WO2018107353A1 - 监测设备的散热状态的设备、装置和方法 - Google Patents

监测设备的散热状态的设备、装置和方法 Download PDF

Info

Publication number
WO2018107353A1
WO2018107353A1 PCT/CN2016/109621 CN2016109621W WO2018107353A1 WO 2018107353 A1 WO2018107353 A1 WO 2018107353A1 CN 2016109621 W CN2016109621 W CN 2016109621W WO 2018107353 A1 WO2018107353 A1 WO 2018107353A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
air pressure
abnormal
dissipation state
state
Prior art date
Application number
PCT/CN2016/109621
Other languages
English (en)
French (fr)
Inventor
豆全亮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/109621 priority Critical patent/WO2018107353A1/zh
Priority to EP16923852.4A priority patent/EP3537859B1/en
Priority to CN201680088522.9A priority patent/CN109644577B/zh
Publication of WO2018107353A1 publication Critical patent/WO2018107353A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/2019Fan safe systems, e.g. mechanical devices for non stop cooling

Definitions

  • Embodiments of the present application relate to the field of electronic devices, and more particularly to devices, devices, and methods for monitoring a heat dissipation state of a device.
  • Vents are usually provided on the frame of the device and a fan is provided to increase the flow velocity of the air on the internal device to achieve air cooling.
  • the temperature inside the device will be higher than the design value, resulting in abnormal operation of the device and even burning the device in severe cases.
  • the present application provides an apparatus, device, and method for monitoring a heat dissipation state of a device, which can effectively monitor a heat dissipation state of the device.
  • a method for monitoring a heat dissipation state of a device includes: acquiring a first air pressure at an outer surface of the device; acquiring a second air pressure inside the device; and determining a second air pressure between the second air pressure and the first air pressure The difference determines whether the heat dissipation status of the device is normal.
  • the method for monitoring the heat dissipation state of the device determines whether the heat dissipation state of the device is normal according to the difference between the outer surface of the device and the air pressure inside the device. It can effectively monitor the heat dissipation status of the device.
  • the device is provided with a heat dissipation fan, the heat dissipation fan has a fan frame, and the second air pressure inside the device includes: acquiring the fan The second air pressure at the wind exit of the frame.
  • the heat dissipation fan operates in a blowing heat dissipation mode, wherein the second air pressure and the first air pressure are Determining whether the heat dissipation state of the device is normal, including: when determining the Determining that a heat dissipation state of the device is normal when a difference between the second air pressure and the first air pressure is greater than a first predetermined threshold; and determining that a difference between the second air pressure and the first air pressure is less than or equal to When the first preset threshold is used, it is determined that the heat dissipation state of the device is abnormal.
  • the heat dissipation fan operates in an exhaust heat dissipation mode, and wherein the second air pressure and the first air pressure are Determining whether the heat dissipation state of the device is normal, including: determining that the heat dissipation state of the device is normal when determining that the difference between the second air pressure and the first air pressure is less than a second preset value; When the difference between the second air pressure and the first air pressure is greater than or equal to the second preset threshold, determining that the heat dissipation state of the device is abnormal.
  • the method when determining that the heat dissipation state of the device is abnormal, the method further includes: acquiring a rotation speed of the heat dissipation fan; The relationship between the speed of the cooling fan and the preset speed determines the cause of the abnormal heat dissipation of the device.
  • the determining according to the relationship between the rotation speed of the heat dissipation fan and the preset rotation speed, determining a cause of abnormality of the heat dissipation state of the device And determining that the cause of the abnormal heat dissipation state of the device is a failure of the heat dissipation fan when determining that the rotation speed of the heat dissipation fan is less than the preset rotation speed; and determining that the rotation speed of the heat dissipation fan is equal to the preset rotation speed
  • the cause of the abnormal heat dissipation state of the device is determined to be a blocked air duct.
  • the cause of the abnormal heat dissipation of the device is accurately determined. It is convenient for the maintenance personnel to quickly determine the cause of the heat dissipation and effectively maintain the device.
  • the method further includes: sending, to the network management server, the first alarm information, where the first alarm information includes The first information of the abnormal heat dissipation state of the device and/or the second information for indicating the cause of the abnormal heat dissipation state.
  • the method further includes: displaying second alarm information, where the second alarm information includes The third information of the abnormal state and/or the third information for indicating the cause of the abnormal heat dissipation state.
  • the method further includes: issuing an alarm sound corresponding to an abnormality of the heat dissipation state.
  • an apparatus comprising: a first air pressure sensor, a second air pressure sensor, and a processor, the first air pressure sensor being disposed at an outer surface of the device, and the second air pressure sensor being disposed at The first air pressure sensor is configured to acquire a first air pressure at an outer surface of the device; the second air pressure sensor is configured to acquire a second air pressure inside the device; the processor is configured to Determining the difference between the second air pressure and the first air pressure determines whether the heat dissipation state of the device is normal.
  • the respective units of the device of the second aspect and the functions thereof may correspond to the method for monitoring the heat dissipation state of the device in the first aspect, and the respective units in the device may implement corresponding processes of the method.
  • the respective units in the device may implement corresponding processes of the method.
  • a third aspect provides a device for monitoring a heat dissipation state of a device, comprising: a first air pressure sensor for acquiring a first air pressure at an outer surface of the device; and a second air pressure sensor for acquiring a second air pressure inside the device; And a processor, configured to determine, according to a difference between the second air pressure and the first air pressure, whether a heat dissipation state of the device is normal.
  • the respective units of the device of the foregoing third aspect and the functions thereof may correspond to the method for monitoring the heat dissipation state of the device in the first aspect, and the respective units in the device may implement corresponding processes of the method, and are not described herein again for brevity.
  • a computer readable medium for storing a computer program, the computer program comprising instructions for performing the first aspect or any of the possible implementations of the first aspect.
  • FIG. 1a and 1b are schematic diagrams showing an operation mode of a heat dissipation fan according to an embodiment of the present application
  • FIG. 2 is a schematic block diagram of an apparatus in accordance with an embodiment of the present application.
  • FIG. 3 is another schematic block diagram of an apparatus according to an embodiment of the present application.
  • FIG. 4 is still another schematic block diagram of an apparatus according to an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of an apparatus in accordance with an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a method for monitoring a heat dissipation state of a device according to an embodiment of the present application
  • FIG. 7 is another schematic flow of a method of monitoring a heat dissipation state of a device in accordance with an embodiment of the present application. Cheng Tu.
  • FIG. 1a and 1b are schematic views of an operation mode of a heat dissipation fan according to an embodiment of the present application.
  • the cooling fan works in the air blowing mode, and in the air blowing mode, the cooling fan blows air to the inside of the device to generate turbulence inside to achieve heat dissipation.
  • the cooling fan operates in the exhaust heat dissipation mode. In the exhaust heat dissipation mode, the cooling fan draws out the hot air inside the device to form a laminar flow inside the device to achieve the purpose of heat dissipation.
  • the abnormal heat dissipation status of the device is caused by the failure of the cooling fan or the blockage of the air duct.
  • the solution in the prior art is that the cooling fan is normally operated, but when the air duct is blocked, the heat dissipation state of the device is still considered normal.
  • the device may work abnormally, causing the device to burn out in severe cases. Therefore, it is desirable to provide an apparatus, device, and method for monitoring a heat dissipation state of a device, thereby achieving effective monitoring of a heat dissipation state of the monitoring device, and avoiding the above problems of the prior art.
  • the apparatus 10 includes a first air pressure sensor 11, a second air pressure sensor 12, and a processor 13, the first air pressure sensor 11 being disposed at the device.
  • the second air pressure sensor 12 is disposed inside the device;
  • the first air pressure sensor 11 is configured to acquire a first air pressure at an outer surface of the device
  • the second air pressure sensor 12 is configured to acquire a second air pressure inside the device
  • the processor 13 is configured to determine, according to a difference between the second air pressure and the first air pressure, whether a heat dissipation state of the device is normal.
  • a first air pressure sensor 11 is disposed at an outer surface of the device, for example, the first air pressure sensor 11 is disposed outside the device back panel or the air duct of the device Outside.
  • the first air pressure sensor 11 is powered by a power source on the back panel of the device.
  • a second air pressure sensor 12 is disposed at the air outlet surface of the fan frame of the heat dissipation fan, and the second air pressure sensor 12 is powered by the power supply on the fan frame.
  • the first air pressure sensor 11 and the second air pressure sensor 12 are connected to the processor 13, and the processor 13 may be a central processing unit (Central Processing Unit, "CPU") on the fan frame or a CPU on the device main board, and processed by the CPU.
  • the controller 13 controls the first air pressure sensor 11 and the second air pressure sensor 12 to acquire the first air pressure and the second air, respectively Pressing, the above-mentioned processor 13 subtracts the collected first air pressure from the first air pressure, and determines whether the heat dissipation state of the device is normal according to the difference.
  • CPU Central Processing Unit
  • the cooling fan when the cooling fan operates in the air blowing mode, when the device has a heat dissipation failure, the air pressure inside the device may decrease.
  • the cooling fan when the device has a thermal failure, the air pressure inside the device will increase.
  • the processor 13 determines whether the heat dissipation state of the device is normal according to the difference between the second air pressure and the first air pressure. If the cooling fan operates in the air blowing heat dissipation mode, and the difference between the second air pressure and the first air pressure is less than or equal to the first preset threshold, the processor 13 determines that the heat dissipation state of the device is abnormal. Correspondingly, when the difference between the second air pressure and the first air pressure is greater than the first preset threshold, the processor 13 determines that the heat dissipation state of the device is normal.
  • the processor 13 determines that the heat dissipation state of the device is abnormal.
  • first preset threshold and the second preset threshold may be any reasonable values set according to experience.
  • the first air pressure sensor 11 and the second air pressure sensor 12 pass an internal integrated circuit (Inter Integrated Circuit, "IIC") bus (BUS) or a serial peripheral interface (serial peripheral interface, The bus is abbreviated as “SPI”.
  • IIC Inter Integrated Circuit
  • SPI serial peripheral interface
  • the bus is connected to the CPU on the fan frame or the CPU on the main control board of the device for data interaction. For example, the CPU on the fan frame or the CPU on the device main control board polls the measured air pressure values of the first air pressure sensor 11 and the second air pressure sensor 12 in real time.
  • the processor 13 may further determine the cause of the abnormal heat dissipation state of the device.
  • the processor 13 acquires the rotation speed of the cooling fan, and determines the cause of the abnormal heat dissipation state of the device according to the relationship between the rotation speed of the cooling fan and the preset rotation speed. If the processor 13 determines that the rotational speed of the cooling fan is 0 or lower than the preset rotational speed, the processor 13 determines that the cause of the abnormal heat dissipation state of the device is a cooling fan failure. If the processor 13 determines that the rotational speed of the cooling fan matches the preset rotational speed, the processor 13 determines that the cause of the abnormal heat dissipation state of the device is that the air duct is blocked.
  • the device can communicate with a network management server that communicates with the client.
  • the processor 13 determines the heat dissipation state of the device
  • the processor 13 can actively report an abnormal alarm when an abnormality occurs.
  • the processor 13 communicates with the network management server through a Transmission Control Protocol ("TCP"), and the processor 13 uploads the abnormal alarm information to the network management server through the management channel.
  • the abnormal alarm information may include information indicating that the heat dissipation state of the device is abnormal and/or information indicating the cause of the abnormal heat dissipation state.
  • the network management server and the client are connected by using a TCP protocol, and the network management server actively sends the abnormal alarm information reported by the processor 13 to the client, and the maintenance personnel obtain abnormal alarm information from the client.
  • the processor 13 reports the first air pressure and the second air pressure to the network management server, and the maintenance personnel can actively query the first air pressure and the second air pressure through the network management server to perform remote state inspection on the device.
  • the device uses the instrumentation device independently, and the device does not communicate with the network management server.
  • the processor can control the display 14 of the device to display the alert information. For example, if the device's heat dissipation status is abnormal or the device's cooling fan is faulty or the device's air duct is blocked, the user determines the abnormal heat dissipation status of the device and the cause of the abnormality according to the information displayed on the display.
  • the device further includes a buzzer 15.
  • the control buzzer 15 issues an alarm sound corresponding to the abnormal heat dissipation state, and the user The alarm sound determines that the heat dissipation status of the device is abnormal.
  • the device 20 includes:
  • a first air pressure sensor 21 for acquiring a first air pressure at an outer surface of the device
  • a second air pressure sensor 22 configured to acquire a second air pressure inside the device
  • the processor 23 is configured to determine, according to a difference between the second air pressure and the first air pressure, whether a heat dissipation state of the device is normal.
  • the device 20 is a device that is independent of the device being monitored.
  • whether the heat dissipation state of the device is normal is determined according to the difference between the outer surface of the device and the air pressure inside the device. It can effectively monitor the heat dissipation status of the device.
  • a heat dissipation fan is disposed inside the device, and the The hot air fan has a fan frame, and the second air pressure sensor 22 is specifically configured to: acquire a second air pressure at an air outlet surface of the fan frame.
  • the cooling fan works in a blowing heat dissipation mode
  • the processor 23 is specifically configured to: when it is determined that the difference between the second air pressure and the first air pressure is greater than a first preset threshold, determine that a heat dissipation state of the device is normal; and when determining the second When the difference between the air pressure and the first air pressure is less than or equal to the first preset threshold, determining that the heat dissipation state of the device is abnormal.
  • the cooling fan works in a ventilation mode
  • the processor 23 is specifically configured to: when it is determined that the difference between the second air pressure and the first air pressure is less than a second preset threshold, determine that the heat dissipation state of the device is normal; when determining the second When the difference between the air pressure and the first air pressure is greater than or equal to the second preset threshold, determining that the heat dissipation state of the device is abnormal.
  • the processor 23 when the processor 23 determines that the heat dissipation state of the device is abnormal, the processor 23 is further configured to: acquire a rotation speed of the heat dissipation fan; The relationship between the speed and the preset speed determines the cause of the abnormal heat dissipation of the device.
  • the processor 23 is specifically configured to: when it is determined that the rotation speed of the cooling fan is less than the preset rotation speed, determine that the heat dissipation state of the device is abnormal because the cooling fan is The fault is determined when the speed of the heat dissipation fan is equal to the preset speed, and the cause of the abnormal heat dissipation state of the device is that the air duct is blocked.
  • the processor 23 is further configured to: send the first warning information to the network management server, where the first warning information includes a first one for indicating that the heat dissipation state of the device is abnormal. Information and/or second information indicating the cause of the abnormal heat dissipation state.
  • the device further includes a display 24, the processor 23 is further configured to: control the display 24 to display second alarm information,
  • the second alarm information includes third information for indicating that the heat dissipation state of the device is abnormal, and/or fourth information for indicating a cause of the abnormal heat dissipation state.
  • the device further includes a buzzer 25, and the processor 23 is further configured to: control the buzzer 25 to emit and dissipate a state The alarm sound corresponding to the abnormality.
  • the apparatus 20 may further include a memory for storing a computer program, the computer program including instructions for performing a method of monitoring a heat dissipation state of the device.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate SDRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Connection Dynamic Random Access Memory
  • DR RAM direct memory bus random access memory
  • the device 10 or the device 20 described above may perform the following method 100 for monitoring the heat dissipation state of the device. As shown in FIG. 6, the method 100 includes:
  • whether the heat dissipation state of the device is normal is determined according to the difference between the outer surface of the device and the air pressure inside the device. It can effectively monitor the heat dissipation status of the device.
  • the inside of the device is provided with a cooling fan, and the cooling fan has a fan frame;
  • the S120 is specifically configured to: acquire a second air pressure at an air outlet surface of the fan frame.
  • the cooling fan works in a blowing heat dissipation mode
  • the S130 is specifically: when it is determined that the difference between the second air pressure and the first air pressure is greater than a first preset threshold, determining that a heat dissipation state of the device is normal; and determining the second air pressure and the first When the difference of the air pressure is less than or equal to the first preset threshold, it is determined that the heat dissipation state of the device is abnormal.
  • the cooling fan works in a ventilation mode
  • the S130 is specifically: when it is determined that the difference between the second air pressure and the first air pressure is less than a second preset value, determining that the heat dissipation state of the device is normal; when determining the second air pressure and the first When the difference of one air pressure is greater than or equal to the second preset threshold, it is determined that the heat dissipation state of the device is abnormal.
  • the method further includes:
  • the S150 is specifically: when it is determined that the rotation speed of the heat dissipation fan is less than the preset rotation speed, determining that the heat dissipation state of the device is abnormal is caused by a heat dissipation fan failure; When the speed of the cooling fan is equal to the preset speed, it is determined that the cause of the abnormal heat dissipation state of the device is air passage blockage.
  • the method further includes: sending the first alarm information to the network management server, where the first alarm information includes first information indicating that the heat dissipation state of the device is abnormal. Or the second information used to indicate the cause of the abnormal heat dissipation state.
  • the method further includes: displaying second alarm information, where the second alarm information includes third information indicating that the heat dissipation state of the device is abnormal, and/or The fourth information used to indicate the cause of the abnormal heat dissipation state.
  • the method further includes: issuing an alarm sound corresponding to an abnormality of the heat dissipation state.
  • whether the heat dissipation state of the device is normal is determined according to the difference between the outer surface of the device and the air pressure inside the device. It can effectively monitor the heat dissipation status of the device.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the technical solution of the present application is essentially or a part contributing to the prior art or a part of the technical solution.
  • the points may be embodied in the form of a software product stored in a storage medium, including instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform various embodiments of the present application. All or part of the steps of the method.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Abstract

一种检测设备的散热状态的设备、装置和方法,包括:第一气压传感器(11)、第二气压传感器(12)和处理器(13),第一气压传感器(11)设置在设备的外部表面处,第二气压传感器(12)设置在设备的内部;第一气压传感器(11),用于获取设备外部表面处的第一气压,第二气压传感器(12),用于获取设备内部的第二气压;处理器(13),用于根据第二气压与第一气压之间的差值,确定设备的散热状态是否正常。该检测设备的散热状态的设备、装置和方法能够有效的对设备的散热状态进行监测。

Description

监测设备的散热状态的设备、装置和方法 技术领域
本申请实施例涉及电子器件领域,并且更具体地涉及监测设备的散热状态的设备、装置和方法。
背景技术
在电子仪器设备中通常存在大功率的器件,这些大功率的器件在工作时,会生成大量的热。通常会在设备的框架上设置通风口并设置风扇,增加内部器件上空气的流动速度,以达到利用风冷散热的目的。
当设备内部的空气流动速度达不到设计要求时,设备内部的温度会高于设计值,导致设备工作异常,严重时甚至烧毁设备。
因此,需要提供一种监测设备的散热状态的设备、装置和方法,有效的对设备的散热状态进行监测。
发明内容
本申请提供一种监测设备的散热状态的设备、装置和方法,能够有效的对设备的散热状态进行监测。
第一方面,提供了一种监测设备的散热状态的方法,包括:获取设备外部表面处的第一气压;获取设备内部的第二气压;根据所述第二气压与所述第一气压之间的差值,确定设备的散热状态是否正常。
本申请的监测设备的散热状态的方法,根据设备外表面和设备内部的气压差判断设备的散热状态是否正常。能够有效的对设备的散热状态进行监测。
结合第一方面,在第一方面的一种实现方式中,所述设备的内部设置有散热风扇,所述散热风扇具有扇框,所述获取设备内部的第二气压,包括:获取所述扇框的出风面处的第二气压。
由此,能够更加准确的判断设备的散热状态是否正常。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述散热风扇工作在吹风散热模式下;其中,所述根据所述第二气压与所述第一气压之间的差值,确定所述设备的散热状态是否正常,包括:当确定所述 第二气压与所述第一气压的差值大于第一预设阈值时,确定所述设备的散热状态正常;当确定所述第二气压与所述第一气压的差值小于或等于所述第一预设阈值时,确定所述设备的散热状态异常。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述散热风扇工作在抽风散热模式下;其中,所述根据所述第二气压与所述第一气压的差值,确定设备的散热状态是否正常,包括:当确定所述第二气压与所述第一气压的差值小于第二预设值时,确定所述设备的散热状态正常;当确定所述第二气压与所述第一气压的差值大于或等于所述第二预设阈值时,确定所述设备的散热状态异常。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,当确定所述设备的散热状态异常时,所述方法还包括:获取所述散热风扇的转速;根据所述散热风扇的转速与预设转速的大小关系,确定导致所述设备的散热状态异常的原因。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述根据所述散热风扇的转速与预设转速的大小关系,确定导致所述设备的散热状态异常的原因,包括:当确定所述散热风扇的转速小于所述预设转速时,确定导致所述设备的散热状态异常的原因为散热风扇故障;当确定所述散热风扇的转速等于所述预设转速时,确定导致所述设备的散热状态异常的原因为风道堵塞。
根据散热风扇的转速与预设转速的大小关系,准确确定出导致设备的散热状态异常的原因,方便维护人员更快捷的确定出导致散热状态的原因,对设备进行有效维护。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述方法还包括:向网管服务器发送第一告警信息,所述第一告警信息中包括用于指示所述设备的散热状态异常的第一信息和/或用于指示导致散热状态异常的原因的第二信息。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述方法还包括:显示第二告警信息,所述第二告警信息中包括用于指示所述设备的散热状态异常的第三信息和/或用于指示导致散热状态异常的原因的第三信息。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,当 确定所述设备的散热状态异常时,所述方法还包括:发出与散热状态异常相对应的报警声音。
第二方面,提供了一种设备,包括:第一气压传感器、第二气压传感器和处理器,所述第一气压传感器设置在所述设备的外部表面处,所述第二气压传感器设置在所述设备的内部,所述第一气压传感器,用于获取设备外部表面处的第一气压;所述第二气压传感器,用于获取设备内部的第二气压;所述处理器,用于根据所述第二气压与所述第一气压之间的差值,确定设备的散热状态是否正常。
上述第二方面的设备的各个单元及其功能可以对应于第一方面的监测设备的散热状态的方法,并且,设备中各个单元可以实现方法的相应流程,为了简洁,在此不再赘述。
第三方面,提供了一种监测设备的散热状态的装置,包括:第一气压传感器,用于获取设备外部表面处的第一气压;第二气压传感器,用于获取设备内部的第二气压;处理器,用于根据所述第二气压与所述第一气压之间的差值,确定设备的散热状态是否正常。
上述第三方面的装置的各个单元及其功能可以对应于第一方面的监测设备的散热状态的方法,并且,装置中各个单元可以实现方法的相应流程,为了简洁,在此不再赘述。
第四方面,提供了一种计算机可读介质,用于存储计算机程序,所述计算机程序包括用于执行上述第一方面或第一方面的任意可能的实现方式中的指令。
附图说明
图1a和图1b是本申请实施例的散热风扇的工作模式的示意图;
图2是根据本申请实施例的设备的示意性框图;
图3是根据本申请实施例的设备的另一示意性框图;
图4是根据本申请实施例的设备的再一示意性框图;
图5是根据本申请实施例的装置的示意性框图;
图6是根据本申请实施例的监测设备的散热状态的方法的示意性流程图;
图7是根据本申请实施例的监测设备的散热状态的方法的另一示意性流 程图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
图1a和图1b是根据本申请实施例的散热风扇的工作模式的示意图。如图1a中所示的,散热风扇工作在吹风散热模式下,在吹风散热模式下,散热风扇向设备内部吹风以在内部产生紊流,达到散热的目的。如图1b中所示的,散热风扇工作在抽风散热模式下,在抽风散热模式下,散热风扇将设备内部的热空气抽出以在设备内部形成层流,达到散热的目的。
通常情况下,设备的散热状态异常是由散热风扇故障或者风道堵塞导致的。但现有技术中通过检测散热风扇是否停转,确认设备的散热状态是否正常。现有技术中的方案在散热风扇正常运转,但风道堵塞时,仍认为设备的散热状态正常。由此会导致设备工作异常,严重时导致设备烧毁。因此需要提供一种监测设备的散热状态的设备、装置和方法,实现监测设备的散热状态的有效监测,避免现有技术的上述问题。
图2示出了根据本申请实施例的设备10,如图2所示出的,设备10包括第一气压传感器11、第二气压传感器12和处理器13,第一气压传感器11设置在设备的外表面处,第二气压传感器12设置在设备的内部;
其中,所述第一气压传感器11,用于获取设备外部表面处的第一气压;
所述第二气压传感器12,用于获取设备内部的第二气压;
所述处理器13,用于根据所述第二气压与所述第一气压之间的差值,确定所述设备的散热状态是否正常。
具体地,在一些实施例中,如图3所示出的,在设备的外表面处设置有第一气压传感器11,例如,第一气压传感器11设置在设备背板的外侧或设备的风道之外。通过设备的背板上的电源给第一气压传感器11供电。在设备内部,例如,散热风扇的扇框的出风面处设置有第二气压传感器12,由扇框上的电源给第二气压传感器12供电。第一气压传感器11和第二气压传感器12与处理器13相连,处理器13可以为扇框上的中央处理器(Central Processing Unit,简称为“CPU”)或者设备主板上的CPU,并由处理器13控制第一气压传感器11和第二气压传感器12分别获取第一气压和第二气 压,由上述的处理器13将采集到的第二气压减去第一气压,根据差值确定设备的散热状态是否正常。
可以理解的是,当散热风扇工作在吹风散热模式下时,当设备出现散热故障时,设备内部的气压会降低。当散热风扇工作在抽风散热模式下时,当设备出现散热故障时,设备内部的气压会升高。
由此,处理器13在根据第二气压与第一气压的差值,确定设备的散热状态是否正常时。如果散热风扇工作在吹风散热模式下,并且第二气压与第一气压的差值小于或等于第一预设阈值,处理器13确定设备的散热状态异常。相对应的,当第二气压与第一气压的差值大于第一预设阈值时,处理器13确定设备的散热状态正常。
或者,如果散热风扇工作在抽风散热模式下,并且第二气压与第一气压的差值小于第二预设阈值时,确定设备的散热状态正常。相对应地,当第二气压与第一气压的差值大于或等于第二预设阈值时,处理器13确定设备的散热状态异常。
并且,上述的第一预设阈值和第二预设阈值可以是根据经验设定的任意合理的值。
在上述实施例中,可选地,第一气压传感器11和第二气压传感器12通过内部整合电路(Inter Integrated Circuit,简称为“IIC”)总线(BUS)或者串行设备接口(serial peripheral interface,简称为“SPI”)总线与扇框上的CPU或者设备主控板上的CPU相连,进行数据交互。例如,扇框上的CPU或者设备主控板上的CPU实时轮询第一气压传感器11和第二气压传感器12的测量到的气压值。
在本申请实施例中,可选地,当处理器13确定设备的散热状态异常时,处理器13可以进一步判断导致设备散热状态异常的原因。
具体地,处理器13获取散热风扇的转速,根据散热风扇的转速与预设转速的大小关系,确定导致设备的散热状态异常的原因。如果处理器13确定散热风扇的转速为0或者低于预设转速,则处理器13判断导致设备的散热状态异常的原因为散热风扇故障。如果处理器13确定散热风扇的转速与预设转速相符,处理器13确定导致设备的散热状态异常的原因为风道被堵。
进一步地,如图3所示出的,设备可以与网络管理服务器进行通信,网络管理服务器与客户端进行通信。由此,处理器13在确定设备的散热状态 异常时,处理器13可以主动上报异常告警。
具体地,处理器13与网络管理服务器之间通过传输控制协议(Transmission Control Protocol,简称为“TCP”)通信,处理器13通过管理通道将异常告警信息上传到网管服务器。异常告警信息中可以包括用于指示设备的散热状态异常的信息和/或用于指示导致散热状态异常的原因的信息。
进而,网管服务器与客户端之间通过TCP协议连接,网管服务器将处理器13上报的异常告警信息主动推送给客户端,维护人员从客户端获取异常告警信息。
可选地,处理器13将第一气压和第二气压上报给网管服务器,维护人员可以通过网管服务器主动查询第一气压和第二气压,对设备进行远程状态巡视。
或者,如图4所示的,设备为独立使用仪器仪表设备,设备不与网管服务器进行通信。此时,处理器可以控制设备的显示器14显示告警信息。例如,显示“设备的散热状态异常”或者“设备的散热风扇故障”或“设备的风道堵塞”,用户根据显示器上显示的信息,判断设备的散热状态异常以及导致异常的原因。
进一步地,如图4所示出的,设备还包括蜂鸣器15,当处理器13确定出设备的散热状态异常时,控制蜂鸣器15发出与散热状态异常相对应的报警声音,用户根据报警声音确定设备的散热状态出现异常。
以上结合图1至图4详细描述了根据本申请实施例的监测设备的散热状态的设备。下面将结合图5详细描述根据本申请实施例的监测设备的散热状态的装置,如图5所示,装置20包括:
第一气压传感器21,用于获取设备外部表面处的第一气压;
第二气压传感器22,用于获取设备内部的第二气压;
处理器23,用于根据所述第二气压与所述第一气压之间的差值,确定设备的散热状态是否正常。
需要说明的是,装置20是独立于被监测的设备的一个装置。
因此,根据本申请实施例的监测设备的散热状态的装置,根据设备外表面和设备内部的气压差,判断设备的散热状态是否正常。能够有效的对设备的散热状态进行监测。
在本申请实施例中,可选地,所述设备的内部设置有散热风扇,所述散 热风扇具有扇框,所述第二气压传感器22具体用于:获取所述扇框的出风面处的第二气压。
在本申请实施例中,可选地,所述散热风扇工作在吹风散热模式下;
其中,所述处理器23具体用于:当确定所述第二气压与所述第一气压的差值大于第一预设阈值时,确定所述设备的散热状态正常;当确定所述第二气压与所述第一气压的差值小于或等于所述第一预设阈值时,确定所述设备的散热状态异常。
在本申请实施例中,可选地,所述散热风扇工作在抽风散热模式下;
其中,所述处理器23具体用于:当确定所述第二气压与所述第一气压的差值小于第二预设阈值时,确定所述设备的散热状态正常;当确定所述第二气压与所述第一气压的差值大于或等于所述第二预设阈值时,确定所述设备的散热状态异常。
在本申请实施例中,可选地,当所述处理器23确定所述设备的散热状态异常时,所述处理器23还用于:获取所述散热风扇的转速;根据所述散热风扇的转速与预设转速的大小关系,确定导致所述设备的散热状态异常的原因。
在本申请实施例中,可选地,所述处理器23具体用于:当确定所述散热风扇的转速小于所述预设转速时,确定导致所述设备的散热状态异常的原因为散热风扇故障;当确定所述散热风扇的转速等于所述预设转速时,确定导致设备的散热状态异常的原因为风道堵塞。
在本申请实施例中,可选地,所述处理器23还用于:向网管服务器发送第一警告信息,所述第一警告信息中包括用于指示所述设备的散热状态异常的第一信息和/或用于指示导致散热状态异常的原因的第二信息。
在本申请实施例中,可选地,如图5中所示出的,所述装置还包括显示器24,所述处理器23还用于:控制所述显示器24显示第二告警信息,所述第二告警信息中包括用于指示所述设备的散热状态异常的第三信息和/或用于指示导致散热状态异常的原因的第四信息。
在本申请实施例中,可选地,如图5中所示出的,所述装置还包括蜂鸣器25,所述处理器23还用于:控制所述蜂鸣器25发出与散热状态异常相对应的报警声音。
本领域技术人员可以理解,装置10中的各个单元的具体功能与设备10 中的相应单元的功能相同,为避免重复,在此不再赘述。
可选地,作为一个实施例,装置20还可以包括存储器,存储器用于存储计算机程序,所述计算机程序包括用于执行监测设备的散热状态的方法的指令。
可以理解,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
以上所述的设备10或装置20可以执行以下监测设备的散热状态的方法100,如图6所示,方法100包括:
S110,获取设备外部表面处的第一气压;
S120,获取设备内部的第二气压;
S130,根据所述第二气压与所述第一气压之间的差值,确定设备的散热 状态是否正常。
因此,根据本申请实施例的监测设备的散热状态的方法,根据设备外表面和设备内部的气压差判断设备的散热状态是否正常。能够有效的对设备的散热状态进行监测。
在本申请实施例中,可选地,所述设备的内部设置有散热风扇,所述散热风扇具有扇框;
其中,S120具体为:获取在所述扇框的出风面处的第二气压。
在本申请实施例中,可选地,所述散热风扇工作在吹风散热模式下;
其中,S130具体为:当确定所述第二气压与所述第一气压的差值大于第一预设阈值时,确定所述设备的散热状态正常;当确定所述第二气压与所述第一气压的差值小于或等于所述第一预设阈值时,确定所述设备的散热状态异常。
在本申请实施例中,可选地,所述散热风扇工作在抽风散热模式下;
其中,S130具体为:当确定所述第二气压与所述第一气压的差值小于第二预设值时,确定所述设备的散热状态正常;当确定所述第二气压与所述第一气压的差值大于或等于所述第二预设阈值时,确定所述设备的散热状态异常。
在本申请实施例中,可选地,如图7所示,当S130中确定所述设备的散热状态异常时,所述方法还包括:
S140,获取所述散热风扇的转速;
S150,根据所述散热风扇的转速与预设转速的大小关系,确定导致所述设备的散热状态异常的原因。
在本申请实施例中,可选地,S150具体为:当确定所述散热风扇的转速小于所述预设转速时,确定导致所述设备的散热状态异常的原因为散热风扇故障;当确定所述散热风扇的转速等于所述预设转速时,确定导致所述设备的散热状态异常的原因为风道堵塞。
在本申请实施例中,可选地,所述方法还包括:向网管服务器发送第一告警信息,所述第一告警信息中包括用于指示所述设备的散热状态异常的第一信息和/或用于指示导致散热状态异常的原因的第二信息。
在本申请实施例中,可选地,所述方法还包括:显示第二告警信息,所述第二告警信息中包括用于指示所述设备的散热状态异常的第三信息和/或 用于指示导致散热状态异常的原因的第四信息。
在本申请实施例中,可选地,当确定所述设备的散热状态异常时,所述方法还包括:发出与散热状态异常相对应的报警声音。
因此,根据本申请实施例的监测设备的散热状态的方法,根据设备外表面和设备内部的气压差判断设备的散热状态是否正常。能够有效的对设备的散热状态进行监测。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部 分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (27)

  1. 一种设备,其特征在于,包括:第一气压传感器、第二气压传感器和处理器,所述第一气压传感器设置在所述设备的外部表面处,所述第二气压传感器设置在所述设备的内部;
    其中,所述第一气压传感器,用于获取设备外部表面处的第一气压;
    所述第二气压传感器,用于获取设备内部的第二气压;
    所述处理器,用于根据所述第二气压与所述第一气压之间的差值,确定所述设备的散热状态是否正常。
  2. 根据权利要求1所述的设备,其特征在于,所述设备内部设置有散热风扇,所述散热风扇具有扇框,所述第二气压传感器具体设置在所述扇框的出风面处;
    所述第二气压传感器,具体用于获取所述扇框的出风面处的第二气压。
  3. 根据权利要求2所述的设备,其特征在于,所述散热风扇工作在吹风散热模式下;
    其中,所述处理器具体用于:
    当确定所述第二气压与所述第一气压的差值大于第一预设阈值时,确定所述设备的散热状态正常;
    当确定所述第二气压与所述第一气压的差值小于或等于所述第一预设阈值时,确定所述设备的散热状态异常。
  4. 根据权利要求2所述的设备,其特征在于,所述散热风扇工作在抽风散热模式下;
    其中,所述处理器具体用于:
    当确定所述第二气压与所述第一气压的差值小于第二预设阈值时,确定所述设备的散热状态正常;
    当确定所述第二气压与所述第一气压的差值大于或等于所述第二预设阈值时,确定所述设备的散热状态异常。
  5. 根据权利要求3或4所述的设备,其特征在于,当所述处理器确定所述设备的散热状态异常时,所述处理器还用于:
    获取所述散热风扇的转速;
    根据所述散热风扇的转速与预设转速的大小关系,确定导致所述设备的散热状态异常的原因。
  6. 根据权利要求5所述的设备,其特征在于,所述处理器具体用于:
    当确定所述散热风扇的转速小于所述预设转速时,确定导致所述设备的散热状态异常的原因为散热风扇故障;
    当确定所述散热风扇的转速等于所述预设转速时,确定导致设备的散热状态异常的原因为风道堵塞。
  7. 根据权利要求5或6所述的设备,其特征在于,所述设备与网管服务器通过传输控制协议TCP进行通信,所述处理器还用于:
    向所述网管服务器发送第一警告信息,所述第一警告信息中包括用于指示所述设备的散热状态异常的第一信息和/或用于指示导致散热状态异常的原因的第二信息。
  8. 根据权利要求5或6所述的设备,其特征在于,所述设备还包括显示器,所述处理器还用于:
    控制所述显示器显示第二告警信息,所述第二告警信息中包括用于指示所述设备的散热状态异常的第三信息和/或用于指示导致散热状态异常的原因的第四信息。
  9. 根据权利要求2至8中任一项所述的设备,其特征在于,所述设备还包括蜂鸣器,所述处理器还用于:
    控制所述蜂鸣器发出与散热状态异常相对应的报警声音。
  10. 一种监测设备的散热状态的装置,其特征在于,包括:
    第一气压传感器,用于获取设备外部表面处的第一气压;
    第二气压传感器,用于获取设备内部的第二气压;
    处理器,用于根据所述第二气压与所述第一气压之间的差值,确定设备的散热状态是否正常。
  11. 根据权利要求10所述的装置,其特征在于,所述设备的内部设置有散热风扇,所述散热风扇具有扇框,所述第二气压传感器具体用于:
    获取所述扇框的出风面处的第二气压。
  12. 根据权利要求11所述的装置,其特征在于,所述散热风扇工作在吹风散热模式下;
    其中,所述处理器具体用于:
    当确定所述第二气压与所述第一气压的差值大于第一预设阈值时,确定所述设备的散热状态正常;
    当确定所述第二气压与所述第一气压的差值小于或等于所述第一预设阈值时,确定所述设备的散热状态异常。
  13. 根据权利要求11所述的装置,其特征在于,所述散热风扇工作在抽风散热模式下;
    其中,所述处理器具体用于:
    当确定所述第二气压与所述第一气压的差值小于第二预设阈值时,确定所述设备的散热状态正常;
    当确定所述第二气压与所述第一气压的差值大于或等于所述第二预设阈值时,确定所述设备的散热状态异常。
  14. 根据权利要求12或13所述的装置,其特征在于,当所述处理器确定所述设备的散热状态异常时,所述处理器还用于:
    获取所述散热风扇的转速;
    根据所述散热风扇的转速与预设转速的大小关系,确定导致所述设备的散热状态异常的原因。
  15. 根据权利要求14所述的装置,其特征在于,所述处理器具体用于:
    当确定所述散热风扇的转速小于所述预设转速时,确定导致所述设备的散热状态异常的原因为散热风扇故障;
    当确定所述散热风扇的转速等于所述预设转速时,确定导致设备的散热状态异常的原因为风道堵塞。
  16. 根据权利要求14或15所述的装置,其特征在于,所述装置与网管服务器通过传输控制协议TCP进行通信,所述处理器还用于:
    向所述网管服务器发送第一警告信息,所述第一警告信息中包括用于指示所述设备的散热状态异常的第一信息和/或用于指示导致散热状态异常的原因的第二信息。
  17. 根据权利要求14或15所述的装置,其特征在于,所述装置还包括显示器,所述处理器还用于:
    控制所述显示器显示第二告警信息,所述第二告警信息中包括用于指示所述设备的散热状态异常的第三信息和/或用于指示导致散热状态异常的原因的第四信息。
  18. 根据权利要求11至17中任一项所述的装置,其特征在于,所述装置还包括蜂鸣器,所述处理器还用于:
    控制所述蜂鸣器发出与散热状态异常相对应的报警声音。
  19. 一种监测设备的散热状态的方法,其特征在于,包括:
    获取设备外部表面处的第一气压;
    获取设备内部的第二气压;
    根据所述第二气压与所述第一气压之间的差值,确定设备的散热状态是否正常。
  20. 根据权利要求19所述的方法,其特征在于,所述设备的内部设置有散热风扇,所述散热风扇具有扇框;
    其中,所述获取设备内部的第二气压,包括:
    获取在所述扇框的出风面处的第二气压。
  21. 根据权利要求20所述的方法,其特征在于,所述散热风扇工作在吹风散热模式下;
    其中,所述根据所述第二气压与所述第一气压之间的差值,确定所述设备的散热状态是否正常,包括:
    当确定所述第二气压与所述第一气压的差值大于第一预设阈值时,确定所述设备的散热状态正常;
    当确定所述第二气压与所述第一气压的差值小于或等于所述第一预设阈值时,确定所述设备的散热状态异常。
  22. 根据权利要求20所述的方法,其特征在于,所述散热风扇工作在抽风散热模式下;
    其中,所述根据所述第二气压与所述第一气压的差值,确定设备的散热状态是否正常,包括:
    当确定所述第二气压与所述第一气压的差值小于第二预设值时,确定所述设备的散热状态正常;
    当确定所述第二气压与所述第一气压的差值大于或等于所述第二预设阈值时,确定所述设备的散热状态异常。
  23. 根据权利要求21或22所述的方法,其特征在于,当确定所述设备的散热状态异常时,所述方法还包括:
    获取所述散热风扇的转速;
    根据所述散热风扇的转速与预设转速的大小关系,确定导致所述设备的散热状态异常的原因。
  24. 根据权利要求23所述的方法,其特征在于,所述根据所述散热风扇的转速与预设转速的大小关系,确定导致所述设备的散热状态异常的原因,包括:
    当确定所述散热风扇的转速小于所述预设转速时,确定导致所述设备的散热状态异常的原因为散热风扇故障;
    当确定所述散热风扇的转速等于所述预设转速时,确定导致所述设备的散热状态异常的原因为风道堵塞。
  25. 根据权利要求23或24所述的方法,其特征在于,所述方法还包括:
    向网管服务器发送第一告警信息,所述第一告警信息中包括用于指示所述设备的散热状态异常的第一信息和/或用于指示导致散热状态异常的原因的第二信息。
  26. 根据权利要求23或24所述的方法,其特征在于,所述方法还包括:
    显示第二告警信息,所述第二告警信息中包括用于指示所述设备的散热状态异常的第三信息和/或用于指示导致散热状态异常的原因的第三信息。
  27. 根据权利要求20至26中任一项所述的方法,其特征在于,当确定所述设备的散热状态异常时,所述方法还包括:
    发出与散热状态异常相对应的报警声音。
PCT/CN2016/109621 2016-12-13 2016-12-13 监测设备的散热状态的设备、装置和方法 WO2018107353A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2016/109621 WO2018107353A1 (zh) 2016-12-13 2016-12-13 监测设备的散热状态的设备、装置和方法
EP16923852.4A EP3537859B1 (en) 2016-12-13 2016-12-13 Device, apparatus and method for monitoring heat dissipation states of devices
CN201680088522.9A CN109644577B (zh) 2016-12-13 2016-12-13 监测设备的散热状态的设备、装置和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/109621 WO2018107353A1 (zh) 2016-12-13 2016-12-13 监测设备的散热状态的设备、装置和方法

Publications (1)

Publication Number Publication Date
WO2018107353A1 true WO2018107353A1 (zh) 2018-06-21

Family

ID=62558019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/109621 WO2018107353A1 (zh) 2016-12-13 2016-12-13 监测设备的散热状态的设备、装置和方法

Country Status (3)

Country Link
EP (1) EP3537859B1 (zh)
CN (1) CN109644577B (zh)
WO (1) WO2018107353A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113891613A (zh) * 2021-08-23 2022-01-04 荣耀终端有限公司 散热装置和散热方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1470866A (zh) * 2002-07-23 2004-01-28 华为技术有限公司 一种热测试装置及其测试方法
CN2838216Y (zh) * 2004-08-26 2006-11-15 西门子公司 用于冷却外壳内电气组件的装置
CN101252821A (zh) * 2007-10-12 2008-08-27 张文 一种散热方法、散热系统及散热装置
US20090034187A1 (en) * 2007-07-31 2009-02-05 Coles Henry C Pressure-based fan speed adjustment
CN201652690U (zh) * 2010-04-14 2010-11-24 深圳市中兴新地通信器材有限公司 通信机房用智能节能通风系统
CN102841661A (zh) * 2011-06-24 2012-12-26 鸿富锦精密工业(深圳)有限公司 散热风扇风流压降侦测装置及散热风扇安装方法
CN203327462U (zh) * 2013-06-06 2013-12-04 华为技术有限公司 散热模块及应用其的通信设备
US20140147282A1 (en) * 2012-11-23 2014-05-29 Cooler Master Co., Ltd. Fan structure
CN104712503A (zh) * 2013-12-16 2015-06-17 上海电气风电设备有限公司 一种海上风力发电机组机舱冷却系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3765748B2 (ja) * 2001-11-27 2006-04-12 富士写真フイルム株式会社 電子機器の内気圧調節システム
KR100827876B1 (ko) * 2003-05-15 2008-05-07 엘지전자 주식회사 실외기의 안전운전장치 및 방법
CN101460039B (zh) * 2007-12-13 2011-04-13 纬创资通股份有限公司 电子装置
JP5175622B2 (ja) * 2008-05-30 2013-04-03 株式会社東芝 電子機器
US7751990B2 (en) * 2008-07-21 2010-07-06 International Business Machines Corporation Detecting a fouled air filter in a computer equipment enclosure
CN101876669A (zh) * 2009-04-29 2010-11-03 技嘉科技股份有限公司 装置及流道受阻侦测方法
CN101908013A (zh) * 2009-06-04 2010-12-08 纬创资通股份有限公司 用于电子装置的压力感测装置及压力感测方法和散热装置
DE102010021019B9 (de) * 2010-05-05 2012-07-26 Fujitsu Technology Solutions Intellectual Property Gmbh Gehäuseschrank zur Aufnahme einer Mehrzahl von Einschubkomponenten und Rackgehäuse mit dem Gehäuseschrank und einer Ablufteinheit
CN103025120B (zh) * 2011-09-22 2016-03-30 联想(北京)有限公司 散热系统、散热方法及其电子设备
CN103161328B (zh) * 2011-12-12 2015-03-11 深圳市华为安捷信电气有限公司 通讯机房及其风道调节方法
TWI495990B (zh) * 2012-12-14 2015-08-11 Wistron Corp 散熱風量之偵測方法及電子裝置
JP6007802B2 (ja) * 2013-01-28 2016-10-12 富士通株式会社 冷却装置
CN204175621U (zh) * 2014-10-27 2015-02-25 苏州天地超云网络科技有限公司 服务器散热风扇状态监测装置
CN204408821U (zh) * 2014-11-07 2015-06-17 通力股份公司 散热装置与电梯系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1470866A (zh) * 2002-07-23 2004-01-28 华为技术有限公司 一种热测试装置及其测试方法
CN2838216Y (zh) * 2004-08-26 2006-11-15 西门子公司 用于冷却外壳内电气组件的装置
US20090034187A1 (en) * 2007-07-31 2009-02-05 Coles Henry C Pressure-based fan speed adjustment
CN101252821A (zh) * 2007-10-12 2008-08-27 张文 一种散热方法、散热系统及散热装置
CN201652690U (zh) * 2010-04-14 2010-11-24 深圳市中兴新地通信器材有限公司 通信机房用智能节能通风系统
CN102841661A (zh) * 2011-06-24 2012-12-26 鸿富锦精密工业(深圳)有限公司 散热风扇风流压降侦测装置及散热风扇安装方法
US20140147282A1 (en) * 2012-11-23 2014-05-29 Cooler Master Co., Ltd. Fan structure
CN203327462U (zh) * 2013-06-06 2013-12-04 华为技术有限公司 散热模块及应用其的通信设备
CN104712503A (zh) * 2013-12-16 2015-06-17 上海电气风电设备有限公司 一种海上风力发电机组机舱冷却系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3537859A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113891613A (zh) * 2021-08-23 2022-01-04 荣耀终端有限公司 散热装置和散热方法
CN113891613B (zh) * 2021-08-23 2022-07-05 荣耀终端有限公司 散热装置和散热方法

Also Published As

Publication number Publication date
CN109644577B (zh) 2020-05-08
EP3537859A4 (en) 2019-12-04
EP3537859B1 (en) 2024-02-14
EP3537859A1 (en) 2019-09-11
CN109644577A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
US8910298B2 (en) Environmental monitoring device
CN105605739B (zh) 空调系统及其冷媒泄漏的监测方法和装置
US9908072B2 (en) System and method for replacing air filters
CN108073020B (zh) 光源系统、投影仪及温度控制方法
US9244471B2 (en) Methods and systems for remotely monitoring and controlling HVAC units
CN204046977U (zh) 移动式系统机柜
CN107357708A (zh) 散热器控制方法、装置及电子设备
WO2018107353A1 (zh) 监测设备的散热状态的设备、装置和方法
CN106774776A (zh) 电力管理方法与电力管理系统
JP2018513379A (ja) 温度異常の特定
JP2007148572A (ja) 電子機器、温度制御装置および温度制御方法
CN109282419B (zh) 空调系统、其防火预警方法、计算机设备及存储介质
JP4302593B2 (ja) 空調機監視システム、および空調機監視方法
JP6140119B2 (ja) 工作機械の制御盤の雰囲気を監視し制御する装置
KR101765615B1 (ko) 쿨링팬 제어 시스템 및 이를 이용한 쿨링팬 제어 방법
CN216315123U (zh) 烘焙装置及烘培系统
KR20160073187A (ko) 데이터 센터의 온도조절장치 및 온도조절방법
CN107562156A (zh) 一种服务器散热控制系统及方法
TW201322907A (zh) 貨櫃式數據中心及其降噪方法
JP7249240B2 (ja) ファンフィルタユニット監視制御システムおよびファンフィルタユニット監視制御方法
TW201529987A (zh) 次風扇系統與採用該次風扇系統的伺服器以及次風扇系統控制方法
WO2019036921A1 (zh) 基于物联网的机房风道监控方法、装置及存储介质
JP2023009586A (ja) 制御装置、空調システム、空調制御方法及びプログラム
JP6220564B2 (ja) Vav制御システム
CN116520724A (zh) 服务器风扇安全栏栅的控制方法、系统和计算机设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016923852

Country of ref document: EP

Effective date: 20190607