WO2018107927A1 - Mimo无线终端的无线性能测试方法 - Google Patents

Mimo无线终端的无线性能测试方法 Download PDF

Info

Publication number
WO2018107927A1
WO2018107927A1 PCT/CN2017/110259 CN2017110259W WO2018107927A1 WO 2018107927 A1 WO2018107927 A1 WO 2018107927A1 CN 2017110259 W CN2017110259 W CN 2017110259W WO 2018107927 A1 WO2018107927 A1 WO 2018107927A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
wireless terminal
antenna
antennas
signal
Prior art date
Application number
PCT/CN2017/110259
Other languages
English (en)
French (fr)
Inventor
漆一宏
沈鹏辉
Original Assignee
深圳市通用测试系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市通用测试系统有限公司 filed Critical 深圳市通用测试系统有限公司
Priority to JP2018549897A priority Critical patent/JP6886984B2/ja
Priority to EP17835576.4A priority patent/EP3361654B1/en
Priority to US15/751,732 priority patent/US10797808B2/en
Priority to KR1020187025914A priority patent/KR102111874B1/ko
Publication of WO2018107927A1 publication Critical patent/WO2018107927A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/0082Monitoring; Testing using service channels; using auxiliary channels
    • H04B17/0085Monitoring; Testing using service channels; using auxiliary channels using test signal generators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/29Performance testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/12Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase

Definitions

  • the present invention relates to the field of antenna technologies, and in particular, to a wireless performance testing method for a MIMO wireless terminal.
  • the main test standards offered by the CTIA (Cellular Telecommunications and Internet Association) and the 3rd Generation Partnership Project (3GPP) are the multi-probe method and the two-step method of radiation.
  • the radiation two-step method for the MIMO test method is shown in Figure 1.
  • the test process is mainly divided into the following steps:
  • the first step is to obtain antenna pattern information of multiple antennas of the MIMO (Multiple-Input Multiple-Output) wireless terminal, including gain information of each antenna in each direction, and any two Receiving the same signal phase difference information in all directions of the antenna;
  • MIMO Multiple-Input Multiple-Output
  • the antenna pattern information of the plurality of antennas of the obtained wireless terminal is merged with a preset MIMO channel propagation model to simulate obtaining a complete MIMO transmission channel, thereby generating a throughput test signal;
  • the calibration matrix for the wireless terminal in the darkroom is determined, and then according to the calibration matrix and the throughput test signal that has been calculated. Generating a test transmit signal;
  • the test transmission signal is fed into a plurality of measurement antennas of the microwave darkroom, and transmitted to the wireless terminal through the measurement antenna to test the wireless terminal.
  • the test error of the reported data includes an amplitude test error greater than 3 dB and a phase test error of at least 10 degrees.
  • test error is different for each MIMO wireless terminal and cannot be evaluated and quantified under air interface test conditions.
  • test error is an unknown data that cannot be quantized. Moreover, since the test error is introduced in the first stage of the two-step method of radiation, accompanied by the entire test process, the accuracy and repeatability of the MIMO wireless terminal test are ultimately affected.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent.
  • an object of the present invention is to provide a wireless performance test method for a MIMO wireless terminal to eliminate test errors and solve the problem that the test error cannot be quantified in the prior art, resulting in accuracy and repeatability of the MIMO wireless terminal test.
  • Technical problem is to provide a wireless performance test method for a MIMO wireless terminal to eliminate test errors and solve the problem that the test error cannot be quantified in the prior art, resulting in accuracy and repeatability of the MIMO wireless terminal test.
  • the first aspect of the present invention provides a method, including:
  • the measured MIMO wireless terminal has a plurality of antennas, and the measured MIMO wireless terminal is placed in a microwave darkroom, the method comprising the following steps:
  • test transmission signal into a plurality of measurement antennas of the microwave darkroom, and transmitting to the wireless terminal through the measurement antenna to test the wireless terminal.
  • a method for testing a wireless performance of a MIMO wireless terminal includes obtaining antenna pattern information of a plurality of antennas of a measured MIMO wireless terminal measured in a microwave darkroom, and further obtaining the antenna pattern information of the MIMO wireless terminal to be tested. Testing the signal and calibrating the test signal using the error calibration joint matrix of the MIMO wireless terminal under test to obtain a test transmission signal, and finally feeding the test transmission signal into a plurality of measurement antennas of the microwave darkroom and passing The measurement antenna is transmitted to the wireless terminal to test the wireless terminal. Since the error calibration matrix is used to calibrate the test signal to obtain the test transmission signal, the test error is eliminated, and the technical problem that the test error cannot be quantified in the prior art is solved, which leads to the accuracy and repeatability of the MIMO wireless terminal test.
  • the error calibration joint matrix is based on the measured MIMO
  • the amplitude and phase difference of the line terminal are determined by the return information of the system.
  • the error calibration joint matrix EA is a product of the error matrix E and the calibration matrix A;
  • the error matrix E is For the first u (u ⁇ 1) receive antennas test error, the error introduced by the test amplitude and phase feedback system, E u is the amplitude of the measurement error, For phase measurement error;
  • Calibration matrix A is The factor a ij of the calibration matrix is the path complex gain information of the input port of the jth transmit antenna to the output port of the i th receive antenna.
  • the factor of the error calibration joint matrix is
  • P emj is the transmit power of the signal transmitted by the jth transmit antenna
  • RS ij is the power and phase return value received by the output port of the ith receive antenna.
  • the obtaining the test signal according to the antenna pattern information of the measured MIMO wireless terminal includes:
  • the antenna pattern information includes gain information in each direction, and/or phase difference information of any two antennas receiving the same information in each direction.
  • the number of measurement antennas of the microwave chamber is greater than or equal to the number of antennas of the wireless terminal.
  • the measuring antenna and the wireless terminal under test remain stationary.
  • the test is a throughput test.
  • microwave dark cells used in the step A and the step D are the same.
  • a part of the plurality of measurement antennas is a horizontally polarized antenna, and another part of the plurality of measurement antennas is a vertically polarized antenna.
  • the number of measurement antennas is 2, and the number of reception antennas of the MIMO wireless terminal under test is 2;
  • EA 11 RS 11 /P em1
  • EA 21 RS 21 /P em1
  • EA 12 RS 12 /P em2
  • EA 22 /P em2 ;
  • RS 11 is the return value of the power and phase received by the output port of the first receiving antenna when the first measuring antenna transmits the signal EM1 with the transmitting power P em1 ;
  • RS 21 is the return value of the power and phase received by the output port of the second receiving antenna when the first measuring antenna transmits the signal EM1 with the transmitting power P em1 ;
  • RS 12 is the return value of the power and phase received by the output port of the first receiving antenna when the second measuring antenna transmits the signal EM2 with the transmitting power P em2 ;
  • RS 22 is the return value of the power and phase received by the output port of the second receiving antenna when the second measuring antenna transmits the signal EM2 with the transmitting power P em2 .
  • Figure 1 is a schematic diagram of the test of the two-step radiation method
  • FIG. 2 is a schematic flowchart of a wireless performance testing method of a MIMO wireless terminal
  • 3a is a schematic diagram of testing a wireless terminal of a MIMO wireless terminal to test an antenna of the wireless terminal under test
  • FIG. 3b is another schematic diagram of testing a wireless terminal of a MIMO wireless terminal to test an antenna of the wireless terminal under test;
  • FIG. 4 is a schematic diagram of an internal radio frequency system of a MIMO wireless terminal
  • Figure 5 is a schematic diagram of a calibration matrix
  • 6 is a test diagram of an error calibration joint matrix in a 2 ⁇ 2 MIMO system
  • FIG. 7 is a schematic diagram of testing a wireless terminal by measuring an antenna.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • the meaning of "a plurality” is two or more unless specifically and specifically defined otherwise.
  • a wireless performance testing method for a MIMO wireless terminal according to an embodiment of the present invention is described below with reference to FIG.
  • the MIMO wireless terminal to be tested has multiple antennas, and the MIMO wireless terminal to be tested is placed in the microwave darkroom.
  • the number of measurement antennas of the microwave room is greater than or equal to the number of antennas of the wireless terminal.
  • a wireless performance testing method for a MIMO wireless terminal includes the following steps:
  • Step S101 Obtain antenna pattern information of multiple antennas of the measured MIMO wireless terminal.
  • the antenna pattern information includes gain information in each direction, and/or phase difference information of receiving the same information in any direction between any two antennas.
  • the antenna pattern is one of the performance of the antenna.
  • the antenna pattern information for the plurality of antennas of the MIMO wireless terminal under test is obtained by measurement.
  • the antenna pattern information for the plurality of antennas of the MIMO wireless terminal under test is obtained from the measured antenna pattern.
  • performance testing of antennas for MIMO wireless terminals multiple performance parameters including antenna pattern, gain information, and phase information are tested.
  • the OTA test system for the single input single output (SISO) mobile communication system can complete the above performance test.
  • the OTA test system for the SISO terminal can implement measurement of the antenna pattern information of the antenna of the MIMO wireless terminal.
  • the antenna pattern of the plurality of antennas of the measured MIMO wireless terminal is described below by taking FIG. 3a and FIG. 3b as an example.
  • the MIMO wireless terminal (DUT) under test is placed in the center of a turntable, and the distance between the measurement antenna and the MIMO wireless terminal under test satisfies the standard.
  • the measurement antenna test obtains the transmission and reception performance of the MIMO wireless terminal under test in all directions.
  • the MIMO wireless terminal under test can have multiple states of placement, such as: free space, close to the simulated human head, hand-held, and the like. According to user requirements, one of the placement states and the antenna performance of the measured MIMO wireless terminal in each placement state can be tested.
  • the antenna pattern information of the plurality of antennas of the MIMO wireless terminal under test can be measured.
  • the port power value of the receiver is reported by the amplitude and phase difference reporting system of the MIMO wireless terminal under test, which is referred to as the reward system, that is, the chip itself of the MIMO wireless terminal under test is evaluated and reported to the test instrument. Therefore, the power return value includes the magnitude return error. Moreover, since the phase difference of the received signals of any two receiving antennas is also evaluated by the chip itself and reported to the test instrument, the phase return value includes the phase return error.
  • Step S102 Obtain a test signal according to antenna pattern information of the MIMO wireless terminal under test.
  • the antenna pattern information of the plurality of antennas of the wireless terminal obtained in step S101 is merged with a preset MIMO channel propagation model to simulate obtaining a complete MIMO transmission channel, and a test signal is generated, where the test signal can be Test the signal for throughput.
  • the channel propagation model is a simulation of a typical environment developed by a standards organization to work with MIMO wireless terminals.
  • a 3D channel model is taken as an example for description.
  • H(t) is a channel correlation matrix
  • P us represents the diameter Power transmitted;
  • g l,k and V is the transmitting antenna (H) and the receiving antenna polarization V (H) between the polarization, power and phase because the scattering body TS k and RS l offset caused;
  • D sk scatterer is to s-th TS k Transmitting antenna Distance;
  • D lu is the scatterer RS l to the uth receiving antenna Distance;
  • D kl is the distance from the scatterer TS k to the scatterer RS l ;
  • Is the sth transmit antenna Polarized at h Complex gain information of the angle;
  • Is the true u-th receiving antenna In v-polarization Complex gain information of the angle;
  • Is the true u-th transmit antenna Polarized at h Complex gain information of the angle;
  • XPD representing the channel model;
  • x l, k represents the CPR
  • Step S103 the test signal is calibrated using the error calibration joint matrix of the MIMO wireless terminal under test to obtain a test transmission signal.
  • FIG. 5 is a schematic diagram of a calibration matrix.
  • calibration is performed only according to the calibration matrix shown in FIG. 5 to obtain a test transmission signal.
  • the calibration matrix and the throughput test signal that has been acquired in the prior art.
  • the actual throughput test signal of the U path during the process of generating the test transmit signal And U road test transmission signal And calibration matrix Meet the following relationship:
  • the factor a ij of the calibration matrix is the path complex gain information of the input port of the jth transmitting antenna to the output port of the ith receiving antenna, and U is the number of antennas received and transmitted.
  • the terminal receiver finally receives the signal And test transmit signals
  • the relationship is:
  • the final received signal from the wireless terminal receiver is obtained by (5)(6)(7) Is the actual throughput test signal
  • the four steps are the formula principle of the two-step method of radiation in the prior art. From equation (8), it can be concluded that in the prior art, the two-step method of radiation is implemented in the U ⁇ S MIMO wireless terminal test, and finally arrives.
  • the invention can eliminate the return error and make the MIMO OTA test of the radiation two-step method more accurate, and the principle includes two parts, as follows:
  • the antenna pattern information of multiple antennas of the measured MIMO wireless terminal is obtained in the first step, and the second step is based on the acquired wireless terminal.
  • the antenna pattern information of the antenna is fused with a preset MIMO channel propagation model to simulate obtaining a complete MIMO transmission channel, and then a throughput test signal is generated, and a throughput test signal containing the error is obtained, that is, a formula (5) )
  • h u,s (t) is the (u,s)th factor in the channel correlation matrix R
  • H(t) E ⁇ H(t)(13), which can be seen at this time, the U channel actual throughput test signal And S-channel base station departure signal It can be expressed as Errors are still included in this signal.
  • the error is eliminated.
  • the calibration matrix for the device under test in the darkroom is determined according to the relative specific position and direction of the device under test relative to the measurement antenna in the darkroom.
  • a new test transmit signal is generated based on the calibration matrix and the throughput test signal that has been acquired and the error matrix. That is, the test signal is calibrated using the error calibration joint matrix of the MIMO wireless terminal under test to obtain a test transmission signal.
  • the factor a ij of the calibration matrix is a path complex gain of the input port of the jth transmitting antenna to the output port of the ith receiving antenna.
  • Equation (15) gives the relationship between the actual throughput test signal, the error matrix, the calibration matrix, and the new test transmit signal.
  • the return error cannot be obtained.
  • the error matrix E cannot be obtained separately, so Can not be obtained by simple calculations.
  • One of the key points of the present invention is the accurate and rapid acquisition of new test transmission signals. This process will be described in detail below.
  • the factor of the error calibration joint matrix It is calculated by calculation.
  • the specific calculation process is as follows:
  • the signal transmitting power P emj is transmitted through the jth transmitting antenna; further, the power received by the output port of the ith receiving antenna and the phase return value RS ij are read , and the value is divided by the power P emj Value, ie
  • Test transmit signal after calculating the error calibration joint matrix EA Can be obtained by the following formula:
  • P emj can be the same value. Further, it can all be 1, that is, a signal of 0 dB is transmitted.
  • Step S104 feeding the test transmission signal into a plurality of measurement antennas of the microwave darkroom, and transmitting to the wireless terminal through the measurement antenna to test the wireless terminal.
  • test transmission signal will be used.
  • the wireless terminal is tested by feeding into a plurality of measurement antennas of the microwave darkroom and transmitting to the wireless terminal through the measurement antenna.
  • step S101 and step S104 the placement state of the MIMO terminal should be consistent, so that the received antenna pattern obtained in step S101 can be used in the subsequent throughput test. If the placement status of the tested terminals is inconsistent, the direction of the receiving antenna will change.
  • the measuring antenna and the wireless terminal under test remain stationary.
  • the device under test remains stationary and does not rotate.
  • the MIMO terminal receives signals in different directions of the incoming wave and is simulated by the channel simulator.
  • the placement state of the measurement antenna is also the same.
  • the measuring antenna can remain stationary.
  • microwave dark cells used in steps S101 and S104 are the same.
  • some of the plurality of measurement antennas are horizontally polarized antennas and the other portion of the measurement antennas are vertically polarized antennas.
  • one of the two transmit antennas may be a horizontally polarized antenna of the measurement antenna, and the other is a vertically polarized antenna.
  • the gain of the receive antenna used when calculating the measurement channel transfer matrix and measuring the inverse matrix of the channel transfer matrix It also corresponds to the polarization of the measuring antenna.
  • a plurality of measurement antennas are arranged in the dark room, and the number n of measurement antennas is greater than or equal to the number m of reception antennas of the MIMO terminal. Preferably, the number of measurement antennas is equal to the number of MIMO terminal reception antennas.
  • this embodiment provides a possible application scenario.
  • the wireless performance testing method is specifically described.
  • the relationship between the acquired direction information and the true direction information of the MIMO wireless terminal is:
  • the throughput test signal is generated using the already acquired antenna pattern and channel model.
  • H(t) is a channel correlation matrix
  • P us represents the diameter Power transmitted;
  • g l,k and V is the transmitting antenna (H) and the receiving antenna polarization V (H) between the polarization, power and phase because the scattering body TS k and RS l offset caused;
  • D sk scatterer is to s-th TS k Transmitting antenna Distance;
  • D lu is the scatterer RS l to the uth receiving antenna Distance;
  • D kl is the distance from the scatterer TS k to the scatterer RS l ;
  • Is the sth transmit antenna Polarized at h Complex gain information of the angle;
  • Is the true u-th receiving antenna In v-polarization Complex gain information of the angle;
  • Is the true u-th transmit antenna Polarized at h Complex gain information of the angle;
  • XPD representing the channel model;
  • X l,k represents the CPR of
  • the error calibration joint matrix for the measured MIMO wireless terminal in the microwave darkroom is determined according to the reward information of the measured MIMO wireless terminal, and the test transmission signal is generated according to the error calibration joint matrix and the throughput test signal that has been calculated.
  • Figure 6 is a test diagram of the error calibration joint matrix in a 2 ⁇ 2 MIMO system. As shown in Figure 6, the error calibration joint matrix is:
  • RS 11 the return of the receiver 1 is recorded as RS 11 and the return of the receiver 2 is RS 21 .
  • RS 11 and RS 21 are complex numbers, including gain and phase values.
  • EA 11 RS 11 /P em1 ;
  • EA 21 RS 21 /P em1 .
  • the return of the receiver 1 is RS 12 and the return of the receiver 2 is RS 22 .
  • RS 12 and RS 22 are complex numbers, including gain and phase values.
  • EA 12 RS 12 /P em2 ;
  • EA 22 RS 22 /P em2 .
  • the wireless terminal is tested by feeding into a plurality of measurement antennas of the microwave darkroom and transmitting to the MIMO wireless terminal through the measurement antenna as in FIG.
  • FIG. 7 is a schematic diagram of testing a wireless terminal by measuring an antenna, as shown in FIG.
  • the signal received by the terminal receiver in the plurality of measurement antennas fed into the microwave darkroom The relationship with the new test transmit signal is:
  • the factor a ij of the calibration matrix is a path complex gain of the input port of the jth transmitting antenna to the output port of the ith receiving antenna.
  • Signal received by the wireless terminal receiver Perform calculations to obtain signals received by the wireless terminal receiver Relationship with the signal from the base station:
  • a method for testing a wireless performance of a MIMO wireless terminal includes obtaining antenna pattern information of a plurality of antennas of a measured MIMO wireless terminal measured in a microwave darkroom, and further obtaining the antenna pattern information of the MIMO wireless terminal to be tested. Testing the signal and calibrating the test signal using the error calibration joint matrix of the MIMO wireless terminal under test to obtain a test transmission signal, and finally feeding the test transmission signal into a plurality of measurement antennas of the microwave darkroom and passing The measurement antenna is transmitted to the wireless terminal to test the wireless terminal. Since the error calibration matrix is used to calibrate the test signal to obtain the test transmission signal, the test error is eliminated, and the technical problem that the test error cannot be quantified in the prior art is solved, which leads to the accuracy and repeatability of the MIMO wireless terminal test.
  • a "computer-readable medium” can be any apparatus that can contain, store, communicate, propagate, or transport a program for use in an instruction execution system, apparatus, or device, or in conjunction with the instruction execution system, apparatus, or device.
  • computer readable media include the following: electrical connections (electronic devices) having one or more wires, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer readable medium may even be a paper or other suitable medium on which the program can be printed, as it may be optically scanned, for example by paper or other medium, followed by editing, interpretation or, if appropriate, other suitable The method is processed to obtain the program electronically and then stored in computer memory.
  • portions of the invention may be implemented in hardware, software, firmware or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or combination of the following techniques well known in the art: having logic gates for implementing logic functions on data signals. Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), etc.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.
  • the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明提出一种MIMO无线终端的无线性能测试方法,包括获得微波暗室中测得的被测MIMO无线终端的多个天线的天线方向图信息,进而根据被测MIMO无线终端的天线方向图信息获得测试信号,并使用被测MIMO无线终端的误差校准联合矩阵对所述测试信号进行校准,获得测试用发射信号,最后将测试用发射信号馈入至微波暗室的多个测量天线之中,并通过测量天线向无线终端发射以对无线终端进行测试。由于采用了误差校准联合矩阵对测试信号校准获得测试用发射信号,以消除测试误差,解决现有技术中无法对测试误差进行量化,导致MIMO无线终端测试的准确性和可重复性的技术问题。

Description

MIMO无线终端的无线性能测试方法
相关申请的交叉引用
本申请要求深圳市通用测试系统有限公司于2016年12月14日提交的、发明名称为“MIMO无线终端的无线性能测试方法”的、中国专利申请号“201611154847.0”的优先权。
技术领域
本发明涉及天线技术领域,尤其涉及一种MIMO无线终端的无线性能测试方法。
背景技术
在美国无线通信和互联网协会(CTIA,Cellular Telecommunications and Internet Association)和第三代合作伙伴计划(3GPP,3rd Generation Partnership Project)提供的主要测试标准有多探头法和辐射两步法。
具体针对MIMO测试方法的辐射两步法,测试示意图如图1所示,其测试流程主要分为以下几步:
第一步,获得被测多入多出(MIMO,Multiple-Input Multiple-Output)无线终端的多个天线的天线方向图信息,其中包含了每个天线的各个方向的增益信息,以及任意两个天线各个方向上接收同一信号相位差信息等;
第二步,根据获取的无线终端的多个天线的天线方向图信息与预先设定的MIMO信道传播模型融合,用以模拟获得完整的MIMO传输信道,进而产生吞吐量测试信号;
第三步,根据无线终端的多个天线相对于暗室里的测量天线的相对具体位置、方向,确定暗室里面针对该无线终端的校准矩阵,再根据校准矩阵和已经计算获取的吞吐量测试信号来生成测试用发射信号;
第四步,将测试用发射信号馈入至微波暗室的多个测量天线之中,并通过测量天线向该无线终端发射以对所述无线终端进行测试。
其中,在辐射两步法而在第一步中,方向图测试时,需要依赖如图2所示的无线终端的幅度和相位差回报系统,幅度和相位差回报系统,将每一个接收机所接收到的信号的强度和任意两个接收信号之间的相位差,以空中下载(OTA,Over-the-Air)方式上报给测试仪表,所上报的数据用于计算得到MIMO无线终端的天线方向图。
但在实际测量中,由于幅度和相位差回报系统会存在测试误差。具体来说,一般情况 下,对于MIMO无线终端的幅度和相位差回报系统,所上报的数据的测试误差中包含了大于3dB的幅度测试误差,以及至少10°的相位测试误差。
一方面,测试误差相对于每一个MIMO无线终端均不相同,并且不能在空口测试条件下进行评估和量化。
另一方面,由于传导测试是侵入式,因此,即使幅度和相位差回报系统采用传导方法将数据上报给测试仪表也无法得到该误差的准确值。
可见,在现有技术中,测试误差是一个无法进行量化的未知数据。并且,由于测试误差在辐射两步法的第一阶段引入,并伴随整个测试过程,最终影响MIMO无线终端测试的准确性和可重复性。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明的一个目的在于提出一种MIMO无线终端的无线性能测试方法,以消除测试误差,解决现有技术中无法对测试误差进行量化,导致MIMO无线终端测试的准确性和可重复性的技术问题。
为达上述目的,本发明第一方面实施例提出了一种方法,包括:
被测MIMO无线终端具有多个天线,所述被测MIMO无线终端放置于微波暗室中,所述方法包括以下步骤:
A、获得所述被测MIMO无线终端的多个天线的天线方向图信息;
B、根据所述被测MIMO无线终端的天线方向图信息获得测试信号;
C、使用所述被测MIMO无线终端的误差校准联合矩阵对所述测试信号进行校准,获得测试用发射信号;
D、将所述测试用发射信号馈入至微波暗室的多个测量天线之中,并通过所述测量天线向所述无线终端发射以对所述无线终端进行测试。
本发明实施例的MIMO无线终端的无线性能测试方法,包括获得微波暗室中测得的被测MIMO无线终端的多个天线的天线方向图信息,进而根据被测MIMO无线终端的天线方向图信息获得测试信号,并使用被测MIMO无线终端的误差校准联合矩阵对所述测试信号进行校准,获得测试用发射信号,最后将测试用发射信号馈入至微波暗室的多个测量天线之中,并通过测量天线向无线终端发射以对无线终端进行测试。由于采用了误差校准联合矩阵对测试信号校准获得测试用发射信号,以消除测试误差,解决现有技术中无法对测试误差进行量化,导致MIMO无线终端测试的准确性和可重复性的技术问题。
进一步,在本发明的一种实施例中,所述误差校准联合矩阵是根据所述被测MIMO无 线终端的幅度和相位差回报系统的回报信息确定的。
进一步,在本发明的一种实施例中,所述误差校准联合矩阵EA为误差矩阵E与校准矩阵A的乘积;
其中,误差矩阵E为
Figure PCTCN2017110259-appb-000001
Figure PCTCN2017110259-appb-000002
为第u(u≥1)个接收天线的测试误差,所述测试误差由所述幅度和相位差回报系统引入,Eu为幅度测量误差,
Figure PCTCN2017110259-appb-000003
为相位测量误差;
校准矩阵A为
Figure PCTCN2017110259-appb-000004
校准矩阵的因子aij为第j个发射天线的输入端口到第i个接收天线的输出端口的路径复增益信息。
进一步,在本发明的一种实施例中,所述误差校准联合矩阵的因子为
Figure PCTCN2017110259-appb-000005
其中,
Figure PCTCN2017110259-appb-000006
满足如下关系:
Figure PCTCN2017110259-appb-000007
Pemj为第j个发射天线所发送信号的发射功率,RSij为第i接收天线的输出端口收到的功率和相位回报值。
进一步,在本发明的一种实施例中,所述根据所述被测MIMO无线终端的天线方向图信息获得测试信号,包括:
根据所述被测MIMO无线终端的天线方向图信息与预先设定的MIMO信号传播模型融合,生成所述测试信号。
进一步,在本发明的一种实施例中,所述天线方向图信息包括各个方向上的增益信息,和/或任意两个天线之间,各个方向上接收同一信息的相位差信息。
进一步,在本发明的一种实施例中,所述微波室的测量天线的个数大于或等于所述无线终端的天线的个数。
进一步,在本发明的一种实施例中,测试步骤D的过程中,测量天线和被测无线终端保持静止状态。
进一步,在本发明的一种实施例中,所述测试为吞吐率测试。
进一步,在本发明的一种实施例中,所述步骤A及所述步骤D中所使用的微波暗室相同为同一个。
进一步,在本发明的一种实施例中,所述多个测量天线之中一部分测量天线为水平极化天线,所述多个测量天线中另一部分测量天线为垂直极化天线。
进一步,在本发明的一种实施例中,测量天线数量是2,被测MIMO无线终端的接收天线数量是2;
误差校准联合矩阵
Figure PCTCN2017110259-appb-000008
其中,EA11=RS11/Pem1,EA21=RS21/Pem1,EA12=RS12/Pem2,EA22=/Pem2
RS11为第一个测量天线以发射功率Pem1发射信号EM1时,第一个接收天线的输出端口收到的功率和相位的回报值;
RS21为第一个测量天线以发射功率Pem1发射信号EM1时,第二个接收天线的输出端口收到的功率和相位的回报值;
RS12为第二个测量天线以发射功率Pem2发射信号EM2时,第一个接收天线的输出端口收到的功率和相位的回报值;
RS22为第二个测量天线以发射功率Pem2发射信号EM2时,第二个接收天线的输出端口收到的功率和相位的回报值。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为辐射两步法的测试示意图;
图2为MIMO无线终端的无线性能测试方法的流程示意图;
图3a为MIMO无线终端的无线性能测试方法测试被测无线终端的天线的一个示意图;
图3b为MIMO无线终端的无线性能测试方法测试被测无线终端的天线的另一个示意图;
图4为MIMO无线终端内部射频系统简图;
图5为校准矩阵的示意图;
图6为2×2MIMO系统中误差校准联合矩阵的测试图;以及
图7为通过测量天线对无线终端进行测试的示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
下面参考图2描述根据本发明实施例的MIMO无线终端的无线性能测试方法。其中,被测MIMO无线终端具有多个天线,被测MIMO无线终端放置于微波暗室中。微波室的测量天线的个数大于或等于无线终端的天线的个数。
如图2所述,对于一个U×S MOMO系统而言,本发明实施例的MIMO无线终端的无线性能测试方法,包括如下步骤:
步骤S101,获得所述被测MIMO无线终端的多个天线的天线方向图信息。
其中,天线方向图信息包括各个方向上的增益信息,和/或任意两个天线之间,各个方向上接收同一信息的相位差信息。天线方向图为天线的性能之一。在本发明的一个实施例中,被测MIMO无线终端的多个天线的天线方向图信息通过测量获得。在本发明的另一个实施例中,被测MIMO无线终端的多个天线的天线方向图信息通过已测得的天线方向图获得。在对MIMO无线终端的天线的性能测试中,会对包括天线方向图、增益信息和相位信息在内的多个性能参数进行测试。其中,用于单入单出(SISO,Single Input Single Output)移动通信系统的OTA测试系统都可以完成上述性能测试。换言之,用于SISO终端的OTA测试系统可以实现对MIMO无线终端的天线的天线方向图信息的测量。
下面以图3a和图3b为例,对测量被测MIMO无线终端的多个天线的天线方向图的进行描述。
结合图3a和图3b所示,被测MIMO无线终端(DUT)放置在一个转台的中心,测量天线和被测MIMO无线终端之间的距离满足标准规定。旋转MIMO无线终端的时候,测量天线测试获得被测MIMO无线终端在空间各个方向的发射及接收性能。对于MIMO终端接收天线的测量,需要测试得到每个接收天线的天线方向图,增益、极化和相位信息。
被测MIMO无线终端可以有多种放置的状态,例如:自由空间、靠近模拟人头、手持等。根据用户需求,可以测试其中的一种放置状态以及每一种放置状态下的被测MIMO无线终端的天线性能。
通过上述方式,可以测量得到被测MIMO无线终端的多个天线的天线方向图信息。在 进行方向图测试过程中,如图4所示,需要测量接收机的端口功率值,以及接收天线前端下行功率大小,计算接收天线的输入端口收到的功率和下行功率的比值从而得到天线增益。
其中,接收机的端口功率值大小是通过被测MIMO无线终端的幅度和相位差回报系统进行回报,简称回报系统,也就是由被测MIMO无线终端的芯片自身进行评估,并回报给测试仪表。因此,功率的回报值中包含了幅度回报误差。又由于任意两个接收天线接收信号的相位差也是通过该芯片自身对接收到的信号相位进行评估,并上报给测试仪表,因此,相位的回报值包含了相位回报误差。
从而,方向图信息和被测MIMO无线终端真实的方向图信息之间的关系如下所示:
Figure PCTCN2017110259-appb-000009
其中,
Figure PCTCN2017110259-appb-000010
是第u(u≥1)个接收天线的v极化复增益的真实值,这里所说的极化复增益包含了增益和相位偏移;
Figure PCTCN2017110259-appb-000011
是第u(u≥1)个接收天线的h极化复增益的真实值;
Figure PCTCN2017110259-appb-000012
是第u(u≥1)个接收天线的v极化复增益的实际测量值;
Figure PCTCN2017110259-appb-000013
是第u(u≥1)个接收天线的h极化复增益的实际测量值;
Figure PCTCN2017110259-appb-000014
是第u(u≥1)个接收天线的测试误差,该误差由回报系统引入,且Eu代表相应的幅度测量误差,
Figure PCTCN2017110259-appb-000015
代表相应的相位测量误差。
步骤S102,根据被测MIMO无线终端的天线方向图信息获得测试信号。
具体地,将步骤S101中获得的无线终端的多个天线的天线方向图信息与预先设定的MIMO信道传播模型融合,用以模拟获得完整的MIMO传输信道,产生测试信号,这里的测试信号可以为吞吐量测试信号。
信道传播模型是由标准组织制定、对MIMO无线终端工作的典型环境的模拟。本实施例中,为了使测试信号的推导更加具有普遍性,以一个3D信道模型为例进行说明。
对于一个U×S MIMO系统,理论上,从基站发出的信号
Figure PCTCN2017110259-appb-000016
与吞吐量测试信号信号
Figure PCTCN2017110259-appb-000017
之间关系应该满足如下所示的关系:
Figure PCTCN2017110259-appb-000018
其中,H(t)是信道相关矩阵,信道相关矩阵中的第(u,s)个因子(u=1,2,…,U;s=1,2,…S)可以表示为:
Figure PCTCN2017110259-appb-000019
其中,Pus代表通过直径
Figure PCTCN2017110259-appb-000020
传输的功率;gl,k
Figure PCTCN2017110259-appb-000021
是发射天线的V(H)极化和接收天线的V(H)极化之间,由于散射体TSk和RSl引起的功率和相位偏移;Dsk是散射体TSk到第s个发射天线
Figure PCTCN2017110259-appb-000022
的距离;Dlu是散射体RSl到第u个接收天线
Figure PCTCN2017110259-appb-000023
的距离;Dkl是散射体TSk到散射体RSl的距离;
Figure PCTCN2017110259-appb-000024
是第s个发射天线
Figure PCTCN2017110259-appb-000025
在v极化、
Figure PCTCN2017110259-appb-000026
角度的复增益信息;
Figure PCTCN2017110259-appb-000027
是第s个发射天线
Figure PCTCN2017110259-appb-000028
在h极化、
Figure PCTCN2017110259-appb-000029
角度的复增益信息;
Figure PCTCN2017110259-appb-000030
是真实准确的第u个接收天线
Figure PCTCN2017110259-appb-000031
在v极化、
Figure PCTCN2017110259-appb-000032
角度的复增益信息;
Figure PCTCN2017110259-appb-000033
是真实准确的第u个发射天线
Figure PCTCN2017110259-appb-000034
在h极化、
Figure PCTCN2017110259-appb-000035
角度的复增益信息;
Figure PCTCN2017110259-appb-000036
代表信道模型的XPD;xl,k代表信道模型的CPR;λ代表波长;k1代表传播方向。
由于在实际上,方向图信息中由回报系统引入了误差,因此,由公式(2)、(3)可推出,实际上包含误差的信道相关矩阵R|H(t)中的第(u,s)个因子R|hu,s(t)为如下所示:
Figure PCTCN2017110259-appb-000037
进而,实际测试中吞吐量测试信号表达式为:
Figure PCTCN2017110259-appb-000038
基于前述分析可知,在辐射两步法中,实际的吞吐量测试信号包含了幅度和相位误差
Figure PCTCN2017110259-appb-000039
(u=1,2,…,U)。
步骤S103,使用被测MIMO无线终端的误差校准联合矩阵对测试信号进行校准,获得测试用发射信号。
具体地,图5为校准矩阵的示意图,在现有技术中仅根据如图5所示的校准矩阵进行校准从而获得测试用发射信号,现有技术中根据校准矩阵和已经获取的吞吐量测试信号来生成测试用发射信号的过程中,U路实际的吞吐量测试信号
Figure PCTCN2017110259-appb-000040
与U路测试用发射信号
Figure PCTCN2017110259-appb-000041
以及校准矩阵
Figure PCTCN2017110259-appb-000042
满足如下关系:
Figure PCTCN2017110259-appb-000043
其中,校准矩阵的因子aij为第j发射天线的输入端口到第i接收天线的输出端口的路径复增益信息,U为接收及发射的天线的个数。
现有技术的辐射两步法中,终端接收机最终接收到的信号
Figure PCTCN2017110259-appb-000044
和测试用发射信号
Figure PCTCN2017110259-appb-000045
的关系为:
Figure PCTCN2017110259-appb-000046
由(5)(6)(7)可得无线终端接收机最终接受到的信号
Figure PCTCN2017110259-appb-000047
就是实际的吞吐量测试信号
Figure PCTCN2017110259-appb-000048
即:
Figure PCTCN2017110259-appb-000049
综上四步是现有技术中辐射两步法的公式原理阐述,由公式(8)可以得出结论:现有技术中,辐射两步法实施U×S的MIMO无线终端测试中,最终到达无线终端的信号包含了回报误差信息
Figure PCTCN2017110259-appb-000050
(u=1,2,…,U),该误差严重影响了MIMO测试准确性。
本发明可以消除回报误差,使辐射两步法的MIMO OTA测试更准确,其原理包括两大部分,如下所述:
一,误差分析。针对现有的辐射两步法,对于一个U×S MOMO系统而言,在第一步获得被测MIMO无线终端的多个天线的天线方向图信息,以及第二步根据获取的无线终端的多个天线的天线方向图信息与预先设定的MIMO信道传播模型融合,用以模拟获得完整的MIMO传输信道,进而产生吞吐量测试信号之后,可以得到包含误差的吞吐量测试信号,即公式(5)
Figure PCTCN2017110259-appb-000051
依据矩阵乘法理论以及公式
Figure PCTCN2017110259-appb-000052
(1),可以对公式(4)进行变形:
Figure PCTCN2017110259-appb-000053
则,
Figure PCTCN2017110259-appb-000054
其中,R|hu,s(t)为包含误差的信道相关矩阵R|H(t)中的第(u,s)个因子(u=1,2,…,U;s=1,2,…s)。则R|H(t)和H(t)关系为:
Figure PCTCN2017110259-appb-000055
若定义误差矩阵E为
Figure PCTCN2017110259-appb-000056
则R|H(t)和H(t)关系为:R|H(t)=E×H(t)(13),可见此时,U路实际吞吐量测试信号
Figure PCTCN2017110259-appb-000057
和S路基站出发信号
Figure PCTCN2017110259-appb-000058
可以表示为
Figure PCTCN2017110259-appb-000059
在该信号中依然包含误差。
二、误差消除。在吞吐量测试信号获取完成以后,根据被测件相对于暗室里的测量天线的相对具体位置、方向,确定暗室里面针对被测件的校准矩阵。根据校准矩阵和已经获取的吞吐量测试信号以及误差矩阵来生成新的测试用发射信号。即:使用被测MIMO无线终端的误差校准联合矩阵对测试信号进行校准,获得测试用发射信号。具体阐述如下:
令新的测试用发射信号
Figure PCTCN2017110259-appb-000060
与U路实际吞吐量测试信号
Figure PCTCN2017110259-appb-000061
以及校准矩阵
Figure PCTCN2017110259-appb-000062
误差矩阵
Figure PCTCN2017110259-appb-000063
满足如下方程关系:
Figure PCTCN2017110259-appb-000064
其中,校准矩阵的因子aij为第j发射天线的输入端口到第i接收天线的输出端口的路径复增益。
这里的关键点在于如何获得新的测试用发射信号
Figure PCTCN2017110259-appb-000065
公式(15)虽然给出了实际吞吐量测试信号、误差矩阵、校准矩阵及新的测试用发射信号之间的关系,但是实际上,上文已经阐述,在OTA测试方式下,回报误差无法获取,即误差矩阵E不可单独获取,因此
Figure PCTCN2017110259-appb-000066
不能通过简单的计算得到。本发明其中一个关键点在于准确、快速的获取新的测试用发射信号
Figure PCTCN2017110259-appb-000067
下面将对这一过程进行详细说明。
命名误差校准联合矩阵EA表达式为
经过进一步变形:
Figure PCTCN2017110259-appb-000069
其中,误差校准联合矩阵的因子
Figure PCTCN2017110259-appb-000070
是通过计算得到的,具体计算过程如下:
首先,通过第j发射天线发射功率为Pemj的信号;进而,读取第i接收天线的输出端口收到的功率和相位回报值RSij,用该值除以功率Pemj,就是
Figure PCTCN2017110259-appb-000071
的值,即
Figure PCTCN2017110259-appb-000072
由此,可获得如下所示的误差校准联合矩阵:
Figure PCTCN2017110259-appb-000073
在计算得到误差校准联合矩阵EA之后,测试用发射信号
Figure PCTCN2017110259-appb-000074
可通过以下公式得到:
Figure PCTCN2017110259-appb-000075
为了计算方便,Pemj可以为相同的值。进一步地,可以都为1,即发射0dB的信号。
步骤S104,将测试用发射信号馈入至微波暗室的多个测量天线之中,并通过测量天线向无线终端发射以对无线终端进行测试。
具体地,将测试用发射信号
Figure PCTCN2017110259-appb-000076
馈入至微波暗室的多个测量天线之中,并通过测量天线向无线终端发射以对无线终端进行测试。
则终端接收机最终接收到的信号
Figure PCTCN2017110259-appb-000077
和新的测试用发射信号的关系为:
Figure PCTCN2017110259-appb-000078
依据(14)(15)(21)可得,最终地,无线终端接收机接收到的信号与从基站出发的信号关系为:
Figure PCTCN2017110259-appb-000079
由(22)可知,最终达到接收机的信号不包含回报误差,可以实现准确无误的辐射两步法MIMO OTA测试。
需要说明的是,如果要测试MIMO终端在靠近人头模式、手持模式下的吞吐率,则在 步骤S101和步骤S104中,MIMO终端的放置状态应该保持一致,使得步骤S101中测试得到的接收天线方向图可以用在后面的吞吐率测试中。如果被测终端的放置状态不一致,接收天线的方向图会有变化。
在本发明的实施例中,在所述测试步骤D的过程中,测量天线和被测无线终端保持静止状态。在吞吐率测试过程中,被测件保持静止、不转动,MIMO终端接收不同来波方向的信号,是通过信道模拟器来模拟的。
同样地,在步骤S101和步骤S104中,测量天线的放置状态也相同。在本发明的实施例中,测量天线可保持静止状态。
并且,在步骤S101和步骤S104中所使用的微波暗室相同。
在本发明的另一个实施例中,多个测量天线之中一部分测量天线为水平极化天线,另一部分测量天线为垂直极化天线。例如,两个发射天线中的一个可以是测量天线的水平极化天线,另一是垂直极化天线,相应的,计算测量信道传递矩阵、测量信道传递矩阵的逆矩阵时,所用接收天线的增益与测量天线的极化也需对应。
暗室中布置多个测量天线,测量天线的个数n大于或等于MIMO终端的接收天线个数m。优选的,测量天线个数等于MIMO终端接收天线个数。
为了清楚说明本实施例,本实施例特提供了一种可能的应用场景,在2×2MIMO系统中,对无线性能测试方法进行具体说明。
首先,获取2×2MIMO无线终端天线方向图。
具体来说,获取的方向图信息和MIMO无线终端真实的方向图信息之间的关系为:
Figure PCTCN2017110259-appb-000080
其中,
Figure PCTCN2017110259-appb-000081
是第u(u=1,2)个接收天线的v极化复增益的真实值;
Figure PCTCN2017110259-appb-000082
是第u(u=1,2)个接收天线的h极化复增益的真实值;
Figure PCTCN2017110259-appb-000083
是第u(u=1,2)个接收天线的v极化复增益的实际测量值;
Figure PCTCN2017110259-appb-000084
是第u(u=1,2)个接收天线的h极化复增益的实际测量值;
Figure PCTCN2017110259-appb-000085
是第u(u=1,2)个接收天线的误差,该误差由回报系统引入,且Eu代表相应的幅度测量误差,
Figure PCTCN2017110259-appb-000086
代表相应的相位测量误差。
进一步,利用已经获取的天线方向图和信道模型来生成吞吐量测试信号。
对于一个2×2MIMO系统而言,理论上,从基站发出的信号
Figure PCTCN2017110259-appb-000087
与吞吐量测试信号信号
Figure PCTCN2017110259-appb-000088
之间关系应该满足:
Figure PCTCN2017110259-appb-000089
其中,R|H(t)是信道相关矩阵,其中第(u,s)个因子(u=1,2;s=1,2)取值如下:
Figure PCTCN2017110259-appb-000090
其中,Pus代表通过直径
Figure PCTCN2017110259-appb-000091
传输的功率;gl,k
Figure PCTCN2017110259-appb-000092
是发射天线的V(H)极化和接收天线的V(H)极化之间,由于散射体TSk和RSl引起的功率和相位偏移;Dsk是散射体TSk到第s个发射天线
Figure PCTCN2017110259-appb-000093
的距离;Dlu是散射体RSl到第u个接收天线
Figure PCTCN2017110259-appb-000094
的距离;Dkl是散射体TSk到散射体RSl的距离;
Figure PCTCN2017110259-appb-000095
是第s个发射天线
Figure PCTCN2017110259-appb-000096
在v极化、
Figure PCTCN2017110259-appb-000097
角度的复增益信息;
Figure PCTCN2017110259-appb-000098
是第s个发射天线
Figure PCTCN2017110259-appb-000099
在h极化、
Figure PCTCN2017110259-appb-000100
角度的复增益信息;
Figure PCTCN2017110259-appb-000101
是真实准确的第u个接收天线
Figure PCTCN2017110259-appb-000102
在v极化、
Figure PCTCN2017110259-appb-000103
角度的复增益信息;
Figure PCTCN2017110259-appb-000104
是真实准确的第u个发射天线
Figure PCTCN2017110259-appb-000105
在h极化、
Figure PCTCN2017110259-appb-000106
角度的复增益信息;
Figure PCTCN2017110259-appb-000107
代表信道模型的XPD;Xl,k代表信道模型的CPR;λ代表波长;k1代表传播方向。
进一步,根据被测MIMO无线终端的回报信息确定微波暗室中针对被测MIMO无线终端的误差校准联合矩阵,再根据误差校准联合矩阵和已经计算获取的吞吐量测试信号来生成测试用发射信号。
图6为2×2MIMO系统中误差校准联合矩阵的测试图,如图6所示,设误差校准联合矩阵为:
Figure PCTCN2017110259-appb-000108
打开信号EM1,设置输出功率为Pem1,关闭信号EM2,读取此时各个接收机接收信号 幅度和相位的回报值,记录接收机1的回报为RS11,接收机2的回报为RS21,其中RS11和RS21均为复数,包含了增益和相位值。
则2×2误差校准联合矩阵中两个变量分别为:
EA11=RS11/Pem1
EA21=RS21/Pem1
打开信号EM2,设置输出功率为Pem2,关闭信号EM1,读取此时各个接收机接收信号幅度和相位的回报值,记录接收机1的回报为RS12,接收机2的回报为RS22,其中RS12和RS22均为复数,包含了增益和相位值。
则2×2误差校准联合矩阵中另外两个变量分别为:
EA12=RS12/Pem2
EA22=RS22/Pem2
综合前述四个变量,最终求得的误差校准联合矩阵为:
Figure PCTCN2017110259-appb-000109
依据误差校准联合矩阵EA和吞吐量测试信号
Figure PCTCN2017110259-appb-000110
求得测试用发射信号
Figure PCTCN2017110259-appb-000111
满足如下关系:
Figure PCTCN2017110259-appb-000112
最后,将测试用发射信号
Figure PCTCN2017110259-appb-000113
馈入至微波暗室的多个测量天线之中,并通过如图7中的测量天线向MIMO无线终端发射以对无线终端进行测试。
图7为通过测量天线对无线终端进行测试的示意图,如图7所示,测试用发射信号
Figure PCTCN2017110259-appb-000114
馈入至微波暗室的多个测量天线中,终端接收机最终接收到的信号
Figure PCTCN2017110259-appb-000115
和新的测试用发射信号的关系为:
Figure PCTCN2017110259-appb-000116
其中,校准矩阵的因子aij为第j发射天线的输入端口到第i接收天线的输出端口的路径 复增益。
根据以下公式:
Figure PCTCN2017110259-appb-000117
Figure PCTCN2017110259-appb-000118
Figure PCTCN2017110259-appb-000119
以及,
Figure PCTCN2017110259-appb-000120
对无线终端接收机接收到的信号
Figure PCTCN2017110259-appb-000121
进行计算,得到无线终端接收机接收到的信号
Figure PCTCN2017110259-appb-000122
与从基站出发的信号关系:
Figure PCTCN2017110259-appb-000123
由上式可知,最终达到接收机的信号不包含误差,可以实现精确无误的辐射两步法MIMO OTA测试。
本发明实施例的MIMO无线终端的无线性能测试方法,包括获得微波暗室中测得的被测MIMO无线终端的多个天线的天线方向图信息,进而根据被测MIMO无线终端的天线方向图信息获得测试信号,并使用被测MIMO无线终端的误差校准联合矩阵对所述测试信号进行校准,获得测试用发射信号,最后将测试用发射信号馈入至微波暗室的多个测量天线之中,并通过测量天线向无线终端发射以对无线终端进行测试。由于采用了误差校准联合矩阵对测试信号校准获得测试用发射信号,以消除测试误差,解决现有技术中无法对测试误差进行量化,导致MIMO无线终端测试的准确性和可重复性的技术问题。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设 备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (12)

  1. 一种MIMO无线终端的无线性能测试方法,其特征在于,被测MIMO无线终端具有多个天线,所述被测MIMO无线终端放置于微波暗室中,所述方法包括以下步骤:
    A、获得所述被测MIMO无线终端的多个天线的天线方向图信息;
    B、根据所述被测MIMO无线终端的天线方向图信息获得测试信号;
    C、使用所述被测MIMO无线终端的误差校准联合矩阵对所述测试信号进行校准,获得测试用发射信号;
    D、将所述测试用发射信号馈入至微波暗室的多个测量天线之中,并通过所述测量天线向所述无线终端发射以对所述无线终端进行测试。
  2. 根据权利要求1所述的无线性能测试方法,其特征在于,所述误差校准联合矩阵是根据所述被测MIMO无线终端的幅度和相位差回报系统的回报信息确定的。
  3. 根据权利要求2所述的无线性能测试方法,其特征在于,所述误差校准联合矩阵EA为误差矩阵E与校准矩阵A的乘积;
    其中,误差矩阵E为
    Figure PCTCN2017110259-appb-100001
    Figure PCTCN2017110259-appb-100002
    为第u(u≥1)个接收天线的测试误差,所述测试误差由所述幅度和相位差回报系统引入,Eu为幅度测量误差,
    Figure PCTCN2017110259-appb-100003
    为相位测量误差;
    校准矩阵A为
    Figure PCTCN2017110259-appb-100004
    校准矩阵的因子aij为第j个发射天线的输入端口到第i个接收天线的输出端口的路径复增益信息。
  4. 根据权利要求3所述的无线性能测试方法,其特征在于,所述误差校准联合矩阵的因子为
    Figure PCTCN2017110259-appb-100005
    其中,
    Figure PCTCN2017110259-appb-100006
    满足如下关系:
    Figure PCTCN2017110259-appb-100007
    Pemj为第j个发射天线所发送信号的发射功率,RSij为第i接收天线的输出端口收到的功率和相位回报值。
  5. 根据权利要求1所述的无线性能测试方法,其特征在于,所述根据所述被测MIMO无线终端的天线方向图信息获得测试信号,包括:
    根据所述被测MIMO无线终端的天线方向图信息与预先设定的MIMO信号传播模型融合,生成所述测试信号。
  6. 根据权利要求1所述的无线性能测试方法,其特征在于,
    所述天线方向图信息包括各个方向上的增益信息,和/或任意两个天线之间,各个方向上接收同一信息的相位差信息。
  7. 根据权利要求1所述的无线性能测试方法,其特征在于,
    所述微波室的测量天线的个数大于或等于所述无线终端的天线的个数。
  8. 根据权利要求1所述的无线性能测试方法,其特征在于,
    测试步骤D的过程中,测量天线和被测无线终端保持静止状态。
  9. 根据权利要求1所述的无线性能测试方法,其特征在于,所述测试为吞吐率测试。
  10. 根据权利要求1所述的无线性能测试方法,其特征在于,所述获得所述被测MIMO无线终端的多个天线的天线方向图信息,包括:
    在微波暗室中测得被测MIMO无线终端的多个天线的天线方向图信息;所述步骤A及所述步骤D中所使用的微波暗室相同为同一个。
  11. 根据权利要求1所述的无线性能测试方法,其特征在于,
    所述多个测量天线之中一部分测量天线为水平极化天线,所述多个测量天线中另一部分测量天线为垂直极化天线。
  12. 根据权利要求1-4任一项所述的无线性能测试方法,其特征在于,测量天线数量是2,被测MIMO无线终端的接收天线数量是2;
    误差校准联合矩阵
    Figure PCTCN2017110259-appb-100008
    其中,EA11=RS11/Pem1,EA21=RS21/Pem1,EA12=RS12/Pem2,EA22=RS22/Pem2
    RS11为第一个测量天线以发射功率Pem1发射信号EM1时,第一个接收天线的输出端口收到的功率和相位的回报值;
    RS21为第一个测量天线以发射功率Pem1发射信号EM1时,第二个接收天线的输出端口收到的功率和相位的回报值;
    RS12为第二个测量天线以发射功率Pem2发射信号EM2时,第一个接收天线的输出端口收到的功率和相位的回报值;
    RS22为第二个测量天线以发射功率Pem2发射信号EM2时,第二个接收天线的输出端口收到的功率和相位的回报值。
PCT/CN2017/110259 2016-12-14 2017-11-09 Mimo无线终端的无线性能测试方法 WO2018107927A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018549897A JP6886984B2 (ja) 2016-12-14 2017-11-09 Mimo無線端末の無線性能試験方法
EP17835576.4A EP3361654B1 (en) 2016-12-14 2017-11-09 Wireless performance testing method for mimo wireless terminal
US15/751,732 US10797808B2 (en) 2016-12-14 2017-11-09 Method for testing wireless performance of MIMO wireless terminal
KR1020187025914A KR102111874B1 (ko) 2016-12-14 2017-11-09 Mimo 무선 단말의 무선 성능 테스트 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611154847.0A CN108234036B (zh) 2016-12-14 2016-12-14 Mimo无线终端的无线性能测试方法
CN201611154847.0 2016-12-14

Publications (1)

Publication Number Publication Date
WO2018107927A1 true WO2018107927A1 (zh) 2018-06-21

Family

ID=62557961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110259 WO2018107927A1 (zh) 2016-12-14 2017-11-09 Mimo无线终端的无线性能测试方法

Country Status (6)

Country Link
US (1) US10797808B2 (zh)
EP (1) EP3361654B1 (zh)
JP (1) JP6886984B2 (zh)
KR (1) KR102111874B1 (zh)
CN (1) CN108234036B (zh)
WO (1) WO2018107927A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111447018A (zh) * 2020-03-26 2020-07-24 中国信息通信研究院 一种毫米波多终端分组测试系统和方法
CN113162708A (zh) * 2020-01-22 2021-07-23 南京捷希科技有限公司 一种大规模终端模拟系统及测试方法
JP2022521681A (ja) * 2019-02-14 2022-04-12 アップル インコーポレイテッド Nrに対する受信アンテナ相対位相測定

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108964800B (zh) * 2018-07-27 2021-07-27 北京小米移动软件有限公司 移动终端的天线性能检测方法及系统
US10725080B2 (en) * 2018-09-25 2020-07-28 National Instruments Corporation Correlation of device-under-test orientations and radio frequency measurements
CN111224696B (zh) * 2018-11-26 2021-04-20 深圳市通用测试系统有限公司 无线终端的无线性能测试方法及系统
CN109725275B (zh) * 2018-12-26 2022-08-30 刘科宏 基于近场多探头天线测量系统的探头校准方法
CN111385036B (zh) * 2018-12-28 2021-08-24 深圳市通用测试系统有限公司 无线设备的射频性能测试方法、装置及测试仪
EP3699612B1 (en) * 2019-02-19 2024-05-15 Rohde & Schwarz GmbH & Co. KG Method for performing a radiated two-stage method measurement as well as measurement setup
CN111866922B (zh) * 2019-04-29 2023-09-12 深圳市通用测试系统有限公司 相控阵天线协议测试装置及方法
CN112583502B (zh) * 2019-09-27 2022-06-10 维沃移动通信有限公司 一种探头天线确定方法及装置
CN112865840B (zh) * 2019-11-27 2022-02-18 深圳市通用测试系统有限公司 Mimo无线终端的测试方法、装置以及系统
CN112929102B (zh) * 2019-12-06 2022-09-16 深圳市通用测试系统有限公司 Mimo无线终端射频性能诊断方法、装置及相关设备
CN113132025B (zh) * 2019-12-30 2022-06-14 华为技术有限公司 终端天线阵元间相位差的测试方法、修正方法及测试设备
CN112291021B (zh) * 2020-10-29 2022-09-09 中国信息通信研究院 用于通信终端信号测量的系统及方法
CN112383660B (zh) * 2020-11-02 2024-04-02 西安闻泰电子科技有限公司 智能终端的吞吐率测试方法、装置、存储介质和终端
CN112666543B (zh) * 2020-12-01 2023-10-27 安徽隼波科技有限公司 一种稀疏阵列tdm-mimo雷达及其校正方法
CN113783630B (zh) * 2021-08-13 2023-07-07 中国信息通信研究院 一种终端性能动态测试系统和方法
CN115290991B (zh) * 2022-10-09 2022-12-30 荣耀终端有限公司 天线测试方法、装置、系统、信道仿真仪及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020160717A1 (en) * 2001-01-16 2002-10-31 Anders Persson Chamber for and a method of processing electronic devices and the use of such a chamber
US20080129615A1 (en) * 2006-09-08 2008-06-05 Qualcomm Incorporated Radiated performance of a wireless device
CN102122994A (zh) * 2010-01-08 2011-07-13 中兴通讯股份有限公司 一种测试多入多出设备的多通道辐射特性的装置及方法
CN103856272A (zh) * 2012-12-03 2014-06-11 深圳市通用测试系统有限公司 Mimo无线终端的无线性能测试方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6771698B1 (en) 1999-04-12 2004-08-03 Harris Corporation System and method for testing antenna gain
JP4320441B2 (ja) * 2004-03-09 2009-08-26 よこはまティーエルオー株式会社 アレーアンテナの校正方法及び校正装置
KR101661165B1 (ko) * 2010-04-06 2016-10-04 삼성전자주식회사 성능 최적화를 위한 다중안테나 특성 검출 방법 및 장치
CN102025431A (zh) * 2010-12-09 2011-04-20 广东通宇通讯股份有限公司 一种有源天线上下行方向图及增益的测试方法
US9678126B2 (en) 2013-03-15 2017-06-13 Litepoint Corporation System and method for testing radio frequency wireless signal transceivers using wireless test signals
JP6256681B2 (ja) 2013-12-17 2018-01-10 三星電子株式会社Samsung Electronics Co.,Ltd. 校正装置、位置推定装置、校正方法、及び位置推定方法
GB2536539B (en) * 2015-01-19 2017-07-19 Keysight Technologies Inc System and method for testing multi-user, multi-input/multi-output systems
US10601659B2 (en) * 2015-01-29 2020-03-24 Telefonaktiebolaget Lm Ericsson (Publ) Methods to signal current MIMO RX antenna configuration status
US9660739B2 (en) * 2015-02-09 2017-05-23 Spirent Communications, Inc. System and methods of testing adaptive antennas
US10601695B2 (en) * 2016-09-01 2020-03-24 Keysight Technologies, Inc. Systems and methods for radio channel emulation of a multiple input multiple output (MIMO) wireless link
US9866294B1 (en) * 2016-09-19 2018-01-09 Rohde & Schwarz Gmbh & Co. Kg Method for testing a multiple-input and multiple-output device and test system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020160717A1 (en) * 2001-01-16 2002-10-31 Anders Persson Chamber for and a method of processing electronic devices and the use of such a chamber
US20080129615A1 (en) * 2006-09-08 2008-06-05 Qualcomm Incorporated Radiated performance of a wireless device
CN102122994A (zh) * 2010-01-08 2011-07-13 中兴通讯股份有限公司 一种测试多入多出设备的多通道辐射特性的装置及方法
CN103856272A (zh) * 2012-12-03 2014-06-11 深圳市通用测试系统有限公司 Mimo无线终端的无线性能测试方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022521681A (ja) * 2019-02-14 2022-04-12 アップル インコーポレイテッド Nrに対する受信アンテナ相対位相測定
JP7324293B2 (ja) 2019-02-14 2023-08-09 アップル インコーポレイテッド Nrに対する受信アンテナ相対位相測定
CN113162708A (zh) * 2020-01-22 2021-07-23 南京捷希科技有限公司 一种大规模终端模拟系统及测试方法
CN113162708B (zh) * 2020-01-22 2024-03-15 南京捷希科技股份有限公司 一种大规模终端模拟系统及测试方法
CN111447018A (zh) * 2020-03-26 2020-07-24 中国信息通信研究院 一种毫米波多终端分组测试系统和方法
CN111447018B (zh) * 2020-03-26 2022-03-22 中国信息通信研究院 一种毫米波多终端分组测试系统和方法

Also Published As

Publication number Publication date
EP3361654A9 (en) 2018-10-17
EP3361654A4 (en) 2019-03-13
KR20180111958A (ko) 2018-10-11
US10797808B2 (en) 2020-10-06
JP6886984B2 (ja) 2021-06-16
EP3361654A1 (en) 2018-08-15
KR102111874B1 (ko) 2020-05-18
CN108234036A (zh) 2018-06-29
CN108234036B (zh) 2020-05-12
EP3361654B1 (en) 2020-10-14
US20200213018A1 (en) 2020-07-02
JP2019513330A (ja) 2019-05-23

Similar Documents

Publication Publication Date Title
WO2018107927A1 (zh) Mimo无线终端的无线性能测试方法
CN107543978B (zh) 经由ota辐射测试系统标定出mimo中辐射通道矩阵的系统和方法
US10601695B2 (en) Systems and methods for radio channel emulation of a multiple input multiple output (MIMO) wireless link
Remley et al. A significance test for reverberation-chamber measurement uncertainty in total radiated power of wireless devices
CN109889239B (zh) 一种用于mimo ota测试的双暗室结构及测试方法
JP2019097207A (ja) 無線検査信号を用いる無線周波数無線信号送受信機の検査システム及び方法
US10684318B1 (en) System and method for testing analog beamforming device
US9699678B2 (en) Plane wave generation within a small volume of space for evaluation of wireless devices
KR102436859B1 (ko) 무선 단말의 무선 성능을 테스트하는 방법 및 시스템
CN104967490B (zh) 一种自由空间传输反射校准方法
TW200803206A (en) System for determining total isotropic sensitivity (TIS) and related methods
CN104917577A (zh) Mimo无线终端性能的暗室多探头测试系统
KR101939757B1 (ko) 안테나 성능 측정 시스템
CN113395122B (zh) 产测电路板、射频参数校准系统、方法和计算机设备
Remley et al. Estimating and correcting the device-under-test transfer function in loaded reverberation chambers for over-the-air tests
TW201947236A (zh) 無線通信裝置空中傳輸量測系統
WO2020134447A1 (zh) 无线设备的射频性能测试方法、装置及测试仪
CN108008363B (zh) 一种用于定量测量雷达的标定系统
TW201810980A (zh) 天線測試系統
US11802898B2 (en) Method, apparatus, and device of reconstructing non-kronecker structured channels
Rumney et al. Advances in antenna pattern-based MIMO OTA test methods
CN114629569A (zh) 无线收发通信设备的测试性试验系统及其测试方法
CN219225073U (zh) 目标物rcs的准确度验证系统
Gao et al. Single-port measurement scheme: An alternative approach to system calibration for 5G massive MIMO base station conformance testing
Allal EMPIR European project for validation of vector array SAR measurement systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17835576

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187025914

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187025914

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2018549897

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE