WO2018107848A1 - 一种用于高速机车变速箱的铜基合金棒及其制备方法 - Google Patents

一种用于高速机车变速箱的铜基合金棒及其制备方法 Download PDF

Info

Publication number
WO2018107848A1
WO2018107848A1 PCT/CN2017/102833 CN2017102833W WO2018107848A1 WO 2018107848 A1 WO2018107848 A1 WO 2018107848A1 CN 2017102833 W CN2017102833 W CN 2017102833W WO 2018107848 A1 WO2018107848 A1 WO 2018107848A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
silicon carbide
nickel
based alloy
alloy rod
Prior art date
Application number
PCT/CN2017/102833
Other languages
English (en)
French (fr)
Inventor
孙飞
赵勇
埃里克斯高登
Original Assignee
苏州金仓合金新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州金仓合金新材料有限公司 filed Critical 苏州金仓合金新材料有限公司
Publication of WO2018107848A1 publication Critical patent/WO2018107848A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • C22C32/0063Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides based on SiC

Definitions

  • the invention relates to the field of alloy bars, in particular to a copper-based alloy rod for a high-speed locomotive gearbox and a preparation method thereof.
  • Tin bronze is the non-ferrous metal alloy with the smallest casting shrinkage. It is used to produce castings with complex shapes, clear outlines and low air tightness. Tin bronze is very resistant to corrosion in the atmosphere, sea water, fresh water and steam. It is widely used in various types. Wear-resistant bushings, bushings, flanges and gears, especially for high-speed rail equipment. In order to improve the cutting performance of high-tin bronze alloy rods, lead elements are often added to the bars, and the high-tin bronze alloy rods after the addition of lead have high wear resistance and are easy to be machined, and are widely used. However, lead-containing high-tin bronze alloy rods will have an impact on the environment.
  • the bronze alloy rods containing lead elements can no longer meet the requirements of high-end markets at home and abroad, especially the fast-developing high-speed railways in China. Requirements for locomotive parts.
  • the hardness of tin bronze alloy needs to be further improved.
  • Silicon carbide has the advantages of high purity, small particle size, uniform distribution, large specific surface area, high surface activity and low bulk density. Moreover, silicon carbide has excellent mechanical, thermal, electrical and chemical properties, namely high hardness, high wear resistance and good self-lubrication, high thermal conductivity, low thermal expansion coefficient and high temperature strength.
  • an object of the present invention is to provide a copper-based alloy rod for a high-speed locomotive gearbox and a preparation method thereof, and the nickel-plated silicon carbide has a series of advantages such as high hardness, good wear resistance, and easy wetting. Without increasing the cost, not only the lead that is harmful to the environment is removed, but also the mechanical properties of the silicon carbide-reinforced lead-free tin-copper alloy rod are greatly improved.
  • a copper-based alloy rod for a high speed locomotive gearbox consisting of the following weight percent components: nickel plated silicon carbide 0.5-1%, bismuth 1-2%, tin 4-5.5%, zinc 6-7%, the balance is copper.
  • a copper-based alloy rod for a high-speed locomotive gearbox is composed of the following weight percent components: 0.5% nickel-plated silicon carbide, 1% bismuth, 4% tin, 6% zinc, and the balance copper.
  • a copper-based alloy rod for a high-speed locomotive gearbox is composed of the following weight percent components: 1% nickel-plated silicon carbide, 2% bismuth, 5.5% tin, 7% zinc, and the balance copper.
  • a copper-based alloy rod for a high speed locomotive gearbox is composed of the following weight percent components: 0.7% nickel-plated silicon carbide, 1.5% bismuth, 5% tin, 6.6% zinc, and the balance copper.
  • the nickel-plated silicon carbide has a particle diameter of 50 ⁇ m to 100 ⁇ m.
  • a method of preparing a copper-based alloy rod for a high speed locomotive gearbox as described above comprising the steps of:
  • step 3 The alloy molten liquid mixed with nickel-plated silicon carbide in step 2) is covered with high-purity flaky graphite powder to prevent oxidation thereof, and the temperature is maintained at 1080 ° C, and the holding time is 10-15 min;
  • the cast alloy bar is subjected to a low temperature annealing at 150-200 ° C in a continuous annealing furnace;
  • the annealed alloy rod is cooled at a normal temperature, it is placed in a 5% NaCl aqueous solution for further cooling to obtain a copper-based alloy rod for a high-speed locomotive gearbox.
  • the stirring tool is performed in step 3) as a high temperature resistant graphite rod.
  • the high-purity flaky graphite powder in the step 3) has a thickness of 5 to 7 cm.
  • step 1) is 2-2.5 h, and the holding time is 20-25 min.
  • the vibration frequency in the step 4) is 1 time/second.
  • the invention uniformly distributes the nickel-plated silicon carbide in the molten alloy liquid, and the nickel-plated silicon carbide particles have the characteristics of being more easily wetted, more easily mixed with the metal material in the liquid, and more easily dispersed and distributed in the alloy. Therefore, the preparation of the composite material provides an easier operation mode; and the nickel-plated silicon carbide still has high hardness, high wear resistance and good self-lubricating and high-temperature strength performance, and can be produced in combination with appropriate temperature. Replacing the tin bronze alloy rod containing lead element not only removes environmentally harmful lead, but also the mechanical properties of the finally nickel-plated silicon carbide-reinforced copper-based alloy rod are greatly improved.
  • a copper-based alloy rod for a high-speed locomotive gearbox consisting of the following weight percentage components: nickel-plated silicon carbide 0.5%, bismuth 1%, tin 4%, zinc 6%, balance copper, nickel-plated
  • the silicon carbide has a particle diameter of 50 ⁇ m to 100 ⁇ m.
  • the preparation process of nickel-plated silicon carbide is as follows:
  • Step 1 Activate silicon carbide particles: 40 g of silicon carbide particles (average particle size 5 ⁇ m) were added to an alcohol solution of nickel acetate and sodium borohydride (12 g of nickel acetate, 4 g of sodium borohydride and 1 L of ethanol), and a stabilizer was added dropwise. 10% NaOH solution, stirring at room temperature for 30 min, stirring speed is 400r / min, forming a mixture;
  • Step 2 The precipitated mixture in step one is allowed to stand for precipitation, and filtered to use distilled water. Washing the precipitate, filtering after washing, and drying at 70-80 ° C;
  • Step 3 Electroless nickel plating: 26 g of nickel sulfate hexahydrate (main salt), 20 g of sodium hypophosphite (reducing agent), 44 g of citric acid (complexing agent) and 66 g of ammonium sulfate (buffering agent) are added to the beaker. Distilled water was added until the solid matter was completely dissolved to form a plating solution.
  • Step 4 The mixture obtained by electroless nickel plating in the third step is left to be precipitated, and after filtration, the precipitate is washed with distilled water. After the washing is completed, the mixture is filtered and dried at 70-80 ° C to obtain nickel-plated silicon carbide particles.
  • the above copper-based alloy rod for a high speed locomotive gearbox is produced by the following steps:
  • Electrolytic copper, tin, antimony and zinc are placed in an electric furnace according to the above-mentioned ratio weight, heated to 1100-1200 ° C, and the heating time is 2-2.5 h; after completely melting, the completely molten alloy liquid is made of high temperature resistant graphite. The rod is fully stirred and kept to 1080 ° C, and the holding time is 20-25 min;
  • step 2) adding nickel-plated silicon carbide to the molten alloy liquid in the step 1) according to the above ratio weight, and turning on the stirring device, the stirring rate is 300 rpm, and the stirring time is 10-15 min;
  • step 3 The alloy molten liquid mixed with nickel-plated silicon carbide in step 2) is covered with high-purity flaky graphite powder having a thickness of 5-7 cm to prevent oxidation thereof, and the temperature is kept at 1080 ° C for 10-15 min;
  • the vibration frequency is 1 time / sec, and cast a solid alloy rod with a diameter of 15-200 mm and a length of 2000 mm by horizontal continuous casting method;
  • the cast alloy bar is subjected to a low temperature annealing at 150-200 ° C in a continuous annealing furnace, and the annealing time is 30-40 min;
  • the copper-based alloy rods for high-speed locomotive gearboxes can be surface treated with high-precision lathes with a diameter tolerance of +/-0.03mm, a length of 1000mm and a tolerance of +1/-0mm. .
  • a copper-based alloy rod for a high-speed locomotive gearbox consisting of the following weight percentage components: nickel-plated silicon carbide 1%, ⁇ 2%, tin 5.5%, zinc 7%, balance copper, nickel-plated
  • the silicon carbide has a particle diameter of 50 ⁇ m to 100 ⁇ m.
  • the above copper-based alloy rod for a high-speed locomotive gearbox was obtained in the same manner as in Example 1.
  • a copper-based alloy rod for a high-speed locomotive gearbox consisting of the following weight percentage components: nickel-plated silicon carbide 0.7%, ⁇ 1.5%, tin 5%, zinc 6.6%, balance copper, nickel-plated
  • the silicon carbide has a particle diameter of 50 ⁇ m to 100 ⁇ m.
  • the above copper-based alloy rod for a high-speed locomotive gearbox was obtained in the same manner as in Example 1.
  • the conventional lead-tin copper alloy rod is composed of the following weight percentage components: zinc 6%, tin 5%, lead 3%, and the balance being copper.
  • the above-mentioned lead-tin-copper alloy material is prepared by a conventional heat treatment process, that is, a heat treatment process such as repeated annealing, tempering, and bonfire.
  • the conventional lead-tin copper alloy rod is composed of the following weight percentage components: zinc 5%, tin 4%, lead 6%, and the balance being copper.
  • the above-mentioned lead-tin-copper alloy material is prepared by a conventional heat treatment process, that is, a heat treatment process such as repeated annealing, tempering, and bonfire.
  • the present invention uniformly distributes the nickel-plated silicon carbide material in a copper, bismuth, tin, and zinc alloy solution by a certain technical means, and utilizes silicon carbide with high hardness, high wear resistance and good.
  • the self-lubricating and high-temperature strength properties further improve the performance of the alloy material.
  • the composite alloy rod obtained by the invention has higher strength and hardness than the traditional lead-tin copper alloy rod, thereby meeting the requirements of materials applied in high-speed railway locomotive parts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

一种用于高速机车变速箱的铜基合金棒及其制备方法,合金棒由以下重量百分数的组分组成:镀镍碳化硅0.5‑1%,锑1‑2%,锡4‑5.5%,锌6‑7%,余量为铜。合金棒的制备方法是将镀镍碳化硅均匀分布在熔融合金液体中,经过镀镍的碳化硅颗粒,具有更容易润湿、与金属材料在液体中更容易混合,更容易均匀弥散分布在合金当中的特点,从而为复合材料的制作提供了较容易的操作方式;并且镀镍的碳化硅仍具有高硬度,高耐磨性的性能,结合适当的温度而生产出完全能够取代含有铅元素的锡青铜合金棒,不仅去除了对环境有害的铅,而且最终镀镍碳化硅增强铜基合金棒的机械性能也有很大的提高。

Description

一种用于高速机车变速箱的铜基合金棒及其制备方法 技术领域
本发明涉及合金棒材领域,具体涉及一种用于高速机车变速箱的铜基合金棒及其制备方法。
背景技术
锡青铜是铸造收缩率最小的有色金属合金,用来生产形状复杂、轮廓清晰、气密性要求不高的铸件,锡青铜在大气、海水、淡水和蒸汽中十分耐蚀,广泛应用于各类耐磨轴瓦、轴套、法兰及齿轮等方面,尤其用于高速铁路装备。为了提升高锡青铜合金棒的易切削性能,往往在棒料中添加铅元素,加铅后的高锡青铜合金棒具有高的耐磨性并易切削加工,被广泛使用。然而,含铅高锡青铜合金棒会对环境造成影响,随着人们环保意识的不断提高,含铅元素的青铜合金棒已不能满足国内外高端市场的要求,尤其不能满足我国快速发展的高速铁路机车零部件的要求。另外,随着工业的发展,锡青铜的合金硬度需进一步提高。
碳化硅具有纯度高,粒径小,分布均匀,比表面积大,高表面活性,松装密度低的优点。且碳化硅具有极好的力学,热学,电学和化学性能,即具有高硬度,高耐磨性和良好的自润滑,高热传导率,低热膨胀系数及高温强度大等特点。
发明内容
为了解决上述技术问题,本发明的目的在于提供一种用于高速机车变速箱的铜基合金棒及其制备方法,镀镍碳化硅硬度高、耐磨性好、容易润湿等一系列优点,在不增加成本的情况下,不仅去除了对环境有害的铅,而且最终碳化硅增强无铅锡铜合金棒的机械性能也有很大的提高。
为了实现上述发明目的,本发明采用的技术方案如下:
根据本发明,提供一种用于高速机车变速箱的铜基合金棒,由以下重量百分数的组分组成:镀镍碳化硅0.5-1%,锑1-2%,锡4-5.5%,锌6-7%,余量为铜。
进一步地,一种用于高速机车变速箱的铜基合金棒由以下重量百分数的组分组成:镀镍碳化硅0.5%,锑1%,锡4%,锌6%,余量为铜。
进一步地,一种用于高速机车变速箱的铜基合金棒由以下重量百分数的组分组成:镀镍碳化硅1%,锑2%,锡5.5%,锌7%,余量为铜。
进一步地,一种用于高速机车变速箱的铜基合金棒由以下重量百分数的组分组成:镀镍碳化硅0.7%,锑1.5%,锡5%,锌6.6%,余量为铜。
进一步地,所述镀镍碳化硅粒径为50μm-100μm。
根据本发明,提供一种如上所述的用于高速机车变速箱的铜基合金棒的制备方法,包括以下步骤:
1)按照权利要求1-4中任意一项所述的配比重量将电解铜、锡、锑、锌置于电炉内,加热到1100-1200℃;待完全熔化后,将完全熔化的合金液体充分搅拌并保温至1080℃;
2)按照权利要求1-4中任意一项所述的配比重量将镀镍碳化硅添加到步骤1)中的熔融合金液体当中,并开启搅拌装置;
3)将步骤2)中混合有镀镍碳化硅的合金熔融液体上面覆盖高纯度鳞片状石墨粉以防止其氧化,温度1080℃下保温,保温时间为10-15min;
4)进一步重新升温至1200℃,并开启工频电炉的振动装置,采用水平连铸方法铸制成规定尺寸的实心合金棒;
5)将铸造完成的合金棒材采用连续式退火炉进行150-200℃的低温退火;
6)将退火完成的合金棒在常温下冷却后,放入浓度为5%NaCl水溶液中进行进一步冷却得到用于高速机车变速箱的铜基合金棒。
进一步地,步骤3)中进行所述搅拌工具为耐高温石墨棒。
进一步地,步骤3)中所述高纯度鳞片状石墨粉的厚度为5-7cm。
进一步地,步骤1)的加热时间为2-2.5h,保温时间为20-25min。
进一步地,步骤4)中的振动频率为1次/秒。
本发明的有益效果是:
本发明将镀镍碳化硅均匀分布在熔融合金液体中,经过镀镍的碳化硅颗粒,具有更容易润湿、与金属材料在液体中更容易混合,更容易均匀弥散分布在合金当中的特点,从而为复合材料的制作提供了较容易的操作方式;并且镀镍的碳化硅仍具有高硬度,高耐磨性和良好的自润滑及高温强度大的性能,结合适当的温度而生产出完全能够取代含有铅元素的锡青铜合金棒,不仅去除了对环境有害的铅,而且最终镀镍碳化硅增强铜基合金棒的机械性能也有很大的提高。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1
一种用于高速机车变速箱的铜基合金棒,由以下重量百分数的组分组成:镀镍碳化硅0.5%,锑1%,锡4%,锌6%,余量为铜,其中镀镍碳化硅粒径为50μm-100μm。
其中镀镍碳化硅的制备过程为:
步骤一:活化碳化硅颗粒:将40g碳化硅颗粒(平均粒径为5μm)加入乙酸镍和硼氢化钠的醇溶液(12g乙酸镍、4g硼氢化钠和1L的乙醇)中,滴加稳定剂10%NaOH溶液后常温搅拌30min,搅拌速度为400r/min,形成混合物一;
步骤二:将步骤一中活化完成的混合物一静置沉淀,过滤后用蒸馏水 洗涤沉淀,洗涤完成后过滤并70-80℃下烘干;
步骤三,化学镀镍:将26g六水硫酸镍(主盐)、20g一水次亚磷酸钠(还原剂)、44g柠檬酸(络合剂)和66g硫酸铵(缓冲剂)加入烧杯中,并加入蒸馏水直至固体物质全部溶解,形成镀液。
将步骤二中5g烘干的活化碳化硅颗粒和痕量稳定剂硫脲加入上述镀液中形成混合物二,将混合物二水浴加热并搅拌(加热温度为40℃,搅拌速度为400r/min),并在加热搅拌的同时加入NaOH溶液调节混合物二的pH值为9;
步骤四:将步骤三中化学镀镍完成的混合物二静置沉淀,过滤后用蒸馏水洗涤沉淀,洗涤完成后过滤并70-80℃下烘干得到镀镍碳化硅颗粒。
在本实施例中上述用于高速机车变速箱的铜基合金棒由以下步骤制得:
1)按照上述配比重量电解铜、锡、锑、锌置于电炉内,加热到1100-1200℃,加热时间为2-2.5h;待完全熔化后,将完全熔化的合金液体使用耐高温石墨棒充分搅拌并保温至1080℃,保温时间为20-25min;
2)按照上述配比重量将镀镍碳化硅添加到步骤1)中的熔融合金液体当中,并开启搅拌装置,搅拌速率为300转/分钟,搅拌时间为10-15min;
3)将步骤2)中混合有镀镍碳化硅的合金熔融液体上面覆盖厚度为5-7cm的高纯度鳞片状石墨粉以防止其氧化,温度1080℃下保温,保温时间为10-15min;
4)进一步重新升温至1200℃,并开启工频电炉的振动装置,振动频率为1次/秒,采用水平连铸方法铸制成直径15-200mm和长度2000mm的实心合金棒;
5)将铸造完成的合金棒材采用连续式退火炉进行150-200℃的低温退火,退火时间为30-40min;
6)将退火完成的合金棒在常温下冷却10-15min后,放入浓度为5%NaCl水溶液中进行进一步冷却,使其硬度进一步提升,最后得到用于 高速机车变速箱的铜基合金棒。
按照相应需求,可以采用高精度车床对完成冷却的用于高速机车变速箱的铜基合金棒进行表面处理,直径公差为+/-0.03mm,长度定尺为1000mm,公差为+1/-0mm。
实施例2
一种用于高速机车变速箱的铜基合金棒,由以下重量百分数的组分组成:镀镍碳化硅1%,锑2%,锡5.5%,锌7%,余量为铜,其中镀镍碳化硅粒径为50μm-100μm。
上述用于高速机车变速箱的铜基合金棒通过与实施例1相同的方法得到。
实施例3
一种用于高速机车变速箱的铜基合金棒,由以下重量百分数的组分组成:镀镍碳化硅0.7%,锑1.5%,锡5%,锌6.6%,余量为铜,其中镀镍碳化硅粒径为50μm-100μm。
上述用于高速机车变速箱的铜基合金棒通过与实施例1相同的方法得到。
比较例1
在比较例中,传统的铅锡铜合金棒由以下重量百分数的组分组成:锌6%,锡5%,铅3%,余量为铜。
通过传统的热处理工艺,即反复退火、回火及蘸火等热处理工艺,制备得到上述铅锡铜合金材料。
比较例2
在比较例中,传统的铅锡铜合金棒由以下重量百分数的组分组成:锌5%,锡4%,铅6%,余量为铜。
通过传统的热处理工艺,即反复退火、回火及蘸火等热处理工艺,制备得到上述铅锡铜合金材料。
本发明的实施例1-3和对比例1-2所得的合金棒材的力学性能具体结果如下表1所示:
表1
Figure PCTCN2017102833-appb-000001
根据上述表1的数据可以看出,本发明将镀镍的碳化硅材料通过一定的技术手段均匀分布在铜、锑、锡、锌合金溶液当中,利用碳化硅高硬度,高耐磨性和良好的自润滑及高温强度大的性能,实现合金材料的性能的进一步提升。本发明所得到的复合合金棒与传统的铅锡铜合金棒相比具有更高的强度、硬度,从而满足材料在高速铁路机车零部件中应用的要求。
关于以上所述的仪器及操作步骤和参数,应理解的是,其为描述性而非限定性的,可通过等价置换的方式在以上说明书及权利要求所述的范围内做出修改。即,本发明的范围应参照所附权利要求的全部范围而确定,而不是参照上面的说明而确定。总之,应理解的是本发明能够进行多种修正和变化。

Claims (10)

  1. 一种用于高速机车变速箱的铜基合金棒,其特征在于,由以下重量百分数的组分组成:镀镍碳化硅0.5-1%,锑1-2%,锡4-5.5%,锌6-7%,余量为铜。
  2. 根据权利要求1所述的用于高速机车变速箱的铜基合金棒,其特征在于,由以下重量百分数的组分组成:镀镍碳化硅0.5%,锑1%,锡4%,锌6%,余量为铜。
  3. 根据权利要求1所述的用于高速机车变速箱的铜基合金棒,其特征在于,由以下重量百分数的组分组成:镀镍碳化硅1%,锑2%,锡5.5%,锌7%,余量为铜。
  4. 根据权利要求1所述的用于高速机车变速箱的铜基合金棒,其特征在于,由以下重量百分数的组分组成:镀镍碳化硅0.7%,锑1.5%,锡5%,锌6.6%,余量为铜。
  5. 根据权利要求1-4中任意一项所述的用于高速机车变速箱的铜基合金棒,其特征在于,所述镀镍碳化硅粒径为50μm-100μm。
  6. 一种权利要求1-5中任意一项所述的用于高速机车变速箱的铜基合金棒的制备方法,其特征在于,包括以下步骤:
    1)按照权利要求1-4中任意一项所述的配比重量将电解铜、锡、锑、锌置于电炉内,加热到1100-1200℃;待完全熔化后,将完全熔化的合金液体充分搅拌并保温至1080℃;
    2)按照权利要求1-4中任意一项所述的配比重量将镀镍碳化硅添加到步骤1)中的熔融合金液体当中,并开启搅拌装置;
    3)将步骤2)中混合有镀镍碳化硅的合金熔融液体上面覆盖高纯度鳞片状石墨粉以防止其氧化,温度1080℃下保温,保温时间为10-15min;
    4)进一步重新升温至1200℃,并开启工频电炉的振动装置,采用水平连铸方法铸制成规定尺寸的实心合金棒;
    5)将铸造完成的合金棒材采用连续式退火炉进行150-200℃的低温退火;
    6)将退火完成的合金棒在常温下冷却后,放入浓度为5%NaCl水溶液中进行进一步冷却得到用于高速机车变速箱的铜基合金棒。
  7. 根据权利要求6所述的用于高速机车变速箱的铜基合金棒的制备方法,其特征在于,步骤3)中进行所述搅拌工具为耐高温石墨棒。
  8. 根据权利要求6所述的用于高速机车变速箱的铜基合金棒的制备方法,其特征在于,步骤3)中所述高纯度鳞片状石墨粉的厚度为5-7cm。
  9. 根据权利要求6所述的用于高速机车变速箱的铜基合金棒的制备方法,其特征在于,步骤1)的加热时间为2-2.5h,保温时间为20-25min。
  10. 根据权利要求6所述的用于高速机车变速箱的铜基合金棒的制备方法,其特征在于,步骤4)中的振动频率为1次/秒。
PCT/CN2017/102833 2016-12-14 2017-09-22 一种用于高速机车变速箱的铜基合金棒及其制备方法 WO2018107848A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611156588.5A CN106756220A (zh) 2016-12-14 2016-12-14 一种用于高速机车变速箱的铜基合金棒及其制备方法
CN201611156588.5 2016-12-14

Publications (1)

Publication Number Publication Date
WO2018107848A1 true WO2018107848A1 (zh) 2018-06-21

Family

ID=58888418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102833 WO2018107848A1 (zh) 2016-12-14 2017-09-22 一种用于高速机车变速箱的铜基合金棒及其制备方法

Country Status (2)

Country Link
CN (1) CN106756220A (zh)
WO (1) WO2018107848A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113278845A (zh) * 2021-05-04 2021-08-20 宁波华成阀门有限公司 一种阀门用铜合金及阀门制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106756220A (zh) * 2016-12-14 2017-05-31 苏州金仓合金新材料有限公司 一种用于高速机车变速箱的铜基合金棒及其制备方法
CN107312950A (zh) * 2017-06-22 2017-11-03 苏州天兼新材料科技有限公司 一种镀镍碳化硅铜基合金材料及其制备方法
CN111020269A (zh) * 2019-12-09 2020-04-17 苏州列治埃盟新材料技术转移有限公司 一种用于海洋工程机械高强度镀镍碳化硅铜基合金新材料

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103589901A (zh) * 2013-11-08 2014-02-19 苏州天兼金属新材料有限公司 一种无铅环保铜基合金管及其制造方法
JP2015206098A (ja) * 2014-04-23 2015-11-19 大豊工業株式会社 すべり軸受用銅合金およびすべり軸受
CN105195737A (zh) * 2015-10-14 2015-12-30 东南大学 一种SiC颗粒表面包覆镍的方法
CN105349827A (zh) * 2015-10-30 2016-02-24 苏州列治埃盟新材料技术转移有限公司 一种碳化硅增强无铅锡铜合金棒及其制备方法
CN106191518A (zh) * 2016-08-09 2016-12-07 苏州金仓合金新材料有限公司 一种用于高铁机车的碳化硅锑锡锌铜复合材料及制备方法
CN106756220A (zh) * 2016-12-14 2017-05-31 苏州金仓合金新材料有限公司 一种用于高速机车变速箱的铜基合金棒及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103589901A (zh) * 2013-11-08 2014-02-19 苏州天兼金属新材料有限公司 一种无铅环保铜基合金管及其制造方法
JP2015206098A (ja) * 2014-04-23 2015-11-19 大豊工業株式会社 すべり軸受用銅合金およびすべり軸受
CN105195737A (zh) * 2015-10-14 2015-12-30 东南大学 一种SiC颗粒表面包覆镍的方法
CN105349827A (zh) * 2015-10-30 2016-02-24 苏州列治埃盟新材料技术转移有限公司 一种碳化硅增强无铅锡铜合金棒及其制备方法
CN106191518A (zh) * 2016-08-09 2016-12-07 苏州金仓合金新材料有限公司 一种用于高铁机车的碳化硅锑锡锌铜复合材料及制备方法
CN106756220A (zh) * 2016-12-14 2017-05-31 苏州金仓合金新材料有限公司 一种用于高速机车变速箱的铜基合金棒及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113278845A (zh) * 2021-05-04 2021-08-20 宁波华成阀门有限公司 一种阀门用铜合金及阀门制备方法

Also Published As

Publication number Publication date
CN106756220A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
WO2018107848A1 (zh) 一种用于高速机车变速箱的铜基合金棒及其制备方法
CN102925746B (zh) 高性能Cu-Ni-Si系铜合金及其制备和加工方法
WO2018028094A1 (zh) 一种用于高铁机车的碳化硅锑锡锌铜复合材料及制备方法
WO2018107847A1 (zh) 一种碳化硅增强锑锡铜合金棒及其制造方法
CN102760508B (zh) 含Hf和Ce的高电导率抗蠕变铝合金电缆导体及制备方法
CN108060324B (zh) 一种高强耐蚀耐磨阀件用铜合金棒材及其制备方法
WO2018045695A1 (zh) 抗软化铜合金、制备方法及其应用
WO2013159265A1 (zh) 高速铁路装备用加锑高锡青铜合金棒及其制作方法
TWI598452B (zh) 具優異熔鑄性之無鉛快削黃銅合金及其製造方法和用途
WO2018107846A1 (zh) 一种镀镍碳化硅颗粒及其制备方法
CN108165853B (zh) 一种高电磁屏蔽效能镁合金及其制备方法
CN110904366B (zh) 一种铝基石墨烯复合耐磨自润滑材料制备工艺
WO2015100872A1 (zh) 低铅无铋无硅黄铜
CN106756215B (zh) 一种高铁接地装置用自修复导电耐磨铜合金及其制备方法
CN104946925A (zh) 一种母线槽用铜铝合金材料的处理工艺
CN104911408A (zh) 一种硬铝导线单丝及其制备方法
CN110747371B (zh) 一种高导电高强度高硬度铜合金及其制备方法
CN111500904A (zh) 中强超硬铝合金及其制造工艺
JP6301618B2 (ja) 銅合金材およびその製造方法
CN112126816A (zh) 一种耐腐蚀稀土铜合金
CN107716902A (zh) 一种柱塞泵转子用双金属的铸造方法
CN112222552B (zh) 一种伽马电极丝及其制备方法
CN111041271A (zh) 一种热锻性能良好的铜锡钛合金
CN116460288A (zh) 银基合金粉末材料及其在抗高温氧化、抗偏析材料的应用
CN110306077A (zh) 一种电连接器用耐蚀铜合金及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17882011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17882011

Country of ref document: EP

Kind code of ref document: A1