Snbが故障している場合は、エンジン42の再始動の際に回転電機21に界磁電流を流すことができず、回転電機21によりエンジン42に回転力を付与することができない。この点、エンジン42の自動停止中において第1接地制御が実行される前に、第1の一対のアームにおいて双方のスイッチSpa,Snbをオン状態として、界磁電流が流れるか否か診断する第1診断が実行される。このため、回転電機21によりエンジン42に回転力を付与することができるか否か診断した上で、第1接地制御を実行することができる。 When the switches Spa, Sna, Spb, Snb of the field circuit 23 are out of order, the field current cannot be supplied to the rotating electrical machine 21 when the engine 42 is restarted. Rotational force cannot be applied to In this regard, before the first grounding control is executed during the automatic stop of the engine 42, both switches Spa and Snb are turned on in the first pair of arms to diagnose whether or not the field current flows. One diagnosis is performed. For this reason, it is possible to execute the first grounding control after diagnosing whether or not the rotating electrical machine 21 can apply the rotational force to the engine 42.
 ・エンジン42の自動停止中において第1診断が実行される前に、第2診断が実行される。このため、第2の一対のアームにより界磁電流を流して、回転電機21によりエンジン42に回転力を付与することができるか否か診断することができる。そして、第2の一対のアームにおいて双方のスイッチSpb,Snaがオン状態とされた後、第2の一対のアームにおいて双方のスイッチSpb,Snaをオフ状態とするオフ制御が実行される。このため、第2の一対のアームと第1の一対のアームとが短絡することを避けつつ、第1診断に移行することができる。 · The second diagnosis is executed before the first diagnosis is executed while the engine 42 is automatically stopped. For this reason, it is possible to diagnose whether or not the rotating electric machine 21 can apply a rotational force to the engine 42 by causing a field current to flow through the second pair of arms. Then, after both switches Spb and Sna are turned on in the second pair of arms, an off control is performed to turn off both switches Spb and Sna in the second pair of arms. For this reason, it is possible to shift to the first diagnosis while avoiding a short circuit between the second pair of arms and the first pair of arms.
 ・オフ制御において、第2の一対のアームにおいて双方のスイッチSpb,Snaがオフ状態とされる際に、第2の一対のアームのうち、回転電機21の出力端子側に接続されたスイッチSpbがオフ状態とされた後、回転電機21のアース側に接続されたスイッチSnaがオフ状態とされる。このため、回転電機21の出力端子側に接続されたスイッチSpbがオフ状態とされた時に、スイッチSpbがオフ状態且つスイッチSnaがオン状態(第2接地制御を実行した状態)を形成することができる。したがって、停止した状態の回転子が電位的に浮いた状態になることを抑制した上で、第1診断に移行することができる。 In the off control, when both switches Spb and Sna are turned off in the second pair of arms, the switch Spb connected to the output terminal side of the rotating electrical machine 21 in the second pair of arms is After being turned off, the switch Sna connected to the ground side of the rotating electrical machine 21 is turned off. For this reason, when the switch Spb connected to the output terminal side of the rotating electrical machine 21 is turned off, the switch Spb is turned off and the switch Sna is turned on (the state in which the second ground control is executed). it can. Therefore, it is possible to shift to the first diagnosis after suppressing the rotor in the stopped state from floating in potential.
 ・第1診断及び第2診断において界磁回路23の故障を診断し、第1診断又は第2診断において界磁電流が流れないと診断された場合に、スタータ13によりエンジン42を再始動することができる。 A failure of the field circuit 23 is diagnosed in the first diagnosis and the second diagnosis, and the engine 42 is restarted by the starter 13 when it is diagnosed that the field current does not flow in the first diagnosis or the second diagnosis. Can do.
 ・第1接地制御又は第2接地制御が実行された場合、第1の一対のアームのうち、回転電機21のアース側に接続されたスイッチSnb又はスイッチSnaがオン状態とされるため、界磁回路23において界磁電流を流す閉回路が形成される。このため、エンジン42の回転速度が高い場合には、回転電機21において発電が実行され、エンジン42に過剰な制動トルクが作用するおそれがある。この点、エンジン42の回転速度が所定回転速度よりも低いことを更に条件として、第1接地制御及び第2接地制御が実行される。したがって、第1接地制御を実行する際に、エンジン42に過剰な制動トルクが作用することを抑制することができる。 When the first grounding control or the second grounding control is executed, the switch Snb or the switch Sna connected to the ground side of the rotating electrical machine 21 is turned on in the first pair of arms. In the circuit 23, a closed circuit for flowing a field current is formed. For this reason, when the rotational speed of the engine 42 is high, electric power is generated in the rotating electrical machine 21, and excessive braking torque may act on the engine 42. In this regard, the first grounding control and the second grounding control are executed on the condition that the rotational speed of the engine 42 is lower than the predetermined rotational speed. Accordingly, it is possible to suppress an excessive braking torque from acting on the engine 42 when the first ground contact control is executed.
 なお、上記実施形態を、以下のように変更して実施することもできる。 It should be noted that the above embodiment can be modified as follows.
 ・エンジン42の回転速度が所定回転速度よりも低いことを、第1接地制御及び第2接地制御を実行する条件に含めないようにすることもできる。その場合、第1接地制御及び第2接地制御を実行する際に、エンジン42の出力軸と車両10の車軸との接続を遮断することが望ましい。また、エンジン42が迅速に停止するため、再始動可能な状態にするまでの時間を短縮することができる。 It can be excluded from the conditions for executing the first grounding control and the second grounding control that the rotational speed of the engine 42 is lower than the predetermined rotational speed. In this case, it is desirable to disconnect the connection between the output shaft of the engine 42 and the axle of the vehicle 10 when executing the first ground control and the second ground control. Moreover, since the engine 42 stops rapidly, the time until it can be restarted can be shortened.
 ・第1診断又は第2診断において界磁電流が流れないと診断された場合に、エンジン42の自動停止を中断することもできる。こうした構成によれば、回転電機ユニット16によりエンジン42を自動再始動できないおそれがある場合に、エンジン42を自動停止させないようにすることができる。 When the field current does not flow in the first diagnosis or the second diagnosis, the automatic stop of the engine 42 can be interrupted. According to such a configuration, when there is a possibility that the engine 42 cannot be automatically restarted by the rotating electrical machine unit 16, the engine 42 can be prevented from being automatically stopped.
 ・オフ制御において、第2の一対のアームにおいて双方のスイッチSpb,Snaをオフ状態とする際に、第2の一対のアームにおいて双方のスイッチSpb,Snaを同時にオフ状態にすることもできる。 In the off control, when both the switches Spb and Sna are turned off in the second pair of arms, both the switches Spb and Sna can be turned off simultaneously in the second pair of arms.
 ・図3において、S11の第2診断を省略することもでき、S13の第1診断を省略することもできる。また、回転電機ECU24(制御装置)は、エンジン42の自動停止中に、第2の一対のアームのうち、回転電機21のアース側に接続されたスイッチSna(パワートランジスタ)をオン状態とし、回転電機21の出力端子側に接続されたスイッチSpb(パワートランジスタ)をオフ状態とする第2接地制御のみを実行することもできる。 In FIG. 3, the second diagnosis of S11 can be omitted, and the first diagnosis of S13 can be omitted. The rotating electrical machine ECU 24 (control device) turns on a switch Sna (power transistor) connected to the ground side of the rotating electrical machine 21 among the second pair of arms while the engine 42 is automatically stopped. Only the second ground control for turning off the switch Spb (power transistor) connected to the output terminal side of the electric machine 21 can be executed.
 ・スタータ13を備えていない車両10を採用することもできる。 · A vehicle 10 that does not include the starter 13 may be employed.
 ・力行機能を有する回転電機ユニット16に代えて、図4に示すように発電機ユニット116を採用することもできる。この場合、図1のインバータ22に代えて図4のダイオード整流回路122とし、界磁回路23において第2の一対のアームの双方のスイッチSpb,Snaを省略することができる。こうした構成であっても、回転電機ECU24は、上記第1診断及び第1接地制御を実行することができる。 · Instead of the rotating electrical machine unit 16 having a power running function, a generator unit 116 may be employed as shown in FIG. In this case, the diode rectifier circuit 122 of FIG. 4 can be used instead of the inverter 22 of FIG. 1, and the switches Spb and Sna of the second pair of arms can be omitted in the field circuit 23. Even with such a configuration, the rotating electrical machine ECU 24 can execute the first diagnosis and the first ground control.
 ・図5に示すように、リチウムイオン蓄電池12の定格電圧が48Vであり、回転電機21が48Vの電圧により駆動され、車両10が双方向のDCDCコンバータ50を備えていてもよい。こうした構成によれば、界磁回路23(回転電機ユニット16)には、リチウムイオン蓄電池12から48Vの電圧が供給される。また、電池ユニットUから鉛蓄電池11へ供給される電圧がDCDCコンバータ50により降圧され、鉛蓄電池11から電池ユニットUへ供給される電圧がDCDCコンバータ50により昇圧される。 As shown in FIG. 5, the rated voltage of the lithium ion storage battery 12 may be 48V, the rotating electrical machine 21 may be driven by a voltage of 48V, and the vehicle 10 may include a bidirectional DCDC converter 50. According to such a configuration, a voltage of 48 V is supplied from the lithium ion storage battery 12 to the field circuit 23 (the rotating electrical machine unit 16). Further, the voltage supplied from the battery unit U to the lead storage battery 11 is stepped down by the DCDC converter 50, and the voltage supplied from the lead storage battery 11 to the battery unit U is boosted by the DCDC converter 50.
 ここで、界磁回路23に供給される電圧が48Vである場合は、界磁回路23に供給される電圧が12Vである場合よりも、回転子に流れるリーク電流が大きくなり、回転子の腐食が進み易くなる。また、48Vの電圧を用いて回転電機ユニット16が、エンジン42の回転速度が共振領域(例えば200~400rpm)を早く通過するように負トルクを加える制御や、エンジン42のピストンの停止位置を再始動に適した位置に停止させる制御を行う場合がある。これらの制御を行う場合は、エンジン42が停止する直前まで界磁巻線26に電流を流すため、エンジン42が停止した時に界磁巻線26に電荷が残りやすい。そして、界磁巻線26に電荷が残った状態で、融雪剤を含む水等により接続端子P5(P7)とアース電位である電機子鉄心とが短絡すると、回転子と電機子鉄心との間にリーク電流が流れ、回転子の腐食が進み易くなる。この点、上記構成に対して、上記実施形態の各制御を実行することにより、回転子の腐食が進み易い構成に対して、回転子の腐食を抑制することができる。 Here, when the voltage supplied to the field circuit 23 is 48V, the leakage current flowing through the rotor is larger than when the voltage supplied to the field circuit 23 is 12V, and the rotor is corroded. Is easier to proceed. In addition, the rotating electrical machine unit 16 uses a voltage of 48 V to apply a negative torque so that the rotational speed of the engine 42 quickly passes through a resonance region (for example, 200 to 400 rpm), or reset the piston stop position of the engine 42. There is a case where control is performed to stop at a position suitable for starting. When these controls are performed, a current flows through the field winding 26 until immediately before the engine 42 stops, so that electric charges easily remain in the field winding 26 when the engine 42 stops. Then, when the connection terminal P5 (P7) and the armature core at the ground potential are short-circuited with water or the like containing a snow melting agent in a state where electric charges remain in the field winding 26, the space between the rotor and the armature core is reduced. Leakage current flows through the rotor and corrosion of the rotor easily proceeds. In this regard, by performing each control of the above embodiment on the above configuration, the rotor corrosion can be suppressed as compared with the configuration in which the rotor corrosion easily proceeds.
 ・エンジンECU40が回転電機ECU24に指令して、第1診断、第1接地制御、第2診断、及びオフ制御(第2接地制御)を実行させることもできる。すなわち、エンジンECU40により、第1診断部、第2診断部、及びオフ制御部、すなわち回転電機の制御装置を構成することもできる。 The engine ECU 40 can instruct the rotating electrical machine ECU 24 to execute the first diagnosis, the first grounding control, the second diagnosis, and the off control (second grounding control). That is, the engine ECU 40 can constitute a first diagnosis unit, a second diagnosis unit, and an off control unit, that is, a control device for a rotating electrical machine.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (12)

  1.  所定の自動停止条件が成立した場合にエンジン(42)を自動停止させ、その後に所定の再始動条件が成立した場合に前記エンジンを自動再始動させる車両(10)に適用され、ブリッジ回路の対向する第1の一対のアームがパワートランジスタ(Spa,Snb)で構成され、第2の一対のアームがダイオード(Dna,Dpb)で構成されたトランジスタチョッパ式の励磁回路(23)から励磁電流が供給され、前記エンジンの回転力に基づく発電機能を有する回転電機(21)を、制御する制御装置(24、40)であって、
     前記エンジンの前記自動停止中に、前記第1の一対のアームのうち、前記回転電機のアース側に接続された前記パワートランジスタ(Snb)をオン状態とし、前記回転電機の出力端子側に接続された前記パワートランジスタ(Spa)をオフ状態とする第1接地制御を実行する回転電機の制御装置。
    This is applied to a vehicle (10) that automatically stops the engine (42) when a predetermined automatic stop condition is satisfied, and then automatically restarts the engine when a predetermined restart condition is satisfied. An excitation current is supplied from a transistor chopper type excitation circuit (23) in which a first pair of arms is configured with power transistors (Spa, Snb) and a second pair of arms is configured with diodes (Dna, Dpb). A control device (24, 40) for controlling the rotating electrical machine (21) having a power generation function based on the rotational force of the engine,
    During the automatic stop of the engine, among the first pair of arms, the power transistor (Snb) connected to the ground side of the rotating electrical machine is turned on and connected to the output terminal side of the rotating electrical machine. A control device for a rotating electrical machine that performs first grounding control for turning off the power transistor (Spa).
  2.  前記回転電機は、前記励磁回路から励磁電流が供給された状態で、前記エンジンに回転力を付与する力行機能を有し、
     前記エンジンの前記自動停止中において前記第1接地制御が実行される前に、前記第1の一対のアームにおいて双方の前記パワートランジスタをオン状態として、前記励磁電流が流れるか否か診断する第1診断を実行する第1診断部(24、40)を備える請求項1に記載の回転電機の制御装置。
    The rotating electrical machine has a power running function for applying a rotational force to the engine in a state where an excitation current is supplied from the excitation circuit,
    Before the first grounding control is executed during the automatic stop of the engine, both the power transistors are turned on in the first pair of arms to diagnose whether the excitation current flows. The control device for a rotating electrical machine according to claim 1, further comprising a first diagnosis unit (24, 40) for executing diagnosis.
  3.  前記第2の一対のアームを構成するダイオードは、それぞれパワートランジスタ(Sna,Spb)のボディダイオードを利用しており、
     前記エンジンの前記自動停止中に、前記第2の一対のアームのうち、前記回転電機のアース側に接続された前記パワートランジスタ(Sna)をオン状態とし、前記回転電機の出力端子側に接続された前記パワートランジスタ(Spb)をオフ状態とする第2接地制御を実行する請求項1又は2に記載の回転電機の制御装置。
    The diodes constituting the second pair of arms use body diodes of power transistors (Sna, Spb), respectively.
    During the automatic stop of the engine, of the second pair of arms, the power transistor (Sna) connected to the ground side of the rotating electrical machine is turned on and connected to the output terminal side of the rotating electrical machine. The control device for a rotating electrical machine according to claim 1 or 2, wherein second grounding control for turning off the power transistor (Spb) is executed.
  4.  前記回転電機は、前記励磁回路から励磁電流が供給された状態で、前記エンジンに回転力を付与する力行機能を有し、
     前記エンジンの前記自動停止中において前記第2接地制御が実行される前に、前記第2の一対のアームにおいて双方の前記パワートランジスタをオン状態として、前記励磁電流が流れるか否か診断する第2診断を実行する第2診断部(24、40)を備える請求項3に記載の回転電機の制御装置。
    The rotating electrical machine has a power running function for applying a rotational force to the engine in a state where an excitation current is supplied from the excitation circuit,
    Before the second grounding control is executed during the automatic stop of the engine, both the power transistors are turned on in the second pair of arms to diagnose whether the excitation current flows. The control apparatus for a rotating electrical machine according to claim 3, further comprising a second diagnosis unit (24, 40) for executing diagnosis.
  5.  前記第2の一対のアームを構成するダイオードは、それぞれパワートランジスタ(Sna,Spb)のボディダイオードを利用しており、
     前記エンジンの前記自動停止中において前記第1診断が実行される前に、前記第2の一対のアームにおいて双方の前記パワートランジスタをオン状態として、前記励磁電流が流れるか否か診断する第2診断を実行する第2診断部と、
     前記第2診断部により前記第2の一対のアームにおいて双方の前記パワートランジスタがオン状態とされた後、前記第2の一対のアームにおいて双方の前記パワートランジスタをオフ状態とするオフ制御を実行するオフ制御部(24、40)を備える請求項2に記載の回転電機の制御装置。
    The diodes constituting the second pair of arms use body diodes of power transistors (Sna, Spb), respectively.
    Before the first diagnosis is executed during the automatic stop of the engine, a second diagnosis for diagnosing whether the excitation current flows by turning both the power transistors on in the second pair of arms. A second diagnostic unit for executing
    After both the power transistors are turned on in the second pair of arms by the second diagnostic unit, off control is performed to turn off both the power transistors in the second pair of arms. The control apparatus for a rotating electrical machine according to claim 2, further comprising an off control unit (24, 40).
  6.  前記オフ制御部は、前記オフ制御において、前記第2の一対のアームにおいて双方の前記パワートランジスタをオフ状態とする際に、前記第2の一対のアームのうち、前記回転電機の出力端子側に接続された前記パワートランジスタ(Spb)をオフ状態とした後、前記回転電機のアース側に接続された前記パワートランジスタ(Sna)をオフ状態とする請求項5に記載の回転電機の制御装置。 In the off control, when the off control unit turns off both of the power transistors in the second pair of arms, the off control unit is connected to the output terminal side of the rotating electrical machine in the second pair of arms. The control device for a rotating electrical machine according to claim 5, wherein the power transistor (Sna) connected to the ground side of the rotating electrical machine is turned off after the connected power transistor (Spb) is turned off.
  7.  前記車両は、前記エンジンの始動の際に前記エンジンに回転力を付与するスタータ(13)を備え、
     前記第1診断部により前記励磁電流が流れないと診断された場合に、前記自動再始動の際に前記スタータにより前記エンジンに回転力を付与する請求項2に記載の回転電機の制御装置。
    The vehicle includes a starter (13) that applies a rotational force to the engine when the engine is started.
    The control device for a rotating electrical machine according to claim 2, wherein when the first diagnosis unit diagnoses that the exciting current does not flow, the starter applies a rotational force to the engine during the automatic restart.
  8.  前記車両は、前記エンジンの始動の際に前記エンジンに回転力を付与するスタータ(13)を備え、
     前記第1診断部又は前記第2診断部により前記励磁電流が流れないと診断された場合に、前記自動再始動の際に前記スタータにより前記エンジンに回転力を付与する請求項5又は6に記載の回転電機の制御装置。
    The vehicle includes a starter (13) that applies a rotational force to the engine when the engine is started.
    The rotational force is applied to the engine by the starter at the time of the automatic restart when the first diagnostic unit or the second diagnostic unit diagnoses that the excitation current does not flow. Rotating electrical machine control device.
  9.  前記エンジンの回転速度が所定回転速度よりも低いことを更に条件として、前記第1接地制御を実行する請求項1~8のいずれか1項に記載の回転電機の制御装置。 The control device for a rotating electrical machine according to any one of claims 1 to 8, wherein the first ground contact control is executed on the condition that a rotational speed of the engine is lower than a predetermined rotational speed.
  10.  前記エンジンの回転速度が所定回転速度よりも低いことを更に条件として、前記第2接地制御を実行する請求項3又は4に記載の回転電機の制御装置。 5. The control device for a rotating electrical machine according to claim 3, wherein the second grounding control is executed on the condition that the rotational speed of the engine is lower than a predetermined rotational speed.
  11.  前記励磁回路には、48Vの電圧が供給される請求項1~10のいずれか1項に記載の回転電機の制御装置。 11. The rotating electrical machine control device according to claim 1, wherein a voltage of 48 V is supplied to the excitation circuit.
  12.  前記励磁回路から前記回転電機の回転子巻線に前記励磁電流が供給される請求項1~11のいずれか1項に記載の回転電機の制御装置。 12. The rotating electrical machine control device according to claim 1, wherein the exciting current is supplied from the exciting circuit to a rotor winding of the rotating electrical machine.
PCT/JP2017/032126 2016-09-12 2017-09-06 Control device for rotary electric machine WO2018047866A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112017004581.9T DE112017004581T5 (en) 2016-09-12 2017-09-06 Control device of a rotating electrical machine
US16/332,578 US10742156B2 (en) 2016-09-12 2017-09-06 Control apparatus of rotating electrical machine
CN201780055713.XA CN109819687B (en) 2016-09-12 2017-09-06 Control device for rotating electric machine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-177956 2016-09-12
JP2016177956 2016-09-12
JP2017-160310 2017-08-23
JP2017160310A JP6565983B2 (en) 2016-09-12 2017-08-23 Control device for rotating electrical machine

Publications (1)

Publication Number Publication Date
WO2018047866A1 true WO2018047866A1 (en) 2018-03-15

Family

ID=61561420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032126 WO2018047866A1 (en) 2016-09-12 2017-09-06 Control device for rotary electric machine

Country Status (1)

Country Link
WO (1) WO2018047866A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000197394A (en) * 1998-12-28 2000-07-14 Mitsubishi Electric Corp Controller of ac generator for idling stop and start vehicle
JP4442582B2 (en) * 2006-04-17 2010-03-31 株式会社デンソー Vehicle power generation control device
CN103684160A (en) * 2013-12-05 2014-03-26 南京航空航天大学 Self-boosting doubly-salient brushless direct-current power generation system
US20140266079A1 (en) * 2013-03-15 2014-09-18 Hamilton Sundstrand Corporation Method of controlling rotating main field converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000197394A (en) * 1998-12-28 2000-07-14 Mitsubishi Electric Corp Controller of ac generator for idling stop and start vehicle
JP4442582B2 (en) * 2006-04-17 2010-03-31 株式会社デンソー Vehicle power generation control device
US20140266079A1 (en) * 2013-03-15 2014-09-18 Hamilton Sundstrand Corporation Method of controlling rotating main field converter
CN103684160A (en) * 2013-12-05 2014-03-26 南京航空航天大学 Self-boosting doubly-salient brushless direct-current power generation system

Similar Documents

Publication Publication Date Title
KR100877854B1 (en) an emergency DLC operating method for a hybrid electric vehicle
US10647202B2 (en) Hybrid vehicle, control device for hybrid vehicle and control method for hybrid vehicle
US10124794B2 (en) Vehicle and control method therefor
CN108340784B (en) Automobile
US10000123B2 (en) Hybrid vehicle
JP6575458B2 (en) Abnormality diagnosis device
US10214205B2 (en) Hybrid vehicle
JP6654890B2 (en) Power supply for vehicles
US10658965B2 (en) Motor vehicle
JP6760194B2 (en) Hybrid vehicle
WO2018139204A1 (en) Control device for rotating electrical machine
JP5385058B2 (en) Vehicle motor control device
JP6565983B2 (en) Control device for rotating electrical machine
JP2013123941A (en) Hybrid vehicle
JP6683167B2 (en) Rotating electric machine control device and power supply system
WO2018047866A1 (en) Control device for rotary electric machine
US20180154884A1 (en) Hybrid vehicle
US10391863B2 (en) Electrically driven vehicle
JP6790777B2 (en) Rotating electric machine control device
WO2018207829A1 (en) Control device for rotary electric machine apparatus
JP6459924B2 (en) Control device for electric vehicle
JP7347997B2 (en) Vehicle control device
JP6973289B2 (en) Hybrid car
US11519375B2 (en) Hybrid vehicle and method for controlling hybrid vehicle
JP2018061398A (en) Rotary electric machine control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848804

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17848804

Country of ref document: EP

Kind code of ref document: A1