WO2018107528A1 - 一种激光雷达系统及测距方法 - Google Patents

一种激光雷达系统及测距方法 Download PDF

Info

Publication number
WO2018107528A1
WO2018107528A1 PCT/CN2016/112713 CN2016112713W WO2018107528A1 WO 2018107528 A1 WO2018107528 A1 WO 2018107528A1 CN 2016112713 W CN2016112713 W CN 2016112713W WO 2018107528 A1 WO2018107528 A1 WO 2018107528A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
signal
ranging
unit
optical
Prior art date
Application number
PCT/CN2016/112713
Other languages
English (en)
French (fr)
Inventor
徐洋
田林岩
王庆飞
Original Assignee
北京万集科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京万集科技股份有限公司 filed Critical 北京万集科技股份有限公司
Publication of WO2018107528A1 publication Critical patent/WO2018107528A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Definitions

  • the invention relates to the field of laser radar, and particularly relates to a laser radar system and a distance measuring method for realizing anti-interference by means of redundant measurement.
  • Lidar is a kind of photoelectric measuring instrument.
  • laser technology and electronics technology the rapid development of laser radar technology has been vigorously promoted.
  • laser radar has been successfully applied in the fields of intelligent transportation, terrain mapping, power line inspection, agricultural vegetation and cultural relics protection.
  • new intelligent devices such as autonomous vehicles, drones and intelligent robots
  • laser radar systems are increasingly showing their enormous application potential.
  • the technical problem to be solved by the present invention is that the laser radar system may be interfered or interfere with each other during laser transmission and reception, resulting in error in ranging data.
  • the present invention provides a laser radar system including a laser emitting system, a laser receiving system, and a main control system;
  • the laser emitting system emits a laser signal to the probe
  • the laser receiving system receives a laser signal reflected back by the probe
  • the main control system calculates the distance information of the probe according to the time difference between the transmission and reception of the laser signal
  • the laser signal includes a ranging laser signal having different feature attributes and at least one redundant verification optical signal;
  • the master control system performs a comparison check on the characteristic attributes of the ranging laser signals of the feature attributes different from each other and the optical signals of the at least one redundant check optical signal.
  • the laser emitting system comprises a laser light source unit, a combining unit and an optical transmitting unit;
  • the laser light source unit is configured to generate a ranging laser signal and at least one redundant verification light signal
  • the combining unit is configured to combine all the optical signals of the ranging laser signal and the at least one redundant verifying optical signal into one beam of detecting light;
  • the optical transmitting unit is configured to collimate the signal detecting light and emit it to the probe.
  • the laser receiving system comprises an optical receiving unit, a beam splitting unit and a photodetector Measuring unit
  • the optical receiving unit is configured to collect a laser signal diffused back by the probe
  • the beam splitting unit is configured to separate all optical signals diffused back from the probe collected by the optical receiving unit from each other;
  • the photodetecting unit is configured to convert all optical signals diffused back by the probe into electrical signals.
  • the main control system includes a timing ranging unit, a calibration unit, and a control unit;
  • the timing ranging unit is configured to collect transmission and reception timings of all optical signals of the ranging laser signal and the at least one redundant verification optical signal, and separately calculate the distance of the probe according to the time difference;
  • the check unit is configured to analyze a ranging data deviation and/or a transmission and reception time delay and/or a pulse width between all the optical signals of the comparison ranging laser signal and the at least one redundant verification optical signal, and It performs a comparison check;
  • the control unit is operative to provide control commands to the laser emitting system and the laser receiving system.
  • the characteristic attributes in the ranging laser signal and the at least one redundant verification optical signal that have different feature attributes are one of wavelength, emission time, light intensity, pulse width, polarization state, and loaded modulation information. One or more combinations.
  • the invention also provides a ranging method for a laser radar system, comprising the following steps:
  • the comparison check is performed based on the initial characteristic values of the laser signal transmission and reception and the characteristic information of all the optical signals of the at least one redundant verification optical signal.
  • a ranging laser signal that reflects back the collected probes and at least one redundancy check All optical signals of the optical signal are separated from each other, and all the separated optical signals are converted into electrical signals.
  • Transmitting and receiving time delays and/or pulse widths between all optical signals of the ranging laser signal and the at least one redundant verifying optical signal are compared; and transmitting and receiving control commands are issued.
  • the characteristic attributes in the ranging laser signal and the at least one redundant verification optical signal that have different feature attributes are one of wavelength, emission time, light intensity, pulse width, polarization state, and loaded modulation information. One or more combinations.
  • the beneficial effects of the laser radar system and the ranging method provided by the present invention are that by adding redundant verification light signals to the ranging signal light, the measurement needs to be verified every time the distance measurement is performed, ensuring The reliability of the data obtained from this measurement.
  • the redundant verification optical signal can be used not only as a reference signal of the ranging signal light, but also to detect whether there is an interference signal. It can also act as an alternate ranging signal light, providing ranging information. Therefore, the laser radar system of the present invention can not only determine whether each measurement data is interfered, but also ensure the accuracy and reliability of the measurement data by using redundant ranging data obtained by using the redundant verification optical signal.
  • FIG. 1 is a schematic structural view of a laser radar system of the present invention
  • FIG. 2 is a schematic structural view of a transmitting system of a laser radar system according to the present invention
  • FIG. 3 is a schematic structural view of a receiving system of a laser radar system according to the present invention.
  • FIG. 4 is a schematic flow chart of a method for ranging of a laser radar system according to the present invention.
  • REFERENCE SIGNS 1. Laser emission system, 2. Laser receiving system, 3. Main control system, 4. Detection object, 1a. Laser light source unit, 1b. Combining unit, 1c. Optical transmitting unit, 2a. Optical receiving unit 2b. splitting unit, 2c. photodetecting unit, 3a. timing ranging unit, 3b. verifying unit, 3c. control unit.
  • the laser radar system of the present embodiment includes a laser emitting system 1, a laser receiving system 2, and a main control system 3.
  • the laser emitting system 1 is a ranging signal source for transmitting a laser signal to a probe.
  • the laser signal includes a ranging laser signal and a redundant verification optical signal, wherein the redundant verification optical signal is identification information that ensures the unity of the laser signal.
  • the laser receiving system 2 is a ranging signal receiving device for receiving a laser signal diffused back by a probe; the laser receiving system 2 uses the same optical path system to measure the laser signal in the laser signal and redundant The verification optical signal is received back together to ensure the implementation of the ranging and verification functions.
  • the main control system 3 is a main control unit of the laser radar system for controlling the laser emission system to emit a laser signal to the probe and recording the moment when the laser is emitted. After the laser receiving system 2 detects the diffused reflected laser signal, the main control system 3 also records the time of returning the laser, and calculates the distance information of the detected object by making a difference with the time of emitting the laser, and further, To verify the redundant verification light signal. If the distance between the two calculated ranging information is smaller than the ranging accuracy, it is regarded as effective ranging data. If the distance between the two ranging information is greater than several times of the ranging accuracy, the ranging data is regarded as being interfered.
  • the repeated measurement accuracy error of laser ranging generally conforms to the normal distribution, and the probability of exceeding the three-point ranging accuracy should be less than 0.27%, and the possibility of interference is extremely great. Therefore, it is generally possible to take 3 or 4 times the deviation value of the ranging accuracy as the disturbed standard line.
  • the laser emitting system 1 includes a laser light source unit 1a, a combining unit 1b, and an optical emitting unit 1c.
  • the laser light source unit 1a is configured to receive an illumination control signal from the main control system 3, generate a pulsed ranging laser signal, and a redundant verification optical signal. It is usually used in combination of one or more of a light source capable of generating a pulsed light signal such as a semiconductor laser, a fiber laser, a solid laser or an LED.
  • the ranging laser signal and the redundant calibration optical signal should adopt two or more light sources with different illumination parameters, such as wavelength difference of more than 50 nm, polarization direction vertical or pulse width difference. 20 nanoseconds or more, to ensure that it is not easy to be interfered at the same time.
  • the combining unit 1b is configured to synthesize a bundle of ranging laser signals generated by the laser light source unit and the remaining redundant verification optical signals into a bundle of signal detection lights.
  • the fiber combiner can be used to combine the plurality of detection light sources into one bundle.
  • Signal detection The light is a semiconductor or solid-state laser, and can be combined by a coated beam-forming lens or a polarizing plate.
  • the optical transmitting unit 1c is configured to collimate a bundle of signal detecting lights synthesized by the combining unit by using the same optical path to ensure that all signal detecting lights can be transmitted to the same detecting point.
  • the collimated emission optical path may be a monolithic or multi-plate collimating lens, a self-focusing lens, a Fresnel lens, and a binary optical lens, and the optical element having a collimating effect.
  • the laser receiving system 2 includes an optical receiving unit 2a, a splitting unit 2b, and a photodetecting unit 2c.
  • the optical receiving unit 2a is configured to collect signal detection light diffused back from the probe.
  • the splitting unit 2b is opposite to the function of the combining unit 1b for separating the redundant check optical signal and the ranging laser signal included in the signal detecting light collected by the optical receiving unit for subsequent signal processing.
  • the beam splitting unit 2b may be a splitting optoelectronic device such as a beam splitting prism, a fiber splitter, a beam splitting polarizer, and a coated beam splitting lens.
  • the photodetecting unit 2c converts the ranging laser signal and the redundant verification optical signal into electrical signals, respectively, and sends them to the main control system for subsequent signal processing.
  • the main control system 3 includes a timing ranging unit 3a, a verification unit 3b, and a control unit 3c.
  • the timing ranging unit 3a can adopt a chip capable of realizing a timing function, such as a TDC chip or an FPGA, for collecting and transmitting the time of all the optical signals of the ranging laser signal and the redundant verification optical signal in the signal detecting light, and The distances of the probes and their transmission time delay and reception time delay are calculated according to their respective flight time differences.
  • the chrono ranging unit 3a can read the illuminating driving signal of the light source driving circuit as the transmitting time, and can also add a scattered light signal when the photodetector detects the illuminating near the light source as the transmitting time, and the receiving time is provided by the respective photo detecting unit. .
  • the verification unit 3b can adopt a chip capable of realizing data analysis and processing, such as an MCU chip, an FPGA or a DSP, and analyzes the comparison ranging laser signal according to the signal provided by the timing ranging unit 3a to detect the transmission and reception timing of all optical signals in the light. And the redundancy check information between the redundant check optical signals, or analyze and compare their transmission time delay and reception time delay, or analyze and compare their optical signal pulse width and other redundancy check information to confirm Whether the ranging data is valid or interfered with.
  • a chip capable of realizing data analysis and processing such as an MCU chip, an FPGA or a DSP
  • the ranging data deviation value between the ranging laser signal and the redundant verification optical signal takes 3 or 4 times of the ranging accuracy as the standard deviation value; between the ranging laser signal and the redundant verification optical signal, The deviation between the transmission time delay and the reception time delay should be less than 3 or 4 times the optical speed motion time corresponding to the ranging accuracy; between the ranging laser signal and the redundant calibration optical signal, the emission pulse width of the two The deviation of the ratio of the ratio of the received light pulse width should be less than 0.3 or 0.4.
  • the control unit 3c is configured to provide a control command to the laser transmitting system and the laser receiving system, and determine whether the ranging data is valid or interfered according to the verification result provided by the checking unit, and transmit effective ranging data. Mark the interfered ranging data.
  • the control unit separately supplies the ranging laser signal and the redundant verification optical signal to the illumination control signal, so that the illumination delay between them is randomly selected between 10-100 nanoseconds for the convenience of verification and non-reproducibility. And sending the random illumination delay to the verification unit; the control unit controls the laser receiving system to turn on the function of receiving the optical signal while giving the illumination control signal, and stops after 1 millisecond (corresponding to the range of 150 meters) Receive optical signals to reduce the possibility of interference.
  • a plurality of redundant verifying optical signals can also be set.
  • the control unit determines that the measurement is disturbed, it can compare the ranging data obtained by the multi-channel verification optical signal to meet the verification requirement. If it is consistent, the calibration optical signal can also be used as the ranging data.
  • the present invention also provides an anti-interference laser ranging method, which includes the following steps:
  • the laser radar system When the laser radar system is powered on and starts normal operation, it will be sequentially performed according to steps 401 to 409 to complete a ranging operation; and the above method is repeated to perform a new ranging operation until the operation is stopped.
  • step 401 the control unit generates a random verification initial data according to the program to prevent the interfered party from easily cracking.
  • This random calibration initial data is usually also limited to a range, for example, the illumination delay between the ranging laser signal and the redundant verification optical signal is limited to between 10-100 nanoseconds.
  • step 402 the control unit sends a driving signal to the laser emitting system and the laser receiving system according to the random verification initial data, controls each laser light source to start emitting light according to a random delay, and simultaneously controls each photo detecting unit to start receiving signals.
  • the timing ranging unit reads the illumination time and pulse width of each laser light source, calculates their illumination delay, and sends it to the verification unit as a set of verification initial data.
  • the timing ranging unit can read the driving control signals sent by the control unit to the respective light sources as their respective lighting moments, and can also detect the diffuse reflection light when the respective light sources emit light as the respective lighting moments by adding several photodetectors.
  • step 404 the laser emitting system combines the ranging laser signal and the redundant calibration light signal into a bundle through the beam combining system, and after the lens is collimated, is emitted to the probe in the same direction.
  • the laser receiving system collects the signal detection light diffused back from the probe through the optical lens, and separates the ranging laser signal and the verification light signal through a beam splitting system, respectively, and transmits them to respective photodetectors, and respectively Converted into electrical signals.
  • step 406 after the driving laser emitting system starts to emit light, the control unit stops the operation of the laser receiving system after a delay of 1 millisecond (corresponding to the range of 150 meters), thereby reducing the possibility of interference.
  • the control unit controls the ranging laser signal and the redundant verification optical signal to respectively emit light respectively, after delaying for 1 millisecond respectively, the corresponding receiving photodetecting unit is controlled to stop working, and no optical signal is received any more, until the control unit Drive them to work again.
  • the timing ranging unit reads the electrical signal converted by the photodetector, records the receiving time, the pulse width, and the receiving time delay between the ranging laser signal and the verification optical signal, and sends the signal to the school.
  • the unit is used as a set of ranging data to be verified.
  • the timing ranging unit can adopt the threshold method to read the leading edge and the trailing edge of the pulsed optical signal respectively, and the leading edge as the receiving moment, and the difference between the two is taken as the pulse width.
  • it is also possible to use a time discrimination circuit of other methods such as high-pass RC or constant ratio setting.
  • the verification unit reads the time of transmitting and receiving all the optical signals in the signal detection light provided by the timing ranging unit, and analyzes the deviation of the ranging data between the comparison ranging laser signal and the redundant verification optical signal, or analyzes Compare their transmission time delays and reception time Inter-delay, or analysis and comparison of their optical signal pulse width and other redundancy check information to confirm whether the ranging data is valid or interfered.
  • the ranging data deviation value between the ranging laser signal and the redundant verification optical signal takes 3 or 4 times of the ranging accuracy as the standard deviation value; between the ranging laser signal and the redundant verification optical signal, The deviation between the transmission time delay and the reception time delay should be less than 3 or 4 times the optical speed motion time corresponding to the ranging accuracy; between the ranging laser signal and the redundant calibration optical signal, the emission pulse width of the two The deviation of the ratio of the ratio of the received light pulse width should be less than 0.3 or 0.4.
  • step 409 the control unit reads the verification result of the verification unit and transmits the result of the measurement.
  • the transmission is directly performed; if the measurement result indicates that the interference is received, whether the ranging data obtained between the multiple verification optical signals meets the verification requirement is satisfied. If it is met, the calibration optical signal can also be used as the ranging data output, and the interference is marked. If the measurement result indicates that the interference has been received and the multi-channel verification optical signal fails to pass the verification, the measurement result is discarded and the serious interference is indicated.
  • the anti-jamming laser radar system of the invention adds random calibration light source, and introduces random identification information through the main control system every time the ranging is performed, and compares the obtained ranging data with the verification data. Verification to ensure the reliability of the data obtained from this measurement.
  • the redundant verification optical signal can be used not only as a verification reference signal for the ranging signal light, but also enables the main control system to determine whether the measurement data is interfered, and can also obtain redundant ranging by using the redundant verification optical signal. Data to improve the anti-jamming capability of the Lidar system.
  • the invention provides a laser radar system and a distance measuring method, which transmit a ranging laser signal and at least one redundant verification optical signal with different characteristic properties to a probe through a laser transmitting system; the laser receiving system receives the detecting object Diffuse reflected laser signal; main control system
  • the feature attribute information of all the optical signals of the ranging laser signal and the at least one redundant verification optical signal is calculated according to the time difference of the laser signal transmission and reception and is compared and verified.
  • the existing laser radar has mutual interference problems. If multiple laser radars work at the same time and scan the same area, the laser radar cannot distinguish the received signal light from the signal light of itself or other equipment. , generating incorrect ranging data.
  • the laser radar system and the ranging method of the present invention by adding redundant verification light signals to the ranging signal light, need to check the measurement every time to measure, to ensure the data obtained by the measurement. reliability.
  • the redundant verification optical signal can be used not only as a reference signal of the ranging signal light, but also to detect whether there is an interference signal; and can also serve as an alternate ranging signal light to provide ranging information. Therefore, the laser radar system of the present invention can not only determine whether each measurement data is interfered, but also can ensure the accuracy and reliability of the measurement data by using redundant ranging data obtained by using the redundant verification optical signal, which is strong. Practicality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

激光雷达系统及测距方法,通过激光发射系统(1)向探测物(4)发射特征属性互不相同的测距激光信号和至少一束冗余校验光信号;激光接收系统(2)接收探测物漫反射回来的激光信号;主控系统(3)根据激光信号发射和接收的时刻差计算出测距激光信号和至少一束冗余校验光信号的所有光信号的特征属性信息并对其进行比对校验。该激光雷达系统及测距方法不仅能够判断出每次测量数据是否受到了干扰,还能够通过采用冗余校验光信号获得的冗余测距数据,保证测量数据的准确可靠性。

Description

一种激光雷达系统及测距方法
本申请要求2016年12月16日提交、申请号为201611170542.9的中国专利申请的优先权,其所公开的内容作为参考全文并入本申请。
技术领域
本发明涉及激光雷达领域,具体涉及一种采用冗余测量的方式实现防干扰的激光雷达系统及测距方法。
背景技术
激光雷达是一种光电测量仪器,随着激光技术和电子学技术的发展有力推进了激光雷达技术的迅猛发展。凭借其能够精确、快速获取目标三维空间信息的优势,激光雷达已成功应用于智能交通、地形测绘、电力巡线,农业植被和文物保护等领域。近年来,随着自动驾驶汽车,无人机和智能机器人等新兴智能设备的兴起,激光雷达系统正日益显现其巨大的应用潜力。
但现有的激光雷达在正常工作的情况下,有相互干扰的问题。若多台激光雷达同时工作,扫描同一片区域时,激光雷达无法区分接收到的信号光是自己或是其他设备的信号光,产生错误的测距数据。在测绘领域这个问题可能仅仅是产生了一些测量错误点,但若在自动驾驶领域则可能会引发一起严重的交通事故。2015年,在欧洲的Black Hat Europe Security Conference中Jonathan Petit演示了,仅采用一只低成本的半导体激光器和光电管,就欺骗了无人驾驶汽车的激光雷达,使其产生了错误的测距数据,足以导致汽车的错操作,并得出了目前的传感器产品并未达到完全可依赖级别的结论。
目前,传感器厂家并未在生产的激光雷达产品中引入抗干扰的硬件设计,使用者需要在物体识别或者其他的软件处理层面将这些干扰信息过滤掉。这不仅加重了使用者的工作量,还可能由于复杂的环境信息或者过滤方法的不完善造成误处理。这在自动驾驶或无人机避障 等应用领域,是绝对不能允许出现的。因此,增强激光雷达的抗干扰能力,获得可靠的原始数据,对于激光雷达的应用是非常重要和有价值的。
发明内容
(一)要解决的技术问题
本发明要解决的技术问题是激光雷达系统在进行激光发射和接收时,可能被干扰或者相互干扰导致测距数据错误。
(二)技术方案
为了解决上述技术问题,本发明提供了一种激光雷达系统,包括激光发射系统、激光接收系统和主控系统;
所述激光发射系统向探测物发射激光信号;
所述激光接收系统接收探测物漫反射回来的激光信号;
所述主控系统根据激光信号发射和接收的时刻差计算探测物的距离信息;
其中,所述激光信号包括特征属性互不相同的测距激光信号和至少一束冗余校验光信号;
所述主控系统对所述特征属性互不相同的测距激光信号和至少一束冗余校验光信号的所有光信号的特征属性进行比对校验。
其中,所述激光发射系统包括激光光源单元、合束单元和光学发射单元;
所述激光光源单元用于产生测距激光信号和至少一束冗余校验光信号;
所述合束单元用于将测距激光信号和至少一束冗余校验光信号的所有光信号合成一束信号探测光;
所述光学发射单元用于将所述信号探测光进行准直并向探测物发射。
其中,所述激光接收系统包括光学接收单元、分束单元和光电探 测单元;
所述光学接收单元用于收集探测物漫反射回来的激光信号;
所述分束单元用于将光学接收单元收集的探测物漫反射回来的所有光信号互相分离;
所述光电探测单元用于将探测物漫反射回来的所有光信号转化为电信号。
其中,所述主控系统包括计时测距单元、校验单元和控制单元;
所述计时测距单元用于采集测距激光信号和至少一束冗余校验光信号的所有光信号的发射和接收时刻,并根据时间差分别计算出探测物的距离;
所述校验单元用于分析对比测距激光信号和至少一束冗余校验光信号的所有光信号之间的测距数据偏差和/或发射与接收时间延迟和/或脉宽,并对其进行比对校验;
所述控制单元用于向激光发射系统和激光接收系统提供控制指令。
其中,所述特征属性互不相同的测距激光信号和至少一束冗余校验光信号中的特征属性为波长、发射时刻、光强、脉宽、偏振态和加载有调制信息中的一种或多种组合。
本发明还提供了一种激光雷达系统的测距方法,包括以下步骤:
向探测物发射特征属性互不相同的测距激光信号和至少一束冗余校验光信号;
收集探测物漫反射回来的信号探测光;
根据激光信号发射和接收的初始特征值和至少一束冗余校验光信号的所有光信号的特征信息进行比对校验。
其中,还包括以下步骤:
将测距激光信号和至少一束冗余校验光信号的所有光信号合为一束信号探测光后向探测物发射;
将收集的探测物漫反射回来的测距激光信号和至少一束冗余校验 光信号的所有光信号互相分离,且将分离后的所有光信号转化为电信号。
其中,还包括以下步骤:
对测距激光信号和至少一束冗余校验光信号的所有光信号之间的发射与接收时间延迟和/或脉宽进行比对校验;并且发出发射和接收控制指令。
其中,所述特征属性互不相同的测距激光信号和至少一束冗余校验光信号中的特征属性为波长、发射时刻、光强、脉宽、偏振态和加载有调制信息中的一种或多种组合。
(三)有益效果
本发明所提供的激光雷达系统及测距方法的有益效果是,通过向测距信号光中增加冗余的校验光信号,每次测距时,都需要对此次测量进行校验,确保此次测量获得的数据可靠性。冗余的校验光信号,不仅能作为测距信号光的参考信号,感知是否有干扰信号的存在。还能充当备用的测距信号光,提供测距信息。因此,本发明的激光雷达系统不仅能够判断出每次测量数据是否受到了干扰,还能够通过采用冗余校验光信号获得的冗余测距数据,保证测量数据的准确可靠性。
附图说明
图1为本发明的激光雷达系统的结构示意图
图2为本发明的激光雷达系统的发射系统的结构示意图
图3为本发明的激光雷达系统的接收系统的结构示意图
图4为本发明的激光雷达系统测距方法的流程示意图
附图标记:1.激光发射系统、2.激光接收系统、3.主控系统、4.探测物、1a.激光光源单元、1b.合束单元、1c.光学发射单元、2a.光学接收单元、2b.分束单元、2c.光电探测单元、3a.计时测距单元、3b.校验单元、3c.控制单元。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实例用于说明本发明,但不用来限制本发明的范围。
如图1所示,本实施例的激光雷达系统,包括:激光发射系统1、激光接收系统2和主控系统3。所述激光发射系统1为测距信号源,用于向探测物发射激光信号。所述的激光信号包括测距激光信号和冗余的校验光信号,其中,冗余的校验光信号为确保激光信号单一性的标识信息。所述激光接收系统2为测距信号接收装置,用于接收探测物漫反射回来的激光信号;所述激光接收系统2利用同一套光路系统,将激光信号中的测距激光信号和冗余的校验光信号一起接收回来,保证测距和校验功能的实现。所述主控系统3为激光雷达系统的主要控制单元,用于控制激光发射系统向探测物发射激光信号,并记录发射激光的时刻。当所述激光接收系统2探测到漫反射回来的激光信号后,所述主控系统3也要记录返回激光的时刻,通过与发射激光时刻做差,计算得到探测物的距离信息,此外,还要检验冗余的校验光信号。若两者各自计算所得的测距信息差距小于测距精度,则视为有效测距数据,若两者测距信息差距大于数倍的测距精度,则视为测距数据被干扰。这里应该说明的是,激光测距的重复测量精度误差通常符合正态分布,超出三倍测距精度的概率应小于0.27%,此时受到干扰的可能性极大。故一般可取3或4倍测距精度的偏差值作为被干扰的标准线。
如图2所示,所述激光发射系统1包括激光光源单元1a、合束单元1b和光学发射单元1c。其中,所述激光光源单元1a用来接收来自主控系统3的发光控制信号,产生脉冲的测距激光信号,以及冗余的校验光信号。通常为半导体激光器、光纤激光器、固体激光器或LED等能产生脉冲光信号的光源中的一种或多种混合使用。
为获得较好的防干扰效果,测距激光信号和冗余的校验光信号应采用两种或多种发光参数差异较大的光源,例如波长相差50纳米以上,偏振方向垂直或脉宽相差20纳秒以上等,保证不易被同时干扰。
所述合束单元1b用于将激光光源单元产生的一束测距激光信号和其余的冗余校验光信号合成为一束信号探测光。其中,若光源采用光纤光源,可采用光纤合束器,将多束探测光源合为一束。若信号探测 光采用半导体或固体激光器,可采用镀膜式合束镜片或偏振片进行合束。
所述光学发射单元1c,用于将合束单元合成的一束信号探测光利用同一套光路进行准直,保证所有的信号探测光均能发射到同一探测点。其中,准直发射光路可采用单片或多片式准直透镜、自聚焦透镜、菲涅尔透镜和二元光学镜片等具有准直效果的光学元件。
如图3所示,所述激光接收系统2包括光学接收单元2a、分束单元2b和光电探测单元2c。其中,所述光学接收单元2a用于收集从探测物漫反射回来的信号探测光。所述分束单元2b与合束单元1b的作用相反,用于将光学接收单元收集的信号探测光中包括的冗余校验光信号和测距激光信号分离开,以便于后续的信号处理。所述分束单元2b可采用分光棱镜、光纤分束器、分束偏振片和镀膜式分束镜片等分束光电器件。所述光电探测单元2c分别将测距的激光信号和冗余的校验光信号转化为电信号,并发送到主控系统进行后续的信号处理。
如图1所示,所述主控系统3包括计时测距单元3a,校验单元3b和控制单元3c。
其中,计时测距单元3a可以采用TDC芯片或者FPGA等能够实现计时功能的芯片,用于采集信号探测光中测距激光信号和冗余校验光信号的所有光信号的发射和接收时刻,并根据两者各自的飞行时间差分别计算出探测物的距离,以及它们的发射时间延迟和接收时间延时。计时测距单元3a可以通过读取光源驱动电路的发光驱动信号作为发射时刻,也可以增加一个光电探测器在光源附近检测发光时的散射光信号作为发射时刻,接收时刻由各自的光电探测单元提供。
所述校验单元3b可以采用MCU芯片、FPGA或者DSP等能够实现数据分析处理的芯片,根据计时测距单元3a提供的信号探测光中所有光信号的发射和接收时刻,分析对比测距激光信号和冗余校验光信号之间的测距数据偏差,或者分析对比它们的发射时间延迟和接收时间延迟,或者分析对比它们的光信号脉宽等冗余校验信息,以此确认 此次测距数据是否有效或被干扰。其中,测距激光信号和冗余校验光信号之间的测距数据偏差值取3、4倍的测距精度作为标准偏差值;测距激光信号和冗余校验光信号之间,两者的发射时间延迟和接收时间延迟的偏差值,应小于3、4倍测距精度对应的光速运动时间值;测距激光信号和冗余校验光信号之间,两者的发射光脉宽之比和接收光脉宽之比的偏差值,应小于0.3或0.4。
所述控制单元3c用于给激光发射系统和激光接收系统提供控制指令,并根据校验单元提供的校验结果判断此次的测距数据是否有效或被干扰,并传输有效的测距数据,标记被干扰的测距数据。具体的,控制单元要分别给测距激光信号和冗余校验光信号发光控制信号,为方便校验和不易复制性,它们之间的发光延时会在10-100纳秒间随机选择,并将此随机发光延时发送给校验单元;控制单元要在给出发光控制信号的同时,控制激光接收系统开启接收光信号的功能,并在1毫秒(对应于150米的量程)后停止接收光信号,减小受到干扰的可能性。
进一步的,若为了确保获得非常可靠的测距数据,也可以设置多路的冗余校验光信号。当控制单元判断出此次测量被干扰后,还能对比多路的校验光信号获得的测距数据是否满足校验要求,若符合,也可以采用校验光信号作为测距数据。
如图4所示,基于本发明的激光雷达系统,本发明还提出了一种防干扰的激光测距方法,包括步骤如下:
当本激光雷达系统通电后,并开始正常工作时,会依照步骤401至步骤409顺次进行,完成一次测距工作;并重复上述方式进行新的一次测距工作,直至停止工作。
步骤401中,控制单元根据程序生成一个随机的校验初始数据,以防被干扰方轻易破解。这个随机的校验初始数据通常也会被限定在一个范围内,例如测距激光信号和冗余校验光信号之间的发光延时要限定在10-100纳秒之间。
步骤402中,控制单元根据随机的校验初始数据发送驱动信号给激光发射系统和激光接收系统,控制各个激光光源依照随机延时开始发光,并同时控制各个光电探测单元开始接收信号。
步骤403中,计时测距单元会读取各个激光光源的发光时刻和脉宽,计算它们的发光延时后,发送给检验单元,作为一组校验初始数据。计时测距单元可以读取控制单元发送给各个光源的驱动控制信号作为它们各自的发光时刻,也可以通过外加几个光电探测器探测各个光源发光时的漫反射光作为各自的发光时刻。
步骤404中,激光发射系统通过合束系统将测距激光信号和冗余的校验光信号合成一束,经过镜片准直后同向发射至探测物。
步骤405中,激光接收系统通过光学镜片收集从探测物漫反射回来的信号探测光,经过分束系统将测距激光信号和校验光信号分离开,分别传送至各自的光电探测器,将它们转化为电信号。
步骤406中,控制单元在驱动激光发射系统开始发光后,延时1毫秒(对应于150米的量程)后停止激光接收系统的工作,减小受到干扰的可能性。控制单元控制测距激光信号和冗余的校验光信号先后分别发光后,也分别延时1毫秒后,先后控制对应的接收光电探测单元的停止工作,不再接收任何光信号,直至控制单元驱动它们再次工作。
步骤407中,计时测距单元读取光电探测器转化的电信号,记录测距激光信号和校验光信号各自的接收时刻,脉宽,以及两者间的接收时刻延时,并发送给校验单元,作为一组待校验的测距数据。计时测距单元可以采用阈值法,分别读取脉冲光信号的前沿和后沿,前沿作为接收时刻,两者的差作为脉宽。此外也可以采用高通阻容或恒比定值等其他方式的时刻鉴别电路。
步骤408中,检验单元读取计时测距单元提供的信号探测光中所有光信号的发射和接收时刻,分析对比测距激光信号和冗余校验光信号之间的测距数据偏差,或者分析对比它们的发射时间延迟和接收时 间延迟,或者分析对比它们的光信号脉宽等冗余校验信息,以此确认此次测距数据是否有效或被干扰。其中,测距激光信号和冗余校验光信号之间的测距数据偏差值取3、4倍的测距精度作为标准偏差值;测距激光信号和冗余校验光信号之间,两者的发射时间延迟和接收时间延迟的偏差值,应小于3、4倍测距精度对应的光速运动时间值;测距激光信号和冗余校验光信号之间,两者的发射光脉宽之比和接收光脉宽之比的偏差值,应小于0.3或0.4。
步骤409中,控制单元读取校验单元的校验结果,并传输此次测量的结果。其中,若此次的测距结果通过了校验,则直接传输;若此次的测量结果表示受到了干扰,则对比多路的校验光信号之间获得的测距数据是否满足校验要求,若符合,也可以采用校验光信号作为测距数据输出,并标示出被干扰。若此次的测量结果表示受到了干扰,多路的校验光信号之间也未能通过校验,则丢弃此次测量结果,并标示出被严重干扰。
本发明的防干扰激光雷达系统,通过增加冗余的校验光源,每次测距时,通过主控系统引入随机的标识信息,并将此次获得的测距数据和校验数据进行比对校验,确保此次测量获得的数据可靠性。冗余的校验光信号,不仅能作为测距信号光的校验参考信号,使主控系统判断出测量数据是否受到了干扰,还能够通过采用冗余校验光信号获得的冗余测距数据,提高激光雷达系统的防干扰能力。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明提供了一种激光雷达系统及测距方法,其通过激光发射系统向探测物发射特征属性互不相同的测距激光信号和至少一束冗余校验光信号;激光接收系统接收探测物漫反射回来的激光信号;主控系 统根据激光信号发射和接收的时刻差计算出测距激光信号和至少一束冗余校验光信号的所有光信号的特征属性信息并对其进行比对校验。现有的激光雷达在正常工作的情况下,有相互干扰的问题,若多台激光雷达同时工作,扫描同一片区域时,激光雷达无法区分接收到的信号光是自己或是其他设备的信号光,产生错误的测距数据。本发明的激光雷达系统及测距方法,通过向测距信号光中增加冗余的校验光信号,每次测距时,都需要对此次测量进行校验,确保此次测量获得的数据可靠性。冗余的校验光信号,不仅能作为测距信号光的参考信号,感知是否有干扰信号的存在;还能充当备用的测距信号光,提供测距信息。因此,本发明的激光雷达系统不仅能够判断出每次测量数据是否受到了干扰,还能够通过采用冗余校验光信号获得的冗余测距数据,保证测量数据的准确可靠性,有很强的实用性。

Claims (9)

  1. 一种激光雷达系统,其特征在于,包括激光发射系统、激光接收系统和主控系统;
    所述激光发射系统向探测物发射激光信号;
    所述激光接收系统接收探测物漫反射回来的激光信号;
    所述主控系统根据激光信号发射和接收的时刻差计算探测物的距离信息;
    其中,所述激光信号包括特征属性互不相同的测距激光信号和至少一束冗余校验光信号;
    所述主控系统对所述特征属性互不相同的测距激光信号和至少一束冗余校验光信号的所有光信号的特征属性信息进行比对校验。
  2. 根据权利要求1所述的激光雷达系统,其特征在于,所述激光发射系统包括激光光源单元、合束单元和光学发射单元;
    所述激光光源单元用于产生测距激光信号和至少一束冗余校验光信号;
    所述合束单元用于将测距激光信号和至少一束冗余校验光信号的所有光信号合成一束信号探测光;
    所述光学发射单元用于将所述信号探测光进行准直并向探测物发射。
  3. 根据权利要求1所述的激光雷达系统,其特征在于,所述激光接收系统包括光学接收单元、分束单元和光电探测单元;
    所述光学接收单元用于收集探测物漫反射回来的激光信号;
    所述分束单元用于将光学接收单元收集的探测物漫反射回来的所有光信号互相分离;
    所述光电探测单元用于将探测物漫反射回来的所有光信号转化为电信号。
  4. 根据权利要求1所述的激光雷达系统,其特征在于,所述主控系统包括计时测距单元、校验单元和控制单元;
    所述计时测距单元用于采集测距激光信号和至少一束冗余校验光信号的所有光信号的发射和接收时刻,并根据时间差分别计算出探测物的距离;
    所述校验单元用于分析对比测距激光信号和至少一束冗余校验光信号的所有光信号之间的测距数据偏差和/或发射与接收时间延迟和/或脉宽,并对其进行比对校验;
    所述控制单元用于向激光发射系统和激光接收系统提供控制指令。
  5. 根据权利要求1-4任意一项所述的激光雷达系统,其特征在于,所述特征属性互不相同的测距激光信号和至少一束冗余校验光信号中的特征属性为波长、发射时刻、光强、脉宽、偏振态和加载有调制信息中的一种或多种组合。
  6. 一种激光雷达系统的测距方法,其特征在于,包括以下步骤:
    向探测物发射特征属性互不相同的测距激光信号和至少一束冗余校验光信号;
    收集探测物漫反射回来的信号探测光;
    根据激光信号发射和接收的初始特征值和至少一束冗余校验光信号的所有光信号的特征属性进行比对校验。
  7. 根据权利要求6所述的测距方法,其特征在于,还包括以下步骤:
    将测距激光信号和至少一束冗余校验光信号的所有光信号合为一束信号探测光后向探测物发射;
    将收集的探测物漫反射回来的测距激光信号和至少一束冗余校验光信号的所有光信号互相分离,且将分离后的所有光信号转化为电信号。
  8. 根据权利要求6所述的测距方法,其特征在于,还包括以下步骤:
    对测距激光信号和至少一束冗余校验光信号的所有光信号之间的 发射与接收时间延迟和/或脉宽进行比对校验;并且发出发射和接收控制指令。
  9. 根据权利要求6-8任意一项所述的测距方法,其特征在于,所述特征属性互不相同的测距激光信号和至少一束冗余校验光信号中的特征属性为波长、发射时刻、光强、脉宽、偏振态和加载有调制信息中的一种或多种组合。
PCT/CN2016/112713 2016-12-16 2016-12-28 一种激光雷达系统及测距方法 WO2018107528A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611170542.9A CN108205142B (zh) 2016-12-16 2016-12-16 一种激光雷达系统及测距方法
CN201611170542.9 2016-12-16

Publications (1)

Publication Number Publication Date
WO2018107528A1 true WO2018107528A1 (zh) 2018-06-21

Family

ID=62559469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112713 WO2018107528A1 (zh) 2016-12-16 2016-12-28 一种激光雷达系统及测距方法

Country Status (2)

Country Link
CN (1) CN108205142B (zh)
WO (1) WO2018107528A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109465540A (zh) * 2018-12-28 2019-03-15 恩利克(浙江)智能装备有限公司 激光加工时自动实时校准光斑的装置及方法
CN110103810A (zh) * 2019-01-03 2019-08-09 华域视觉科技(上海)有限公司 三维探测照明系统及汽车
CN111427023A (zh) * 2020-05-18 2020-07-17 武汉天眸光电科技有限公司 激光雷达抗干扰方法、激光雷达系统及存储介质
CN113325387A (zh) * 2021-05-17 2021-08-31 武汉光迹融微科技有限公司 一种抗多激光雷达信号干扰的激光签名方法及装置
CN113720435A (zh) * 2021-09-09 2021-11-30 长沙深之瞳信息科技有限公司 一种室内文物安防光纤传感系统及监控方法
CN114966618A (zh) * 2022-06-29 2022-08-30 威健国际贸易(上海)有限公司 一种使用mipi与hssl通信接口的daniellin型汽车激光雷达系统
CN115189764A (zh) * 2022-07-14 2022-10-14 贵州航天天马机电科技有限公司 一种激光无线通信系统的通信距离计算方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109212549A (zh) * 2018-08-15 2019-01-15 南京理工大学 基于液晶相控阵的固态激光雷达系统
CN109917355A (zh) * 2019-03-04 2019-06-21 合肥嘉东光学股份有限公司 激光雷达距离误差补偿系统
CN109828605A (zh) * 2019-03-05 2019-05-31 江苏航空职业技术学院 一种基于多旋翼无人机避障装置
CN113406652A (zh) * 2020-02-28 2021-09-17 上海禾赛科技有限公司 激光雷达以及应用于激光雷达的抗干扰方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1310764A2 (de) * 2001-11-09 2003-05-14 Riegl Laser Measurement Systems Gmbh Einrichtung zur Aufnahme eines Objektraumes
CN102759725A (zh) * 2012-07-27 2012-10-31 奇瑞汽车股份有限公司 单线数字式测距雷达及其通讯方法
CN103412312A (zh) * 2013-07-03 2013-11-27 王振兴 激光测距方法及装置
CN103885065A (zh) * 2014-03-21 2014-06-25 中国科学院上海光学精密机械研究所 双波长双脉冲的无模糊激光测距装置
JP2014185956A (ja) * 2013-03-25 2014-10-02 Aisin Seiki Co Ltd 距離測定装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA61771A (en) * 2003-04-16 2003-11-17 Viacheslav Volodymyrovy Kyslov Method for generating interferences against the operation of a pulse laser range finder and the device for the realization of the method
CZ308920B6 (cs) * 2013-03-11 2021-09-01 České vysoké učení technické v Praze Způsob a zařízení pro redundantní optické měření a/nebo kalibraci polohy tělesa v prostoru
CN205246876U (zh) * 2015-11-23 2016-05-18 北京万集科技股份有限公司 激光雷达测距装置
CN106019311B (zh) * 2016-05-03 2018-06-26 中国科学院上海技术物理研究所 一种复合光束收发的差分吸收激光雷达系统
CN206311760U (zh) * 2016-12-16 2017-07-07 北京万集科技股份有限公司 一种激光雷达系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1310764A2 (de) * 2001-11-09 2003-05-14 Riegl Laser Measurement Systems Gmbh Einrichtung zur Aufnahme eines Objektraumes
CN102759725A (zh) * 2012-07-27 2012-10-31 奇瑞汽车股份有限公司 单线数字式测距雷达及其通讯方法
JP2014185956A (ja) * 2013-03-25 2014-10-02 Aisin Seiki Co Ltd 距離測定装置
CN103412312A (zh) * 2013-07-03 2013-11-27 王振兴 激光测距方法及装置
CN103885065A (zh) * 2014-03-21 2014-06-25 中国科学院上海光学精密机械研究所 双波长双脉冲的无模糊激光测距装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109465540A (zh) * 2018-12-28 2019-03-15 恩利克(浙江)智能装备有限公司 激光加工时自动实时校准光斑的装置及方法
CN110103810A (zh) * 2019-01-03 2019-08-09 华域视觉科技(上海)有限公司 三维探测照明系统及汽车
CN110103810B (zh) * 2019-01-03 2024-02-27 华域视觉科技(上海)有限公司 三维探测照明系统及汽车
CN111427023A (zh) * 2020-05-18 2020-07-17 武汉天眸光电科技有限公司 激光雷达抗干扰方法、激光雷达系统及存储介质
CN113325387A (zh) * 2021-05-17 2021-08-31 武汉光迹融微科技有限公司 一种抗多激光雷达信号干扰的激光签名方法及装置
CN113720435A (zh) * 2021-09-09 2021-11-30 长沙深之瞳信息科技有限公司 一种室内文物安防光纤传感系统及监控方法
CN114966618A (zh) * 2022-06-29 2022-08-30 威健国际贸易(上海)有限公司 一种使用mipi与hssl通信接口的daniellin型汽车激光雷达系统
CN115189764A (zh) * 2022-07-14 2022-10-14 贵州航天天马机电科技有限公司 一种激光无线通信系统的通信距离计算方法

Also Published As

Publication number Publication date
CN108205142B (zh) 2024-05-10
CN108205142A (zh) 2018-06-26

Similar Documents

Publication Publication Date Title
WO2018107528A1 (zh) 一种激光雷达系统及测距方法
CA3017735C (en) Integrated illumination and detection for lidar based 3-d imaging
US11789127B2 (en) Multi-beam laser scanner
CN206311760U (zh) 一种激光雷达系统
CN108603937B (zh) 具有远场照射重叠的lidar式3-d成像
US10473763B2 (en) LiDAR scanner
US10739445B2 (en) Parallel photon counting
WO2019110022A1 (zh) 发射及接收激光脉冲的方法、介质及激光雷达系统
US20150109603A1 (en) Multi-wavelength image lidar sensor apparatus and signal processing method thereof
CN112740066A (zh) 一种多脉冲激光雷达系统抗干扰处理方法及装置
KR20230156070A (ko) 픽셀 응답과 광자 에너지 감쇠를 비교하는 검출기 시스템
WO2020139380A1 (en) Three-dimensional light detection and ranging system using hybrid tdc and adc receiver
CN111257910A (zh) 激光雷达系统和激光雷达探测方法
US20200209356A1 (en) Three-dimensional light detection and ranging system using hybrid tdc and adc receiver
KR20090121609A (ko) 멀티채널 레이저 거리측정 장치
KR20170134945A (ko) 개선된 구조를 갖는 라이다 광학장치
US11567202B2 (en) SPAD-based LIDAR system
US11722141B1 (en) Delay-locked-loop timing error mitigation
CN207650102U (zh) 一种车型车速及尾气检测系统
WO2020113360A1 (zh) 一种采样电路、采用方法及测距装置、移动平台
CN110333500A (zh) 一种多波束激光雷达
CN203825756U (zh) 安防入侵报警与定位双路激光传感系统
CN114556151A (zh) 测距装置、测距方法和可移动平台
TWI749740B (zh) 光達系統
CN212694051U (zh) 激光雷达系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16924195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16924195

Country of ref document: EP

Kind code of ref document: A1