WO2018207829A1 - Control device for rotary electric machine apparatus - Google Patents

Control device for rotary electric machine apparatus Download PDF

Info

Publication number
WO2018207829A1
WO2018207829A1 PCT/JP2018/017957 JP2018017957W WO2018207829A1 WO 2018207829 A1 WO2018207829 A1 WO 2018207829A1 JP 2018017957 W JP2018017957 W JP 2018017957W WO 2018207829 A1 WO2018207829 A1 WO 2018207829A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
time
control unit
voltage
element group
Prior art date
Application number
PCT/JP2018/017957
Other languages
French (fr)
Japanese (ja)
Inventor
信介 川津
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112018002457.1T priority Critical patent/DE112018002457T5/en
Publication of WO2018207829A1 publication Critical patent/WO2018207829A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0241Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/10Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
    • H02P9/102Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load for limiting effects of transients
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • H02P9/26Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices
    • H02P9/30Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/48Arrangements for obtaining a constant output value at varying speed of the generator, e.g. on vehicle

Definitions

  • the present disclosure relates to a control device that controls a rotating electrical machine device having a power generation function.
  • Rotating electrical machine devices having a power generation function supply power to various electric loads and batteries via wiring connected to output terminals. If the wiring is disconnected from the output terminal or the battery terminal during power generation by the rotating electrical machine device, a transient high voltage called a load dump is generated. When such a load dump voltage is generated, load dump protection control is performed in order to protect the electric load and the elements in the rotating electrical machine apparatus.
  • Patent Document 1 an H bridge circuit composed of two MOS transistors and two diodes is connected to a field winding, and a three-phase bridge circuit is connected to a stator winding.
  • the following control is performed. That is, the control device described in Patent Document 1 stops the supply of the excitation current to the field winding and controls all the MOS transistors on the lower arm (low side) of the three-phase bridge circuit to be on. At this time, all the upper-arm (high-side) MOS transistors are controlled to be off.
  • Patent Document 1 does not consider in which order the MOS transistor of the H-bridge circuit and the MOS transistor of the three-phase bridge circuit should be controlled. For this reason, the control device described in Patent Document 1 still leaves room for improvement in suppressing the peak value of the load dump voltage.
  • the present disclosure has been made to solve the above-described problems, and a main object thereof is to provide a control device for a rotating electrical machine apparatus that can suppress a peak value of a load dump voltage.
  • the first means for solving the above problems is as follows.
  • a power conversion circuit comprising a plurality of phases including a switching element of an upper arm and a switching element of a lower arm connected in series, and converting an AC voltage generated in the armature winding into a DC voltage;
  • An H-bridge circuit having two upper arm switching elements and two lower arm switching elements for supplying an excitation current to the field winding;
  • a voltage detection unit for detecting the voltage of the output terminal of the power conversion circuit;
  • a control device applied to a rotating electrical machine device comprising: The first element group that is all upper-arm switching elements or all lower-arm switching elements among all the switching elements of the power conversion circuit when the voltage detected by the voltage detection unit is higher than a threshold value.
  • a first control unit that controls the switching element including: Control is started after the end of the control by the first control unit, and after the time that the first element group is actually turned off and maintained, among the switching elements of the power conversion circuit, the first A second control unit that actually turns on the second element group that is all the switching elements of the arm opposite to the arm corresponding to the one element group; Control is started after the end of the control by the second control unit, and includes a third element group that is all upper-arm switching elements or all lower-arm switching elements among all the switching elements of the H-bridge circuit.
  • a third control unit for controlling the switching element to turn off; Control is started after the end of the control by the third control unit, and after the time that the third element group is actually turned off and maintained, among the all switching elements of the H-bridge circuit, the first A fourth control unit that actually turns on the fourth element group that is all the switching elements of the arm opposite to the arm corresponding to the three element group; Is provided.
  • the H bridge circuit has two upper arm switching elements and two lower arm switching elements, and supplies an excitation current to the field winding.
  • the field pole is magnetized by the field winding, and an AC voltage is generated in the armature winding by the magnetic field generated by the field pole.
  • the power conversion circuit includes a plurality of phases including an upper arm switching element and a lower arm switching element connected in series, and converts an AC voltage generated in the armature winding into a DC voltage.
  • the voltage detection unit detects the voltage at the output terminal of the power conversion circuit.
  • load dump voltage is generated when the wiring is disconnected from the output terminal of the power conversion circuit or the electrical load is disconnected from the wiring.
  • it is necessary to reduce the excitation current flowing in the field winding or to decrease the current flowing in the armature winding.
  • the inventor of the present application does not reduce the exciting current flowing in the field winding, but rather reduces the excitation current flowing in the field winding. It has been found that reducing the flowing current is effective.
  • the first control unit includes all the upper arm switching elements or all the lower arm switching elements among all the switching elements of the power conversion circuit.
  • the switching element including the first element group is controlled to be off. For this reason, when the load dump voltage is generated, the voltage detected by the voltage detection unit becomes higher than the threshold value, and the first element group is controlled to be turned off.
  • This control requires a predetermined processing time including a calculation time and a signal transmission time by the first control unit. Furthermore, before the first element group is actually turned off, the response delay time, the operation time, and the like of the first element group are required.
  • the second control unit starts the control after the control by the first control unit, and after a period of time during which the first element group is actually turned off and maintained, all the switching elements of the power conversion circuit Among them, the second element group which is all the switching elements of the arm opposite to the arm corresponding to the first element group is actually turned on. For this reason, when the 2nd element group of a power converter circuit is turned ON, it can prevent that a 1st element group and a 2nd element group short-circuit.
  • the third control unit starts control after the end of the control by the second control unit, and is all the upper arm switching elements or all the lower arm switching elements among all the switching elements of the H-bridge circuit.
  • the switching element including the third element group is controlled to be turned off.
  • the fourth control unit starts the control after the control by the third control unit, and after a time during which the third element group is actually turned off and maintained, all the switching elements of the H bridge circuit are passed.
  • the fourth element group which is all the switching elements of the arm opposite to the arm corresponding to the third element group is actually turned on. For this reason, when the 4th element group of an H bridge circuit is turned on, it can prevent that a 3rd element group and a 4th element group short-circuit.
  • the control by the first control unit and the second control unit is executed with priority over the control by the third control unit and the fourth control unit. Therefore, when the load dump voltage is generated, the control for reducing the current flowing through the armature winding can be executed with the highest priority, and the peak value of the load dump voltage can be suppressed.
  • the time from the end time of the control by the first control unit to the time point when the second element group is actually turned on is from the end time of the control by the third control unit to the fourth element group. Is shorter than the time to actually turn on.
  • the time from the end of control by the first control unit to the time when the second element group is actually turned on is the time when the fourth element group is actually turned on from the end of control by the third control unit. It is shorter than the time until the point of time. For this reason, when the control by the first control unit and the second control unit is executed and the second element group is actually turned on, the control by the third control unit and the fourth control unit is controlled by the first control unit and the second control unit. When the control is executed with priority over the control by the control unit, it is earlier than the time when the fourth element group is actually turned on. Therefore, when the load dump voltage is generated, the first control and the second control that reduce the current flowing through the armature winding are executed with the highest priority, which is further effective in suppressing the peak value of the load dump voltage. Become.
  • the time from the end of the control by the first controller to the time when the second element group is actually turned on is from the end of the control by the first controller to the first element group. Is longer than the time that is actually kept off.
  • the time from the end of control by the first control unit to the time when the second element group is actually turned on is the time when the first element group is actually turned off from the end of control by the first control unit. It is longer than the time that is maintained. For this reason, the second control unit does not need to wait for the time that the first element group is actually turned off and maintained after the end of the control by the first control unit.
  • the control for turning on the second element group may be started immediately after the end of the control. Therefore, after the control by the first control unit, the control by the second control unit is executed before the control by the third control unit and the fourth control unit, in order to further suppress the peak value of the load dump voltage. It becomes effective.
  • the first control unit controls only the switching elements of all the upper arms of the power conversion circuit, for example, the behavior of the rotating electrical machine device becomes unstable. There is a risk.
  • the first control unit is configured to control all the switching elements of the power conversion circuit to be turned off when the voltage detected by the voltage detection unit is higher than a threshold value. Adopted. Therefore, when the first control unit controls the switching element including the first element group to be turned off, the behavior of the rotating electrical machine device can be suppressed from becoming unstable.
  • the threshold value is the first threshold value
  • the voltage detected by the voltage detection unit is higher than the second threshold value set lower than the first threshold value and the first threshold value. If lower, a configuration is adopted in which a fifth control unit that controls all the switching elements of the power conversion circuit to be off is provided. For this reason, when the voltage detected by the voltage detector is higher than the second threshold set lower than the first threshold and lower than the first threshold, the rotating electrical machine is prior to the load dump protection control. Power generation stop control by the device (control by the fifth control unit) can be executed. Therefore, when an abnormality occurs in the power generation by the rotating electrical machine device, it is possible to suppress the power generation by the rotating electrical machine device from being excessively limited. In addition, when the voltage detected by the voltage detection unit becomes higher than the first threshold value after becoming higher than the second threshold value, load dump protection control is executed.
  • the first control unit on the condition that the voltage detected by the voltage detection unit exceeds the first threshold over a first time,
  • the switching element including the first element group is controlled to be turned off, and the fifth control unit is configured to exceed the second time in which the voltage detected by the voltage detection unit is set longer than the first time.
  • control by the fifth control unit when the control by the fifth control unit is executed, before the control by the first control unit is executed, the time for which all the switching elements of the power conversion circuit are actually turned off and maintained has elapsed. There is. In this case, the control by the first control unit can be omitted and the control by the second control unit can be executed immediately.
  • the seventh means the time that all the switching elements of the power conversion circuit are actually turned off and maintained by the fifth control unit has elapsed, and the voltage detection unit has detected it.
  • the control by the first control unit ends, and the second control unit determines that the time that the first element group is actually turned off and has passed A configuration is adopted in which control is executed. Therefore, before the control by the first control unit is executed, when all the switching elements of the power conversion circuit are actually turned off and maintained, the control by the first control unit is omitted.
  • the control by the second control unit can be executed immediately. As a result, the peak value of the load dump voltage can be further suppressed when the load dump voltage is generated.
  • FIG. 1 is an electric circuit diagram showing an electrical configuration of a vehicle.
  • FIG. 2 is an electric circuit diagram showing an electrical configuration of the rotating electrical machine unit
  • FIG. 3 is a time chart showing an aspect of load dump protection control of a comparative example
  • FIG. 4 is a flowchart showing the procedure of load dump protection control
  • FIG. 5 is a time chart showing an aspect of load dump protection control
  • FIG. 6 is a flowchart showing the procedure of overpower protection control
  • FIG. 7 is a time chart showing an aspect of overpower protection control.
  • the vehicle 10 includes an engine 42, a starter 13, a lead storage battery 11, a lithium ion storage battery 12, electric loads 14 and 15, a rotating electrical machine unit 16, and the like.
  • Engine 42 (internal combustion engine) is a gasoline engine, a diesel engine, or the like, and generates driving force by combustion of fuel.
  • the starter 13 (starting device) applies an initial rotational force to the output shaft (crankshaft) of the engine 42 when the engine 42 is started.
  • the power supply system of the vehicle 10 is a dual power supply system having a lead storage battery 11 and a lithium ion storage battery 12 as a power storage unit.
  • Each storage battery 11, 12 can supply power to the starter 13, various electric loads 14, 15, and the rotating electrical machine unit 16. Further, each of the storage batteries 11 and 12 can be charged by the rotating electrical machine unit 16.
  • a lead storage battery 11 and a lithium ion storage battery 12 are connected in parallel to the rotating electrical machine unit 16 and the electrical loads 14 and 15, respectively.
  • the lead storage battery 11 is a well-known general-purpose storage battery.
  • the lithium ion storage battery 12 is a high-density storage battery that has less power loss during charging / discharging and higher output density and energy density than the lead storage battery 11.
  • the lithium ion storage battery 12 is desirably a storage battery having higher energy efficiency during charging / discharging than the lead storage battery 11.
  • the lithium ion storage battery 12 is configured as an assembled battery having a plurality of single cells. These storage batteries 11 and 12 have the same rated voltage, for example, 12V.
  • the lithium ion storage battery 12 is housed in a housing case and configured as a battery unit U integrated with a substrate.
  • the battery unit U has output terminals P1 and P2, among which the lead storage battery 11, the starter 13 and the electric load 14 are connected to the output terminal P1, and the electric load 15 and the rotating electrical machine unit 16 are connected to the output terminal P2. + B terminal is connected.
  • An electrical path L4 (wiring) is provided between the output terminal P2 and the + B terminal.
  • the electric loads 14 and 15 have different requirements for the voltage of power supplied from the storage batteries 11 and 12.
  • the electric load 14 includes a constant voltage required load that is required to be stable so that the voltage of the supplied power is constant or at least varies within a predetermined range.
  • the electric load 15 is a general electric load other than the constant voltage required load.
  • the electric load 14 that is a constant voltage required load include various ECUs such as a navigation device, an audio device, a meter device, and an engine ECU. In this case, by suppressing the voltage fluctuation of the supplied power, it is possible to suppress the occurrence of unnecessary reset and the like in each of the above devices, and ensure stable operation.
  • the electric load 14 may include a travel system actuator such as an electric steering device or a brake device.
  • Specific examples of the electric load 15 include a seat heater, a heater for a defroster for a rear window, a headlight, a wiper for a front window, and a blower fan for an air conditioner.
  • the rotating electrical machine unit 16 (corresponding to the rotating electrical machine device) controls the operation of the rotating electrical machine 21, the inverter 22, the field circuit 23, the rotating electrical machine ECU 24 that controls the operation of the rotating electrical machine 21, and the field circuit 23.
  • An ASIC (Application Specific Integrated28Circuit) 28 is provided.
  • the rotating electrical machine unit 16 is a generator with a motor function, and is configured as an electromechanically integrated ISG (Integrated / Starter / Generator). Details of the rotating electrical machine unit 16 will be described later.
  • the battery unit U is provided with an electrical path L1 that connects the output terminals P1 and P2 and an electrical path L2 that connects the point N1 on the electrical path L1 and the lithium ion storage battery 12 as an in-unit electrical path.
  • the switch 31 is provided in the electrical path L1
  • the switch 32 is provided in the electrical path L2.
  • the battery unit U is provided with a bypass path L3 that bypasses the switch 31.
  • the bypass path L3 is provided so as to connect the output terminal P3 and the point N1 on the electrical path L1.
  • the output terminal P3 is connected to the lead storage battery 11 via the fuse 35.
  • a bypass switch 36 composed of a normally closed mechanical relay is provided in the bypass path L3, for example. By turning off (closing) the bypass switch 36, the lead storage battery 11, the electrical load 15, and the rotating electrical machine unit 16 are electrically connected even if the switch 31 is turned off (opened).
  • the battery unit U includes a battery ECU 37 that controls on / off (opening / closing) of the switches 31 and 32.
  • the battery ECU 37 is constituted by a microcomputer including a CPU, a ROM, a RAM, an input / output interface, and the like.
  • the battery ECU 37 controls on / off of the switches 31 and 32 based on the traveling state of the vehicle 10 and the storage states of the storage batteries 11 and 12. Thereby, charging / discharging is implemented using the lead storage battery 11 and the lithium ion storage battery 12 selectively.
  • the battery ECU 37 calculates the charging rate SOC (State Of Charge) of the lithium ion storage battery 12, and sets the charging amount and discharging amount to the lithium ion storage battery 12 so that the charging rate SOC is maintained within a predetermined use range. Control.
  • SOC State Of Charge
  • the rotating electrical machine ECU 24 of the rotating electrical machine unit 16 and the battery ECU 37 of the battery unit U are connected to an engine ECU 40 as a host controller that manages the ECUs 24 and 37 in an integrated manner.
  • the engine ECU 40 is composed of a microcomputer including a CPU, ROM, RAM, input / output interface, and the like, and controls the operation of the engine 42 based on the engine operating state and the vehicle traveling state each time.
  • the ECUs 24, 37, and 40 are connected by a communication line 41 that constructs a communication network such as CAN and can communicate with each other, and bidirectional communication is performed at a predetermined cycle. Thereby, the various data memorize
  • the rotating electrical machine 21 is a three-phase AC motor, and U-phase, V-phase, and W-phase windings 25U, 25V, and 25W as a three-phase armature winding (stator winding), and a rotor that magnetizes the field poles.
  • a field winding 26 is provided as a winding.
  • the rotating electrical machine unit 16 includes a power generation function that generates power (regenerative power generation) by rotating the engine output shaft and the axle, and a power running function that applies rotational force to the engine output shaft.
  • the rotating shaft of the rotating electrical machine 21 is connected to an engine output shaft (not shown) via a belt so as to be able to transmit driving force. Electricity is generated by rotating the rotating shaft of the rotating electrical machine 21 with the rotation of the engine output shaft through the belt, and power is generated by rotating the engine output shaft with the rotating shaft of the rotating electrical machine 21.
  • the inverter 22 (corresponding to a power conversion circuit) converts the AC voltage output from each phase winding 25U, 25V, 25W into a DC voltage and outputs it to the battery unit U.
  • the inverter 22 converts the DC voltage input from the battery unit U into an AC voltage and outputs the AC voltage to the phase windings 25U, 25V, and 25W.
  • the inverter 22 is a bridge circuit having the same number of upper and lower arms as the number of phases of the phase winding, and constitutes a three-phase full-wave rectifier circuit.
  • the inverter 22 adjusts the power supplied to the armature winding of the rotating electrical machine 21 in a state where the field current (excitation current) is supplied from the field circuit 23 to the field winding 26, thereby rotating the rotating electrical machine.
  • the drive circuit which drives 21 is comprised.
  • the inverter 22 includes an upper arm switch Sp and a lower arm switch Sn for each phase.
  • voltage-controlled semiconductor switching elements are used as the switches Sp and Sn (power transistors), and specifically, N-channel MOSFETs (bidirectional switches) are used.
  • An upper arm diode Dp is connected in antiparallel to the upper arm switch Sp, and a lower arm diode Dn is connected in antiparallel to the lower arm switch Sn.
  • the body diodes of the switches Sp and Sn are used as the diodes Dp and Dn.
  • the diodes Dp and Dn are not limited to body diodes, and may be diodes that are separate parts from the switches Sp and Sn, for example.
  • An intermediate connection point of the series connection body of the switches Sp and Sn in each phase is connected to one end of each phase winding 25U, 25V, and 25W.
  • the field circuit 23 (corresponding to an H-bridge circuit) is a bidirectional switch circuit, and a DC voltage can be applied to the field winding 26.
  • the field circuit 23 (transistor chopper-type excitation circuit) constitutes an H-bridge rectifier circuit in which four switches Spa, Sna, Spb, and Snb are combined. Since the basic configuration of each switch Spa, Sna, Spb, Snb (power transistor) is the same as each switch of the inverter 22, the description thereof is omitted here.
  • the direction and the amount of excitation current flowing in the field winding 26 are controlled by adjusting the DC voltage applied to the field winding 26 by switching control of the switches Spa, Sna, Spb, Snb. To do.
  • the switches Sp and Sn constituting the inverter 22 are independently switched on / off via the driver 27A.
  • the switches Spa, Sna, Spb, and Snb constituting the field circuit 23 are independently switched on / off via the driver 27B.
  • the rotating electrical machine unit 16 is provided with a current detection unit 29A for detecting each phase current iu, iv, iw and a current detection unit 29B for detecting the field current if.
  • the current detection units 29A and 29B for example, those including a current transformer and a resistor are used.
  • the rotating electrical machine unit 16 is provided with a voltage sensor 30 (corresponding to a voltage detection unit) that detects the voltage of the + B terminal (corresponding to an output terminal).
  • the rotating electrical machine ECU 24 is configured by a microcomputer including a CPU, a ROM, a RAM, an input / output interface, and the like. Further, the rotary electric machine ECU 24 assists the driving force of the engine 42 by controlling the inverter 22 to drive the rotary electric machine 21 after the vehicle 10 starts traveling.
  • the rotating electrical machine 21 can give an initial rotation to the output shaft when starting the engine, and also has a function as an engine starting device.
  • the ASIC 28 is configured by a custom IC and communicates with the rotating electrical machine ECU 24. The ASIC 28 adjusts the excitation current that flows through the field winding 26 based on a command from the rotating electrical machine ECU 24, and controls the power generation voltage of the rotating electrical machine unit 16 (output voltage to the battery unit U).
  • the ASIC 28 detects the generation of a load dump voltage or the generation of excessive power generation (overpower generation) by the rotating electrical machine unit 16 based on the voltage detected by the voltage sensor 30.
  • the rotating electrical machine ECU 24 and the ASIC 28 constitute a controller for the rotating electrical machine.
  • the electrical path L4 is disconnected from the + B terminal, or the electrical loads 14, 15 and the lead storage battery 11 are disconnected from the electrical paths L1 and L4.
  • a load dump voltage is generated.
  • the following load dump protection control is performed in order to quickly stop and decrease the increase in the voltage at the + B terminal.
  • switches Sna and Snb of the lower arm of the field circuit 23 are controlled to be turned on (closed), and the switches Spa and Spb of the upper arm are controlled to be turned off (opened). Further, all the lower arm switches Sn of the inverter 22 are controlled to be turned on, and all the upper arm switches Sp are controlled to be turned off.
  • FIG. 3 is a time chart showing a mode of load dump protection control of the comparative example.
  • the switches Sp (upper arm MOS) and Sn (lower arm MOS) of the inverter 22 and the switches Spa and Spb (upper arm MOS), Sna and Snb (lower arm MOS) of the field circuit 23 are turned on and Controlled off.
  • the display of the operation of the upper arm MOS (each switch Sp) of the inverter 22 and the upper arm MOS (each switch Spa, Spb) of the field circuit 23 is omitted.
  • the voltage at the + B terminal exceeds the LD threshold.
  • the ASIC 28 detects that a load dump voltage has occurred at time t12. Then, the ASIC 28 sets the LD flag from 0 to 1, and notifies the rotating electrical machine ECU 24 of the LD flag.
  • the off processing time TA13 is a processing time required for the control of turning off all the switches Sp and Sn by the rotating electrical machine ECU 24.
  • the rotating electrical machine ECU 24 starts control to turn off all the switches Spa, Spb, Sna, Snb of the field circuit 23.
  • the off processing time TA14 elapses from time t14, all the switches Spa, Spb, Sna, Snb are turned off at time t15.
  • the off processing time TA14 is a processing time required for the control of turning off all the switches Spa, Spb, Sna, Snb by the rotating electrical machine ECU 24.
  • the rotating electrical machine ECU 24 starts control to turn on all the lower arm switches Sn of the inverter 22.
  • the on-processing time TA15 and the delay time TA16 have elapsed from time t15, all the lower arm switches Sn are turned on at time t17.
  • the ON processing time TA15 is a processing time required for the control of turning on all the lower arm switches Sn by the rotating electrical machine ECU 24.
  • the delay time TA16 is a delay time from when the control for turning on the lower arm switch Sn is completed until the lower arm switch Sn is actually turned on.
  • the time TA17 is longer than a predetermined dead time (a time during which all the upper arm switches Sp are actually turned off and maintained) required before all the lower arm switches Sn are turned on. For this reason, special processing for ensuring a predetermined dead time is not performed.
  • the adjustment time TA18 is a time required to secure a predetermined dead time during which the upper arm switches Spa and Spb and the lower arm switches Sna and Snb of the field circuit 23 are turned off.
  • the on-processing time TA19 is a processing time required for control in which the rotating electrical machine ECU 24 turns on the switches Sna and Snb of all the lower arms.
  • the ASIC 28 detects that the load dump voltage has sufficiently decreased. Then, the ASIC 28 sets the LD flag from 1 to 0 and notifies the rotating electrical machine ECU 24 of the LD flag. After time t20, the rotating electrical machine ECU 24 maintains the state where all the upper arm switches Sp of the inverter 22 are turned off and all the lower arm switches Sn are turned on. Further, the rotating electrical machine ECU 24 maintains the state where all the upper arm switches Spa and Spb of the field circuit 23 are turned off and all the lower arm switches Sna and Snb are turned on.
  • the inventor of the present application does not reduce the exciting current flowing in the field winding 26 but reduces the armature winding. It has been found that it is effective to reduce the current flowing through (phase windings 25U, 25V, 25W). The reason is that the current flowing through the armature winding is much larger than the excitation current flowing through the field winding 26. Therefore, in the present embodiment, the rotating electrical machine ECU 24 prioritizes control for reducing (refluxing) the current flowing through the armature winding over control for reducing (refluxing) the excitation current flowing through the field winding 26. Execute.
  • FIG. 4 is a flowchart illustrating a procedure of load dump protection control according to the present embodiment. This series of processing is executed by the ASIC 28 and the rotating electrical machine ECU 24.
  • the ASIC 28 determines whether or not the voltage at the + B terminal is higher than the LD threshold (threshold, corresponding to the first threshold) (S11). In this determination, when it is determined that the voltage at the + B terminal is not higher than the LD threshold (S11: NO), the process of S11 is executed again.
  • the ASIC 28 determines the elapsed time after determining that the voltage at the + B terminal is higher than the LD threshold. It is determined whether it is longer than the time (corresponding to the first time) (S12). In this determination, when it is determined that the elapsed time after determining that the voltage at the + B terminal is higher than the LD threshold is not longer than the determination time (S12: NO), the process is executed again from S11.
  • the rotating electrical machine ECU 24 controls all the switches Sp and Sn of the inverter 22 to be turned off (S15). That is, all the switches Sp and Sn are controlled to be turned off on condition that the voltage detected by the voltage sensor 30 exceeds the determination time and exceeds the LD threshold value. Note that all the upper arm switches Sp of the inverter 22 correspond to the first element group.
  • the rotating electrical machine ECU 24 controls all the lower arm switches Sn of the inverter 22 to be on (S16).
  • the time from the end of the process of S15 to the time when all the lower arm switches Sn are actually turned on is maintained after all the switches Sp and Sn are actually turned off from the end of the process of S15. It is longer than the time (predetermined dead time). Note that all the lower arm switches Sn of the inverter 22 correspond to the second element group.
  • the rotating electrical machine ECU 24 controls all the switches Spa, Spb, Sna, Snb of the field circuit 23 to be turned off (S17). Note that the switches Spa and Spb of all the upper arms of the field circuit 23 correspond to the third element group. Then, the rotating electrical machine ECU 24 executes an adjustment process for ensuring a predetermined dead time that is maintained by turning off the switches Spa and Spb of the upper arm and the switches Sna and Snb of the lower arm of the field circuit 23 (S18). . Specifically, the process waits without starting the process of S19 until an adjustment time for ensuring a predetermined dead time has elapsed.
  • the rotating electrical machine ECU 24 controls the switches Sna and Snb of all the lower arms of the field circuit 23 to be turned on (S19). Note that the switches Sna and Snb of all the lower arms of the field circuit 23 correspond to the fourth element group.
  • the ASIC 28 determines whether or not the voltage at the + B terminal is lower than the release threshold based on the voltage detected by the voltage sensor 30 (S20). In this determination, when it is determined that the voltage at the + B terminal is not lower than the release threshold (S20: NO), the process of S20 is executed again.
  • the ASIC 28 determines the elapsed time after determining that the voltage at the + B terminal is lower than the release threshold. It is determined whether or not it is longer than the time (S21). In this determination, when it is determined that the elapsed time after determining that the voltage at the + B terminal is lower than the release threshold is not longer than the determination time (S21: NO), the process is executed again from S20.
  • the rotating electrical machine ECU 24 determines whether or not a predetermined time has elapsed since all the lower arm switches Sn are actually turned on (S22).
  • the processes of S11 to S15 correspond to the process as the first control unit
  • the process of S16 corresponds to the process as the second control unit
  • the process of S17 corresponds to the process as the third control unit
  • S18 And the process of S19 is equivalent to the process as a 4th control part.
  • the processing of S11 to S13 and the processing of S20 and S21 may be executed by the rotating electrical machine ECU 24.
  • FIG. 5 is a time chart showing an aspect of load dump protection control of the present embodiment. Note that the same portions as those in FIG. 3 are denoted by the same reference numerals, and description thereof is omitted.
  • control mode up to time t14 is the same as the comparative example of FIG.
  • the rotating electrical machine ECU 24 starts control to turn on all the lower arm switches Sn of the inverter 22.
  • all the lower arm switches Sn are turned on at time t32.
  • the time TA17R is longer than a predetermined dead time (a time during which all the upper arm switches Sp are actually turned off and maintained) required before turning on all the lower arm switches Sn. For this reason, special processing (dead time adjustment processing) for ensuring a predetermined dead time is not performed.
  • the adjustment time TA18R is a time necessary to ensure a predetermined dead time during which the upper arm switches Spa and Spb and the lower arm switches Sna and Snb of the field circuit 23 are turned off.
  • the time TA17R from when all the switches Sp, Sn of the inverter 22 are turned off to when all the lower arm switches Sn are turned on is when all the switches Spa, Spb, Sna, Snb of the field circuit 23 are off.
  • the time TA20R from when the switch is turned on until the switches Sna and Snb of all the lower arms are turned on is shorter.
  • the ASIC 28 detects that the load dump voltage has sufficiently decreased. Then, the ASIC 28 sets the LD flag from 1 to 0 and notifies the rotating electrical machine ECU 24 of the LD flag. After time t35, the rotating electrical machine ECU 24 maintains a state where all the switches Sp and Sn of the inverter 22 are turned off. Further, the rotating electrical machine ECU 24 maintains the state where all the switches Spa, Spb, Sna, Snb of the field circuit 23 are turned off.
  • the rotating electrical machine ECU 24 determines that all voltages of the inverter 22 are detected when the voltage detected by the voltage sensor 30 is higher than the overpower generation threshold set lower than the LD threshold and lower than the LD threshold. Overpower protection control is performed to turn off the switches Sp and Sn.
  • FIG. 6 is a flowchart showing the procedure of overpower protection control (corresponding to power generation stop control) of the present embodiment. This series of processing is executed by the rotating electrical machine ECU 24.
  • the overpower generation threshold is set lower than the LD threshold. In this determination, when it is determined that the voltage at the + B terminal is not higher than the overpower generation threshold (S31: NO), the process of S31 is executed again.
  • the elapsed time from the determination that the voltage at the + B terminal is higher than the overpower generation threshold is the determination time. It is determined whether it is longer than (corresponding to the second time) (S32).
  • the determination time of S32 is set longer than the determination time of S12 of FIG. In this determination, when it is determined that the elapsed time after determining that the voltage at the + B terminal is higher than the overpower generation threshold is not longer than the determination time (S32: NO), the process is executed again from S31.
  • the elapsed time after determining that the voltage at the + B terminal is lower than the release threshold is shorter than the determination time. It is determined whether it is long (S36). In this determination, when it is determined that the elapsed time after determining that the voltage of the + B terminal is lower than the release threshold is not longer than the determination time (S36: NO), the process is executed again from S35.
  • the LD protection control of FIG. 4 is preferentially executed. That is, the overpower protection control is executed when the voltage detected by the voltage sensor 30 is higher than the overpower threshold and lower than the LD threshold.
  • the processing of S31 to S33 corresponds to the processing as the fifth control unit.
  • the processing of S31 and S32 and the processing of S35 and S36 can also be executed by the ASIC 28. In that case, a process for notifying the rotating electrical machine ECU 24 of the occurrence of overpower generation may be added in accordance with the process of FIG.
  • FIG. 7 is a time chart showing an aspect of overpower protection control.
  • An overpower generation abnormality occurs in the rotating electrical machine unit 16, and the voltage at the + B terminal exceeds the overpower generation threshold at time t40.
  • the rotating electrical machine ECU 24 controls all the switches Sp and Sn of the inverter 22 to be turned off. Further, the rotating electrical machine ECU 24 controls all the switches Spa, Spb, Sna, Snb of the field circuit 23 to be turned off.
  • the current flowing through the armature windings (phase windings 25U, 25V, 25W) of the inverter 22 is not recirculated unlike the LD protection control, so the current flowing to the + B terminal is immediately Will not decrease.
  • the excitation current flowing through the field winding 26 is not recirculated unlike the LD protection control, so the current flowing to the + B terminal does not decrease immediately. Therefore, the voltage at the + B terminal continues to rise from time t41 and reaches a peak value at time t42.
  • the first control unit includes a first element group that is all the upper arm switches Sp among all the switches Sp and Sn of the inverter 22 when the voltage detected by the voltage sensor 30 is higher than the LD threshold. All the switches Sp and Sn are controlled to be off. For this reason, when the load dump voltage is generated, the voltage detected by the voltage sensor 30 becomes higher than the LD threshold value, and the first element group is controlled to be turned off.
  • the second control unit starts control after the end of the control by the first control unit, and after the time that the first element group (all upper arm switches Sp) are actually turned off and maintained has elapsed, Of all the switches Sp and Sn of the inverter 22, the second element group which is all the switches Sn on the lower arm opposite to the upper arm corresponding to the first element group is actually turned on. For this reason, when turning on the second element group (all lower arm switches Sn) of the inverter 22, it is possible to prevent the first element group and the second element group from being short-circuited.
  • the third control unit starts control after the end of the control by the second control unit, and is the switches Spa, Spb of all upper arms among all the switches Spa, Spb, Sna, Snb of the field circuit 23. All switches Spa, Spb, Sna, Snb including the third element group are controlled to be turned off. And the 4th control part starts control after the end of control by the 3rd control part, and the time for which the 3rd element group (all upper arm switches Spa and Spb) are actually turned off is maintained. After that, among all the switches Spa, Spb, Sna, Snb of the field circuit 23, all the switches Sna, Snb of the lower arm opposite to the upper arm corresponding to the third element group are set. Actually turn it on. Therefore, it is possible to prevent the third element group and the fourth element group from being short-circuited when the fourth element group (all lower arm switches Sna and Snb) of the field circuit 23 is turned on.
  • the time TA17R from the end of control by the first control unit (time t14) to the time when the second element group is actually turned on (time t32) is from the end of control by the first control unit to the first element group. Is longer than the time that is actually turned off and maintained (required dead time). For this reason, the second control unit does not need to wait for the time that the first element group is actually turned off and maintained after the end of the control by the first control unit.
  • the control for turning on the second element group may be started immediately after the end of the control. Therefore, after the control by the first control unit, the control by the second control unit is executed before the control by the third control unit and the fourth control unit, in order to further suppress the peak value of the load dump voltage. It becomes effective.
  • the first control unit controls only all the upper arm switches Sp of the inverter 22 to be off, the behavior of the rotating electrical machine unit 16 becomes unstable. There is a risk.
  • the first control unit controls all the switches Sp and Sn of the inverter 22 to be off when the voltage detected by the voltage sensor 30 is higher than the LD threshold. Therefore, it is possible to suppress the behavior of the rotating electrical machine unit 16 from becoming unstable when the first control unit controls the switch including the first element group to be turned off.
  • a fifth control that turns off all the switches Sp and Sn of the inverter 22 when the voltage detected by the voltage sensor 30 is higher than the overpower generation threshold set lower than the LD threshold and lower than the LD threshold.
  • a control unit is provided. For this reason, when the voltage detected by the voltage sensor 30 is higher than the overpower generation threshold set lower than the LD threshold and lower than the LD threshold, the rotating electrical machine unit 16 is prior to the load dump protection control.
  • the power generation stop control (control by the fifth control unit) can be executed. Therefore, when an abnormality occurs in the power generation by the rotating electrical machine unit 16, it is possible to prevent the power generation by the rotating electrical machine unit 16 from being excessively limited.
  • load dump protection control When the voltage detected by the voltage sensor 30 becomes higher than the LD threshold value after becoming higher than the overpower generation threshold value, load dump protection control is executed. For this reason, load dump protection control can be executed with priority over overpower generation protection control.
  • the first control unit turns off the switches Sp and Sn including the first element group on the condition that the voltage detected by the voltage sensor 30 exceeds the LD threshold after exceeding the first time (determination time).
  • the fifth control unit is on condition that the voltage detected by the voltage sensor 30 has exceeded the second power generation time (determination time) set longer than the first time and has become higher than the overpower generation threshold. All the switches Sp and Sn of the inverter 22 are controlled to be off. According to such a configuration, when the load dump voltage occurs, the load dump protection control can be executed quickly, and when the power generation abnormality occurs, the power generation stop control can be executed with a margin.
  • the control by the fifth control unit When the control by the fifth control unit is executed, the time during which all the switches Sp and Sn of the inverter 22 are actually turned off and maintained before the control by the first control unit is executed (necessary dead Time) may have elapsed. In this case, the control by the first control unit can be omitted and the control by the second control unit can be executed immediately. Therefore, when the time that all the switches of the inverter 22 are actually turned off and maintained by the fifth control unit has elapsed and the voltage detected by the voltage sensor 30 is higher than the LD threshold, the first control is performed.
  • the control by the second control unit may be executed on the assumption that the time that the control by the control unit is finished and the first element group is actually turned off and maintained has elapsed.
  • the first control unit before executing the control by the first control unit, when the time for which all the switches Sp and Sn of the inverter 22 are actually turned off and maintained has elapsed, the first control unit The control by the second control unit can be executed immediately without the control by. As a result, the peak value of the load dump voltage can be further suppressed when the load dump voltage is generated.
  • Overload protection control by the fifth control unit may be omitted and only load dump protection control (control by the first to fourth control units) may be executed.
  • the second control unit performs the second control after the time that all the switches Sp and Sn including the first element group (all the upper arm switches Sp) are actually turned off and maintained has elapsed.
  • the element group (all lower arm switches Sn) was actually turned on.
  • the second control unit performs the second element after the time that all the switches Sp and Sn including all the lower arm switches Sn as the first element group are actually turned off and maintained has elapsed. All the upper arm switches Sp as a group may be actually turned on. Even with such a configuration, the same operational effects as those of the above-described embodiment can be obtained. That is, the second control unit may actually turn on the second element group that is all the switches of the arm opposite to the arm corresponding to the first element group.
  • the first controller controls all the switches Sp and Sn of the inverter 22 to be off when the voltage detected by the voltage sensor 30 is higher than the LD threshold.
  • the first control unit can also control all the upper arm switches Sp (first element group) to be turned off.
  • the first control unit can also control only all the lower arm switches Sn (first element group) to be turned off when the voltage detected by the voltage sensor 30 is higher than the LD threshold. Even in these cases, it is possible to prevent the first element group and the second element group from being short-circuited when the second element group of the inverter 22 is turned on.
  • the first control unit when the voltage detected by the voltage sensor 30 is higher than the LD threshold value, the first control unit, among all the switches Sp and Sn of the inverter 22, sets all the upper arm switches Sp or all the lower arms.
  • the switch including the first element group which is the switch Sn is controlled to be turned off, and the second control unit starts control after the control by the first control unit is finished, and the first element group is actually turned off and maintained.
  • the second element group which is all the switches of the arm opposite to the arm corresponding to the first element group, of all the switches Sp and Sn of the inverter 22 may be actually turned on. .
  • the time TA17R from the end point of control by the first controller (time t14) to the point of time when the second element group is actually turned on (time t32) is the end point of control by the first controller.
  • the first element group is longer than the time that the first element group is actually turned off and maintained.
  • the time from the end of the control by the first control unit to the time when the on-processing time TA15 and the delay time TA16 elapse is the time when the first element group is actually turned off from the end of the control by the first control unit. It may be shorter than the time of being maintained.
  • the second element A process of waiting for control to turn on the second element group may be executed so that the group is actually turned on.
  • the control for turning on the switches Sna and Snb of all the lower arms of the field circuit 23 is started after the adjustment time TA18R necessary for ensuring a predetermined dead time has elapsed.
  • the time from the end of control by the third control unit (time t31) to the time when the ON processing time TA19 elapses is the time when the third element group is actually turned off from the end of control by the third control unit It may be longer than the time maintained. In this case, it is not necessary for the fourth control unit to wait for the time that the third element group is actually turned off and maintained from the end of the control by the third control unit, and the control by the third control unit is ended. The control for turning on the fourth element group may be started immediately later.
  • An electric rotating machine 21 having four or more phase windings and an inverter 22 constituted by a bridge circuit having four or more upper and lower arms corresponding to the rotating electric machine 21 may be employed.

Abstract

A control device (24, 28) equipped with: a first control unit that carries out control to turn off switches that include a first element group (all of the switches Sp) in a power conversion circuit (22) when a voltage detected by a voltage detection unit (30) is higher than a threshold value; a second control unit that begins to carry out control after the control by the first control unit has ended, and that actually turns on a second element group (all of the switches Sn) after the elapse of a period during which the first element group is kept off from when the first element group actually turned off; a third control unit that, after the control by the second control unit has ended, begins to carry out control to turn off switches that include a third element group (switches Spa, Spb) in an H-bridge circuit 23; and a fourth control unit that begins to carry out control after the control by the third control unit has ended, and that actually turns on a fourth element group (switches Sna, Snb) after the elapse of a period during which the third element group is kept off from when the third element group actually turned off.

Description

回転電機装置の制御装置Control device for rotating electrical machine 関連出願の相互参照Cross-reference of related applications
 本出願は、2017年5月12日に出願された日本出願番号2017-095545号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2017-095545 filed on May 12, 2017, the contents of which are incorporated herein by reference.
 本開示は、発電機能を有する回転電機装置を制御する制御装置に関する。 The present disclosure relates to a control device that controls a rotating electrical machine device having a power generation function.
 発電機能を有する回転電機装置は、出力端子に接続された配線を介して、各種の電気負荷やバッテリに電力を供給する。回転電機装置による発電時に、配線が出力端子やバッテリ端子から外れると、ロードダンプと呼ばれる過渡的な高電圧が発生する。このようなロードダンプ電圧の発生時には、電気負荷や回転電機装置内の素子を保護するために、ロードダンプ保護制御が行われている。 Rotating electrical machine devices having a power generation function supply power to various electric loads and batteries via wiring connected to output terminals. If the wiring is disconnected from the output terminal or the battery terminal during power generation by the rotating electrical machine device, a transient high voltage called a load dump is generated. When such a load dump voltage is generated, load dump protection control is performed in order to protect the electric load and the elements in the rotating electrical machine apparatus.
 例えば特許文献1では、2つのMOSトランジスタ及び2つのダイオードで構成されたHブリッジ回路が界磁巻線に接続され、三相ブリッジ回路が固定子巻線に接続されており、ロードダンプ保護制御として以下の制御を行っている。すなわち、特許文献1に記載の制御装置は、界磁巻線に対する励磁電流の供給を停止させるとともに、三相ブリッジ回路の下アーム(ローサイド側)のMOSトランジスタを全てオンに制御している。このとき、上アーム(ハイサイド側)のMOSトランジスタを全てオフに制御している。 For example, in Patent Document 1, an H bridge circuit composed of two MOS transistors and two diodes is connected to a field winding, and a three-phase bridge circuit is connected to a stator winding. The following control is performed. That is, the control device described in Patent Document 1 stops the supply of the excitation current to the field winding and controls all the MOS transistors on the lower arm (low side) of the three-phase bridge circuit to be on. At this time, all the upper-arm (high-side) MOS transistors are controlled to be off.
特開2015-80319号公報Japanese Patent Laying-Open No. 2015-80319
 ところで、三相ブリッジ回路の下アームのMOSトランジスタを全てオンに制御する際には、上アームと下アームとが短絡することを防ぐ必要がある。このため、少なくとも上アームのMOSトランジスタがオフに制御された後に、下アームのMOSトランジスタをオンに制御する必要がある。また、Hブリッジ回路が4つのMOSトランジスタにより構成されている場合に、下アームのMOSトランジスタを全てオンに制御する際にも、同様に制御する必要がある。 By the way, when all the MOS transistors in the lower arm of the three-phase bridge circuit are controlled to be turned on, it is necessary to prevent the upper arm and the lower arm from being short-circuited. Therefore, it is necessary to control the lower arm MOS transistor to be turned on after at least the upper arm MOS transistor is controlled to be turned off. Further, when the H-bridge circuit is composed of four MOS transistors, the same control is required when all the lower-arm MOS transistors are turned on.
 ここで、特許文献1では、Hブリッジ回路のMOSトランジスタと、三相ブリッジ回路のMOSトランジスタとを、どのような順序で制御すべきか考慮していない。このため、特許文献1に記載の制御装置は、ロードダンプ電圧のピーク値を抑制する上で、未だ改善の余地を残すものとなっている。 Here, Patent Document 1 does not consider in which order the MOS transistor of the H-bridge circuit and the MOS transistor of the three-phase bridge circuit should be controlled. For this reason, the control device described in Patent Document 1 still leaves room for improvement in suppressing the peak value of the load dump voltage.
 本開示は、上記課題を解決するためになされたものであり、その主たる目的は、ロードダンプ電圧のピーク値を抑制することのできる回転電機装置の制御装置を提供することにある。 The present disclosure has been made to solve the above-described problems, and a main object thereof is to provide a control device for a rotating electrical machine apparatus that can suppress a peak value of a load dump voltage.
 上記課題を解決するための第1の手段は、
 界磁極を磁化させる界磁巻線と、
 前記界磁極によって発生する磁界により交流電圧を発生する電機子巻線と、
 直列接続された上アームのスイッチング素子及び下アームのスイッチング素子を含む相を複数備え、前記電機子巻線に発生した交流電圧を直流電圧に変換する電力変換回路と、
 2つの上アームのスイッチング素子及び2つの下アームのスイッチング素子を有し、前記界磁巻線に励磁電流を供給するHブリッジ回路と、
 前記電力変換回路の出力端子の電圧を検出する電圧検出部と、
を備える回転電機装置に適用される制御装置であって、
 前記電圧検出部により検出された電圧が閾値よりも高い場合に、前記電力変換回路の全てのスイッチング素子のうち、全ての上アームのスイッチング素子又は全ての下アームのスイッチング素子である第1素子群を含むスイッチング素子をオフに制御する第1制御部と、
 前記第1制御部による制御の終了後に制御を開始し、前記第1素子群が実際にオフにされて維持される時間が経過した後に、前記電力変換回路の全てのスイッチング素子のうち、前記第1素子群に対応するアームと反対側のアームの全てのスイッチング素子である第2素子群を実際にオンにする第2制御部と、
 前記第2制御部による制御の終了後に制御を開始し、前記Hブリッジ回路の全てのスイッチング素子のうち、全ての上アームのスイッチング素子又は全ての下アームのスイッチング素子である第3素子群を含むスイッチング素子をオフに制御する第3制御部と、
 前記第3制御部による制御の終了後に制御を開始し、前記第3素子群が実際にオフにされて維持される時間が経過した後に、前記Hブリッジ回路の全てのスイッチング素子のうち、前記第3素子群に対応するアームと反対側のアームの全てのスイッチング素子である第4素子群を実際にオンにする第4制御部と、
を備える。
The first means for solving the above problems is as follows.
A field winding for magnetizing the field pole;
An armature winding that generates an alternating voltage by a magnetic field generated by the field pole;
A power conversion circuit comprising a plurality of phases including a switching element of an upper arm and a switching element of a lower arm connected in series, and converting an AC voltage generated in the armature winding into a DC voltage;
An H-bridge circuit having two upper arm switching elements and two lower arm switching elements for supplying an excitation current to the field winding;
A voltage detection unit for detecting the voltage of the output terminal of the power conversion circuit;
A control device applied to a rotating electrical machine device comprising:
The first element group that is all upper-arm switching elements or all lower-arm switching elements among all the switching elements of the power conversion circuit when the voltage detected by the voltage detection unit is higher than a threshold value. A first control unit that controls the switching element including:
Control is started after the end of the control by the first control unit, and after the time that the first element group is actually turned off and maintained, among the switching elements of the power conversion circuit, the first A second control unit that actually turns on the second element group that is all the switching elements of the arm opposite to the arm corresponding to the one element group;
Control is started after the end of the control by the second control unit, and includes a third element group that is all upper-arm switching elements or all lower-arm switching elements among all the switching elements of the H-bridge circuit. A third control unit for controlling the switching element to turn off;
Control is started after the end of the control by the third control unit, and after the time that the third element group is actually turned off and maintained, among the all switching elements of the H-bridge circuit, the first A fourth control unit that actually turns on the fourth element group that is all the switching elements of the arm opposite to the arm corresponding to the three element group;
Is provided.
 上記構成によれば、回転電機装置において、Hブリッジ回路は、2つの上アームのスイッチング素子及び2つの下アームのスイッチング素子を有し、界磁巻線に励磁電流を供給する。界磁巻線により界磁極が磁化され、電機子巻線には界磁極によって発生する磁界により交流電圧が発生する。電力変換回路は、直列接続された上アームのスイッチング素子及び下アームのスイッチング素子を含む相を複数備え、電機子巻線に発生した交流電圧を直流電圧に変換する。そして、電圧検出部により、電力変換回路の出力端子の電圧が検出される。 According to the above configuration, in the rotating electrical machine apparatus, the H bridge circuit has two upper arm switching elements and two lower arm switching elements, and supplies an excitation current to the field winding. The field pole is magnetized by the field winding, and an AC voltage is generated in the armature winding by the magnetic field generated by the field pole. The power conversion circuit includes a plurality of phases including an upper arm switching element and a lower arm switching element connected in series, and converts an AC voltage generated in the armature winding into a DC voltage. The voltage detection unit detects the voltage at the output terminal of the power conversion circuit.
 ここで、回転電機装置による発電時に、電力変換回路の出力端子から配線が外れたり、配線から電気負荷が外れたりすると、ロードダンプ電圧が発生する。この場合、ロードダンプ電圧の上昇を停止させるためには、界磁巻線に流れる励磁電流を減少させるか、電機子巻線に流れる電流を減少させる必要がある。本願発明者は、ロードダンプ電圧の上昇を迅速に停止させる、すなわちロードダンプ電圧のピーク値を抑制するためには、界磁巻線に流れる励磁電流を減少させることよりも、電機子巻線に流れる電流を減少させることが有効であることを見出した。 Here, during power generation by the rotating electrical machine device, load dump voltage is generated when the wiring is disconnected from the output terminal of the power conversion circuit or the electrical load is disconnected from the wiring. In this case, in order to stop the increase of the load dump voltage, it is necessary to reduce the excitation current flowing in the field winding or to decrease the current flowing in the armature winding. In order to stop the rise of the load dump voltage quickly, i.e., to suppress the peak value of the load dump voltage, the inventor of the present application does not reduce the exciting current flowing in the field winding, but rather reduces the excitation current flowing in the field winding. It has been found that reducing the flowing current is effective.
 そこで、第1制御部は、電圧検出部により検出された電圧が閾値よりも高い場合に、電力変換回路の全てのスイッチング素子のうち、全ての上アームのスイッチング素子又は全ての下アームのスイッチング素子である第1素子群を含むスイッチング素子をオフに制御する。このため、ロードダンプ電圧が発生した場合に、電圧検出部により検出された電圧が閾値よりも高くなり、第1素子群がオフに制御される。この制御には、第1制御部による演算時間や信号送信時間等を含めて、所定の処理時間が必要とされる。さらに、第1素子群が実際にオフになるまでには、第1素子群の応答遅れ時間や動作時間等が必要とされる。そして、第2制御部は、第1制御部による制御の終了後に制御を開始し、第1素子群が実際にオフにされて維持される時間が経過した後に、電力変換回路の全てのスイッチング素子のうち、第1素子群に対応するアームと反対側のアームの全てのスイッチング素子である第2素子群を実際にオンにする。このため、電力変換回路の第2素子群をオンにする際に、第1素子群と第2素子群とが短絡することを防ぐことができる。 Therefore, when the voltage detected by the voltage detection unit is higher than the threshold, the first control unit includes all the upper arm switching elements or all the lower arm switching elements among all the switching elements of the power conversion circuit. The switching element including the first element group is controlled to be off. For this reason, when the load dump voltage is generated, the voltage detected by the voltage detection unit becomes higher than the threshold value, and the first element group is controlled to be turned off. This control requires a predetermined processing time including a calculation time and a signal transmission time by the first control unit. Furthermore, before the first element group is actually turned off, the response delay time, the operation time, and the like of the first element group are required. Then, the second control unit starts the control after the control by the first control unit, and after a period of time during which the first element group is actually turned off and maintained, all the switching elements of the power conversion circuit Among them, the second element group which is all the switching elements of the arm opposite to the arm corresponding to the first element group is actually turned on. For this reason, when the 2nd element group of a power converter circuit is turned ON, it can prevent that a 1st element group and a 2nd element group short-circuit.
 一方、第3制御部は、第2制御部による制御の終了後に制御を開始し、Hブリッジ回路の全てのスイッチング素子のうち、全ての上アームのスイッチング素子又は全ての下アームのスイッチング素子である第3素子群を含むスイッチング素子をオフに制御する。そして、第4制御部は、第3制御部による制御の終了後に制御を開始し、第3素子群が実際にオフにされて維持される時間が経過した後に、Hブリッジ回路の全てのスイッチング素子のうち、第3素子群に対応するアームと反対側のアームの全てのスイッチング素子である第4素子群を実際にオンにする。このため、Hブリッジ回路の第4素子群をオンにする際に、第3素子群と第4素子群とが短絡することを防ぐことができる。 On the other hand, the third control unit starts control after the end of the control by the second control unit, and is all the upper arm switching elements or all the lower arm switching elements among all the switching elements of the H-bridge circuit. The switching element including the third element group is controlled to be turned off. Then, the fourth control unit starts the control after the control by the third control unit, and after a time during which the third element group is actually turned off and maintained, all the switching elements of the H bridge circuit are passed. Among them, the fourth element group which is all the switching elements of the arm opposite to the arm corresponding to the third element group is actually turned on. For this reason, when the 4th element group of an H bridge circuit is turned on, it can prevent that a 3rd element group and a 4th element group short-circuit.
 すなわち、第3制御部及び第4制御部による制御よりも、第1制御部及び第2制御部による制御が優先して実行される。したがって、ロードダンプ電圧の発生時に、電機子巻線に流れる電流を減少させる制御を最優先して実行することができ、ロードダンプ電圧のピーク値を抑制することができる。 That is, the control by the first control unit and the second control unit is executed with priority over the control by the third control unit and the fourth control unit. Therefore, when the load dump voltage is generated, the control for reducing the current flowing through the armature winding can be executed with the highest priority, and the peak value of the load dump voltage can be suppressed.
 第2の手段では、前記第1制御部による制御の終了時点から前記第2素子群を実際にオンにする時点までの時間は、前記第3制御部による制御の終了時点から前記第4素子群を実際にオンにする時点までの時間よりも短い。 In the second means, the time from the end time of the control by the first control unit to the time point when the second element group is actually turned on is from the end time of the control by the third control unit to the fourth element group. Is shorter than the time to actually turn on.
 上記構成によれば、第1制御部による制御の終了時点から第2素子群を実際にオンにする時点までの時間は、第3制御部による制御の終了時点から第4素子群を実際にオンにする時点までの時間よりも短くなっている。このため、第1制御部及び第2制御部による制御を実行して第2素子群が実際にオンになる時点は、第3制御部及び第4制御部による制御を第1制御部及び第2制御部による制御よりも優先して実行した場合に第4素子群が実際にオンになる時点よりも早くなる。したがって、ロードダンプ電圧の発生時に、電機子巻線に流れる電流を減少させる第1制御及び第2制御を最優先して実行することが、ロードダンプ電圧のピーク値を抑制する上でさらに有効となる。 According to the above configuration, the time from the end of control by the first control unit to the time when the second element group is actually turned on is the time when the fourth element group is actually turned on from the end of control by the third control unit. It is shorter than the time until the point of time. For this reason, when the control by the first control unit and the second control unit is executed and the second element group is actually turned on, the control by the third control unit and the fourth control unit is controlled by the first control unit and the second control unit. When the control is executed with priority over the control by the control unit, it is earlier than the time when the fourth element group is actually turned on. Therefore, when the load dump voltage is generated, the first control and the second control that reduce the current flowing through the armature winding are executed with the highest priority, which is further effective in suppressing the peak value of the load dump voltage. Become.
 第3の手段では、前記第1制御部による制御の終了時点から前記第2素子群を実際にオンにする時点までの時間は、前記第1制御部による制御の終了時点から前記第1素子群が実際にオフにされて維持される時間よりも長い。 In the third means, the time from the end of the control by the first controller to the time when the second element group is actually turned on is from the end of the control by the first controller to the first element group. Is longer than the time that is actually kept off.
 上記構成によれば、第1制御部による制御の終了時点から第2素子群を実際にオンにする時点までの時間は、第1制御部による制御の終了時点から第1素子群が実際にオフにされて維持される時間よりも長くなっている。このため、第2制御部は、第1制御部による制御の終了時点から、第1素子群が実際にオフにされて維持される時間が経過することを待つ必要はなく、第1制御部による制御の終了後に第2素子群をオンにする制御を直ちに開始すればよい。したがって、第1制御部による制御の後に、第3制御部及び第4制御部による制御よりも先に第2制御部による制御を実行することが、ロードダンプ電圧のピーク値を抑制する上でさらに有効となる。 According to the above configuration, the time from the end of control by the first control unit to the time when the second element group is actually turned on is the time when the first element group is actually turned off from the end of control by the first control unit. It is longer than the time that is maintained. For this reason, the second control unit does not need to wait for the time that the first element group is actually turned off and maintained after the end of the control by the first control unit. The control for turning on the second element group may be started immediately after the end of the control. Therefore, after the control by the first control unit, the control by the second control unit is executed before the control by the third control unit and the fourth control unit, in order to further suppress the peak value of the load dump voltage. It becomes effective.
 電圧検出部により検出された電圧が閾値よりも高い場合に、第1制御部が、例えば電力変換回路の全ての上アームのスイッチング素子のみをオフに制御すると、回転電機装置の挙動が不安定になるおそれがある。 When the voltage detected by the voltage detection unit is higher than the threshold, if the first control unit controls only the switching elements of all the upper arms of the power conversion circuit, for example, the behavior of the rotating electrical machine device becomes unstable. There is a risk.
 この点、第4の手段では、前記第1制御部は、前記電圧検出部により検出された電圧が閾値よりも高い場合に、前記電力変換回路の全てのスイッチング素子をオフに制御するといった構成を採用している。したがって、第1制御部が第1素子群を含むスイッチング素子をオフに制御する際に、回転電機装置の挙動が不安定になることを抑制することができる。 In this regard, in the fourth means, the first control unit is configured to control all the switching elements of the power conversion circuit to be turned off when the voltage detected by the voltage detection unit is higher than a threshold value. Adopted. Therefore, when the first control unit controls the switching element including the first element group to be turned off, the behavior of the rotating electrical machine device can be suppressed from becoming unstable.
 ロードダンプ電圧が発生していない場合であっても、回転電機装置による発電に異常が生じて、電力変換回路から出力される電圧が正常値よりも高くなることがある。この場合、ロードダンプ保護制御(第1~第4制御部による制御)を実行すると、回転電機装置による発電が過剰に制限されるおそれがある。 Even when no load dump voltage is generated, power generation by the rotating electrical machine device may be abnormal, and the voltage output from the power conversion circuit may be higher than the normal value. In this case, if load dump protection control (control by the first to fourth control units) is executed, power generation by the rotating electrical machine device may be excessively limited.
 この点、第5の手段では、前記閾値は第1閾値であり、前記電圧検出部により検出された電圧が、前記第1閾値よりも低く設定された第2閾値よりも高く且つ前記第1閾値よりも低い場合に、前記電力変換回路の全てのスイッチング素子をオフに制御する第5制御部を備えるといった構成を採用している。このため、電圧検出部により検出された電圧が、第1閾値よりも低く設定された第2閾値よりも高く且つ第1閾値よりも低い場合には、ロードダンプ保護制御よりも先に、回転電機装置による発電停止制御(第5制御部による制御)を実行することができる。したがって、回転電機装置による発電に異常が生じた場合に、回転電機装置による発電が過剰に制限されることを抑制することができる。なお、電圧検出部により検出された電圧が、第2閾値よりも高くなった後に第1閾値よりも高くなった場合は、ロードダンプ保護制御が実行される。 In this respect, in the fifth means, the threshold value is the first threshold value, and the voltage detected by the voltage detection unit is higher than the second threshold value set lower than the first threshold value and the first threshold value. If lower, a configuration is adopted in which a fifth control unit that controls all the switching elements of the power conversion circuit to be off is provided. For this reason, when the voltage detected by the voltage detector is higher than the second threshold set lower than the first threshold and lower than the first threshold, the rotating electrical machine is prior to the load dump protection control. Power generation stop control by the device (control by the fifth control unit) can be executed. Therefore, when an abnormality occurs in the power generation by the rotating electrical machine device, it is possible to suppress the power generation by the rotating electrical machine device from being excessively limited. In addition, when the voltage detected by the voltage detection unit becomes higher than the first threshold value after becoming higher than the second threshold value, load dump protection control is executed.
 具体的には、第6の手段のように、前記第1制御部は、前記電圧検出部により検出された電圧が第1時間を超えて前記第1閾値よりも高くなったことを条件として、前記第1素子群を含むスイッチング素子をオフに制御し、前記第5制御部は、前記電圧検出部により検出された電圧が前記第1時間よりも長く設定された第2時間を超えて前記第2閾値よりも高くなったことを条件として、前記電力変換回路の全てのスイッチング素子をオフに制御するといった構成を採用することができる。こうした構成によれば、ロードダンプ電圧が発生した場合は迅速にロードダンプ保護制御を実行し、発電異常が発生した場合は余裕を持って発電停止制御を実行することができる。 Specifically, as in the sixth means, the first control unit, on the condition that the voltage detected by the voltage detection unit exceeds the first threshold over a first time, The switching element including the first element group is controlled to be turned off, and the fifth control unit is configured to exceed the second time in which the voltage detected by the voltage detection unit is set longer than the first time. It is possible to employ a configuration in which all the switching elements of the power conversion circuit are controlled to be turned off on condition that the threshold value is higher than 2. According to such a configuration, when the load dump voltage occurs, the load dump protection control can be executed quickly, and when the power generation abnormality occurs, the power generation stop control can be executed with a margin.
 第5制御部による制御が実行される場合は、第1制御部による制御を実行する前に、電力変換回路の全てのスイッチング素子が実際にオフにされて維持される時間が経過していることがある。この場合は、第1制御部による制御を省略して、直ちに第2制御部による制御を実行することができる。 When the control by the fifth control unit is executed, before the control by the first control unit is executed, the time for which all the switching elements of the power conversion circuit are actually turned off and maintained has elapsed. There is. In this case, the control by the first control unit can be omitted and the control by the second control unit can be executed immediately.
 この点、第7の手段では、前記第5制御部により前記電力変換回路の全てのスイッチング素子が実際にオフにされて維持される時間が経過しており、且つ前記電圧検出部により検出された電圧が前記第1閾値よりも高い場合に、前記第1制御部による制御が終了して前記第1素子群が実際にオフにされて維持される時間が経過したとして、前記第2制御部による制御を実行させるといった構成を採用している。したがって、第1制御部による制御を実行する前に、電力変換回路の全てのスイッチング素子が実際にオフにされて維持される時間が経過している場合は、第1制御部による制御を省略して直ちに第2制御部による制御を実行することができる。その結果、ロードダンプ電圧の発生時に、ロードダンプ電圧のピーク値をさらに抑制することができる。 In this regard, in the seventh means, the time that all the switching elements of the power conversion circuit are actually turned off and maintained by the fifth control unit has elapsed, and the voltage detection unit has detected it. When the voltage is higher than the first threshold, the control by the first control unit ends, and the second control unit determines that the time that the first element group is actually turned off and has passed A configuration is adopted in which control is executed. Therefore, before the control by the first control unit is executed, when all the switching elements of the power conversion circuit are actually turned off and maintained, the control by the first control unit is omitted. The control by the second control unit can be executed immediately. As a result, the peak value of the load dump voltage can be further suppressed when the load dump voltage is generated.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、車両の電気的構成を示す電気回路図であり、 図2は、回転電機ユニットの電気的構成を示す電気回路図であり、 図3は、比較例のロードダンプ保護制御の態様を示すタイムチャートであり、 図4は、ロードダンプ保護制御の手順を示すフローチャートであり、 図5は、ロードダンプ保護制御の態様を示すタイムチャートであり、 図6は、過発電保護制御の手順を示すフローチャートであり、 図7は、過発電保護制御の態様を示すタイムチャートである。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is an electric circuit diagram showing an electrical configuration of a vehicle. FIG. 2 is an electric circuit diagram showing an electrical configuration of the rotating electrical machine unit, FIG. 3 is a time chart showing an aspect of load dump protection control of a comparative example, FIG. 4 is a flowchart showing the procedure of load dump protection control, FIG. 5 is a time chart showing an aspect of load dump protection control, FIG. 6 is a flowchart showing the procedure of overpower protection control, FIG. 7 is a time chart showing an aspect of overpower protection control.
 以下、発電機能及び力行機能を備える回転電機ユニットにより、エンジンの駆動力をアシスト(補助)して走行する車両に具現化した一実施形態について、図面に基づいて説明する。 Hereinafter, an embodiment embodied in a vehicle that travels while assisting (assisting) the driving force of an engine by a rotating electrical machine unit having a power generation function and a power running function will be described with reference to the drawings.
 図1に示すように、車両10は、エンジン42、スタータ13、鉛蓄電池11、リチウムイオン蓄電池12、電気負荷14,15、回転電機ユニット16等を備えている。 As shown in FIG. 1, the vehicle 10 includes an engine 42, a starter 13, a lead storage battery 11, a lithium ion storage battery 12, electric loads 14 and 15, a rotating electrical machine unit 16, and the like.
 エンジン42(内燃機関)は、ガソリンエンジンやディーゼルエンジン等であり、燃料の燃焼により駆動力を発生する。スタータ13(始動装置)は、エンジン42の始動の際に、エンジン42の出力軸(クランク軸)に初期回転力を付与する。 Engine 42 (internal combustion engine) is a gasoline engine, a diesel engine, or the like, and generates driving force by combustion of fuel. The starter 13 (starting device) applies an initial rotational force to the output shaft (crankshaft) of the engine 42 when the engine 42 is started.
 車両10の電源システムは、蓄電部として鉛蓄電池11とリチウムイオン蓄電池12とを有する2電源システムである。各蓄電池11,12からは、スタータ13や、各種の電気負荷14,15、回転電機ユニット16への給電が可能となっている。また、各蓄電池11,12に対しては、回転電機ユニット16による充電が可能となっている。本システムでは、回転電機ユニット16及び電気負荷14,15のそれぞれに対して、鉛蓄電池11及びリチウムイオン蓄電池12が並列に接続されている。 The power supply system of the vehicle 10 is a dual power supply system having a lead storage battery 11 and a lithium ion storage battery 12 as a power storage unit. Each storage battery 11, 12 can supply power to the starter 13, various electric loads 14, 15, and the rotating electrical machine unit 16. Further, each of the storage batteries 11 and 12 can be charged by the rotating electrical machine unit 16. In this system, a lead storage battery 11 and a lithium ion storage battery 12 are connected in parallel to the rotating electrical machine unit 16 and the electrical loads 14 and 15, respectively.
 鉛蓄電池11は周知の汎用蓄電池である。リチウムイオン蓄電池12は、鉛蓄電池11に比べて、充放電における電力損失が少なく、出力密度、及びエネルギ密度の高い高密度蓄電池である。リチウムイオン蓄電池12は、鉛蓄電池11に比べて充放電時のエネルギ効率が高い蓄電池であることが望ましい。このリチウムイオン蓄電池12は、それぞれ複数の単電池を有してなる組電池として構成されている。これら各蓄電池11,12の定格電圧はいずれも同じであり、例えば12Vである。 The lead storage battery 11 is a well-known general-purpose storage battery. The lithium ion storage battery 12 is a high-density storage battery that has less power loss during charging / discharging and higher output density and energy density than the lead storage battery 11. The lithium ion storage battery 12 is desirably a storage battery having higher energy efficiency during charging / discharging than the lead storage battery 11. The lithium ion storage battery 12 is configured as an assembled battery having a plurality of single cells. These storage batteries 11 and 12 have the same rated voltage, for example, 12V.
 リチウムイオン蓄電池12は、収容ケースに収容されて基板一体の電池ユニットUとして構成されている。電池ユニットUは、出力端子P1,P2を有しており、このうち出力端子P1に鉛蓄電池11とスタータ13と電気負荷14とが接続され、出力端子P2に電気負荷15と回転電機ユニット16の+B端子とが接続されている。出力端子P2と+B端子との間には、電気経路L4(配線)が設けられている。 The lithium ion storage battery 12 is housed in a housing case and configured as a battery unit U integrated with a substrate. The battery unit U has output terminals P1 and P2, among which the lead storage battery 11, the starter 13 and the electric load 14 are connected to the output terminal P1, and the electric load 15 and the rotating electrical machine unit 16 are connected to the output terminal P2. + B terminal is connected. An electrical path L4 (wiring) is provided between the output terminal P2 and the + B terminal.
 各電気負荷14,15は、各蓄電池11,12からの供給電力の電圧に対する要求が相違するものである。具体的には、電気負荷14には、供給電力の電圧が一定又は少なくとも所定範囲内で変動するよう安定であることが要求される定電圧要求負荷が含まれる。これに対し、電気負荷15は、定電圧要求負荷以外の一般的な電気負荷である。 The electric loads 14 and 15 have different requirements for the voltage of power supplied from the storage batteries 11 and 12. Specifically, the electric load 14 includes a constant voltage required load that is required to be stable so that the voltage of the supplied power is constant or at least varies within a predetermined range. On the other hand, the electric load 15 is a general electric load other than the constant voltage required load.
 定電圧要求負荷である電気負荷14の具体例としては、ナビゲーション装置やオーディオ装置、メータ装置、エンジンECU等の各種ECUが挙げられる。この場合、供給電力の電圧変動が抑えられることで、上記各装置において不要なリセット等が生じることが抑制され、安定動作が確保される。電気負荷14として、電動ステアリング装置やブレーキ装置等の走行系アクチュエータが含まれていてもよい。電気負荷15の具体例としては、シートヒータやリヤウインドウのデフロスタ用ヒータ、ヘッドライト、フロントウインドウのワイパ、空調装置の送風ファン等が挙げられる。 Specific examples of the electric load 14 that is a constant voltage required load include various ECUs such as a navigation device, an audio device, a meter device, and an engine ECU. In this case, by suppressing the voltage fluctuation of the supplied power, it is possible to suppress the occurrence of unnecessary reset and the like in each of the above devices, and ensure stable operation. The electric load 14 may include a travel system actuator such as an electric steering device or a brake device. Specific examples of the electric load 15 include a seat heater, a heater for a defroster for a rear window, a headlight, a wiper for a front window, and a blower fan for an air conditioner.
 回転電機ユニット16(回転電機装置に相当)は、回転電機21と、インバータ22と、界磁回路23と、回転電機21の作動を制御する回転電機ECU24と、界磁回路23の動作を制御するASIC(Application Specific Integrated Circuit)28とを備えている。回転電機ユニット16は、モータ機能付き発電機であり、機電一体型のISG(Integrated Starter Generator)として構成されている。回転電機ユニット16の詳細については後述する。 The rotating electrical machine unit 16 (corresponding to the rotating electrical machine device) controls the operation of the rotating electrical machine 21, the inverter 22, the field circuit 23, the rotating electrical machine ECU 24 that controls the operation of the rotating electrical machine 21, and the field circuit 23. An ASIC (Application Specific Integrated28Circuit) 28 is provided. The rotating electrical machine unit 16 is a generator with a motor function, and is configured as an electromechanically integrated ISG (Integrated / Starter / Generator). Details of the rotating electrical machine unit 16 will be described later.
 電池ユニットUには、ユニット内電気経路として、各出力端子P1,P2を繋ぐ電気経路L1と、電気経路L1上の点N1とリチウムイオン蓄電池12とを繋ぐ電気経路L2と、が設けられている。このうち電気経路L1にスイッチ31が設けられ、電気経路L2にスイッチ32が設けられている。 The battery unit U is provided with an electrical path L1 that connects the output terminals P1 and P2 and an electrical path L2 that connects the point N1 on the electrical path L1 and the lithium ion storage battery 12 as an in-unit electrical path. . Among these, the switch 31 is provided in the electrical path L1, and the switch 32 is provided in the electrical path L2.
 また、電池ユニットUには、スイッチ31を迂回するバイパス経路L3が設けられている。バイパス経路L3は、出力端子P3と電気経路L1上の点N1とを接続するようにして設けられている。出力端子P3は、ヒューズ35を介して鉛蓄電池11に接続されている。このバイパス経路L3によって、スイッチ31を介さずに、鉛蓄電池11と電気負荷15及び回転電機ユニット16との接続が可能となっている。バイパス経路L3には、例えば常閉式の機械式リレーからなるバイパススイッチ36が設けられている。バイパススイッチ36をオフ(閉鎖)することで、スイッチ31がオフ(開放)されていても鉛蓄電池11と電気負荷15及び回転電機ユニット16とが電気的に接続される。 The battery unit U is provided with a bypass path L3 that bypasses the switch 31. The bypass path L3 is provided so as to connect the output terminal P3 and the point N1 on the electrical path L1. The output terminal P3 is connected to the lead storage battery 11 via the fuse 35. By this bypass path L3, the lead storage battery 11, the electric load 15, and the rotating electrical machine unit 16 can be connected without using the switch 31. In the bypass path L3, for example, a bypass switch 36 composed of a normally closed mechanical relay is provided. By turning off (closing) the bypass switch 36, the lead storage battery 11, the electrical load 15, and the rotating electrical machine unit 16 are electrically connected even if the switch 31 is turned off (opened).
 電池ユニットUは、各スイッチ31,32のオンオフ(開閉)を制御する電池ECU37を備えている。電池ECU37は、CPU、ROM、RAM、入出力インターフェース等を含むマイコンにより構成されている。電池ECU37は、車両10の走行状態や各蓄電池11,12の蓄電状態に基づいて、各スイッチ31,32のオンオフを制御する。これにより、鉛蓄電池11とリチウムイオン蓄電池12とを選択的に用いて充放電が実施される。例えば、電池ECU37は、リチウムイオン蓄電池12の充電率SOC(State Of Charge)を算出し、充電率SOCが所定の使用範囲内に保持されるようにリチウムイオン蓄電池12への充電量及び放電量を制御する。 The battery unit U includes a battery ECU 37 that controls on / off (opening / closing) of the switches 31 and 32. The battery ECU 37 is constituted by a microcomputer including a CPU, a ROM, a RAM, an input / output interface, and the like. The battery ECU 37 controls on / off of the switches 31 and 32 based on the traveling state of the vehicle 10 and the storage states of the storage batteries 11 and 12. Thereby, charging / discharging is implemented using the lead storage battery 11 and the lithium ion storage battery 12 selectively. For example, the battery ECU 37 calculates the charging rate SOC (State Of Charge) of the lithium ion storage battery 12, and sets the charging amount and discharging amount to the lithium ion storage battery 12 so that the charging rate SOC is maintained within a predetermined use range. Control.
 回転電機ユニット16の回転電機ECU24や、電池ユニットUの電池ECU37には、各ECU24,37を統括的に管理する上位制御装置としてのエンジンECU40が接続されている。エンジンECU40は、CPU、ROM、RAM、入出力インターフェース等を含むマイコンにより構成されており、都度のエンジン運転状態や車両走行状態に基づいてエンジン42の運転を制御する。各ECU24,37,40は、CAN等の通信ネットワークを構築する通信線41により接続されて相互に通信可能となっており、所定周期で双方向の通信が実施される。これにより、各ECU24,37,40に記憶される各種データを互いに共有している。 The rotating electrical machine ECU 24 of the rotating electrical machine unit 16 and the battery ECU 37 of the battery unit U are connected to an engine ECU 40 as a host controller that manages the ECUs 24 and 37 in an integrated manner. The engine ECU 40 is composed of a microcomputer including a CPU, ROM, RAM, input / output interface, and the like, and controls the operation of the engine 42 based on the engine operating state and the vehicle traveling state each time. The ECUs 24, 37, and 40 are connected by a communication line 41 that constructs a communication network such as CAN and can communicate with each other, and bidirectional communication is performed at a predetermined cycle. Thereby, the various data memorize | stored in each ECU24,37,40 are mutually shared.
 次に、回転電機ユニット16の電気的構成について図2を用いて説明する。回転電機21は3相交流モータであり、3相電機子巻線(固定子巻線)としてU相、V相、W相の相巻線25U,25V,25Wと、界磁極を磁化させる回転子巻線として界磁巻線26とを備えている。回転電機ユニット16は、エンジン出力軸や車軸の回転により発電(回生発電)を行う発電機能と、エンジン出力軸に回転力を付与する力行機能とを備えるものとなっている。具体的には、回転電機21の回転軸は、ベルトを介して図示しないエンジン出力軸と駆動力を伝達可能に連結されている。このベルトを介して、エンジン出力軸の回転に伴い回転電機21の回転軸が回転することによって発電し、回転電機21の回転軸の回転に伴いエンジン出力軸が回転することによって力行する。 Next, the electrical configuration of the rotating electrical machine unit 16 will be described with reference to FIG. The rotating electrical machine 21 is a three-phase AC motor, and U-phase, V-phase, and W- phase windings 25U, 25V, and 25W as a three-phase armature winding (stator winding), and a rotor that magnetizes the field poles. A field winding 26 is provided as a winding. The rotating electrical machine unit 16 includes a power generation function that generates power (regenerative power generation) by rotating the engine output shaft and the axle, and a power running function that applies rotational force to the engine output shaft. Specifically, the rotating shaft of the rotating electrical machine 21 is connected to an engine output shaft (not shown) via a belt so as to be able to transmit driving force. Electricity is generated by rotating the rotating shaft of the rotating electrical machine 21 with the rotation of the engine output shaft through the belt, and power is generated by rotating the engine output shaft with the rotating shaft of the rotating electrical machine 21.
 インバータ22(電力変換回路に相当)は、各相巻線25U,25V,25Wから出力される交流電圧を直流電圧に変換して電池ユニットUに対して出力する。また、インバータ22は、電池ユニットUから入力される直流電圧を交流電圧に変換して各相巻線25U,25V,25Wへ出力する。インバータ22は、相巻線の相数と同数の上下アームを有するブリッジ回路であり、3相全波整流回路を構成している。インバータ22は、界磁回路23から界磁巻線26に界磁電流(励磁電流)が供給された状態で、回転電機21の電機子巻線に供給される電力を調節することで、回転電機21を駆動する駆動回路を構成している。 The inverter 22 (corresponding to a power conversion circuit) converts the AC voltage output from each phase winding 25U, 25V, 25W into a DC voltage and outputs it to the battery unit U. The inverter 22 converts the DC voltage input from the battery unit U into an AC voltage and outputs the AC voltage to the phase windings 25U, 25V, and 25W. The inverter 22 is a bridge circuit having the same number of upper and lower arms as the number of phases of the phase winding, and constitutes a three-phase full-wave rectifier circuit. The inverter 22 adjusts the power supplied to the armature winding of the rotating electrical machine 21 in a state where the field current (excitation current) is supplied from the field circuit 23 to the field winding 26, thereby rotating the rotating electrical machine. The drive circuit which drives 21 is comprised.
 インバータ22は、相ごとに上アームスイッチSp及び下アームスイッチSnを備えている。本実施形態では、各スイッチSp,Sn(パワートランジスタ)として、電圧制御形の半導体スイッチング素子を用いており、具体的には、NチャネルMOSFET(双方向スイッチ)を用いている。上アームスイッチSpには、上アームダイオードDpが逆並列に接続され、下アームスイッチSnには、下アームダイオードDnが逆並列に接続されている。本実施形態では、各ダイオードDp,Dnとして、各スイッチSp,Snのボディダイオードを用いている。なお、各ダイオードDp,Dnとしては、ボディダイオードに限らず、例えば各スイッチSp,Snとは別部品のダイオードであってもよい。各相におけるスイッチSp,Snの直列接続体の中間接続点は、各相巻線25U,25V,25Wの一端にそれぞれ接続されている。 The inverter 22 includes an upper arm switch Sp and a lower arm switch Sn for each phase. In the present embodiment, voltage-controlled semiconductor switching elements are used as the switches Sp and Sn (power transistors), and specifically, N-channel MOSFETs (bidirectional switches) are used. An upper arm diode Dp is connected in antiparallel to the upper arm switch Sp, and a lower arm diode Dn is connected in antiparallel to the lower arm switch Sn. In the present embodiment, the body diodes of the switches Sp and Sn are used as the diodes Dp and Dn. The diodes Dp and Dn are not limited to body diodes, and may be diodes that are separate parts from the switches Sp and Sn, for example. An intermediate connection point of the series connection body of the switches Sp and Sn in each phase is connected to one end of each phase winding 25U, 25V, and 25W.
 界磁回路23(Hブリッジ回路に相当)は双方向スイッチ回路であり、界磁巻線26に直流電圧を印加可能とされている。本実施形態において界磁回路23(トランジスタチョッパ式の励磁回路)は、4個のスイッチSpa,Sna,Spb,Snbを組み合わせたHブリッジ整流回路を構成している。各スイッチSpa,Sna,Spb,Snb(パワートランジスタ)の基本構成はインバータ22の各スイッチと同じであるため、ここでは説明を省略する。本実施形態では、各スイッチSpa,Sna,Spb,Snbのスイッチング制御によって界磁巻線26に印加する直流電圧を調整することにより、界磁巻線26に流れる励磁電流の向き及び電流量を制御する。 The field circuit 23 (corresponding to an H-bridge circuit) is a bidirectional switch circuit, and a DC voltage can be applied to the field winding 26. In the present embodiment, the field circuit 23 (transistor chopper-type excitation circuit) constitutes an H-bridge rectifier circuit in which four switches Spa, Sna, Spb, and Snb are combined. Since the basic configuration of each switch Spa, Sna, Spb, Snb (power transistor) is the same as each switch of the inverter 22, the description thereof is omitted here. In the present embodiment, the direction and the amount of excitation current flowing in the field winding 26 are controlled by adjusting the DC voltage applied to the field winding 26 by switching control of the switches Spa, Sna, Spb, Snb. To do.
 インバータ22を構成する各スイッチSp,Snは、ドライバ27Aを介してそれぞれ独立にオン/オフ駆動が切り替えられる。界磁回路23を構成する各スイッチSpa,Sna,Spb,Snbは、ドライバ27Bを介してそれぞれ独立にオン/オフ駆動が切り替えられる。回転電機ユニット16には、各相電流iu,iv,iwを検出する電流検出部29A、及び界磁電流ifを検出する電流検出部29Bがそれぞれ設けられている。電流検出部29A,29Bは、例えばカレントトランスや抵抗器を備えるものが用いられる。また、回転電機ユニット16には、+B端子(出力端子に相当)の電圧を検出する電圧センサ30(電圧検出部に相当)が設けられている。 The switches Sp and Sn constituting the inverter 22 are independently switched on / off via the driver 27A. The switches Spa, Sna, Spb, and Snb constituting the field circuit 23 are independently switched on / off via the driver 27B. The rotating electrical machine unit 16 is provided with a current detection unit 29A for detecting each phase current iu, iv, iw and a current detection unit 29B for detecting the field current if. As the current detection units 29A and 29B, for example, those including a current transformer and a resistor are used. Further, the rotating electrical machine unit 16 is provided with a voltage sensor 30 (corresponding to a voltage detection unit) that detects the voltage of the + B terminal (corresponding to an output terminal).
 回転電機ECU24は、CPU、ROM、RAM、入出力インターフェース等を含むマイコンにより構成されている。また、回転電機ECU24は、車両10の走行開始後にインバータ22を制御して回転電機21を駆動させて、エンジン42の駆動力をアシストする。回転電機21は、エンジン始動時に出力軸に初期回転を付与することが可能であり、エンジン始動装置としての機能も有している。ASIC28は、カスタムICにより構成され、回転電機ECU24と相互に通信を行う。ASIC28は、回転電機ECU24からの指令に基づいて、界磁巻線26に流す励磁電流を調整し、回転電機ユニット16の発電電圧(電池ユニットUに対する出力電圧)を制御する。本実施形態では、ASIC28は、電圧センサ30により検出された電圧に基づいて、ロードダンプ電圧の発生や回転電機ユニット16による過剰な発電(過発電)の発生を検知する。なお、回転電機ECU24及びASIC28により、回転電機装置の制御装置が構成されている。 The rotating electrical machine ECU 24 is configured by a microcomputer including a CPU, a ROM, a RAM, an input / output interface, and the like. Further, the rotary electric machine ECU 24 assists the driving force of the engine 42 by controlling the inverter 22 to drive the rotary electric machine 21 after the vehicle 10 starts traveling. The rotating electrical machine 21 can give an initial rotation to the output shaft when starting the engine, and also has a function as an engine starting device. The ASIC 28 is configured by a custom IC and communicates with the rotating electrical machine ECU 24. The ASIC 28 adjusts the excitation current that flows through the field winding 26 based on a command from the rotating electrical machine ECU 24, and controls the power generation voltage of the rotating electrical machine unit 16 (output voltage to the battery unit U). In the present embodiment, the ASIC 28 detects the generation of a load dump voltage or the generation of excessive power generation (overpower generation) by the rotating electrical machine unit 16 based on the voltage detected by the voltage sensor 30. The rotating electrical machine ECU 24 and the ASIC 28 constitute a controller for the rotating electrical machine.
 ところで、回転電機ユニット16による発電時(通常発電時、回生発電時)に、+B端子から電気経路L4が外れたり、電気経路L1,L4から電気負荷14,15や鉛蓄電池11等が外れたりすると、ロードダンプ電圧が発生する。この場合、ロードダンプ電圧の上昇を停止させるためには、界磁巻線26に流れる励磁電流を減少させるか、電機子巻線(相巻線25U,25V,25W)に流れる電流を減少させる必要がある。具体的には、+B端子の電圧の上昇を速やかに停止させて低下させるべく、以下のロードダンプ保護制御を行う。すなわち、界磁回路23の下アームのスイッチSna,Snbをオン(閉鎖)に制御し且つ上アームのスイッチSpa,Spbをオフ(開放)に制御する。また、インバータ22の全ての下アームスイッチSnをオンに制御し且つ全ての上アームスイッチSpをオフに制御する。 By the way, when the rotating electrical machine unit 16 generates power (during normal power generation or regenerative power generation), the electrical path L4 is disconnected from the + B terminal, or the electrical loads 14, 15 and the lead storage battery 11 are disconnected from the electrical paths L1 and L4. A load dump voltage is generated. In this case, in order to stop the rise of the load dump voltage, it is necessary to reduce the excitation current flowing through the field winding 26 or reduce the current flowing through the armature winding ( phase windings 25U, 25V, 25W). There is. Specifically, the following load dump protection control is performed in order to quickly stop and decrease the increase in the voltage at the + B terminal. That is, the switches Sna and Snb of the lower arm of the field circuit 23 are controlled to be turned on (closed), and the switches Spa and Spb of the upper arm are controlled to be turned off (opened). Further, all the lower arm switches Sn of the inverter 22 are controlled to be turned on, and all the upper arm switches Sp are controlled to be turned off.
 ここで、インバータ22の全ての下アームスイッチSnをオンに制御する際には、上アームと下アームとが短絡することを防ぐ必要がある。このため、全ての下アームスイッチSnをオンに制御する前に、上アームスイッチSp及び下アームスイッチSnがオフにされる所定のデッドタイムが確保される。同様に、界磁回路23の全ての下アームのスイッチSna,Snbをオンに制御する際には、上アームと下アームとが短絡することを防ぐ必要がある。このため、全ての下アームのスイッチSna,Snbをオンに制御する前に、上アームのスイッチSpa,Spb、及び下アームのスイッチSna,Snbがオフにされる所定のデッドタイムが確保される。 Here, when all the lower arm switches Sn of the inverter 22 are controlled to be turned on, it is necessary to prevent the upper arm and the lower arm from being short-circuited. Therefore, a predetermined dead time during which the upper arm switch Sp and the lower arm switch Sn are turned off is ensured before all the lower arm switches Sn are controlled to be turned on. Similarly, when the switches Sna and Snb of all the lower arms of the field circuit 23 are controlled to be on, it is necessary to prevent the upper arm and the lower arm from being short-circuited. For this reason, before all the lower arm switches Sna and Snb are controlled to be turned on, a predetermined dead time during which the upper arm switches Spa and Spb and the lower arm switches Sna and Snb are turned off is secured.
 図3は、比較例のロードダンプ保護制御の態様を示すタイムチャートである。 FIG. 3 is a time chart showing a mode of load dump protection control of the comparative example.
 同図に示すように、時刻t10以前では、例えば回転電機ユニット16により回生発電が行われている。そして、インバータ22の各スイッチSp(上アームMOS),Sn(下アームMOS)、及び界磁回路23の各スイッチSpa,Spb(上アームMOS)、Sna,Snb(下アームMOS)が、オン及びオフに制御されている。なお、インバータ22の上アームMOS(各スイッチSp)、及び界磁回路23の上アームMOS(各スイッチSpa,Spb)の動作の表示は省略している。 As shown in the figure, before the time t10, for example, the regenerative power generation is performed by the rotating electrical machine unit 16. Then, the switches Sp (upper arm MOS) and Sn (lower arm MOS) of the inverter 22 and the switches Spa and Spb (upper arm MOS), Sna and Snb (lower arm MOS) of the field circuit 23 are turned on and Controlled off. The display of the operation of the upper arm MOS (each switch Sp) of the inverter 22 and the upper arm MOS (each switch Spa, Spb) of the field circuit 23 is omitted.
 時刻t10において、例えば+B端子から電気経路L4が外れることで、ロードダンプ電圧が発生すると、+B端子の電圧が急激に上昇し始める。 At time t10, for example, when the load dump voltage is generated due to the disconnection of the electrical path L4 from the + B terminal, the voltage at the + B terminal starts to increase rapidly.
 時刻t11において、+B端子の電圧がLD閾値を超える。そして、時刻t11から遅れ時間TA11が経過すると、時刻t12においてASIC28により、ロードダンプ電圧が発生したことが検出される。そして、ASIC28により、LDフラグが0から1にされ、回転電機ECU24に通知される。 At time t11, the voltage at the + B terminal exceeds the LD threshold. When the delay time TA11 elapses from time t11, the ASIC 28 detects that a load dump voltage has occurred at time t12. Then, the ASIC 28 sets the LD flag from 0 to 1, and notifies the rotating electrical machine ECU 24 of the LD flag.
 時刻t12から割込禁止時間TA12が経過すると、時刻t13において、回転電機ECU24により、インバータ22の全てのスイッチSp,Snをオフにする制御が開始される。割込禁止時間TA12は、回転電機ECU24がASIC28からLDフラグ=1を受信してから、LD保護制御を割込で開始するまでの処理に必要な時間である。 When the interruption prohibition time TA12 elapses from time t12, at time t13, the rotating electrical machine ECU 24 starts control to turn off all the switches Sp and Sn of the inverter 22. The interruption prohibition time TA12 is a time required for processing from when the rotating electrical machine ECU 24 receives the LD flag = 1 from the ASIC 28 until the LD protection control is started by interruption.
 時刻t13からオフ処理時間TA13が経過すると、時刻t14において、インバータ22の全てのスイッチSp,Snがオフにされる。オフ処理時間TA13は、回転電機ECU24が全てのスイッチSp,Snをオフにする制御に必要な処理時間である。 When the off processing time TA13 elapses from time t13, at time t14, all the switches Sp and Sn of the inverter 22 are turned off. The off processing time TA13 is a processing time required for the control of turning off all the switches Sp and Sn by the rotating electrical machine ECU 24.
 時刻t14において、回転電機ECU24により、界磁回路23の全てのスイッチSpa,Spb,Sna,Snbをオフにする制御が開始される。時刻t14からオフ処理時間TA14が経過すると、時刻t15において、全てのスイッチSpa,Spb,Sna,Snbがオフにされる。オフ処理時間TA14は、回転電機ECU24が全てのスイッチSpa,Spb,Sna,Snbをオフにする制御に必要な処理時間である。 At time t14, the rotating electrical machine ECU 24 starts control to turn off all the switches Spa, Spb, Sna, Snb of the field circuit 23. When the off processing time TA14 elapses from time t14, all the switches Spa, Spb, Sna, Snb are turned off at time t15. The off processing time TA14 is a processing time required for the control of turning off all the switches Spa, Spb, Sna, Snb by the rotating electrical machine ECU 24.
 時刻t15において、回転電機ECU24により、インバータ22の全ての下アームスイッチSnをオンにする制御が開始される。時刻t15からオン処理時間TA15及び遅延時間TA16が経過すると、時刻t17において、全ての下アームスイッチSnがオンにされる。これにより、電機子巻線(相巻線25U,25V,25W)から+B端子へ電流が流れなくなり、+B端子の電圧が低下し始める。オン処理時間TA15は、回転電機ECU24が全ての下アームスイッチSnをオンにする制御に必要な処理時間である。遅延時間TA16は、下アームスイッチSnをオンにする制御が終了してから、下アームスイッチSnが実際にオンになるまでの遅延時間である。そして、インバータ22の全てのスイッチSp,Snがオフにされてから、全ての下アームスイッチSnがオンにされるまでの時間TA17(=TA14+TA15+TA16)が、上アームスイッチSp及び下アームスイッチSnがオフにされたデッドタイムに相当する。時間TA17は、全ての下アームスイッチSnをオンに制御する前に必要な所定のデッドタイム(全ての上アームスイッチSpが実際にオフにされて維持される時間)よりも長くなっている。このため、所定のデッドタイムを確保するための特別な処理は行われていない。 At time t15, the rotating electrical machine ECU 24 starts control to turn on all the lower arm switches Sn of the inverter 22. When the on-processing time TA15 and the delay time TA16 have elapsed from time t15, all the lower arm switches Sn are turned on at time t17. As a result, no current flows from the armature winding ( phase windings 25U, 25V, 25W) to the + B terminal, and the voltage at the + B terminal starts to decrease. The ON processing time TA15 is a processing time required for the control of turning on all the lower arm switches Sn by the rotating electrical machine ECU 24. The delay time TA16 is a delay time from when the control for turning on the lower arm switch Sn is completed until the lower arm switch Sn is actually turned on. The time TA17 (= TA14 + TA15 + TA16) from when all the switches Sp, Sn of the inverter 22 are turned off to when all the lower arm switches Sn are turned on is the time when the upper arm switch Sp and the lower arm switch Sn are turned off. Corresponds to the dead time. The time TA17 is longer than a predetermined dead time (a time during which all the upper arm switches Sp are actually turned off and maintained) required before all the lower arm switches Sn are turned on. For this reason, special processing for ensuring a predetermined dead time is not performed.
 時刻t16において、回転電機ECU24により、調整時間TA18が経過するまで待つ処理が開始される。調整時間TA18は、界磁回路23の上アームのスイッチSpa,Spb及び下アームのスイッチSna,Snbがオフにされる所定のデッドタイムを確保するために必要な時間である。 At time t16, the rotating electrical machine ECU 24 starts a process of waiting until the adjustment time TA18 elapses. The adjustment time TA18 is a time required to secure a predetermined dead time during which the upper arm switches Spa and Spb and the lower arm switches Sna and Snb of the field circuit 23 are turned off.
 時刻t16から調整時間TA18が経過すると、時刻t18において、界磁回路23の全ての下アームのスイッチSna,Snbをオンにする制御が開始される。時刻t18からオン処理時間TA19が経過すると、時刻t19において、全ての下アームのスイッチSna,Snbがオンにされる。これにより、界磁巻線26から+B端子へ電流が流れなくなり、+B端子の電圧がさらに低下し始める。オン処理時間TA19は、回転電機ECU24が全ての下アームのスイッチSna,Snbをオンにする制御に必要な処理時間である。そして、界磁回路23の全てのスイッチSpa,Spb,Sna,Snbがオフにされてから、全ての下アームのスイッチSna,Snbがオンにされるまでの時間TA20(=TA15+TA18+TA19)が、上アームのスイッチSpa,Spb及び下アームのスイッチSna,Snbがオフにされたデッドタイムに相当する。 When the adjustment time TA18 elapses from time t16, control for turning on the switches Sna and Snb of all the lower arms of the field circuit 23 is started at time t18. When the on-processing time TA19 elapses from time t18, the switches Sna and Snb of all the lower arms are turned on at time t19. As a result, no current flows from the field winding 26 to the + B terminal, and the voltage at the + B terminal starts to further decrease. The on-processing time TA19 is a processing time required for control in which the rotating electrical machine ECU 24 turns on the switches Sna and Snb of all the lower arms. The time TA20 (= TA15 + TA18 + TA19) from when all the switches Spa, Spb, Sna, Snb of the field circuit 23 are turned off to when all the lower arm switches Sna, Snb are turned on is equal to the upper arm. This corresponds to a dead time when the switches Spa and Spb and the lower arm switches Sna and Snb are turned off.
 時刻t20において、+B端子の電圧が解除閾値よりも低くなると、ASIC28により、ロードダンプ電圧が十分に低下したことが検出される。そして、ASIC28により、LDフラグが1から0にされ、回転電機ECU24に通知される。時刻t20以降は、回転電機ECU24により、インバータ22の全ての上アームスイッチSpがオフにされ、全ての下アームスイッチSnがオンにされた状態が維持される。また、回転電機ECU24により、界磁回路23の全ての上アームのスイッチSpa,Spbがオフにされ、全ての下アームのスイッチSna,Snbがオンにされた状態が維持される。 When the voltage at the + B terminal becomes lower than the release threshold at time t20, the ASIC 28 detects that the load dump voltage has sufficiently decreased. Then, the ASIC 28 sets the LD flag from 1 to 0 and notifies the rotating electrical machine ECU 24 of the LD flag. After time t20, the rotating electrical machine ECU 24 maintains the state where all the upper arm switches Sp of the inverter 22 are turned off and all the lower arm switches Sn are turned on. Further, the rotating electrical machine ECU 24 maintains the state where all the upper arm switches Spa and Spb of the field circuit 23 are turned off and all the lower arm switches Sna and Snb are turned on.
 本願発明者は、ロードダンプ電圧の上昇を迅速に停止させる、すなわちロードダンプ電圧のピーク値を抑制するためには、界磁巻線26に流れる励磁電流を減少させることよりも、電機子巻線(相巻線25U,25V,25W)に流れる電流を減少させることが有効であることを見出した。その理由は、界磁巻線26に流れる励磁電流よりも、電機子巻線に流れる電流がはるかに大きいことによる。そこで、本か実施形態では、回転電機ECU24は、界磁巻線26に流れる励磁電流を減少(還流)させる制御よりも、電機子巻線に流れる電流を減少(還流)させる制御を優先して実行する。 In order to stop the rise of the load dump voltage quickly, i.e., to suppress the peak value of the load dump voltage, the inventor of the present application does not reduce the exciting current flowing in the field winding 26 but reduces the armature winding. It has been found that it is effective to reduce the current flowing through ( phase windings 25U, 25V, 25W). The reason is that the current flowing through the armature winding is much larger than the excitation current flowing through the field winding 26. Therefore, in the present embodiment, the rotating electrical machine ECU 24 prioritizes control for reducing (refluxing) the current flowing through the armature winding over control for reducing (refluxing) the excitation current flowing through the field winding 26. Execute.
 (ロードダンプ保護制御)
 図4は、本実施形態のロードダンプ保護制御の手順を示すフローチャートである。この一連の処理は、ASIC28及び回転電機ECU24により実行される。
(Load dump protection control)
FIG. 4 is a flowchart illustrating a procedure of load dump protection control according to the present embodiment. This series of processing is executed by the ASIC 28 and the rotating electrical machine ECU 24.
 まず、ASIC28は、電圧センサ30により検出された電圧に基づいて、+B端子の電圧がLD閾値(閾値、第1閾値に相当)よりも高いか否か判定する(S11)。この判定において、+B端子の電圧がLD閾値よりも高くないと判定した場合(S11:NO)、S11の処理を再度実行する。 First, based on the voltage detected by the voltage sensor 30, the ASIC 28 determines whether or not the voltage at the + B terminal is higher than the LD threshold (threshold, corresponding to the first threshold) (S11). In this determination, when it is determined that the voltage at the + B terminal is not higher than the LD threshold (S11: NO), the process of S11 is executed again.
 一方、S11の判定において、+B端子の電圧がLD閾値よりも高いと判定した場合(S11:YES)、ASIC28は、+B端子の電圧がLD閾値よりも高いと判定してからの経過時間が判定時間(第1時間に相当)よりも長いか否か判定する(S12)。この判定において、+B端子の電圧がLD閾値よりも高いと判定してからの経過時間が判定時間よりも長くないと判定した場合(S12:NO)、S11の処理から再度実行する。 On the other hand, if it is determined in S11 that the voltage at the + B terminal is higher than the LD threshold (S11: YES), the ASIC 28 determines the elapsed time after determining that the voltage at the + B terminal is higher than the LD threshold. It is determined whether it is longer than the time (corresponding to the first time) (S12). In this determination, when it is determined that the elapsed time after determining that the voltage at the + B terminal is higher than the LD threshold is not longer than the determination time (S12: NO), the process is executed again from S11.
 一方、S12の判定において、+B端子の電圧がLD閾値よりも高いと判定してからの経過時間が判定時間よりも長いと判定した場合(S12:YES)、ASIC28は、回転電機ECU24へロードダンプ電圧の発生を通知する。具体的には、LDフラグを0から1にして、LDフラグ=1を回転電機ECU24へ通知する。 On the other hand, in the determination of S12, when it is determined that the elapsed time after determining that the voltage at the + B terminal is higher than the LD threshold is longer than the determination time (S12: YES), the ASIC 28 performs load dump to the rotating electrical machine ECU 24. Notify the occurrence of voltage. Specifically, the LD flag is changed from 0 to 1, and the LD flag = 1 is notified to the rotating electrical machine ECU 24.
 続いて、回転電機ECU24は、ロードダンプ電圧の発生の通知を受信しかた否か判定する(S14)。具体的には、LDフラグ=1であることを受信したか否か判定する。この判定において、ロードダンプ電圧の発生の通知を受信していないと判定した場合(S14:NO)、S14の処理を再度実行する。 Subsequently, the rotating electrical machine ECU 24 determines whether or not the notification of the generation of the load dump voltage has been received (S14). Specifically, it is determined whether or not the LD flag = 1 is received. In this determination, when it is determined that the notification of the generation of the load dump voltage has not been received (S14: NO), the process of S14 is executed again.
 一方、S14の判定において、ロードダンプ電圧の発生の通知を受信したと判定した場合(S14:YES)、回転電機ECU24は、インバータ22の全てのスイッチSp,Snをオフに制御する(S15)。すなわち、電圧センサ30により検出された電圧が判定時間を超えてLD閾値よりも高くなったことを条件として、全てのスイッチSp,Snをオフに制御する。なお、インバータ22の全ての上アームスイッチSpが第1素子群に相当する。 On the other hand, when it is determined in S14 that the notification of the generation of the load dump voltage has been received (S14: YES), the rotating electrical machine ECU 24 controls all the switches Sp and Sn of the inverter 22 to be turned off (S15). That is, all the switches Sp and Sn are controlled to be turned off on condition that the voltage detected by the voltage sensor 30 exceeds the determination time and exceeds the LD threshold value. Note that all the upper arm switches Sp of the inverter 22 correspond to the first element group.
 続いて、回転電機ECU24は、インバータ22の全ての下アームスイッチSnをオンに制御する(S16)。ここで、S15の処理の終了時点から全ての下アームスイッチSnが実際にオンになる時点までの時間は、S15の処理の終了時点から全てのスイッチSp,Snが実際にオフされて維持される時間(所定のデッドタイム)よりも長い。なお、インバータ22の全ての下アームスイッチSnが第2素子群に相当する。 Subsequently, the rotating electrical machine ECU 24 controls all the lower arm switches Sn of the inverter 22 to be on (S16). Here, the time from the end of the process of S15 to the time when all the lower arm switches Sn are actually turned on is maintained after all the switches Sp and Sn are actually turned off from the end of the process of S15. It is longer than the time (predetermined dead time). Note that all the lower arm switches Sn of the inverter 22 correspond to the second element group.
 続いて、回転電機ECU24は、界磁回路23の全てのスイッチSpa,Spb,Sna,Snbをオフに制御する(S17)。なお、界磁回路23の全ての上アームのスイッチSpa,Spbが第3素子群に相当する。そして、回転電機ECU24は、界磁回路23の上アームのスイッチSpa,Spb及び下アームのスイッチSna,Snbがオフにされて維持される所定のデッドタイムを確保する調整処理を実行する(S18)。具体的には、所定のデッドタイムを確保するための調整時間が経過するまで、S19の処理を開始せずに待つ。 Subsequently, the rotating electrical machine ECU 24 controls all the switches Spa, Spb, Sna, Snb of the field circuit 23 to be turned off (S17). Note that the switches Spa and Spb of all the upper arms of the field circuit 23 correspond to the third element group. Then, the rotating electrical machine ECU 24 executes an adjustment process for ensuring a predetermined dead time that is maintained by turning off the switches Spa and Spb of the upper arm and the switches Sna and Snb of the lower arm of the field circuit 23 (S18). . Specifically, the process waits without starting the process of S19 until an adjustment time for ensuring a predetermined dead time has elapsed.
 所定のデッドタイムを確保する調整処理(S18)を実行した後、回転電機ECU24は、界磁回路23の全ての下アームのスイッチSna,Snbをオンに制御する(S19)。なお、界磁回路23の全ての下アームのスイッチSna,Snbが第4素子群に相当する。 After executing the adjustment process (S18) for securing a predetermined dead time, the rotating electrical machine ECU 24 controls the switches Sna and Snb of all the lower arms of the field circuit 23 to be turned on (S19). Note that the switches Sna and Snb of all the lower arms of the field circuit 23 correspond to the fourth element group.
 続いて、ASIC28は、電圧センサ30により検出された電圧に基づいて、+B端子の電圧が解除閾値よりも低いか否か判定する(S20)。この判定において、+B端子の電圧が解除閾値よりも低くないと判定した場合(S20:NO)、S20の処理を再度実行する。 Subsequently, the ASIC 28 determines whether or not the voltage at the + B terminal is lower than the release threshold based on the voltage detected by the voltage sensor 30 (S20). In this determination, when it is determined that the voltage at the + B terminal is not lower than the release threshold (S20: NO), the process of S20 is executed again.
 一方、S20の判定において、+B端子の電圧が解除閾値よりも低いと判定した場合(S20:YES)、ASIC28は、+B端子の電圧が解除閾値よりも低いと判定してからの経過時間が判定時間よりも長いか否か判定する(S21)。この判定において、+B端子の電圧が解除閾値よりも低いと判定してからの経過時間が判定時間よりも長くないと判定した場合(S21:NO)、S20の処理から再度実行する。 On the other hand, in the determination of S20, when it is determined that the voltage at the + B terminal is lower than the release threshold (S20: YES), the ASIC 28 determines the elapsed time after determining that the voltage at the + B terminal is lower than the release threshold. It is determined whether or not it is longer than the time (S21). In this determination, when it is determined that the elapsed time after determining that the voltage at the + B terminal is lower than the release threshold is not longer than the determination time (S21: NO), the process is executed again from S20.
 一方、S21の判定において、+B端子の電圧が解除閾値よりも低いと判定してからの経過時間が判定時間よりも長いと判定した場合(S21:YES)、ASIC28は、回転電機ECU24へロードダンプ電圧が十分に低下したことを通知する。具体的には、LDフラグを1から0にして、LDフラグ=0を回転電機ECU24へ通知する。 On the other hand, if it is determined in S21 that the elapsed time after determining that the voltage at the + B terminal is lower than the release threshold is longer than the determination time (S21: YES), the ASIC 28 performs load dump to the rotating electrical machine ECU 24. Notify that the voltage has dropped sufficiently. Specifically, the LD flag is changed from 1 to 0, and LD flag = 0 is notified to the rotating electrical machine ECU 24.
 続いて、回転電機ECU24は、全ての下アームスイッチSnが実際にオンになってから所定時間経過したか否か判定する(S22)。所定時間は、界磁巻線26に流れる励磁電流の大きさに基づいて設定する。具体的には、所定時間=励磁電流×α+βの式により、所定時間を設定する。α,βは、予め実験等に基づいて設定された係数である。この判定において、全ての下アームスイッチSnが実際にオンになってから所定時間経過していないと判定した場合(S22:NO)、S22の処理を再度実行する。 Subsequently, the rotating electrical machine ECU 24 determines whether or not a predetermined time has elapsed since all the lower arm switches Sn are actually turned on (S22). The predetermined time is set based on the magnitude of the excitation current flowing through the field winding 26. Specifically, the predetermined time is set according to the formula: predetermined time = excitation current × α + β. α and β are coefficients set in advance based on experiments or the like. In this determination, when it is determined that a predetermined time has not elapsed since all the lower arm switches Sn are actually turned on (S22: NO), the process of S22 is executed again.
 一方、S22の判定において、全ての下アームスイッチSnが実際にオンになってから所定時間経過したと判定した場合(S22:YES)、回転電機ECU24は、インバータ22及び界磁回路23の全てのスイッチSp,Sn,Spa,Spb,Sna,Snbをオフに制御する(S23)。その後、回転電機ECU24は、この一連の処理を終了する(END)。 On the other hand, in the determination of S22, when it is determined that a predetermined time has elapsed since all the lower arm switches Sn are actually turned on (S22: YES), the rotating electrical machine ECU 24 determines that all of the inverter 22 and the field circuit 23 are The switches Sp, Sn, Spa, Spb, Sna, Snb are controlled to be turned off (S23). Thereafter, the rotating electrical machine ECU 24 ends this series of processing (END).
 なお、S11~S15の処理が第1制御部としての処理に相当し、S16の処理が第2制御部としての処理に相当し、S17の処理が第3制御部としての処理に相当し、S18及びS19の処理が第4制御部としての処理に相当する。また、S11~S13の処理、S20及びS21の処理を、回転電機ECU24により実行してもよい。 The processes of S11 to S15 correspond to the process as the first control unit, the process of S16 corresponds to the process as the second control unit, the process of S17 corresponds to the process as the third control unit, and S18 And the process of S19 is equivalent to the process as a 4th control part. Further, the processing of S11 to S13 and the processing of S20 and S21 may be executed by the rotating electrical machine ECU 24.
 図5は、本実施形態のロードダンプ保護制御の態様を示すタイムチャートである。なお、図3と同一の部分には、同一の符号を付すことにより説明を省略する。 FIG. 5 is a time chart showing an aspect of load dump protection control of the present embodiment. Note that the same portions as those in FIG. 3 are denoted by the same reference numerals, and description thereof is omitted.
 同図に示すように、時刻t14までの制御態様は図3の比較例と同一である。 As shown in the figure, the control mode up to time t14 is the same as the comparative example of FIG.
 時刻t14において、回転電機ECU24により、インバータ22の全ての下アームスイッチSnをオンにする制御が開始される。時刻t14からオン処理時間TA15及び遅延時間TA16が経過すると、時刻t32において、全ての下アームスイッチSnがオンにされる。これにより、電機子巻線(相巻線25U,25V,25W)から+B端子へ電流が流れなくなり、+B端子の電圧が低下し始める。そして、インバータ22の全てのスイッチSp,Snがオフにされてから、全ての下アームスイッチSnがオンにされるまでの時間TA17R(=TA15+TA16)が、上アームスイッチSp及び下アームスイッチSnがオフにされたデッドタイムに相当する。時間TA17Rは、全ての下アームスイッチSnをオンに制御する前に必要な所定のデッドタイム(全ての上アームスイッチSpが実際にオフにされて維持される時間)よりも長くなっている。このため、所定のデッドタイムを確保するための特別な処理(デッドタイム調整処理)は行われていない。 At time t14, the rotating electrical machine ECU 24 starts control to turn on all the lower arm switches Sn of the inverter 22. When the on-processing time TA15 and the delay time TA16 have elapsed from time t14, all the lower arm switches Sn are turned on at time t32. As a result, no current flows from the armature winding ( phase windings 25U, 25V, 25W) to the + B terminal, and the voltage at the + B terminal starts to decrease. The time TA17R (= TA15 + TA16) from when all the switches Sp and Sn of the inverter 22 are turned off to when all the lower arm switches Sn are turned on is the time when the upper arm switch Sp and the lower arm switch Sn are turned off. Corresponds to the dead time. The time TA17R is longer than a predetermined dead time (a time during which all the upper arm switches Sp are actually turned off and maintained) required before turning on all the lower arm switches Sn. For this reason, special processing (dead time adjustment processing) for ensuring a predetermined dead time is not performed.
 時刻t14からオン処理時間TA15が経過すると、時刻t30において、界磁回路23の全てのスイッチSpa,Spb,Sna,Snbをオフにする制御が開始される。時刻t30からオフ処理時間TA14が経過すると、時刻t31において、全てのスイッチSpa,Spb,Sna,Snbがオフにされる。 When the on-processing time TA15 elapses from time t14, control for turning off all the switches Spa, Spb, Sna, Snb of the field circuit 23 is started at time t30. When the off processing time TA14 elapses from time t30, all the switches Spa, Spb, Sna, Snb are turned off at time t31.
 時刻t31において、回転電機ECU24により、調整時間TA18Rが経過するまで待つ処理が開始される。調整時間TA18Rは、界磁回路23の上アームのスイッチSpa,Spb及び下アームのスイッチSna,Snbがオフにされる所定のデッドタイムを確保するために必要な時間である。 At time t31, the rotating electrical machine ECU 24 starts a process of waiting until the adjustment time TA18R elapses. The adjustment time TA18R is a time necessary to ensure a predetermined dead time during which the upper arm switches Spa and Spb and the lower arm switches Sna and Snb of the field circuit 23 are turned off.
 時刻t31から調整時間TA18Rが経過すると、時刻t33において、界磁回路23の全ての下アームのスイッチSna,Snbをオンにする制御が開始される。時刻t33からオン処理時間TA19が経過すると、時刻t34において、全ての下アームのスイッチSna,Snbがオンにされる。これにより、界磁巻線26から+B端子へ電流が流れなくなり、+B端子の電圧がさらに低下し始める。そして、界磁回路23の全てのスイッチSpa,Spb,Sna,Snbがオフにされてから、全ての下アームのスイッチSna,Snbがオンにされるまでの時間TA20R(=TA18R+TA19)が、上アームのスイッチSpa,Spb及び下アームのスイッチSna,Snbがオフにされたデッドタイムに相当する。インバータ22の全てのスイッチSp,Snがオフにされてから、全ての下アームスイッチSnがオンにされるまでの時間TA17Rは、界磁回路23の全てのスイッチSpa,Spb,Sna,Snbがオフにされてから、全ての下アームのスイッチSna,Snbがオンにされるまでの時間TA20Rよりも短くなっている。 When the adjustment time TA18R elapses from time t31, control for turning on the switches Sna and Snb of all the lower arms of the field circuit 23 is started at time t33. When the on-processing time TA19 elapses from time t33, the switches Sna and Snb of all the lower arms are turned on at time t34. As a result, no current flows from the field winding 26 to the + B terminal, and the voltage at the + B terminal starts to further decrease. The time TA20R (= TA18R + TA19) from when all the switches Spa, Spb, Sna, Snb of the field circuit 23 are turned off to when all the lower arm switches Sna, Snb are turned on is equal to the upper arm. This corresponds to a dead time when the switches Spa and Spb and the lower arm switches Sna and Snb are turned off. The time TA17R from when all the switches Sp, Sn of the inverter 22 are turned off to when all the lower arm switches Sn are turned on is when all the switches Spa, Spb, Sna, Snb of the field circuit 23 are off. The time TA20R from when the switch is turned on until the switches Sna and Snb of all the lower arms are turned on is shorter.
 時刻t35において、+B端子の電圧が解除閾値よりも低くなると、ASIC28により、ロードダンプ電圧が十分に低下したことが検出される。そして、ASIC28により、LDフラグが1から0にされ、回転電機ECU24に通知される。時刻t35以降は、回転電機ECU24により、インバータ22の全てのスイッチSp,Snがオフにされた状態が維持される。また、回転電機ECU24により、界磁回路23の全てのスイッチSpa,Spb,Sna,Snbがオフにされた状態が維持される。 When the voltage at the + B terminal becomes lower than the release threshold at time t35, the ASIC 28 detects that the load dump voltage has sufficiently decreased. Then, the ASIC 28 sets the LD flag from 1 to 0 and notifies the rotating electrical machine ECU 24 of the LD flag. After time t35, the rotating electrical machine ECU 24 maintains a state where all the switches Sp and Sn of the inverter 22 are turned off. Further, the rotating electrical machine ECU 24 maintains the state where all the switches Spa, Spb, Sna, Snb of the field circuit 23 are turned off.
 また、ロードダンプ電圧が発生していない場合であっても、回転電機ユニット16による発電に異常が生じて、インバータ22から出力される電圧が正常値よりも高くなることがある。この場合、上述したロードダンプ保護制御を実行すると、回転電機ユニット16による発電が過剰に制限されるおそれがある。そこで、本実施形態では、回転電機ECU24は、電圧センサ30により検出された電圧が、LD閾値よりも低く設定された過発電閾値よりも高く且つLD閾値よりも低い場合に、インバータ22の全てのスイッチSp,Snをオフに制御する過発電保護制御を実行する。 Even when the load dump voltage is not generated, an abnormality may occur in the power generation by the rotating electrical machine unit 16 and the voltage output from the inverter 22 may be higher than the normal value. In this case, if the load dump protection control described above is executed, the power generation by the rotating electrical machine unit 16 may be excessively limited. Therefore, in the present embodiment, the rotating electrical machine ECU 24 determines that all voltages of the inverter 22 are detected when the voltage detected by the voltage sensor 30 is higher than the overpower generation threshold set lower than the LD threshold and lower than the LD threshold. Overpower protection control is performed to turn off the switches Sp and Sn.
 (過発電保護制御)
 図6は、本実施形態の過発電保護制御(発電停止制御に相当)の手順を示すフローチャートである。この一連の処理は、回転電機ECU24により実行される。
(Overpower protection control)
FIG. 6 is a flowchart showing the procedure of overpower protection control (corresponding to power generation stop control) of the present embodiment. This series of processing is executed by the rotating electrical machine ECU 24.
 まず、電圧センサ30により検出された電圧に基づいて、+B端子の電圧が過発電閾値(第2閾値に相当)よりも高いか否か判定する(S31)。過発電閾値は、LD閾値よりも低く設定されている。この判定において、+B端子の電圧が過発電閾値よりも高くないと判定した場合(S31:NO)、S31の処理を再度実行する。 First, based on the voltage detected by the voltage sensor 30, it is determined whether or not the voltage at the + B terminal is higher than the overpower generation threshold (corresponding to the second threshold) (S31). The overpower generation threshold is set lower than the LD threshold. In this determination, when it is determined that the voltage at the + B terminal is not higher than the overpower generation threshold (S31: NO), the process of S31 is executed again.
 一方、S31の判定において、+B端子の電圧が過発電閾値よりも高いと判定した場合(S31:YES)、+B端子の電圧が過発電閾値よりも高いと判定してからの経過時間が判定時間(第2時間に相当)よりも長いか否か判定する(S32)。S32の判定時間は、図4のS12の判定時間よりも長く設定されている。この判定において、+B端子の電圧が過発電閾値よりも高いと判定してからの経過時間が判定時間よりも長くないと判定した場合(S32:NO)、S31の処理から再度実行する。 On the other hand, in the determination of S31, when it is determined that the voltage at the + B terminal is higher than the overpower generation threshold (S31: YES), the elapsed time from the determination that the voltage at the + B terminal is higher than the overpower generation threshold is the determination time. It is determined whether it is longer than (corresponding to the second time) (S32). The determination time of S32 is set longer than the determination time of S12 of FIG. In this determination, when it is determined that the elapsed time after determining that the voltage at the + B terminal is higher than the overpower generation threshold is not longer than the determination time (S32: NO), the process is executed again from S31.
 一方、S32の判定において、+B端子の電圧が過発電閾値よりも高いと判定してからの経過時間が判定時間よりも長いと判定した場合(S32:YES)、インバータ22の全てのスイッチSp,Snをオフに制御する(S33)。すなわち、電圧センサ30により検出された電圧が判定時間を超えて過発電閾値よりも高くなったことを条件として、全てのスイッチSp,Snをオフに制御する。 On the other hand, if it is determined in S32 that the elapsed time after determining that the voltage at the + B terminal is higher than the overpower generation threshold is longer than the determination time (S32: YES), all the switches Sp, Sn is controlled to be off (S33). That is, all the switches Sp and Sn are controlled to be turned off on condition that the voltage detected by the voltage sensor 30 exceeds the overpower generation threshold after the determination time.
 続いて、界磁回路23の全てのスイッチSpa,Spb,Sna,Snbをオフに制御する(S34)。 Subsequently, all the switches Spa, Spb, Sna, Snb of the field circuit 23 are controlled to be turned off (S34).
 続いて、電圧センサ30により検出された電圧に基づいて、+B端子の電圧が解除閾値よりも低いか否か判定する(S35)。この判定において、+B端子の電圧が解除閾値よりも低くないと判定した場合(S35:NO)、S35の処理を再度実行する。 Subsequently, based on the voltage detected by the voltage sensor 30, it is determined whether or not the voltage at the + B terminal is lower than the release threshold (S35). In this determination, when it is determined that the voltage at the + B terminal is not lower than the release threshold (S35: NO), the process of S35 is executed again.
 一方、S35の判定において、+B端子の電圧が解除閾値よりも低いと判定した場合(S35:YES)、+B端子の電圧が解除閾値よりも低いと判定してからの経過時間が判定時間よりも長いか否か判定する(S36)。この判定において、+B端子の電圧が解除閾値よりも低いと判定してからの経過時間が判定時間よりも長くないと判定した場合(S36:NO)、S35の処理から再度実行する。 On the other hand, if it is determined in S35 that the voltage at the + B terminal is lower than the release threshold (S35: YES), the elapsed time after determining that the voltage at the + B terminal is lower than the release threshold is shorter than the determination time. It is determined whether it is long (S36). In this determination, when it is determined that the elapsed time after determining that the voltage of the + B terminal is lower than the release threshold is not longer than the determination time (S36: NO), the process is executed again from S35.
 一方、S36の判定において、+B端子の電圧が解除閾値よりも低いと判定してからの経過時間が判定時間よりも長いと判定した場合(S36:YES)、過発電に対する保護状態を解除する(S37)。具体的には、過発電保護制御を終了し、通常制御を実行する。その後、回転電機ECU24は、この一連の処理を終了する(END)。 On the other hand, if it is determined in S36 that the elapsed time after determining that the voltage of the + B terminal is lower than the release threshold is longer than the determination time (S36: YES), the protection state against overpower generation is released (S36: YES). S37). Specifically, the overpower protection control is terminated and normal control is executed. Thereafter, the rotating electrical machine ECU 24 ends this series of processing (END).
 ここで、+B端子の電圧がLD閾値よりも高い場合は、図4のLD保護制御が優先的に実行される。すなわち、上記過発電保護制御は、電圧センサ30により検出された電圧が、過発電閾値よりも高く且つLD閾値よりも低い場合に実行される。なお、S31~S33の処理が第5制御部としての処理に相当する。また、S31及びS32の処理、S35及びS36の処理を、ASIC28により実行することもできる。その場合は、図4の処理に準じて、回転電機ECU24に過発電の発生を通知する処理等を追加すればよい。 Here, when the voltage at the + B terminal is higher than the LD threshold, the LD protection control of FIG. 4 is preferentially executed. That is, the overpower protection control is executed when the voltage detected by the voltage sensor 30 is higher than the overpower threshold and lower than the LD threshold. Note that the processing of S31 to S33 corresponds to the processing as the fifth control unit. The processing of S31 and S32 and the processing of S35 and S36 can also be executed by the ASIC 28. In that case, a process for notifying the rotating electrical machine ECU 24 of the occurrence of overpower generation may be added in accordance with the process of FIG.
 図7は、過発電保護制御の態様を示すタイムチャートである。 FIG. 7 is a time chart showing an aspect of overpower protection control.
 回転電機ユニット16に過発電異常が生じて、時刻t40において、+B端子の電圧が過発電閾値を超える。そして、時刻t40から判定時間が経過すると、時刻t41において、回転電機ECU24により、インバータ22の全てのスイッチSp,Snがオフに制御される。さらに、回転電機ECU24により、界磁回路23の全てのスイッチSpa,Spb,Sna,Snbがオフに制御される。 An overpower generation abnormality occurs in the rotating electrical machine unit 16, and the voltage at the + B terminal exceeds the overpower generation threshold at time t40. When the determination time has elapsed from time t40, at time t41, the rotating electrical machine ECU 24 controls all the switches Sp and Sn of the inverter 22 to be turned off. Further, the rotating electrical machine ECU 24 controls all the switches Spa, Spb, Sna, Snb of the field circuit 23 to be turned off.
 ここで、過発電保護制御では、インバータ22の電機子巻線(相巻線25U,25V,25W)に流れる電流は、LD保護制御と異なり還流されていないため、+B端子へ流れる電流はすぐには減少しない。同様に、過発電保護制御では、界磁巻線26に流れる励磁電流は、LD保護制御と異なり還流されていないため、+B端子へ流れる電流はすぐには減少しない。したがって、+B端子の電圧は、時刻t41から上昇を続け、時刻t42においてピーク値となる。 Here, in the overpower protection control, the current flowing through the armature windings ( phase windings 25U, 25V, 25W) of the inverter 22 is not recirculated unlike the LD protection control, so the current flowing to the + B terminal is immediately Will not decrease. Similarly, in the overpower protection control, the excitation current flowing through the field winding 26 is not recirculated unlike the LD protection control, so the current flowing to the + B terminal does not decrease immediately. Therefore, the voltage at the + B terminal continues to rise from time t41 and reaches a peak value at time t42.
 時刻t42において、電機子巻線(相巻線25U,25V,25W)から+B端子へ電流が流れなくなり、+B端子の電圧が低下し始める。なお、界磁巻線26からも+B端子へ電流が流れなくなる。 At time t42, no current flows from the armature winding (phase winding 25U, 25V, 25W) to the + B terminal, and the voltage at the + B terminal starts to decrease. Note that no current flows from the field winding 26 to the + B terminal.
 時刻t43において、+B端子の電圧が解除閾値よりも低くなる。そして、時刻t43から判定時間が経過すると、時刻t44において、回転電機ECU24により、インバータ22及び界磁回路23の通常制御が開始される。 At time t43, the voltage at the + B terminal becomes lower than the release threshold. When the determination time has elapsed from time t43, normal control of the inverter 22 and the field circuit 23 is started by the rotating electrical machine ECU 24 at time t44.
 以上詳述した本実施形態は、以下の利点を有する。 The embodiment described above has the following advantages.
 ・第1制御部は、電圧センサ30により検出された電圧がLD閾値よりも高い場合に、インバータ22の全てのスイッチSp,Snのうち、全ての上アームスイッチSpである第1素子群を含む全てのスイッチSp,Snをオフに制御する。このため、ロードダンプ電圧が発生した場合に、電圧センサ30により検出された電圧がLD閾値よりも高くなり、第1素子群がオフに制御される。そして、第2制御部は、第1制御部による制御の終了後に制御を開始し、第1素子群(全ての上アームスイッチSp)が実際にオフにされて維持される時間が経過した後に、インバータ22の全てのスイッチSp,Snのうち、第1素子群に対応する上アームと反対側の下アームの全てのスイッチSnである第2素子群を実際にオンにする。このため、インバータ22の第2素子群(全ての下アームスイッチSn)をオンにする際に、第1素子群と第2素子群とが短絡することを防ぐことができる。 The first control unit includes a first element group that is all the upper arm switches Sp among all the switches Sp and Sn of the inverter 22 when the voltage detected by the voltage sensor 30 is higher than the LD threshold. All the switches Sp and Sn are controlled to be off. For this reason, when the load dump voltage is generated, the voltage detected by the voltage sensor 30 becomes higher than the LD threshold value, and the first element group is controlled to be turned off. Then, the second control unit starts control after the end of the control by the first control unit, and after the time that the first element group (all upper arm switches Sp) are actually turned off and maintained has elapsed, Of all the switches Sp and Sn of the inverter 22, the second element group which is all the switches Sn on the lower arm opposite to the upper arm corresponding to the first element group is actually turned on. For this reason, when turning on the second element group (all lower arm switches Sn) of the inverter 22, it is possible to prevent the first element group and the second element group from being short-circuited.
 ・第3制御部は、第2制御部による制御の終了後に制御を開始し、界磁回路23の全てのスイッチSpa,Spb,Sna,Snbのうち、全ての上アームのスイッチSpa,Spbである第3素子群を含む全てのスイッチSpa,Spb,Sna,Snbをオフに制御する。そして、第4制御部は、第3制御部による制御の終了後に制御を開始し、第3素子群(全ての上アームのスイッチSpa,Spb)が実際にオフにされて維持される時間が経過した後に、界磁回路23の全てのスイッチSpa,Spb,Sna,Snbのうち、第3素子群に対応する上アームと反対側の下アームの全てのスイッチSna,Snbである第4素子群を実際にオンにする。このため、界磁回路23の第4素子群(全ての下アームのスイッチSna,Snb)をオンにする際に、第3素子群と第4素子群とが短絡することを防ぐことができる。 The third control unit starts control after the end of the control by the second control unit, and is the switches Spa, Spb of all upper arms among all the switches Spa, Spb, Sna, Snb of the field circuit 23. All switches Spa, Spb, Sna, Snb including the third element group are controlled to be turned off. And the 4th control part starts control after the end of control by the 3rd control part, and the time for which the 3rd element group (all upper arm switches Spa and Spb) are actually turned off is maintained. After that, among all the switches Spa, Spb, Sna, Snb of the field circuit 23, all the switches Sna, Snb of the lower arm opposite to the upper arm corresponding to the third element group are set. Actually turn it on. Therefore, it is possible to prevent the third element group and the fourth element group from being short-circuited when the fourth element group (all lower arm switches Sna and Snb) of the field circuit 23 is turned on.
 ・第3制御部及び第4制御部による制御よりも、第1制御部及び第2制御部による制御が優先して実行される。したがって、ロードダンプ電圧の発生時に、電機子巻線(相巻線25U,25V,25W)に流れる電流を減少させる制御を最優先して実行することができ、ロードダンプ電圧のピーク値を抑制することができる。 -Control by the 1st control part and the 2nd control part is performed with priority over control by the 3rd control part and the 4th control part. Therefore, when the load dump voltage is generated, the control for reducing the current flowing through the armature winding ( phase windings 25U, 25V, 25W) can be executed with the highest priority, and the peak value of the load dump voltage can be suppressed. be able to.
 ・第1制御部による制御の終了時点(時刻t14)から第2素子群を実際にオンにする時点(時刻t32)までの時間TA17R(=TA15+TA16)は、第3制御部による制御の終了時点(時刻t31)から第4素子群を実際にオンにする時点(時刻t34)までの時間TA20R(=TA18R+TA19)よりも短くなっている。このため、第1制御部及び第2制御部による制御を実行して第2素子群が実際にオンになる時点(時刻t32)は、第3制御部及び第4制御部による制御を第1制御部及び第2制御部による制御よりも優先して実行した場合に第4素子群が実際にオンになる時点よりも早くなる。したがって、ロードダンプ電圧の発生時に、電機子巻線に流れる電流を減少させる第1制御及び第2制御を最優先して実行することが、ロードダンプ電圧のピーク値を抑制する上でさらに有効となる。 The time TA17R (= TA15 + TA16) from the end point of control by the first control unit (time t14) to the time point when the second element group is actually turned on (time t32) is the end point of control by the third control unit ( It is shorter than the time TA20R (= TA18R + TA19) from the time t31) to the time when the fourth element group is actually turned on (time t34). For this reason, when the control by the first control unit and the second control unit is executed and the second element group is actually turned on (time t32), the control by the third control unit and the fourth control unit is the first control. When the control is executed with priority over the control by the second control unit and the second control unit, the time becomes earlier than the time when the fourth element group is actually turned on. Therefore, when the load dump voltage is generated, the first control and the second control that reduce the current flowing through the armature winding are executed with the highest priority, which is further effective in suppressing the peak value of the load dump voltage. Become.
 ・第1制御部による制御の終了時点(時刻t14)から第2素子群を実際にオンにする時点(時刻t32)までの時間TA17Rは、第1制御部による制御の終了時点から第1素子群が実際にオフにされて維持される時間(必要なデッドタイム)よりも長くなっている。このため、第2制御部は、第1制御部による制御の終了時点から、第1素子群が実際にオフにされて維持される時間が経過することを待つ必要はなく、第1制御部による制御の終了後に第2素子群をオンにする制御を直ちに開始すればよい。したがって、第1制御部による制御の後に、第3制御部及び第4制御部による制御よりも先に第2制御部による制御を実行することが、ロードダンプ電圧のピーク値を抑制する上でさらに有効となる。 The time TA17R from the end of control by the first control unit (time t14) to the time when the second element group is actually turned on (time t32) is from the end of control by the first control unit to the first element group. Is longer than the time that is actually turned off and maintained (required dead time). For this reason, the second control unit does not need to wait for the time that the first element group is actually turned off and maintained after the end of the control by the first control unit. The control for turning on the second element group may be started immediately after the end of the control. Therefore, after the control by the first control unit, the control by the second control unit is executed before the control by the third control unit and the fourth control unit, in order to further suppress the peak value of the load dump voltage. It becomes effective.
 ・電圧センサ30により検出された電圧がLD閾値よりも高い場合に、第1制御部が、インバータ22の全ての上アームスイッチSpのみをオフに制御すると、回転電機ユニット16の挙動が不安定になるおそれがある。この点、第1制御部は、電圧センサ30により検出された電圧がLD閾値よりも高い場合に、インバータ22の全てのスイッチSp,Snをオフに制御している。したがって、第1制御部が第1素子群を含むスイッチをオフに制御する際に、回転電機ユニット16の挙動が不安定になることを抑制することができる。 When the voltage detected by the voltage sensor 30 is higher than the LD threshold value, if the first control unit controls only all the upper arm switches Sp of the inverter 22 to be off, the behavior of the rotating electrical machine unit 16 becomes unstable. There is a risk. In this regard, the first control unit controls all the switches Sp and Sn of the inverter 22 to be off when the voltage detected by the voltage sensor 30 is higher than the LD threshold. Therefore, it is possible to suppress the behavior of the rotating electrical machine unit 16 from becoming unstable when the first control unit controls the switch including the first element group to be turned off.
 ・電圧センサ30により検出された電圧が、LD閾値よりも低く設定された過発電閾値よりも高く且つLD閾値よりも低い場合に、インバータ22の全てのスイッチSp,Snをオフに制御する第5制御部を備えている。このため、電圧センサ30により検出された電圧が、LD閾値よりも低く設定された過発電閾値よりも高く且つLD閾値よりも低い場合には、ロードダンプ保護制御よりも先に、回転電機ユニット16による発電停止制御(第5制御部による制御)を実行することができる。したがって、回転電機ユニット16による発電に異常が生じた場合に、回転電機ユニット16による発電が過剰に制限されることを抑制することができる。 A fifth control that turns off all the switches Sp and Sn of the inverter 22 when the voltage detected by the voltage sensor 30 is higher than the overpower generation threshold set lower than the LD threshold and lower than the LD threshold. A control unit is provided. For this reason, when the voltage detected by the voltage sensor 30 is higher than the overpower generation threshold set lower than the LD threshold and lower than the LD threshold, the rotating electrical machine unit 16 is prior to the load dump protection control. The power generation stop control (control by the fifth control unit) can be executed. Therefore, when an abnormality occurs in the power generation by the rotating electrical machine unit 16, it is possible to prevent the power generation by the rotating electrical machine unit 16 from being excessively limited.
 ・電圧センサ30により検出された電圧が、過発電閾値よりも高くなった後にLD閾値よりも高くなった場合は、ロードダンプ保護制御が実行される。このため、ロードダンプ保護制御を、過発電保護制御よりも優先して実行することができる。 When the voltage detected by the voltage sensor 30 becomes higher than the LD threshold value after becoming higher than the overpower generation threshold value, load dump protection control is executed. For this reason, load dump protection control can be executed with priority over overpower generation protection control.
 ・第1制御部は、電圧センサ30により検出された電圧が第1時間(判定時間)を超えてLD閾値よりも高くなったことを条件として、第1素子群を含むスイッチSp,Snをオフに制御し、第5制御部は、電圧センサ30により検出された電圧が第1時間よりも長く設定された第2時間(判定時間)を超えて過発電閾値よりも高くなったことを条件として、インバータ22の全てのスイッチSp,Snをオフに制御している。こうした構成によれば、ロードダンプ電圧が発生した場合は迅速にロードダンプ保護制御を実行し、発電異常が発生した場合は余裕を持って発電停止制御を実行することができる。 The first control unit turns off the switches Sp and Sn including the first element group on the condition that the voltage detected by the voltage sensor 30 exceeds the LD threshold after exceeding the first time (determination time). The fifth control unit is on condition that the voltage detected by the voltage sensor 30 has exceeded the second power generation time (determination time) set longer than the first time and has become higher than the overpower generation threshold. All the switches Sp and Sn of the inverter 22 are controlled to be off. According to such a configuration, when the load dump voltage occurs, the load dump protection control can be executed quickly, and when the power generation abnormality occurs, the power generation stop control can be executed with a margin.
 なお、上記実施形態を、以下のように変更して実施することもできる。 It should be noted that the above embodiment can be modified as follows.
 ・第5制御部による制御が実行される場合は、第1制御部による制御を実行する前に、インバータ22の全てのスイッチSp,Snが実際にオフにされて維持される時間(必要なデッドタイム)が経過していることがある。この場合は、第1制御部による制御を省略して、直ちに第2制御部による制御を実行することができる。そこで、第5制御部によりインバータ22の全てのスイッチが実際にオフにされて維持される時間が経過しており、且つ電圧センサ30により検出された電圧がLD閾値よりも高い場合に、第1制御部による制御が終了して第1素子群が実際にオフにされて維持される時間が経過したとして、第2制御部による制御を実行させてもよい。こうした構成によれば、第1制御部による制御を実行する前に、インバータ22の全てのスイッチSp,Snが実際にオフにされて維持される時間が経過している場合は、第1制御部による制御を省略して直ちに第2制御部による制御を実行することができる。その結果、ロードダンプ電圧の発生時に、ロードダンプ電圧のピーク値をさらに抑制することができる。 When the control by the fifth control unit is executed, the time during which all the switches Sp and Sn of the inverter 22 are actually turned off and maintained before the control by the first control unit is executed (necessary dead Time) may have elapsed. In this case, the control by the first control unit can be omitted and the control by the second control unit can be executed immediately. Therefore, when the time that all the switches of the inverter 22 are actually turned off and maintained by the fifth control unit has elapsed and the voltage detected by the voltage sensor 30 is higher than the LD threshold, the first control is performed. The control by the second control unit may be executed on the assumption that the time that the control by the control unit is finished and the first element group is actually turned off and maintained has elapsed. According to such a configuration, before executing the control by the first control unit, when the time for which all the switches Sp and Sn of the inverter 22 are actually turned off and maintained has elapsed, the first control unit The control by the second control unit can be executed immediately without the control by. As a result, the peak value of the load dump voltage can be further suppressed when the load dump voltage is generated.
 ・第5制御部による過発電保護制御を省略して、ロードダンプ保護制御(第1~第4制御部による制御)のみを実行してもよい。 ∙ Overload protection control by the fifth control unit may be omitted and only load dump protection control (control by the first to fourth control units) may be executed.
 ・上記実施形態では、第2制御部は、第1素子群(全ての上アームスイッチSp)を含む全てのスイッチSp,Snが実際にオフにされて維持される時間が経過した後に、第2素子群(全ての下アームスイッチSn)を実際にオンにした。これに対して、第2制御部は、第1素子群としての全ての下アームスイッチSnを含む全てのスイッチSp,Snが実際にオフにされて維持される時間が経過した後に、第2素子群としての全ての上アームスイッチSpを実際にオンにしてもよい。こうした構成によっても、上記実施形態と同様の作用効果を奏することができる。すなわち、第2制御部は、第1素子群に対応するアームと反対側のアームの全てのスイッチである第2素子群を実際にオンにすればよい。 In the above-described embodiment, the second control unit performs the second control after the time that all the switches Sp and Sn including the first element group (all the upper arm switches Sp) are actually turned off and maintained has elapsed. The element group (all lower arm switches Sn) was actually turned on. On the other hand, the second control unit performs the second element after the time that all the switches Sp and Sn including all the lower arm switches Sn as the first element group are actually turned off and maintained has elapsed. All the upper arm switches Sp as a group may be actually turned on. Even with such a configuration, the same operational effects as those of the above-described embodiment can be obtained. That is, the second control unit may actually turn on the second element group that is all the switches of the arm opposite to the arm corresponding to the first element group.
 ・上記実施形態では、第1制御部は、電圧センサ30により検出された電圧がLD閾値よりも高い場合に、インバータ22の全てのスイッチSp,Snをオフに制御した。これに対して、第1制御部は、電圧センサ30により検出された電圧がLD閾値よりも高い場合に、全ての上アームスイッチSp(第1素子群)のみをオフに制御することもできる。また、第1制御部は、電圧センサ30により検出された電圧がLD閾値よりも高い場合に、全ての下アームスイッチSn(第1素子群)のみをオフに制御することもできる。これらの場合であっても、インバータ22の第2素子群をオンにする際に、第1素子群と第2素子群とが短絡することを防ぐことができる。 In the above embodiment, the first controller controls all the switches Sp and Sn of the inverter 22 to be off when the voltage detected by the voltage sensor 30 is higher than the LD threshold. On the other hand, when the voltage detected by the voltage sensor 30 is higher than the LD threshold, the first control unit can also control all the upper arm switches Sp (first element group) to be turned off. Further, the first control unit can also control only all the lower arm switches Sn (first element group) to be turned off when the voltage detected by the voltage sensor 30 is higher than the LD threshold. Even in these cases, it is possible to prevent the first element group and the second element group from being short-circuited when the second element group of the inverter 22 is turned on.
 要するに、第1制御部は、電圧センサ30により検出された電圧がLD閾値よりも高い場合に、インバータ22の全てのスイッチSp,Snのうち、全ての上アームのスイッチSp又は全ての下アームのスイッチSnである第1素子群を含むスイッチをオフに制御し、第2制御部は、第1制御部による制御の終了後に制御を開始し、第1素子群が実際にオフにされて維持される時間が経過した後に、インバータ22の全てのスイッチSp,Snのうち、第1素子群に対応するアームと反対側のアームの全てのスイッチである第2素子群を実際にオンにすればよい。 In short, when the voltage detected by the voltage sensor 30 is higher than the LD threshold value, the first control unit, among all the switches Sp and Sn of the inverter 22, sets all the upper arm switches Sp or all the lower arms. The switch including the first element group which is the switch Sn is controlled to be turned off, and the second control unit starts control after the control by the first control unit is finished, and the first element group is actually turned off and maintained. The second element group, which is all the switches of the arm opposite to the arm corresponding to the first element group, of all the switches Sp and Sn of the inverter 22 may be actually turned on. .
 ・上記実施形態では、第1制御部による制御の終了時点(時刻t14)から第2素子群を実際にオンにする時点(時刻t32)までの時間TA17Rは、第1制御部による制御の終了時点から第1素子群が実際にオフにされて維持される時間よりも長くなっていた。これに対して、第1制御部による制御の終了時点からオン処理時間TA15及び遅延時間TA16が経過する時点までの時間が、第1制御部による制御の終了時点から第1素子群が実際にオフにされて維持される時間よりも短くなっていてもよい。この場合は、第2制御部が、第1制御部による制御の終了時点から、第1素子群が実際にオフにされて維持される時間(必要なデッドタイム)が経過した後に、第2素子群が実際にオンにされるように、第2制御部が第2素子群をオンにする制御を待つ処理(デッドタイム調整処理)を実行すればよい。 In the above embodiment, the time TA17R from the end point of control by the first controller (time t14) to the point of time when the second element group is actually turned on (time t32) is the end point of control by the first controller. Thus, the first element group is longer than the time that the first element group is actually turned off and maintained. In contrast, the time from the end of the control by the first control unit to the time when the on-processing time TA15 and the delay time TA16 elapse is the time when the first element group is actually turned off from the end of the control by the first control unit. It may be shorter than the time of being maintained. In this case, after the second control unit has passed the time (necessary dead time) that the first element group is actually turned off and maintained after the end of control by the first control unit, the second element A process of waiting for control to turn on the second element group (dead time adjustment process) may be executed so that the group is actually turned on.
 ・上記実施形態では、所定のデッドタイムを確保するために必要な調整時間TA18Rが経過してから、界磁回路23の全ての下アームのスイッチSna,Snbをオンにする制御を開始した。これに対して、第3制御部による制御の終了時点(時刻t31)からオン処理時間TA19が経過する時点までの時間が、第3制御部による制御の終了時点から第3素子群が実際にオフにされて維持される時間よりも長い場合がある。この場合は、第4制御部が、第3制御部による制御の終了時点から、第3素子群が実際にオフにされて維持される時間を待つ必要はなく、第3制御部による制御の終了後に第4素子群をオンにする制御を直ちに開始すればよい。 In the above embodiment, the control for turning on the switches Sna and Snb of all the lower arms of the field circuit 23 is started after the adjustment time TA18R necessary for ensuring a predetermined dead time has elapsed. In contrast, the time from the end of control by the third control unit (time t31) to the time when the ON processing time TA19 elapses is the time when the third element group is actually turned off from the end of control by the third control unit It may be longer than the time maintained. In this case, it is not necessary for the fourth control unit to wait for the time that the third element group is actually turned off and maintained from the end of the control by the third control unit, and the control by the third control unit is ended. The control for turning on the fourth element group may be started immediately later.
 ・上記実施形態では、第1制御部による制御の終了時点(時刻t14)から第2素子群を実際にオンにする時点(時刻t32)までの時間TA17R(=TA15+TA16)は、第3制御部による制御の終了時点(時刻t31)から第4素子群を実際にオンにする時点(時刻t34)までの時間TA20R(=TA18R+TA19)よりも短くなっていた。これに対して、上記時間TA17Rが上記時間TA20Rよりも長くなっていてもよい。この場合であっても、第3制御部及び第4制御部による制御よりも、第1制御部及び第2制御部による制御を優先して実行することで、ロードダンプ電圧のピーク値を抑制することができる。 In the above embodiment, the time TA17R (= TA15 + TA16) from the end point of control by the first controller (time t14) to the point of time when the second element group is actually turned on (time t32) is determined by the third controller. It was shorter than the time TA20R (= TA18R + TA19) from the end of control (time t31) to the time when the fourth element group was actually turned on (time t34). On the other hand, the time TA17R may be longer than the time TA20R. Even in this case, the peak value of the load dump voltage is suppressed by prioritizing the control by the first control unit and the second control unit over the control by the third control unit and the fourth control unit. be able to.
 ・4相以上の相巻線を有する回転電機21、及びそれに対応した4つ以上の上下アームを有するブリッジ回路により構成されたインバータ22を採用することもできる。 · An electric rotating machine 21 having four or more phase windings and an inverter 22 constituted by a bridge circuit having four or more upper and lower arms corresponding to the rotating electric machine 21 may be employed.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (7)

  1.  界磁極を磁化させる界磁巻線(26)と、
     前記界磁極によって発生する磁界により交流電圧を発生する電機子巻線(25U,25V,25W)と、
     直列接続された上アームのスイッチング素子(Sp)及び下アームのスイッチング素子(Sn)を含む相を複数備え、前記電機子巻線に発生した交流電圧を直流電圧に変換する電力変換回路(22)と、
     2つの上アームのスイッチング素子(Spa,Spb)及び2つの下アームのスイッチング素子(Sna,Snb)を有し、前記界磁巻線に励磁電流を供給するHブリッジ回路(23)と、
     前記電力変換回路の出力端子(+B)の電圧を検出する電圧検出部(30)と、
    を備える回転電機装置(16)に適用される制御装置(24,28)であって、
     前記電圧検出部により検出された電圧が閾値よりも高い場合に、前記電力変換回路の全てのスイッチング素子のうち、全ての上アームのスイッチング素子又は全ての下アームのスイッチング素子である第1素子群を含むスイッチング素子をオフに制御する第1制御部と、
     前記第1制御部による制御の終了後に制御を開始し、前記第1素子群が実際にオフにされて維持される時間が経過した後に、前記電力変換回路の全てのスイッチング素子のうち、前記第1素子群に対応するアームと反対側のアームの全てのスイッチング素子である第2素子群を実際にオンにする第2制御部と、
     前記第2制御部による制御の終了後に制御を開始し、前記Hブリッジ回路の全てのスイッチング素子のうち、全ての上アームのスイッチング素子又は全ての下アームのスイッチング素子である第3素子群を含むスイッチング素子をオフに制御する第3制御部と、
     前記第3制御部による制御の終了後に制御を開始し、前記第3素子群が実際にオフにされて維持される時間が経過した後に、前記Hブリッジ回路の全てのスイッチング素子のうち、前記第3素子群に対応するアームと反対側のアームの全てのスイッチング素子である第4素子群を実際にオンにする第4制御部と、
    を備える回転電機装置の制御装置。
    A field winding (26) for magnetizing the field poles;
    An armature winding (25U, 25V, 25W) that generates an AC voltage by a magnetic field generated by the field pole;
    A power conversion circuit (22) comprising a plurality of phases including a switching element (Sp) of the upper arm and a switching element (Sn) of the lower arm connected in series, and converting an AC voltage generated in the armature winding into a DC voltage. When,
    An H bridge circuit (23) having two upper arm switching elements (Spa, Spb) and two lower arm switching elements (Sna, Snb) and supplying an exciting current to the field winding;
    A voltage detector (30) for detecting the voltage of the output terminal (+ B) of the power conversion circuit;
    A control device (24, 28) applied to a rotating electrical machine device (16) comprising:
    The first element group that is all upper-arm switching elements or all lower-arm switching elements among all the switching elements of the power conversion circuit when the voltage detected by the voltage detection unit is higher than a threshold value. A first control unit that controls the switching element including:
    Control is started after the end of the control by the first control unit, and after the time that the first element group is actually turned off and maintained, among the switching elements of the power conversion circuit, the first A second control unit that actually turns on the second element group that is all the switching elements of the arm opposite to the arm corresponding to the one element group;
    Control is started after the end of the control by the second control unit, and includes a third element group that is all upper-arm switching elements or all lower-arm switching elements among all the switching elements of the H-bridge circuit. A third control unit for controlling the switching element to turn off;
    Control is started after the end of the control by the third control unit, and after the time that the third element group is actually turned off and maintained, among the all switching elements of the H-bridge circuit, the first A fourth control unit that actually turns on the fourth element group that is all the switching elements of the arm opposite to the arm corresponding to the three element group;
    A control device for a rotating electrical machine apparatus.
  2.  前記第1制御部による制御の終了時点から前記第2素子群を実際にオンにする時点までの時間は、前記第3制御部による制御の終了時点から前記第4素子群を実際にオンにする時点までの時間よりも短い請求項1に記載の回転電機装置の制御装置。 The time from the end of control by the first control unit to the time when the second element group is actually turned on is the time when the fourth element group is actually turned on from the end of control by the third control unit. The control device for a rotating electrical machine apparatus according to claim 1, wherein the control time is shorter than a time until a time point.
  3.  前記第1制御部による制御の終了時点から前記第2素子群を実際にオンにする時点までの時間は、前記第1制御部による制御の終了時点から前記第1素子群が実際にオフにされて維持される時間よりも長い請求項1又は2に記載の回転電機装置の制御装置。 The time from the end of control by the first control unit to the time when the second element group is actually turned on is the time when the first element group is actually turned off from the end of control by the first control unit. The control device for a rotating electrical machine apparatus according to claim 1 or 2, wherein the control device is longer than the time maintained.
  4.  前記第1制御部は、前記電圧検出部により検出された電圧が閾値よりも高い場合に、前記電力変換回路の全てのスイッチング素子をオフに制御する請求項1~3のいずれか1項に記載の回転電機装置の制御装置。 The first control unit according to any one of claims 1 to 3, wherein when the voltage detected by the voltage detection unit is higher than a threshold, all the switching elements of the power conversion circuit are controlled to be turned off. Control device for a rotating electrical machine.
  5.  前記閾値は第1閾値であり、
     前記電圧検出部により検出された電圧が、前記第1閾値よりも低く設定された第2閾値よりも高く且つ前記第1閾値よりも低い場合に、前記電力変換回路の全てのスイッチング素子をオフに制御する第5制御部を備える請求項1~4のいずれか1項に記載の回転電機装置の制御装置。
    The threshold is a first threshold;
    When the voltage detected by the voltage detection unit is higher than the second threshold set lower than the first threshold and lower than the first threshold, all the switching elements of the power conversion circuit are turned off. The control device for a rotating electrical machine apparatus according to any one of claims 1 to 4, further comprising a fifth control unit for controlling.
  6.  前記第1制御部は、前記電圧検出部により検出された電圧が第1時間を超えて前記第1閾値よりも高くなったことを条件として、前記第1素子群を含むスイッチング素子をオフに制御し、
     前記第5制御部は、前記電圧検出部により検出された電圧が前記第1時間よりも長く設定された第2時間を超えて前記第2閾値よりも高くなったことを条件として、前記電力変換回路の全てのスイッチング素子をオフに制御する請求項5に記載の回転電機装置の制御装置。
    The first control unit controls the switching elements including the first element group to be turned off on condition that the voltage detected by the voltage detection unit exceeds the first threshold over a first time. And
    The fifth control unit may convert the power conversion on the condition that the voltage detected by the voltage detection unit is higher than the second threshold value over a second time set longer than the first time. The control device for a rotating electrical machine apparatus according to claim 5, wherein all the switching elements of the circuit are controlled to be turned off.
  7.  前記第5制御部により前記電力変換回路の全てのスイッチング素子が実際にオフにされて維持される時間が経過しており、且つ前記電圧検出部により検出された電圧が前記第1閾値よりも高い場合に、前記第1制御部による制御が終了して前記第1素子群が実際にオフにされて維持される時間が経過したとして、前記第2制御部による制御を実行させる請求項5又は6に記載の回転電機装置の制御装置。 The time that all the switching elements of the power conversion circuit are actually turned off and maintained by the fifth control unit has elapsed, and the voltage detected by the voltage detection unit is higher than the first threshold value In this case, the control by the second control unit is executed assuming that the control by the first control unit ends and the time that the first element group is actually turned off and maintained has elapsed. The control apparatus of the rotary electric machine apparatus described in 1.
PCT/JP2018/017957 2017-05-12 2018-05-09 Control device for rotary electric machine apparatus WO2018207829A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112018002457.1T DE112018002457T5 (en) 2017-05-12 2018-05-09 Control device and on-board system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-095545 2017-05-12
JP2017095545A JP6708165B2 (en) 2017-05-12 2017-05-12 Controller for rotating electrical machine

Publications (1)

Publication Number Publication Date
WO2018207829A1 true WO2018207829A1 (en) 2018-11-15

Family

ID=64105650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017957 WO2018207829A1 (en) 2017-05-12 2018-05-09 Control device for rotary electric machine apparatus

Country Status (3)

Country Link
JP (1) JP6708165B2 (en)
DE (1) DE112018002457T5 (en)
WO (1) WO2018207829A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020178522A (en) * 2019-04-23 2020-10-29 株式会社デンソー Rotary electric machine system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002010694A (en) * 2000-06-23 2002-01-11 Denso Corp Control unit for field-winding type rotating electirc machine
JP2007189773A (en) * 2006-01-11 2007-07-26 Mitsubishi Electric Corp Field winding system of ac dynamo-electric machine apparatus
JP2010239729A (en) * 2009-03-31 2010-10-21 Hitachi Automotive Systems Ltd Vehicle charging generator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6123627B2 (en) 2013-10-16 2017-05-10 株式会社デンソー Rotating electric machine for vehicles
JP6840459B2 (en) 2015-11-19 2021-03-10 ペペ ライセンシング リミテッドPep Licensing Limited The process of preparing biodegradable or biocomposable or biodigestible plastics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002010694A (en) * 2000-06-23 2002-01-11 Denso Corp Control unit for field-winding type rotating electirc machine
JP2007189773A (en) * 2006-01-11 2007-07-26 Mitsubishi Electric Corp Field winding system of ac dynamo-electric machine apparatus
JP2010239729A (en) * 2009-03-31 2010-10-21 Hitachi Automotive Systems Ltd Vehicle charging generator

Also Published As

Publication number Publication date
JP2018196175A (en) 2018-12-06
JP6708165B2 (en) 2020-06-10
DE112018002457T5 (en) 2020-01-23

Similar Documents

Publication Publication Date Title
JP6418252B2 (en) Rotating electrical machine control device
US20180361865A1 (en) Power supply unit for a vehicle
CN109874350B (en) Power supply control device
JP6503636B2 (en) Motor controller
US10875418B2 (en) Charge control apparatus and system
US11077761B2 (en) Power supply system for vehicle
JP6575458B2 (en) Abnormality diagnosis device
CN109716614B (en) Control system
JP7032249B2 (en) Power system
JP2015107045A (en) Charge and discharge circuit and motor control device including the same
JP7363681B2 (en) Power converter control circuit
WO2018207829A1 (en) Control device for rotary electric machine apparatus
WO2018193782A1 (en) Dynamo-electric machine control device, and power supply system
JP2021129397A (en) Control circuit of power converter
JP6620769B2 (en) Control system
JP2019004594A (en) Power supply unit of vehicle
JP2019165579A (en) Power system of vehicle
JP7244075B2 (en) charging system
CN110574285B (en) Rotating electric machine control device and control system
JP6589803B2 (en) Rotating electrical machine control device
JP7259563B2 (en) Rotating electric machine control system
WO2024053424A1 (en) Power conversion apparatus and program
WO2024053422A1 (en) Power conversion device and program
JP7361740B2 (en) Electric motor control device
JP2018046737A (en) Control device of rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18798101

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18798101

Country of ref document: EP

Kind code of ref document: A1