WO2020134447A1 - 无线设备的射频性能测试方法、装置及测试仪 - Google Patents

无线设备的射频性能测试方法、装置及测试仪 Download PDF

Info

Publication number
WO2020134447A1
WO2020134447A1 PCT/CN2019/113244 CN2019113244W WO2020134447A1 WO 2020134447 A1 WO2020134447 A1 WO 2020134447A1 CN 2019113244 W CN2019113244 W CN 2019113244W WO 2020134447 A1 WO2020134447 A1 WO 2020134447A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
radio frequency
frequency performance
device under
under test
Prior art date
Application number
PCT/CN2019/113244
Other languages
English (en)
French (fr)
Inventor
漆一宏
于伟
沈鹏辉
Original Assignee
深圳市通用测试系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市通用测试系统有限公司 filed Critical 深圳市通用测试系统有限公司
Priority to JP2021538050A priority Critical patent/JP2022517542A/ja
Priority to EP19905868.6A priority patent/EP3905553A4/en
Priority to KR1020217023529A priority patent/KR102567733B1/ko
Publication of WO2020134447A1 publication Critical patent/WO2020134447A1/zh
Priority to US17/360,457 priority patent/US11876568B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/29Performance testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/0082Monitoring; Testing using service channels; using auxiliary channels
    • H04B17/0085Monitoring; Testing using service channels; using auxiliary channels using test signal generators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/101Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof
    • H04B17/102Power radiated at antenna
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing
    • H04B17/18Monitoring during normal operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel
    • H04B17/3912Simulation models, e.g. distribution of spectral power density or received signal strength indicator [RSSI] for a given geographic region
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/282Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
    • G01R31/2822Testing of electronic circuits specially adapted for particular applications not provided for elsewhere of microwave or radiofrequency circuits

Definitions

  • the invention relates to the technical field of wireless device performance testing, in particular to a method, device and tester for radio frequency performance testing of wireless devices.
  • conductive means to test the radio frequency performance of wireless devices. Specifically, as shown in FIG. 1, the wireless device antenna performance is first tested by a conductive method, and then the conductive wire is connected to the receiver to test the receiver performance, so that the combination of the obtained results is considered to be the overall radio frequency performance.
  • the interference noise of the DUT itself can be coupled into the receiver through the antenna and cause some interference to the receiver, but after the conductive connector is connected, the noise coupling cannot enter the receiver, resulting in the test The result does not match the actual result;
  • the conduction test of the related technology not only has certain errors and reduces the accuracy of the test, but also has certain limitations and needs to be resolved urgently.
  • the present invention aims to solve one of the technical problems in the related art at least to a certain extent.
  • an object of the present invention is to propose a method for testing radio frequency performance of a wireless device, which can implement the solution of a virtual wire based on power return information.
  • Another object of the present invention is to provide a radio frequency performance testing device for wireless equipment.
  • Another object of the present invention is to propose a tester.
  • an embodiment of the present invention provides a method for testing radio frequency performance of a wireless device, including the following steps: collecting power return information of a device under test; obtaining a propagation matrix according to the power return information, and according to the The propagation matrix is loaded with an inverse matrix to form a virtual wire between the output port of the meter and the receiver port of the device under test; the test signal is transmitted through the virtual wire according to the throughput rate to perform performance on the device under test Test and generate RF performance test results.
  • the radio frequency performance testing method of the wireless device can obtain the propagation matrix from the power return information, thereby forming a virtual wire between the output port of the meter and the receiver port of the device under test to perform performance test on the device under test to obtain radio frequency Performance test results, through the realization of the solution of the virtual wire according to the power return information, improve the accuracy of the test, improve the test efficiency, and improve the applicability of the test.
  • radio frequency performance testing method of the wireless device may also have the following additional technical features:
  • it further includes: acquiring antenna pattern information of multiple antennas of the device under test; merging with the pre-MIMO channel propagation model according to the antenna pattern information to simulate to obtain MIMO The transmission channel generates the throughput test signal.
  • the power return information is obtained by the device under test by reporting the power of the signal received by each receiver through an antenna, or the received power is recorded locally and then derived .
  • the obtaining a propagation matrix according to the power return information further includes: obtaining an amplitude value according to the power return information; and obtaining an element value in the propagation matrix according to the amplitude value Phase difference to obtain the propagation matrix.
  • test formula is:
  • N represents the number of antennas of the device under test
  • T represents the excitation signal of the test port
  • R represents the received signal of the receiver port
  • E represents obtained from the propagation matrix
  • another embodiment of the present invention provides a radio frequency performance testing apparatus for a wireless device, including: an acquisition module for collecting power return information of a device under test; a first acquisition module for The power return information obtains a propagation matrix, and obtains the loaded inverse matrix according to the propagation matrix to form a virtual wire between the output port of the instrument and the receiver port of the device under test; a test module is used to test the signal according to the throughput rate The virtual wire is transmitted to perform performance test on the device under test and generate RF performance test results.
  • the radio frequency performance testing device of the wireless device can obtain the propagation matrix according to the power return information, thereby forming a virtual wire between the output port of the meter and the receiver port of the device under test to obtain performance test on the device under test RF performance test results, through the realization of the solution of the virtual wire according to the power return information, improve the accuracy of the test, improve the test efficiency, and improve the applicability of the test.
  • radio frequency performance testing apparatus of the wireless device may also have the following additional technical features:
  • it further includes: a second acquisition module for acquiring antenna pattern information of a plurality of antennas of the device under test; a generating module for generating information according to the antenna pattern information Fusion with a pre-MIMO channel propagation model to obtain a MIMO transmission channel through simulation to generate the throughput test signal.
  • the power return information is obtained by the device under test by reporting the power of the signal received by each receiver through an antenna, or the received power is recorded locally and then derived .
  • the first acquisition module includes: an acquisition unit for obtaining an amplitude value according to the power return information; a calculation unit for obtaining the propagation matrix according to the amplitude value The phase difference of the elements in to obtain the propagation matrix.
  • another embodiment of the present invention provides a tester, which includes the above-mentioned radio frequency performance testing device of a wireless device.
  • the tester can obtain the propagation matrix from the power return information, so that a virtual wire is formed between the output port of the meter and the receiver port of the device under test to perform the performance test on the device under test to obtain the RF performance test result.
  • the solution of the virtual wire improves the accuracy of the test, improves the test efficiency, and improves the applicability of the test.
  • FIG. 1 is a schematic diagram of the principle of conducting the radio frequency performance test of the wireless device of the related art
  • Figure 2 is a schematic diagram of the principle of MIMO OTA testing of related technologies
  • Fig. 3 is a schematic diagram of the principle of adding a radio frequency matrix module to the front end of the test antenna of the related art
  • FIG. 5 is a schematic diagram of the principle of the radiated two-step method of the MIMO test method of the related art
  • FIG. 6 is a flowchart of a method for testing radio frequency performance of a wireless device according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of the signal output of the test antenna 1 according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the signal output of the test antenna 2 according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of signal output of the test antenna 1 and the test antenna 2 according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the surface signal propagation according to an embodiment of the present invention.
  • FIG. 11 is a schematic test diagram of a test piece placed in a microwave dark room according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a radio frequency performance testing device of a wireless device according to an embodiment of the present invention.
  • the OTA (Over The Air, over-the-air download technology test) test is mainly used to evaluate the radio frequency performance of the wireless device in the air interface state (no RF cable is connected to the device under test), so as to obtain the true radio frequency performance evaluation of the wireless device.
  • OTA testing has become a standard test method for radio frequency performance evaluation of wireless devices at home and abroad.
  • wireless electronic products released on the market must undergo OTA certification testing to ensure that their wireless performance can reach the target, and that the device will not cause interference to the electromagnetic environment.
  • OTA testing can be divided into several categories: for single input single output system (SISO), there are two main test indicators: total radiated power (TRP) and total receive sensitivity (TIS); for multiple input multiple output system (MIMO ), its test index has a throughput rate.
  • SISO single input single output system
  • TRP total radiated power
  • TIS total receive sensitivity
  • MIMO multiple input multiple output system
  • the domestic OTA standard setting organization is China Communications Standards Association CCSA
  • the international OTA standard setting organization is 3GPP (3rd Generation Partnership).
  • the multi-antenna DUT is placed in a shielded room, where the number of test antennas M is equal to the number of DUT antennas N, then electromagnetic waves are emitted from N test antennas to N receiving antenna feeds
  • the points form a stable propagation matrix, which is recorded here as a propagation matrix P, where P is an N ⁇ N matrix.
  • () T means matrix transpose.
  • Virtual wire technology can be used in multiple test areas, the most specific of which is the radiated two-step method of the MIMO test international standard.
  • the radiation two-step method is to calculate the signal that should reach each receiver in the computer (that is, the throughput test signal that should reach each receiver), and then directly send the corresponding test signal to the receiver through the virtual wire. So as to realize the multi-channel signal transmission test throughput rate at the same time.
  • the MIMO test method radiation two-step test is shown in Figure 5, and the test process is mainly divided into the following steps:
  • S3 Determine the propagation matrix for the DUT in the dark room, then calculate the inverse matrix according to the propagation matrix, load the inverse matrix, and form a virtual wire between the output port of the channel modeler and the receiver port of the DUT.
  • S4 Transmit the throughput test signal through the virtual wire to test the wireless terminal.
  • p xy represents the change in the amplitude of the signal sent from the yth test antenna to the x antennas
  • an inverse matrix solution based on the return information of the terminal under test in the 2 ⁇ 2 radiation two-step method is disclosed Method, however, this method does not apply to the case of N>2, and a terminal based on the device under test in the M ⁇ N radiation two-step method is disclosed in the related technology [signal generation method and device based on MIMO wireless terminal test]
  • the method of solving the inverse matrix of the return information indicates that in the return of the DUT, one can obtain the amplitude information of the P matrix and the phase of the other elements in each column of the P matrix relative to the first element. Difference information, such as in the first column of the P matrix:
  • phase difference cannot be obtained in this way and cannot be calculated.
  • some array antennas or multi-antenna routers, etc. do not have the capability of phase test and return;
  • the present invention proposes a method, device and tester for radio frequency performance testing of wireless equipment.
  • radio frequency performance testing methods, devices, and testers of wireless devices according to embodiments of the present invention with reference to the drawings.
  • radio frequency performance testing methods of wireless devices according to embodiments of the present invention will be described with reference to the drawings.
  • FIG. 6 is a flowchart of a method for testing radio frequency performance of a wireless device according to an embodiment of the present invention.
  • the radio frequency performance test method of the wireless device includes the following steps:
  • step S101 the power return information of the device under test is collected.
  • the power return information is obtained by the device under test by reporting the power of the signal received by each receiver through an antenna, or the received power is recorded locally and then derived.
  • the embodiment of the present invention only requires the DUT to provide power return information, and in the current communication standard, the DUT generally supports power return, such as GSM, WiFi, LTE, ZigBee, etc.
  • power return such as GSM, WiFi, LTE, ZigBee, etc.
  • step S102 a propagation matrix is obtained according to the power return information, and a loaded inverse matrix is obtained according to the propagation matrix to form a virtual wire between the output port of the meter and the receiver port of the device under test.
  • obtaining the propagation matrix according to the power return information further includes: obtaining an amplitude value based on the power return information; and obtaining a phase difference of elements in the propagation matrix according to the amplitude value to obtain a propagation matrix.
  • test formula is:
  • N represents the number of antennas under test
  • T represents the excitation signal of the test port
  • R represents the received signal of the receiver port
  • E represents obtained by the propagation matrix.
  • a MIMO DUT with N antennas place it in a shielded room (it can also be a dark room because the dark room has a shielding effect).
  • a shielded room it can also be a dark room because the dark room has a shielding effect.
  • select N test antennas are connected to an N ⁇ N RF matrix module V, in which all test ports output unit excitation (equal amplitude and phase).
  • the DUT needs to support power return, that is, the DUT can report the power level of the signal received by each receiver to the test instrument through the antenna, or can record the received power level locally and then export it.
  • the propagation matrix P is unknown, and its acquisition process is:
  • Step 2 Write the inverse matrix as At this time, it is equivalent to that only the test antenna 1 has a signal output.
  • read N receiver power reports real numbers, converted into amplitude values
  • Step 3 Write the inverse matrix as At this time, it is equivalent to that only the test antenna 2 has a signal output.
  • read the N receiver power reports real numbers, converted into amplitude values), that is, the amplitude information of the second column of the P matrix, and record as
  • Step 4 Write 1 to the diagonal of the V matrix in turn, and write zeros to the other to obtain all amplitude information of the entire P matrix
  • Step 5 Solve part of the phase information through the power synthesis algorithm, specifically:
  • it can also be set multiple times For different values, and then read the received power to achieve a more accurate Solve. For example, it can be fixed The magnitude of the amplitude, and then use the rotation vector method to find the phase difference of the elements in the second column relative to the elements in the corresponding row in the first column
  • the P matrix can be expressed as:
  • E is unknown matrix
  • P B matrix is perfectly known (obtained by solving the above step).
  • test signal T 1 , T 2 ,..., T N
  • receiver port R 1 , R 2 ,..., R N
  • step S103 according to the throughput test signal is transmitted through the virtual wire to perform performance test on the device under test and generate a radio frequency performance test result.
  • the embodiment of the present invention realizes the solution of the virtual wire when only the power return of the device under test is required, does not need to depend on the phase information, and can be used with a variety of standards of the device under test, and can also be used in radiation It is used in the two-step method, with high accuracy, less solution and fast time.
  • it further includes: acquiring antenna pattern information of multiple antennas of the device under test; merging with the pre-MIMO channel propagation model according to the antenna pattern information to simulate to obtain a MIMO transmission channel and generate throughput Rate test signal.
  • the embodiments of the present invention can be used in the radiation two-step method, which will be described in detail below.
  • placing the DUT into a microwave darkroom includes the following test steps:
  • Step 1 Obtain antenna pattern information of multiple antennas of the MIMO wireless terminal under test.
  • Step 2 Integrate the acquired antenna pattern information of multiple antennas of the wireless terminal with a pre-set MIMO channel propagation model to simulate and obtain a complete MIMO transmission channel to generate a throughput test signal.
  • Step 3 Fix the position of the DUT, and use the steps provided by the present invention to determine the propagation matrix in the dark room and the inverse matrix to be loaded using the power return of the DUT. After loading the inverse matrix, the instrument output port and the DUT Virtual wires are formed between the receiver ports.
  • Step 4 Transmit the throughput test signal through the virtual wire to test the wireless terminal.
  • a propagation matrix can be obtained from power return information, so that a virtual wire is formed between the meter output port and the receiver port of the device under test to obtain performance test on the device under test
  • the RF performance test results do not need to rely on the phase information.
  • FIG. 12 is a schematic structural diagram of a radio frequency performance testing device of a wireless device according to an embodiment of the present invention.
  • the radio frequency performance testing apparatus 10 of the wireless device includes: an acquisition module 100, a first acquisition module 200, and a test module 300.
  • the collection module 100 is used to collect power return information of the device under test.
  • the first obtaining module 200 is used to obtain a propagation matrix according to the power return information, and obtain a loaded inverse matrix according to the propagation matrix to form a virtual wire between the output port of the meter and the receiver port of the device under test.
  • the test module 300 is used to transmit the test signal according to the throughput rate through the virtual wire to perform performance test on the device under test and generate RF performance test results.
  • the test device 10 of the embodiment of the present invention can implement the solution of the virtual wire according to the power return information, improve the accuracy of the test, improve the test efficiency, and improve the applicability of the test.
  • the testing device 10 of the embodiment of the present invention further includes: a second acquisition module and a generation module.
  • the second acquisition module is used to acquire antenna pattern information of multiple antennas of the device under test.
  • the generating module is used for merging the pre-MIMO channel propagation model according to the antenna pattern information to obtain a MIMO transmission channel through simulation, and generating a throughput test signal.
  • the power return information is obtained by the device under test by reporting the power of the signal received by each receiver through an antenna, or the received power is recorded locally and then derived.
  • the first acquisition module 200 includes: an acquisition unit and a calculation unit.
  • the obtaining unit is used to obtain the amplitude value according to the power return information.
  • the calculation unit is used to obtain the phase difference of the elements in the propagation matrix according to the amplitude value to obtain the propagation matrix.
  • radio frequency performance test method embodiment of the wireless device is also applicable to the radio frequency performance test apparatus of the wireless device in this embodiment, and details are not described herein again.
  • a propagation matrix can be obtained from the power return information, so that a virtual wire is formed between the output port of the meter and the receiver port of the device under test to obtain performance test of the device under test
  • the RF performance test results do not need to rely on the phase information.
  • an embodiment of the present invention also provides a tester, which includes the above-mentioned radio frequency performance testing device of a wireless device.
  • the tester can obtain the propagation matrix from the power return information, thereby forming a virtual wire between the output port of the meter and the receiver port of the device under test to perform performance testing on the device under test to obtain RF performance test results without relying on phase information.
  • the solution of the virtual wire based on the power return information, it can be used with a variety of standard DUTs, or it can be used in the two-step radiation method.
  • the accuracy is high, and the solution is less, the time is fast, and the accuracy of the test is improved. Test efficiency and improve the applicability of testing.
  • first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • features defined as “first” and “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of “plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种无线设备的射频性能测试方法、装置及测试仪,其中,方法包括:采集被测件的功率回报信息;根据功率回报信息获取传播矩阵,并根据传播矩阵得到加载的逆矩阵,以在仪表输出端口和被测件的接收机端口之间形成虚拟导线;根据吞吐率测试信号通过虚拟导线传输,以对被测件进行性能测试,并生成射频性能测试结果。该方法可以根据功率回报信息实现虚拟导线的求解,提高测试的精确度的同时,提高测试效率,并且提升测试的适用性。

Description

无线设备的射频性能测试方法、装置及测试仪
相关申请的交叉引用
本申请要求深圳市通用测试系统有限公司于2018年12月28日提交的、发明名称为“无线设备的射频性能测试方法、装置及测试仪”的、中国专利申请号“201811620599.3”的优先权。
技术领域
本发明涉及无线设备性能测试技术领域,特别涉及一种无线设备的射频性能测试方法、装置及测试仪。
背景技术
相关技术中,习惯用传导的手段来测试无线设备的射频性能。具体地,如图1所示,首先用传导方法测试无线设备天线性能,然后将传导线接在接收机上测试接收机性能,从而将得到的结果组合则认为是整机的射频性能。
然而,相关技术的传导测试存在以下几个问题:
第一:由于传导线接在了被测件传导馈点上,导致改变被测件本身的射频匹配,进而会改变天线和接收机性能;
第二:传导线上会耦合电流,使其成为被测件的一部分;
第三:在正常工作模式下,被测件自身干扰噪声可以通过天线耦合进去接收机导致对接收机造成一定的干扰,但在接入了传导接头之后,噪声耦合无法进入接收机,从而导致测试结果和实际结果对不上;
第四,在5G无线终端中,由于被测件的尺寸有限或者对成本有要求,一般的都不会有射频接头留出,导致传导测试基本没法进行。
因此,相关技术的传导测试不但存在一定误差,降低测试准确性,而且具有一定局限性,亟待解决。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明的一个目的在于提出一种无线设备的射频性能测试方法,该方法可以根据功率回报信息实现虚拟导线的求解。
本发明的另一个目的在于提出一种无线设备的射频性能测试装置。
本发明的再一个目的在于提出一种测试仪。
为达到上述目的,本发明一方面实施例提出了一种无线设备的射频性能测试方法,包括以下步骤:采集被测件的功率回报信息;根据所述功率回报信息获取传播矩阵,并根据所述传播矩阵得到加载的逆矩阵,以在仪表输出端口和所述被测件的接收机端口之间形成虚拟导线;根据吞吐率测试信号通过所述虚拟导线传输,以对所述被测件进行性能测试,并生成射频性能测试结果。
本发明实施例的无线设备的射频性能测试方法,可以功率回报信息获取传播矩阵,从而在仪表输出端口和被测件的接收机端口之间形成虚拟导线,以对被测件进行性能测试得到射频性能测试结果,通过根据功率回报信息实现虚拟导线的求解,提高测试的精确度的同时,提高测试效率,并且提升测试的适用性。
另外,根据本发明上述实施例的无线设备的射频性能测试方法还可以具有以下附加的技术特征:
进一步地,在本发明的一个实施例中,还包括:获取所述被测件的多个天线的天线方向图信息;根据所述天线方向图信息与预先MIMO信道传播模型融合,以模拟得到MIMO传输信道,生成所述吞吐率测试信号。
进一步地,在本发明的一个实施例中,所述功率回报信息由所述被测件将每一个接收机接收到的信号功率通过天线上报得到,或者将接收到的功率记录在本地后导出得到。
进一步地,在本发明的一个实施例中,所述根据所述功率回报信息获取传播矩阵,进一步包括:根据所述功率回报信息得到幅度值;根据所述幅度值得到所述传播矩阵中元素的相位差,以得到所述传播矩阵。
进一步地,在本发明的一个实施例中,测试公式为:
Figure PCTCN2019113244-appb-000001
其中,N表示所述被测件的天线个数,T表示测试端口的激励信号,R表示接收机端口的接收信号,
Figure PCTCN2019113244-appb-000002
表示相位信息,E表示由所述传播矩阵得到。
为达到上述目的,本发明另一方面实施例提出了一种无线设备的射频性能测试装置,包括:采集模块,用于采集被测件的功率回报信息;第一获取模块,用于根据所述功率回报信息获取传播矩阵,并根据所述传播矩阵得到加载的逆矩阵,以在仪表输出端口和所述被测件的接收机端口之间形成虚拟导线;测试模块,用于根据吞吐率测试信号通过所述虚 拟导线传输,以对所述被测件进行性能测试,并生成射频性能测试结果。
本发明实施例的无线设备的射频性能测试装置,可以依据功率回报信息获取传播矩阵,从而在仪表输出端口和被测件的接收机端口之间形成虚拟导线,以对被测件进行性能测试得到射频性能测试结果,通过根据功率回报信息实现虚拟导线的求解,提高测试的精确度的同时,提高测试效率,并且提升测试的适用性。
另外,根据本发明上述实施例的无线设备的射频性能测试装置还可以具有以下附加的技术特征:
进一步地,在本发明的一个实施例中,还包括:第二获取模块,用于获取所述被测件的多个天线的天线方向图信息;生成模块,用于根据所述天线方向图信息与预先MIMO信道传播模型融合,以模拟得到MIMO传输信道,生成所述吞吐率测试信号。
进一步地,在本发明的一个实施例中,所述功率回报信息由所述被测件将每一个接收机接收到的信号功率通过天线上报得到,或者将接收到的功率记录在本地后导出得到。
进一步地,在本发明的一个实施例中,所述第一获取模块包括:获取单元,用于根据所述功率回报信息得到幅度值;计算单元,用于根据所述幅度值得到所述传播矩阵中元素的相位差,以得到所述传播矩阵。
为达到上述目的,本发明再一方面实施例提出了一种测试仪,其包括上述的无线设备的射频性能测试装置。该测试仪可以功率回报信息获取传播矩阵,从而在仪表输出端口和被测件的接收机端口之间形成虚拟导线,以对被测件进行性能测试得到射频性能测试结果,通过根据功率回报信息实现虚拟导线的求解,提高测试的精确度的同时,提高测试效率,并且提升测试的适用性。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为相关技术的传导测试无线设备的射频性能的原理示意图;
图2为相关技术的MIMO OTA测试的原理示意图;
图3为相关技术的测试天线前端加入射频矩阵模块的原理示意图;
图4为相关技术的N个虚拟导线与测试端口和接收机端口的连接示意图;
图5为相关技术的MIMO测试方法辐射两步法的原理示意图;
图6为根据本发明实施例的无线设备的射频性能测试方法的流程图;
图7为根据本发明一个实施例的测试天线1的信号输出示意图;
图8为根据本发明一个实施例的测试天线2的信号输出示意图;
图9为根据本发明一个实施例的测试天线1和测试天线2的信号输出示意图;
图10为根据本发明一个实施例的公式表面信号传播示意图;
图11为根据本发明一个实施例的被测件放入微波暗室的测试示意图;
图12为根据本发明实施例的无线设备的射频性能测试装置的结构示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面在描述根据本发明实施例提出的无线设备的射频性能测试方法及装置之前,先来简单描述一下本申请是基于发明人如何对以下问题的认识和发现作出的:
目前,主要通过OTA(Over The Air,空中下载技术测试)测试来评估在空口状态下(没有射频线缆链接被测件)无线设备射频性能的好坏,从而获取无线设备的真实射频性能评估。
具体地,OTA测试已经成为国内外对无线设备射频性能评估的标准测试方法。比如在市场上发布的无线电子产品都必须经过OTA认证测试,以确保其无线性能能够达到指标,而且保证该设备不会对电磁环境造成干扰。其中,OTA测试可以分为几类:对于单输入单输出系统(SISO),其测试指标主要有两个:总辐射功率(TRP)和总接收灵敏度(TIS);对于多输入多输出系统(MIMO),其测试指标有吞吐率。国内的OTA标准制定组织为中国通信标准化协会CCSA,国际的OTA标准制定组织为3GPP(3rd Generation Partnership Project)。
在MIMO OTA测试中,一种“虚拟导线”的技术在多个地方被采用。具体地,如图2所示,将多天线被测件放在屏蔽室中,其中测试天线个数M等于被测件天线个数N,那么电磁波从N个测试天线发出到N个接收天线馈点会形成一个稳定的传播矩阵,这里记录为传播矩阵P,其中P是一个N×N的矩阵。
在测试天线前端加入一个射频矩阵模块,如图3所示,设置射频矩阵模块V的值等于传播矩阵P的逆,即P=V -1,则N个测试端口的信号(T 1,T 2,…,T N)与N个接收机端口的接收信号(R 1,R 2,…,R N)满足关系:
(R 1,R 2,…,R N) T=P*V*(T 1,T 2,…,T N) T=(T 1,T 2,…,T N) T
其中,() T表示矩阵转置。
上述公式表明,在这样的设置下,可以实现将测试端口的信号直接导入接收机端口,类似于传导线接入的方式,区别在于:被测件始终处于整机状态,没有任何侵入式的导线连接,测试得到的性能就是其真实工作性能。这样的工作方式也称为“虚拟导线”技术,如图4所示,N个虚拟导线连接了测试端口和接收机端口。
虚拟导线技术可以用到多个测试方面,其中,最具体的是MIMO测试国际标准之辐射两步法中。例如,相关技术中公开的一个辐射两步法的、快速、准确、经济的MIMO OTA测试解决方案。辐射两步法是通过在计算机中计算出应该到达每一个接收机的信号(即应该到达每一个接收机的吞吐率测试信号),然后通过虚拟导线将对应的测试信号直接输送到该接收机上,从而实现多路信号同时传输测试吞吐率。
具体地,MIMO测试方法辐射两步法的测试如图5所示,其测试流程主要分为以下几步:
S1:获得被测MIMO无线终端的多个天线的天线方向图信息。
S2:根据获取的无线终端的多个天线的天线方向图信息与预先设定的MIMO信道传播模型融合,用以模拟获得完整的MIMO传输信道,进而产生吞吐量测试信号。
S3:确定暗室里面针对被测件的传播矩阵,再根据传播矩阵计算逆矩阵,加载逆矩阵,在信道模型器输出端口和被测件的接收机端口之间形成虚拟导线。
S4:将吞吐率测试信号通过虚拟导线传输以对所述无线终端进行测试。
然而,很多特殊情况下,虚拟电缆的实现具有很大的困难,比如:
如图2所示,假设空间传播矩阵P为
Figure PCTCN2019113244-appb-000003
其中,p xy表示从第y个测试天线发出到x个天线接收的信号幅度变化,
Figure PCTCN2019113244-appb-000004
表示从第y个测试天线发出到x个天线接收的信号相位变化,也可以说
Figure PCTCN2019113244-appb-000005
是第y个测试天线发出到x个天线接收的S参数。
想要求解空间传播矩阵P的逆矩阵,就必须知道P的信息,然而,在OTA测试中,被测件都是没有传导线连接的,也就意味着,从测试天线到被测件接收端口之间没有可以计算绝对相位的参考基准,那么P表达式中的χ xy就是未知的,因此,理论上P矩阵的逆矩阵就没法求解出来。
在相关技术[2×2逆矩阵求解基于天线方向图信息的电磁波传播矩阵的逆矩阵求解方法] 中公开了一种在2×2辐射两步法中基于被测件终端回报信息的逆矩阵求解方法,然而该方法并没有适用N>2的情况,且在相关技术[基于MIMO无线终端测试的信号生成方法和装置]中公开了一种在M×N辐射两步法中基于被测件终端回报信息的逆矩阵求解方法,具体地,该方法指出,在被测件回报中,人们可以获取到P矩阵的幅度信息以及P矩阵中每一列元素中,其他元素相对于第一个元素的相位差信息,比如P矩阵第一列中:
Figure PCTCN2019113244-appb-000006
可以通过被测件自身的计算回报知道χ n1相对于χ 11的值(χ 11本身值是不知道的),然后依赖这些回报的相位信息求解逆矩阵。这样的方式适用于一部分被测件,然而,对于以下几种情况有缺陷:
1、对于没有相位回报的被测件,这样的方式无法获取相位差,没法计算,比如一些阵列天线,或者多天线路由器等等,本身不具备相位测试和回报的能力;
2、对于相位回报不准的被测件,这样的方法会受到很大的局限,特别是当N比较大的时候,相位的准确性极大程度影响虚拟导线的求解精度。
本发明正是基于上述问题,而提出了一种无线设备的射频性能测试方法、装置及测试仪。
下面参照附图描述根据本发明实施例提出的无线设备的射频性能测试方法、装置及测试仪,首先将参照附图描述根据本发明实施例提出的无线设备的射频性能测试方法。
图6是本发明实施例的无线设备的射频性能测试方法的流程图。
如图6所示,该无线设备的射频性能测试方法包括以下步骤:
在步骤S101中,采集被测件的功率回报信息。
可选地,在本发明的一个实施例中,功率回报信息由被测件将每一个接收机接收到的信号功率通过天线上报得到,或者将接收到的功率记录在本地后导出得到。
可以理解的是,本发明实施例仅仅需要被测件提供功率回报信息,而且目前的通信制式中,一般被测件都支持功率回报,比如GSM,WiFi,LTE,ZigBee等等,然而没有制式要求支持相位回报,并且功率回报测试精度远高于相位测试。因此,本发明实施例可以更加准确、更加具有普适性的求解和实现虚拟导线。
在步骤S102中,根据所述功率回报信息获取传播矩阵,并根据所述传播矩阵得到加载的逆矩阵,以在仪表输出端口和所述被测件的接收机端口之间形成虚拟导线。
其中,在本发明的一个实施例中,根据功率回报信息获取传播矩阵,进一步包括:根 据功率回报信息得到幅度值;根据幅度值得到传播矩阵中元素的相位差,以得到传播矩阵。
进一步地,在本发明的一个实施例中,测试公式为:
Figure PCTCN2019113244-appb-000007
其中,N表示被测件的天线个数,T表示测试端口的激励信号,R表示接收机端口的接收信号,
Figure PCTCN2019113244-appb-000008
表示相位信息,E表示由传播矩阵得到。
具体而言,对于N个天线的MIMO被测件,将其放入屏蔽室(也可以是暗室,因为暗室有屏蔽效果),屏蔽室中有大于N个测试天线,如图3所示,选择N个测试天线连接在一个N×N的射频矩阵模块V上面,其中测试端口全部输出单位激励(幅度相位相等)。被测件需要支持功率回报,即被测件可以将每一个接收机接收到的信号功率大小通过天线上报给测试仪表,或者可以将接收到的功率大小记录在本地然后导出。
假设逆矩阵为:
Figure PCTCN2019113244-appb-000009
传播矩阵P是未知的,其获取过程为:
步骤1:保持测试端口是单位激励(T 1,T 2,…,T N)=(1,1,…,1)
步骤2:将逆矩阵写成
Figure PCTCN2019113244-appb-000010
此时相当于只有测试天线1有信号输出,如图7所示,读取N个接收机功率汇报(实数,转化为幅度值),即P矩阵的第一列的幅度信息,记录为
Figure PCTCN2019113244-appb-000011
步骤3:将逆矩阵写成
Figure PCTCN2019113244-appb-000012
此时相当于只有测试天线2有信号输出,如图8所示,读取N个接收机功率汇报(实数,转化为幅度值),即P矩阵的第二列的幅 度信息,记录为
Figure PCTCN2019113244-appb-000013
步骤4:依次将V矩阵对角线写1,其他的写零,可以获取整个P矩阵的所有幅度信息
Figure PCTCN2019113244-appb-000014
步骤5:通过功率合成算法求解部分相位信息,具体为:
a.将逆矩阵V中
Figure PCTCN2019113244-appb-000015
其他的都写成零,即
Figure PCTCN2019113244-appb-000016
此时相当于只有测试天线1以及测试天线2同时有信号输出,如图9所示,读取N个接收机功率汇报(实数,转化为幅度值),记录为
Figure PCTCN2019113244-appb-000017
此时,每一路接收机的功率都是两路信号的合成,例如对于第n个接收机,其接收信号幅度大小为
Figure PCTCN2019113244-appb-000018
由于p n1,p n2和Q n都是在上面步骤中获取到的,可以带入上面公式求出χ n1n2的值,同理,依据
Figure PCTCN2019113244-appb-000019
以及
Figure PCTCN2019113244-appb-000020
可以求解出
Figure PCTCN2019113244-appb-000021
的值,即计算出P矩阵中,第二列元素相对于第一列对应行的元素的相位差;
另外,也可以通过多次设置
Figure PCTCN2019113244-appb-000022
为不同的值,然后读取接收功率,从而实现更加精确的
Figure PCTCN2019113244-appb-000023
求解。例如,可以固定
Figure PCTCN2019113244-appb-000024
的幅度,然后使用旋转矢量法求解出 第二列元素相对于第一列对应行的元素的相位差;
b.同理,将逆矩阵V中
Figure PCTCN2019113244-appb-000025
其他的都写成零,读取N个接收机功率汇报(实数,转化为幅度值),求解出
Figure PCTCN2019113244-appb-000026
的值,即计算出P矩阵中,第三列元素相对于第一列对于行的元素的相位差;
c.同理,计算出P矩阵中,所有N列元素相对于第一列对于行的元素的相位差;此时可以将P矩阵写成:
Figure PCTCN2019113244-appb-000027
其中,
Figure PCTCN2019113244-appb-000028
是从第y个测试天线发出到x个天线接收的信号相位变化相减去从第1个测试天线发出到x个天线接收的信号相位变化,可以是通过上述第5步求解得到,
Figure PCTCN2019113244-appb-000029
是第1个测试天线发出到所有接收天线的相位变化是未知的。
截止此时,P矩阵求解结束,其逆矩阵求解如下:
P矩阵可以表示为:
Figure PCTCN2019113244-appb-000030
Figure PCTCN2019113244-appb-000031
Figure PCTCN2019113244-appb-000032
其中,E矩阵是未知的,P B矩阵为完全已知的(通过上述步骤求解得到)。
对P B矩阵求逆,
Figure PCTCN2019113244-appb-000033
将P B -1写入逆矩阵模块,即令V=P B -1
那么从测试端口出发的测试信号(T 1,T 2,…,T N)到接收机端口的信号(R 1,R 2,…,R N)关系为:
Figure PCTCN2019113244-appb-000034
由于P=E*P B,代入上述公式得到:
Figure PCTCN2019113244-appb-000035
将E矩阵带入得到:
Figure PCTCN2019113244-appb-000036
上述公式表面,第n个接收机的接收信号完全来自于第n个测试端口,虽然信号叠加了一个未知相位信息,然而这种隔离式的一对一的信号传输方式正是虚拟导线传输技术,如图10所示,该公式表面信号传播是从测试端口一对一的传入了接收机。
在步骤S103中,根据吞吐率测试信号通过所述虚拟导线传输,以对所述被测件进行性能测试,并生成射频性能测试结果。
在本发明的实施例中,本发明实施例在仅仅需要被测件功率回报的情况下实现了虚拟导线的求解,不需要依赖相位信息,可以使用与多种制式被测件,也可以在辐射两步法中使用,精度高,而且求解少,时间快。
另外,在本发明的一个实施例中,还包括:获取被测件的多个天线的天线方向图信息;根据天线方向图信息与预先MIMO信道传播模型融合,以模拟得到MIMO传输信道,生成吞吐率测试信号。
举例而言,本发明实施例可以在辐射两步法中使用,以下进行详细说明。
具体的,将被测件放入微波暗室,如图11所示,包括以下测试步骤:
步骤1:获得被测MIMO无线终端的多个天线的天线方向图信息。
步骤2:根据获取的无线终端的多个天线的天线方向图信息与预先设定的MIMO信道传播模型融合,用以模拟获得完整的MIMO传输信道,进而产生吞吐量测试信号。
步骤3:固定被测件位置,通过本发明提供的步骤,利用被测件的功率回报确定暗室里面传播矩阵,以及需要加载的逆矩阵,在加载逆矩阵,使仪表输出端口和被测件的接收机端口之间形成虚拟导线。
步骤4:将吞吐率测试信号通过虚拟导线传输以对所述无线终端进行测试。
根据本发明实施例的无线设备的射频性能测试方法,可以功率回报信息获取传播矩阵,从而在仪表输出端口和被测件的接收机端口之间形成虚拟导线,以对被测件进行性能测试得到射频性能测试结果,不需要依赖相位信息,通过根据功率回报信息实现虚拟导线的求解,可以使用与多种制式被测件,也可以在辐射两步法中使用,精度高,而且求解少,时间快,提高测试的精确度的同时,提高测试效率,并且提升测试的适用性。
其次参照附图描述根据本发明实施例提出的无线设备的射频性能测试装置。
图12是本发明实施例的无线设备的射频性能测试装置的结构示意图。
如图12所示,该无线设备的射频性能测试装置10包括:采集模块100、第一获取模块 200和测试模块300。
其中,采集模块100用于采集被测件的功率回报信息。第一获取模块200用于根据功率回报信息获取传播矩阵,并根据传播矩阵得到加载的逆矩阵,以在仪表输出端口和被测件的接收机端口之间形成虚拟导线。测试模块300用于根据吞吐率测试信号通过虚拟导线传输,以对被测件进行性能测试,并生成射频性能测试结果。本发明实施例的测试装置10可以根据功率回报信息实现虚拟导线的求解,提高测试的精确度的同时,提高测试效率,并且提升测试的适用性。
进一步地,在本发明的一个实施例中,本发明实施例的测试装置10还包括:第二获取模块和生成模块。
其中,第二获取模块,用于获取被测件的多个天线的天线方向图信息。生成模块用于根据天线方向图信息与预先MIMO信道传播模型融合,以模拟得到MIMO传输信道,生成吞吐率测试信号。
进一步地,在本发明的一个实施例中,功率回报信息由被测件将每一个接收机接收到的信号功率通过天线上报得到,或者将接收到的功率记录在本地后导出得到。
进一步地,在本发明的一个实施例中,第一获取模块200包括:获取单元和计算单元。
其中,获取单元用于根据功率回报信息得到幅度值。计算单元用于根据幅度值得到传播矩阵中元素的相位差,以得到传播矩阵。
需要说明的是,前述对无线设备的射频性能测试方法实施例的解释说明也适用于该实施例的无线设备的射频性能测试装置,此处不再赘述。
根据本发明实施例的无线设备的射频性能测试装置,可以功率回报信息获取传播矩阵,从而在仪表输出端口和被测件的接收机端口之间形成虚拟导线,以对被测件进行性能测试得到射频性能测试结果,不需要依赖相位信息,通过根据功率回报信息实现虚拟导线的求解,可以使用与多种制式被测件,也可以在辐射两步法中使用,精度高,而且求解少,时间快,提高测试的精确度的同时,提高测试效率,并且提升测试的适用性。
此外,本发明的实施例还提出一种测试仪,该测试仪包括上述的无线设备的射频性能测试装置。该测试仪可以功率回报信息获取传播矩阵,从而在仪表输出端口和被测件的接收机端口之间形成虚拟导线,以对被测件进行性能测试得到射频性能测试结果,不需要依赖相位信息,通过根据功率回报信息实现虚拟导线的求解,可以使用与多种制式被测件,也可以在辐射两步法中使用,精度高,而且求解少,时间快,提高测试的精确度的同时,提高测试效率,并且提升测试的适用性。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐 含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种无线设备的射频性能测试方法,其特征在于,包括以下步骤:
    采集被测件的功率回报信息;
    根据所述功率回报信息获取传播矩阵,并根据所述传播矩阵得到加载的逆矩阵,以在仪表输出端口和所述被测件的接收机端口之间形成虚拟导线;以及
    根据吞吐率测试信号通过所述虚拟导线传输,以对所述被测件进行性能测试,并生成射频性能测试结果。
  2. 根据权利要求1所述的无线设备的射频性能测试方法,其特征在于,还包括:
    获取所述被测件的多个天线的天线方向图信息;
    根据所述天线方向图信息与预先MIMO信道传播模型融合,以模拟得到MIMO传输信道,生成所述吞吐率测试信号。
  3. 根据权利要求1所述的无线设备的射频性能测试方法,其特征在于,所述功率回报信息由所述被测件将每一个接收机接收到的信号功率通过天线上报得到,或者将接收到的功率记录在本地后导出得到。
  4. 根据权利要求1所述的无线设备的射频性能测试方法,其特征在于,所述根据所述功率回报信息获取传播矩阵,进一步包括:
    根据所述功率回报信息得到幅度值;
    根据所述幅度值得到所述传播矩阵中元素的相位差,以得到所述传播矩阵。
  5. 根据权利要求4所述的无线设备的射频性能测试方法,其特征在于,测试公式为:
    Figure PCTCN2019113244-appb-100001
    其中,N表示所述被测件的天线个数,T表示测试端口的激励信号,R表示接收机端口的接收信号,
    Figure PCTCN2019113244-appb-100002
    表示相位信息,E表示由所述传播矩阵得到。
  6. 一种无线设备的射频性能测试装置,其特征在于,包括:
    采集模块,用于采集被测件的功率回报信息;
    第一获取模块,用于根据所述功率回报信息获取传播矩阵,并根据所述传播矩阵得到加载的逆矩阵,以在仪表输出端口和所述被测件的接收机端口之间形成虚拟导线;以及
    测试模块,用于根据吞吐率测试信号通过所述虚拟导线传输,以对所述被测件进行性能测试,并生成射频性能测试结果。
  7. 根据权利要求6所述的无线设备的射频性能测试装置,其特征在于,还包括:
    第二获取模块,用于获取所述被测件的多个天线的天线方向图信息;
    生成模块,用于根据所述天线方向图信息与预先MIMO信道传播模型融合,以模拟得到MIMO传输信道,生成所述吞吐率测试信号。
  8. 根据权利要求6所述的无线设备的射频性能测试装置,其特征在于,所述功率回报信息由所述被测件将每一个接收机接收到的信号功率通过天线上报得到,或者将接收到的功率记录在本地后导出得到。
  9. 根据权利要求6所述的无线设备的射频性能测试装置,其特征在于,所述第一获取模块包括:
    获取单元,用于根据所述功率回报信息得到幅度值;
    计算单元,用于根据所述幅度值得到所述传播矩阵中元素的相位差,以得到所述传播矩阵。
  10. 一种测试仪,其特征在于,包括:如权利要求6-9任一项所述的无线设备的射频性能测试装置。
PCT/CN2019/113244 2018-12-28 2019-10-25 无线设备的射频性能测试方法、装置及测试仪 WO2020134447A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021538050A JP2022517542A (ja) 2018-12-28 2019-10-25 無線機器の無線周波数性能の試験方法、装置及び試験計器
EP19905868.6A EP3905553A4 (en) 2018-12-28 2019-10-25 METHOD AND APPARATUS FOR TESTING THE RADIO FREQUENCY PERFORMANCE OF A WIRELESS DEVICE AND TEST DEVICE
KR1020217023529A KR102567733B1 (ko) 2018-12-28 2019-10-25 무선 기기의 방사 주파수 성능을 테스트하는 방법, 장치 및 테스트기
US17/360,457 US11876568B2 (en) 2018-12-28 2021-06-28 Radio frequency performance testing method and apparatus of wireless device, and tester

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811620599.3 2018-12-28
CN201811620599.3A CN111385036B (zh) 2018-12-28 2018-12-28 无线设备的射频性能测试方法、装置及测试仪

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/360,457 Continuation US11876568B2 (en) 2018-12-28 2021-06-28 Radio frequency performance testing method and apparatus of wireless device, and tester

Publications (1)

Publication Number Publication Date
WO2020134447A1 true WO2020134447A1 (zh) 2020-07-02

Family

ID=71126863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113244 WO2020134447A1 (zh) 2018-12-28 2019-10-25 无线设备的射频性能测试方法、装置及测试仪

Country Status (6)

Country Link
US (1) US11876568B2 (zh)
EP (1) EP3905553A4 (zh)
JP (1) JP2022517542A (zh)
KR (1) KR102567733B1 (zh)
CN (1) CN111385036B (zh)
WO (1) WO2020134447A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112383660B (zh) * 2020-11-02 2024-04-02 西安闻泰电子科技有限公司 智能终端的吞吐率测试方法、装置、存储介质和终端
CN115225173B (zh) * 2022-07-28 2023-09-01 联宝(合肥)电子科技有限公司 一种无线连接性能测试方法、装置、电子设备及存储介质
CN115290991B (zh) * 2022-10-09 2022-12-30 荣耀终端有限公司 天线测试方法、装置、系统、信道仿真仪及可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080056340A1 (en) * 2006-07-24 2008-03-06 Michael Foegelle Systems and methods for over the air performance testing of wireless devices with multiple antennas
CN103856272A (zh) * 2012-12-03 2014-06-11 深圳市通用测试系统有限公司 Mimo无线终端的无线性能测试方法
CN107543978A (zh) * 2016-06-23 2018-01-05 是德科技股份有限公司 经由ota辐射测试系统标定出mimo中辐射通道矩阵的系统和方法
US9985733B1 (en) * 2016-11-22 2018-05-29 Keysight Technologies, Inc. System and method for performing over-the-air (OTA) testing of a device under test (DUT) having an integrated transmitter-antenna assembly
CN108234036A (zh) * 2016-12-14 2018-06-29 深圳市通用测试系统有限公司 Mimo无线终端的无线性能测试方法
CN108574539A (zh) * 2017-03-08 2018-09-25 深圳市通用测试系统有限公司 基于mimo无线终端测试的信号生成方法和装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10484104B2 (en) * 2013-08-20 2019-11-19 Spirent Communications, Inc. Method for over-the-air measurement signal generation
US10601659B2 (en) * 2015-01-29 2020-03-24 Telefonaktiebolaget Lm Ericsson (Publ) Methods to signal current MIMO RX antenna configuration status
CN105842546B (zh) * 2015-08-26 2019-02-26 深圳市通用测试系统有限公司 基于天线方向图信息的电磁波传播矩阵的逆矩阵求解方法
US9742508B1 (en) * 2016-02-26 2017-08-22 Keysight Technologies, Inc. Systems and methods for calibrating multiple input, multiple output (MIMO) test systems and for using the calibrated MIMO test systems to test mobile devices
CN108702639B (zh) * 2016-03-31 2021-05-04 华为技术有限公司 一种终端设备的信号发送方法及终端设备
EP3487141B1 (en) * 2016-08-05 2022-06-01 Huawei Technologies Co., Ltd. Terminal, base station, and method for obtaining channel information
TWI707594B (zh) * 2016-10-21 2020-10-11 華碩電腦股份有限公司 無線通訊系統中波束運作之功率餘量回報之方法及設備
CN108023621B (zh) * 2016-11-04 2022-07-15 中兴通讯股份有限公司 一种信道信息量化反馈的方法和装置、电子设备
CN108988960B (zh) * 2017-05-31 2021-06-29 川升股份有限公司 多输入多输出天线吞吐量量测系统
WO2019037847A1 (en) * 2017-08-23 2019-02-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. CALIBRATION AND RADIO LINK TESTING OF MULTI-ANTENNA DEVICES BASED ON BEAM FORMATION IN ANECHOIC AND NON-ANECHOIC ENVIRONMENTS

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080056340A1 (en) * 2006-07-24 2008-03-06 Michael Foegelle Systems and methods for over the air performance testing of wireless devices with multiple antennas
CN103856272A (zh) * 2012-12-03 2014-06-11 深圳市通用测试系统有限公司 Mimo无线终端的无线性能测试方法
CN107543978A (zh) * 2016-06-23 2018-01-05 是德科技股份有限公司 经由ota辐射测试系统标定出mimo中辐射通道矩阵的系统和方法
US9985733B1 (en) * 2016-11-22 2018-05-29 Keysight Technologies, Inc. System and method for performing over-the-air (OTA) testing of a device under test (DUT) having an integrated transmitter-antenna assembly
CN108234036A (zh) * 2016-12-14 2018-06-29 深圳市通用测试系统有限公司 Mimo无线终端的无线性能测试方法
CN108574539A (zh) * 2017-03-08 2018-09-25 深圳市通用测试系统有限公司 基于mimo无线终端测试的信号生成方法和装置

Also Published As

Publication number Publication date
US11876568B2 (en) 2024-01-16
CN111385036B (zh) 2021-08-24
EP3905553A4 (en) 2022-09-28
JP2022517542A (ja) 2022-03-09
KR102567733B1 (ko) 2023-08-17
EP3905553A1 (en) 2021-11-03
CN111385036A (zh) 2020-07-07
US20210399814A1 (en) 2021-12-23
KR20210107093A (ko) 2021-08-31

Similar Documents

Publication Publication Date Title
KR102111874B1 (ko) Mimo 무선 단말의 무선 성능 테스트 방법
US10601695B2 (en) Systems and methods for radio channel emulation of a multiple input multiple output (MIMO) wireless link
US10684318B1 (en) System and method for testing analog beamforming device
WO2020134447A1 (zh) 无线设备的射频性能测试方法、装置及测试仪
CN109889239B (zh) 一种用于mimo ota测试的双暗室结构及测试方法
KR102436859B1 (ko) 무선 단말의 무선 성능을 테스트하는 방법 및 시스템
CN102576044B (zh) 波导中的天线的特性确定
CN102148649B (zh) 实现多天线设备空间射频性能测试的方法及系统
CN103856272A (zh) Mimo无线终端的无线性能测试方法
Hussain et al. Interpreting the total isotropic sensitivity and diversity gain of LTE-enabled wireless devices from over-the-air throughput measurements in reverberation chambers
CN108988963A (zh) 一种测试方法、发射设备和测试设备及测试系统
KR101939757B1 (ko) 안테나 성능 측정 시스템
KR102129268B1 (ko) 다중 안테나 무선 기기의 테스트를 위한 간섭 성분 상쇄 장치 및 방법
EP3617722A1 (en) Embedded antenna array metrology systems and methods
Shen et al. A decomposition method for MIMO OTA performance evaluation
Rumney et al. Practical active antenna evaluation using the two-stage MIMO OTA measurement method
Gao et al. Over-the-air testing for carrier aggregation enabled MIMO terminals using radiated two-stage method
CN110830129A (zh) Rf电缆和电缆绑定路径损耗确定方法
Rumney et al. Advances in antenna pattern-based MIMO OTA test methods
CN206161841U (zh) 一种6~18ghz有源相控阵功能调试系统
CN102122994A (zh) 一种测试多入多出设备的多通道辐射特性的装置及方法
Zhang et al. Achieving wireless cable testing for MIMO terminals based on maximum RSRP measurement
CN210075247U (zh) 无线射频设备的功率校准装置
CN116368839A (zh) 用于确定被测偏移天线的校正的总辐射功率(trp)或校正的总全向灵敏度(tis)的系统和方法
CN110391854A (zh) 无线射频设备的功率校准方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905868

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021538050

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217023529

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019905868

Country of ref document: EP

Effective date: 20210728